National Library of Energy BETA

Sample records for radiation measurement quality

  1. ARM: Surface Radiation Measurement Quality Control testing, including climatologically configurable limits

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Yan Shi; Laura Riihimaki

    1994-01-07

    Surface Radiation Measurement Quality Control testing, including climatologically configurable limits

  2. Measuring Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Activity SI Units and Prefixes Conversions Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Measurement Activity: How Much Is Present? The size or weight of a container or shipment does not indicate how much radioactivity is in it. The amount of radioactivity in a quantity of material can be determined by noting how many curies of the material are present. This information should be found on labels and/or shipping

  3. Data Quality of Quality Measurement Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Quality of Quality Measurement Experiments S. Bottone and S. Moore Mission Research Corporation Santa Barbara, California Introduction Quality Measurement Experiments (QME) are a special class of Value-Added Products (VAP). QMEs add value to Atmospheric Radiation Measurement (ARM) Program datastreams by providing for continuous assessment of the quality of incoming data based on internal consistency checks, comparisons between independent similar measurements, or comparisons between

  4. Solar Radiation Empirical Quality Assessment

    Energy Science and Technology Software Center (OSTI)

    1994-03-01

    The SERIQC1 subroutine performs quality assessment of one, two, or three-component solar radiation data (global horizontal, direct normal, and diffuse horizontal) obtained from one-minute to one-hour integrations. Included in the package is the QCFIT tool to derive expected values from historical data, and the SERIQC1 subroutine to assess the quality of measurement data.

  5. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING WARNING Today is April 1 But that ...

  6. Session Papers Quality Measurement Experiments Within the Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality Measurement Experiments Within the Atmospheric Radiation Measurement Program N. E. ... Introduction The general goal of the Atmospheric RadiationMeasurement (ARM) Program is to ...

  7. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Muir, James F. (Albuquerque, NM); Wayland, Jr., J. Robert (Albuquerque, NM)

    1987-01-01

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  8. ARM - Measurement - Backscattered radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsBackscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols, Cloud Properties Instruments The above measurement is considered scientifically relevant for

  9. ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Pacific Northwest National Laboratory Pacific ...

  10. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  11. Atmospheric Radiation Measurement Radiative Atmospheric Divergence...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    campaign is sponsored by the Atmospheric Radiation Measurement (ARM) Program, the largest global change research program within the U.S. Department of Energy's Office of Science. ...

  12. ARM - Measurement - Radiative heating rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Atmospheric State, Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  13. ARM - Measurement - Photosynthetically Active Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation from 400 to 700 nanometers that photosynthetic organisms are able to use in the process of photosynthesis Categories Radiometric Instruments The above measurement is...

  14. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study ... for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research ...

  15. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility (ARM) Biological and ... BER Home About Research Facilities User Facilities Atmospheric Radiation Measurement ...

  16. Evaluation of Arctic Broadband Surface Radiation Measurements

    SciTech Connect (OSTI)

    Matsui, N.; Long, Charles N.; Augustine, J. A.; Halliwell, D.; Uttal, Taneil; Longenecker, D.; Niebergale, J.; Wendell, J.; Albee, R.

    2012-02-24

    The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that rotate sensors and shading devices that track the sun. High quality measurements require striking a balance between locating sensors in a pristine undisturbed location free of artificial blockage (such as buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data include solar tracker malfunctions, rime/frost/snow deposition on the instruments and operational problems due to limited operator access in extreme weather conditions. In this study, a comparison is made between the global and component sum (direct [vertical component] + diffuse) shortwave measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both shortwave and longwave measurements. Solutions to these operational problems are proposed that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols.

  17. Radiation Measurement (ARM) Climate Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    overview Sponsored by the U.S. Department of Energy's (DOE) Office of Science, the Atmospheric Radiation Measurement (ARM) Climate Research Facility was established in 1990 to improve global climate models by increasing understanding of clouds and radiative feedbacks. Through the ARM Facility, DOE funded the development of highly instrumented research sites at strategic locations around the world: the Southern Great Plains (SGP), Tropical Western Pacific (TWP), and North Slope of Alaska (NSA).

  18. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-001 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... DOESC-ARM-16-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  19. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  20. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-11-008 Atmospheric Radiation Measurement Program Climate Research Facility ...

  1. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-10-029 Atmospheric Radiation Measurement Program Climate Research Facility ...

  2. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. ... Fiscal Year 2004 Budget Summary and User Statistics Atmospheric Radiation Measurement ...

  3. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-11-002 Atmospheric Radiation Measurement Program Climate Research Facility ...

  4. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-069 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  5. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-11-022 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  6. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-11-019 Atmospheric Radiation Measurement Program Climate Research Facility ...

  7. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-007 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  8. An Instrumentation Complex for Atmospheric Radiation Measurements...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation Complex for Atmospheric Radiation Measurements in Siberia S. M. Sakerin, F. V. Dorofeev, D. M. Kabanov, V. S. Kozlov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. ...

  9. Atmospheric Radiation Measurement (ARM) Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER ...

  10. Session Papers Atmospheric Radiation Measurement Program- Unmanned...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Session Papers Atmospheric Radiation Measurement Program- Unmanned Aerospace Vehicle: The Follow-On Phase J. Vitko, Jr. ARM-UAV Technical Director Sandia National Laboratories ...

  11. Atmospheric Radiation Measurement Tropical Warm Pool International...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program ...

  12. Atmospheric Radiation Measurement Convective and Orographically...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Convective and Orographically Induced Precipitation Study The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is providing the ARM ...

  13. Method for radiation detection and measurement

    DOE Patents [OSTI]

    Miller, S.D.

    1993-12-21

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength. 9 figures.

  14. Method for radiation detection and measurement

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1993-01-01

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength.

  15. Methods of in vivo radiation measurement

    DOE Patents [OSTI]

    Huffman, Dennis D. (Albuquerque, NM); Hughes, Robert C. (Albuquerque, NM); Kelsey, Charles A. (Albuquerque, NM); Lane, Richard (Galveston, TX); Ricco, Antonio J. (Albuquerque, NM); Snelling, Jay B. (Albuquerque, NM); Zipperian, Thomas E. (Albuquerque, NM)

    1990-01-01

    Methods of and apparatus for in vivo radiation measurements relay on a MOSFET dosimeter of high radiation sensitivity with operates in both the passive mode to provide an integrated dose detector and active mode to provide an irradiation rate detector. A compensating circuit with a matched unirradiated MOSFET is provided to operate at a current designed to eliminate temperature dependence of the device. Preferably, the MOSFET is rigidly mounted in the end of a miniature catheter and the catheter is implanted in the patient proximate the radiation source.

  16. First Measurements of the FACET Coherent Terahertz Radiation...

    Office of Scientific and Technical Information (OSTI)

    Measurements of the FACET Coherent Terahertz Radiation Source Citation Details In-Document Search Title: First Measurements of the FACET Coherent Terahertz Radiation Source You...

  17. Posters Single-Column Model for Atmospheric Radiation Measurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters Single-Column Model for AtmosphericRadiation Measurement Sites: Model Development ... Using observational data obtained from the Oklahoma Atmospheric Radiation Measurement ...

  18. Modeling Workflow for the DOE Atmospheric Radiation Measurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workflow for the DOE Atmospheric Radiation Measurement Facility's LES ARM Symbiotic ... and Environmental Research Program through its Atmospheric Radiation Measurement Facility. ...

  19. DOE/SC-ARM-020 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-020 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  20. Style Guide Atmospheric Radiation Measurement (ARM) Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility March 2013 Style Guide Atmospheric Radiation Measurement Climate Research Facility March 2013 Work ...

  1. METHOD AND APPARATUS FOR MEASURING RADIATION

    DOE Patents [OSTI]

    Reeder, S.D.

    1962-04-17

    A chemical dosimeter for measuring the progress of a radiation-induced oxidation-reduction reaction is described. The dosimeter comprises a container filled with an aqueous chemical oxidation-reduction system which reacts quantitatively to the radiation. An anode of the group consisting of antimony and tungsten and a cathode of the group consisting of gold and platnium are inserted into the system. Means are provided to stir the system and a potential sensing device is connected across the anode and cathode to detect voltage changes. (AEC)

  2. Radiation beam calorimetric power measurement system

    DOE Patents [OSTI]

    Baker, John (Livermore, CA); Collins, Leland F. (Pleasanton, CA); Kuklo, Thomas C. (Ripon, CA); Micali, James V. (Dublin, CA)

    1992-01-01

    A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

  3. Optical steam quality measurement system and method

    DOE Patents [OSTI]

    Davidson, James R.; Partin, Judy K.

    2006-04-25

    An optical measurement system is presented that offers precision on-line monitoring of the quality of steam. Multiple wavelengths of radiant energy are passed through the steam from an emitter to a detector. By comparing the amount of radiant energy absorbed by the flow of steam for each wavelength, a highly accurate measurement of the steam quality can be determined on a continuous basis in real-time. In an embodiment of the present invention, the emitter, comprises three separate radiant energy sources for transmitting specific wavelengths of radiant energy through the steam. In a further embodiment, the wavelengths of radiant energy are combined into a single beam of radiant energy for transmission through the steam using time or wavelength division multiplexing. In yet a further embodiment, the single beam of radiant energy is transmitted using specialized optical elements.

  4. Measurement Practices for Reliability and Power Quality

    SciTech Connect (OSTI)

    Kueck, JD

    2005-05-06

    This report provides a distribution reliability measurement ''toolkit'' that is intended to be an asset to regulators, utilities and power users. The metrics and standards discussed range from simple reliability, to power quality, to the new blend of reliability and power quality analysis that is now developing. This report was sponsored by the Office of Electric Transmission and Distribution, U.S. Department of Energy (DOE). Inconsistencies presently exist in commonly agreed-upon practices for measuring the reliability of the distribution systems. However, efforts are being made by a number of organizations to develop solutions. In addition, there is growing interest in methods or standards for measuring power quality, and in defining power quality levels that are acceptable to various industries or user groups. The problems and solutions vary widely among geographic areas and among large investor-owned utilities, rural cooperatives, and municipal utilities; but there is still a great degree of commonality. Industry organizations such as the National Rural Electric Cooperative Association (NRECA), the Electric Power Research Institute (EPRI), the American Public Power Association (APPA), and the Institute of Electrical and Electronics Engineers (IEEE) have made tremendous strides in preparing self-assessment templates, optimization guides, diagnostic techniques, and better definitions of reliability and power quality measures. In addition, public utility commissions have developed codes and methods for assessing performance that consider local needs. There is considerable overlap among these various organizations, and we see real opportunity and value in sharing these methods, guides, and standards in this report. This report provides a ''toolkit'' containing synopses of noteworthy reliability measurement practices. The toolkit has been developed to address the interests of three groups: electric power users, utilities, and regulators. The report will also serve to support activities to develop and share information among industry and regulatory participants about critical resources and practices. The toolkit has been developed by investigating the status of indices and definitions, surveying utility organizations on information sharing, and preparing summaries of reliability standards and monitoring requirements--the issues, needs, work under way, existing standards, practices and guidelines--for the following three classifications: (1) terms and definitions of reliability; (2) power quality standards, guidelines, and measurements; and (3) activities and organizations developing and sharing information on distribution reliability. As these synopses of reliability measurement practices are provided, it must be noted that an economic penalty may be associated with requiring too high a reliability level from the distribution system for all customers. It may be appropriate for the distribution system to supply only some base, generally accepted level of reliability. This base level would be adequate for the majority of customers. Users who need a higher level may find it economical to supply using distributed energy resources (DER) and other local solutions to reliability and power quality needs. Local solutions implemented by the customer may be the most cost-effective method for addressing the more stringent needs of a digital economy. These local solutions include energy storage, small distributed generators, and microgrids. This report also considers the market's role in addressing reliability issues and requirements. The customer's needs are discussed in view of issues such as power quality requirements of digital electronic equipment, the cost of outages, the cost of storage and new infrastructure, and natural gas prices. The market role in addressing these issues and requirements is explored. The economic considerations associated with the reliability issues are discussed, as well as the levels at which these economic decisions could be made. Finally, a discussion is provided of the role DER could play in addressing

  5. Methods of and apparatus for radiation measurement, and specifically for in vivo radiation measurement

    DOE Patents [OSTI]

    Huffman, D.D.; Hughes, R.C.; Kelsey, C.A.; Lane, R.; Ricco, A.J.; Snelling, J.B.; Zipperian, T.E.

    1986-08-29

    Methods of and apparatus for in vivo radiation measurements rely on a MOSFET dosimeter of high radiation sensitivity which operates in both the passive mode to provide an integrated dose detector and active mode to provide an irradiation rate detector. A compensating circuit with a matched unirradiated MOSFET is provided to operate at a current designed to eliminate temperature dependence of the device. Preferably, the MOSFET is rigidly mounted in the end of a miniature catheter and the catheter is implanted in the patient proximate the radiation source.

  6. Probing Radiation Damage in Plutonium Alloys with Multiple Measurement

    Office of Scientific and Technical Information (OSTI)

    Techniques (Conference) | SciTech Connect Conference: Probing Radiation Damage in Plutonium Alloys with Multiple Measurement Techniques Citation Details In-Document Search Title: Probing Radiation Damage in Plutonium Alloys with Multiple Measurement Techniques A material subjected to radiation damage will usually experience changes in its physical properties. Measuring these changes in the physical properties provides a basis to study radiation damage in a material which is important for a

  7. Quantitative measurement of radiation pressure on a microcantilever in

    Office of Scientific and Technical Information (OSTI)

    ambient environment (Journal Article) | SciTech Connect Quantitative measurement of radiation pressure on a microcantilever in ambient environment Citation Details In-Document Search Title: Quantitative measurement of radiation pressure on a microcantilever in ambient environment Light reflected off a material or absorbed within it exerts radiation pressure through the transfer of momentum. Micro/nano-mechanical transducers have become sensitive enough that radiation pressure can influence

  8. Atmospheric Radiation Measurement Program Science Plan

    SciTech Connect (OSTI)

    Ackerman, T

    2004-10-31

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM's Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

  9. Spectral Fluctuations of Incoherent Radiation And Measurement of

    Office of Scientific and Technical Information (OSTI)

    Longitudinal Bunch Profile (Conference) | SciTech Connect Conference: Spectral Fluctuations of Incoherent Radiation And Measurement of Longitudinal Bunch Profile Citation Details In-Document Search Title: Spectral Fluctuations of Incoherent Radiation And Measurement of Longitudinal Bunch Profile A method for measurement of ultrashort beam current profile I{sub b}(t) is proposed that is based on detecting fluctuations of the spectral intensity P ({omega}) of single bunch incoherent radiation.

  10. Probing Radiation Damage in Plutonium Alloys with Multiple Measurement...

    Office of Scientific and Technical Information (OSTI)

    Conference: Probing Radiation Damage in Plutonium Alloys with Multiple Measurement ... as well as external parameters such as the temperature and starting material composition. ...

  11. Prospects for Higgs coupling measurements in SUSY with radiatively...

    Office of Scientific and Technical Information (OSTI)

    Title: Prospects for Higgs coupling measurements in SUSY with radiatively-driven naturalness Authors: Bae, Kyu Jung ; Baer, Howard ; Nagata, Natsumi ; Serce, Hasan Publication ...

  12. Duplex Rules June 2010 Atmospheric Radiation Measurement Climate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Duplex Rules June 2010 Atmospheric Radiation Measurement Climate Research Facility North Slope of AlaskaAdjacent Arctic Ocean (ACRFNSAAAO) Duplex Rules Who can stay in the ...

  13. Method for increased sensitivity of radiation detection and measurement

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1994-01-01

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength. Reduced background is accomplished by more thorough annealing and enhanced radiation induced luminescence is obtained by treating the crystalline material to coalesce primary damage centers into secondary damage centers.

  14. On Correction of Diffuse Radiation Measured by MFRSR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On Correction of Diffuse Radiation Measured by MFRSR T. B. Zhuravleva Institute of Atmospheric Optics, SB RAS Tomsk, Russia M. A. Sviridenkov and P. P. Anikin A. M. Obukhov Institute of Atmospheric Physics, RAS Moscow, Russia Introduction The multi-filter rotated shadowband radiometer (MFRSR) provides spectral direct, diffuse, and total horizontal solar irradiance measurements. Because the MFRSR's receiver has a non-Lambertian response, for a correct interpretation of measured radiation an

  15. Background radiation measurements at high power research reactors (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Background radiation measurements at high power research reactors Citation Details In-Document Search This content will become publicly available on October 23, 2016 Title: Background radiation measurements at high power research reactors Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino

  16. First Measurements of the FACET Coherent Terahertz Radiation...

    Office of Scientific and Technical Information (OSTI)

    Title: First Measurements of the FACET Coherent Terahertz Radiation Source Authors: Adli, E. ; Fisher, A.S. ; Hogan, M.J. ; Wu, Z. ; SLAC ; Loos, H. ; SLAC ; Publication Date: ...

  17. Nuclear radiation-warning detector that measures impedance

    DOE Patents [OSTI]

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  18. First Measurements of the FACET Coherent Terahertz Radiation Source

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Measurements of the FACET Coherent Terahertz Radiation Source Citation Details In-Document Search Title: First Measurements of the FACET Coherent Terahertz Radiation Source Authors: Adli, E. ; Fisher, A.S. ; Hogan, M.J. ; Wu, Z. ; /SLAC ; Loos, H. ; /SLAC ; Publication Date: 2013-10-11 OSTI Identifier: 1096202 Report Number(s): SLAC-PUB-15781 DOE Contract Number: AC02-76SF00515 Resource Type: Conference Resource Relation: Journal Name:

  19. Voice Quality After Treatment of Early Vocal Cord Cancer: A Randomized Trial Comparing Laser Surgery With Radiation Therapy

    SciTech Connect (OSTI)

    Aaltonen, Leena-Maija; Rautiainen, Noora; Sellman, Jaana; Saarilahti, Kauko; Mkitie, Antti; Rihkanen, Heikki; Laranne, Jussi; Kleemola, Leenamaija; Wigren, Tuija; Sala, Eeva; Lindholm, Paula; Grenman, Reidar; Joensuu, Heikki

    2014-10-01

    Objective: Early laryngeal cancer is usually treated with either transoral laser surgery or radiation therapy. The quality of voice achieved with these treatments has not been compared in a randomized trial. Methods and Materials: Male patients with carcinoma limited to 1 mobile vocal cord (T1aN0M0) were randomly assigned to receive either laser surgery (n=32) or external beam radiation therapy (n=28). Surgery consisted of tumor excision with a CO{sub 2} laser with the patient under general anaesthesia. External beam radiation therapy to the larynx was delivered to a cumulative dose of 66Gy in 2-Gy daily fractions over 6.5weeks. Voice quality was assessed at baseline and 6 and 24months after treatment. The main outcome measures were expert-rated voice quality on a grade, roughness, breathiness, asthenia, and strain (GRBAS) scale, videolaryngostroboscopic findings, and the patients' self-rated voice quality and its impact on activities of daily living. Results: Overall voice quality between the groups was rated similar, but voice was more breathy and the glottal gap was wider in patients treated with laser surgery than in those who received radiation therapy. Patients treated with radiation therapy reported less hoarseness-related inconvenience in daily living 2years after treatment. Three patients in each group had local cancer recurrence within 2years from randomization. Conclusions: Radiation therapy may be the treatment of choice for patients whose requirements for voice quality are demanding. Overall voice quality was similar in both treatment groups, however, indicating a need for careful consideration of patient-related factors in the choice of a treatment option.

  20. Method and apparatus for measuring spatial uniformity of radiation

    DOE Patents [OSTI]

    Field, Halden

    2002-01-01

    A method and apparatus for measuring the spatial uniformity of the intensity of a radiation beam from a radiation source based on a single sampling time and/or a single pulse of radiation. The measuring apparatus includes a plurality of radiation detectors positioned on planar mounting plate to form a radiation receiving area that has a shape and size approximating the size and shape of the cross section of the radiation beam. The detectors concurrently receive portions of the radiation beam and transmit electrical signals representative of the intensity of impinging radiation to a signal processor circuit connected to each of the detectors and adapted to concurrently receive the electrical signals from the detectors and process with a central processing unit (CPU) the signals to determine intensities of the radiation impinging at each detector location. The CPU displays the determined intensities and relative intensity values corresponding to each detector location to an operator of the measuring apparatus on an included data display device. Concurrent sampling of each detector is achieved by connecting to each detector a sample and hold circuit that is configured to track the signal and store it upon receipt of a "capture" signal. A switching device then selectively retrieves the signals and transmits the signals to the CPU through a single analog to digital (A/D) converter. The "capture" signal. is then removed from the sample-and-hold circuits. Alternatively, concurrent sampling is achieved by providing an A/D converter for each detector, each of which transmits a corresponding digital signal to the CPU. The sampling or reading of the detector signals can be controlled by the CPU or level-detection and timing circuit.

  1. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earths surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earths energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  2. Measurements and model calculations of radiative fluxes for the Cabauw

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Site for Atmospheric Research, the Netherlands Measurements and model calculations of radiative fluxes for the Cabauw Experimental Site for Atmospheric Research, the Netherlands Knap, Wouter Royal Netherlands Meteorological Institute KNMI Los, Alexander KNMI Boers, Reinout KNMI Category: Radiation The Cabauw Experimental Site for Atmospheric Research (CESAR), the Netherlands (52.0N, 4.9E), contains an extensive set of instruments for atmospheric research, such as radar, lidar

  3. DOE/SC-ARM-13-013 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-013 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  4. DOE/SC-ARM-14-025 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-025 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  5. DOE/SC-ARM-15-037 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-037 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  6. DOE/SC-ARM-12-021 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-021 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  7. DOE/SC-ARM-14-007 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-007 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  8. DOE/SC-ARM-15-018 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-018 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  9. FACT SHEET U.S. Department of Energy Atmospheric Radiation Measurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility The Atmospheric Radiation Measurement (ARM) Climate Research Facility is a key component of the U.S. Department of ...

  10. DOE/SC-ARM-14-019 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-019 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  11. DOE/SC-ARM-15-001 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  12. DOE/SC-ARM-14-001 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  13. DOE/SC-ARM-13-007 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-007 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  14. DOE/SC-ARM-12-015 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-015 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  15. DOE/SC-ARM-13-001 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  16. DOE/SC-ARM-13-020 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-020 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  17. Field quality measurements of a 2-Tesla transmission line magnet

    SciTech Connect (OSTI)

    Velev, G.V.; Foster, W.; Kashikhin, V.; Mazur, P.; Oleck, A.; Piekarz, H.; Schlabach, P.; Sylvester, C.; Wake, M.; /KEK, Tsukuba

    2005-09-01

    A prototype 2-Tesla superconducting transmission line magnet for future hadron colliders was designed, built and tested at Fermilab. The 1.5 m long, combined-function gradient-dipole magnet has a vertical pole aperture of 20 mm. To measure the magnetic field quality in such a small magnet aperture, a specialized rotating coil of 15.2 mm diameter, 0.69 m long was fabricated. Using this probe, a program of magnetic field quality measurements was successfully performed. Results of the measurements are presented and discussed.

  18. Measurements of radiation doses induced by high intensity laser between

    Office of Scientific and Technical Information (OSTI)

    10^16 and 10^21 w/cm^2 onto solid targets at LCLS MEC instrument (Conference) | SciTech Connect SciTech Connect Search Results Conference: Measurements of radiation doses induced by high intensity laser between 10^16 and 10^21 w/cm^2 onto solid targets at LCLS MEC instrument Citation Details In-Document Search Title: Measurements of radiation doses induced by high intensity laser between 10^16 and 10^21 w/cm^2 onto solid targets at LCLS MEC instrument Authors: Liang, T. ; /SLAC /Georgia Tech

  19. Measurements of radiation doses induced by high intensity laser between

    Office of Scientific and Technical Information (OSTI)

    10^16 and 10^21 w/cm^2 onto solid targets at LCLS MEC instrument (Conference) | SciTech Connect Conference: Measurements of radiation doses induced by high intensity laser between 10^16 and 10^21 w/cm^2 onto solid targets at LCLS MEC instrument Citation Details In-Document Search Title: Measurements of radiation doses induced by high intensity laser between 10^16 and 10^21 w/cm^2 onto solid targets at LCLS MEC instrument × You are accessing a document from the Department of Energy's (DOE)

  20. Medical imaging using ionizing radiation: Optimization of dose and image quality in fluoroscopy

    SciTech Connect (OSTI)

    Jones, A. Kyle; Balter, Stephen; Rauch, Phillip; Wagner, Louis K.

    2014-01-15

    The 2012 Summer School of the American Association of Physicists in Medicine (AAPM) focused on optimization of the use of ionizing radiation in medical imaging. Day 2 of the Summer School was devoted to fluoroscopy and interventional radiology and featured seven lectures. These lectures have been distilled into a single review paper covering equipment specification and siting, equipment acceptance testing and quality control, fluoroscope configuration, radiation effects, dose estimation and measurement, and principles of flat panel computed tomography. This review focuses on modern fluoroscopic equipment and is comprised in large part of information not found in textbooks on the subject. While this review does discuss technical aspects of modern fluoroscopic equipment, it focuses mainly on the clinical use and support of such equipment, from initial installation through estimation of patient dose and management of radiation effects. This review will be of interest to those learning about fluoroscopy, to those wishing to update their knowledge of modern fluoroscopic equipment, to those wishing to deepen their knowledge of particular topics, such as flat panel computed tomography, and to those who support fluoroscopic equipment in the clinic.

  1. Lens transmission measurement for an absolute radiation thermometer

    SciTech Connect (OSTI)

    Hao, X.; Yuan, Z.; Lu, X.

    2013-09-11

    The lens transmission for the National Institute of Metrology of China absolute radiation thermometer is measured by a hybrid method. The results of the lens transmission measurements are 99.002% and 86.792% for filter radiometers with center wavelengths 633 nm and 900 nm, respectively. These results, after correcting for diffraction factors and the size-of-source effect when the lens is incorporated within the radiometer, can be used for measurement of thermodynamic temperature. The expanded uncertainty of the lens transmission measurement system has been evaluated. It is 1.310{sup ?3} at 633 nm and 900 nm, respectively.

  2. Quality control and statistical process control for nuclear analytical measurements

    SciTech Connect (OSTI)

    Seymour, R.; Sergent, F.; Clark, W.H.C.; Gleason, G.

    1993-12-31

    The same driving forces that are making businesses examine quality control of manufacturing processes are making laboratories reevaluate their quality control programs. Increased regulation (accountability), global competitiveness (profitability), and potential for litigation (defensibility) are the principal driving forces behind the development and implementation of QA/QC programs in the nuclear analytical laboratory. Both manufacturing and scientific quality control can use identical statistical methods, albeit with some differences in the treatment of the measured data. Today, the approaches to QC programs are quite different for most analytical laboratories as compared with manufacturing sciences. This is unfortunate because the statistical process control methods are directly applicable to measurement processes. It is shown that statistical process control methods can provide many benefits for laboratory QC data treatment.

  3. Design of a differential radiometer for atmospheric radiative flux measurements

    SciTech Connect (OSTI)

    LaDelfe, P.C.; Weber, P.G.; Rodriguez, C.W.

