National Library of Energy BETA

Sample records for radiation measurement quality

  1. Preliminary Analysis of Surface Radiation Measurement Data Quality...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Radiation Measurement Data Quality at the SGP Extended Facilities Y. Shi and C. N. ... Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program operates ...

  2. ARM: Surface Radiation Measurement Quality Control testing, including climatologically configurable limits

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shi, Yan; Riihimaki, Laura

    1994-01-07

    Surface Radiation Measurement Quality Control testing, including climatologically configurable limits

  3. Measuring Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Activity SI Units and Prefixes Conversions Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Measurement Activity: How Much Is Present? The size or weight of a container or shipment does not indicate how much radioactivity is in it. The amount of radioactivity in a quantity of material can be determined by noting how many curies of the material are present. This information should be found on labels and/or shipping

  4. Solar Radiation Empirical Quality Assessment

    Energy Science and Technology Software Center (OSTI)

    1994-03-01

    The SERIQC1 subroutine performs quality assessment of one, two, or three-component solar radiation data (global horizontal, direct normal, and diffuse horizontal) obtained from one-minute to one-hour integrations. Included in the package is the QCFIT tool to derive expected values from historical data, and the SERIQC1 subroutine to assess the quality of measurement data.

  5. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan -

  6. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, David O.; Montoya, Paul C.; Muir, James F.; Wayland, Jr., J. Robert

    1987-01-01

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  7. Data Quality of Quality Measurement Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Quality of Quality Measurement Experiments S. Bottone and S. Moore Mission Research ... assessment of the quality of incoming data based on internal consistency checks, ...

  8. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  9. ARM - Measurement - Photosynthetically Active Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsPhotosynthetically Active Radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Photosynthetically Active Radiation Photosynthetically Active Radiation (PAR) designates the spectral range (wave band) of solar radiation from 400 to 700 nanometers that photosynthetic organisms are able to use in the process of photosynthesis Categories Radiometric Instruments The above measurement is

  10. ARM - Measurement - Radiative heating rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Radiometric, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  11. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites ...

  12. Evaluation of Arctic Broadband Surface Radiation Measurements

    SciTech Connect (OSTI)

    Matsui, N.; Long, Charles N.; Augustine, J. A.; Halliwell, D.; Uttal, Taneil; Longenecker, D.; Niebergale, J.; Wendell, J.; Albee, R.

    2012-02-24

    The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that rotate sensors and shading devices that track the sun. High quality measurements require striking a balance between locating sensors in a pristine undisturbed location free of artificial blockage (such as buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data include solar tracker malfunctions, rime/frost/snow deposition on the instruments and operational problems due to limited operator access in extreme weather conditions. In this study, a comparison is made between the global and component sum (direct [vertical component] + diffuse) shortwave measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both shortwave and longwave measurements. Solutions to these operational problems are proposed that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols.

  13. ARM - Measurement - Aerosol backscattered radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a ...

  14. The use of microdosimetric techniques in radiation protection measurements

    SciTech Connect (OSTI)

    Chen, J.; Hsu, H.H.; Casson, W.H.; Vasilik, D.G.

    1997-01-01

    A major objective of radiation protection is to determine the dose equivalent for routine radiation protection applications. As microdosimetry has developed over approximately three decades, its most important application has been in measuring radiation quality, especially in radiation fields of unknown or inadequately known energy spectra. In these radiation fields, determination of dose equivalent is not straightforward; however, the use of microdosimetric principles and techniques could solve this problem. In this paper, the authors discuss the measurement of lineal energy, a microscopic analog to linear energy transfer, and demonstrate the development and implementation of the variance-covariance method, a novel method in experimental microdosimetry. This method permits the determination of dose mean lineal energy, an essential parameter of radiation quality, in a radiation field of unknown spectrum, time-varying dose rate, and high dose rate. Real-time monitoring of changes in radiation quality can also be achieved by using microdosimetric techniques.

  15. Radiation Measurement (ARM) Climate Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    overview Sponsored by the U.S. Department of Energy's (DOE) Office of Science, the Atmospheric Radiation Measurement (ARM) Climate Research Facility was established in 1990 to improve global climate models by increasing understanding of clouds and radiative feedbacks. Through the ARM Facility, DOE funded the development of highly instrumented research sites at strategic locations around the world: the Southern Great Plains (SGP), Tropical Western Pacific (TWP), and North Slope of Alaska (NSA).

  16. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-027 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  17. AUDIT REPORT Atmospheric Radiation Measurement Climate Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atmospheric Radiation Measurement Climate Research Facility OAI-M-16-10 May 2016 U.S. ... Audit Report on the "Atmospheric Radiation Measurement Climate Research Facility" ...

  18. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-037 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  19. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  20. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-069 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  1. Atmospheric Radiation Measurement Climate Research Facility Annual...

    Office of Scientific and Technical Information (OSTI)

    Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006 Citation Details In-Document Search Title: Atmospheric Radiation Measurement Climate Research ...

  2. Atmospheric Radiation Measurement Program Science Plan. Current...

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program Citation Details In-Document Search Title: Atmospheric Radiation ...

  3. Search for: "atmospheric radiation measurement" | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search DOE Data Explorer Search Results Page 1 of 70 Search for: "atmospheric radiation measurement" 697 results for: "atmospheric radiation ...

  4. Search for: "atmospheric radiation measurement" | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    measurement" 50 results for: "atmospheric radiation measurement" Full Text and Citations Filters Filter Search Results Everything (Citations and Full Text) (50 results) ...

  5. Search for: "atmospheric radiation measurement" | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    ... Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) ... and is available through the DOE ARM and NASA data archives. less December 2015 , ...

  6. Method and Apparatus for Measuring Radiation Quantities

    DOE Patents [OSTI]

    Roberts, N.O.

    1955-01-25

    This patent application describes a compact dosimeter for measuring X-ray and gamma radiation by the use of solutions which undergo a visible color change upon exposure to a predetermined quantity of radiation.

  7. Atmospheric Radiation Measurement Climate Research Facility Operations

    Office of Scientific and Technical Information (OSTI)

    Quarterly Report October 1-December 31, 2012 (Program Document) | SciTech Connect Program Document: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Citation Details In-Document Search Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility

  8. Procedure for Generating Data Quality Reports for SIRS Radiometric Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procedure for Generating Data Quality Reports for SIRS Radiometric Measurements M. H. L. Anderberg, F. P. Rael, and T. L. Stoffell National Renewable Energy Laboratory Golden, Colorado Introduction The Atmospheric Radiation Measurement (ARM) Program needs high-quality broadband shortwave (SW) (solar) and longwave (LW) irradiance information for the development and validation of atmospheric circulation and climate models. To this end, the National Renewable Energy Laboratory (NREL) performs a

  9. Atmospheric Radiation Measurement Program Science Plan. Current...

    Office of Scientific and Technical Information (OSTI)

    Program Science Plan. Current Status and Future Directions of the ARM Science Program Citation Details In-Document Search Title: Atmospheric Radiation Measurement Program Science ...

  10. Search for: "atmospheric radiation measurement" | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    ... Atmospheric Radiation Measurement (ARM) Data from Shouxian, China for the Study of Aerosol Indirect Effects in China In a complex ARM Mobile Facility (AMF) deployment, monitoring ...

  11. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... are collected and sent to the Data Management Facility (DMF) at Pacific Northwest ...

  12. Atmospheric Radiation Measurement Program Climate Research Facility...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Program Climate Research Facility Operations ... are collected and sent to the Data Management Facility (DMF) at Pacific Northwest ...

  13. Atmospheric Radiation Measurement (ARM) Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER ...

  14. Method for radiation detection and measurement

    DOE Patents [OSTI]

    Miller, Steven D.

    1993-01-01

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength.

  15. Method for radiation detection and measurement

    DOE Patents [OSTI]

    Miller, S.D.

    1993-12-21

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength. 9 figures.

  16. Estimation of diffuse from measured global solar radiation

    SciTech Connect (OSTI)

    Moriarty, W.W. )

    1991-01-01

    A data set of quality controlled radiation observations from stations scattered throughout Australia was formed and further screened to remove residual doubtful observations. It was then divided into groups by solar elevation, and used to find average relationships for each elevation group between relative global radiation (clearness index - the measured global radiation expressed as a proportion of the radiation on a horizontal surface at the top of the atmosphere) and relative diffuse radiation. Clear-cut relationships were found, which were then fitted by polynomial expressions giving the relative diffuse radiation as a function of relative global radiation and solar elevation. When these expressions were used to estimate the diffuse radiation from the global, the results had a slightly smaller spread of errors than those from an earlier technique given by Spencer. It was found that the errors were related to cloud amount, and further relationships were developed giving the errors as functions of global radiation, solar elevation, and the fraction of sky obscured by high cloud and by opaque (low and middle level) cloud. When these relationships were used to adjust the first estimates of diffuse radiation, there was a considerable reduction in the number of large errors.

  17. Atmospheric Radiation Measurement Climate Research Facility | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study climate change 1 of 22 Argonne scientists study climate change The U.S. Department of Energy's Office of Science provided $60 million in ARRA funding for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a DOE national user facility that has been operating climate observing sites around the world for nearly two decades. These sites help scientists

  18. MEASURING TEMPORAL PHOTON BUNCHING IN BLACKBODY RADIATION

    SciTech Connect (OSTI)

    Tan, P. K.; Poh, H. S.; Kurtsiefer, C.; Yeo, G. H.; Chan, A. H. E-mail: phyck@nus.edu.sg

    2014-07-01

    Light from thermal blackbody radiators such as stars exhibits photon bunching behavior at sufficiently short timescales. However, with available detector bandwidths, this bunching signal is difficult to observe directly. We present an experimental technique to increase the photon bunching signal in blackbody radiation via spectral filtering of the light source. Our measurements reveal strong temporal photon bunching from blackbody radiation, including the Sun. This technique allows for an absolute measurement of the photon bunching signature g {sup (2)}(0), and thereby a direct statement on the statistical nature of a light source. Such filtering techniques may help revive the interest in intensity interferometry as a tool in astronomy.

  19. Methods of in vivo radiation measurement

    DOE Patents [OSTI]

    Huffman, Dennis D. (Albuquerque, NM); Hughes, Robert C. (Albuquerque, NM); Kelsey, Charles A. (Albuquerque, NM); Lane, Richard (Galveston, TX); Ricco, Antonio J. (Albuquerque, NM); Snelling, Jay B. (Albuquerque, NM); Zipperian, Thomas E. (Albuquerque, NM)

    1990-01-01

    Methods of and apparatus for in vivo radiation measurements relay on a MOSFET dosimeter of high radiation sensitivity with operates in both the passive mode to provide an integrated dose detector and active mode to provide an irradiation rate detector. A compensating circuit with a matched unirradiated MOSFET is provided to operate at a current designed to eliminate temperature dependence of the device. Preferably, the MOSFET is rigidly mounted in the end of a miniature catheter and the catheter is implanted in the patient proximate the radiation source.

  20. Style Guide Atmospheric Radiation Measurement (ARM) Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility March 2013 Style Guide Atmospheric Radiation Measurement Climate Research Facility March 2013 Work ...

  1. 20 Years of Solar Measurements: The Solar Radiation Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Years of Solar Measurements: The Solar Radiation Research Laboratory (SRRL) at NREL Tom ... * Continuous measurements of key solar radiation resources * Calibrations of instruments ...

  2. First Measurements of the FACET Coherent Terahertz Radiation...

    Office of Scientific and Technical Information (OSTI)

    First Measurements of the FACET Coherent Terahertz Radiation Source Citation Details In-Document Search Title: First Measurements of the FACET Coherent Terahertz Radiation Source ...

  3. DOE/SC-ARM-020 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-020 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  4. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial...

    Office of Scientific and Technical Information (OSTI)

    the ARM Aerial Facility Title: Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility The Atmospheric Radiation Measurement (ARM) Program is the largest global ...

  5. Atmospheric Radiation Measurement (ARM) Data from the North Slope...

    Office of Scientific and Technical Information (OSTI)

    North Slope Alaska (NSA) Site Title: Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site The Atmospheric Radiation Measurement (ARM) Program is the ...

  6. METHOD AND APPARATUS FOR MEASURING RADIATION

    DOE Patents [OSTI]

    Reeder, S.D.

    1962-04-17

    A chemical dosimeter for measuring the progress of a radiation-induced oxidation-reduction reaction is described. The dosimeter comprises a container filled with an aqueous chemical oxidation-reduction system which reacts quantitatively to the radiation. An anode of the group consisting of antimony and tungsten and a cathode of the group consisting of gold and platnium are inserted into the system. Means are provided to stir the system and a potential sensing device is connected across the anode and cathode to detect voltage changes. (AEC)

  7. Radiation beam calorimetric power measurement system

    DOE Patents [OSTI]

    Baker, John; Collins, Leland F.; Kuklo, Thomas C.; Micali, James V.

    1992-01-01

    A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

  8. TH-A-16A-01: Image Quality for the Radiation Oncology Physicist: Review of the Fundamentals and Implementation

    SciTech Connect (OSTI)

    Seibert, J; Imbergamo, P

    2014-06-15

    The expansion and integration of diagnostic imaging technologies such as On Board Imaging (OBI) and Cone Beam Computed Tomography (CBCT) into radiation oncology has required radiation oncology physicists to be responsible for and become familiar with assessing image quality. Unfortunately many radiation oncology physicists have had little or no training or experience in measuring and assessing image quality. Many physicists have turned to automated QA analysis software without having a fundamental understanding of image quality measures. This session will review the basic image quality measures of imaging technologies used in the radiation oncology clinic, such as low contrast resolution, high contrast resolution, uniformity, noise, and contrast scale, and how to measure and assess them in a meaningful way. Additionally a discussion of the implementation of an image quality assurance program in compliance with Task Group recommendations will be presented along with the advantages and disadvantages of automated analysis methods. Learning Objectives: Review and understanding of the fundamentals of image quality. Review and understanding of the basic image quality measures of imaging modalities used in the radiation oncology clinic. Understand how to implement an image quality assurance program and to assess basic image quality measures in a meaningful way.

  9. Atmospheric Radiation Measurement Convective and Orographically Induced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Convective and Orographically Induced Precipitation Study The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is providing the ARM Mobile Facility (AMF) to support a long-term precipitation study in the Black Forest region of Germany. Requested by researchers from the University of Hohenheim, the AMF will be deployed as one of four heav- ily instrumented supersites established for the Convective and Orographically Induced Precipita- tion Study

  10. Methods of and apparatus for radiation measurement, and specifically for in vivo radiation measurement

    DOE Patents [OSTI]

    Huffman, D.D.; Hughes, R.C.; Kelsey, C.A.; Lane, R.; Ricco, A.J.; Snelling, J.B.; Zipperian, T.E.

    1986-08-29

    Methods of and apparatus for in vivo radiation measurements rely on a MOSFET dosimeter of high radiation sensitivity which operates in both the passive mode to provide an integrated dose detector and active mode to provide an irradiation rate detector. A compensating circuit with a matched unirradiated MOSFET is provided to operate at a current designed to eliminate temperature dependence of the device. Preferably, the MOSFET is rigidly mounted in the end of a miniature catheter and the catheter is implanted in the patient proximate the radiation source.

  11. TH-E-19A-01: Quality and Safety in Radiation Therapy

    SciTech Connect (OSTI)

    Ford, E; Ezzell, G; Miller, B; Yorke, E

    2014-06-15

    Clinical radiotherapy data clearly demonstrate the link between the quality and safety of radiation treatments and the outcome for patients. The medical physicist plays an essential role in this process. To ensure the highest quality treatments, the medical physicist must understand and employ modern quality improvement techniques. This extends well beyond the duties traditionally associated with prescriptive QA measures. This session will review the current best practices for improving quality and safety in radiation therapy. General elements of quality management will be reviewed including: what makes a good quality management structure, the use of prospective risk analysis such as FMEA, and the use of incident learning. All of these practices are recommended in society-level documents and are incorporated into the new Practice Accreditation program developed by ASTRO. To be effective, however, these techniques must be practical in a resource-limited environment. This session will therefore focus on practical tools such as the newly-released radiation oncology incident learning system, RO-ILS, supported by AAPM and ASTRO. With these general constructs in mind, a case study will be presented of quality management in an SBRT service. An example FMEA risk assessment will be presented along with incident learning examples including root cause analysis. As the physicist's role as “quality officer” continues to evolve it will be essential to understand and employ the most effective techniques for quality improvement. This session will provide a concrete overview of the fundamentals in quality and safety. Learning Objectives: Recognize the essential elements of a good quality management system in radiotherapy. Understand the value of incident learning and the AAPM/ASTRO ROILS incident learning system. Appreciate failure mode and effects analysis as a risk assessment tool and its use in resource-limited environments. Understand the fundamental principles of good

  12. Optical steam quality measurement system and method

    SciTech Connect (OSTI)

    Davidson, James R.; Partin, Judy K.

    2006-04-25

    An optical measurement system is presented that offers precision on-line monitoring of the quality of steam. Multiple wavelengths of radiant energy are passed through the steam from an emitter to a detector. By comparing the amount of radiant energy absorbed by the flow of steam for each wavelength, a highly accurate measurement of the steam quality can be determined on a continuous basis in real-time. In an embodiment of the present invention, the emitter, comprises three separate radiant energy sources for transmitting specific wavelengths of radiant energy through the steam. In a further embodiment, the wavelengths of radiant energy are combined into a single beam of radiant energy for transmission through the steam using time or wavelength division multiplexing. In yet a further embodiment, the single beam of radiant energy is transmitted using specialized optical elements.

  13. DOE Science Showcase - Atmospheric Radiation Measurement | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information Atmospheric Radiation Measurement A scanning cloud radar was one of the instruments taking measurements during GoAmazon 2014/2015. Image credit: ARM Program Atmospheric radiation measurements are fundamental data used to better understand the radiation budget of the earth, why climate is changing, and how climate change will affect our future. DOE's Atmospheric Radiation Measurement (ARM) Program was established as a comprehensive program

  14. Measurement Practices for Reliability and Power Quality

    SciTech Connect (OSTI)

    Kueck, JD

    2005-05-06

    This report provides a distribution reliability measurement ''toolkit'' that is intended to be an asset to regulators, utilities and power users. The metrics and standards discussed range from simple reliability, to power quality, to the new blend of reliability and power quality analysis that is now developing. This report was sponsored by the Office of Electric Transmission and Distribution, U.S. Department of Energy (DOE). Inconsistencies presently exist in commonly agreed-upon practices for measuring the reliability of the distribution systems. However, efforts are being made by a number of organizations to develop solutions. In addition, there is growing interest in methods or standards for measuring power quality, and in defining power quality levels that are acceptable to various industries or user groups. The problems and solutions vary widely among geographic areas and among large investor-owned utilities, rural cooperatives, and municipal utilities; but there is still a great degree of commonality. Industry organizations such as the National Rural Electric Cooperative Association (NRECA), the Electric Power Research Institute (EPRI), the American Public Power Association (APPA), and the Institute of Electrical and Electronics Engineers (IEEE) have made tremendous strides in preparing self-assessment templates, optimization guides, diagnostic techniques, and better definitions of reliability and power quality measures. In addition, public utility commissions have developed codes and methods for assessing performance that consider local needs. There is considerable overlap among these various organizations, and we see real opportunity and value in sharing these methods, guides, and standards in this report. This report provides a ''toolkit'' containing synopses of noteworthy reliability measurement practices. The toolkit has been developed to address the interests of three groups: electric power users, utilities, and regulators. The report will also serve

  15. Posters Objective Analysis Schemes to Monitor Atmospheric Radiation Measurement Data in Near Real-Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters Objective Analysis Schemes to Monitor Atmospheric Radiation Measurement Data in Near Real-Time M. Splitt University of Oklahoma Norman, Oklahoma Recent work in this area by Charles Wade (1987) lays out the groundwork for monitoring data quality for projects with large networks of instruments such as the Atmospheric Radiation Measurement (ARM) Program. Wade generated objectively analyzed fields of meteorological variables (temperature, pressure, humidity, and wind) and then compared the

  16. Atmospheric Radiation Measurement Program Science Plan

    SciTech Connect (OSTI)

    Ackerman, T

    2004-10-31

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at

  17. Atmospheric Radiation Measurement Program Science Plan. Current Status and

    Office of Scientific and Technical Information (OSTI)

    Future Directions of the ARM Science Program (Technical Report) | SciTech Connect Technical Report: Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program Citation Details In-Document Search Title: Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate

  18. Thunderhead Radiation Measurements and Radiative Flux Analysis in Support of STORMVEX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thunderhead Radiation Measurements and Radiative Flux Analysis in Support of STORMVEX Chuck Long Jay Mace Intent * Provide downwelling broadband radiation measurements at Thunderhead * Physically small footprint portable system * Designed to provide inputs necessary for Radiative Flux Analysis Basic RFA System COPS Hornisgrinde Deployment 1200m elevation System Components * Eppley ventilated PSP * Eppley ventilated PIR * Delta-T SPN-1 * Vaisala HMP-50 T/RH probe * Campbell CR23X datalogger SPN-1

  19. Atmospheric Radiation Measurement (ARM) Data from the Southern...

    Office of Scientific and Technical Information (OSTI)

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research ... reflect conditions over the typical distribution of land uses within the site. ...

  20. Search for: "atmospheric radiation measurement" | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Observations and Modeling of the Green Ocean Amazon: Sounding Enhancement Field Campaign ... The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate ...

  1. Atmospheric Radiation Measurement (ARM) Data from the Eastern...

    Office of Scientific and Technical Information (OSTI)

    the Eastern North Atlantic Site (ENA), Graciosa Island, Azores Title: Atmospheric Radiation Measurement (ARM) Data from the Eastern North Atlantic Site (ENA), Graciosa Island, ...

  2. Atmospheric Radiation Measurement (ARM) Data from Point Reyes...

    Office of Scientific and Technical Information (OSTI)

    Seashore, on the California coast north of San Francisco, was the location of the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). ...

  3. Atmospheric Radiation Measurement (ARM) Data from the North Slope...

    Office of Scientific and Technical Information (OSTI)

    North Slope Alaska (NSA) Site Title: Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site You are accessing a document from the Department of ...

  4. Atmospheric Radiation Measurement Radiative Atmospheric Divergence using ARM Mobile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Atmospheric Divergence using ARM Mobile Facility, GERB, and AMMA Stations (RADAGAST) Beginning in January 2006, the ARM Mobile Facility (AMF) began supporting RADAGAST to provide the first well-sampled direct esti- mates of the energy balance across the atmosphere. The experiment is part of an ongoing international study of the West African monsoon system and Saharan dust storms. Stationed outside the Niger Meteo- rological Office at the Niamey International Airport, the AMF is located

  5. Method for increased sensitivity of radiation detection and measurement

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1994-01-01

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength. Reduced background is accomplished by more thorough annealing and enhanced radiation induced luminescence is obtained by treating the crystalline material to coalesce primary damage centers into secondary damage centers.

  6. Measurements of the radiation environment on the APEX satellite

    SciTech Connect (OSTI)

    Sims, A.J.; Dyer, C.S.; Watson, C.J.; Peerless, C.L.

    1996-06-01

    The Cosmic Radiation Environment and Dosimetry experiment was built to accompany the CRUX (Cosmic Ray Upset) experiment on the USAF APEX satellite, launched in August 1994. Results of measurements of the space radiation environment are presented here while a companion paper presents CRUX measurements of upsets correlated with proton flux.

  7. On Correction of Diffuse Radiation Measured by MFRSR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On Correction of Diffuse Radiation Measured by MFRSR T. B. Zhuravleva Institute of Atmospheric Optics, SB RAS Tomsk, Russia M. A. Sviridenkov and P. P. Anikin A. M. Obukhov Institute of Atmospheric Physics, RAS Moscow, Russia Introduction The multi-filter rotated shadowband radiometer (MFRSR) provides spectral direct, diffuse, and total horizontal solar irradiance measurements. Because the MFRSR's receiver has a non-Lambertian response, for a correct interpretation of measured radiation an

  8. ARM - Field Campaign - Measurement of Aerosols, Radiation and Clouds over

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Southern Ocean (MARCUS: Ice Nucleating Particle Measurements) Ocean (MARCUS: Ice Nucleating Particle Measurements) Related Campaigns Measurement of Aerosols, Radiation and Clouds over the Southern Oceans (MARCUS) 2017.09.01, McFarquhar, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Measurement of Aerosols, Radiation and Clouds over the Southern Ocean (MARCUS: Ice Nucleating Particle Measurements) 2017.09.01 - 2018.04.30

  9. Nuclear radiation-warning detector that measures impedance

    DOE Patents [OSTI]

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  10. Atmospheric Radiation Measurement Madden-Julian Oscillation Investigation

    Office of Scientific and Technical Information (OSTI)

    Experiment Field Campaign Report (Technical Report) | SciTech Connect Atmospheric Radiation Measurement Madden-Julian Oscillation Investigation Experiment Field Campaign Report Citation Details In-Document Search Title: Atmospheric Radiation Measurement Madden-Julian Oscillation Investigation Experiment Field Campaign Report Every 30-90 days during the Northern Hemisphere winter, the equatorial tropical atmosphere experiences pulses of extraordinarily strong deep convection and rainfall.

  11. Voice Quality After Treatment of Early Vocal Cord Cancer: A Randomized Trial Comparing Laser Surgery With Radiation Therapy

    SciTech Connect (OSTI)

    Aaltonen, Leena-Maija; Rautiainen, Noora; Sellman, Jaana; Saarilahti, Kauko; Mkitie, Antti; Rihkanen, Heikki; Laranne, Jussi; Kleemola, Leenamaija; Wigren, Tuija; Sala, Eeva; Lindholm, Paula; Grenman, Reidar; Joensuu, Heikki

    2014-10-01

    Objective: Early laryngeal cancer is usually treated with either transoral laser surgery or radiation therapy. The quality of voice achieved with these treatments has not been compared in a randomized trial. Methods and Materials: Male patients with carcinoma limited to 1 mobile vocal cord (T1aN0M0) were randomly assigned to receive either laser surgery (n=32) or external beam radiation therapy (n=28). Surgery consisted of tumor excision with a CO{sub 2} laser with the patient under general anaesthesia. External beam radiation therapy to the larynx was delivered to a cumulative dose of 66Gy in 2-Gy daily fractions over 6.5weeks. Voice quality was assessed at baseline and 6 and 24months after treatment. The main outcome measures were expert-rated voice quality on a grade, roughness, breathiness, asthenia, and strain (GRBAS) scale, videolaryngostroboscopic findings, and the patients' self-rated voice quality and its impact on activities of daily living. Results: Overall voice quality between the groups was rated similar, but voice was more breathy and the glottal gap was wider in patients treated with laser surgery than in those who received radiation therapy. Patients treated with radiation therapy reported less hoarseness-related inconvenience in daily living 2years after treatment. Three patients in each group had local cancer recurrence within 2years from randomization. Conclusions: Radiation therapy may be the treatment of choice for patients whose requirements for voice quality are demanding. Overall voice quality was similar in both treatment groups, however, indicating a need for careful consideration of patient-related factors in the choice of a treatment option.

  12. Method and apparatus for measuring spatial uniformity of radiation

    DOE Patents [OSTI]

    Field, Halden

    2002-01-01

    A method and apparatus for measuring the spatial uniformity of the intensity of a radiation beam from a radiation source based on a single sampling time and/or a single pulse of radiation. The measuring apparatus includes a plurality of radiation detectors positioned on planar mounting plate to form a radiation receiving area that has a shape and size approximating the size and shape of the cross section of the radiation beam. The detectors concurrently receive portions of the radiation beam and transmit electrical signals representative of the intensity of impinging radiation to a signal processor circuit connected to each of the detectors and adapted to concurrently receive the electrical signals from the detectors and process with a central processing unit (CPU) the signals to determine intensities of the radiation impinging at each detector location. The CPU displays the determined intensities and relative intensity values corresponding to each detector location to an operator of the measuring apparatus on an included data display device. Concurrent sampling of each detector is achieved by connecting to each detector a sample and hold circuit that is configured to track the signal and store it upon receipt of a "capture" signal. A switching device then selectively retrieves the signals and transmits the signals to the CPU through a single analog to digital (A/D) converter. The "capture" signal. is then removed from the sample-and-hold circuits. Alternatively, concurrent sampling is achieved by providing an A/D converter for each detector, each of which transmits a corresponding digital signal to the CPU. The sampling or reading of the detector signals can be controlled by the CPU or level-detection and timing circuit.

  13. Satellite data sets for the atmospheric radiation measurement (ARM) program

    SciTech Connect (OSTI)

    Shi, L.; Bernstein, R.L.

    1996-04-01

    This abstract describes the type of data obtained from satellite measurements in the Atmospheric Radiation Measurement (ARM) program. The data sets have been widely used by the ARM team to derive cloud-top altitude, cloud cover, snow and ice cover, surface temperature, water vapor, and wind, vertical profiles of temperature, and continuoous observations of weather needed to track and predict severe weather.

  14. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  15. Measurements and model calculations of radiative fluxes for the Cabauw

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Site for Atmospheric Research, the Netherlands Measurements and model calculations of radiative fluxes for the Cabauw Experimental Site for Atmospheric Research, the Netherlands Knap, Wouter Royal Netherlands Meteorological Institute KNMI Los, Alexander KNMI Boers, Reinout KNMI Category: Radiation The Cabauw Experimental Site for Atmospheric Research (CESAR), the Netherlands (52.0N, 4.9E), contains an extensive set of instruments for atmospheric research, such as radar, lidar

  16. An Instrumentation Complex for Atmospheric Radiation Measurements in Siberia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation Complex for Atmospheric Radiation Measurements in Siberia S. M. Sakerin, F. V. Dorofeev, D. M. Kabanov, V. S. Kozlov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Polkin, V. P. Shmargunov, S. A. Terpugova, S. A. Turchinovich, and V. N. Uzhegov Institute of Atmospheric Optics Tomsk, Russia Introduction The instrumentation complex is described, which has been prepared for radiative experiments in the region of Tomsk (West Siberia). The complex consists of three groups of devices to

  17. DOE/SC-ARM-13-013 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-013 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  18. DOE/SC-ARM-14-025 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-025 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  19. DOE/SC-ARM-15-037 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-037 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  20. DOE/SC-ARM-12-021 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-021 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  1. DOE/SC-ARM-14-007 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-007 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  2. DOE/SC-ARM-15-018 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-018 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  3. DOE/SC-ARM-14-019 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-019 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  4. DOE/SC-ARM-15-001 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  5. DOE/SC-ARM-14-001 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  6. DOE/SC-ARM-13-007 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-007 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  7. DOE/SC-ARM-12-015 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-015 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  8. DOE/SC-ARM-13-001 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  9. DOE/SC-ARM-13-020 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-020 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  10. Comparison of Cirrus Cloud Radiative Properties and Dynamical Processes at Two Atmospheric Radiation Measurement (ARM) Si...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cirrus Cloud Radiative Properties and Dynamical Processes at Two Atmospheric Radiation Measurement Sites in the Tropical Western Pacific J. M. Comstock, J. H. Mather, and T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington Introduction Upper tropospheric humidity plays an important role in the formation and maintenance of tropical cirrus clouds. Deep convection is crucial for the transport of water vapor from the boundary layer to the upper troposphere and is

  11. Medical imaging using ionizing radiation: Optimization of dose and image quality in fluoroscopy

    SciTech Connect (OSTI)

    Jones, A. Kyle; Balter, Stephen; Rauch, Phillip; Wagner, Louis K.

    2014-01-15

    The 2012 Summer School of the American Association of Physicists in Medicine (AAPM) focused on optimization of the use of ionizing radiation in medical imaging. Day 2 of the Summer School was devoted to fluoroscopy and interventional radiology and featured seven lectures. These lectures have been distilled into a single review paper covering equipment specification and siting, equipment acceptance testing and quality control, fluoroscope configuration, radiation effects, dose estimation and measurement, and principles of flat panel computed tomography. This review focuses on modern fluoroscopic equipment and is comprised in large part of information not found in textbooks on the subject. While this review does discuss technical aspects of modern fluoroscopic equipment, it focuses mainly on the clinical use and support of such equipment, from initial installation through estimation of patient dose and management of radiation effects. This review will be of interest to those learning about fluoroscopy, to those wishing to update their knowledge of modern fluoroscopic equipment, to those wishing to deepen their knowledge of particular topics, such as flat panel computed tomography, and to those who support fluoroscopic equipment in the clinic.

  12. Lens transmission measurement for an absolute radiation thermometer

    SciTech Connect (OSTI)

    Hao, X.; Yuan, Z.; Lu, X.

    2013-09-11

    The lens transmission for the National Institute of Metrology of China absolute radiation thermometer is measured by a hybrid method. The results of the lens transmission measurements are 99.002% and 86.792% for filter radiometers with center wavelengths 633 nm and 900 nm, respectively. These results, after correcting for diffraction factors and the size-of-source effect when the lens is incorporated within the radiometer, can be used for measurement of thermodynamic temperature. The expanded uncertainty of the lens transmission measurement system has been evaluated. It is 1.310{sup ?3} at 633 nm and 900 nm, respectively.