    1994-11-01

    The Hemispherical Optimized NEt Radiometer (HONER) is an instrument under development at the Los Alamos National Laboratory for deployment on an unmanned aerospace vehicle as part of the Atmospheric Radiation Measurements (ARM/UAV) program. HONER is a differential radiometer which will measure the difference between the total upwelling and downwelling fluxes and is intended to provide a means of measuring the atmospheric radiative flux divergence. Unlike existing instruments which measure the upwelling and downwelling fluxes separately, HONER will achieve an optical difference by chopping the two fluxes alternately onto a common pyroelectric detector. HONER will provide data resolved into two spectral bands; one covering the solar dominated region from less than 0.4 micrometer to approximately 4.5 micrometers and the other covering the region from approximately 4.5 micrometers to greater than 50 micrometers, dominated by thermal radiation. The means of separating the spectral regions guarantees seamless summation to calculate the total flux. The fields-of-view are near-hemispherical, upward and downward. The instrument can be converted, in flight, from the differential mode to absolute mode, measuring the upwelling and downwelling fluxes separately and simultaneously. The instrument also features continuous calibration from on-board sources. We will describe the design and operation of the sensor head and the on-board reference sources as well as the means of deployment.

  4. Atmospheric Radiation Measurement Program facilities newsletter, April 2000

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2000-05-05

    This issue of the Atmospheric Radiation Measurement Program (ARM Program) monthly newsletter is about the ARM Program goal to improve scientific understanding of the interactions of sunlight (solar radiation) with the atmosphere, then incorporate this understanding into computer models of climate change. To model climate accurately all around the globe, a variety of data must be collected from many locations on Earth. For its Cloud and Radiation Testbed (CART) sites, ARM chose locations in the US Southern Great Plains, the North Slope of Alaska, and the Tropical Western Pacific Ocean to represent different climate types around the world. In this newsletter they consider the North Slope of Alaska site, with locations at Barrow and Atqasuk, Alaska.

  5. Preliminary Analysis of Surface Radiation Measurement Data Quality...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Zenith Angle 0 Cos(SZA) if SZA 90 ; Else 0 0.0 S 0 solar constant at mean Earth-Sun distance AU Earth - Sun distance in Astronomical Units S a S 0 AU 2 ...

  6. Atmospheric Radiation Measurement Program Facilities Newsletter - September 1999

    SciTech Connect (OSTI)

    Holdridge, D. J., ed

    1999-09-27

    The Atmospheric Radiation Measurement Program September 1999 Facilities Newsletter discusses the several Intensive Observation Periods (IOPs) that the ARM SGP CART site will host in the near future. Two projects of note are the International Pyrgeometer Intercomparison and the Fall Single Column Model (SCM)/Nocturnal Boundary Layer (NBL) IOP. Both projects will bring many US and international scientists to the SGP CART site to participate in atmospheric research.

  7. DOE/ER-0441 Atmospheric Radiation Measurement Plan - February 1990

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Program Plan ARM Program Plan Forward In 1978 the Department of Energy initiated the Carbon Dioxide Research Program to address climate change from the increasing concentration of carbon dioxide in the atmosphere. Over the years the Program has studied the many facets of the issue, from the carbon cycle, the climate diagnostics, the vegetative effects, to the societal impacts. The Program is presently the Department's principal entry in the U.S. Global Change

  8. Measurements of prompt radiation induced conductivity in Teflon (PTFE).

    SciTech Connect (OSTI)

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, E.

    2013-05-01

    We performed measurements of the prompt radiation induced conductivity (RIC) in thin samples of Teflon (PTFE) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil (76.2 microns) samples were irradiated with a 0.5 %CE%BCs pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E11 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Details of the experimental apparatus and analysis are reported in this report on prompt RIC in Teflon.

  9. Measurements of prompt radiation induced conductivity of Kapton.

    SciTech Connect (OSTI)

    Preston, Eric F.; Zarick, Thomas Andrew; Sheridan, Timothy J.; Hartman, E. Frederick; Stringer, Thomas Arthur

    2010-10-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Kapton (polyimide) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil samples were irradiated with a 0.5 {mu}s pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E10 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 6E-17 and 2E-16 mhos/m per rad/s, depending on the dose rate and the pulse width.

  10. Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program

    SciTech Connect (OSTI)

    Dooraghi, Michael

    2015-09-01

    The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative feedback processes in the atmosphere, particularly the interactions among clouds and aerosols. ARM obtains continuous measurements and conducts field campaigns to provide data products that aid in the improvement and further development of climate models. All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full suite of stations in a number of ways, including troubleshooting issues that arise as part of the data-quality reviews; managing engineering changes to the standard setup; and providing calibration services and assistance to the full fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperature/relative humidity probes, multimeters, and data acquisition systems that are used in the calibrations performed at the Southern Great Plains Radiometer Calibration Facility. This paper discusses all aspects related to the support provided to the calibration of the instruments in the solar monitoring fleet.

  11. A quantitative method for measuring the quality of history matches

    SciTech Connect (OSTI)

    Shaw, T.S.; Knapp, R.M.

    1997-08-01

    History matching can be an efficient tool for reservoir characterization. A {open_quotes}good{close_quotes} history matching job can generate reliable reservoir parameters. However, reservoir engineers are often frustrated when they try to select a {open_quotes}better{close_quotes} match from a series of history matching runs. Without a quantitative measurement, it is always difficult to tell the difference between a {open_quotes}good{close_quotes} and a {open_quotes}better{close_quotes} matches. For this reason, we need a quantitative method for testing the quality of matches. This paper presents a method for such a purpose. The method uses three statistical indices to (1) test shape conformity, (2) examine bias errors, and (3) measure magnitude of deviation. The shape conformity test insures that the shape of a simulated curve matches that of a historical curve. Examining bias errors assures that model reservoir parameters have been calibrated to that of a real reservoir. Measuring the magnitude of deviation assures that the difference between the model and the real reservoir parameters is minimized. The method was first tested on a hypothetical model and then applied to published field studies. The results showed that the method can efficiently measure the quality of matches. It also showed that the method can serve as a diagnostic tool for calibrating reservoir parameters during history matching.

  12. Background radiation measurements at high power research reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; et al

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less

  13. Background radiation measurements at high power research reactors

    SciTech Connect (OSTI)

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yen, Y. -R.; Zhang, C.; Zhang, X.

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  14. Use of Long Time-series ACRF Measurements to Improve Data Quality...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Use of Long Time-Series ACRF Measurements to Improve Data Quality Analysis Sean Moore Mission Research and Technical Services Santa Barbara, CA ARM Data Quality Office...

  15. Measurements of prompt radiation induced conductivity of alumina and sapphire.

    SciTech Connect (OSTI)

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, Eric F.

    2011-04-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Alumina and Sapphire at the Little Mountain Medusa LINAC facility in Ogden, UT. Five mil thick samples were irradiated with pulses of 20 MeV electrons, yielding dose rates of 1E7 to 1E9 rad/s. We applied variable potentials up to 1 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 1E10 and 1E9 mho/m/(rad/s), depending on the dose rate and the pulse width for Alumina and 1E7 to 6E7 mho/m/(rad/s) for Sapphire.

  16. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM data is collected both through permanent monitoring stations and field campaigns around the world. Airborne measurements required to answer science questions from researchers or to validate ground data are also collected. To find data from all categories of aerial operations, follow the links from the AAF information page at http://www.arm.gov/sites/aaf. Tables of information will provide start dates, duration, lead scientist, and the research site for each of the named campaigns. The title of a campaign leads, in turn, to a project description, contact information, and links to the data. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  17. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect (OSTI)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  18. Atmospheric Radiation Measurement Program facilities newsletter, January 2000

    SciTech Connect (OSTI)

    Sisterson, D.L.

    2000-02-16

    The subject of this newsletter is the ARM unmanned aerospace vehicle program. The ARM Program's focus is on climate research, specifically research related to solar radiation and its interaction with clouds. The SGP CART site contains highly sophisticated surface instrumentation, but even these instruments cannot gather some crucial climate data from high in the atmosphere. The Department of Energy and the Department of Defense joined together to use a high-tech, high-altitude, long-endurance class of unmanned aircraft known as the unmanned aerospace vehicle (UAV). A UAV is a small, lightweight airplane that is controlled remotely from the ground. A pilot sits in a ground-based cockpit and flies the aircraft as if he were actually on board. The UAV can also fly completely on its own through the use of preprogrammed computer flight routines. The ARM UAV is fitted with payload instruments developed to make highly accurate measurements of atmospheric flux, radiance, and clouds. Using a UAV is beneficial to climate research in many ways. The UAV puts the instrumentation within the environment being studied and gives scientists direct measurements, in contrast to indirect measurements from satellites orbiting high above Earth. The data collected by UAVs can be used to verify and calibrate measurements and calculated values from satellites, therefore making satellite data more useful and valuable to researchers.

  19. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007

    SciTech Connect (OSTI)

    LR Roeder

    2007-12-01

    This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

  20. Data Quality Objectives Supporting the Environmental Direct Radiation Monitoring Program for the INL Site

    SciTech Connect (OSTI)

    Lundell, J. F.; Magnuson, S. O.; Scherbinske, P.; Case, M. J.

    2015-07-01

    This document presents the development of the data quality objectives (DQOs) for the Idaho National Laboratory (INL) Environmental Direct Radiation Monitoring Program and follows the Environmental Protection Agency (EPA) DQO process (EPA 2006). This document also develops and presents the logic to determine the specific number of direct radiation monitoring locations around INL facilities on the desert west of Idaho Falls and in Idaho Falls, at locations bordering the INL Site, and in the surrounding regional area. The selection logic follows the guidance from the Department of Energy (DOE) (2015) for environmental surveillance of DOE facilities.

  1. Radiation pressure efficiency measurements of nanoparticle coated microspheres

    SciTech Connect (OSTI)

    Kim, Soo Y.; Taylor, Joseph D.; Ladouceur, Harold D.; Hart, Sean J.; Terray, Alex

    2013-12-02

    Experimental measurements of the radiation pressure efficiency (Q{sub pr}) for several microparticles have been compared to theoretical calculations extrapolated from the Bohren-Huffman code for Mie scattering of coated particles. An increased shift of the Q{sub pr} parameter was observed for 2??m SiO{sub 2} core particles coated with nanoparticles of higher refractive indices. Coatings of 14?nm melamine particles were found to increase the Q{sub pr} parameter 135 times over similar coatings using SiO{sub 2} particles of the same size. While a coating of 100?nm polystyrene particles also showed a significant increase, they did not agree well with theoretical values. It is hypothesized that other factors such as increased scatter, drag, and finite coating coverage are no longer negligible for coatings using nanoparticles in this size regime.

  2. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOE Patents [OSTI]

    Britton, Jr.; Charles L. (Alcoa, TN); Buckner, Mark A. (Oak Ridge, TN); Hanson, Gregory R. (Clinton, TN); Bryan, William L. (Knoxville, TN)

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  3. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOE Patents [OSTI]

    Britton, Jr., Charles L. (Alcoa, TN); Buckner, Mark A. (Oak Ridge, TN); Hanson, Gregory R. (Clinton, TN); Bryan, William L. (Knoxville, TN)

    2011-05-03

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  4. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter

    SciTech Connect (OSTI)

    Litzenberg, Dale W.; Gallagher, Ian; Masi, Kathryn J.; Lee, Choonik; Prisciandaro, Joann I.; Hamstra, Daniel A.; Ritter, Timothy; Lam, Kwok L.

    2013-08-15

    Purpose: To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter.Methods: This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45 135, 225, and 315, at each of four gantry angles (0, 90, 180, 270) using a 3 6 cm{sup 2} radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study.Results: The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053 0.036, 0.121 0.023, and 0.093 0.013 cm.Conclusions: The method presented here provides an independent technique to verify the calibration of an electromagnetic tracking system to radiation isocenter. The calibration accuracy of the system was better than the 0.2 cm accuracy stated by the manufacturer. However, it should not be assumed to be zero, especially for stereotactic radiation therapy treatments where planning target volume margins are very small.

  5. 20 Years of Solar Measurements: The Solar Radiation Research Laboratory (SRRL) at NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Years of Solar Measurements: The Solar Radiation Research Laboratory (SRRL) at NREL Tom Stoffel April 6, 2005 The development of SRRL began immediately following President Carter's visit to SERI on May 3, 1978, when Roland Hulstrom directed me to develop an outdoor research laboratory to provide for: * Maximum annual solar access * Continuous measurements of key solar radiation resources * Calibrations of instruments used to measure solar radiation * Training of meteorological station operators

  6. Atmospheric Radiation Measurement Program facilities newsletter, November 2002.

    SciTech Connect (OSTI)

    Holdridge, D. J.

    2002-12-03

    Fall 2002 Intensive Operation Periods: Single Column Model and Unmanned Aerospace Vehicle--In an Intensive Operation Period (IOP) on November 3-23, 2002, researchers at the SGP CART site are collecting a detailed data set for use in improving the Single Column Model (SCM), a scaled-down climate model. The SCM represents one vertical column of air above Earth's surface and requires less computation time than a full-scale global climate model. Researchers first use the SCM to efficiently improve submodels of clouds, solar radiation transfer, and atmosphere-surface interactions, then implement the results in large-scale global models. With measured values for a starting point, the SCM predicts atmospheric variables during prescribed time periods. A computer calculates values for such quantities as the amount of solar radiation reaching the surface and predicts how clouds will evolve and interact with incoming light from the sun. Researchers compare the SCM's predictions with actual measurements made during the IOP, then adjust the submodels to make predictions more reliable. A second IOP conducted concurrently with the SCM IOP involves high-altitude, long-duration aircraft flights. The original plan was to use an unmanned aerospace vehicle (UAV), but the National Aeronautics and Space Administration (NASA) aircraft Proteus will be substituted because all UAVs have been deployed elsewhere. The UAV is a small, instrument-equipped, remote-control plane that is operated from the ground by a computer. The Proteus is a manned aircraft, originally designed to carry telecommunications relay equipment, that can be reconfigured for uses such as reconnaissance and surveillance, commercial imaging, launching of small space satellites, and atmospheric research. The plane is designed for two on-board pilots in a pressurized cabin, flying to altitudes up to 65,000 feet for as long as 18 hours. The Proteus has a variable wingspan of 77-92 feet and is 56 feet long. The plane can carry up to 7,260 pounds of equipment, making it a versatile research tool. The Proteus is making measurements at the very top of the cirrus cloud layer to characterize structures of these clouds. These new measurements will provide more accurate, more abundant data for use in improving the representation of clouds in the SCM. 2002-2003 Winter Weather Forecast--Top climate forecasters at the National Oceanic and Atmospheric Administration's (NOAA's) Climate Prediction Center say that an El Nino condition in the tropical Pacific Ocean will influence our winter weather this year. Although this El Nino is not as strong as the event of the 1997-1998 winter season, the United States will nevertheless experience some atypical weather. Strong impacts could be felt in several areas. Nationally, forecasters are predicting warmer-than-average temperatures over the northern tier of states and wetter-than-average conditions in the southern tier of states during the 2002-2003 winter season. Kansas residents should expect warmer and wetter conditions, while Oklahoma will be wetter than average.

  7. Atmospheric Radiation Measurement (ARM) Data from the ARM Specific Measurement Categories

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The ARM Program gathers a wide variety of measurements from many different sources. Each day, the Data Archive stores and distributes large quantities of data collected from these sources. Scientists then use these data to research atmospheric radiation balance and cloud feedback processes, which are critical elements of global climate change. The huge archive of ARM data can be organized by measurement categories into six "collections:" Aerosols, Atmospheric Carbon, Atmospheric State, Cloud Properties, Radiometric, and Surface Properties. Clicking on one of the measurement categories leads to a page that breaks that category down into sub-categories. For example, "Aerosols" is broken down into Microphysical and Chemical Properties (with 9 subsets) and Optical and Radiative Properties (with 7 subsets). Each of the subset links, in turn, leads to detailed information pages and links to specific data streams. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  8. Implementation of Remote 3-Dimensional Image Guided Radiation Therapy Quality Assurance for Radiation Therapy Oncology Group Clinical Trials

    SciTech Connect (OSTI)

    Cui Yunfeng; Galvin, James M.; Radiation Therapy Oncology Group, American College of Radiology, Philadelphia, Pennsylvania ; Parker, William; Breen, Stephen; Yin Fangfang; Cai Jing; Papiez, Lech S.; Li, X. Allen; Bednarz, Greg; Chen Wenzhou; Xiao Ying

    2013-01-01

    Purpose: To report the process and initial experience of remote credentialing of three-dimensional (3D) image guided radiation therapy (IGRT) as part of the quality assurance (QA) of submitted data for Radiation Therapy Oncology Group (RTOG) clinical trials; and to identify major issues resulting from this process and analyze the review results on patient positioning shifts. Methods and Materials: Image guided radiation therapy datasets including in-room positioning CT scans and daily shifts applied were submitted through the Image Guided Therapy QA Center from institutions for the IGRT credentialing process, as required by various RTOG trials. A centralized virtual environment is established at the RTOG Core Laboratory, containing analysis tools and database infrastructure for remote review by the Physics Principal Investigators of each protocol. The appropriateness of IGRT technique and volumetric image registration accuracy were evaluated. Registration accuracy was verified by repeat registration with a third-party registration software system. With the accumulated review results, registration differences between those obtained by the Physics Principal Investigators and from the institutions were analyzed for different imaging sites, shift directions, and imaging modalities. Results: The remote review process was successfully carried out for 87 3D cases (out of 137 total cases, including 2-dimensional and 3D) during 2010. Frequent errors in submitted IGRT data and challenges in the review of image registration for some special cases were identified. Workarounds for these issues were developed. The average differences of registration results between reviewers and institutions ranged between 2 mm and 3 mm. Large discrepancies in the superior-inferior direction were found for megavoltage CT cases, owing to low spatial resolution in this direction for most megavoltage CT cases. Conclusion: This first experience indicated that remote review for 3D IGRT as part of QA for RTOG clinical trials is feasible and effective. The magnitude of registration discrepancy between institution and reviewer was presented, and the major issues were investigated to further improve this remote evaluation process.

  9. Apparatus having reduced background for measuring radiation activity in aerosol particles

    DOE Patents [OSTI]

    Rodgers, John C. (Santa Fe, NM); McFarland, Andrew R. (College Station, TX); Oritz, Carlos A. (Bryan, TX); Marlow, William H. (College Station, TX)

    1992-01-01

    Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.

  10. Some Results of Joint Measurements of Aerosol Extinction of Solar Radiation on Horizontal and Slant Paths

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results of Joint Measurements of Aerosol Extinction of Solar Radiation on Horizontal and Slant Paths S. M. Sakerin, D. M. Kabanov, Yu. A. Pkhalagov, and V. N. Uzhegov Institute of Atmospheric Optics Tomsk, Russia Introduction It's a well-known fact that the contribution atmospheric aerosol makes in the total extinction of radiation in calculations and models of radiation must be considered; the quantitative measure of this contribution is the aerosol optical thickness of the atmosphere. The

  11. SU-E-I-59: Image Quality and Dose Measurement for Partial Cone-Beam CT

    SciTech Connect (OSTI)

    Abouei, E; Ford, N

    2014-06-01

    Purpose: To characterize performance of cone beam CT (CBCT) used in dentistry investigating quantitatively the image quality and radiation dose during dental CBCT over different settings for partial rotation of the x-ray tube. Methods: Image quality and dose measurements were done on a variable field of view (FOV) dental CBCT (Carestream 9300). X-ray parameters for clinical settings were adjustable for 210 mA, 6090 kVp, and two optional voxel size values, but time was fixed for each FOV. Image quality was assessed by scanning cylindrical poly-methyl methacrylate (PMMA) image quality phantom (SEDENTEXCT IQ), and then the images were analyzed using ImageJ to calculate image quality parameters such as noise, uniformity, and contrast to noise ratio (CNR). A protocol proposed by SEDENTEXCT, dose index 1 (DI1), was applied to dose measurements obtained using a thimble ionization chamber and cylindrical PMMA dose index phantom (SEDENTEXCT DI). Dose distributions were obtained using Gafchromic film. The phantoms were positioned in the FOV to imitate a clinical positioning. Results: The image noise was 612.5% which, when normalized to the difference of mean voxel value of PMMA and air, was comparable between different FOVs. Uniformity was 93.5 99.7% across the images. CNR was 1.74.2 and 6.314.3 for LDPE and Aluminum, respectively. Dose distributions were symmetric about the rotation angle's bisector. For large and medium FOVs at 4 mA and 8090 kVp, DI1 values were in the range of 1.263.23 mGy. DI1 values were between 1.011.93 mGy for small FOV (55 cm{sup 2}) at 45 mA and 7584 kVp. Conclusion: Noise decreased by increasing kVp, and the CNR increased for each FOV. When FOV size increased, image noise increased and CNR decreased. DI1 values were increased by increasing tube current (mA), tube voltage (kVp), and/or FOV. Funding for this project from NSERC Discovery grant, UBC Faculty of Dentistry Research Equipment Grant and UBC Faculty of Dentistry S. Wah Leung Endowment Fund.

  12. A New Low-Cost Measurement Platform for Urea Quality Monitoring |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A New Low-Cost Measurement Platform for Urea Quality Monitoring A New Low-Cost Measurement Platform for Urea Quality Monitoring This technique can use specifications for urea quality to calibrate emission controls and compliance measurements. PDF icon deer08_linden.pdf More Documents & Publications Lithium Ion Electrode Production NDE and QC Considerations Ensuring the Availability and Reliability of Urea Dosing For On-Road and Non-Road List of SBIR / STTR Awardees

  13. Dosimeter for measuring skin dose and more deeply penetrating radiation

    DOE Patents [OSTI]

    Jones, Donald E. (Idaho Falls, ID); Parker, DeRay (Idaho Falls, ID); Boren, Paul R. (Idaho Falls, ID)

    1981-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with netruon-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  14. Atmospheric Radiation Measurement program climate research facility operations quarterly report.

    SciTech Connect (OSTI)

    Sisterson, D. L.; Decision and Information Sciences

    2006-09-06

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period April 1 through June 30, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The third quarter comprises a total of 2,184 hours. For all fixed sites (especially the TWP locale) and the AMF, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the third quarter of fiscal year (FY) 2006.

  15. Solar Radiometric Data Quality Assessment of SIRS, SKYRAD and GNDRAD Measurements (Poster)

    SciTech Connect (OSTI)

    Habte, A.; Stoffel, T.; Reda, I.; Wilcox, S.; Kutchenreiter, M.; Gotseff, P.; Anderberg, M.

    2014-03-01

    Solar radiation is the driving force for the earth's weather and climate. Understanding the elements of this dynamic energy balance requires accurate measurements of broadband solar irradiance. Since the mid-1990's the ARM Program has deployed pyrheliometers and pyranometers for the measurement of direct normal irradiance (DNI), global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), and upwelling shortwave (US) radiation at permanent and mobile field research sites. This poster summarizes the basis for assessing the broadband solar radiation data available from the SIRS, SKYRAD, and GNDRAD measurement systems and provides examples of data inspections.

  16. In-situ radiation measurements of the C1 and C2 waste storage tank vault

    SciTech Connect (OSTI)

    Yong, L.K.; Womble, P.C.; Weems, L.D.

    1996-09-01

    In August of 1996, the Applied Radiation Measurements Department (ARMD) of the Waste Management and Remedial Action Division (WMRAD) at Oak Ridge National Laboratory (ORNL) was tasked with characterizing the radiation fields in the C{sub 1} and C{sub 2} Liquid Low Level Waste (LLLW) tank vault located at ORNL. These in-situ measurements were made to provide data for evaluating the potential radiological conditions for personnel working in or around the vault during future planned activities. This report describes the locations where measurements were made, the types of radiation detection instruments used, the methods employed, the problems encountered and resolved, and discusses the results obtained.

  17. Radioanalytical Data Quality Objectives and Measurement Quality Objectives during a Federal Radiological Monitoring and Assessment Center Response

    SciTech Connect (OSTI)

    E. C. Nielsen

    2006-01-01

    During the early and intermediate phases of a nuclear or radiological incident, the Federal Radiological Monitoring and Assessment Center (FRMAC) collects environmental samples that are analyzed by organizations with radioanalytical capability. Resources dedicated to quality assurance (QA) activities must be sufficient to assure that appropriate radioanalytical measurement quality objectives (MQOs) and assessment data quality objectives (DQOs) are met. As the emergency stabilizes, QA activities will evolve commensurate with the need to reach appropriate DQOs. The MQOs represent a compromise between precise analytical determinations and the timeliness necessary for emergency response activities. Minimum detectable concentration (MDC), lower limit of detection, and critical level tests can all serve as measurements reflecting the MQOs. The relationship among protective action guides (PAGs), derived response levels (DRLs), and laboratory detection limits is described. The rationale used to determine the appropriate laboratory detection limit is described.

  18. Atmospheric Radiation Measurement (ARM) Data from Point Reyes, California for the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Point Reyes National Seashore, on the California coast north of San Francisco, was the location of the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The ARM Program collaborated with the U.S. Office of Naval Research and DOE's Aerosol Science Program in the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) project. Their objectives were to collect data from cloud/aerosol interactions and to improve understanding of cloud organization that is often associated with patches of drizzle. Between March and September 2005, the AMF and at least two research aircraft were used to collect data.

  19. Scientific system for high-resolution measurement of the circumsolar radiation

    SciTech Connect (OSTI)

    Schrott, Simeon Schmidt, Thomas Hornung, Thorsten Nitz, Peter

    2014-09-26

    We developed a camera based system for measurements of the circumsolar radiation with a high angular resolution of 0.1 mrad. Subsequent measurements may be taken at intervals as short as 15 s. In this publication we describe the optical system in detail and discuss some aspects of the measurement method. First results from two days of measurement at Freiburg i. Br., Germany, are presented and compared to data from literature. The good results encourage us to perform longer measurement campaigns in future to better understand the influence of circumsolar radiation on the power yield of concentrating photovoltaic systems.

  20. Aerosol Radiative Forcing During Spring-Summer 2002 from Measurements at IAP Scientific Station Near Moscow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forcing During Spring-Summer 2002 from Measurements at IAP Scientific Station Near Moscow G. S. Golitsyn, I. A. Gorchakova, and I. I. Mokhov A. M. Obukohov Institute of Atmospheric Physics Russian Academy of Science Moscow, Russia A. N. Rublev Russian Research Center Kurchatov Institute Moscow, Russia Introduction Aerosol Radiative Forcing (ARF) is estimated for spring-summer conditions from measurements during the Cloud-Aerosol-Radiation Experiment in 2002 (ZCAREX-2002) at the Zvenigorod

  1. Prospects for Higgs coupling measurements in SUSY with radiatively-driven

    Office of Scientific and Technical Information (OSTI)

    naturalness (Journal Article) | SciTech Connect Prospects for Higgs coupling measurements in SUSY with radiatively-driven naturalness Citation Details In-Document Search This content will become publicly available on August 13, 2016 Title: Prospects for Higgs coupling measurements in SUSY with radiatively-driven naturalness Authors: Bae, Kyu Jung ; Baer, Howard ; Nagata, Natsumi ; Serce, Hasan Publication Date: 2015-08-14 OSTI Identifier: 1210124 Type: Publisher's Accepted Manuscript Journal

  2. Measurements of radiation effects on a 4 Mb PSRAM memory

    SciTech Connect (OSTI)

    Gonalez, Odair Lelis; Pereira Junior, Evaldo Carlos Fonseca; Vaz, Rafael Galhardo; Pereira, Marlon Antonio; Wirth, Gilson Incio; Both, Thiago Hanna

    2014-11-11

    The results of a static test of total ionizing dose (TID) effects on an ISSI 4Mb PSRAM memory are reported in this work. The irradiation was performed at the IEAvs Laboratory of Ionizing Radiation with 1.17 and 1.32 MeV gamma-rays from a {sup 60}Co source at a dose rate of 2.5 krad/h up to an accumulated dose of 215.7 krad. The TID threshold for bit flip found in this experiment was 52.5 krad. From a sampling of 4096 memory addresses it was estimated a bit flip rate of approximately 50% at an accumulated dose of 215.7 krad.