  13. Field quality measurements of a 2-Tesla transmission line magnet

    SciTech Connect (OSTI)

    Velev, G.V.; Foster, W.; Kashikhin, V.; Mazur, P.; Oleck, A.; Piekarz, H.; Schlabach, P.; Sylvester, C.; Wake, M.; /KEK, Tsukuba

    2005-09-01

    A prototype 2-Tesla superconducting transmission line magnet for future hadron colliders was designed, built and tested at Fermilab. The 1.5 m long, combined-function gradient-dipole magnet has a vertical pole aperture of 20 mm. To measure the magnetic field quality in such a small magnet aperture, a specialized rotating coil of 15.2 mm diameter, 0.69 m long was fabricated. Using this probe, a program of magnetic field quality measurements was successfully performed. Results of the measurements are presented and discussed.

  14. Atmospheric Radiation Measurement Program facilities newsletter, March 2000

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2000-04-03

    The Atmospheric Radiation Measurement Program (ARM Program) is sending a copy of the ARM Video, an education overview of their program. In the video you will see and hear ARM scientists describe the importance of studying climate and climate change. It also contains a tour of some ARM sites and a look at state-of-the-art meteorological instrumentation, along with background information about the radiation budget and the complexity of climate modeling. The video was produced by the US Department of Energy.

  15. Global Harmonization of Quality Assurance Naming Conventions in Radiation Therapy Clinical Trials

    SciTech Connect (OSTI)

    Melidis, Christos; Bosch, Walther R.; Izewska, Joanna; Fidarova, Elena; Zubizarreta, Eduardo; Ulin, Kenneth; Ishikura, Satoshi; Followill, David; Galvin, James; Haworth, Annette; Besuijen, Deidre; Clark, Clark H.; Miles, Elizabeth; Aird, Edwin; and others

    2014-12-01

    Purpose: To review the various radiation therapy quality assurance (RTQA) procedures used by the Global Clinical Trials RTQA Harmonization Group (GHG) steering committee members and present the harmonized RTQA naming conventions by amalgamating procedures with similar objectives. Methods and Materials: A survey of the GHG steering committee members' RTQA procedures, their goals, and naming conventions was conducted. The RTQA procedures were classified as baseline, preaccrual, and prospective/retrospective data capture and analysis. After all the procedures were accumulated and described, extensive discussions took place to come to harmonized RTQA procedures and names. Results: The RTQA procedures implemented within a trial by the GHG steering committee members vary in quantity, timing, name, and compliance criteria. The procedures of each member are based on perceived chances of noncompliance, so that the quality of radiation therapy planning and treatment does not negatively influence the trial measured outcomes. A comparison of these procedures demonstrated similarities among the goals of the various methods, but the naming given to each differed. After thorough discussions, the GHG steering committee members amalgamated the 27 RTQA procedures to 10 harmonized ones with corresponding names: facility questionnaire, beam output audit, benchmark case, dummy run, complex treatment dosimetry check, virtual phantom, individual case review, review of patients' treatment records, and protocol compliance and dosimetry site visit. Conclusions: Harmonized RTQA harmonized naming conventions, which can be used in all future clinical trials involving radiation therapy, have been established. Harmonized procedures will facilitate future intergroup trial collaboration and help to ensure comparable RTQA between international trials, which enables meta-analyses and reduces RTQA workload for intergroup studies.

  16. Design of a differential radiometer for atmospheric radiative flux measurements

    SciTech Connect (OSTI)

    LaDelfe, P.C.; Weber, P.G.; Rodriguez, C.W.

    1994-11-01

    The Hemispherical Optimized NEt Radiometer (HONER) is an instrument under development at the Los Alamos National Laboratory for deployment on an unmanned aerospace vehicle as part of the Atmospheric Radiation Measurements (ARM/UAV) program. HONER is a differential radiometer which will measure the difference between the total upwelling and downwelling fluxes and is intended to provide a means of measuring the atmospheric radiative flux divergence. Unlike existing instruments which measure the upwelling and downwelling fluxes separately, HONER will achieve an optical difference by chopping the two fluxes alternately onto a common pyroelectric detector. HONER will provide data resolved into two spectral bands; one covering the solar dominated region from less than 0.4 micrometer to approximately 4.5 micrometers and the other covering the region from approximately 4.5 micrometers to greater than 50 micrometers, dominated by thermal radiation. The means of separating the spectral regions guarantees seamless summation to calculate the total flux. The fields-of-view are near-hemispherical, upward and downward. The instrument can be converted, in flight, from the differential mode to absolute mode, measuring the upwelling and downwelling fluxes separately and simultaneously. The instrument also features continuous calibration from on-board sources. We will describe the design and operation of the sensor head and the on-board reference sources as well as the means of deployment.

  17. Atmospheric Radiation Measurement Program facilities newsletter, April 2000

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2000-05-05

    This issue of the Atmospheric Radiation Measurement Program (ARM Program) monthly newsletter is about the ARM Program goal to improve scientific understanding of the interactions of sunlight (solar radiation) with the atmosphere, then incorporate this understanding into computer models of climate change. To model climate accurately all around the globe, a variety of data must be collected from many locations on Earth. For its Cloud and Radiation Testbed (CART) sites, ARM chose locations in the US Southern Great Plains, the North Slope of Alaska, and the Tropical Western Pacific Ocean to represent different climate types around the world. In this newsletter they consider the North Slope of Alaska site, with locations at Barrow and Atqasuk, Alaska.

  18. Atmospheric Radiation Measurement Program Facilities Newsletter - September 1999

    SciTech Connect (OSTI)

    Holdridge, D. J., ed

    1999-09-27

    The Atmospheric Radiation Measurement Program September 1999 Facilities Newsletter discusses the several Intensive Observation Periods (IOPs) that the ARM SGP CART site will host in the near future. Two projects of note are the International Pyrgeometer Intercomparison and the Fall Single Column Model (SCM)/Nocturnal Boundary Layer (NBL) IOP. Both projects will bring many US and international scientists to the SGP CART site to participate in atmospheric research.

  19. DOE/ER-0441 Atmospheric Radiation Measurement Plan - February 1990

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Program Plan ARM Program Plan Forward In 1978 the Department of Energy initiated the Carbon Dioxide Research Program to address climate change from the increasing concentration of carbon dioxide in the atmosphere. Over the years the Program has studied the many facets of the issue, from the carbon cycle, the climate diagnostics, the vegetative effects, to the societal impacts. The Program is presently the Department's principal entry in the U.S. Global Change

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1-September 30, 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1-December 31, 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1-March 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1-June 30, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1-March 31, 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

  7. Atmospheric Radiation Measurement Tropical Warm Pool International Cloud Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Warm Pool International Cloud Experiment General Description The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program and the Australian Bureau of Meteorology. Beginning January 21 and ending February 14, 2006, the experiment was conducted in the region near the ARM Climate Research Facility in Darwin, Northern Australia. This permanent facility is fully equipped

  8. Results from power quality measurements in Germany - An overview

    SciTech Connect (OSTI)

    Gerdes, G.J.; Santjer, F.

    1996-12-31

    Grid interferences caused by wind turbines (WT) are getting a severe problem in Germany with the fast increasing number of installed turbines. The wind energy capacity was doubled annually in the past three years. The actual situation and the plannings for the next years will lead to a situation, where high wind energy penetration will exercise a big influence on the power and voltage quality of local utility networks. Measurements performed in Germany according to a national guideline show a big variety in power quality performance of WT`s, which does affect the requirements for grid connection and thus the economical situation of wind energy projects to a large extent. The results from more than 25 power quality measurements will be discussed in this paper. 5 refs., 5 figs., 1 tab.

  9. Quality control and statistical process control for nuclear analytical measurements

    SciTech Connect (OSTI)

    Seymour, R.; Sergent, F.; Clark, W.H.C.; Gleason, G.

    1993-12-31

    The same driving forces that are making businesses examine quality control of manufacturing processes are making laboratories reevaluate their quality control programs. Increased regulation (accountability), global competitiveness (profitability), and potential for litigation (defensibility) are the principal driving forces behind the development and implementation of QA/QC programs in the nuclear analytical laboratory. Both manufacturing and scientific quality control can use identical statistical methods, albeit with some differences in the treatment of the measured data. Today, the approaches to QC programs are quite different for most analytical laboratories as compared with manufacturing sciences. This is unfortunate because the statistical process control methods are directly applicable to measurement processes. It is shown that statistical process control methods can provide many benefits for laboratory QC data treatment.

  10. Measurements of prompt radiation induced conductivity of Kapton.

    SciTech Connect (OSTI)

    Preston, Eric F.; Zarick, Thomas Andrew; Sheridan, Timothy J.; Hartman, E. Frederick; Stringer, Thomas Arthur

    2010-10-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Kapton (polyimide) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil samples were irradiated with a 0.5 {mu}s pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E10 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 6E-17 and 2E-16 mhos/m per rad/s, depending on the dose rate and the pulse width.

  11. Measurements of prompt radiation induced conductivity in Teflon (PTFE).

    SciTech Connect (OSTI)

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, E.

    2013-05-01

    We performed measurements of the prompt radiation induced conductivity (RIC) in thin samples of Teflon (PTFE) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil (76.2 microns) samples were irradiated with a 0.5 %CE%BCs pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E11 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Details of the experimental apparatus and analysis are reported in this report on prompt RIC in Teflon.

  12. A New Low-Cost Measurement Platform for Urea Quality Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A New Low-Cost Measurement Platform for Urea Quality Monitoring This technique can use specifications for urea quality to calibrate emission controls and compliance measurements. ...

  13. Science Plan for the Atmospheric Radiation Measurement Program (ARM)

    SciTech Connect (OSTI)

    1996-02-01

    The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE`s programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols.

  14. Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program

    SciTech Connect (OSTI)

    Dooraghi, Michael

    2015-09-01

    The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative feedback processes in the atmosphere, particularly the interactions among clouds and aerosols. ARM obtains continuous measurements and conducts field campaigns to provide data products that aid in the improvement and further development of climate models. All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full suite of stations in a number of ways, including troubleshooting issues that arise as part of the data-quality reviews; managing engineering changes to the standard setup; and providing calibration services and assistance to the full fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperature/relative humidity probes, multimeters, and data acquisition systems that are used in the calibrations performed at the Southern Great Plains Radiometer Calibration Facility. This paper discusses all aspects related to the support provided to the calibration of the instruments in the solar monitoring fleet.

  15. Background radiation measurements at high power research reactors

    SciTech Connect (OSTI)

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yen, Y. -R.; Zhang, C.; Zhang, X.

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  16. Background radiation measurements at high power research reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; et al

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less

  17. Measurement of the x-ray power from transition radiators

    SciTech Connect (OSTI)

    Piestrup, M.A. ); Moran, M.J. )

    1990-04-09

    We report the measurement of the x-ray power from four transition radiators. The average power from a 44 {mu}A, 104 MeV electron beam penetrating a stack of fifteen 1.5-{mu}m-thick aluminum foils was 0.7 mW at a peak photon energy of 1.56 keV with an approximate bandwidth of 40%. The peak power from the same stack in a 17 ns pulse was 58 W. Foil stacks constructed of Mylar, parylene, or boron were either distorted or destroyed by exposure to the high average current electron beam.

  18. Search for: "atmospheric radiation measurement" | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (320) radiations (284) solar radiation (237) climate models (206) radar reflectivity (194) aerosols (188) climatic change (168) research programs (157) vertical velocity ...

  19. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM data is collected both through permanent monitoring stations and field campaigns around the world. Airborne measurements required to answer science questions from researchers or to validate ground data are also collected. To find data from all categories of aerial operations, follow the links from the AAF information page at http://www.arm.gov/sites/aaf. Tables of information will provide start dates, duration, lead scientist, and the research site for each of the named campaigns. The title of a campaign leads, in turn, to a project description, contact information, and links to the data. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  20. Measurements of prompt radiation induced conductivity of alumina and sapphire.

    SciTech Connect (OSTI)

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, Eric F.

    2011-04-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Alumina and Sapphire at the Little Mountain Medusa LINAC facility in Ogden, UT. Five mil thick samples were irradiated with pulses of 20 MeV electrons, yielding dose rates of 1E7 to 1E9 rad/s. We applied variable potentials up to 1 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 1E10 and 1E9 mho/m/(rad/s), depending on the dose rate and the pulse width for Alumina and 1E7 to 6E7 mho/m/(rad/s) for Sapphire.

  1. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect (OSTI)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  2. A quantitative method for measuring the quality of history matches

    SciTech Connect (OSTI)

    Shaw, T.S.; Knapp, R.M.

    1997-08-01

    History matching can be an efficient tool for reservoir characterization. A {open_quotes}good{close_quotes} history matching job can generate reliable reservoir parameters. However, reservoir engineers are often frustrated when they try to select a {open_quotes}better{close_quotes} match from a series of history matching runs. Without a quantitative measurement, it is always difficult to tell the difference between a {open_quotes}good{close_quotes} and a {open_quotes}better{close_quotes} matches. For this reason, we need a quantitative method for testing the quality of matches. This paper presents a method for such a purpose. The method uses three statistical indices to (1) test shape conformity, (2) examine bias errors, and (3) measure magnitude of deviation. The shape conformity test insures that the shape of a simulated curve matches that of a historical curve. Examining bias errors assures that model reservoir parameters have been calibrated to that of a real reservoir. Measuring the magnitude of deviation assures that the difference between the model and the real reservoir parameters is minimized. The method was first tested on a hypothetical model and then applied to published field studies. The results showed that the method can efficiently measure the quality of matches. It also showed that the method can serve as a diagnostic tool for calibrating reservoir parameters during history matching.

  3. Atmospheric Radiation Measurement Program facilities newsletter, January 2000

    SciTech Connect (OSTI)

    Sisterson, D.L.

    2000-02-16

    The subject of this newsletter is the ARM unmanned aerospace vehicle program. The ARM Program's focus is on climate research, specifically research related to solar radiation and its interaction with clouds. The SGP CART site contains highly sophisticated surface instrumentation, but even these instruments cannot gather some crucial climate data from high in the atmosphere. The Department of Energy and the Department of Defense joined together to use a high-tech, high-altitude, long-endurance class of unmanned aircraft known as the unmanned aerospace vehicle (UAV). A UAV is a small, lightweight airplane that is controlled remotely from the ground. A pilot sits in a ground-based cockpit and flies the aircraft as if he were actually on board. The UAV can also fly completely on its own through the use of preprogrammed computer flight routines. The ARM UAV is fitted with payload instruments developed to make highly accurate measurements of atmospheric flux, radiance, and clouds. Using a UAV is beneficial to climate research in many ways. The UAV puts the instrumentation within the environment being studied and gives scientists direct measurements, in contrast to indirect measurements from satellites orbiting high above Earth. The data collected by UAVs can be used to verify and calibrate measurements and calculated values from satellites, therefore making satellite data more useful and valuable to researchers.

  4. Use of Long Time-series ACRF Measurements to Improve Data Quality...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Use of Long Time-Series ACRF Measurements to Improve Data Quality Analysis Sean Moore Mission Research and Technical Services Santa Barbara, CA ARM Data Quality Office...

  5. Radiation pressure efficiency measurements of nanoparticle coated microspheres

    SciTech Connect (OSTI)

    Kim, Soo Y.; Taylor, Joseph D.; Ladouceur, Harold D.; Hart, Sean J.; Terray, Alex

    2013-12-02

    Experimental measurements of the radiation pressure efficiency (Q{sub pr}) for several microparticles have been compared to theoretical calculations extrapolated from the Bohren-Huffman code for Mie scattering of coated particles. An increased shift of the Q{sub pr} parameter was observed for 2??m SiO{sub 2} core particles coated with nanoparticles of higher refractive indices. Coatings of 14?nm melamine particles were found to increase the Q{sub pr} parameter 135 times over similar coatings using SiO{sub 2} particles of the same size. While a coating of 100?nm polystyrene particles also showed a significant increase, they did not agree well with theoretical values. It is hypothesized that other factors such as increased scatter, drag, and finite coating coverage are no longer negligible for coatings using nanoparticles in this size regime.

  6. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOE Patents [OSTI]

    Britton, Jr.; Charles L.; Buckner, Mark A.; Hanson, Gregory R.; Bryan, William L.

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  7. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOE Patents [OSTI]

    Britton, Jr., Charles L.; Buckner, Mark A.; Hanson, Gregory R.; Bryan, William L.

    2011-05-03

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  8. Data Quality Objectives Supporting the Environmental Direct Radiation Monitoring Program for the INL Site

    SciTech Connect (OSTI)

    Lundell, J. F.; Magnuson, S. O.; Scherbinske, P.; Case, M. J.