  3. Replanning During Intensity Modulated Radiation Therapy Improved Quality of Life in Patients With Nasopharyngeal Carcinoma

    SciTech Connect (OSTI)

    Yang Haihua; Hu Wei; Wang Wei; Chen Peifang; Ding Weijun; Luo Wei

    2013-01-01

    Purpose: Anatomic and dosimetric changes have been reported during intensity modulated radiation therapy (IMRT) in patients with nasopharyngeal carcinoma (NPC). The purpose of this study was to evaluate the effects of replanning on quality of life (QoL) and clinical outcomes during the course of IMRT for NPC patients. Methods and Materials: Between June 2007 and August 2011, 129 patients with NPC were enrolled. Forty-three patients received IMRT without replanning, while 86 patients received IMRT replanning after computed tomography (CT) images were retaken part way through therapy. Chinese versions of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire C30 and Head and Neck Quality of Life Questionnaire 35 were completed before treatment began and at the end of treatment and at 1, 3, 6, and 12 months after the completion of treatment. Overall survival (OS) data were compared using the Kaplan-Meier method. Results: IMRT replanning had a profound impact on the QoL of NPC patients, as determined by statistically significant changes in global QoL and other QoL scales. Additionally, the clinical outcome comparison indicates that replanning during IMRT for NPC significantly improved 2-year local regional control (97.2% vs 92.4%, respectively, P=.040) but did not improve 2-year OS (89.8% vs 82.2%, respectively, P=.475). Conclusions: IMRT replanning improves QoL as well as local regional control in patients with NPC. Future research is needed to determine the criteria for replanning for NPC patients undergoing IMRT.

  4. Measurements - Ion Beams - Radiation Effects Facility / Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    / Texas A&M University Ion Beams Available Beams / Beam Change Times / Measurements / Useful Graphs Measurements The beam uniformity and flux are determined using an array of five detectors. Each detector is made up with a plastic scintillator coupled to photo-multiplier tubes. Four of the detectors are fixed in position and set up to measure beam particle counting rates continuously at four characteristic points 1.64 inches (4.71 mm) away from the beam axis. The fifth scintillator can

  5. Atmospheric Radiation Measurement (ARM) Data from Niamey, Niger for the Radiative Atmospheric Divergence using AMF, GERB and AMMA Stations (RADAGAST)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. The ARM Mobile Facility (AMF) operates at non-permanent sites selected by the ARM Program. Sometimes these sites can become permanent ARM sites, as was the case with Graciosa Island in the Azores. It is now known as the Eastern North Atlantic permanent site. In January 2006 the AMF deployed to Niamey, Niger, West Africa, at the Niger Meteorological Office at Niamey International Airport. This deployment was timed to coincide with the field phases and Special Observing Periods of the African Monsoon Multidisciplinary Analysis (AMMA). The ARM Program participated in this international effort as a field campaign called "Radiative Divergence using AMF, GERB and AMMA Stations (RADAGAST).The primary purpose of the Niger deployment was to combine an extended series of measurements from the AMF with those from the Geostationary Earth Radiation Budget (GERB) Instrument on the Meteosat operational geostationary satellite in order to provide the first well-sampled, direct estimates of the divergence of solar and thermal radiation across the atmosphere. A large collection of data plots based on data streams from specific instruments used at Niamey are available via a link from ARM's Niamey, Niger site information page. Other data can be found at the related websites mentioned above and in the ARM Archive. Users will be requested to create a password, but the plots and data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  6. Atmospheric Radiation Measurement (ARM) Data Plots and Figures

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ARM Program data is available in daily diagnostic plots that can be easily grouped into daily, weekly, monthly, and even yearly increments. By visualizing ARM data in thumbnail-sized data plots, users experience highly-browsable subsets of data available at the Data Archive including complimentary data products derived from data processed by ARM. These thumbnails allow users to quickly scan for a particular type of condition, like a clear day or a day with persistent cirrus. From a diagnostics perspective, the data plots assist in looking for missing data, for data exceeding a particular range, or for loading multiple variables (e.g., shortwave fluxes and precipitation), and to determine whether a certain science or data quality condition is associated with some other parameter (e.g., high wind or rain).[taken from http://www.arm.gov/data/data_plots.stm] Several interfaces and tools have been developed to make data plots easy to generate and manipulate. For example, the NCVWeb is an interactive NetCDF data plotting tool that ARM users can use to plot data as they order it or to plot regular standing data orders. It allows production of detailed tables, extraction of data, statistics output, comparison plotting, etc. without the need for separate visualization software. Users will be requested to create a password, but the data plots are free for viewing and downloading.

  7. Survey of radiation dose and image quality in mammography: an ongoing program in Italy

    SciTech Connect (OSTI)

    Rimondi, O.; Gambaccini, M.; Candini, G.C.; Indovina, P.L.; Rosati, A.

    1987-04-01

    A program for mammography optimization in individual x-ray units, named Dose and Quality in Mammography (DQM), is now underway in Italy. The project has three stages: measurement of the parameters that affect dose and image quality by means of devices that are practical to use (specifically designed for the purpose), analysis of data to evaluate dose and image quality and suggestion of possible improvements to each unit operator. Instruments and methods employed in our survey are described. Our results, like those of the American survey (Je78) Breast Exposure: Nationwide Trends (BENT), show widespread variations of exposure, half value layer (HVL), optical density, dose and resolution. Facilities using the same type of x-ray apparatus (Mo target-Mo filter) and film-screen combinations present very different exposure values, ranging from 1.6 X 10(-4) to 27.6 X 10(-4) C kg-1. The causes of these variations--ascribable to the individual units, radiologist preferences, processing condition, kVp indicator and timer accuracy--are being explored.

  8. Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave Radiation Measurements: A Comparison of 16 Year Measurements

    SciTech Connect (OSTI)

    Xie, Yu; Liu, Yangang; Long, Charles N.; Min, Qilong

    2014-07-27

    Ground-based radiation measurements have been widely conducted to gain information on clouds and the surface radiation budget; here several different techniques for retrieving cloud fraction (Long2006, Min2008 and XL2013) and cloud albedo (Min2008, Liu2011 and XL2013) from ground-based shortwave broadband and spectral radiation measurements are examined, and sixteen years of retrievals collected at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared. The comparison shows overall good agreement between the retrievals of both cloud fraction and cloud albedo, with noted differences however. The Long2006 and Min2008 cloud fractions are greater on average than the XL2013 values. Compared to Min2008 and Liu2011, the XL2013 retrieval of cloud albedo tends to be greater for thin clouds but smaller for thick clouds, with the differences decreasing with increasing cloud fraction. Further analysis reveals that the approaches that retrieve cloud fraction and cloud albedo separately may suffer from mutual contamination of errors in retrieved cloud fraction and cloud albedo. Potential influences of cloud absorption, land-surface albedo, cloud structure, and measurement instruments are explored.

  9. In situ radiation measurements at the former Soviet Nuclear Test Site

    SciTech Connect (OSTI)

    Tipton, W.J.

    1996-06-01

    A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the former Soviet Nuclear Test Site near Semipalatinsk, Kazakhstan, during the period of July 21-30, 1994. The survey team measured the terrestrial gamma radiation at selected areas on the site to determine the levels of natural and man-made radiation. The survey was part of a cooperative effort between the United States team and teams of radiation scientists from the National Nuclear Center of the Republic of Kazakhstan and the V.G. Khlopin Radium Institute in St. Petersburg, Russia. In addition to in situ radiation measurements made by the United States and Russian teams, soil samples were collected and analyzed by the Russian and Kazakhstani teams. All teams conducted their measurements at ten locations within the test site. The United States team also made a number of additional measurements to locate and verify the positions of three potential fallout plumes containing plutonium contamination from nonnuclear tests. In addition, the United States team made several measurements in Kurchatov City, the housing area used by personnel and their families who work(ed) at the test sites. Comparisons between the United States and Russian in situ measurements and the soil sample results are presented as well as comparisons with a Soviet aerial survey conducted in 1990-1991. The agreement between the different types of measurements made by all three countries was quite good.

  10. Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006

    SciTech Connect (OSTI)

    LR Roeder

    2005-11-30

    This annual report describes the purpose and structure of the ARM Climate Research Facility and ARM Science programs and presents key accomplishments in 2006. Noteworthy scientific and infrastructure accomplishments in 2006 include: • Collaborating with the Australian Bureau of Meteorology to lead the Tropical Warm Pool-International Cloud Experiment, a major international field campaign held in Darwin, Australia • Successfully deploying the ARM Mobile Facility in Niger, Africa • Developing the new ARM Aerial Vehicles Program (AVP) to provide airborne measurements • Publishing a new finding on the impacts of aerosols on surface energy budget in polar latitudes • Mitigating a long-standing double-Intertropical Convergence Zone problem in climate models using ARM data and a new cumulus parameterization scheme.

  11. Climate Science for a Sustainable Energy Future Atmospheric Radiation Measurement Best Estimate (CSSEFARMBE)

    SciTech Connect (OSTI)

    Riihimaki, Laura D.; Gaustad, Krista L.; McFarlane, Sally A.

    2012-09-28

    The Climate Science for a Sustainable Energy Future (CSSEF) project is working to improve the representation of the hydrological cycle in global climate models, critical information necessary for decision-makers to respond appropriately to predictions of future climate. In order to accomplish this objective, CSSEF is building testbeds to implement uncertainty quantification (UQ) techniques to objectively calibrate and diagnose climate model parameterizations and predictions with respect to local, process-scale observations. In order to quantify the agreement between models and observations accurately, uncertainty estimates on these observations are needed. The DOE Atmospheric Radiation Measurement (ARM) program takes atmospheric and climate related measurements at three permanent locations worldwide. The ARM VAP called the ARM Best Estimate (ARMBE) [Xie et al., 2010] collects a subset of ARM observations, performs quality control checks, averages them to one hour temporal resolution, and puts them in a standard format for ease of use by climate modelers. ARMBE has been widely used by the climate modeling community as a summary product of many of the ARM observations. However, the ARMBE product does not include uncertainty estimates on the data values. Thus, to meet the objectives of the CSSEF project and enable better use of this data with UQ techniques, we created the CSSEFARMBE data set. Only a subset of the variables contained in ARMBE is included in CSSEFARMBE. Currently only surface meteorological observations are included, though this may be expanded to include other variables in the future. The CSSEFARMBE VAP is produced for all extended facilities at the ARM Southern Great Plains (SGP) site that contain surface meteorological equipment. This extension of the ARMBE data set to multiple facilities at SGP allows for better comparison between model grid boxes and the ARM point observations. In the future, CSSEFARMBE may also be created for other ARM sites. As each site has slightly different instrumentation, this will require additional development to understand the uncertainty characterization associated with instrumentation at those sites. The uncertainty assignment process is implemented into the ARM program’s new Integrated Software Development Environment (ISDE) so that many of the key steps can be used in the future to screen data based on ARM Data Quality Reports (DQRs), propagate uncertainties when transforming data from one time scale into another, and convert names and units into NetCDF Climate and Forecast (CF) standards. These processes are described in more detail in the following sections.

  12. Atmospheric radiation measurement unmanned aerospace vehicle (ARM-UAV) program

    SciTech Connect (OSTI)

    Bolton, W.R.

    1996-11-01

    ARM-UAV is part of the multi-agency U.S. Global Change Research Program and is addressing the largest source of uncertainty in predicting climatic response: the interaction of clouds and the sun`s energy in the Earth`s atmosphere. An important aspect of the program is the use of unmanned aerospace vehicles (UAVs) as the primary airborne platform. The ARM-UAV Program has completed two major flight series: The first series conducted in April, 1994, using an existing UAV (the General Atomics Gnat 750) consisted of eight highly successful flights at the DOE climate site in Oklahoma. The second series conducted in September/October, 1995, using two piloted aircraft (Egrett and Twin Otter), featured simultaneous measurements above and below clouds and in clear sky. Additional flight series are planned to continue study of the cloudy and clear sky energy budget in the Spring and Fall of 1996 over the DOE climate site in Oklahoma. 3 refs., 4 figs., 1 tab.

  13. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    SciTech Connect (OSTI)

    Chuyu Liu

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the difficulty of diagnostics. For most cases, intercepting measurements are no longer acceptable, and nonintercepting method like synchrotron radiation monitor can not be applied to linear accelerators. The development of accelerator technology asks for simutanous diagnostics innovations, to expand the performance of diagnostic tools to meet the requirements of the next generation accelerators. Diffraction radiation and inverse Compton scattering are two of the most promising techniques, their nonintercepting nature avoids perturbance to the beam and damage to the instrumentation. This thesis is divided into two parts, beam size measurement by optical diffraction radiation and Laser system for Compton polarimeter. Diffraction radiation, produced by the interaction between the electric field of charged particles and the target, is related to transition radiation. Even though the theory of diffraction radiation has been discussed since 1960s, there are only a few experimental studies in recent years. The successful beam size measurement by optical diffraction radiation at CEBAF machine is a milestone: First of all, we have successfully demonstrated diffraction radiation as an effective nonintercepting diagnostics; Secondly, the simple linear relationship between the diffraction radiation image size and the actual beam size improves the reliability of ODR measurements; And, we measured the polarized components of diffraction radiation for the first time and I analyzed the contribution from edge radiation to diffraction radiation.

  14. ARM - Field Campaign - Measurement of Aerosols, Radiation and CloUds over

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Southern Oceans (MARCUS) govCampaignsMeasurement of Aerosols, Radiation and CloUds over the Southern Oceans (MARCUS) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Measurement of Aerosols, Radiation and CloUds over the Southern Oceans (MARCUS) 2017.09.01 - 2018.04.01 Lead Scientist : Greg McFarquhar Abstract The Southern Ocean (SO) is the stormiest place on Earth, buffeted by winds and waves that circle the ice of Antarctica,

  15. Atmospheric Radiation Measurement Program - unmanned aerospace vehicle: The follow-on phase

    SciTech Connect (OSTI)

    Vitko, J. Jr.

    1995-04-01

    Unmanned Aerospace Vehicle (UAV) demonstration flights (UDF) are designed to provide an early demonstration of the scientific utility of UAVs by using an existing UAV and instruments to measure broadband radiative flux profiles under clear sky conditions. UDF is but the first of three phases of ARM-UAV. The second phase significantly extends both the UAV measurement techniques and the available instrumentation to allow both multi-UAV measurements in cloudy skies and extended duration measurements in the tropopause. These activities build naturally to the third and final phase, that of full operational capability, i.e., UAVs capable of autonomous operations at 20-km altitudes for multiple days with a full suite of instrumentation for measuring radiative flux, cloud properties, and water vapor profiles.

  16. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    SciTech Connect (OSTI)

    Liang, Taiee

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  17. Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately.

  18. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    SciTech Connect (OSTI)

    JW Voyles

    2008-01-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  19. Low Frequency Measurement of the Spectrum of the Cosmic Background Radiation

    DOE R&D Accomplishments [OSTI]

    Smoot, G. F.; De Amici, G.; Friedman, S. D.; Witebsky, C.; Mandolesi, N.; Partridge, R. B.; Sironi, G.; Danese, L.; De Zotti, G.

    1983-06-01

    We have made measurements of the cosmic background radiation spectrum at 5 wavelengths (0.33, 0.9, 3, 6.3, and 12 cm) using radiometers with wavelength-scaled corrugated horn antennas having very low sidelobes. A single large-mouth (0.7 m diameter) liquid-helium-cooled absolute reference load was used for all five radiometers. The results of the observations are consistent with previous measurements and represent a significant improvement in accuracy.

  20. Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect (OSTI)

    Jensen, M; Jensen, K

    2006-06-01

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

  1. Impact on quality activities of measurement systems meeting an L:1 rule

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hamada, M. S.; Burkhardt, J. H.

    2015-04-30

    This study considers the impact of a measurement system that meets an L:1 rule on various quality activities. These activities include inspection, acceptance sampling, and control charting. A measurement system that meets a 10:1 rule performs much better than one that meets a 4:1 rule. R code is provided so that the practitioner is able to evaluate these activities to his or her particular situation.

  2. Electron density and temperature measurement by continuum radiation emitted from weakly ionized atmospheric pressure plasmas

    SciTech Connect (OSTI)

    Park, Sanghoo; Choe, Wonho, E-mail: wchoe@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Youn Moon, Se [High-enthalpy Plasma Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 561-756 (Korea, Republic of); Park, Jaeyoung [5771 La Jolla Corona Drive, La Jolla, CA 92037 (United States)

    2014-02-24

    The electron-atom neutral bremsstrahlung continuum radiation emitted from weakly ionized plasmas is investigated for electron density and temperature diagnostics. The continuum spectrum in 4501000?nm emitted from the argon atmospheric pressure plasma is found to be in excellent agreement with the neutral bremsstrahlung formula with the electron-atom momentum transfer cross-section given by Popovi?. In 280450?nm, however, a large discrepancy between the measured and the neutral bremsstrahlung emissivities is observed. We find that without accounting for the radiative H{sub 2} dissociation continuum, the temperature, and density measurements would be largely wrong, so that it should be taken into account for accurate measurement.

  3. Method and apparatus for measuring solar radiation in a vegetative canopy

    DOE Patents [OSTI]

    Gutschick, Vincent P. (Los Alamos, NM); Barron, Michael H. (Los Alamos, NM); Waechter, David A. (Los Alamos, NM); Wolf, Michael A. (Los Alamos, NM)

    1987-01-01

    An apparatus and method for measuring solar radiation received in a vegetative canopy. A multiplicity of sensors selectively generates electrical signals in response to impinging photosynthetically active radiation in sunlight. Each sensor is attached to a plant within the canopy and is electrically connected to a separate port in a junction box having a multiplicity of ports. Each port is connected to an operational amplifier. Each amplifier amplifies the signals generated by the sensors. Each amplifier is connected to an analog-to-digital convertor which digitizes each signal. A computer is connected to the convertors and accumulates and stores solar radiation data. A data output device such as a printer is connected to the computer and displays the data.

  4. Method and apparatus for measuring solar radiation in a vegetative canopy

    DOE Patents [OSTI]

    Gutschick, V.P.; Barron, M.H.; Waechter, D.A.; Wolf, M.A.

    1985-04-30

    An apparatus and method for measuring solar radiation received in a vegetative canopy. A multiplicity of sensors selectively generates electrical signals in response to impinging photosynthetically active radiation in sunlight. Each sensor is attached to a plant within the canopy and is electrically connected to a separate port in a junction box having a multiplicity of ports. Each port is connected to an operational amplifier. Each amplifier amplifies the signals generated by the sensors. Each amplifier is connected to an analog-to-digital convertor which digitizes each signal. A computer is connected to the convertors and accumulates and stores solar radiation data. A data output device such as a printer is connected to the computer and displays the data.

  5. SU-E-QI-12: Morphometry Based Measurements of the Structural Response to Whole Brain Radiation

    SciTech Connect (OSTI)

    Fuentes, D; Castillo, R; Castillo, E; Guerrero, T

    2014-06-15

    Purpose: Although state of the art radiation therapy techniques for treating intracranial malignancies have eliminated acute brain injury, cognitive impairment occurs in 50–90% of patients who survive >6mo post irradiation. Quantitative characterization of therapy response is needed to facilitate therapeutic strategies to minimize radiation induced cognitive impairment [1]. Deformation based morphometry techniques [2, 3] are presented as a quantitative imaging biomarker of therapy response in patients receiving whole brain radiation for treating medulloblastoma. Methods: Post-irradiation magnetic resonance imaging (MRI) data sets were retrospectively analyzed in N=15 patients, >60 MR image datasets. As seen in Fig 1(a), volume changes at multiple time points post-irradiation were quantitatively measured in the cerebrum and ventricles with respect to pre-irradiation MRI. A high resolution image Template, was registered to the pre-irradiation MRI of each patient to create a brain atlas for the cerebrum, cerebellum, and ventricles. Skull stripped images for each patient were registered to the initial pre-treatment scan. Average volume changes in the labeled regions were measured using the determinant of the displacement field Jacobian. Results: Longitudinal measurements, Fig 1(b-c), show a negative correlation p=.06, of the cerebral volume change with the time interval from irradiation. A corresponding positive correlation, p=.01, between ventricular volume change and time interval from irradiation is seen. One sample t-test for correlations were computed using a Spearman method. An average decrease in cerebral volume, p=.08, and increase in ventricular volume, p<.001, was observed. The radiation dose was seen directly proportional to the induced volume changes in the cerebrum, r=−.44, p<.001, Fig 1(d). Conclusion: Results indicate that morphometric monitoring of brain tissue volume changes may potentially be used to quantitatively assess toxicity and response to radiation and may provide insight in developing new therapeutic approaches and monitoring efficacy.

  6. Passive and Active Radiation Measurements Capability at the INL Zero Power Physics Reactor (ZPPR) Facility

    SciTech Connect (OSTI)

    Robert Neibert; John Zabriskie; Collin Knight; James L. Jones

    2010-12-01

    The Zero Power Physics Reactor (ZPPR) facility is a Department of Energy facility located in the Idaho National Laboratorys (INL) Materials and Fuels Complex. It contains various nuclear and non-nuclear materials that are available to support many radiation measurement assessments. User-selected, single material, nuclear and non-nuclear materials can be readily utilized with ZPPR clamshell containers with almost no criticality concerns. If custom, multi-material configurations are desired, the ZPPR clamshell or an approved aluminum Inspection Object (IO) Box container may be utilized, yet each specific material configuration will require a criticality assessment. As an example of the specialized material configurations possible, the National Nuclear Security Agencys Office of Nuclear Verification (NNSA/NA 243) has sponsored the assembly of six material configurations. These are shown in the Appendixes and have been designated for semi-permanent storage that can be available to support various radiation measurement applications.

  7. SU-E-I-04: A Mammography Phantom to Measure Mean Glandular Dose and Image Quality

    SciTech Connect (OSTI)

    Lopez-Pineda, E; Ruiz-Trejo, C; E, Brandan M

    2014-06-01

    Purpose: To evaluate mean glandular dose (MGD) and image quality in a selection of mammography systems using a novel phantom based on thermoluminescent dosemeters and the ACR wax insert. Methods: The phantom consists of two acrylic, 19 cm diameter, 4.5 cm thick, semicircular modules, used in sequence. The image quality module contains the ACR insert and is used to obtain a quality control image under automatic exposure conditions. The dosimetric module carries 15 TLD-100 chips, some under Al foils, to determine air kerma and half-value-layer. TL readings take place at our laboratory under controlled conditions. Calibration was performed using an ionization chamber and a Senographe 2000D unit for a variety of beam qualities, from 24 to 40 kV, Mo and Rh anodes and filters. Phantom MGD values agree, on the average, within 3% with ionization chamber data, and their precision is better than 10% (k=1). Results: MGD and image quality have been evaluated in a selection of mammography units currently used in Mexican health services. The sample includes analogic (screen/film), flexible digital (CR), and full-field digital image receptors. The highest MDG are associated to the CR technology. The most common image quality failure is due to artifacts (dust, intensifying screen scratches, and processor marks for film/screen, laser reader defects for CR). Conclusion: The developed phantom permits the MGD measurement without the need of a calibrated ionization chamber at the mammography site and can be used by a technician without the presence of a medical physicist. The results indicate the urgent need to establish quality control programs for mammography.

  8. Audit of the Quality Assurance Program for the Control and Use of Measuring and Test Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    QA001 Revision 0 Effective October 15, 2001 AUDIT OF THE QUALITY ASSURANCE PROGRAM FOR THE CONTROL AND USE OF MEASURING AND TEST EQUIPMENT Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Jude M. Clark Approved by: _______________________________________________ Date: _______________ Donald B. Karner Procedure ETA-QA001 Revision 0 2 2001 Electric Transportation Applications All Rights Reserved TABLE OF CONTENTS 1.0 Audit Objectives

  9. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

  10. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    SciTech Connect (OSTI)

    Alarcon, Ricardo [Arizona State University, Glendale, AZ (United States); Balascuta, S. [Arizona State University, Glendale, AZ (United States); Benson, Stephen V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Bertozzi, William [Massachusetts Institute of Technology, Cambridge, MA (United States); Boyce, James R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cowan, Ray [Massachusetts Institute of Technology, Cambridge, MA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Evtushenko, Pavel [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Fisher, P. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ihloff, Ernest E. [Hampton University, Hampton, VA (United States); Kalantarians, Narbe [Hampton University, Hampton, VA (United States); Kelleher, Aidan Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Krossler, W. J. [William and Mary College, Williamsburg, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Long, Elena [University of New Hampshire, Durham, NH (United States); Milner, Richard [Massachusetts Institute of Technology, Cambridge, MA (United States); Neil, George R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ou, Longwu [Massachusetts Institute of Technology, Cambridge, MA (United States); Schmookler, Barack Abraham [Massachusetts Institute of Technology, Cambridge, MA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tschalar, C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Williams, Gwyn P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-11-01

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.

  11. High-resolution Tangential AXUV Arrays for Radiated Power Density Measurements on NSTX-U

    SciTech Connect (OSTI)

    Delgado-Aparicio, L; Bell, R E; Faust, I; Tritz, K; Diallo, A; Gerhardt, S P; Kozub, T A; LeBlanc, B P; Stratton, B C

    2014-07-01

    Precise measurements of the local radiated power density and total radiated power are a matter of the uttermost importance for understanding the onset of impurity-induced instabilities and the study of particle and heat transport. Accounting of power balance is also needed for the understanding the physics of various divertor con#12;gurations for present and future high-power fusion devices. Poloidal asymmetries in the impurity density can result from high Mach numbers and can impact the assessment of their flux-surface-average and hence vary the estimates of P[sub]rad (r, t) and (Z[sub]eff); the latter is used in the calculation of the neoclassical conductivity and the interpretation of non-inductive and inductive current fractions. To this end, the bolometric diagnostic in NSTX-U will be upgraded, enhancing the midplane coverage and radial resolution with two tangential views, and adding a new set of poloidally-viewing arrays to measure the 2D radiation distribution. These systems are designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate non-inductive operation at reduced collisionality, with high-pressure, long energy-confinement-times and a divertor solution with metal walls.