    2015-07-01

    This document presents the development of the data quality objectives (DQOs) for the Idaho National Laboratory (INL) Environmental Direct Radiation Monitoring Program and follows the Environmental Protection Agency (EPA) DQO process (EPA 2006). This document also develops and presents the logic to determine the specific number of direct radiation monitoring locations around INL facilities on the desert west of Idaho Falls and in Idaho Falls, at locations bordering the INL Site, and in the surrounding regional area. The selection logic follows the guidance from the Department of Energy (DOE) (2015) for environmental surveillance of DOE facilities.

  9. Cloud Classes and Radiative Heating profiles at the Manus and Nauru Atmospheric Radiation Measurement (ARM) Sites

    SciTech Connect (OSTI)

    Mather, James H.; McFarlane, Sally A.

    2009-10-07

    The Tropical Western Pacific (TWP) is a convective regime; however, the frequency and depth of convection is dependant on dynamical forcing which exhibits variability on a range of temporal scales and also on location within the region. Manus Island, Papua New Guinea lies in the heart of the western Pacific warm pool region and exhibits frequent deep convection much of the time while Nauru, which lies approximately 20 degrees to the East of Manus, lies in a transition zone where the frequency of convection is dependent on the phase of the El Nino/Southern Oscillation. Because of this difference in dynamical regime, the distribution of clouds and the associated radiative heating is quite different at the two sites. Individual cloud types: boundary layer cumulus, thin cirrus, stratiform convective outflow, do occur at both sites – but with different frequencies. In this study we compare cloud profiles and heating profiles for specific cloud types at these two sites using data from the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF). Results of this comparison indicate that, while the frequency of specific cloud types differ between the two sites as one would expect, the characteristics of individual cloud classes are remarkably similar. This information could prove to be very useful for applying tropical ARM data to the broader region.

  10. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter

    SciTech Connect (OSTI)

    Litzenberg, Dale W.; Gallagher, Ian; Masi, Kathryn J.; Lee, Choonik; Prisciandaro, Joann I.; Hamstra, Daniel A.; Ritter, Timothy; Lam, Kwok L.

    2013-08-15

    Purpose: To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter.Methods: This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45 135, 225, and 315, at each of four gantry angles (0, 90, 180, 270) using a 3 6 cm{sup 2} radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study.Results: The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053 0.036, 0.121 0

  11. Search for: "atmospheric radiation measurement" | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... radiation (237) climate models (206) radar reflectivity (194) aerosols (188) climatic change (168) research programs (157) vertical velocity (155) atmospheric chemistry (146) ...

  12. Measurements of radiation doses induced by high intensity laser...

    Office of Scientific and Technical Information (OSTI)

    Authors: Liang, T. ; SLAC Georgia Tech ; Bauer, J. ; Cimeno, M. ; SLAC ; Ferrari, A. ; HZDR Inst. Radiation Phys., Dresden ; Galtier, E. ; Granados, E. ; Heimann, P. ; Lee, ...

  13. ARM - Field Campaign - Measurement of Aerosols, Radiation and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Southern Ocean Clouds Radiation Transport Aerosol Transport Experimental Study (SOCRATES) has been proposed to improve our understanding of clouds, aerosols, air-sea...

  14. Atmospheric Radiation Measurement Program facilities newsletter, November 2002.

    SciTech Connect (OSTI)

    Holdridge, D. J.

    2002-12-03

    Fall 2002 Intensive Operation Periods: Single Column Model and Unmanned Aerospace Vehicle--In an Intensive Operation Period (IOP) on November 3-23, 2002, researchers at the SGP CART site are collecting a detailed data set for use in improving the Single Column Model (SCM), a scaled-down climate model. The SCM represents one vertical column of air above Earth's surface and requires less computation time than a full-scale global climate model. Researchers first use the SCM to efficiently improve submodels of clouds, solar radiation transfer, and atmosphere-surface interactions, then implement the results in large-scale global models. With measured values for a starting point, the SCM predicts atmospheric variables during prescribed time periods. A computer calculates values for such quantities as the amount of solar radiation reaching the surface and predicts how clouds will evolve and interact with incoming light from the sun. Researchers compare the SCM's predictions with actual measurements made during the IOP, then adjust the submodels to make predictions more reliable. A second IOP conducted concurrently with the SCM IOP involves high-altitude, long-duration aircraft flights. The original plan was to use an unmanned aerospace vehicle (UAV), but the National Aeronautics and Space Administration (NASA) aircraft Proteus will be substituted because all UAVs have been deployed elsewhere. The UAV is a small, instrument-equipped, remote-control plane that is operated from the ground by a computer. The Proteus is a manned aircraft, originally designed to carry telecommunications relay equipment, that can be reconfigured for uses such as reconnaissance and surveillance, commercial imaging, launching of small space satellites, and atmospheric research. The plane is designed for two on-board pilots in a pressurized cabin, flying to altitudes up to 65,000 feet for as long as 18 hours. The Proteus has a variable wingspan of 77-92 feet and is 56 feet long. The plane can carry

  15. Atmospheric Radiation Measurement (ARM) Data from the ARM Specific Measurement Categories

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The ARM Program gathers a wide variety of measurements from many different sources. Each day, the Data Archive stores and distributes large quantities of data collected from these sources. Scientists then use these data to research atmospheric radiation balance and cloud feedback processes, which are critical elements of global climate change. The huge archive of ARM data can be organized by measurement categories into six "collections:" Aerosols, Atmospheric Carbon, Atmospheric State, Cloud Properties, Radiometric, and Surface Properties. Clicking on one of the measurement categories leads to a page that breaks that category down into sub-categories. For example, "Aerosols" is broken down into Microphysical and Chemical Properties (with 9 subsets) and Optical and Radiative Properties (with 7 subsets). Each of the subset links, in turn, leads to detailed information pages and links to specific data streams. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  16. Implementation of Remote 3-Dimensional Image Guided Radiation Therapy Quality Assurance for Radiation Therapy Oncology Group Clinical Trials

    SciTech Connect (OSTI)

    Cui Yunfeng; Galvin, James M.; Radiation Therapy Oncology Group, American College of Radiology, Philadelphia, Pennsylvania ; Parker, William; Breen, Stephen; Yin Fangfang; Cai Jing; Papiez, Lech S.; Li, X. Allen; Bednarz, Greg; Chen Wenzhou; Xiao Ying

    2013-01-01

    Purpose: To report the process and initial experience of remote credentialing of three-dimensional (3D) image guided radiation therapy (IGRT) as part of the quality assurance (QA) of submitted data for Radiation Therapy Oncology Group (RTOG) clinical trials; and to identify major issues resulting from this process and analyze the review results on patient positioning shifts. Methods and Materials: Image guided radiation therapy datasets including in-room positioning CT scans and daily shifts applied were submitted through the Image Guided Therapy QA Center from institutions for the IGRT credentialing process, as required by various RTOG trials. A centralized virtual environment is established at the RTOG Core Laboratory, containing analysis tools and database infrastructure for remote review by the Physics Principal Investigators of each protocol. The appropriateness of IGRT technique and volumetric image registration accuracy were evaluated. Registration accuracy was verified by repeat registration with a third-party registration software system. With the accumulated review results, registration differences between those obtained by the Physics Principal Investigators and from the institutions were analyzed for different imaging sites, shift directions, and imaging modalities. Results: The remote review process was successfully carried out for 87 3D cases (out of 137 total cases, including 2-dimensional and 3D) during 2010. Frequent errors in submitted IGRT data and challenges in the review of image registration for some special cases were identified. Workarounds for these issues were developed. The average differences of registration results between reviewers and institutions ranged between 2 mm and 3 mm. Large discrepancies in the superior-inferior direction were found for megavoltage CT cases, owing to low spatial resolution in this direction for most megavoltage CT cases. Conclusion: This first experience indicated that remote review for 3D IGRT as part of QA

  17. Apparatus having reduced background for measuring radiation activity in aerosol particles

    DOE Patents [OSTI]

    Rodgers, John C.; McFarland, Andrew R.; Oritz, Carlos A.; Marlow, William H.

    1992-01-01

    Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.

  18. Atmospheric Radiation Measurement (ARM) Data from Black Forest...

    Office of Scientific and Technical Information (OSTI)

    The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of ...

  19. Atmospheric Radiation Measurement (ARM) Data from the Tropical...

    Office of Scientific and Technical Information (OSTI)

    The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of ...

  20. Atmospheric Radiation Measurement (ARM) Data from the Southern...

    Office of Scientific and Technical Information (OSTI)

    The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of ...

  1. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial...

    Office of Scientific and Technical Information (OSTI)

    The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of ...

  2. GAMMA RADIATION DOSAGE-MEASURING GLASSES AND METHOD OF USING

    DOE Patents [OSTI]

    Bishay, A.M.

    1963-05-14

    A dosimeter glass for gamma radiation characterized by a borate base, a substantial amount of bismuth trioxide and a minor amount of either arsenic or antimony trioxides is presented. (AEC)

  3. Some Results of Joint Measurements of Aerosol Extinction of Solar Radiation on Horizontal and Slant Paths

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results of Joint Measurements of Aerosol Extinction of Solar Radiation on Horizontal and Slant Paths S. M. Sakerin, D. M. Kabanov, Yu. A. Pkhalagov, and V. N. Uzhegov Institute of Atmospheric Optics Tomsk, Russia Introduction It's a well-known fact that the contribution atmospheric aerosol makes in the total extinction of radiation in calculations and models of radiation must be considered; the quantitative measure of this contribution is the aerosol optical thickness of the atmosphere. The

  4. Dosimeter for measuring skin dose and more deeply penetrating radiation

    DOE Patents [OSTI]

    Jones, Donald E.; Parker, DeRay; Boren, Paul R.

    1981-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with netruon-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  5. Atmospheric Radiation Measurement (ARM) Value-Added Data Products...

    Office of Scientific and Technical Information (OSTI)

    of the quality of the input data. taken from http:www.arm.govdatavapsall.php One of the ARM data centers, the External Data Center or XDC at Brookhaven National Laboratory, ...

  6. Atmospheric Radiation Measurement (ARM) Data Plots and Figures...

    Office of Scientific and Technical Information (OSTI)

    science or data quality condition is associated with some other parameter (e.g., high wind or rain).taken from http:www.arm.govdatadataplots.stm Several interfaces and ...

  7. Atmospheric Radiation Measurement program climate research facility operations quarterly report.

    SciTech Connect (OSTI)

    Sisterson, D. L.; Decision and Information Sciences

    2006-09-06

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive

  8. SU-E-I-59: Image Quality and Dose Measurement for Partial Cone-Beam CT

    SciTech Connect (OSTI)

    Abouei, E; Ford, N

    2014-06-01

    Purpose: To characterize performance of cone beam CT (CBCT) used in dentistry investigating quantitatively the image quality and radiation dose during dental CBCT over different settings for partial rotation of the x-ray tube. Methods: Image quality and dose measurements were done on a variable field of view (FOV) dental CBCT (Carestream 9300). X-ray parameters for clinical settings were adjustable for 210 mA, 6090 kVp, and two optional voxel size values, but time was fixed for each FOV. Image quality was assessed by scanning cylindrical poly-methyl methacrylate (PMMA) image quality phantom (SEDENTEXCT IQ), and then the images were analyzed using ImageJ to calculate image quality parameters such as noise, uniformity, and contrast to noise ratio (CNR). A protocol proposed by SEDENTEXCT, dose index 1 (DI1), was applied to dose measurements obtained using a thimble ionization chamber and cylindrical PMMA dose index phantom (SEDENTEXCT DI). Dose distributions were obtained using Gafchromic film. The phantoms were positioned in the FOV to imitate a clinical positioning. Results: The image noise was 612.5% which, when normalized to the difference of mean voxel value of PMMA and air, was comparable between different FOVs. Uniformity was 93.5 99.7% across the images. CNR was 1.74.2 and 6.314.3 for LDPE and Aluminum, respectively. Dose distributions were symmetric about the rotation angle's bisector. For large and medium FOVs at 4 mA and 8090 kVp, DI1 values were in the range of 1.263.23 mGy. DI1 values were between 1.011.93 mGy for small FOV (55 cm{sup 2}) at 45 mA and 7584 kVp. Conclusion: Noise decreased by increasing kVp, and the CNR increased for each FOV. When FOV size increased, image noise increased and CNR decreased. DI1 values were increased by increasing tube current (mA), tube voltage (kVp), and/or FOV. Funding for this project from NSERC Discovery grant, UBC Faculty of Dentistry Research Equipment Grant and UBC Faculty of Dentistry S. Wah Leung

  9. FACT SHEET U.S. Department of Energy Atmospheric Radiation Measurement Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility The Atmospheric Radiation Measurement (ARM) Climate Research Facility is a key component of the U.S. Department of Energy's efforts to better understand and predict Earth's climate in order to develop sustainable solutions to the nation's energy and environmental challenges. ARM was the first climate research program to deploy a comprehensive suite of cutting-edge instrumentation to continually measure cloud and aerosol properties and

  10. In-situ radiation measurements of the C1 and C2 waste storage tank vault

    SciTech Connect (OSTI)

    Yong, L.K.; Womble, P.C.; Weems, L.D.

    1996-09-01

    In August of 1996, the Applied Radiation Measurements Department (ARMD) of the Waste Management and Remedial Action Division (WMRAD) at Oak Ridge National Laboratory (ORNL) was tasked with characterizing the radiation fields in the C{sub 1} and C{sub 2} Liquid Low Level Waste (LLLW) tank vault located at ORNL. These in-situ measurements were made to provide data for evaluating the potential radiological conditions for personnel working in or around the vault during future planned activities. This report describes the locations where measurements were made, the types of radiation detection instruments used, the methods employed, the problems encountered and resolved, and discusses the results obtained.

  11. SU-E-P-11: Comparison of Image Quality and Radiation Dose Between Different Scanner System in Routine Abdomen CT

    SciTech Connect (OSTI)

    Liao, S; Wang, Y; Weng, H

    2015-06-15

    Purpose To evaluate image quality and radiation dose of routine abdomen computed tomography exam with the automatic current modulation technique (ATCM) performed in two different brand 64-slice CT scanners in our site. Materials and Methods A retrospective review of routine abdomen CT exam performed with two scanners; scanner A and scanner B in our site. To calculate standard deviation of the portal hepatic level with a region of interest of 12.5 mm x 12.5mm represented to the image noise. The radiation dose was obtained from CT DICOM image information. Using Computed tomography dose index volume (CTDIv) to represented CT radiation dose. The patient data in this study were with normal weight (about 65–75 Kg). Results The standard deviation of Scanner A was smaller than scanner B, the scanner A might with better image quality than scanner B. On the other hand, the radiation dose of scanner A was higher than scanner B(about higher 50–60%) with ATCM. Both of them, the radiation dose was under diagnostic reference level. Conclusion The ATCM systems in modern CT scanners can contribute a significant reduction in radiation dose to the patient. But the reduction by ATCM systems from different CT scanner manufacturers has slightly variation. Whatever CT scanner we use, it is necessary to find the acceptable threshold of image quality with the minimum possible radiation exposure to the patient in agreement with the ALARA principle.

  12. Atmospheric Radiation Measurement (ARM) Data from Point Reyes, California for the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Point Reyes National Seashore, on the California coast north of San Francisco, was the location of the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The ARM Program collaborated with the U.S. Office of Naval Research and DOE's Aerosol Science Program in the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) project. Their objectives were to collect data from cloud/aerosol interactions and to improve understanding of cloud organization that is often associated with patches of drizzle. Between March and September 2005, the AMF and at least two research aircraft were used to collect data.

  13. Solar Radiometric Data Quality Assessment of SIRS, SKYRAD and GNDRAD Measurements (Poster)

    SciTech Connect (OSTI)

    Habte, A.; Stoffel, T.; Reda, I.; Wilcox, S.; Kutchenreiter, M.; Gotseff, P.; Anderberg, M.

    2014-03-01

    Solar radiation is the driving force for the earth's weather and climate. Understanding the elements of this dynamic energy balance requires accurate measurements of broadband solar irradiance. Since the mid-1990's the ARM Program has deployed pyrheliometers and pyranometers for the measurement of direct normal irradiance (DNI), global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), and upwelling shortwave (US) radiation at permanent and mobile field research sites. This poster summarizes the basis for assessing the broadband solar radiation data available from the SIRS, SKYRAD, and GNDRAD measurement systems and provides examples of data inspections.

  14. Scientific system for high-resolution measurement of the circumsolar radiation

    SciTech Connect (OSTI)

    Schrott, Simeon Schmidt, Thomas Hornung, Thorsten Nitz, Peter

    2014-09-26

    We developed a camera based system for measurements of the circumsolar radiation with a high angular resolution of 0.1 mrad. Subsequent measurements may be taken at intervals as short as 15 s. In this publication we describe the optical system in detail and discuss some aspects of the measurement method. First results from two days of measurement at Freiburg i. Br., Germany, are presented and compared to data from literature. The good results encourage us to perform longer measurement campaigns in future to better understand the influence of circumsolar radiation on the power yield of concentrating photovoltaic systems.

  15. Posters Single-Column Model for Atmospheric Radiation Measurement Sites: Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Posters Single-Column Model for Atmospheric Radiation Measurement Sites: Model Development and Sensitivity Test Q. Xu and M. Dong Cooperative Institute of Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma A single-column model (SCM) is constructed by extracting the physical subroutines from the community climate model (CCM1) of the National Center for Atmospheric Research. Using observational data obtained from the Oklahoma Atmospheric Radiation Measurement (ARM) site

  16. Search for: "atmospheric radiation measurement" | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    atmospheric radiation measurement" Find Semantic Search Term Search + Advanced SearchAdv. × Advanced Search All Fields: "atmospheric radiation measurement" Term Semantic Term Title: Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Product Type: All Book/Monograph Conference/Event Journal Article Miscellaneous Patent Program Document Software Manual Technical Report Thesis/Dissertation Subject: Identifier Numbers: Site: All Alaska Power Administration, Juneau,

  17. New Measurements of the Cosmic Background Radiation Spectrum

    DOE R&D Accomplishments [OSTI]

    Smoot, G. F.; De Amici, G.; Levin, S.; Witebsky, C.

    The Sandia Laboratories` participation in Quality Assurance programs for Radioisotopic Thermoelectric Generators which have been used in space systems over the past 10 years is summarized. Basic elements of this QA program are briefly described and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems for which Sandia has had the QA responsibility are presented, including SNAP 19 (Nimbus, Pioneer, Viking), SNAP 27 (Apollo), Transit, Multi Hundred Watt (LES 8/9 and MJS), and a new program, High Performance Generator Mod 3. The outlook for Sandia participation in RTG programs for the next several years is noted.

  18. Measurements of radiation effects on a 4 Mb PSRAM memory

    SciTech Connect (OSTI)

    Gonalez, Odair Lelis; Pereira Junior, Evaldo Carlos Fonseca; Vaz, Rafael Galhardo; Pereira, Marlon Antonio; Wirth, Gilson Incio; Both, Thiago Hanna

    2014-11-11

    The results of a static test of total ionizing dose (TID) effects on an ISSI 4Mb PSRAM memory are reported in this work. The irradiation was performed at the IEAvs Laboratory of Ionizing Radiation with 1.17 and 1.32 MeV gamma-rays from a {sup 60}Co source at a dose rate of 2.5 krad/h up to an accumulated dose of 215.7 krad. The TID threshold for bit flip found in this experiment was 52.5 krad. From a sampling of 4096 memory addresses it was estimated a bit flip rate of approximately 50% at an accumulated dose of 215.7 krad.

  19. Atmospheric Radiation Measurement Program facilities newsletter, May 2000.

    SciTech Connect (OSTI)

    Sisterson, D.L.

    2000-06-01

    This month the authors will visit an ARM CART site with a pleasant climate: the Tropical Western Pacific (TWP) CART site, along the equator in the western Pacific Ocean. The TWP locale lies between 10 degrees North latitude and 10 degrees South latitude and extends from Indonesia east-ward beyond the international date line. This area was selected because it is in and around the Pacific warm pool, the area of warm sea-surface temperatures that determine El Nino/La Nina episodes. The warm pool also adds heat and moisture to the atmosphere and thus fuels cloud formation. Understanding the way tropical clouds and water vapor affect the solar radiation budget is a focus of the ARM Program. The two current island-based CART sites in the TWP are in Manus Province in Papua New Guinea and on Nauru Island.

  20. Measurements - Ion Beams - Radiation Effects Facility / Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    / Texas A&M University Ion Beams Available Beams / Beam Change Times / Measurements / Useful Graphs Measurements The beam uniformity and flux are determined using an array of five detectors. Each detector is made up with a plastic scintillator coupled to photo-multiplier tubes. Four of the detectors are fixed in position and set up to measure beam particle counting rates continuously at four characteristic points 1.64 inches (4.71 mm) away from the beam axis. The fifth scintillator can

  1. Atmospheric Radiation Measurement (ARM) Data from Shouxian, China...

    Office of Scientific and Technical Information (OSTI)

    In a complex ARM Mobile Facility (AMF) deployment, monitoring data was collected at four ... Measurements obtained at all the AMF sites during the 8-month deployment in China will ...

  2. Atmospheric Radiation Measurement (ARM) Data from Shouxian, China...

    Office of Scientific and Technical Information (OSTI)

    in China In a complex ARM Mobile Facility (AMF) deployment, monitoring data was collected ... Measurements obtained at all the AMF sites during the 8-month deployment in China will ...

  3. Replanning During Intensity Modulated Radiation Therapy Improved Quality of Life in Patients With Nasopharyngeal Carcinoma

    SciTech Connect (OSTI)

    Yang Haihua; Hu Wei; Wang Wei; Chen Peifang; Ding Weijun; Luo Wei

    2013-01-01

    Purpose: Anatomic and dosimetric changes have been reported during intensity modulated radiation therapy (IMRT) in patients with nasopharyngeal carcinoma (NPC). The purpose of this study was to evaluate the effects of replanning on quality of life (QoL) and clinical outcomes during the course of IMRT for NPC patients. Methods and Materials: Between June 2007 and August 2011, 129 patients with NPC were enrolled. Forty-three patients received IMRT without replanning, while 86 patients received IMRT replanning after computed tomography (CT) images were retaken part way through therapy. Chinese versions of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire C30 and Head and Neck Quality of Life Questionnaire 35 were completed before treatment began and at the end of treatment and at 1, 3, 6, and 12 months after the completion of treatment. Overall survival (OS) data were compared using the Kaplan-Meier method. Results: IMRT replanning had a profound impact on the QoL of NPC patients, as determined by statistically significant changes in global QoL and other QoL scales. Additionally, the clinical outcome comparison indicates that replanning during IMRT for NPC significantly improved 2-year local regional control (97.2% vs 92.4%, respectively, P=.040) but did not improve 2-year OS (89.8% vs 82.2%, respectively, P=.475). Conclusions: IMRT replanning improves QoL as well as local regional control in patients with NPC. Future research is needed to determine the criteria for replanning for NPC patients undergoing IMRT.

  4. Radioanalytical Data Quality Objectives and Measurement Quality Objectives during a Federal Radiological Monitoring and Assessment Center Response

    SciTech Connect (OSTI)

    E. C. Nielsen

    2006-01-01

    During the early and intermediate phases of a nuclear or radiological incident, the Federal Radiological Monitoring and Assessment Center (FRMAC) collects environmental samples that are analyzed by organizations with radioanalytical capability. Resources dedicated to quality assurance (QA) activities must be sufficient to assure that appropriate radioanalytical measurement quality objectives (MQOs) and assessment data quality objectives (DQOs) are met. As the emergency stabilizes, QA activities will evolve commensurate with the need to reach appropriate DQOs. The MQOs represent a compromise between precise analytical determinations and the timeliness necessary for emergency response activities. Minimum detectable concentration (MDC), lower limit of detection, and critical level tests can all serve as measurements reflecting the MQOs. The relationship among protective action guides (PAGs), derived response levels (DRLs), and laboratory detection limits is described. The rationale used to determine the appropriate laboratory detection limit is described.

  5. Atmospheric Radiation Measurement (ARM) Data from Niamey, Niger for the Radiative Atmospheric Divergence using AMF, GERB and AMMA Stations (RADAGAST)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. The ARM Mobile Facility (AMF) operates at non-permanent sites selected by the ARM Program. Sometimes these sites can become permanent ARM sites, as was the case with Graciosa Island in the Azores. It is now known as the Eastern North Atlantic permanent site. In January 2006 the AMF deployed to Niamey, Niger, West Africa, at the Niger Meteorological Office at Niamey International Airport. This deployment was timed to coincide with the field phases and Special Observing Periods of the African Monsoon Multidisciplinary Analysis (AMMA). The ARM Program participated in this international effort as a field campaign called "Radiative Divergence using AMF, GERB and AMMA Stations (RADAGAST).The primary purpose of the Niger deployment was to combine an extended series of measurements from the AMF with those from the Geostationary Earth Radiation Budget (GERB) Instrument on the Meteosat operational geostationary satellite in order to provide the first well-sampled, direct estimates of the divergence of solar and thermal radiation across the atmosphere. A large collection of data plots based on data streams from specific instruments used at Niamey are available via a link from ARM's Niamey, Niger site information page. Other data can be found at the related websites mentioned above and in the ARM Archive. Users will be requested to create a password, but the plots and data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  6. Atmospheric Radiation Measurement (ARM) Data Plots and Figures

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ARM Program data is available in daily diagnostic plots that can be easily grouped into daily, weekly, monthly, and even yearly increments. By visualizing ARM data in thumbnail-sized data plots, users experience highly-browsable subsets of data available at the Data Archive including complimentary data products derived from data processed by ARM. These thumbnails allow users to quickly scan for a particular type of condition, like a clear day or a day with persistent cirrus. From a diagnostics perspective, the data plots assist in looking for missing data, for data exceeding a particular range, or for loading multiple variables (e.g., shortwave fluxes and precipitation), and to determine whether a certain science or data quality condition is associated with some other parameter (e.g., high wind or rain).[taken from http://www.arm.gov/data/data_plots.stm] Several interfaces and tools have been developed to make data plots easy to generate and manipulate. For example, the NCVWeb is an interactive NetCDF data plotting tool that ARM users can use to plot data as they order it or to plot regular standing data orders. It allows production of detailed tables, extraction of data, statistics output, comparison plotting, etc. without the need for separate visualization software. Users will be requested to create a password, but the data plots are free for viewing and downloading.

  7. Measurement and modeling of external radiation during 1985 from LAMPF (Los Alamos Meson Physics Facility) emissions

    SciTech Connect (OSTI)

    Bowen, B.M.; Olsen, W.A.; Chen, Ili; Van Etten, D.M.

    1987-11-01

    An array of three portable, pressurized ionization chambers (PICs) continued to measure external radiation levels during 1985 caused by radionuclides emitted from the Los Alamos Meson Physics Facility (LAMPF). A Gaussian-type atmospheric dispersion model, using onsite meteorological and stack release data, was tested during this study. A more complex finite model, which takes into account the contribution of radiation at a receptor from different locations of the passing plume, was also tested. Monitoring results indicate that, as in 1984, a persistent wind up the Rio Grande Valley during the evening and early morning hours is largely responsible for causing the highest external radiation levels to occur to the northeast and north-northeast of LAMPF. However, because of increased turbulent mixing during the day, external radiation levels are generally much less during the day than at night. External radiation levels during 1985 show approximately a 75% reduction over 1984 levels. This resulted from a similar percentage reduction in LAMPF emissions caused by newly implemented emission controls. Comparison of predicted and measured daily external radiation levels indicates a high degree of correlation. The model also gives accurate estimates of measured concentrations over longer time periods. Comparison of predicted and measured hourly values indicates that the model generally tends to overpredict during the day and underpredict at night. 9 refs., 14 figs., 13 tabs.

  8. Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave Radiation Measurements: A Comparison of 16 Year Measurements

    SciTech Connect (OSTI)

    Xie, Yu; Liu, Yangang; Long, Charles N.; Min, Qilong

    2014-07-27

    Ground-based radiation measurements have been widely conducted to gain information on clouds and the surface radiation budget; here several different techniques for retrieving cloud fraction (Long2006, Min2008 and XL2013) and cloud albedo (Min2008, Liu2011 and XL2013) from ground-based shortwave broadband and spectral radiation measurements are examined, and sixteen years of retrievals collected at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared. The comparison shows overall good agreement between the retrievals of both cloud fraction and cloud albedo, with noted differences however. The Long2006 and Min2008 cloud fractions are greater on average than the XL2013 values. Compared to Min2008 and Liu2011, the XL2013 retrieval of cloud albedo tends to be greater for thin clouds but smaller for thick clouds, with the differences decreasing with increasing cloud fraction. Further analysis reveals that the approaches that retrieve cloud fraction and cloud albedo separately may suffer from mutual contamination of errors in retrieved cloud fraction and cloud albedo. Potential influences of cloud absorption, land-surface albedo, cloud structure, and measurement instruments are explored.

  9. In situ radiation measurements at the former Soviet Nuclear Test Site

    SciTech Connect (OSTI)

    Tipton, W.J.

    1996-06-01

    A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the former Soviet Nuclear Test Site near Semipalatinsk, Kazakhstan, during the period of July 21-30, 1994. The survey team measured the terrestrial gamma radiation at selected areas on the site to determine the levels of natural and man-made radiation. The survey was part of a cooperative effort between the United States team and teams of radiation scientists from the National Nuclear Center of the Republic of Kazakhstan and the V.G. Khlopin Radium Institute in St. Petersburg, Russia. In addition to in situ radiation measurements made by the United States and Russian teams, soil samples were collected and analyzed by the Russian and Kazakhstani teams. All teams conducted their measurements at ten locations within the test site. The United States team also made a number of additional measurements to locate and verify the positions of three potential fallout plumes containing plutonium contamination from nonnuclear tests. In addition, the United States team made several measurements in Kurchatov City, the housing area used by personnel and their families who work(ed) at the test sites. Comparisons between the United States and Russian in situ measurements and the soil sample results are presented as well as comparisons with a Soviet aerial survey conducted in 1990-1991. The agreement between the different types of measurements made by all three countries was quite good.

  10. Survey of radiation dose and image quality in mammography: an ongoing program in Italy

    SciTech Connect (OSTI)

    Rimondi, O.; Gambaccini, M.; Candini, G.C.; Indovina, P.L.; Rosati, A.

    1987-04-01

    A program for mammography optimization in individual x-ray units, named Dose and Quality in Mammography (DQM), is now underway in Italy. The project has three stages: measurement of the parameters that affect dose and image quality by means of devices that are practical to use (specifically designed for the purpose), analysis of data to evaluate dose and image quality and suggestion of possible improvements to each unit operator. Instruments and methods employed in our survey are described. Our results, like those of the American survey (Je78) Breast Exposure: Nationwide Trends (BENT), show widespread variations of exposure, half value layer (HVL), optical density, dose and resolution. Facilities using the same type of x-ray apparatus (Mo target-Mo filter) and film-screen combinations present very different exposure values, ranging from 1.6 X 10(-4) to 27.6 X 10(-4) C kg-1. The causes of these variations--ascribable to the individual units, radiologist preferences, processing condition, kVp indicator and timer accuracy--are being explored.

  11. Measurement results obtained from air quality monitoring system

    SciTech Connect (OSTI)

    Turzanski, P.K.; Beres, R.

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracow area could be more intelligible.

  12. Climate Science for a Sustainable Energy Future Atmospheric Radiation Measurement Best Estimate (CSSEFARMBE)

    SciTech Connect (OSTI)

    Riihimaki, Laura D.; Gaustad, Krista L.; McFarlane, Sally A.

    2012-09-28

    The Climate Science for a Sustainable Energy Future (CSSEF) project is working to improve the representation of the hydrological cycle in global climate models, critical information necessary for decision-makers to respond appropriately to predictions of future climate. In order to accomplish this objective, CSSEF is building testbeds to implement uncertainty quantification (UQ) techniques to objectively calibrate and diagnose climate model parameterizations and predictions with respect to local, process-scale observations. In order to quantify the agreement between models and observations accurately, uncertainty estimates on these observations are needed. The DOE Atmospheric Radiation Measurement (ARM) program takes atmospheric and climate related measurements at three permanent locations worldwide. The ARM VAP called the ARM Best Estimate (ARMBE) [Xie et al., 2010] collects a subset of ARM observations, performs quality control checks, averages them to one hour temporal resolution, and puts them in a standard format for ease of use by climate modelers. ARMBE has been widely used by the climate modeling community as a summary product of many of the ARM observations. However, the ARMBE product does not include uncertainty estimates on the data values. Thus, to meet the objectives of the CSSEF project and enable better use of this data with UQ techniques, we created the CSSEFARMBE data set. Only a subset of the variables contained in ARMBE is included in CSSEFARMBE. Currently only surface meteorological observations are included, though this may be expanded to include other variables in the future. The CSSEFARMBE VAP is produced for all extended facilities at the ARM Southern Great Plains (SGP) site that contain surface meteorological equipment. This extension of the ARMBE data set to multiple facilities at SGP allows for better comparison between model grid boxes and the ARM point observations. In the future, CSSEFARMBE may also be created for other ARM sites. As

  13. Atmospheric radiation measurement unmanned aerospace vehicle (ARM-UAV) program

    SciTech Connect (OSTI)

    Bolton, W.R.