  12. Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program

    SciTech Connect (OSTI)

    Stokes, G.M. ); Tichler, J.L. )

    1990-06-01

    The Department of Energy (DOE) is initiating a major atmospheric research effort, the Atmospheric Radiation Measurement Program (ARM). The program is a key component of DOE's research strategy to address global climate change and is a direct continuation of DOE's decade-long effort to improve the ability of General Circulation Models (GCMs) to provide reliable simulations of regional, and long-term climate change in response to increasing greenhouse gases. The effort is multi-disciplinary and multi-agency, involving universities, private research organizations and more than a dozen government laboratories. The objective of the ARM Research is to provide an experimental testbed for the study of important atmospheric effects, particularly cloud and radiative processes, and to test parameterizations of these processes for use in atmospheric models. This effort will support the continued and rapid improvement of GCM predictive capability. 2 refs.

  13. Atmospheric Radiation Measurement (ARM) Data from the Southern Great Plains (SGP) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. Scientists are using the information obtained from the permanent SGP site to improve cloud and radiative models and parameterizations and, thereby, the performance of atmospheric general circulation models used for climate research. More than 30 instrument clusters have been placed around the SGP site. The locations for the instruments were chosen so that the measurements reflect conditions over the typical distribution of land uses within the site. The continuous observations at the SGP site are supplemented by intensive observation periods, when the frequency of measurements is increased and special measurements are added to address specific research questions. During such periods, 2 gigabytes or more of data (two billion bytes) are generated daily. SGP data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/ http. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  14. Technical Note: Response measurement for select radiation detectors in magnetic fields

    SciTech Connect (OSTI)

    Reynolds, M.; Fallone, B. G.; Rathee, S.

    2015-06-15

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear acceleratormagnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies.

  15. Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheaito, Ramez; Gorham, Caroline S.; Carnegie Mellon Univ., Pittsburgh, PA; Misra, Amit; Hattar, Khalid; Hopkins, Patrick E.

    2015-05-01

    The progressive build up of displacement damage and fission products inside different systems and components of a nuclear reactor can lead to significant defect formation, degradation, and damage of the constituent materials. This structural modification can highly influence the thermal transport mechanisms and various mechanical properties of solids. In this paper we demonstrate the use of time-domain thermoreflectance (TDTR), a non-destructive method capable of measuring the thermal transport in material systems from nano to bulk scales, to study the effect of radiation damage and the subsequent changes in the thermal properties of materials. We use TDTR to show that displacementmore » damage from ion irradiation can significantly reduce the thermal conductivity of Optimized ZIRLO, a material used as fuel cladding in several current nuclear reactors. We find that the thermal conductivity of copper-niobium nanostructured multilayers does not change with helium ion irradiation doses of up to 1015 cm-2 and ion energy of 200 keV suggesting that these structures can be used and radiation tolerant materials in nuclear reactors. We compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Results demonstrate that TDTR thermal measurements can be used to quantify depth dependent damage.« less

  16. Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage

    SciTech Connect (OSTI)

    Cheaito, Ramez; Gorham, Caroline S.; Misra, Amit; Hattar, Khalid; Hopkins, Patrick E.

    2015-05-01

    The progressive build up of displacement damage and fission products inside different systems and components of a nuclear reactor can lead to significant defect formation, degradation, and damage of the constituent materials. This structural modification can highly influence the thermal transport mechanisms and various mechanical properties of solids. In this paper we demonstrate the use of time-domain thermoreflectance (TDTR), a non-destructive method capable of measuring the thermal transport in material systems from nano to bulk scales, to study the effect of radiation damage and the subsequent changes in the thermal properties of materials. We use TDTR to show that displacement damage from ion irradiation can significantly reduce the thermal conductivity of Optimized ZIRLO, a material used as fuel cladding in several current nuclear reactors. We find that the thermal conductivity of copper-niobium nanostructured multilayers does not change with helium ion irradiation doses of up to 1015 cm-2 and ion energy of 200 keV suggesting that these structures can be used and radiation tolerant materials in nuclear reactors. We compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Results demonstrate that TDTR thermal measurements can be used to quantify depth dependent damage.

  17. Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation

    DOE Patents [OSTI]

    Buican, Tudor N. (Los Alamos, NM); Martin, John C. (Los Alamos, NM)

    1990-01-01

    An apparatus and method simultaneously measures a plurality of spectral wavelengths present in electromagnetic radiation. A modulatable birefringent optical element is employed to divide a polarized light beam into two components, thereby producing a phase difference in two resulting light beams such that the two beams can be made to interfere with one another when recombined, the interference pattern providing the wavelength information required for the analysis of the incident light. The interferometer thus created performs in a similar manner to a Michelson interferometer, but with no moving parts, and with a resolution dependent on the degree of phase shift introduced by the modulator.

  18. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-10-10

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  19. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2013-01-11

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  20. Continuous Water Vapor Profiles for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect (OSTI)

    Jensen, M; Troyan, D

    2006-01-09

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the first quarter of Fiscal Year 2006 to complete a continuous time series of the vertical profile of water vapor for selected 30-day periods from each of the fixed ARM sites. In order to accomplish this metric, a new technique devised to incorporate radiosonde data, microwave radiometer data and analysis information from numerical weather forecast models has been developed. The product of this analysis, referred to as the merged sounding value-added product, includes vertical profiles of atmospheric water vapor concentration and several other important thermodynamic state variables at 1-minute time intervals and 266 vertical levels.

  1. Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  2. SU-E-P-09: Radiation Transmission Measurements and Evaluation of Diagnostic Lead-Based and Lead-Free Aprons

    SciTech Connect (OSTI)

    Syh, J

    2014-06-01

    Purpose: This study was conducted to ensure that various lead shield apron manufacturers provided accurate attenuation factors regardless of whether the apron was made of lead-based or lead-free equivalent material. Methods: A calibrated ionization survey meter was placed at chest height and 36 cm horizontally away from a solid water phantom on a simulator couch. Measurements were done with or without apron. Radiation field was set to 24cmx24cm with the phantom at 100cm source-to-surface distance. Irradiation time was set for 1 minute at voltages of 60, 80, 100 and 120 kVp. Current was set at 6mA. Results: Between 60 kVp and 120 kVp, the transmission through 0.50 mm of lead-based apron was between 1.0% and 6.5% with a mean value of 3.2% and a standard deviation (s.d.) of 1.4%. The transmissions through the 0.50 mm lead-free aprons were 1.0 % to 12.0% with a mean value of 6.1% and s.d. of 2.6%. At 120 kVp, the transmission value was 6.5% for 0.50 mm lead-based apron and 11.1% to 12.0% for 0.50 mm lead-free aprons. The radiation transmissions at 80 kVp, measured in two different 0.5 mm lead-free aprons, were 4.3% each. However, only 1.4% transmission was found through the lead-based apron. Overall, the radiation transmitted through the lead-based apron was 1/3 transmission of lead-free at 80kVp, and half value of lead-free aprons at 100 and 120 kVp. Conclusion: Even though lead-based and lead-free aprons all claimed to have the same lead equivalent thickness, the transmission might not be the same. The precaution was needed to exercise diligence in quality assurance program to assure adequate protection to staff who wear it during diagnostic procedures. The requirement for aprons not only should be in certain thickness to meet state regulation but also to keep reasonably achievable low exposure with the accurate labeling from manufacturers.

  3. NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).

  4. NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS); Golden, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    1981-07-15

    The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).

  5. Measurement of the large-scale anisotropy of the cosmic background radiation at 3mm

    SciTech Connect (OSTI)

    Epstein, G.L.

    1983-12-01

    A balloon-borne differential radiometer has measured the large-scale anisotropy of the cosmic background radiation (CBR) with high sensitivity. The antenna temperature dipole anistropy at 90 GHz (3 mm wavelength) is 2.82 +- 0.19 mK, corresponding to a thermodynamic anistropy of 3.48 +- mK for a 2.7 K blackbody CBR. The dipole direction, 11.3 +- 0.1 hours right ascension and -5.7/sup 0/ +- 1.8/sup 0/ declination, agrees well with measurements at other frequencies. Calibration error dominates magnitude uncertainty, with statistical errors on dipole terms being under 0.1 mK. No significant quadrupole power is found, placing a 90% confidence-level upper limit of 0.27 mK on the RMS thermodynamic quadrupolar anistropy. 22 figures, 17 tables.

  6. Method of controlling coherent synchroton radiation-driven degradation of beam quality during bunch length compression

    DOE Patents [OSTI]

    Douglas, David R. (Newport News, VA); Tennant, Christopher D. (Williamsburg, VA)

    2012-07-10

    A method of avoiding CSR induced beam quality defects in free electron laser operation by a) controlling the rate of compression and b) using a novel means of integrating the compression with the remainder of the transport system: both are accomplished by means of dispersion modulation. A large dispersion is created in the penultimate dipole magnet of the compression region leading to rapid compression; this large dispersion is demagnified and dispersion suppression performed in a final small dipole. As a result, the bunch is short for only a small angular extent of the transport, and the resulting CSR excitation is small.

  7. State background-radiation levels: results of measurements taken during 1975-1979

    SciTech Connect (OSTI)

    Myrick, T.E.; Berven, B.A.; Haywood, F.F.

    1981-11-01

    Background radiation levels across the United States have been measured by the Off-Site Pollutant Measurements Group of the Health and Safety Research Division at Oak Ridge National Laboratory (ORNL). These measurements have been conducted as part of the ORNL program of radiological surveillance at inactive uranium mills and sites formerly utilized during Manhattan Engineer District and early Atomic Energy Commission projects. The measurements included determination of /sup 226/Ra, /sup 232/Th, and /sup 238/U concentrations in surface soil samples and measurement of external gamma-ray exposure rates at 1 m above the ground surface at the location of soil sampling. This information is being utilized for comparative purposes to determine the extent of contamination present at the survey sites and surrounding off-site areas. The sampling program to date has provided background information at 356 locations in 33 states. External gamma-ray exposure rates were found to range from less than 1 to 34 ..mu..R/h, with an US average of 8.5 ..mu..R/h. The nationwide average concentrations of /sup 226/Ra, /sup 232/Th, and /sup 238/U in surface soil were determined to be 1.1, 0.98, and 1.0 pCi/g, respectively.

  8. Measurement and simulation of the impact of coherent synchrotron radiation on the Jefferson Laboratory energy recovery linac electron beam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hall, C C.; Biedron, S G.; Edelen, A L.; Milton, S V.; Benson, S; Douglas, D; Li, R; Tennant, C D.; Carlsten, B E.

    2015-03-09

    In an experiment conducted on the Jefferson Laboratory IR free-electron laser driver, the effects of coherent synchrotron radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR recirculator. Here we examine the impact of CSR on the average energy loss as a function of bunch compression as well as the impact of CSR on the energy spectrum of the bunch. Simulation of beam dynamics in the machine, including the one-dimensional CSR model, shows very good agreement with themore » measured effect of CSR on the average energy loss as a function of compression. Finally, a well-defined structure is observed in the energy spectrum with a feature in the spectrum that varies as a function of the compression. This effect is examined in simulations, as well, and a simple explanation for the variation is proposed.« less

  9. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2009.

    SciTech Connect (OSTI)

    D. L. Sisterson

    2010-01-12

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2010 for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208); for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208); and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 x 2,208). The ARM Mobile Facility (AMF) deployment in Graciosa Island, the Azores, Portugal, continues; its OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are the result of downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP locale has historically had a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. Beginning this quarter, the SGP began a transition to a smaller footprint (150 km x 150 km) by rearranging the original and new instrumentation made available through the American Recovery and Reinvestment Act (ARRA). The central facility and 4 extended facilities will remain, but there will be up to 16 surface new characterization facilities, 4 radar facilities, and 3 profiler facilities sited in the smaller domain. This new configuration will provide observations at scales more appropriate to current and future climate models. The TWP locale has the Manus, Nauru, and Darwin sites. These sites will also have expanded measurement capabilities with the addition of new instrumentation made available through ARRA funds. It is anticipated that the new instrumentation at all the fixed sites will be in place within the next 12 months. The AMF continues its 20-month deployment in Graciosa Island, Azores, Portugal, that started May 1, 2009. The AMF will also have additional observational capabilities within the next 12 months. Users can participate in field experiments at the sites and mobile facility, or they can participate remotely. Therefore, a variety of mechanisms are provided to users to access site information. Users who have immediate (real-time) needs for data access can request a research account on the local site data systems. This access is particularly useful to users for quick decisions in executing time-dependent activities associated with field campaigns at the fixed sites and mobile facility locations. The eight computers for the research accounts are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; the AMF; and the DMF at PNNL. However, users are warned that the data provided at the time of collection have not been fully screened for quality and therefore are not considered to be official ACRF data. Hence, these accounts are considered to be part of the facility activities associated with field campaign activities, and users are tracked. In addition, users who visit sites can connect their computer or instrument to an ACRF site data system network, which requires an on-site device account. Remote (off-site) users can also have remote access to any ACRF instrument or computer system at any ACRF site, which requires an off-site device account. These accounts are also managed and tracked.

  10. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 September 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  12. Method and apparatus for the measurement of signals from radiation sensors

    DOE Patents [OSTI]

    De Geronimo, Gianluigi

    2012-09-18

    The preferred embodiments of the present invention include a device for measuring an ionizing event in a radiation sensor. The device can include a charge amplifier and a timing shaper. The charge amplifier receives a cathode signal and is configured to output an amplified cathode signal. The timing shaper is operatively connected to the charge amplifier to receive the amplified cathode signal. The timing shaper is configured to generate a first pulse in response to a beginning of the ionizing event and a second pulse in response to an end of the ionizing event. The first and second pulses are associated with a depth of interaction of the ionizing event and are generated in response to a slope of the amplified cathode signal changing.

  13. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 – June 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998.

  14. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2008-01-08

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  15. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1–March 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-04-13

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  16. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data then are sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by 1) individual data stream, site, and month for the current year and 2) site and fiscal year (FY) dating back to 1998.

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - January 1 - March 31, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-06-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - July 1 - September 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - October 1 - December 31, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2009-01-15

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-03-17

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  2. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-10-10

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-03-02

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  5. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2012-01-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 – March 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  7. SU-C-12A-04: Diagnostic Imaging Research Using Decedents as a Proxy for the Living: Are Radiation Dosimetry and Tissue Property Measurements Affected by Post-Mortem Changes?

    SciTech Connect (OSTI)

    Sandoval, D; Heintz, P; Weber, W; Melo, D; Adolphi, N; Hatch, P

    2014-06-01

    Purpose: Radiation dose (RD) from diagnostic imaging is a growing public health concern. Implanting dosimeters is a more accurate way to assess organ dose, relative to commonly used mathematical estimations. However, performing accurate dosimetry using live subjects is hindered by patient motion and safety considerations, which limit the RD and placement of implanted dosimeters. Performing multiple scans on the same subject would be the ideal way to assess the impact of dose reduction on image quality; however, performing multiple non-standard-of-care scans on live subjects for dosimetry and image quality measurements is generally prohibited by IRB committees. Our objective is to assess whether RD and tissue property (TP) measurements in post-mortem (PM) subjects are sufficiently similar to those in live subjects to justify the use of deceased subjects in future dosimetry and image quality studies. Methods: 4 MOSFET radiation dosimeters were placed enterically in each subject (2 sedated Rhesus Macaques) to measure the RD at 4 levels (carina, lung, heart, and liver) during CT scanning. The CT protocol was performed ante-mortem (AM) and 2 and 3 hours PM. For TP analysis, additional scans were taken at 24 hours PM. To compare AM and PM TP, regions-of-interest were drawn on selected organs and the average CT density with standard deviation (in units of HU) were taken; additionally, visual comparisons of images were made at each PM interval. Results: No significant difference was observed in 8 of 9 measurements comparing AM and PM RD. Only one measurement (liver of the first subject) showed a significant difference (7% lower on PM measurement), possibly due to subject re-positioning. Initial TP visual and quantitative analyses show little to no change PM. Conclusion: Our results suggest that realistic radiation dosimetry and image quality measurements based on tissue properties can be performed reliably on recently deceased subjects.

  8. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  9. Measurement of regional compliance using 4DCT images for assessment of radiation treatment

    SciTech Connect (OSTI)

    Zhong Hualiang; Jin Jianyue; Ajlouni, Munther; Movsas, Benjamin; Chetty, Indrin J.

    2011-03-15

    Purpose: Radiation-induced damage, such as inflammation and fibrosis, can compromise ventilation capability of local functional units (alveoli) of the lung. Ventilation function as measured with ventilation images, however, is often complicated by the underlying mechanical variations. The purpose of this study is to present a 4DCT-based method to measure the regional ventilation capability, namely, regional compliance, for the evaluation of radiation-induced lung damage. Methods: Six 4DCT images were investigated in this study: One previously used in the generation of a POPI model and the other five acquired at Henry Ford Health System. A tetrahedral geometrical model was created and scaled to encompass each of the 4DCT image domains. Image registrations were performed on each of the 4DCT images using a multiresolution Demons algorithm. The images at the end of exhalation were selected as a reference. Images at other exhalation phases were registered to the reference phase. For the POPI-modeled patient, each of these registration instances was validated using 40 landmarks. The displacement vector fields (DVFs) were used first to calculate the volumetric variation of each tetrahedron, which represents the change in the air volume. The calculated results were interpolated to generate 3D ventilation images. With the computed DVF, a finite element method (FEM) framework was developed to compute the stress images of the lung tissue. The regional compliance was then defined as the ratio of the ventilation and stress values and was calculated for each phase. Based on iterative FEM simulations, the potential range of the mechanical parameters for the lung was determined by comparing the model-computed average stress to the clinical reference value of airway pressure. The effect of the parameter variations on the computed stress distributions was estimated using Pearson correlation coefficients. Results: For the POPI-modeled patient, five exhalation phases from the start to the end of exhalation were denoted by P{sub i}, i=1,...,5, respectively. The average lung volume variation relative to the reference phase (P{sub 5}) was reduced from 18% at P{sub 1} to 4.8% at P{sub 4}. The average stress at phase P{sub i} was 1.42, 1.34, 0.74, and 0.28 kPa, and the average regional compliance was 0.19, 0.20, 0.20, and 0.24 for i=1,...,4, respectively. For the other five patients, their average R{sub v} value at the end-inhalation phase was 21.1%, 19.6%, 22.4%, 22.5%, and 18.8%, respectively, and the regional compliance averaged over all six patients is 0.2. For elasticity parameters chosen from the potential parameter range, the resultant stress distributions were found to be similar to each other with Pearson correlation coefficients greater than 0.81. Conclusions: A 4DCT-based mechanical model has been developed to calculate the ventilation and stress images of the lung. The resultant regional compliance represents the lung's elasticity property and is potentially useful in correlating regions of lung damage with radiation dose following a course of radiation therapy.

  10. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore » 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less

  11. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    SciTech Connect (OSTI)

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % and 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.

  12. Atmospheric Radiation Measurement Program Science Plan Current Status and Future Directions of the ARM Science Program

    SciTech Connect (OSTI)

    TP Ackerman; AD Del Genio; RG Ellingson; RA Ferrare; SA Klein; GM McFarquhar; PJ Lamb; CN Long; J Verlinde

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARMs Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

  13. Definition of Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Radiation research technician Radiation is used in research. Basics of Radiation Radiation is energy that comes from a source and travels through some material or through space. Light, heat and sound are types of radiation. The kind of radiation

  14. Proceedings of the sixth Atmospheric Radiation Measurement (ARM) Science Team meeting

    SciTech Connect (OSTI)

    1997-06-01

    This document contains the summaries of papers presented at the 1996 Atmospheric Radiation Measurement (ARM) Science Team meeting held at San Antonio, Texas. The history and status of the ARM program at the time of the meeting helps to put these papers in context. The basic themes have not changed. First, from its beginning, the Program has attempted to respond to the most critical scientific issues facing the US Global Change Research Program. Second, the Program has been strongly coupled to other agency and international programs. More specifically, the Program reflects an unprecedented collaboration among agencies of the federal research community, among the US Department of Energy`s (DOE) national laboratories, and between DOE`s research program and related international programs, such as Global Energy and Water Experiment (GEWEX) and the Tropical Ocean Global Atmosphere (TOGA) program. Next, ARM has always attempted to make the most judicious use of its resources by collaborating and leveraging existing assets and has managed to maintain an aggressive schedule despite budgets that have been much smaller than planned. Finally, the Program has attracted some of the very best scientific talent in the climate research community and has, as a result, been productive scientifically.

  15. SU-E-J-47: Development of a High-Precision, Image-Guided Radiotherapy, Multi- Purpose Radiation Isocenter Quality-Assurance Calibration and Checking System

    SciTech Connect (OSTI)

    Liu, C; Yan, G; Helmig, R; Lebron, S; Kahler, D

    2014-06-01

    Purpose: To develop a system that can define the radiation isocenter and correlate this information with couch coordinates, laser alignment, optical distance indicator (ODI) settings, optical tracking system (OTS) calibrations, and mechanical isocenter walkout. Methods: Our team developed a multi-adapter, multi-purpose quality assurance (QA) and calibration device that uses an electronic portal imaging device (EPID) and in-house image-processing software to define the radiation isocenter, thereby allowing linear accelerator (Linac) components to be verified and calibrated. Motivated by the concept that each Linac component related to patient setup for image-guided radiotherapy based on cone-beam CT should be calibrated with respect to the radiation isocenter, we designed multiple concentric adapters of various materials and shapes to meet the needs of MV and KV radiation isocenter definition, laser alignment, and OTS calibration. The phantom's ability to accurately define the radiation isocenter was validated on 4 Elekta Linacs using a commercial ball bearing (BB) phantom as a reference. Radiation isocenter walkout and the accuracy of couch coordinates, ODI, and OTS were then quantified with the device. Results: The device was able to define the radiation isocenter within 0.3 mm. Radiation isocenter walkout was within 1 mm at 4 cardinal angles. By switching adapters, we identified that the accuracy of the couch position digital readout, ODI, OTS, and mechanical isocenter walkout was within sub-mm. Conclusion: This multi-adapter, multi-purpose isocenter phantom can be used to accurately define the radiation isocenter and represents a potential paradigm shift in Linac QA. Moreover, multiple concentric adapters allowed for sub-mm accuracy for the other relevant components. This intuitive and user-friendly design is currently patent pending.

  16. ETA-HTP09 - Measurement and Evaluation of Magnetic Fields (EMF) and Electromagnetic Radiation (EMI) Generated by Hybrid Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HTP09 Revision 0 Effective May 1, 2004 Measurement and Evaluation of Magnetic Fields (EMF) and Electromagnetic Radiation (EMI) Generated by Hybrid Electric Vehicles Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Roberta Brayer Approved by: ___________________________________________________ Date: _______________ Donald Karner ETA-HTP09 Revision 0 2004 Electric Transportation Applications All Rights Reserved i TABLE OF CONTENTS 1.

  17. SU-E-I-82: Improving CT Image Quality for Radiation Therapy Using Iterative Reconstruction Algorithms and Slightly Increasing Imaging Doses

    SciTech Connect (OSTI)

    Noid, G; Chen, G; Tai, A; Li, X

    2014-06-01

    Purpose: Iterative reconstruction (IR) algorithms are developed to improve CT image quality (IQ) by reducing noise without diminishing spatial resolution or contrast. For CT in radiation therapy (RT), slightly increasing imaging dose to improve IQ may be justified if it can substantially enhance structure delineation. The purpose of this study is to investigate and to quantify the IQ enhancement as a result of increasing imaging doses and using IR algorithms. Methods: CT images were acquired for phantoms, built to evaluate IQ metrics including spatial resolution, contrast and noise, with a variety of imaging protocols using a CT scanner (Definition AS Open, Siemens) installed inside a Linac room. Representative patients were scanned once the protocols were optimized. Both phantom and patient scans were reconstructed using the Sinogram Affirmed Iterative Reconstruction (SAFIRE) and the Filtered Back Projection (FBP) methods. IQ metrics of the obtained CTs were compared. Results: IR techniques are demonstrated to preserve spatial resolution as measured by the point spread function and reduce noise in comparison to traditional FBP. Driven by the reduction in noise, the contrast to noise ratio is doubled by adopting the highest SAFIRE strength. As expected, increasing imaging dose reduces noise for both SAFIRE and FBP reconstructions. The contrast to noise increases from 3 to 5 by increasing the dose by a factor of 4. Similar IQ improvement was observed on the CTs for selected patients with pancreas and prostrate cancers. Conclusion: The IR techniques produce a measurable enhancement to CT IQ by reducing the noise. Increasing imaging dose further reduces noise independent of the IR techniques. The improved CT enables more accurate delineation of tumors and/or organs at risk during RT planning and delivery guidance.

  18. INVESTIGATING THE RELIABILITY OF CORONAL EMISSION MEASURE DISTRIBUTION DIAGNOSTICS USING THREE-DIMENSIONAL RADIATIVE MAGNETOHYDRODYNAMIC SIMULATIONS

    SciTech Connect (OSTI)

    Testa, Paola [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 58, Cambridge, MA 02138 (United States); De Pontieu, Bart; Martinez-Sykora, Juan [Lockheed Martin Solar and Astrophysics Laboratory, Org. A021S, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Hansteen, Viggo; Carlsson, Mats, E-mail: ptesta@cfa.harvard.edu [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway)

    2012-10-10

    Determining the temperature distribution of coronal plasmas can provide stringent constraints on coronal heating. Current observations with the Extreme ultraviolet Imaging Spectrograph (EIS) on board Hinode and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory provide diagnostics of the emission measure distribution (EMD) of the coronal plasma. Here we test the reliability of temperature diagnostics using three-dimensional radiative MHD simulations. We produce synthetic observables from the models and apply the Monte Carlo Markov chain EMD diagnostic. By comparing the derived EMDs with the 'true' distributions from the model, we assess the limitations of the diagnostics as a function of the plasma parameters and the signal-to-noise ratio of the data. We find that EMDs derived from EIS synthetic data reproduce some general characteristics of the true distributions, but usually show differences from the true EMDs that are much larger than the estimated uncertainties suggest, especially when structures with significantly different density overlap along the line of sight. When using AIA synthetic data the derived EMDs reproduce the true EMDs much less accurately, especially for broad EMDs. The differences between the two instruments are due to the: (1) smaller number of constraints provided by AIA data and (2) broad temperature response function of the AIA channels which provide looser constraints to the temperature distribution. Our results suggest that EMDs derived from current observatories may often show significant discrepancies from the true EMDs, rendering their interpretation fraught with uncertainty. These inherent limitations to the method should be carefully considered when using these distributions to constrain coronal heating.

  19. ETA-HQA01 - Audit of the Quality Assurance Program for the Control and Use of Measuring and Test Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HQA01 Revision 1 Effective November 1, 2004 AUDIT OF THE QUALITY ASSURANCE PROGRAM FOR THE CONTROL AND USE OF MEASURING AND TEST EQUIPMENT Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Roberta Brayer Approved by: _______________________________________________ Date: _______________ Donald B. Karner Procedure ETA-HQA01 Revision 1 2 2004 Electric Transportation Applications All Rights Reserved TABLE OF CONTENTS 1.0 Audit Objectives

  20. ETA-NQA001 - Audit of the Quality Assurance Program for the Control and Use of Measuring and Test Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NQA001 Revision 0 Effective October 15, 2001 AUDIT OF THE QUALITY ASSURANCE PROGRAM FOR THE CONTROL AND USE OF MEASURING AND TEST EQUIPMENT Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Jude M. Clark Approved by: _______________________________________________ Date: _______________ Donald B. Karner Procedure ETA-NQA001 Revision 0 2 2001 Electric Transportation Applications All Rights Reserved TABLE OF CONTENTS 1.0 Audit

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for this second quarter for the Southern Great Plains (SGP) site is 2052 hours (0.95 2,160 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1944 hours (0.90 2,160), and that for the Tropical Western Pacific (TWP) site is 1836 hours (0.85 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90 days for this quarter) the instruments were operating this quarter.