    1996-11-01

    ARM-UAV is part of the multi-agency U.S. Global Change Research Program and is addressing the largest source of uncertainty in predicting climatic response: the interaction of clouds and the sun`s energy in the Earth`s atmosphere. An important aspect of the program is the use of unmanned aerospace vehicles (UAVs) as the primary airborne platform. The ARM-UAV Program has completed two major flight series: The first series conducted in April, 1994, using an existing UAV (the General Atomics Gnat 750) consisted of eight highly successful flights at the DOE climate site in Oklahoma. The second series conducted in September/October, 1995, using two piloted aircraft (Egrett and Twin Otter), featured simultaneous measurements above and below clouds and in clear sky. Additional flight series are planned to continue study of the cloudy and clear sky energy budget in the Spring and Fall of 1996 over the DOE climate site in Oklahoma. 3 refs., 4 figs., 1 tab.

  14. Measurement and modeling of external radiation during 1984 from LAMPF atmospheric emissions

    SciTech Connect (OSTI)

    Bowen, B.M.; Olsen, W.A.; Van Etten, D.; Chen, I.

    1986-07-01

    An array of three portable, pressurized ionization chambers (PICs) measured short-term external radiation levels produced by air activation products from the Los Alamos Meson Physics Facility (LAMPF). The monitoring was at the closet offsite location, 700-900 m north and northeast of the source, and across a large, deep canyon. A Gaussian-type atmospheric dispersion model, using onsite meteorological and stack release data, was tested during their study. Monitoring results indicate that a persistent, local up-valley wind during the evening and early morning hours is largely responsible for causing the highest radiation levels to the northeast and north-northeast of LAMPF. Comparison of predicted and measured daily external radiation levels indicates a high degree of correlation. The model also gives accurate estimates of measured concentrations over longer periods of time.

  15. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    SciTech Connect (OSTI)

    Liu, Chuyu

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the

  16. Atmospheric Radiation Measurement Program - unmanned aerospace vehicle: The follow-on phase

    SciTech Connect (OSTI)

    Vitko, J. Jr.

    1995-04-01

    Unmanned Aerospace Vehicle (UAV) demonstration flights (UDF) are designed to provide an early demonstration of the scientific utility of UAVs by using an existing UAV and instruments to measure broadband radiative flux profiles under clear sky conditions. UDF is but the first of three phases of ARM-UAV. The second phase significantly extends both the UAV measurement techniques and the available instrumentation to allow both multi-UAV measurements in cloudy skies and extended duration measurements in the tropopause. These activities build naturally to the third and final phase, that of full operational capability, i.e., UAVs capable of autonomous operations at 20-km altitudes for multiple days with a full suite of instrumentation for measuring radiative flux, cloud properties, and water vapor profiles.

  17. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    SciTech Connect (OSTI)

    Liang, Taiee

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  18. Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately.

  19. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    SciTech Connect (OSTI)

    JW Voyles

    2008-01-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  20. Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect (OSTI)

    Jensen, M; Jensen, K

    2006-06-01

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

  1. Low Frequency Measurement of the Spectrum of the Cosmic Background Radiation

    DOE R&D Accomplishments [OSTI]

    Smoot, G. F.; De Amici, G.; Friedman, S. D.; Witebsky, C.; Mandolesi, N.; Partridge, R. B.; Sironi, G.; Danese, L.; De Zotti, G.

    1983-06-01

    We have made measurements of the cosmic background radiation spectrum at 5 wavelengths (0.33, 0.9, 3, 6.3, and 12 cm) using radiometers with wavelength-scaled corrugated horn antennas having very low sidelobes. A single large-mouth (0.7 m diameter) liquid-helium-cooled absolute reference load was used for all five radiometers. The results of the observations are consistent with previous measurements and represent a significant improvement in accuracy.

  2. Alpha Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments

  3. Electron density and temperature measurement by continuum radiation emitted from weakly ionized atmospheric pressure plasmas

    SciTech Connect (OSTI)

    Park, Sanghoo; Choe, Wonho, E-mail: wchoe@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Youn Moon, Se [High-enthalpy Plasma Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 561-756 (Korea, Republic of); Park, Jaeyoung [5771 La Jolla Corona Drive, La Jolla, CA 92037 (United States)

    2014-02-24

    The electron-atom neutral bremsstrahlung continuum radiation emitted from weakly ionized plasmas is investigated for electron density and temperature diagnostics. The continuum spectrum in 4501000?nm emitted from the argon atmospheric pressure plasma is found to be in excellent agreement with the neutral bremsstrahlung formula with the electron-atom momentum transfer cross-section given by Popovi?. In 280450?nm, however, a large discrepancy between the measured and the neutral bremsstrahlung emissivities is observed. We find that without accounting for the radiative H{sub 2} dissociation continuum, the temperature, and density measurements would be largely wrong, so that it should be taken into account for accurate measurement.

  4. Method and apparatus for measuring solar radiation in a vegetative canopy

    DOE Patents [OSTI]

    Gutschick, Vincent P.; Barron, Michael H.; Waechter, David A.; Wolf, Michael A.

    1987-01-01

    An apparatus and method for measuring solar radiation received in a vegetative canopy. A multiplicity of sensors selectively generates electrical signals in response to impinging photosynthetically active radiation in sunlight. Each sensor is attached to a plant within the canopy and is electrically connected to a separate port in a junction box having a multiplicity of ports. Each port is connected to an operational amplifier. Each amplifier amplifies the signals generated by the sensors. Each amplifier is connected to an analog-to-digital convertor which digitizes each signal. A computer is connected to the convertors and accumulates and stores solar radiation data. A data output device such as a printer is connected to the computer and displays the data.

  5. Method and apparatus for measuring solar radiation in a vegetative canopy

    DOE Patents [OSTI]

    Gutschick, V.P.; Barron, M.H.; Waechter, D.A.; Wolf, M.A.

    1985-04-30

    An apparatus and method for measuring solar radiation received in a vegetative canopy. A multiplicity of sensors selectively generates electrical signals in response to impinging photosynthetically active radiation in sunlight. Each sensor is attached to a plant within the canopy and is electrically connected to a separate port in a junction box having a multiplicity of ports. Each port is connected to an operational amplifier. Each amplifier amplifies the signals generated by the sensors. Each amplifier is connected to an analog-to-digital convertor which digitizes each signal. A computer is connected to the convertors and accumulates and stores solar radiation data. A data output device such as a printer is connected to the computer and displays the data.

  6. SU-E-QI-12: Morphometry Based Measurements of the Structural Response to Whole Brain Radiation

    SciTech Connect (OSTI)

    Fuentes, D; Castillo, R; Castillo, E; Guerrero, T

    2014-06-15

    Purpose: Although state of the art radiation therapy techniques for treating intracranial malignancies have eliminated acute brain injury, cognitive impairment occurs in 50–90% of patients who survive >6mo post irradiation. Quantitative characterization of therapy response is needed to facilitate therapeutic strategies to minimize radiation induced cognitive impairment [1]. Deformation based morphometry techniques [2, 3] are presented as a quantitative imaging biomarker of therapy response in patients receiving whole brain radiation for treating medulloblastoma. Methods: Post-irradiation magnetic resonance imaging (MRI) data sets were retrospectively analyzed in N=15 patients, >60 MR image datasets. As seen in Fig 1(a), volume changes at multiple time points post-irradiation were quantitatively measured in the cerebrum and ventricles with respect to pre-irradiation MRI. A high resolution image Template, was registered to the pre-irradiation MRI of each patient to create a brain atlas for the cerebrum, cerebellum, and ventricles. Skull stripped images for each patient were registered to the initial pre-treatment scan. Average volume changes in the labeled regions were measured using the determinant of the displacement field Jacobian. Results: Longitudinal measurements, Fig 1(b-c), show a negative correlation p=.06, of the cerebral volume change with the time interval from irradiation. A corresponding positive correlation, p=.01, between ventricular volume change and time interval from irradiation is seen. One sample t-test for correlations were computed using a Spearman method. An average decrease in cerebral volume, p=.08, and increase in ventricular volume, p<.001, was observed. The radiation dose was seen directly proportional to the induced volume changes in the cerebrum, r=−.44, p<.001, Fig 1(d). Conclusion: Results indicate that morphometric monitoring of brain tissue volume changes may potentially be used to quantitatively assess toxicity and response to

  7. A Unified Approach for Reporting ARM Measurement Uncertainties...

    Office of Scientific and Technical Information (OSTI)

    The Atmospheric Radiation Measurement (ARM) Climate Research Facility is observationally ... measurements, the Facility relies on instrument mentors and the ARM Data Quality Office ...

  8. Passive and Active Radiation Measurements Capability at the INL Zero Power Physics Reactor (ZPPR) Facility

    SciTech Connect (OSTI)

    Robert Neibert; John Zabriskie; Collin Knight; James L. Jones

    2010-12-01

    The Zero Power Physics Reactor (ZPPR) facility is a Department of Energy facility located in the Idaho National Laboratorys (INL) Materials and Fuels Complex. It contains various nuclear and non-nuclear materials that are available to support many radiation measurement assessments. User-selected, single material, nuclear and non-nuclear materials can be readily utilized with ZPPR clamshell containers with almost no criticality concerns. If custom, multi-material configurations are desired, the ZPPR clamshell or an approved aluminum Inspection Object (IO) Box container may be utilized, yet each specific material configuration will require a criticality assessment. As an example of the specialized material configurations possible, the National Nuclear Security Agencys Office of Nuclear Verification (NNSA/NA 243) has sponsored the assembly of six material configurations. These are shown in the Appendixes and have been designated for semi-permanent storage that can be available to support various radiation measurement applications.

  9. Atmospheric Radiation Measurement (ARM) Value-Added Data Products (Including Evaluated Data Sets)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Many of the scientific needs of the ARM Program are met through the analysis and processing of existing data products into "value-added" products or VAPs. Despite extensive instrumentation deployed at the ARM sites, there will always be quantities of interest that are either impractical or impossible to measure directly or routinely. Physical models using ARM instrument data as inputs are implemented as VAPs and can help fill some of the unmet measurement needs of the Program. Conversely, ARM produces some VAPs not in order to fill unmet measurement needs, but instead to improve the quality of existing measurements. In addition, when more than one measurement is available, ARM also produces "best estimate" VAPs. A special class of VAP called a Quality Measurement Experiment (QME) adds value to the input data streams by providing for continuous assessment of the quality of the input data. [taken from http://www.arm.gov/data/vaps_all.php] One of the ARM data centers, the External Data Center or XDC at Brookhaven National Laboratory, also adds value to ARM information by identifying sources and acquiring external data to augment the data being generated within the program. These external data sets are converted, processed, and carefully evaluated for their value to the overall ARM program. /. Data Plots are also value-added products from ARM.

  10. Session Papers Atmospheric Radiation Measurement Program- Unmanned Aerospace Vehicle: The Follow-On Phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Session Papers Atmospheric Radiation Measurement Program- Unmanned Aerospace Vehicle: The Follow-On Phase J. Vitko, Jr. ARM-UAV Technical Director Sandia National Laboratories Livermore, California A companion paper ("Unmanned Aerospace Vehicle Workshop," this volume) discusses the initial unmanned aerospace vehicle (UAV) demonstration flights (UDF). These flights are designed to provide an early demonstration of the scientific utility of UAVs by using an existing UAV and instruments

  11. Measurement of the asymmetry parameter in the hyperon radiative decay. Sigma. sup + r arrow p. gamma

    SciTech Connect (OSTI)

    Foucher, M.; Albuquerque, I.F.; Bondar, N.F.; Carrigan, R. Jr.; Chen, D.; Li Chengze; Cooper, P.S.; Denisov, A.S.; Dobrovolsky, A.V.; Dubbs, T.; Endler, A.M.F.; Escobar, C.O.; Tang Fukun; Golovtsov, V.L.; Goritchev, P.A.; Gottschalk, H.; Gouffon, P.; Grachev, V.T.; Shi Huanzhang; Yan Jie; Khanzadeev, A.V.; Kubantsev, M.A.; Kuropatkin, N.P.; Lach, J.; Luksys, M.; Lebedenko, V.N.; Dai Lisheng; Mahon, J.R.P.; McCliment, E.; Morelos, A.; Newsom, C.; Lang Pengfei; Pommot Maia, M.C.; Samsonov, V.M.; Zheng Shuchen; Smith, V.J.; Terentyev, N.K.; Timm, S.; Tkatch, I.I.; Uvarov, L.N.; Vorobyov, A.A.; Zhao Wenheng; Zhong Yuanyuan; Li Yunshan Institute of High Energy Physics, Beijing St. Petersburg Nuclear Physics Institute, Gatchina Institute of Theoretical and Experimental Physics, Moscow University of Iowa, Iowa City, Iowa 52242 Universidade de Sao Paulo, Sao Paulo

    1992-05-18

    We have measured the asymmetry parameter ({alpha}{sub {gamma}}) in the hyperon radiative decay {Sigma}{sup +}{r arrow}{ital p}{gamma} with a sample of 34 754{plus minus}212 events obtained in a polarized charged hyperon beam experiment at Fermilab. We find {alpha}{sub {gamma}}={minus}0.720{plus minus}0.086{plus minus}0.045, where the quoted errors are statistical and systematic, respectively.

  12. Impact on quality activities of measurement systems meeting an L:1 rule

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hamada, M. S.; Burkhardt, J. H.

    2015-04-30

    This study considers the impact of a measurement system that meets an L:1 rule on various quality activities. These activities include inspection, acceptance sampling, and control charting. A measurement system that meets a 10:1 rule performs much better than one that meets a 4:1 rule. R code is provided so that the practitioner is able to evaluate these activities to his or her particular situation.

  13. SU-E-J-49: Design and Fabrication of Custom 3D Printed Phantoms for Radiation Therapy Research and Quality Assurance

    SciTech Connect (OSTI)

    Jenkins, C; Xing, L

    2015-06-15

    Purpose The rapid proliferation of affordable 3D printing techniques has enabled the custom fabrication of items ranging from paper weights to medical implants. This study investigates the feasibility of utilizing the technology for developing novel phantoms for use in radiation therapy quality assurance (QA) procedures. Methods A phantom for measuring the geometric parameters of linear accelerator (LINAC) on-board imaging (OBI) systems was designed using SolidWorks. The design was transferred to a 3D printer and fabricated using a fused deposition modeling (FDM) technique. Fiducials were embedded in the phantom by placing 1.6 mm diameter steel balls in predefined holes and securing them with silicone. Several MV and kV images of the phantom were collected and the visibility and geometric accuracy were evaluated. A second phantom, for use in the experimental evaluation of a high dose rate (HDR) brachytherapy dosimeter, was designed to secure several applicator needles in water. The applicator was fabricated in the same 3D printer and used for experiments. Results The general accuracy of printed parts was determined to be 0.1 mm. The cost of materials for the imaging and QA phantoms were $22 and $5 respectively. Both the plastic structure and fiducial markers of the imaging phantom were visible in MV and kV images. Fiducial marker locations were determined to be within 1mm of desired locations, with the discrepancy being attributed to the fiducial attachment process. The HDR phantom secured the applicators within 0.5 mm of the desired locations. Conclusion 3D printing offers an inexpensive method for fabricating custom phantoms for use in radiation therapy quality assurance. While the geometric accuracy of such parts is limited compared to more expensive methods, the phantoms are still highly functional and provide a unique opportunity for rapid fabrication of custom phantoms for use in radiation therapy QA and research.

  14. Systematic measurements of whole-body imaging dose distributions in image-guided radiation therapy

    SciTech Connect (OSTI)

    Haelg, Roger A.; Besserer, Juergen; Schneider, Uwe

    2012-12-15

    Purpose: The full benefit of the increased precision of contemporary treatment techniques can only be exploited if the accuracy of the patient positioning is guaranteed. Therefore, more and more imaging modalities are used in the process of the patient setup in clinical routine of radiation therapy. The improved accuracy in patient positioning, however, results in additional dose contributions to the integral patient dose. To quantify this, absorbed dose measurements from typical imaging procedures involved in an image-guided radiation therapy treatment were measured in an anthropomorphic phantom for a complete course of treatment. The experimental setup, including the measurement positions in the phantom, was exactly the same as in a preceding study of radiotherapy stray dose measurements. This allows a direct combination of imaging dose distributions with the therapy dose distribution. Methods: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The dose distributions from imaging devices used with treatment machines from the manufacturers Accuray, Elekta, Siemens, and Varian and from computed tomography scanners from GE Healthcare were determined and the resulting effective dose was calculated. The list of investigated imaging techniques consisted of cone beam computed tomography (kilo- and megavoltage), megavoltage fan beam computed tomography, kilo- and megavoltage planar imaging, planning computed tomography with and without gating methods and planar scout views. Results: A conventional 3D planning CT resulted in an effective dose additional to the treatment stray dose of less than 1 mSv outside of the treated volume, whereas a 4D planning CT resulted in a 10 times larger dose. For a daily setup of the patient with two planar kilovoltage images or with a fan beam CT at the TomoTherapy unit, an additional effective dose outside of the treated volume of less than 0.4 mSv and 1

  15. New Measurements of the Cosmic Background Radiation Temperature at3.3 mm Wavelength

    SciTech Connect (OSTI)

    Witebsky, C.; Smoot, G.; De Amici, G.; Friedman, S.D.