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-06-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 2,184 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1,965.6 hours (0.90 2,184), and that for the Tropical Western Pacific (TWP) site is 1,856.4 hours (0.85 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 (0.95 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 September 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-09-30

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2008 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 ? 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 ? 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 ? 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter.

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2004

    SciTech Connect (OSTI)

    DL Sisterson

    2004-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 365 days per year) the instruments were operating.

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 2,208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1,987.2 hours (0.90 2,208), and that for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter.

  6. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-01-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, they calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The US Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1-December 31, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The first quarter comprises a total of 2,208 hours. The average exceeded their goal this quarter.

  7. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January-March 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter for the Southern Great Plains (SGP) site is 2,052 hours (0.95 × 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) locale is 1,836 hours (0.85 × 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,052 hours (0.95 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90 days for this quarter) the instruments were operating this quarter.

  8. Measuring short electron bunch lengths using coherent smith-purcell radiation

    DOE Patents [OSTI]

    Nguyen, Dinh C. (Los Alamos, NM)

    1999-01-01

    A method is provided for directly determining the length of sub-picosecond electron bunches. A metallic grating is formed with a groove spacing greater than a length expected for the electron bunches. The electron bunches are passed over the metallic grating to generate coherent and incoherent Smith-Purcell radiation. The angular distribution of the coherent Smith-Purcell radiation is then mapped to directly deduce the length of the electron bunches.

  9. Measuring short electron bunch lengths using coherent Smith-Purcell radiation

    DOE Patents [OSTI]

    Nguyen, D.C.

    1999-03-30

    A method is provided for directly determining the length of sub-picosecond electron bunches. A metallic grating is formed with a groove spacing greater than a length expected for the electron bunches. The electron bunches are passed over the metallic grating to generate coherent and incoherent Smith-Purcell radiation. The angular distribution of the coherent Smith-Purcell radiation is then mapped to directly deduce the length of the electron bunches. 8 figs.

  10. How to Detect Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How to Detect Radiation How to Survey Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Detection How to Detect Radiation Radiation cannot be detected by human senses. A variety of instruments are available for detecting and measuring radiation. Examples of radiation survey meters: photos of survey meters alphacounter1.JPG (28857 bytes) This probe is used for the detection of alpha radiation. The most common type of

  11. ETA-UTP009 - Measurement and Evaluation of Magnetic Fields (EMF) and Electromagnetic Radiation (EMI) Generated by Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Revision 0 Effective March 23, 2001 Measurement and Evaluation of Magnetic Fields (EMF) and Electromagnetic Radiation (EMI) Generated by Electric Vehicles Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Steven R. Ryan Approved by: ___________________________________________________ Date: _______________ Jude M. Clark ETA-UTP009 Revision 0 © ©2 20 00 01 1 Electric Transportation Applications A Al ll l R Ri ig gh ht ts s R Re es se

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2011-02-01

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 x 2208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1987.20 hours (0.90 x 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 x 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continued through this quarter, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The second ARM Mobile Facility (AMF2) began deployment this quarter to Steamboat Springs, Colorado. The experiment officially began November 15, but most of the instruments were up and running by November 1. Therefore, the OPSMAX time for the AMF2 was 1390.80 hours (.95 x 1464 hours) for November and December (61 days). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. Summary. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1-December 31, 2010, for the fixed sites. Because the AMFs operate episodically, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. This first quarter comprises a total of 2,208 possible hours for the fixed sites and the AMF1 and 1,464 possible hours for the AMF2. The average of the fixed sites exceeded our goal this quarter. The AMF1 has essentially completed its mission and is shutting down to pack up for its next deployment to India. Although all the raw data from the operational instruments are in the Archive for the AMF2, only the processed data are tabulated. Approximately half of the AMF2 instruments have data that was fully processed, resulting in the 46% of all possible data made available to users through the Archive for this first quarter. Typically, raw data is not made available to users unless specifically requested.

  13. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - Sep. 30, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 ? 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 ? 2,208) and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 ? 2,208). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive result from downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2009, for the fixed sites. Because the AMF operates episodically, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The fourth quarter comprises a total of 2,208 hours for the fixed and mobile sites. The average of the fixed sites well exceeded our goal this quarter. The AMF data statistic requires explanation. Since the AMF radar data ingest software is being modified, the data are being stored in the DMF for data processing. Hence, the data are not at the Archive; they are anticipated to become available by the next report.

  14. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-04-23

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,052.00 hours (0.95 x 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944.00 hours (0.90 x 2,160), and for the Tropical Western Pacific (TWP) locale is 1,836.00 hours (0.85 x 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because not all of the metadata have been acquired that are used to generate this metric. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 90 days for this quarter) the instruments were operating this quarter. Summary. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period January 1 - March 31, 2009, for the fixed sites. The AMF has completed its mission in China but not all of the data can be released to the public at the time of this report. The second quarter comprises a total of 2,160 hours. The average exceeded our goal this quarter.

  15. Atmospheric Radiation Measurement program climate research facility operations quarterly report April 1 - June 30, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2007-07-26

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2007 for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.6 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.4 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period April 1 through June 30, 2007, for the fixed sites only. The AMF has been deployed to Germany and is operational this quarter. The third quarter comprises a total of 2,184 hours. Although the average exceeded our goal this quarter, there were cash flow issues resulting from Continuing Resolution early in the period that did not allow for timely instrument repairs that kept our statistics lower than past quarters at all sites. The low NSA numbers resulted from missing MFRSR data this spring that appears to be recoverable but not available at the Archive at the time of this report.

  16. Atmospheric Radiation Measurement program climate research facilities quarterly report April 1 - June 30, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-07-14

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter); for the North Slope Alaska (NSA) locale it is 1,965.60 hours (0.90 x 2,184); and for the Tropical Western Pacific (TWP) locale it is 1,856.40 hours (0.85 x 2,184). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 1390.80 hours (0.95 x 1464). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for April 1 - June 30, 2009, for the fixed sites. Because the AMF operates episodically, the AMF statistics are reported separately and are not included in the aggregate average with the fixed sites. The AMF statistics for this reporting period were not available at the time of this report. The third quarter comprises a total of 2,184 hours for the fixed sites. The average well exceeded our goal this quarter.

  17. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-01-24

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1 - December 31, 2007, for the fixed sites and the mobile site. The AMF has been deployed to Germany and this was the final operational quarter. The first quarter comprises a total of 2,208 hours. Although the average exceeded our goal this quarter, a series of severe weather events (i.e., widespread ice storms) disrupted utility services, which affected the SGP performance measures. Some instruments were covered in ice and power and data communication lines were down for more than 10 days in some areas of Oklahoma and Kansas, which resulted in lost data at the SGP site. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. The AMF completed its mission at the end of this quarter in Haselback, Germany (FKB designation). NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request an account on the local site data system. The eight research computers are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; the DMF at PNNL; and the AMF, currently in Germany. In addition, the ACRF serves as a data repository for a long-term Arctic atmospheric observatory in Eureka, Canada (80 degrees 05 minutes N, 86 degrees 43 minutes W) as part of the multiagency Study of Environmental Arctic Change (SEARCH) Program. NOAA began providing instruments for the site in 2005, and currently cloud radar data are available. The intent of the site is to monitor the important components of the Arctic atmosphere, including clouds, aerosols, atmospheric radiation, and local-scale atmospheric dynamics. Due to the similarity of ACRF NSA data streams, and the important synergy that can be formed between a network of Arctic atmospheric observations, much of the SEARCH observatory data are archived in the ARM archive. Instruments will be added to the site over time. For more information, please visit http://www.db.arm.gov/data. The designation for the archived Eureka data is YEU and is now included in the ACRF user metrics. This quarterly report provides the cumulative numbers of visitors and user accounts by site for the period January 1, 2007 - December 31, 2007. Table 2 shows the summary of cumulative users for the period January 1, 2007 - December 31, 2007. For the first quarter of FY 2008, the overall number of users was up significantly from the last reporting period. For the fourth consecutive reporting period, a record high number of Archive users was recorded. In addition, the number of visitors and visitor days set a new record this reporting period particularly due to the large number of field campaign activities in conjunction with the AMF deployment in Germany. It is interesting to note this quarter that 22% (a slight decrease from last quarter) of the Archive users are ARM Science funded principal investigators and 35% (the same as last quarter) of all other facility users are either ARM Science-funded principal investigators or ACRF infrastructure personnel. For reporting purposes, the three ACRF sites and the AMF operate 24 hours per day, 7 days per week, and 52 weeks per year. Time is reported in days instead of hours. If any lost work time is incurred by any employee, it is counted as a workday loss. Table 3 reports the consecutive days since the last recordable or reportable injury or incident causing damage to property, equipment, or vehicle for the period October 1 - December 31, 2007. There were no incidents this reporting period.

  18. Weatherization and Indoor Air Quality: Measured Impacts in Single Family Homes Under the Weatherization Assistance Program

    SciTech Connect (OSTI)

    Pigg, Scott; Cautley, Dan; Francisco, Paul; Hawkins, Beth A; Brennan, Terry M

    2014-09-01

    This report summarizes findings from a national field study of indoor air quality parameters in homes treated under the Weatherization Assistance Program (WAP). The study involved testing and monitoring in 514 single-family homes (including mobile homes) located in 35 states and served by 88 local weatherization agencies.

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operation quarterly report July 1 - September 30, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2010-10-26

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 2208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1987.20 hours (0.90 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continues, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) that the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1-September 30, 2010, for the fixed sites. Because the AMF operates episodically, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. This fourth quarter comprises a total of 2208 possible hours for the fixed and mobile sites. The average of the fixed sites exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has historically had a Central Facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. Beginning in the second quarter of FY2010, the SGP began a transition to a smaller footprint (150 km x 150 km) by rearranging the original instrumentation and new instrumentation made available through the American Recovery and Reinvestment Act of 2009 (ARRA). The Central Facility and 4 extended facilities will remain, but there will be up to 12 new surface characterization facilities, 4 radar facilities, and 3 profiler facilities sited in the smaller domain. This new configuration will provide observations at scales more appropriate to current and future climate models. The transition to the smaller footprint is ongoing through this quarter. The TWP locale has the Manus, Nauru, and Darwin sites. These sites will also have expanded measurement capabilities with the addition of new instrumentation made available through ARRA funds. It is anticipated that the new instrumentation at all the fixed sites will be in place by the end of calendar year 2011. AMF1 continues its 20-month deployment in Graciosa Island, the Azores, Portugal, that began on May 1, 2009. The AMF will also have additional observational capabilities by the end of 2011. The second ARM Mobile Facility (AMF2) was deployed this quarter to Steamboat Springs, Colorado, in support of the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX). The first field deployment of the second ARM Mobile Facility will be used to validate ARM-developed algorithms that convert the remote sensing measurements to cloud properties for liquid and mixed phase clouds. Although AMF2 is being set up this quarter, the official start date of the field campaign is not until November 1, 2010. This quarterly report provides the cumulative numbers of scientific user accounts by site for the period October 1, 2009-September 30, 2010.

  20. Systematic measurements of whole-body dose distributions for various treatment machines and delivery techniques in radiation therapy

    SciTech Connect (OSTI)

    Haelg, Roger A.; Besserer, Juergen; Schneider, Uwe

    2012-12-15

    Purpose: Contemporary radiotherapy treatment techniques, such as intensity-modulated radiation therapy and volumetric modulated arc therapy, could increase the radiation-induced malignancies because of the increased beam-on time, i.e., number of monitor units needed to deliver the same dose to the target and the larger volume irradiated with low doses. In this study, whole-body dose distributions from typical radiotherapy patient plans using different treatment techniques and therapy machines were measured using the same measurement setup and irradiation intention. Methods: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The dose distributions from 6 MV beams were compared in terms of treatment technique (3D-conformal, intensity-modulated radiation therapy, volumetric modulated arc therapy, helical TomoTherapy, stereotactic radiotherapy, hard wedges, and flattening filter-free radiotherapy) and therapy machine (Elekta, Siemens and Varian linear accelerators, Accuray CyberKnife and TomoTherapy). Results: Close to the target, the doses from intensity-modulated treatments (including flattening filter-free) were below the dose from a static treatment plan, whereas the CyberKnife showed a larger dose by a factor of two. Far away from the treatment field, the dose from intensity-modulated treatments showed an increase in dose from stray radiation of about 50% compared to the 3D-conformal treatment. For the flattening filter-free photon beams, the dose from stray radiation far away from the target was slightly lower than the dose from a static treatment. The CyberKnife irradiation and the treatment using hard wedges increased the dose from stray radiation by nearly a factor of three compared to the 3D-conformal treatment. Conclusions: This study showed that the dose outside of the treated volume is influenced by several sources. Therefore, when comparing different treatment techniques, the dose ratios vary with distance to the isocenter. The effective dose outside the treated volume of intensity-modulated treatments with or without flattening filter was 10%-30% larger when compared to 3D-conformal radiotherapy. This dose increase is much lower than the monitor unit scaled effective dose from a static treatment.

  1. ETA-HIQA01 - Audit of the Quality Assurance Program for the Control and Use of Measuring and Test Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HIQA01 Revision 0 Effective May 1, 2004 AUDIT OF THE QUALITY ASSURANCE PROGRAM FOR THE CONTROL AND USE OF MEASURING AND TEST EQUIPMENT Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Roberta Brayer Approved by: _______________________________________________ Date: _______________ Donald B. Karner Procedure ETA-HIQA01 Revision 0 2 2004 Electric Transportation Applications All Rights Reserved TABLE OF CONTENTS 1.0 Audit Objectives 3

  2. On the determination of reference levels for quality assurance of flattening filter free photon beams in radiation therapy

    SciTech Connect (OSTI)

    Clivio, Alessandro; Belosi, Maria Francesca; Cozzi, Luca; Nicolini, Giorgia; Vanetti, Eugenio; Fogliata, Antonella; Bolard, Grgory; Fenoglietto, Pascal; Krauss, Harald

    2014-02-15

    Purpose: New definitions for some dosimetric parameters for use in quality assurance of flattening filter free (FFF) beams generated by medical linear accelerators have been suggested. The present study aims to validate these suggestions and to propose possible reference levels. Methods: The main characteristics of FFF photon beams were described in terms of: field size, penumbra, unflatness, slope, and peak-position parameters. Data were collected for 6 and 10 MV-FFF beams from three different Varian TrueBeam Linacs. Measurements were performed with a 2D-array (Starcheck system from PTW-Freiburg) and with the portal dosimetry method GLAaS utilizing the build-in portal imager of TrueBeam. Data were also compared to ion chamber measurements. A cross check validation has been performed on a FFF beam of 6 MV generated by a Varian Clinac-iX upgraded to FFF capability. Results : All the parameters suggested to characterize the FFF beams resulted easily measurable and little variation was observed among different Linacs. Referring to two reference field sizes of 10 10 and 20 20 cm{sup 2}, at SDD = 100 cm and d = dmax, from the portal dosimetry data, the following results (averaging X and Y profiles) were obtained. Field size: 9.95 0.02 and 19.98 0.03 cm for 6 MV-FFF (9.94 0.02 and 19.98 0.03 cm for 10 MV-FFF). Penumbra: 2.7 0.3 and 2.9 0.3 mm for 6 MV-FFF (3.1 0.2 and 3.3 0.3 for 10 MV-FFF). Unflatness: 1.11 0.01 and 1.25 0.01 for 6 MV-FFF (1.21 0.01 and 1.50 0.01 for 10 MV-FFF). Slope: 0.320 0.020%/mm and 0.43 0.015%/mm for 6 MV-FFF (0.657 0.023%/mm and 0.795 0.017%/mm for 10 MV-FFF). Peak Position ?0.2 0.2 and ?0.4 0.2 mm for 6 MV-FFF (?0.3 0.2 and 0.7 0.3 mm for 10 MV-FFF). Results would depend upon measurement depth. With thresholds set to at least 95% confidence level from the measured data and to account for possible variations between detectors and methods and experimental settings, a tolerance set of: 1 mm for field size and penumbra, 0.04 for unflatness, 0.1%/mm for slope, and 1 mm for peak position could be proposed from our data. Conclusions : The parameters proposed for the characterization and routine control of stability of profiles of FFF beams appear to be a viable solution with a strong similarity to the conventional parameters used for flattened beams. The results from three different TrueBeams and the cross-validation against a Clinac-iX suggested the possible generalization of the methods and the possibility to use common tolerances for the parameters. The data showed also the reproducibility of beam characteristics among different systems (of the same vendor) and the resulting parameter values could therefore be possibly generalized.

  3. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - September 30, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-10-08

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The fourth quarter comprises a total of 2,208 hours. The average exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. HFE represents the AMF statistics for the Shouxian, China, deployment in 2008. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the research accounts are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; and the DMF at PNNL. In addition, the ACRF serves as a data repository for a long-term Arctic atmospheric observatory in Eureka, Canada (80 degrees 05 minutes N, 86 degrees 43 minutes W) as part of the multiagency Study of Environmental Arctic Change (SEARCH) Program. NOAA began providing instruments for the site in 2005, and currently cloud radar data are available. The intent of the site is to monitor the important components of the Arctic atmosphere, including clouds, aerosols, atmospheric radiation, and local-scale atmospheric dynamics. Because of the similarity of ACRF NSA data streams and the important synergy that can be formed between a network of Arctic atmospheric observations, much of the SEARCH observatory data are archived in the ARM archive. Instruments will be added to the site over time. For more information, please visit http://www.db.arm.gov/data. The designation for the archived Eureka data is YEU and is now included in the ACRF user metrics. This quarterly report provides the cumulative numbers of visitors and user accounts by site for the period October 1, 2007 - September 30, 2008. Table 2 shows the summary of cumulative users for the period October 1, 2007 - September 30, 2008. For the fourth quarter of FY 2008, the overall number of users is down substantially (about 30%) from last quarter. Most of this decrease resulted from a reduction in the ACRF Infrastructure users (e.g., site visits, research accounts, on-site device accounts, etc.) associated with the AMF China deployment. While users had easy access to the previous AMF deployment in Germany that resulted in all-time high user statistics, physical and remote access to on-site accounts are extremely limited for the AMF deployment in China. Furthermore, AMF data have not yet been released from China to the Data Management Facility for processing, which affects Archive user statistics. However, Archive users are only down about 10% from last quarter. Another reason for the apparent reduction in Archive users is that data from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), a major field campaign conducted on the North Slope of Alaska, are not yet available to users. For reporting purposes, the three ACRF sites and the AMF operate 24 hours per day, 7 days per week, and 52 weeks per year. Time is reported in days instead of hours. If any lost work time is incurred by any employee, it is counted as a workday loss. Table 3 reports the consecutive days since the last recordable or reportable injury or incident causing damage to property, equipment, or vehicle for the period July 1 - September 30, 2008. There were no incidents this reporting period.

  4. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-05-22

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period January 1 - March 31, 2008, for the fixed sites. The AMF is being deployed to China and is not in operation this quarter. The second quarter comprises a total of 2,184 hours. The average as well as the individual site values exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the research accounts are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; and the DMF at PNNL. In addition, the ACRF serves as a data repository for a long-term Arctic atmospheric observatory in Eureka, Canada (80 degrees 05 minutes N, 86 degrees 43 minutes W) as part of the multiagency Study of Environmental Arctic Change (SEARCH) Program. NOAA began providing instruments for the site in 2005, and currently cloud radar data are available. The intent of the site is to monitor the important components of the Arctic atmosphere, including clouds, aerosols, atmospheric radiation, and local-scale atmospheric dynamics. Because of the similarity of ACRF NSA data streams and the important synergy that can be formed between a network of Arctic atmospheric observations, much of the SEARCH observatory data are archived in the ARM archive. Instruments will be added to the site over time. For more information, please visit http://www.db.arm.gov/data. The designation for the archived Eureka data is YEU and is now included in the ACRF user metrics. This quarterly report provides the cumulative numbers of visitors and user accounts by site for the period April 1, 2007 - March 31, 2008. Table 2 shows the summary of cumulative users for the period April 1, 2007 - March 31, 2007. For the second quarter of FY 2008, the overall number of users was nearly as high as the last reporting period, in which a new record high for number of users was established. This quarter, a new record high was established for the number of user days, particularly due to the large number of field campaign activities in conjunction with the AMF deployment in Germany, as well as major field campaigns at the NSA and SGP sites. This quarter, 37% of the Archive users are ARM science-funded principal investigators and 23% of all other facility users are either ARM science-funded principal investigators or ACRF infrastructure personnel. For reporting purposes, the three ACRF sites and the AMF operate 24 hours per day, 7 days per week, and 52 weeks per year. Time is reported in days instead of hours. If any lost work time is incurred by any employee, it is counted as a workday loss. Table 3 reports the consecutive days since the last recordable or reportable injury or incident causing damage to property, equipment, or vehicle for the period January 1 - March 31, 2008. There were no incidents this reporting period.

  5. Mexico City air quality research initiative. Volume IV. Characterization and measurement

    SciTech Connect (OSTI)

    Mauzy, A.

    1994-04-01

    This volume describes the methods and the data gathered in an attempt to measure and characterize the meteorological factors and the concentration of different pollutants in the Mexico City Metropolitan Area. The main objective of this document was to provide input for the simulation models and to obtain information that could be used to test and improve the models` performance. Four field campaigns were conducted, as well as routine monitoring, in order to obtain a database of atmospheric dynamics and air pollution characteristics. Sections include Airborne measurements, Remote sensing measurements, and Traditional (in situ) measurements.

  6. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179

    SciTech Connect (OSTI)

    Bissonnette, Jean-Pierre; Balter, Peter A.; Dong Lei; Langen, Katja M.; Lovelock, D. Michael; Miften, Moyed; Moseley, Douglas J.; Pouliot, Jean; Sonke, Jan-Jakob; Yoo, Sua

    2012-04-15

    Purpose: Commercial CT-based image-guided radiotherapy (IGRT) systems allow widespread management of geometric variations in patient setup and internal organ motion. This document provides consensus recommendations for quality assurance protocols that ensure patient safety and patient treatment fidelity for such systems. Methods: The AAPM TG-179 reviews clinical implementation and quality assurance aspects for commercially available CT-based IGRT, each with their unique capabilities and underlying physics. The systems described are kilovolt and megavolt cone-beam CT, fan-beam MVCT, and CT-on-rails. A summary of the literature describing current clinical usage is also provided. Results: This report proposes a generic quality assurance program for CT-based IGRT systems in an effort to provide a vendor-independent program for clinical users. Published data from long-term, repeated quality control tests form the basis of the proposed test frequencies and tolerances.Conclusion: A program for quality control of CT-based image-guidance systems has been produced, with focus on geometry, image quality, image dose, system operation, and safety. Agreement and clarification with respect to reports from the AAPM TG-101, TG-104, TG-142, and TG-148 has been addressed.

  7. Attempt to measure magnetic hyperfine fields in metallic thin wires under spin Hall conditions using synchrotron-radiation Mssbauer spectroscopy

    SciTech Connect (OSTI)

    Mibu, K. Tanaka, M. A.; Mitsui, T.; Masuda, R.; Kitao, S.; Kobayashi, Y.; Seto, M.; Yoda, Y.

    2015-05-07

    Measurement of the magnetic hyperfine fields in metallic thin wires under spin Hall conditions was attempted using the emerging technique, synchrotron-radiation Mssbauer spectroscopy. A Mssbauer probe layer of {sup 57}Fe (0.2?nm), {sup 57}Fe (0.6?nm), or {sup 119}Sn (0.6?nm) was embedded as an electron spin detector near the surfaces of V, Au, Pt, and {sup 56}Fe wires. The magnitudes of the magnetic hyperfine fields at the {sup 57}Fe and {sup 119}Sn nuclear sites that could be enhanced by non-equilibrium conduction-electron spin polarization were measured both without and with the application of an electric current along the wire. Changes in the Mssbauer spectra were not clearly observed, indicating that the magnetic hyperfine field induced by non-equilibrium spin polarization is smaller than the detection limit at least for the measured systems and conditions.

  8. New and Improved Data Logging and Collection System for Atmospheric Radiation Measurement Climate Research Facility, Tropical Western Pacific, and North Slope of Alaska Sky Radiation, Ground Radiation, and MET Systems

    SciTech Connect (OSTI)

    Ritsche, M.T.; Holdridge, D.J.; Pearson, R.

    2005-03-18

    Aging systems and technological advances mandated changes to the data collection systems at the Atmospheric Radiation Measurement (ARM) Program's Tropical Western Pacific (TWP) and North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) sites. Key reasons for the upgrade include the following: achieve consistency across all ACRF sites for easy data use and operational maintenance; minimize the need for a single mentor requiring specialized knowledge and training; provide local access to real-time data for operational support, intensive operational period (IOP) support, and public relations; eliminate problems with physical packaging (condensation, connectors, etc.); and increase flexibility in programming and control of the data logger.

  9. Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes

    SciTech Connect (OSTI)

    Famiano, M.A.

    1997-07-07

    A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time ({approximately}1 {micro}s to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, {sup 137}Cs gamma rays, and electrons from a {sup 90}Sr/{sup 90}Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired.

  10. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2006.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2007-03-14

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period October 1 through December 31, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The first quarter comprises a total of 2,208 hours. For all fixed sites, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the first quarter of fiscal year (FY) 2007. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a Central Facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. NIM represents the AMF statistics for the current deployment in Niamey, Niger, Africa. PYE represents the AMF statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request an account on the local site data system. The eight research computers are located at the Barrow and Atqasuk sites; the SGP Central Facility; the TWP Manus, Nauru, and Darwin sites; the DMF at PNNL; and the AMF in Niger. This report provides the cumulative numbers of visitors and user accounts by site for the period January 1, 2006 - December 31, 2006. The U.S. Department of Energy requires national user facilities to report facility use by total visitor days-broken down by institution type, gender, race, citizenship, visitor role, visit purpose, and facility-for actual visitors and for active user research computer accounts. During this reporting period, the ACRF Archive did not collect data on user characteristics in this way. Work is under way to collect and report these data. Table 2 shows the summary of cumulative users for the period January 1, 2006 - December 31, 2006. For the first quarter of FY 2007, the overall number of users is up from the last reporting period. The historical data show that there is an apparent relationship between the total number of users and the 'size' of field campaigns, called Intensive Operation Periods (IOPs): larger IOPs draw more of the site facility resources, which are reflected by the number of site visits and site visit days, research accounts, and device accounts. These types of users typically collect and analyze data in near-real time for a site-specific IOP that is in progress. However, the Archive accounts represent persistent (year-to-year) ACRF data users that often mine from the entire collection of ACRF data, which mostly includes routine data from the fixed and mobile sites, as well as cumulative IOP data sets. Archive data users continue to show a steady growth, which is independent of the size of IOPs. For this quarter, the number of Archive data user accounts was 961, the highest since record-keeping began. For reporting purposes, the three ACRF sites and the AMF operate 24 hours per day, 7 days per week, and 52 weeks per year. Although the AMF is not officially collecting data this quarter, personnel are regularly involved with teardown, packing, hipping, unpacking, setup, and maintenance activities, so they are included in the safety statistics. Time is reported in days instead of hours. If any lost work time is incurred by any employee, it is counted as a workday loss. Table 3 reports the consecutive days since the last recordable or reportable injury or incident causing damage to property, equipment, or vehicle for the period October 1 - December 31, 2006. There were no recordable or lost workdays or incidents for the first quarter of FY 2007.

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1–September 30, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-10-15

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-07-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  13. Final Technical Report for Chief Scientist for Atmospheric Radiation Measurement (ARM) Aerial Vehicle Program (AVP)

    SciTech Connect (OSTI)

    Greg M. McFarquhar

    2011-10-21

    The major responsibilities of the PI were identified as 1) the formulation of campaign plans, 2) the representation of AVP in various scientific communities inside and outside of ARM and the associated working groups, 3) the coordination and selection of the relative importance of the three different focus areas (routine observations, IOPs, instrument development program), 4) the examination and quality control of the data collected by AVP, and 5) providing field support for flight series. This report documents the accomplishments in each of these focus areas for the 3 years of funding for the grant that were provided.

  14. Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

  15. Solar UV radiation exposure of seamen - Measurements, calibration and model calculations of erythemal irradiance along ship routes

    SciTech Connect (OSTI)

    Feister, Uwe; Meyer, Gabriele; Kirst, Ulrich

    2013-05-10

    Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels. The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.

  16. Lesson 4- Ionizing Radiation

    Broader source: Energy.gov [DOE]

    Lesson Three showed that unstable isotopes emit energy as they become more stable. This energy is known as radiation. This lesson explores forms of radiation, where radiation is found, how we detect and measure radiation, what sources of radiation people are exposed to, whether radiation is harmful, and how we can limit our exposure.

  17. Assessment of Quality Assurance Measures for Radioactive Material Transport Packages not Requiring Competent Authority Design Approval - 13282

    SciTech Connect (OSTI)

    Komann, Steffen; Groeke, Carsten; Droste, Bernhard

    2013-07-01

    The majority of transports of radioactive materials are carried out in packages which don't need a package design approval by a competent authority. Low-active radioactive materials are transported in such packages e.g. in the medical and pharmaceutical industry and in the nuclear industry as well. Decommissioning of NPP's leads to a strong demand for packages to transport low and middle active radioactive waste. According to IAEA regulations the 'non-competent authority approved package types' are the Excepted Packages and the Industrial Packages of Type IP-1, IP-2 and IP-3 and packages of Type A. For these types of packages an assessment by the competent authority is required for the quality assurance measures for the design, manufacture, testing, documentation, use, maintenance and inspection (IAEA SSR 6, Chap. 306). In general a compliance audit of the manufacturer of the packaging is required during this assessment procedure. Their regulatory level in the IAEA regulations is not comparable with the 'regulatory density' for packages requiring competent authority package design approval. Practices in different countries lead to different approaches within the assessment of the quality assurance measures in the management system as well as in the quality assurance program of a special package design. To use the package or packaging in a safe manner and in compliance with the regulations a management system for each phase of the life of the package or packaging is necessary. The relevant IAEA-SSR6 chap. 801 requires documentary verification by the consignor concerning package compliance with the requirements. (authors)

  18. Can We Predict Plan Quality for External Beam Partial Breast Irradiation: Results of a Multicenter Feasibility Study (Trans Tasman Radiation Oncology Group Study 06.02)

    SciTech Connect (OSTI)

    Kron, Tomas; Willis, David; Link, Emma; Lehman, Margot; Campbell, Gillian; O'Brien, Peter; Chua, Boon

    2013-11-15

    Purpose: Partial breast irradiation (PBI) after lumpectomy may be an option for selected patients with early breast cancer. A feasibility study of accelerated PBI delivered using external beam 3-dimensional conformal radiation therapy (RT) was undertaken at 8 Australasian centers. The present study evaluated the impact of patient, tumor, and RT technique-related factors on the quality of RT plans as determined by the dosevolume parameters of organs at risk. Methods and Materials: Forty-eight patients were enrolled in the study. All RT plans were centrally reviewed using predefined dosimetric criteria before commencement and after completion of protocol therapy. The RT plans of 47 patients met the dosevolume constraints, and all 47 patients received PBI to a prescribed dose of 38.5 Gy in 10 fractions. The RT plan quality was determined by volumes of the ipsilateral whole breast, lung, and heart that received 50% and 95%; 30%; and 5% of the prescribed dose, respectively. Patient, tumor, and RT technique-related factors were investigated for association with the parameters of RT plan quality. Results: The ratio of the planning target volume to the ipsilateral whole-breast volume was significantly associated with the ipsilateral breast doses on multiple variable analyses. The distance of the postlumpectomy surgical cavity from the heart and lung were predictive for heart and lung doses, respectively. A distance between surgical cavity and heart of >4 cm typically resulted in <1% of the heart volume receiving 5 Gy or less. It was more difficult to meet the heart dose constraint for left-sided and medially located tumors. Conclusions: Partial breast irradiation using 3-dimensional conformal RT was feasible within the study constraints. The ratio of planning target volume to ipsilateral whole-breast volume and the distance of surgical cavity from the heart were significant predictors of the quality of treatment plan for external beam PBI.

  19. Aerial Radiation Measurements from the Fukushima Dai-ichi Nuclear Power Plant Accident

    SciTech Connect (OSTI)

    Guss, P. P.

    2012-07-16

    This document is a slide show type presentation concerning DOE and Aerial Measuring System (AMS) activities and results with respect to assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. These include ground monitoring and aerial monitoring.

  20. Atmospheric Radiation Measurement (ARM) Data from Oliktok Point, Alaska (an AMF3 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARMs third and newest ARM Mobile Facility, or AMF3. The AMF3 is gathering data using about two dozen instruments that obtain continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. Site operators will also fly manned and unmanned aircraft over sea ice, drop instrument probes and send up tethered balloons. The combination of atmospheric observations with measurements from both the ground and over the Arctic Ocean will give researchers a better sense of why the Arctic sea ice has been fluctuating in fairly dramatic fashion over recent years. AMF3 will be stationed at Oliktok Point.

  1. Betatron radiation based measurement of the electron-beam size in a wakefield accelerator

    SciTech Connect (OSTI)

    Schnell, Michael; Saevert, Alexander; Reuter, Maria; and others

    2012-07-09

    We present a spatial and spectral characterization of a laser-plasma based betatron source which allows us to determine the betatron oscillation amplitude of the electrons which decreases with increasing electron energies. Due to the observed oscillation amplitude and the independently measured x-ray source size of (1.8{+-}0.3){mu}m we are able to estimate the electron bunch diameter to be (1.6{+-}0.3){mu}m.

  2. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering

    SciTech Connect (OSTI)

    Braicovich, L. Minola, M.; Dellea, G.; Ghiringhelli, G.; Le Tacon, M.; Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B.; Supruangnet, R.

    2014-11-15

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

  3. Radiation environment simulations at the Tevatron, studies of the beam profile and measurement of the Bc meson mass

    SciTech Connect (OSTI)

    Nicolas, Ludovic Y.

    2005-09-01

    The description of a computer simulation of the CDF detector at Fermilab and the adjacent accelerator parts is detailed, with MARS calculations of the radiation background in various elements of the model due to the collision of beams and machine-related losses. Three components of beam halo formation are simulated for the determination of the principal source of radiation background in CDF due to beam losses. The effect of a collimator as a protection for the detector is studied. The simulation results are compared with data taken by a CDF group. Studies of a 150 GeV Tevatron proton beam are performed to investigate the transverse diffusion growth and distribution. A technique of collimator scan is used to scrape the beam under various experimental conditions, and computer programs are written for the beam reconstruction. An average beam halo growth speed is given and the potential of beam tail reconstruction using the collimator scan is evaluated. A particle physics analysis is conducted in order to detect the B{sub c} {yields} J/{psi}{pi} decay signal with the CDF Run II detector in 360 pb{sup -1} of data. The cut variables and an optimization method to determine their values are presented along with a criterion for the detection threshold of the signal. The mass of the B{sub c} meson is measured with an evaluation of the significance of the signal.

  4. Diagnostic quality of mammograms obtained with a new low-radiation-dose dual-screen and dual-emulsion film combination

    SciTech Connect (OSTI)

    Wojtasek, D.A.; Teixidor, H.S.; Govoni, A.F.; Gareen, I.F. )

    1990-02-01

    We evaluated the image quality of mammograms made by using a new dual-screen, dual-emulsion film combination (Kodak Min-R Fast screen, T-Mat Mll film) that permits reduction of radiation exposure by approximately 50% when compared with a standard single-screen, single-emulsion film system (Kodak Min-R screen, OM-1 film). This new film has been improved when compared with earlier T-Mat M film, including the introduction of an inert dye to reduce light crossover to essentially 0%. Mammogram pairs made with the dual-emulsion film combination and the standard single-emulsion film combination were obtained in 50 patients otherwise undergoing routine mammography. The image pairs were randomized and evaluated by three radiologists who used a three-point scale (better, same, or worse). Each pair was evaluated with regard to parenchymal contrast, sharpness, and latitude, as well as the number and sharpness of calcifications (n = 19) and sharpness of masses (n = 12) when present. All three observers found the dual-emulsion film combination to be better than or the same as the standard with regard to parenchymal sharpness (94-100%), the number and sharpness of calcifications (98-100%), and sharpness of masses (100%). Two observers found the dual-emulsion film combination to be significantly worse (p less than .05) than the standard with respect to parenchymal contrast (72%, 86%), and all three observers rated it significantly worse for film latitude (14 to 42%). Our results suggest that this new dual-emulsion film combination that allows mammography to be performed with less radiation exposure can be used without loss of image quality.

  5. Atmospheric Radiation Measurement (ARM) Data from Manacapuru, Brazil for the Green Ocean Amazon (GOAMAZON) Field Campaign

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Amazon rain forest in Brazil is the largest broadleaf forest in the world, covering 7 million square kilometers of the Amazon Basin in South America. It represents over half of the planets remaining rain forests, and comprises the most biodiverse tract of tropical rain forest on the planet. Due to the sheer size of the Amazon rain forest, the area has a strong impact on the climate in the Southern Hemisphere. To understand the intricacies of the natural state of the Amazon rain forest, the Green Ocean Amazon, or GOAMAZON, field campaign is a two-year scientific collaboration among U.S. and Brazilian research organizations. They are conducting a variety of different experiments with dozens of measurement tools, using both ground and aerial instrumentation, including the ARM Aerial Facility's G-1 aircraft. For more information on the holistic view of the campaign, see the Department of Energys GOAMAZON website. As a critical component of GOAMAZON, the ARM Mobile Facility (AMF) will obtain measurements near Manacapuru, south of Manaus, Brazil, from January to December 2014. The city of Manaus, with a population of 3 million, uses high-sulfur oil as their primary source of electricity. The AMF site is situated to measure the atmospheric extremes of a pristine atmosphere and the nearby cities pollution plume, as it regularly intersects with the site. Along with other instrument systems located at the Manacapuru site, this deployment will enable scientists to study how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity.

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1–December 31, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2010-01-15

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  7. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1–March 31, 2011

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-04-11

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-07-25

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  9. Synchrotron radiation-based Mössbauer spectra of {sup 174}Yb measured with internal conversion electrons

    SciTech Connect (OSTI)

    Masuda, Ryo Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina; Mitsui, Takaya; Iga, Fumitoshi; Seto, Makoto

    2014-02-24

    A detection system for synchrotron-radiation (SR)-based Mössbauer spectroscopy was developed to enhance the nuclear resonant scattering counting rate and thus increase the available nuclides. In the system, a windowless avalanche photodiode (APD) detector was combined with a vacuum cryostat to detect the internal conversion (IC) electrons and fluorescent X-rays accompanied by nuclear de-excitation. As a feasibility study, the SR-based Mössbauer spectrum using the 76.5 keV level of {sup 174}Yb was observed without {sup 174}Yb enrichment of the samples. The counting rate was five times higher than that of our previous system, and the spectrum was obtained within 10 h. This result shows that nuclear resonance events can be more efficiently detected by counting IC electrons for nuclides with high IC coefficients. Furthermore, the windowless detection system enables us to place the sample closer to the APD elements and is advantageous for nuclear resonant inelastic scattering measurements. Therefore, this detection system can not only increase the number of nuclides accessible in SR-based Mössbauer spectroscopy but also allows the nuclear resonant inelastic scattering measurements of small single crystals or enzymes with dilute probe nuclides that are difficult to measure with the previous detection system.

  10. Real-Time Pretreatment Review Limits Unacceptable Deviations on a Cooperative Group Radiation Therapy Technique Trial: Quality Assurance Results of RTOG 0933

    SciTech Connect (OSTI)

    Gondi, Vinai; Cui, Yunfeng; Mehta, Minesh P.; Manfredi, Denise; Xiao, Ying; Galvin, James M.; Rowley, Howard; Tome, Wolfgang A.

    2015-03-01

    Purpose: RTOG 0933 was a phase II trial of hippocampal avoidance during whole brain radiation therapy for patients with brain metastases. The results demonstrated improvement in short-term memory decline, as compared with historical control individuals, and preservation of quality of life. Integral to the conduct of this trial were quality assurance processes inclusive of pre-enrollment credentialing and pretreatment centralized review of enrolled patients. Methods and Materials: Before enrolling patients, all treating physicians and sites were required to successfully complete a “dry-run” credentialing test. The treating physicians were credentialed based on accuracy of magnetic resonance imaging–computed tomography image fusion and hippocampal and normal tissue contouring, and the sites were credentialed based on protocol-specified dosimetric criteria. Using the same criteria, pretreatment centralized review of enrolled patients was conducted. Physicians enrolling 3 consecutive patients without unacceptable deviations were permitted to enroll further patients without pretreatment review, although their cases were reviewed after treatment. Results: In all, 113 physicians and 84 sites were credentialed. Eight physicians (6.8%) failed hippocampal contouring on the first attempt; 3 were approved on the second attempt. Eight sites (9.5%) failed intensity modulated radiation therapy planning on the first attempt; all were approved on the second attempt. One hundred thirteen patients were enrolled in RTOG 0933; 100 were analyzable. Eighty-seven cases were reviewed before treatment; 5 (5.7%) violated the eligibility criteria, and 21 (24%) had unacceptable deviations. With feedback, 18 cases were approved on the second attempt and 2 cases on the third attempt. One patient was treated off protocol. Twenty-two cases were reviewed after treatment; 1 (4.5%) violated the eligibility criteria, and 5 (23%) had unacceptable deviations. Conclusions: Although >95% of the cases passed the pre-enrollment credentialing, the pretreatment centralized review disqualified 5.7% of reviewed cases, prevented unacceptable deviations in 24% of reviewed cases, and limited the final unacceptable deviation rate to 5%. Thus, pretreatment review is deemed necessary in future hippocampal avoidance trials and is potentially useful in other similarly challenging radiation therapy technique trials.

  11. SU-E-I-89: Assessment of CT Radiation Dose and Image Quality for An Automated Tube Potential Selection Algorithm Using Pediatric Anthropomorphic and ACR Phantoms

    SciTech Connect (OSTI)

    Mahmood, U; Erdi, Y; Wang, W

    2014-06-01

    Purpose: To assess the impact of General Electrics automated tube potential algorithm, kV assist (kVa) on radiation dose and image quality, with an emphasis on optimizing protocols based on noise texture. Methods: Radiation dose was assessed by inserting optically stimulated luminescence dosimeters (OSLs) throughout the body of a pediatric anthropomorphic phantom (CIRS). The baseline protocol was: 120 kVp, 80 mA, 0.7s rotation time. Image quality was assessed by calculating the contrast to noise ratio (CNR) and noise power spectrum (NPS) from the ACR CT accreditation phantom. CNRs were calculated according to the steps described in ACR CT phantom testing document. NPS was determined by taking the 3D FFT of the uniformity section of the ACR phantom. NPS and CNR were evaluated with and without kVa and for all available adaptive iterative statistical reconstruction (ASiR) settings, ranging from 0 to 100%. Each NPS was also evaluated for its peak frequency difference (PFD) with respect to the baseline protocol. Results: For the baseline protocol, CNR was found to decrease from 0.460 0.182 to 0.420 0.057 when kVa was activated. When compared against the baseline protocol, the PFD at ASiR of 40% yielded a decrease in noise magnitude as realized by the increase in CNR = 0.620 0.040. The liver dose decreased by 30% with kVa activation. Conclusion: Application of kVa reduces the liver dose up to 30%. However, reduction in image quality for abdominal scans occurs when using the automated tube voltage selection feature at the baseline protocol. As demonstrated by the CNR and NPS analysis, the texture and magnitude of the noise in reconstructed images at ASiR 40% was found to be the same as our baseline images. We have demonstrated that 30% dose reduction is possible when using 40% ASiR with kVa in pediatric patients.

  12. Measurements of net radiation, ground heat flux and surface temperature in an urban canyon

    SciTech Connect (OSTI)

    Gouveia, F J; Leach, M J; Shinn, J H

    2003-11-06

    The Joint Urban 2003 (JU2003) field study was conducted in Oklahoma City in July 2003 to collect data to increase our knowledge of dispersion in urban areas. Air motions in and around urban areas are very complicated due to the influence of urban structures on both mechanical and thermal forcing. During JU2003, meteorological instruments were deployed at various locations throughout the urban area to characterize the processes that influence dispersion. Some of the instruments were deployed to characterize urban phenomena, such as boundary layer development. In addition, particular sites were chosen for more concentrated measurements to investigate physical processes in more detail. One such site was an urban street canyon on Park Avenue between Broadway and Robinson Avenues in downtown Oklahoma City. The urban canyon study was designed to examine the processes that control dispersion within, into and out of the urban canyon. Several towers were deployed in the Park Avenue block, with multiple levels on each tower for observing the wind using sonic anemometers. Infrared thermometers, net radiometers and ground heat flux plates were deployed on two of the towers midway in the canyon to study the thermodynamic effects and to estimate the surface energy balance. We present results from the surface energy balance observations.

  13. Adaptors for radiation detectors

    DOE Patents [OSTI]

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  14. Adaptors for radiation detectors

    DOE Patents [OSTI]

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  15. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-09-30

    Description. Individual raw data streams from instrumentation at the ACRF fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at PNNL for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The DOE requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) site is 1,987.2 hours (0.90 2,208), and that for the Tropical Western Pacific (TWP) site is 1,876.8 hours (0.85 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter.

  16. SU-E-I-81: Assessment of CT Radiation Dose and Image Quality for An Automated Tube Potential Selection Algorithm Using Adult Anthropomorphic and ACR Phantoms

    SciTech Connect (OSTI)

    Mahmood, U; Erdi, Y; Wang, W

    2014-06-01

    Purpose: To assess the impact of General Electrics (GE) automated tube potential algorithm, kV assist (kVa) on radiation dose and image quality, with an emphasis on optimizing protocols based on noise texture. Methods: Radiation dose was assessed by inserting optically stimulated luminescence dosimeters (OSLs) throughout the body of an adult anthropomorphic phantom (CIRS). The baseline protocol was: 120 kVp, Auto mA (180 to 380 mA), noise index (NI) = 14, adaptive iterative statistical reconstruction (ASiR) of 20%, 0.8s rotation time. Image quality was evaluated by calculating the contrast to noise ratio (CNR) and noise power spectrum (NPS) from the ACR CT accreditation phantom. CNRs were calculated according to the steps described in ACR CT phantom testing document. NPS was determined by taking the 3D FFT of the uniformity section of the ACR phantom. NPS and CNR were evaluated with and without kVa and for all available adaptive iterative statistical reconstruction (ASiR) settings, ranging from 0 to 100%. Each NPS was also evaluated for its peak frequency difference (PFD) with respect to the baseline protocol. Results: The CNR for the adult male was found to decrease from CNR = 0.912 0.045 for the baseline protocol without kVa to a CNR = 0.756 0.049 with kVa activated. When compared against the baseline protocol, the PFD at ASiR of 40% yielded a decrease in noise magnitude as realized by the increase in CNR = 0.903 0.023. The difference in the central liver dose with and without kVa was found to be 0.07%. Conclusion: Dose reduction was insignificant in the adult phantom. As determined by NPS analysis, ASiR of 40% produced images with similar noise texture to the baseline protocol. However, the CNR at ASiR of 40% with kVa fails to meet the current ACR CNR passing requirement of 1.0.

  17. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 1999 ARM Facilities Newsletter is published by Argonne National Laboratory, a multiprogram laboratory operated by The University of Chicago under contract W-31-109-Eng-38 ...

  18. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 1999 ARM Facilities Newsletter is published by Argonne National Laboratory, a multiprogram laboratory operated by The University of Chicago under contract W-31-109-Eng-38 with ...

  19. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 1999 ARM Facilities Newsletter is published by Argonne National Laboratory, a multiprogram laboratory operated by The University of Chicago under contract W-31-109-Eng-38 ...

  20. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 1999 ARM Facilities Newsletter is published by Argonne National Laboratory, a multiprogram laboratory operated by The University of Chicago under contract W-31-109-Eng-38 with ...

  1. Simulations of Clouds and Sensitivity Study by Weather Research and Forecast Model for Atmospheric Radiation Measurement Case 4

    SciTech Connect (OSTI)

    Wu, J.; Zhang, M.

    2005-03-18

    One of the large errors in general circulation models (GCMs) cloud simulations is from the mid-latitude, synoptic-scale frontal cloud systems. Now, with the availability of the cloud observations from Atmospheric Radiation Measurement (ARM) 2000 cloud Intensive Operational Period (IOP) and other observational datasets, the community is able to document the model biases in comparison with the observations and make progress in development of better cloud schemes in models. Xie et al. (2004) documented the errors in midlatitude frontal cloud simulations for ARM Case 4 by single-column models (SCMs) and cloud resolving models (CRMs). According to them, the errors in the model simulated cloud field might be caused by following reasons: (1) lacking of sub-grid scale variability; (2) lacking of organized mesoscale cyclonic advection of hydrometeors behind a moving cyclone which may play important role to generate the clouds there. Mesoscale model, however, can be used to better under stand these controls on the subgrid variability of clouds. Few studies have focused on applying mesoscale models to the forecasting of cloud properties. Weaver et al. (2004) used a mesoscale model RAMS to study the frontal clouds for ARM Case 4 and documented the dynamical controls on the sub-GCM-grid-scale cloud variability.

  2. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface water, storm water and springs. April 12, 2012 Quarterly Groundwater monitoring attended by LANL managers and the Northern New Mexico Citizens Advisory Board LANL scientists brief the Northern New Mexico Citizens Advisory Board during quarterly groundwater monitoring of the well network around Area G. Contact

  3. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    SciTech Connect (OSTI)

    SA Edgerton; LR Roeder

    2008-09-30

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  4. Comparison of an electro-optical system and photo-conducting antenna employed as detectors of pulsed terahertz radiation by means of a new method for measuring spectral width

    SciTech Connect (OSTI)

    Grachev, Ya V; Osipova, M O; Bespalov, V G

    2014-12-31

    Two detection systems, electro-optical system and photoconducting system, are tested by the method suggested previously for determining the boundaries of broadband terahertz radiation in time-domain spectroscopy. From a series of measurements the error in determining the operation ranges is calculated. The terahertz spectrometer with an electro-optical detector based on a ZnTe (110) crystal of thickness 2 mm has the operation spectral range of 0.059 1.092 THz. The detector utilizing an iPCA-21-05-1000-800-h photo-conducting antenna with the same source of signal demonstrates a wider operation band ranging from 0.017 to 1.6 THz. The method developed makes it possible to experimentally compare the parameters of the considered terahertz spectrometers obtained under the same quality of adjustment. (laser applications and other topics in quantum electronics)

  5. Relative output factor and beam profile measurements of small radiation fields with an L-alanine/K-Band EPR minidosimeter

    SciTech Connect (OSTI)

    Chen Abrego, Felipe; Calcina, Carmen Sandra Guzman; Almeida, Adelaide de; Almeida, Carlos Eduardo de; Baffa, Oswaldo

    2007-05-15

    The performance of an L-alanine dosimeter with millimeter dimensions was evaluated for dosimetry in small radiation fields. Relative output factor (ROF) measurements were made for 0.5x0.5, 1x1, 3x3, 5x5, 10x10 cm{sup 2} square fields and for 5-, 10-, 20-, 40-mm-diam circular fields. In beam profile (BP) measurements, only 1x1, 3x3, 5x5 cm{sup 2} square fields and 10-, 20-, 40-mm-diam circular fields were used. For square and circular field irradiations, Varian/Clinac 2100, and a Siemens/Mevatron 6 MV linear accelerators were used, respectively. For a batch of 800 L-alanine minidosimeters (miniALAs) the average mass was 4.3{+-}0.5 (1{sigma}) mg, the diameter was 1.22{+-}0.07 (1{sigma}) mm, and the length was 3.5{+-}0.2 (1{sigma}) mm. A K-Band (24 GHz) electron paramagnetic resonance (EPR) spectrometer was used for recording the spectrum of irradiated and nonirradiated miniALAs. To evaluate the performance of the miniALAs, their ROF and BP results were compared with those of other types of detectors, such as an ionization chamber (PTW 0.125 cc), a miniTLD (LiF: Mg,Cu,P), and Kodak/X-Omat V radiographic film. Compared to other dosimeters, the ROF results for miniALA show differences of up to 3% for the smallest fields and 7% for the largest ones. These differences were within the miniALA experimental uncertainty ({approx}5-6% at 1{sigma}). For BP measurements, the maximum penumbra width difference observed between miniALA and film (10%-90% width) was less than 1 mm for square fields and within 1-2 mm for circular fields. These penumbra width results indicate that the spatial resolution of the miniALA is comparable to that of radiographic film and its dimensions are adequate for the field sizes used in this experiment. The K-Band EPR spectrometer provided adequate sensitivity for assessment of miniALAs with doses of the order of tens of Grays, making this dosimetry system (K-Band/miniALA) a potential candidate for use in radiosurgery dosimetry.

  6. An Evaluation of the Nonlinearity Correction Applied to Atmospheric Emitted Radiance Interferometer (AERI) Data Collected by the Atmospheric Radiation Measurement Program

    SciTech Connect (OSTI)

    Turner, DD; Revercomb, HE; Knuteson, RO; Dedecker, RG; Feltz, WF

    2004-09-01

    Mercury Cadmium Telluride (MCT) detectors provide excellent sensitivity to infrared radiation and are used in passive infrared remote sensors such as the Atmospheric Emitted Radiance Interferometer (AERI). However, MCT detectors have a nonlinear response and thus this nonlinearity must be characterized and corrected to provide accurate infrared radiance observations. This paper discusses the significance of the nonlinearity correction applied to AERI data and its impacts on the parameters retrieved from the AERI spectra. It also evaluates the accuracy of the scheme used to determine the nonlinearity of the MCT detectors used in the Atmospheric Radiation Measurement (ARM) Programs AERIs.