    1986-02-01

    We have measured the temperature of the cosmic background radiation (CBR) at 3.3 mm wavelength in 1982, 1983, and 1984 as part of a larger project to determine the CBR temperature at five wavelengths from 12 cm to 3.3 mm (Smoot et al. 1985). The 3.3-mm measurements yield a brightness temperature of 2.57 K with a 1{sigma} uncertainty of 20.12 K. This paper describes the instrument, the measurement techniques, and the data-analysis procedures used. Our result is in good agreement with recent measurements at comparable wavelengths by Meyer and Jura (1985) and by Peterson, Richards, and Timusk (1985), but it disagrees with the temperatures reported by Woody and Richards (1981).

  16. Evaluation of radiation dose and image quality of CT scan for whole-body pediatric PET/CT: A phantom study

    SciTech Connect (OSTI)

    Yang, Ching-Ching; Liu, Shu-Hsin; Mok, Greta S. P.; Wu, Tung-Hsin

    2014-09-15

    Purpose: This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. Methods: The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate risk estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. Results: The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Conclusions: Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.

  17. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    SciTech Connect (OSTI)

    Alarcon, Ricardo [Arizona State University, Glendale, AZ (United States); Balascuta, S. [Arizona State University, Glendale, AZ (United States); Benson, Stephen V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Bertozzi, William [Massachusetts Institute of Technology, Cambridge, MA (United States); Boyce, James R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cowan, Ray [Massachusetts Institute of Technology, Cambridge, MA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Evtushenko, Pavel [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Fisher, P. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ihloff, Ernest E. [Hampton University, Hampton, VA (United States); Kalantarians, Narbe [Hampton University, Hampton, VA (United States); Kelleher, Aidan Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Krossler, W. J. [William and Mary College, Williamsburg, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Long, Elena [University of New Hampshire, Durham, NH (United States); Milner, Richard [Massachusetts Institute of Technology, Cambridge, MA (United States); Neil, George R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ou, Longwu [Massachusetts Institute of Technology, Cambridge, MA (United States); Schmookler, Barack Abraham [Massachusetts Institute of Technology, Cambridge, MA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tschalar, C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Williams, Gwyn P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-11-01

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.

  18. High-resolution Tangential AXUV Arrays for Radiated Power Density Measurements on NSTX-U

    SciTech Connect (OSTI)

    Delgado-Aparicio, L; Bell, R E; Faust, I; Tritz, K; Diallo, A; Gerhardt, S P; Kozub, T A; LeBlanc, B P; Stratton, B C

    2014-07-01

    Precise measurements of the local radiated power density and total radiated power are a matter of the uttermost importance for understanding the onset of impurity-induced instabilities and the study of particle and heat transport. Accounting of power balance is also needed for the understanding the physics of various divertor con#12;gurations for present and future high-power fusion devices. Poloidal asymmetries in the impurity density can result from high Mach numbers and can impact the assessment of their flux-surface-average and hence vary the estimates of P[sub]rad (r, t) and (Z[sub]eff); the latter is used in the calculation of the neoclassical conductivity and the interpretation of non-inductive and inductive current fractions. To this end, the bolometric diagnostic in NSTX-U will be upgraded, enhancing the midplane coverage and radial resolution with two tangential views, and adding a new set of poloidally-viewing arrays to measure the 2D radiation distribution. These systems are designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate non-inductive operation at reduced collisionality, with high-pressure, long energy-confinement-times and a divertor solution with metal walls.

  19. Direct Measurement of the Radiative Lifetime of Vibrationally Excited OH Radicals

    SciTech Connect (OSTI)

    Meerakker, Sebastiaan Y.T. van de; Vanhaecke, Nicolas; Meijer, Gerard; Loo, Mark P.J. van der; Groenenboom, Gerrit C.

    2005-07-01

    Neutral molecules, isolated in the gas phase, can be prepared in a long-lived excited state and stored in a trap. The long observation time afforded by the trap can then be exploited to measure the radiative lifetime of this state by monitoring the temporal decay of the population in the trap. This method is demonstrated here and used to benchmark the Einstein A coefficients in the Meinel system of OH. A pulsed beam of vibrationally excited OH radicals is Stark decelerated and loaded into an electrostatic quadrupole trap. The radiative lifetime of the upper {lambda}-doublet component of the X {sup 2}{pi}{sub 3/2}, v=1, J=3/2 level is determined as 59.0{+-}2.0 ms, in good agreement with the calculated value of 58.0{+-}1.0 ms.

  20. Atmospheric Radiation Measurement (ARM) Data from the Southern Great Plains (SGP) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. Scientists are using the information obtained from the permanent SGP site to improve cloud and radiative models and parameterizations and, thereby, the performance of atmospheric general circulation models used for climate research. More than 30 instrument clusters have been placed around the SGP site. The locations for the instruments were chosen so that the measurements reflect conditions over the typical distribution of land uses within the site. The continuous observations at the SGP site are supplemented by intensive observation periods, when the frequency of measurements is increased and special measurements are added to address specific research questions. During such periods, 2 gigabytes or more of data (two billion bytes) are generated daily. SGP data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/ http. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  1. SU-E-T-581: On the Value of LET as a Radiation Quality Descriptor for RBE

    SciTech Connect (OSTI)

    Pater, P; Backstrom, G; Enger, S; Seuntjens, J; Naqa, I El; Villegas, F; Ahnesjo, A

    2015-06-15

    Purpose: To investigate the relationship between linear energy transfer (LET) and relative biological effectiveness (RBE) for protons and light ions, and the corresponding role of LET as a descriptor of radiation quality of hadron therapy. Methods: Monte Carlo (MC) proton and light ion (He, Li, C) tracks with LET < 30 eV nm{sup -1} were generated in an event-by-event mode. They were overlaid on a cell nucleus model containing 6×10{sup 9} nucleotide base pairs using an isotropic irradiation procedure that provides electronic equilibrium. Strand breaks (sbs) were scored in the DNA sugar-phosphate groups and further sub-classified into single or double sbs (ssbs or dsbs). Distributions of ssbs and dsbs for 2 Gy fractions were calculated to estimate RBE for the induction of initial dsbs with reference to {sup 60}Co. Additionally, sbs were classified based on their complexity (i.e. the number of sbs in each cluster). Results: An increase in LET for light ions of the same atomic number or a decrease in atomic number for ions of the same LET resulted in a lower kinetic energy of emitted secondary electrons. The clustering of DNA damage was more pronounced as reflected by the increase in proton RBE from ∼ 1.75 to 4 for LET values of 7 to 28 eV nm{sup -1}. A significant RBE decrease between protons, He, Li and C ions of the same LET was also noticed as function of the atomic number. Significant differences in ssbs and dsbs complexities were also seen for particles with the same LET, potentially supporting a clustering-based radiation quality descriptor. Conclusion: The LET-RBE relationships were simulated for proton and light ions and exhibited expected trends, including different RBEs for particles with the same LET but different atomic numbers. A complexity based radiation quality descriptor may allow better differentiation of RBE between radiation fields of similar LET. We would like to acknowledge support from the Fonds de recherche du Quebec Sante (FRQS), from the

  2. SU-E-I-04: A Mammography Phantom to Measure Mean Glandular Dose and Image Quality

    SciTech Connect (OSTI)

    Lopez-Pineda, E; Ruiz-Trejo, C; E, Brandan M

    2014-06-01

    Purpose: To evaluate mean glandular dose (MGD) and image quality in a selection of mammography systems using a novel phantom based on thermoluminescent dosemeters and the ACR wax insert. Methods: The phantom consists of two acrylic, 19 cm diameter, 4.5 cm thick, semicircular modules, used in sequence. The image quality module contains the ACR insert and is used to obtain a quality control image under automatic exposure conditions. The dosimetric module carries 15 TLD-100 chips, some under Al foils, to determine air kerma and half-value-layer. TL readings take place at our laboratory under controlled conditions. Calibration was performed using an ionization chamber and a Senographe 2000D unit for a variety of beam qualities, from 24 to 40 kV, Mo and Rh anodes and filters. Phantom MGD values agree, on the average, within 3% with ionization chamber data, and their precision is better than 10% (k=1). Results: MGD and image quality have been evaluated in a selection of mammography units currently used in Mexican health services. The sample includes analogic (screen/film), flexible digital (CR), and full-field digital image receptors. The highest MDG are associated to the CR technology. The most common image quality failure is due to artifacts (dust, intensifying screen scratches, and processor marks for film/screen, laser reader defects for CR). Conclusion: The developed phantom permits the MGD measurement without the need of a calibrated ionization chamber at the mammography site and can be used by a technician without the presence of a medical physicist. The results indicate the urgent need to establish quality control programs for mammography.

  3. Collective dose as a performance measure for occupational radiation protection programs: Issues and recommendations

    SciTech Connect (OSTI)

    Strom, D.J.; Harty, R.; Hickey, E.E.; Martin, J.B.; Peffers, M.S.; Kathren, R.L.

    1998-07-01

    Collective dose is one of the performance measures used at many US Department of Energy (DOE) contractor facilities to quantitatively assess the objectives of the radiation protection program. It can also be used as a management tool to improve the program for keeping worker doses as low as reasonably achievable (ALARA). Collective dose is used here to mean the sum of all total effective dose equivalent values for all workers in a specified group over a specified time. It is often used as a surrogate estimate of radiological risk. In principle, improvements in radiation protection programs and procedures will result in reduction of collective dose, all other things being equal. Within the DOE, most frequently, a single collective dose number, which may or may not be adjusted for workload and other factors, is used as a performance measure for a contractor. The purpose of this report is to evaluate the use of collective dose as a performance measure for ALARA programs at DOE sites.

  4. Technical Note: Response measurement for select radiation detectors in magnetic fields

    SciTech Connect (OSTI)

    Reynolds, M.; Fallone, B. G.; Rathee, S.

    2015-06-15

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear acceleratormagnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies.

  5. Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage

    SciTech Connect (OSTI)

    Cheaito, Ramez; Gorham, Caroline S.; Misra, Amit; Hattar, Khalid; Hopkins, Patrick E.

    2015-05-01

    The progressive build up of displacement damage and fission products inside different systems and components of a nuclear reactor can lead to significant defect formation, degradation, and damage of the constituent materials. This structural modification can highly influence the thermal transport mechanisms and various mechanical properties of solids. In this paper we demonstrate the use of time-domain thermoreflectance (TDTR), a non-destructive method capable of measuring the thermal transport in material systems from nano to bulk scales, to study the effect of radiation damage and the subsequent changes in the thermal properties of materials. We use TDTR to show that displacement damage from ion irradiation can significantly reduce the thermal conductivity of Optimized ZIRLO, a material used as fuel cladding in several current nuclear reactors. We find that the thermal conductivity of copper-niobium nanostructured multilayers does not change with helium ion irradiation doses of up to 1015 cm-2 and ion energy of 200 keV suggesting that these structures can be used and radiation tolerant materials in nuclear reactors. We compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Results demonstrate that TDTR thermal measurements can be used to quantify depth dependent damage.

  6. Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheaito, Ramez; Gorham, Caroline S.; Carnegie Mellon Univ., Pittsburgh, PA; Misra, Amit; Hattar, Khalid; Hopkins, Patrick E.

    2015-05-01

    The progressive build up of displacement damage and fission products inside different systems and components of a nuclear reactor can lead to significant defect formation, degradation, and damage of the constituent materials. This structural modification can highly influence the thermal transport mechanisms and various mechanical properties of solids. In this paper we demonstrate the use of time-domain thermoreflectance (TDTR), a non-destructive method capable of measuring the thermal transport in material systems from nano to bulk scales, to study the effect of radiation damage and the subsequent changes in the thermal properties of materials. We use TDTR to show that displacementmore » damage from ion irradiation can significantly reduce the thermal conductivity of Optimized ZIRLO, a material used as fuel cladding in several current nuclear reactors. We find that the thermal conductivity of copper-niobium nanostructured multilayers does not change with helium ion irradiation doses of up to 1015 cm-2 and ion energy of 200 keV suggesting that these structures can be used and radiation tolerant materials in nuclear reactors. We compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Results demonstrate that TDTR thermal measurements can be used to quantify depth dependent damage.« less

  7. The Vertical Distribution of Aerosols Over the Atmospheric Radiation Measurement Southern Great Plains Site Measured versus Modeled

    SciTech Connect (OSTI)

    Ferrare, R.; Turner, D.D.; Clayton, M.; Guibert, S.; Schulz, M.; Chin, M.

    2005-03-18

    Aerosol extinction profiles measured by the Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility Raman lidar are used to evaluate aerosol extinction profiles and aerosol optical thickness (AOT) simulated by aerosol models as part of the Aerosol module inter- Comparison in global models (AEROCOM) project. This project seeks to diagnose aerosol modules of global models and subsequently identify and eliminate weak components in aerosol modules used for global modeling; AEROCOM activities also include assembling data sets to be used in the evaluations. The AEROCOM average aerosol extinction profiles typically show good agreement with the Raman lidar profiles for altitudes above about 2 km; below 2 km the average model profiles are significantly (30-50%) lower than the Raman lidar profiles. The vertical variability in the average aerosol extinction profiles simulated by these models is less than the variability in the corresponding Raman lidar pro files. The measurements also show a much larger diurnal variability than the Interaction with Chemistry and Aerosols (INCA) model, particularly near the surface where there is a high correlation between aerosol extinction and relative humidity.

  8. Measurement of the solar ultraviolet radiation at ground level in Bangi, Malaysia

    SciTech Connect (OSTI)

    Aljawi, Ohoud; Gopir, Geri; Duay, Abdul Basit

    2015-04-24

    Understanding the amount of ultraviolet (UV) radiation received by human, plant, and animal organisms near the earth’s surface is important to a wide range of fields such as cancer research, agriculture and forestry. The solar ultraviolet spectral irradiance at ground level was measured using the Avantes spectrometer for the period of January to March 2014 at Bangi (2°55´N, 101°46´E, 50 m above sea level) in Malaysia. These data were used to estimate the diurnal variation of UV irradiance (300 – 400 nm). The maximum irradiance of UV radiation was 45 W m{sup −2} on horizontal surface. The maximum irradiance of UV received in the local noon time, and the minimum values of UV irradiance was received in the local morning time. It is found a bigger value of UV radiation was observed on clear sky in January. The estimation of daily flux average of UV irradiance was (921± 91) kJ m{sup −2}.

  9. Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  10. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2013-01-11

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  11. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-10-10

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  12. Continuous Water Vapor Profiles for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect (OSTI)

    Jensen, M; Troyan, D

    2006-01-09

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the first quarter of Fiscal Year 2006 to complete a continuous time series of the vertical profile of water vapor for selected 30-day periods from each of the fixed ARM sites. In order to accomplish this metric, a new technique devised to incorporate radiosonde data, microwave radiometer data and analysis information from numerical weather forecast models has been developed. The product of this analysis, referred to as the merged sounding value-added product, includes vertical profiles of atmospheric water vapor concentration and several other important thermodynamic state variables at 1-minute time intervals and 266 vertical levels.

  13. Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation

    DOE Patents [OSTI]

    Buican, Tudor N.; Martin, John C.

    1990-01-01

    An apparatus and method simultaneously measures a plurality of spectral wavelengths present in electromagnetic radiation. A modulatable birefringent optical element is employed to divide a polarized light beam into two components, thereby producing a phase difference in two resulting light beams such that the two beams can be made to interfere with one another when recombined, the interference pattern providing the wavelength information required for the analysis of the incident light. The interferometer thus created performs in a similar manner to a Michelson interferometer, but with no moving parts, and with a resolution dependent on the degree of phase shift introduced by the modulator.