  7. A Year of Radiation Measurements at the North Slope of Alaska Second Quarter 2009 ARM and Climate Change Prediction Program Metric Report

    SciTech Connect (OSTI)

    S.A. McFarlane, Y. Shi, C.N. Long

    2009-04-15

    In 2009, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the second quarter metrics are reported in Evaluation of Simulated Precipitation in CCSM3: Annual Cycle Performance Metrics at Watershed Scales. For ARM, the metrics will produce and make available new continuous time series of radiative fluxes based on one year of observations from Barrow, Alaska, during the International Polar Year and report on comparisons of observations with baseline simulations of the Community Climate System Model (CCSM).

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations Cumulative Quarterly Report October 1, 2003 - September 30, 2004

    SciTech Connect (OSTI)

    DL Sisterson

    2004-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 365 days per year) the instruments were operating.

  9. Final Report – Study of Shortwave Spectra in Fully 3D Environment. Synergy Between Scanning Radars and Spectral Radiation Measurements

    SciTech Connect (OSTI)

    Chiu, Jui-Yuan

    2015-09-14

    ARM set out 20 years ago to “close” the radiation problem, that is, to improve radiation models to the point where they could routinely predict the observed spectral radiation fluxes knowing the optical properties of the surface and of gases, clouds and aerosols in the atmosphere. Only then could such radiation models form a proper springboard for global climate model (GCM) parameterizations of spectral radiation. Sustained efforts have more or less achieved that goal with regard to longwave radiation; ASR models now routinely predict ARM spectral longwave radiances to 1–2%. Similar efforts in the shortwave have achieved far less; the successes are mainly for carefully selected 1D stratiform cloud cases. Such cases amount, even with the most optimistic interpretation, to no more than 30% of all cases at SGP. The problem has not been lack of effort but lack of appropriate instruments.The new ARM stimulus-funded instruments, with their new capabilities, will dramatically improve this situation and once again make progress possible on the shortwave problem. The new shortwave spectrometers will provide a reliable, calibrated record including the near infrared – and for other climatic regimes than SGP. The new scanning radars will provide the 3D cloud view, making it possible to tackle fully 3D situations. Thus, our main theme for the project is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars and shortwave spectrometers with the arsenal of radiative transfer tools.

  10. SOLAR RADIATION PRESSURE AND LOCAL INTERSTELLAR MEDIUM FLOW PARAMETERS FROM INTERSTELLAR BOUNDARY EXPLORER LOW ENERGY HYDROGEN MEASUREMENTS

    SciTech Connect (OSTI)

    Schwadron, N. A.; Moebius, E.; Kucharek, H.; Lee, M. A.; French, J.; Saul, L.; Wurz, P.; Bzowski, M.; Fuselier, S. A.; Livadiotis, G.; McComas, D. J.; Frisch, P.; Gruntman, M.; Mueller, H. R.

    2013-10-01

    Neutral hydrogen atoms that travel into the heliosphere from the local interstellar medium (LISM) experience strong effects due to charge exchange and radiation pressure from resonant absorption and re-emission of Ly?. The radiation pressure roughly compensates for the solar gravity. As a result, interstellar hydrogen atoms move along trajectories that are quite different than those of heavier interstellar species such as helium and oxygen, which experience relatively weak radiation pressure. Charge exchange leads to the loss of primary neutrals from the LISM and the addition of new secondary neutrals from the heliosheath. IBEX observations show clear effects of radiation pressure in a large longitudinal shift in the peak of interstellar hydrogen compared with that of interstellar helium. Here, we compare results from the Lee et al. interstellar neutral model with IBEX-Lo hydrogen observations to describe the distribution of hydrogen near 1 AU and provide new estimates of the solar radiation pressure. We find over the period analyzed from 2009 to 2011 that radiation pressure divided by the gravitational force (?) has increased slightly from ? = 0.94 0.04 in 2009 to ? = 1.01 0.05 in 2011. We have also derived the speed, temperature, source longitude, and latitude of the neutral H atoms and find that these parameters are roughly consistent with those of interstellar He, particularly when considering the filtration effects that act on H in the outer heliosheath. Thus, our analysis shows that over the period from 2009 to 2011, we observe signatures of neutral H consistent with the primary distribution of atoms from the LISM and a radiation pressure that increases in the early rise of solar activity.

  11. NRC TLD Direct Radiation Monitoring Network progress report, October--December 1994. Volume 14, No. 4

    SciTech Connect (OSTI)

    Struckmeyer, R.

    1995-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1994. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  12. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    SciTech Connect (OSTI)

    Struckmeyer, R.

    1997-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  13. On the Results of Measurements of the Direct Sun Radiation Flux by Actinometer and of Maximal Polarization of Sky Brightness in the Solar Almucantar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the Results of Measurements of the Direct Sun Radiation Flux by Actinometer and of Maximal Polarization of Sky Brightness in the Solar Almucantar A. Kh. Shukurov, K. A. Shukurov, and G. S. Golitsyn A. M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences Moscow, Russia Introduction It is well known that analysis of variations of sky brightness, B, in the visible points to a close correlation between the degree of maximal polarization, P M , in the solar almucantar (with

  14. Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site During the May 2003 Aerosol IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site During the May 2003 Aerosol IOP B. Schmid and J. Redemann Bay Area Environmental Research Institute National Aeronautics and Space Administration Ames Research Center Moffett Field, California W. P. Arnott Desert Research Institute Reno, Nevada A. Bucholtz and J. Reid Naval Research Laboratory Monterey, California P. Colarco Earth System Science Interdisciplinary Center

  15. The procedures manual of the Environmental Measurements Laboratory. Volume 1, 28. edition

    SciTech Connect (OSTI)

    Chieco, N.A. [ed.

    1997-02-01

    This manual covers procedures and technology currently in use at the Environmental Measurements Laboratory. An attempt is made to be sure that all work carried out will be of the highest quality. Attention is focused on the following areas: quality assurance; sampling; radiation measurements; analytical chemistry; radionuclide data; special facilities; and specifications.

  16. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    Chiu, Jui-Yuan Christine

    2014-04-10

    This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS’ high sampling resolution to study the “twilight zone” around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARM’s 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARM’s operational data processing.

  17. Simulating Black Carbon and Dust and their Radiative Forcing in Seasonal Snow: A Case Study over North China with Field Campaign Measurements

    SciTech Connect (OSTI)

    Zhao, Chun; Hu, Zhiyuan; Qian, Yun; Leung, Lai-Yung R.; Huang, J.; Huang, Maoyi; Jin, Jiming; Flanner, M. G.; Zhang, Rudong; Wang, Hailong; Yan, Huiping; Lu, Zifeng; Streets, D. G.

    2014-10-30

    A state-of-the-art regional model, WRF-Chem, is coupled with the SNICAR model that includes the sophisticated representation of snow metamorphism processes available for climate study. The coupled model is used to simulate the black carbon (BC) and dust concentrations and their radiative forcing in seasonal snow over North China in January-February of 2010, with extensive field measurements used to evaluate the model performance. In general, the model simulated spatial variability of BC and dust mass concentrations in the top snow layer (hereafter BCS and DSTS, respectively) are quantitatively or qualitatively consistent with observations. The model generally moderately underestimates BCS in the clean regions but significantly overestimates BCS in some polluted regions. Most model results fall into the uncertainty ranges of observations. The simulated BCS and DSTS are highest with >5000 ng g-1 and up to 5 mg g-1, respectively, over the source regions and reduce to <50 ng g-1 and <1 ?g g-1, respectively, in the remote regions. BCS and DSTS introduce similar magnitude of radiative warming (~10 W m-2) in snowpack, which is comparable to the magnitude of surface radiative cooling due to BC and dust in the atmosphere. This study represents the first effort in using a regional modeling framework to simulate BC and dust and their direct radiative forcing in snow. Although a variety of observational datasets have been used to attribute model biases, some uncertainties in the results remain, which highlights the need for more observations, particularly concurrent measurements of atmospheric and snow aerosols and the deposition fluxes of aerosols, in future campaigns.

  18. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetic fluctuation-induced particle flux "invited... a... W. X. Ding, D. L. Brower, and T. Y. Yates Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, California 90095, USA ͑Presented 13 May 2008; received 12 May 2008; accepted 16 May 2008; published online 31 October 2008͒ Magnetic field fluctuation-induced particle transport has been directly measured in the high-temperature core of the MST reversed field pinch plasma. Measurement of radial

  19. How is the Data Quality Office Doing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How is the Data Quality Office Doing? K. L. Sonntag, R. A. Peppler, A. R. Dean, and C. M. Shafer Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Introduction The Atmospheric Radiation Measurement (ARM) Program has collected data from its Southern Great Plains (SGP) climate research facility since late 1992, from its Tropical Western Pacific (TWP) site since 1996, and from its North Slope of Alaska (NSA) site since 1997. There are numerous

  20. NRC TLD Direct Radiation Monitoring Network. Volume 15, No. 4: Quarterly progress report, October--December 1995

    SciTech Connect (OSTI)

    Struckmeyer, R.

    1996-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1995. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  1. Optical Measurement Technologies for High Temperature, Radiation Exposure, and Corrosive EnvironmentsSignificant Activities and Findings: In-vessel Optical Measurements for Advanced SMRs

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong (Amy) [Amy; Suter, Jonathan D.

    2012-09-01

    Development of advanced Small Modular Reactors (aSMRs) is key to providing the United States with a sustainable, economically viable, and carbon-neutral energy source. The aSMR designs have attractive economic factors that should compensate for the economies of scale that have driven development of large commercial nuclear power plants to date. For example, aSMRs can be manufactured at reduced capital costs in a factory and potentially shorter lead times and then be shipped to a site to provide power away from large grid systems. The integral, self-contained nature of aSMR designs is fundamentally different than conventional reactor designs. Future aSMR deployment will require new instrumentation and control (I&C) architectures to accommodate the integral design and withstand the extreme in-vessel environmental conditions. Operators will depend on sophisticated sensing and machine vision technologies that provide efficient human-machine interface for in-vessel telepresence, telerobotic control, and remote process operations. The future viability of aSMRs is dependent on understanding and overcoming the significant technical challenges involving in-vessel reactor sensing and monitoring under extreme temperatures, pressures, corrosive environments, and radiation fluxes

  2. X-ray Spectral Measurements and Collisional Radiative Modeling of Hot, Gold Plasmas at the Omega Laser

    SciTech Connect (OSTI)

    May, M J; Schneider, M B; Hansen, S B; Chung, H; Hinkel, D E; Baldis, H A; Constantin, C

    2008-07-02

    M-Band and L-Band Gold spectra between 3 to 5 keV and 8 to 13 keV, respectively, have been recorded by a photometrically calibrated crystal spectrometer. The spectra were emitted from the plasma in the laser deposition region of a 'hot hohlraum'. This is a reduced-scale hohlraum heated with {approx} 9 kJ of 351 nm light in a 1 ns square pulse at the OMEGA laser. The space- and time-integrated spectra included L-Band line emission from Co-like to Ne-like gold. The three L-Band line features were identified to be the 3s {yields} 2p, 3d{sub 5/2} {yields} 2p{sub 3/2} and 3d{sub 3/2} {yields} 2p{sub 1/2} transitions at {approx}9 keV, {approx}10 keV and {approx}13 keV, respectively. M-Band 5f {yields} 3d, 4d {yields} 3p, and 4p {yields} 3s transition features from Fe-like to P-like gold were also recorded between 3 to 5 keV. Modeling from the radiation-hydrodynamics code LASNEX, the collisional-radiative codes FLYCHK and SCRAM, and the atomic structure code FAC were used to model the plasma and generate simulated spectra for comparison with the recorded spectra. Through these comparisons, we have determined the average electron temperature of the emitting plasma to be between 6.0 and 6.5 keV. The electron temperatures predicted by LASNEX appear to be too large by a factor of about 1.5.

  3. SU-E-T-145: Effects of Temporary Tachytherapy Inhibition Magnet On MOSFET Dose Measurements of Cardiovascular Implantable Electronic Devices (CIED) in Radiation Therapy Patients

    SciTech Connect (OSTI)

    P, Joshi; Salomons, G; Kerr, A; Peters, C; Lalonde, M

    2014-06-01

    Purpose: To determine the effects of temporary tachytherapy inhibition magnet on MOSFET dose measurements of cardiovascular implantable electronic devices (CIED) in radiation therapy patients. Methods: Infield and peripheral MOSFET dose measurements with 6MV photon beams were performed to evaluate dose to a CIED in the presence of a doughnut shaped temporary tachytherapy inhibition magnet. Infield measurements were done to quantify the effects of the magnetic field alone and shielding by the magnet. MOSFETs were placed inside a 2020cm{sup 2} field at a depth of 3cm in the isocentre plane in the presence and absence of the magnet. Peripheral dose measurements were done to determine the impact of the magnet on dose to the CIED in a clinical setting. These measurements were performed at the centre, under the rim and half way between a 1010cm{sup 2} field edge and the magnet with MOSFETS placed at the surface, 0.5cm and 1cm depths in the presence and absence of the magnet. Results: Infield measurements showed that effects of magnetic field on the MOSFET readings were within the 2% MOSFET dose measurement uncertainty; a 20% attenuation of dose under the magnet rim was observed. Peripheral dose measurements at the centre of the magnet show an 8% increase in surface dose and a 6% decrease in dose at 1cm depth. Dose under the magnet rim was reduced by approximately 68%, 45% and 25% for MOSFET placed at 0.0, 0.5 and 1.0cm bolus depths, respectively. Conclusions: The magnetic field has an insignificant effect on MOSFET dose measurements. Dose to the central region of CIED represented by centre of the magnet doughnut increases at the surface, and decreases at depths due to low energy scattering contributions from the magnet. Dose under the magnet rim, representing CIED edges, decreased significantly due to shielding.

  4. Apparatus and procedure to characterize the surface quality of conductors by measuring the rate of cathode emission as a function of surface electric field strength

    DOE Patents [OSTI]

    Mestayer, Mac; Christo, Steve; Taylor, Mark

    2014-10-21

    A device and method for characterizing quality of a conducting surface. The device including a gaseous ionizing chamber having centrally located inside the chamber a conducting sample to be tested to which a negative potential is applied, a plurality of anode or "sense" wires spaced regularly about the central test wire, a plurality of "field wires" at a negative potential are spaced regularly around the sense, and a plurality of "guard wires" at a positive potential are spaced regularly around the field wires in the chamber. The method utilizing the device to measure emission currents from the conductor.

  5. Thunderhead Radiation Measurements and Radiative Flux Analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    help mitigate frostsnow - Depending on ambient conditions (wind, etc.) also "confuses" IR loss correction relationship Suggested Deployment * Include heating in PIR ventilation -...

  6. Measurements of the Radiated Fields and Conducted Current Leakage from the Pulsed Power Systems in the National Ignition Facility at LLNL

    SciTech Connect (OSTI)

    Anderson, R A; Clancy, T J; Fulkerson, S; Petersen, D; Pendelton, D; Hulsey, S; Ullery, G; Tuck, J; Polk, M; Kamm, R; Newton, M; Moore, W B; Arnold, P; Ollis, C; Hinz, A; Robb, C; Fornes, J; Watson, J

    2003-07-31

    An important pulsed power system consideration is that they inherently generate fields and currents that can cause interference in other subsystems and diagnostics. Good pulsed power design, grounding and isolation practices can help mitigate these unwanted signals. During the laser commissioning shots for the NIF Early Light milestone at LLNL, measurements were made of the radiated field and conducted currents caused by the Power Conditioning System (PCS) modules with flash lamp load and the Plasma Electrode Pockels Cell (PEPC) driver. The measurements were made in the capacitor bay, laser bay, control room and target bay. The field measurements were made with B-dot and E-dot probes with bandwidth of about 100MHz. The current measurements were made with a clamp on probe with a bandwidth of about 20 MHz. The results of these measurements show fields and currents in the NIF Facility well below that required for interference with other subsystems. Currents on the target chamber from the pulsed power systems are well below the background noise currents.

  7. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interpretation of micro benchmark and application energy use on the Cray XC30 Brian Austin, and Nicholas J. Wright ⇤ August 29, 2014 Abstract Understanding patterns of application energy use is key to reaching future HPC e ciency goals. We have measured the sensitivity of en- ergy use to CPU frequency for several microbenchmarks and applications on a Cray XC30. First order fits to the performance and power data are su cient to describe the energy used by these applications. Exam- ination of

  8. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    core velocity fluctuations and the dynamo in a reversed-field pinch * D. J. Den Hartog, †,a) J. T. Chapman, b) D. Craig, G. Fiksel, P. W. Fontana, S. C. Prager, and J. S. Sarff Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 ͑Received 16 November 1998; accepted 20 January 1999͒ Plasma flow velocity fluctuations have been directly measured in the high-temperature magnetically confined plasma in the Madison Symmetric Torus ͑MST͒

  9. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 H( 7 Be, 8 B)γ cross section by Ryan P. Fitzgerald A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics & Astronomy. Chapel Hill 2005 Approved: A. E. Champagne, Advisor J. C. Blackmon, Reader C. Iliadis, Reader ABSTRACT Ryan P. Fitzgerald: Measurement of the 1 H( 7 Be, 8 B)γ cross section (Under the Direction of A. E. Champagne) The fusion

  10. Quality indexes based on water measurements for low and medium energy x-ray beams: A theoretical study with PENELOPE

    SciTech Connect (OSTI)

    Chica, U.; Anguiano, M.; Lallena, A. M.; Vilches, M.

    2014-01-15

    Purpose : To study the use of quality indexes based on ratios of absorbed doses in water at two different depths to characterize x-ray beams of low and medium energies. Methods : A total of 55 x-ray beam spectra were generated with the codes XCOMP5R and SPEKCALC and used as input of a series of Monte Carlo simulations performed with PENELOPE, in which the percentage depth doses in water and thek{sub Q,Q{sub 0}} factors, defined in the TRS-398 protocol, were determined for each beam. Some of these calculations were performed by simulating the ionization chamber PTW 30010. Results : The authors found that the relation betweenk{sub Q,Q{sub 0}} and the ratios of absorbed doses at two depths is almost linear. A set of ratios statistically compatible with that showing the best fit has been determined. Conclusions : The results of this study point out which of these ratios of absorbed doses in water could be used to better characterize x-ray beams of low and medium energies.

  11. Atmospheric Radiation Measurement (ARM) Data from Black Forest Germany for the Convective and Orographically Induced Precipitation Study (COPS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility (AMF) to other sites as determined. In 2007 the AMF operated in the Black Forest region of Germany as part of the Convective and Orographically Induced Precipitation Study (COPS). Scientists studied rainfall resulting from atmospheric uplift (convection) in mountainous terrain, otherwise known as orographic precipitation. This was part of a six -year duration of the German Quantitative Precipitation Forecasting (QPF) Program. COPS was endorsed as a Research and Development Project by the World Weather Research Program. This program was established by the World Meteorological Organization to develop improved and cost-effective forecasting techniques, with an emphasis on high-impact weather. A large collection of data plots based on data streams from specific instruments used at Black Forest are available via a link from ARM's Black Forest site information page. Users will be requested to create a password, but the plots and the data files in the ARM Archive are free for viewing and downloading.

  12. DOE Basic Overview of Occupational Radiation Exposure_2011 pamphlet

    SciTech Connect (OSTI)

    ORAU

    2012-08-08

    This pamphlet focusses on two HSS activities that help ensure radiation exposures are accurately assessed and recorded, namely: 1) the quality and accuracy of occupational radiation exposure monitoring, and 2) the recording, reporting, analysis, and dissemination of the monitoring results. It is intended to provide a short summary of two specific HSS programs that aid in the oversight of radiation protection activities at DOE. The Department of Energy Laboratory Accreditation Program (DOELAP) is in place to ensure that radiation exposure monitoring at all DOE sites is precise and accurate, and conforms to national and international performance and quality assurance standards. The DOE Radiation Exposure Monitoring Systems (REMS) program provides for the collection, analysis, and dissemination of occupational radiation exposure information. The annual REMS report is a valuable tool for managing radiological safety programs and for developing policies to protect individuals from occupational exposure to radiation. In tandem, these programs provide DOE management and workers an assurance that occupational radiation exposures are accurately measured, analyzed, and reported.

  13. Data Quality Assessment and Control for the ARM Climate Research Facility

    SciTech Connect (OSTI)

    Peppler, R

    2012-06-26

    The mission of the Atmospheric Radiation Measurement (ARM) Climate Research Facility is to provide observations of the earth climate system to the climate research community for the purpose of improving the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their coupling with the Earth's surface. In order for ARM measurements to be useful toward this goal, it is important that the measurements are of a known and reasonable quality. The ARM data quality program includes several components designed to identify quality issues in near-real-time, track problems to solutions, assess more subtle long-term issues, and communicate problems to the user community.

  14. Atmospheric Radiation Measurement (ARM) Data from Los Angeles, California, to Honolulu, Hawaii for the Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign (an AMF2 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    From October 2012 through September 2013, the second ARM Mobile Facility (AMF2) was deployed on the container ship Spirit, operated by Horizon Lines, for the Marine ARM GPCI* Investigation of Clouds (MAGIC) field campaign. During approximately 20 round trips between Los Angeles, California, and Honolulu, Hawaii, AMF2 obtained continuous on-board measurements of cloud and precipitation, aerosols, and atmospheric radiation; surface meteorological and oceanographic variables; and atmospheric profiles from weather balloons launched every six hours. During two two-week intensive observational periods in January and July 2013, additional instruments were deployed and balloon soundings were be increased to every three hours. These additional data provided a more detailed characterization of the state of the atmosphere and its daily cycle during two distinctly different seasons. The primary objective of MAGIC was to improve the representation of the stratocumulus-to-cumulus transition in climate models. AMF2 data documented the small-scale physical processes associated with turbulence, convection, and radiation in a variety of marine cloud types.

  15. Fundamentals of health physics for the radiation-protection officer

    SciTech Connect (OSTI)

    Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.; Mann, J.C.; Munson, L.H.; Carbaugh, E.H.; Baer, J.L.

    1983-03-01

    The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)

  16. Radiative Flux Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Long, Chuck [NOAA

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  17. Atmospheric Radiation Measurement (ARM) Data from Shouxian, China for the Study of Aerosol Indirect Effects in China

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In a complex ARM Mobile Facility (AMF) deployment, monitoring data was collected at four locations in China during 2008. The various sites are located in regions with different climate regimes and with high aerosol loadings of different optical, physical, and chemical properties. Measurements obtained at all the AMF sites during the 8-month deployment in China will help scientists to validate satellite-based findings, understand the mechanisms of the aerosol indirect effects in the region, and examine the roles of aerosols in affecting regional climate and atmospheric circulation, with a special focus on the impact of the East Asian monsoon system. As with other collections from the ARM Mobile Facility, the datasets are available from the ARM Archive. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  18. Surface Radiation from GOES: A Physical Approach; Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Wilcox, S.

    2012-09-01

    Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.

  19. radiation.cdr

    Office of Legacy Management (LM)

    Radiation-It's a Fact of Life It has been with us since the beginning of time. Everyone who has ever walked on this planet has been exposed to radiation. For the most part, nature is the largest source of exposure. It's in the air we breathe, the ground we walk on, and even the food we eat. The radiation we receive from all natural and some man-made sources is called "background radiation." The millirem (mrem) is a unit used for measuring radiation received by a person. The total

  20. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    DOE Patents [OSTI]

    Roybal, Lyle Gene

    2010-06-08

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  1. Safety - Radiation Effects Facility / Cyclotron Institute / Texas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of administrative and engineered controls are incorporated into the design of the Radiation Effects Facility. Radiation levels in the surrounding areas were measured while each...

  2. A Unified Approach for Reporting ARM Measurement Uncertainties Technical Report

    SciTech Connect (OSTI)

    Campos, E; Sisterson, DL

    2015-10-01

    The Atmospheric Radiation Measurement (ARM) Climate Research Facility is observationally based, and quantifying the uncertainty of its measurements is critically important. With over 300 widely differing instruments providing over 2,500 datastreams, concise expression of measurement uncertainty is quite challenging. The ARM Facility currently provides data and supporting metadata (information about the data or data quality) to its users through a number of sources. Because the continued success of the ARM Facility depends on the known quality of its measurements, the Facility relies on instrument mentors and the ARM Data Quality Office (DQO) to ensure, assess, and report measurement quality. Therefore, an easily-accessible, well-articulated estimate of ARM measurement uncertainty is needed.

  3. Miniaturized radiation chirper

    DOE Patents [OSTI]

    Umbarger, C. John (Los Alamos, NM); Wolf, Michael A. (Los Alamos, NM)

    1980-01-01

    The disclosure relates to a miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers.

  4. Poster Thur Eve 17: In-phantom and Fluence-based Measurements for Quality Assurance of Volumetric-driven Adaptation of Arc Therapy

    SciTech Connect (OSTI)

    Schaly, B; Hoover, D; Mitchell, S; Wong, E

    2014-08-15

    During volumetric modulated arc therapy (VMAT) of head and neck cancer, some patients lose weight which may result in anatomical deviations from the initial plan. If these deviations are substantial a new treatment plan can be designed for the remainder of treatment (i.e., adaptive planning). Since the adaptive treatment process is resource intensive, one possible approach to streamlining the quality assurance (QA) process is to use the electronic portal imaging device (EPID) to measure the integrated fluence for the adapted plans instead of the currently-used ArcCHECK device (Sun Nuclear). Although ArcCHECK is recognized as the clinical standard for patient-specific VMAT plan QA, it has limited length (20 cm) for most head and neck field apertures and has coarser detector spacing than the EPID (10 mm vs. 0.39 mm). In this work we compared measurement of the integrated fluence using the EPID with corresponding measurements from the ArcCHECK device. In the past year nine patients required an adapted plan. Each of the plans (the original and adapted) is composed of two arcs. Routine clinical QA was performed using the ArcCHECK device, and the same plans were delivered to the EPID (individual arcs) in integrated mode. The dose difference between the initial plan and adapted plan was compared for ArcCHECK and EPID. In most cases, it was found that the EPID is more sensitive in detecting plan differences. Therefore, we conclude that EPID provides a viable alternative for QA of the adapted head and neck plans and should be further explored.