  14. Definition of Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of ...

  15. SU-E-P-09: Radiation Transmission Measurements and Evaluation of Diagnostic Lead-Based and Lead-Free Aprons

    SciTech Connect (OSTI)

    Syh, J

    2014-06-01

    Purpose: This study was conducted to ensure that various lead shield apron manufacturers provided accurate attenuation factors regardless of whether the apron was made of lead-based or lead-free equivalent material. Methods: A calibrated ionization survey meter was placed at chest height and 36 cm horizontally away from a solid water phantom on a simulator couch. Measurements were done with or without apron. Radiation field was set to 24cmx24cm with the phantom at 100cm source-to-surface distance. Irradiation time was set for 1 minute at voltages of 60, 80, 100 and 120 kVp. Current was set at 6mA. Results: Between 60 kVp and 120 kVp, the transmission through 0.50 mm of lead-based apron was between 1.0% and 6.5% with a mean value of 3.2% and a standard deviation (s.d.) of 1.4%. The transmissions through the 0.50 mm lead-free aprons were 1.0 % to 12.0% with a mean value of 6.1% and s.d. of 2.6%. At 120 kVp, the transmission value was 6.5% for 0.50 mm lead-based apron and 11.1% to 12.0% for 0.50 mm lead-free aprons. The radiation transmissions at 80 kVp, measured in two different 0.5 mm lead-free aprons, were 4.3% each. However, only 1.4% transmission was found through the lead-based apron. Overall, the radiation transmitted through the lead-based apron was 1/3 transmission of lead-free at 80kVp, and half value of lead-free aprons at 100 and 120 kVp. Conclusion: Even though lead-based and lead-free aprons all claimed to have the same lead equivalent thickness, the transmission might not be the same. The precaution was needed to exercise diligence in quality assurance program to assure adequate protection to staff who wear it during diagnostic procedures. The requirement for aprons not only should be in certain thickness to meet state regulation but also to keep reasonably achievable low exposure with the accurate labeling from manufacturers.

  16. Measuring the activity of a {sup 51}Cr neutrino source based on the gamma-radiation spectrum

    SciTech Connect (OSTI)

    Gorbachev, V. V. Gavrin, V. N.; Ibragimova, T. V.; Kalikhov, A. V.; Malyshkin, Yu. M.; Shikhin, A. A.

    2015-12-15

    A technique for the measurement of activities of intense β sources by measuring the continuous gamma-radiation (internal bremsstrahlung) spectra is developed. A method for reconstructing the spectrum recorded by a germanium semiconductor detector is described. A method for the absolute measurement of the internal bremsstrahlung spectrum of {sup 51}Cr is presented.

  17. NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).

  18. NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    1981-07-15

    The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).

  19. Radiation protection measurements around a 12 MeV mobile dedicated IORT accelerator

    SciTech Connect (OSTI)

    Soriani, Antonella; Felici, Giuseppe; Fantini, Mario; Paolucci, Massimiliano; Borla, Oscar; Evangelisti, Giovanna; Benassi, Marcello; Strigari, Lidia

    2010-03-15

    Purpose: The aim of this study is to investigate radioprotection issues that must be addressed when dedicated accelerators for intraoperative radiotherapy (IORT) are used in operating rooms. Recently, a new version of a mobile IORT accelerator (LIAC Sordina SpA, Italy) with 12 MeV electron beam has been implemented. This energy is necessary in some specific pathology treatments to allow a better coverage of thick lesions. At an electron energy of 10 MeV, leakage and scattered x-ray radiation (stray radiation) coming from the accelerator device and patient must be considered. If the energy is greater than 10 MeV, the x-ray component will increase; however, the most meaningful change should be the addition of neutron background. Therefore, radiation exposure of personnel during the IORT procedure needs to be carefully evaluated. Methods: In this study, stray x-ray radiation was measured and characterized in a series of spherical projections by means of an ion chamber survey meter. To simulate the patient during all measurements, a polymethylmethacrylate (PMMA) slab phantom with volume 30x30x15 cm{sup 3} and density 1.19 g/cm{sup 3} was used. The PMMA phantom was placed along the central axis of the beam in order to absorb the electron beams and the tenth value layer (TVL) and half value layer (HVL) of scattered radiation (at 0 deg., 90 deg., and 180 deg. scattering angles) were also measured at 1 m of distance from the phantom center. Neutron measurements were performed using passive bubble dosimeters and a neutron probe, specially designed to evaluate ambient dose equivalent H{sup *}(10). Results: The x-ray equivalent dose measured at 1 m along the beam axis at 12 MeV was 260 {mu}Sv/Gy. The value measured at 1 m at 90 deg. scattering angle was 25 {mu}Sv/Gy. The HVL and TVL values were 1.1 and 3.5 cm of lead at 0 deg., and 0.4 and 1 cm at 90 deg., respectively. The highest equivalent dose of fast neutrons was found to be at the surface of the phantom on the central

  20. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

  1. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface ...

  2. Measurement of the large-scale anisotropy of the cosmic background radiation at 3mm

    SciTech Connect (OSTI)

    Epstein, G.L.

    1983-12-01

    A balloon-borne differential radiometer has measured the large-scale anisotropy of the cosmic background radiation (CBR) with high sensitivity. The antenna temperature dipole anistropy at 90 GHz (3 mm wavelength) is 2.82 +- 0.19 mK, corresponding to a thermodynamic anistropy of 3.48 +- mK for a 2.7 K blackbody CBR. The dipole direction, 11.3 +- 0.1 hours right ascension and -5.7/sup 0/ +- 1.8/sup 0/ declination, agrees well with measurements at other frequencies. Calibration error dominates magnitude uncertainty, with statistical errors on dipole terms being under 0.1 mK. No significant quadrupole power is found, placing a 90% confidence-level upper limit of 0.27 mK on the RMS thermodynamic quadrupolar anistropy. 22 figures, 17 tables.

  3. State background-radiation levels: results of measurements taken during 1975-1979

    SciTech Connect (OSTI)

    Myrick, T.E.; Berven, B.A.; Haywood, F.F.

    1981-11-01

    Background radiation levels across the United States have been measured by the Off-Site Pollutant Measurements Group of the Health and Safety Research Division at Oak Ridge National Laboratory (ORNL). These measurements have been conducted as part of the ORNL program of radiological surveillance at inactive uranium mills and sites formerly utilized during Manhattan Engineer District and early Atomic Energy Commission projects. The measurements included determination of /sup 226/Ra, /sup 232/Th, and /sup 238/U concentrations in surface soil samples and measurement of external gamma-ray exposure rates at 1 m above the ground surface at the location of soil sampling. This information is being utilized for comparative purposes to determine the extent of contamination present at the survey sites and surrounding off-site areas. The sampling program to date has provided background information at 356 locations in 33 states. External gamma-ray exposure rates were found to range from less than 1 to 34 ..mu..R/h, with an US average of 8.5 ..mu..R/h. The nationwide average concentrations of /sup 226/Ra, /sup 232/Th, and /sup 238/U in surface soil were determined to be 1.1, 0.98, and 1.0 pCi/g, respectively.

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2009.

    SciTech Connect (OSTI)

    D. L. Sisterson

    2010-01-12

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2010 for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208); for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208); and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 x 2,208). The ARM Mobile Facility (AMF) deployment in Graciosa Island, the Azores, Portugal, continues; its OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are the result of downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to

  5. Measurement and simulation of the impact of coherent synchrotron radiation on the Jefferson Laboratory energy recovery linac electron beam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hall, C C.; Biedron, S G.; Edelen, A L.; Milton, S V.; Benson, S; Douglas, D; Li, R; Tennant, C D.; Carlsten, B E.

    2015-03-09

    In an experiment conducted on the Jefferson Laboratory IR free-electron laser driver, the effects of coherent synchrotron radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR recirculator. Here we examine the impact of CSR on the average energy loss as a function of bunch compression as well as the impact of CSR on the energy spectrum of the bunch. Simulation of beam dynamics in the machine, including the one-dimensional CSR model, shows very good agreement with themore » measured effect of CSR on the average energy loss as a function of compression. Finally, a well-defined structure is observed in the energy spectrum with a feature in the spectrum that varies as a function of the compression. This effect is examined in simulations, as well, and a simple explanation for the variation is proposed.« less

  6. Method of controlling coherent synchroton radiation-driven degradation of beam quality during bunch length compression

    DOE Patents [OSTI]

    Douglas, David R.; Tennant, Christopher D.

    2012-07-10

    A method of avoiding CSR induced beam quality defects in free electron laser operation by a) controlling the rate of compression and b) using a novel means of integrating the compression with the remainder of the transport system: both are accomplished by means of dispersion modulation. A large dispersion is created in the penultimate dipole magnet of the compression region leading to rapid compression; this large dispersion is demagnified and dispersion suppression performed in a final small dipole. As a result, the bunch is short for only a small angular extent of the transport, and the resulting CSR excitation is small.

  7. Radiation Exposure During Uterine Artery Embolization: Effective Measures to Minimize Dose to the Patient

    SciTech Connect (OSTI)

    Scheurig-Muenkler, Christian; Powerski, Maciej J.; Mueller, Johann-Christoph; Kroencke, Thomas J.

    2015-06-15

    PurposeEvaluation of patient radiation exposure during uterine artery embolization (UAE) and literature review to identify techniques minimizing required dose.MethodsA total of 224 of all included 286 (78 %) women underwent UAE according to a standard UAE-protocol (bilateral UAE from unilateral approach using a Rösch inferior mesenteric and a microcatheter, no aortography, no ovarian artery catheterization or embolization) and were analyzed for radiation exposure. Treatment was performed on three different generations of angiography systems: (I) new generation flat-panel detector (N = 108/151); (II) classical image amplifier and pulsed fluoroscopy (N = 79/98); (III) classical image amplifier and continuous fluoroscopy (N = 37/37). Fluoroscopy time (FT) and dose-area product (DAP) were documented. Whenever possible, the following dose-saving measures were applied: optimized source-object, source-image, and object-image distances, pulsed fluoroscopy, angiographic runs in posterior-anterior direction with 0.5 frames per second, no magnification, tight collimation, no additional aortography.ResultsIn a standard bilateral UAE, the use of the new generation flat-panel detector in group I led to a significantly lower DAP of 3,156 cGy × cm{sup 2} (544–45,980) compared with 4,000 cGy × cm{sup 2} (1,400–13,000) in group II (P = 0.033). Both doses were significantly lower than those of group III with 8,547 cGy × cm{sup 2} (3,324–35,729; P < 0.001). Other reasons for dose escalation were longer FT due to difficult anatomy or a large leiomyoma load, additional angiographic runs, supplementary ovarian artery embolization, and obesity.ConclusionsThe use of modern angiographic units with flat panel detectors and strict application of methods of radiation reduction lead to a significantly lower radiation exposure. Target DAP for UAE should be kept below 5,000 cGy × cm{sup 2}.

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data then are sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by 1) individual data stream, site, and month for the current year and 2) site and fiscal year (FY) dating back to 1998.

  9. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - July 1 - September 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  10. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2012-01-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 – March 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  13. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - January 1 - March 31, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2008-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  14. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-03-17

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  15. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-10-10

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  16. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-03-02

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2008-01-08

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  18. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1–March 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-04-13

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-06-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 – June 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998.

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - October 1 - December 31, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2009-01-15

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  3. Method and apparatus for the measurement of signals from radiation sensors

    DOE Patents [OSTI]

    De Geronimo, Gianluigi

    2012-09-18

    The preferred embodiments of the present invention include a device for measuring an ionizing event in a radiation sensor. The device can include a charge amplifier and a timing shaper. The charge amplifier receives a cathode signal and is configured to output an amplified cathode signal. The timing shaper is operatively connected to the charge amplifier to receive the amplified cathode signal. The timing shaper is configured to generate a first pulse in response to a beginning of the ionizing event and a second pulse in response to an end of the ionizing event. The first and second pulses are associated with a depth of interaction of the ionizing event and are generated in response to a slope of the amplified cathode signal changing.

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 September 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  5. SU-E-P-49: Evaluation of Image Quality and Radiation Dose of Various Unenhanced Head CT Protocols

    SciTech Connect (OSTI)

    Chen, L; Khan, M; Alapati, K; Hsieh, M; Barry, K

    2015-06-15

    Purpose: To evaluate the diagnostic value of various unenhanced head CT protocols and predicate acceptable radiation dose level for head CT exam. Methods: Our retrospective analysis included 3 groups, 20 patients per group, who underwent clinical routine unenhanced adult head CT examination. All exams were performed axially with 120 kVp. Three protocols, 380 mAs without iterative reconstruction and automAs, 340 mAs with iterative reconstruction without automAs, 340 mAs with iterative reconstruction and automAs, were applied on each group patients respectively. The images were reconstructed with H30, J30 for brain window and H60, J70 for bone window. Images acquired with three protocols were randomized and blindly reviewed by three radiologists. A 5 point scale was used to rate each exam The percentage of exam score above 3 and average scores of each protocol were calculated for each reviewer and tissue types. Results: For protocols without automAs, the average scores of bone window with iterative reconstruction were higher than those without iterative reconstruction for each reviewer although the radiation dose was 10 percentage lower. 100 percentage exams were scored 3 or higher and the average scores were above 4 for both brain and bone reconstructions. The CTDIvols are 64.4 and 57.8 mGy of 380 and 340 mAs, respectively. With automAs, the radiation dose varied with head size, resulting in 47.5 mGy average CTDIvol between 39.5 and 56.5 mGy. 93 and 98 percentage exams were scored great than 3 for brain and bone windows, respectively. The diagnostic confidence level and image quality of exams with AutomAs were less than those without AutomAs for each reviewer. Conclusion: According to these results, the mAs was reduced to 300 with automAs OFF for head CT exam. The radiation dose was 20 percentage lower than the original protocol and the CTDIvol was reduced to 51.2 mGy.

  6. Measurement of the radiative cooling rates for high-ionization species of krypton using an electron beam ion trap

    SciTech Connect (OSTI)

    Radtke, R.; Biedermann, C.; Fuchs, T.; Fussmann, G.; Beiersdorfer, P.

    2000-02-01

    We describe a measurement of the radiative cooling rate for krypton made at the Berlin electron beam ion trap (EBIT). The EBIT was tuned to a charge-state distribution approaching the ionization balance of a plasma at a temperature of about 5 keV. To determine the cooling rate, we made use of EBIT's capabilities to sample a wide range of electron-beam energies and distinguish between different radiation channels. We have measured the x-ray emission from bremsstrahlung, radiative recombination, dielectronic recombination, and line radiation following electron-impact excitation. The dominant contribution to the cooling rate is made by the n=3-2, n=4-2,... x rays of the L-shell spectra of krypton, which produce more than 75% of the total radiation loss. A difference with theoretical calculations is noted for the measured total cooling rate. The predicted values are lower by a factor of 1.5-2, depending on the theoretical model. For our measurement of the cooling rate, we estimate an uncertainty interval of 22-30 %. (c) 2000 The American Physical Society.

  7. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  8. Measurement of regional compliance using 4DCT images for assessment of radiation treatment

    SciTech Connect (OSTI)

    Zhong Hualiang; Jin Jianyue; Ajlouni, Munther; Movsas, Benjamin; Chetty, Indrin J.

    2011-03-15

    Purpose: Radiation-induced damage, such as inflammation and fibrosis, can compromise ventilation capability of local functional units (alveoli) of the lung. Ventilation function as measured with ventilation images, however, is often complicated by the underlying mechanical variations. The purpose of this study is to present a 4DCT-based method to measure the regional ventilation capability, namely, regional compliance, for the evaluation of radiation-induced lung damage. Methods: Six 4DCT images were investigated in this study: One previously used in the generation of a POPI model and the other five acquired at Henry Ford Health System. A tetrahedral geometrical model was created and scaled to encompass each of the 4DCT image domains. Image registrations were performed on each of the 4DCT images using a multiresolution Demons algorithm. The images at the end of exhalation were selected as a reference. Images at other exhalation phases were registered to the reference phase. For the POPI-modeled patient, each of these registration instances was validated using 40 landmarks. The displacement vector fields (DVFs) were used first to calculate the volumetric variation of each tetrahedron, which represents the change in the air volume. The calculated results were interpolated to generate 3D ventilation images. With the computed DVF, a finite element method (FEM) framework was developed to compute the stress images of the lung tissue. The regional compliance was then defined as the ratio of the ventilation and stress values and was calculated for each phase. Based on iterative FEM simulations, the potential range of the mechanical parameters for the lung was determined by comparing the model-computed average stress to the clinical reference value of airway pressure. The effect of the parameter variations on the computed stress distributions was estimated using Pearson correlation coefficients. Results: For the POPI-modeled patient, five exhalation phases from the start to

  9. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    SciTech Connect (OSTI)

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % and 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.

  10. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore » 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less