  5. WE-D-17A-05: Measurement of Stray Radiation Within An Active Scanning Proton Therapy Facility: EURADOS WG9 Intercomparison Exercise of Active Dosimetry Systems

    SciTech Connect (OSTI)

    Farah, J; Trompier, F; Stolarczyk, L; Klodowska, M; Liszka, M; Olko, P; Algranati, C; Fellin, F; Schwarz, M; Domingo, C; Romero-Exposito, M; Dufek, V; Frojdh, E; George, S; Harrison, R; Kubancak, J; Ploc, O; Knezevic, Z; Majer, M; Miljanic, S; and others

    2014-06-15

    Purpose: Intercomparison of active dosemeters in the measurement of stray radiation at the Trento active-scanning proton therapy facility. Methods: EURADOS WG9 carried out a large intercomparison exercise to test different dosemeters while measuring secondary neutrons within a 230 MeV scanned proton therapy facility. Detectors included two Bonner Sphere Spectrometers (BSS), three tissue equivalent proportional counters (TEPCHawk) and six rem-counters (Wendi II, Berthold, RadEye, a regular and an extended-range Anderson and Braun NM2B counters). Measurements of neutron ambient dose equivalents, H*(10), were done at several positions inside (8 positions) and outside (3 positions) the treatment room while irradiating a water tank phantom with a 10 10 10 cc field. Results: A generally good agreement on H*(10) values was observed for the tested detectors. At distance of 2.25 m and angles 45, 90 and 180 with respect to the beam axis, BSS and proportional counters agreed within 30%. Higher differences (up to 60%) were observed at the closest and farthest distances, i.e. at positions where detectors sensitivity, energy, fluence and angular response are highly dependent on neutron spectra (flux and energy). The highest neutron H*(10) value, ?60 microSv/Gy, was measured at 1.15 m along the beam axis. H*(10) decreased significantly with the distance from the isocenter dropping to 1.1 microSv/Gy at 4.25 m and 90 from beam axis, ?2 nanoSv/Gy at the entrance of the maze, 0.2 nanoSv/Gy at the door outside the room and below detection limit in the gantry control room and at an adjacent room. These values remain considerately lower than those of passively scattered proton beams. BSS and Hawk unfolded spectra provide valuable inputs when studying the response of each detector. Conclusion: TEPCs and BSS enable accurate measurements of stray neutrons while other rem-meters also give satisfactory results but require further improvements to reduce uncertainties.

  6. Pilot Implementation of a Field Study Design to Evaluate the Impact of Source Control Measures on Indoor Air Quality in High Performance Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Chamness, Michele A.; Petersen, Joseph M.; Singer, Brett C.; Maddalena, Randy L.; Destaillats, Hugo

    2014-10-20

    To improve the indoor air quality in new, high performance homes, a variety of standards and rating programs have been introduced to identify building materials that are designed to have lower emission rates of key contaminants of concern and a number of building materials are being introduced that are certified to these standards. For example, the U.S. Department of Energy (DOE) Zero Energy Ready Home program requires certification under the U.S. Environmental Protection Agency (EPA) Indoor airPLUS (IaP) label, which requires the use of PS1 or PS2 certified plywood and OSB; low-formaldehyde emitting wood products; low- or no-VOC paints and coatings as certified by Green Seal Standard GS-11, GreenGuard, SCS Indoor Advantage Gold Standard, MPI Green Performance Standard, or another third party rating program; and Green Label-certified carpet and carpet cushions. However, little is known regarding the efficacy of the IAP requirements in measurably reducing contaminant exposures in homes. The goal of this project is to develop a robust experimental approach and collect preliminary data to support the evaluation of indoor air quality (IAQ) measures linked to IAP-approved low-emitting materials and finishes in new residential homes. To this end, the research team of Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) developed a detailed experimental plan to measure IAQ constituents and other parameters, over time, in new homes constructed with materials compliant with IAPs low-emitting material and ventilation requirements (i.e., section 6.1, 6.2, 6.3, and 7.2) and similar homes constructed to the state building code with conventional materials. The IAQ in IAP and conventional homes of similar age, location, and construction style is quantified as the differences in the speciated VOC and aldehyde concentrations, normalized to dilution rates. The experimental plan consists of methods to evaluate the difference between low-emitting and conventional materials as installed in newly constructed residential homes using both (1) highly controlled, short-term active samples to precisely characterize the building-related chemical emissions and building contents and (2) a week-long passive sample designed to capture the impact of occupant behavior and related activities on measured IAQ contaminant levels indoors. The combination of detailed short-term measurements with the home under controlled/consistent conditions during pre- and post-occupancy and the week-long passive sampling data provide the opportunity to begin to separate the different emission sources and help isolate and quantify variability in the monitored homes. Between April and August 2014, the research team performed pre-occupancy and post-occupancy sampling in one conventional home and two homes built with low-emitting materials that were generally consistent with EPAs Indoor airPLUS guidelines. However, for a number of reasons, the full experimental plan was not implemented. The project was intended to continue for up to three years to asses long-term changes in IAQ but the project was limited to one calendar year. As a result, several of the primary research questions related to seasonal impacts and the long-term trends in IAQ could not be addressed. In addition, there were several unexpected issues related to recruiting, availability of home types, and difficulty coordinating with builders/realtors/homeowners. Several field monitoring issues also came up that provide lessons learned that led to improvements to the original monitoring plan. The project produced a good experimental plan that is expected to be be useful for future efforts collecting data to support answering these same or similar research questions.

  7. ARM West Antarctic Radiation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    West Antarctic Radiation Experiment of the most advanced atmospheric research instrumentation for cloud, radiative, and aerosol observations. From the fall of 2015 to early 2017, the Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) will gather data from McMurdo Station at the southern tip of Antarctica's Ross Ice Shelf. Using a portable observatory ARM Mobile Facility (AMF), researchers will be measuring clouds, aerosols, and energy coming from the sun and

  8. ARM - Measurement - Aerosol backscattered radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RLPROF : Raman LIDAR Vertical Profiles UW-AIR : University of Washington Airborne Aerosol Instruments Value-Added Products AIP : Aerosol Intensive Properties (Process) AIP1OGREN :...

  9. Beta Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beta Radiation 1. Beta radiation may travel meters in air and is moderately penetrating. 2. Beta radiation can penetrate human skin to the "germinal layer," where new skin cells...

  10. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurements Measurement Categories Select below to highlight measurements in specified measurement categories. Aerosols The effect of aerosols is measured by instrument systems and lidars that provide data on the size distribution, optical properties, scattering, and extinction of aerosols. microphysical and chemical properties optical and radiative properties Atmospheric Carbon Measurements of atmospheric carbon are obtained from samples collected at the Southern Great Plains site. For more

  11. Alpha Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5. Instruments cannot detect alpha radiation through even a thin layer of water, blood, dust, paper, or other material, because alpha radiation is not penetrating. 6. Alpha...

  12. Model-Observation "Data Cubes" for the DOE Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model-Observation "Data Cubes" for the DOE Atmospheric Radiation Measurement Facility's ... Program through its Atmospheric Radiation Measurement Facility. 2. Data Cube ...

  13. A U. S. Department of Energy User Facility Atmospheric Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. Department of Energy User Facility AtmosphericRadiationMeasurement Climate Research Facility U.S. Department of Energy Atmospheric Radiation Measurement Program DOESC-ARM...

  14. Comparison of Cirrus Cloud Radiative Properties and Dynamical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamical Processes at Two Atmospheric Radiation Measurement Sites in the Tropical ... U. S. Department of Energy, Atmospheric Radiation Measurement (ARM) sites located on Manus ...

  15. ARMlUnmanned Air VehiclelSatelites The Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARMlUnmanned Air VehiclelSatelites The Atmospheric Radiation Measurement Unmanned ... This program has its origins in the Atmospheric RadiationMeasurement (ARM) Program's long ...

  16. Radiative Importance of ThinŽ Liquid Water Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    underpinning of the Atmospheric Radiation Measurement (ARM) Program is largely ... Ackerman, T. P., and G. M. Stokes (2003): The Atmospheric Radiation Measurement Program. ...

  17. Posters Objective Analysis Schemes to Monitor Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Objective Analysis Schemes to Monitor AtmosphericRadiation Measurement Data in Near ... large networks of instruments such as the AtmosphericRadiation Measurement (ARM) Program. ...

  18. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition

    SciTech Connect (OSTI)

    Shimaoka, T. Kaneko, J. H.; Tsubota, M.; Arikawa, Y.; Nagai, T.; Kojima, S.; Abe, Y.; Sakata, S.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Isobe, M.; Sato, Y.; Chayahara, A.; Umezawa, H.; Shikata, S.

    2015-05-15

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% 0.8% and 97.1% 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 0.4 10{sup 7} cm/s and 1.0 0.3 10{sup 7} cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.51 keV and neutron yield of more than 10{sup 9} neutrons/shot.

  19. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  20. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public. Open full...

  1. TU-C-BRE-11: 3D EPID-Based in Vivo Dosimetry: A Major Step Forward Towards Optimal Quality and Safety in Radiation Oncology Practice

    SciTech Connect (OSTI)

    Mijnheer, B; Mans, A; Olaciregui-Ruiz, I; Rozendaal, R; Spreeuw, H; Herk, M van

    2014-06-15

    Purpose: To develop a 3D in vivo dosimetry method that is able to substitute pre-treatment verification in an efficient way, and to terminate treatment delivery if the online measured 3D dose distribution deviates too much from the predicted dose distribution. Methods: A back-projection algorithm has been further developed and implemented to enable automatic 3D in vivo dose verification of IMRT/VMAT treatments using a-Si EPIDs. New software tools were clinically introduced to allow automated image acquisition, to periodically inspect the record-and-verify database, and to automatically run the EPID dosimetry software. The comparison of the EPID-reconstructed and planned dose distribution is done offline to raise automatically alerts and to schedule actions when deviations are detected. Furthermore, a software package for online dose reconstruction was also developed. The RMS of the difference between the cumulative planned and reconstructed 3D dose distributions was used for triggering a halt of a linac. Results: The implementation of fully automated 3D EPID-based in vivo dosimetry was able to replace pre-treatment verification for more than 90% of the patient treatments. The process has been fully automated and integrated in our clinical workflow where over 3,500 IMRT/VMAT treatments are verified each year. By optimizing the dose reconstruction algorithm and the I/O performance, the delivered 3D dose distribution is verified in less than 200 ms per portal image, which includes the comparison between the reconstructed and planned dose distribution. In this way it was possible to generate a trigger that can stop the irradiation at less than 20 cGy after introducing large delivery errors. Conclusion: The automatic offline solution facilitated the large scale clinical implementation of 3D EPID-based in vivo dose verification of IMRT/VMAT treatments; the online approach has been successfully tested for various severe delivery errors.

  2. Toward the Development of Multi-Year Total and Special Solar Radiation Budgets at the Three ARM Locales

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Development of Multi-Year Total and Special Solar Radiation Budgets at the Three ARM Locales Z. Li and M. C. Cribb Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland A. P. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction Over the past decade, an unprecedented amount of high-quality observational data pertaining to atmospheric and surface parameters has been collected at Atmospheric Radiation Measurement (ARM) locales

  3. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  4. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  5. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  6. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  7. Remote Sensing and In-Situ Observations of Arctic Mixed-Phase and Cirrus Clouds Acquired During Mixed-Phase Arctic Cloud Experiment: Atmospheric Radiation Measurement Uninhabited Aerospace Vehicle Participation

    SciTech Connect (OSTI)

    McFarquhar, G.M.; Freer, M.; Um, J.; McCoy, R.; Bolton, W.

    2005-03-18

    The Atmospheric Radiation Monitor (ARM) uninhabited aerospace vehicle (UAV) program aims to develop measurement techniques and instruments suitable for a new class of high altitude, long endurance UAVs while supporting the climate community with valuable data sets. Using the Scaled Composites Proteus aircraft, ARM UAV participated in Mixed-Phase Arctic Cloud Experiment (M-PACE), obtaining unique data to help understand the interaction of clouds with solar and infrared radiation. Many measurements obtained using the Proteus were coincident with in-situ observations made by the UND Citation. Data from M-PACE are needed to understand interactions between clouds, the atmosphere and ocean in the Arctic, critical interactions given large-scale models suggest enhanced warming compared to lower latitudes is occurring.

  8. Danger radiations

    ScienceCinema (OSTI)

    None

    2011-04-25

    Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

  9. Note: Application of CR-39 plastic nuclear track detectors for quality assurance of mixed oxide fuel pellets

    SciTech Connect (OSTI)

    Kodaira, S. Kurano, M.; Hosogane, T.; Ishikawa, F.; Kageyama, T.; Sato, M.; Kayano, M.; Yasuda, N.

    2015-05-15

    A CR-39 plastic nuclear track detector was used for quality assurance of mixed oxide fuel pellets for next-generation nuclear power plants. Plutonium (Pu) spot sizes and concentrations in the pellets are significant parameters for safe use in the plants. We developed an automatic Pu detection system based on dense ?-radiation tracks in the CR-39 detectors. This system would greatly improve image processing time and measurement accuracy, and will be a powerful tool for rapid pellet quality assurance screening.

  10. Wireless passive radiation sensor

    DOE Patents [OSTI]

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  11. Chapter 1.12: Solar Radiation Resource Assessment for Renewable Energy Conversion

    SciTech Connect (OSTI)

    Myers, D. R.

    2012-01-01

    This chapter addresses measurements, modeling, and databases of solar energy potential that may serve as fuel for solar energy conversion systems. Developing innovative designs for capturing and converting solar radiation is only one part of the equation for solar system deployment. Identifying, locating, and prospecting for the appropriate quantity and quality of solar resources to fuel these systems is critical to system designers, investors, financial backers, utilities, governments, and owner/operators. This chapter addresses the fundamentals and state of the art for measuring, modeling, and applying solar radiation resource data to meet decision-making needs.

  12. SU-E-T-200: IBA ProteusOne Compact Proton Therapy System Radiation Survey Results

    SciTech Connect (OSTI)

    Zhang, J; Syh, J; Syh, J; White, M; Patel, B; Song, X; Wu, H

    2014-06-01

    Purpose: This study summarizes the results of an initial radiation survey of the Willis-Knighton Cancer Center in Shreveport, Louisiana. The facility houses an IBA ProteusOne compact single room proton therapy unit coupled with a C230 cyclotron that operates at a maximum energy of 230 MeV. Methods: A calibrated survey meter was used for the photon measurements to obtain reliable results. A neutron detector was used as the measuring instrument for neutrons. The locations of the survey and measurements were planned carefully in order to get a proper evaluation of the facility shielding configuration. The walls, ceiling, vault entrance, and the adjacent environment were each surveyed with suitable measurement instruments. A total of 22 locations were chosen for radiation survey. Dose equivalent values were calculated for both the photon and the neutron radiation using measured data. Results: All measured dose values are presented in millisievert per year. The highest dose measured at the vault entrance is 0.34 mSv/year. A dedicated shielding door was not present at the time of the measurement. The vault entrance area is considered as a controlled area. The shielding design goals are not to exceed 5 mSv/year for the controlled area and 1 mSv/year the uncontrolled area. The total combined neutron and photon dose equivalent values were found to be compliant with the Louisiana Department of Environmental Quality radiation protection regulatory codes. Conclusion: In our efforts to evaluate the radiation levels at the Willis-Knighton Cancer Center proton treatment facility, we have found that all the measured values of the radiation shielding are below the critical radiation limits per year. Since the total dose measured at the vault entrance is below the shielding design goal, a shielding door is not required at this proton treatment vault.

  13. Prospective Longitudinal Assessment of Quality of Life for Liver...

    Office of Scientific and Technical Information (OSTI)

    Cancer Patients Treated With Stereotactic Body Radiation Therapy Citation Details In-Document Search Title: Prospective Longitudinal Assessment of Quality of Life for Liver Cancer ...

  14. ARM - Measurement -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurements ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Categories Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments UV-MFRSR : Ultraviolet

  15. Testing AGCM-Predicted Cloud and Radiation Properties with ARM...

    Office of Scientific and Technical Information (OSTI)

    evaluate treatment of clouds and radiation in an atmospheric global climate model (AGCM) using long-term observations from the Atmospheric Radiation Measurement (ARM) program. ...

  16. Remote radiation dosimetry

    DOE Patents [OSTI]

    Braunlich, Peter F. (Pullman, WA); Tetzlaff, Wolfgang (Pullman, WA); Hegland, Joel E. (Pullman, WA); Jones, Scott C. (Pullman, WA)

    1991-01-01

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission.

  17. Remote radiation dosimetry

    DOE Patents [OSTI]

    Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

    1991-03-12

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

  18. Scintillator Waveguide For Sensing Radiation

    DOE Patents [OSTI]

    Bliss, Mary (West Richland, WA); Craig, Richard A. (West Richland, WA); Reeder; Paul L. (Richland, WA)

    2003-04-22

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  19. Analyst Tools and Quality Control Software for the ARM Data System

    SciTech Connect (OSTI)

    Moore, S.T.

    2004-12-14

    ATK Mission Research develops analyst tools and automated quality control software in order to assist the Atmospheric Radiation Measurement (ARM) Data Quality Office with their data inspection tasks. We have developed a web-based data analysis and visualization tool, called NCVweb, that allows for easy viewing of ARM NetCDF files. NCVweb, along with our library of sharable Interactive Data Language procedures and functions, allows even novice ARM researchers to be productive with ARM data with only minimal effort. We also contribute to the ARM Data Quality Office by analyzing ARM data streams, developing new quality control metrics, new diagnostic plots, and integrating this information into DQ HandS - the Data Quality Health and Status web-based explorer. We have developed several ways to detect outliers in ARM data streams and have written software to run in an automated fashion to flag these outliers.

  20. SU-E-T-598: The Effects of Arm Speed for Quality Assurance and Commissioning Measurements in Rectangular and Cylindrical Scanners

    SciTech Connect (OSTI)

    Bakhtiari, M; Schmitt, J

    2014-06-01

    Purpose: Cylindrical and rectangular scanning water tanks are examined with different scanning speeds to investigate the TG-106 criteria and the errors induced in the measurements. Methods: Beam profiles were measured in a depth of R50 for a low-energy electron beam (6 MeV) using rectangular and cylindrical tanks. The speeds of the measurements (arm movement) were varied in different profile measurements. Each profile was measured with a certain speed to obtain the average and standard deviation as a parameter for investigating the reproducibility and errors. Results: At arm speeds of ?0.8 mm/s the errors were as large as 2% and 1% with rectangular and cylindrical tanks, respectively. The errors for electron beams and for photon beams in other depths were within the TG-106 criteria of 1% for both tank shapes. Conclusion: The measurements of low-energy electron beams in a depth of R50, as an extreme case scenario, are sensitive to the speed of the measurement arms for both rectangular and cylindrical tanks. The measurements in other depths, for electron beams and photon beams, with arm speeds of less than 1 cm/s are within the TG-106 criteria. An arm speed of 5 mm/s appeared to be optimal for fast and accurate measurements for both cylindrical and rectangular tanks.

  1. Quality Assurance Specialist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Quality Control Technician; Quality Assurance Inspector; Quality Assurance Representative

  2. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. March 17, 2015 Real-time data monitoring for particulate matter An air monitoring field team member tests one of LANL's tapered element oscillating microbalance samplers, which collects real-time particulate matter data. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email LANL monitors air

  3. Quality Management

    Broader source: Energy.gov [DOE]

    The Office of Quality Management, within the Office of Health, Safety and Security develops policies and procedures to ensure the classification and control of information is effective and...

  4. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  5. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A. (Palo Alto, CA); Perez-Mendez, Victor (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  6. Analysis of Contribution from Edge Radiation to Optical Diffraction Radiation

    SciTech Connect (OSTI)

    C. Liu, P. Evtushenko, A. Freyberger, C. Liu, A.H. Lumpkin

    2009-05-01

    Beam size measurement with near-field optical diffraction radiation (ODR) has been carried out successfully at CEBAF. The ODR station is installed on the Hall-A beam line after eight bending magnets. The ODR images were affected by an unexpected radiation. Some calculations for analyzing the source of the radiation will be presented. Furthermore, two schemes will be proposed to alleviate the contamination.

  7. NREL: MIDC/SRRL Baseline Measurement System (39.74 N, 105.18 W, 1829 m,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GMT-7) Solar Radiation Research Laboratory Baseline Measurement System

  8. Comparison of Data Quality of NOAA's ISIS and SURFRAD Networks to NREL's SRRL-BMS

    SciTech Connect (OSTI)

    Anderberg, M.; Sengupta, M.

    2014-11-01

    This report provides analyses of broadband solar radiometric data quality for the National Oceanic and Atmospheric Administration's Integrated Surface Irradiance Study and Surface Radiation Budget Network (SURFRAD) solar measurement networks. The data quality of these networks is compared to that of the National Renewable Energy Laboratory's Solar Radiation Research Laboratory Baseline Measurement System (SRRL-BMS) native data resolutions and hourly averages of the data from the years 2002 through 2013. This report describes the solar radiometric data quality testing and flagging procedures and the method used to determine and tabulate data quality statistics. Monthly data quality statistics for each network were plotted by year against the statistics for the SRRL-BMS. Some of the plots are presented in the body of the report, but most are in the appendix. These plots indicate that the overall solar radiometric data quality of the SURFRAD network is superior to that of the Integrated Surface Irradiance Study network and can be comparable to SRRL-BMS.

  9. Radiation detector

    DOE Patents [OSTI]

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  10. Radiation detector

    DOE Patents [OSTI]

    Fultz, Brent T. (Berkeley, CA)

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  11. Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from November 1985 through December 1996. The six-station network provided 5-minute averaged measurements of global and diffuse horizontal solar irradiance. The data were processed at the National Renewable Energy Laboratory (NREL) to improve the assessment of the solar radiation resources in the southeastern United States. Three of the stations also measured the direct-normal solar irradiance with a pyrheliometer mounted in an automatic sun tracker. All data are archived in the Standard Broadband Format (SBF) with quality-assessment indicators. Monthly data summaries and plots are also available for each month. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network.

  12. Value of increasing film processing time to reduce radiation dose during mammography

    SciTech Connect (OSTI)

    Skubic, S.E.; Yagan, R.; Oravec, D.; Shah, Z. )

    1990-12-01

    We systematically tested the effects on radiation dose and image quality of increasing the mammographic film processing time from the standard 90 sec to 3 min. Hurter and Driffield curves were obtained for a Kodak Min-R-OM1-SO177 screen-film combination processed with Kodak chemistry. Image contrast and radiation dose were measured for two tissue-equivalent breast phantoms. We also compared sequential pairs of mammograms, one processed at 90 sec and one at 3 min, from 44 patients on the basis of nine categories of image quality. Increased processing time reduced breast radiation dose by 30%, increased contrast by 11%, and produced slight overall gains in image quality. Simple modifications can convert a 90-sec processor to a 3-min unit. We recommend that implementation of extended processing be considered, especially by those centers that obtain a large number of screening mammograms. Three-minute film processing can reduce breast radiation dose by 30% and increase contrast by 11% without compromising image quality.

  13. High dynamic range measurement of spectral responsivity and linearity of a radiation thermometer using a super-continuum laser and LEDs

    SciTech Connect (OSTI)

    Yoo, Y. S.; Lee, D. H.; Park, C. W.; Park, S. N. [Korea Research Institute of Standards and Science 209 Gajeong-Ro, Yuseong-Gu, Daejon 305-340 (Korea, Republic of)] [Korea Research Institute of Standards and Science 209 Gajeong-Ro, Yuseong-Gu, Daejon 305-340 (Korea, Republic of)

    2013-09-11

    To realize the temperature scale above the freezing point of silver according to the definition of ITS-90, the dynamic range of the spectral responsivity is one of the most important factors which limit its uncertainty. When the residual spectral response at both side bands of a spectral band is not negligible, a significant uncertainty can be caused by a low dynamic range of the spectral responsivity measurement. In general, incandescent lamps are used to measure the spectral responsivity and the linearity. The dynamic range of the spectral responsivity measurement is often limited by a trade-off with the desired spectral resolution, which is less than 6 decades. Nonlinearity is another limiting fact of uncertainties of the temperature scale. Tungsten lamps have disadvantage in the nonlinearity measurements in terms of adjustability of radiance level and spectral selectivity. We report spectral responsivity measurements of which the measurable dynamic range is enhanced 50 times after replacing a QTH lamp with a super continuum laser. We also present a spectrally selected linearity measurement over a wide dynamic range using high-brightness light emitting diode arrays to observe a slight saturation of linearity.

  14. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, R.J.

    1981-09-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  15. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, Richard J. (Oak Ridge, TN)

    1983-01-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  16. Quality Policy

    Broader source: Energy.gov [DOE]

    Quality Policy It is the policy of the Department of Energy to establish quality requirements to ensure that risks and environmental impacts are minimized and that safety, reliability, and performance are maximized through the application of effective management systems commensurate with the risks posed by the facility or activity and its work. The Department implements this policy through the QA Order and the QA rule directives to ensure quality assurance requirements are clearly specified for the broad spectrum of work performed by DOE and its contractors.

  17. Quality Assurance of ARM Program Climate Research Facility Data

    SciTech Connect (OSTI)

    Peppler, RA; Kehoe, KE; Sonntag, KL; Bahrmann, CP; Richardson, SJ; Christensen, SW; McCord, RA; Doty, DJ; Wagener, Richard; Eagan, RC; Lijegren, JC; Orr, BW; Sisterson, DL; Halter, TD; Keck, NN; Long, CN; Macduff, MC; Mather, JH; Perez, RC; Voyles, JW; Ivey, MD; Moore, ST; Nitschke, DL; Perkins, BD; Turner, DD

    2008-03-01

    This report documents key aspects of the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) data quality assurance program as it existed in 2008. The performance of ACRF instruments, sites, and data systems is measured in terms of the availability, usability, and accessibility of the data to a user. First, the data must be available to users; that is, the data must be collected by instrument systems, processed, and delivered to a central repository in a timely manner. Second, the data must be usable; that is, the data must be inspected and deemed of sufficient quality for scientific research purposes, and data users must be able to readily tell where there are known problems in the data. Finally, the data must be accessible; that is, data users must be able to easily find, obtain, and work with the data from the central repository. The processes described in this report include instrument deployment and calibration; instrument and facility maintenance; data collection and processing infrastructure; data stream inspection and assessment; the roles of value-added data processing and field campaigns in specifying data quality and haracterizing the basic measurement; data archival, display, and distribution; data stream reprocessing; and engineering and operations management processes and procedures. Future directions in ACRF data quality assurance also are presented.

  18. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hand. Basically, you are not permitted to set up camp at CAMD. Theoretically, radiation falls off as 1r2 or one over the distance squared. In practice this relationship appears...

  19. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  20. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-06-17

    This Order ensures that the quality of DOE/NNSA products and services meets or exceeds the customers' expectations. Cancels DOE O 414.1B and DOE N 411.1. Canceled by DOE O 414.1D.

  1. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25

    The Order defines roles and responsibilities for providing quality assurance for DOE products and services.Admin Chg 1, dated 5-8-13, supersedes DOE O 414.1D.

  2. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-29

    To establish an effective management system [i.e., quality assurance programs (QAPs)] using the performance requirements of this Order, coupled with technical standards where appropriate. Cancels DOE O 414.1.

  3. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-04-29

    This Order ensures that the quality of DOE/NNSA products and services meets or exceeds the customer's expectations. This Order cancels DOE O 414.1A, Quality Assurance, dated 9-29-99, and Attachment 1, paragraph 8, and Attachment 2, paragraph 22, of DOE O 440.1A, Worker Protection Management for DOE Federal and Contractor Employees, dated 3-27-98. Cancels: DOE O 414.1A and DOE O 440.1A, parts as noted.

  4. Quality Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    QP001 Revision 0 Effective October 15, 2001 QUALITY PROGRAM Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Jude M. Clark Approved by: _______________________________________________ Date: ______________ Donald B. Karner Procedure ETA-QP001 Revision 0 2 2001 Electric Transportation Applications All Rights Reserved TABLE OF CONTENTS 1.0 Objectives 3 2.0 Scope 3 3.0 Documentation 3 4.0 Prerequisites 4 5.0 Exclusions 5 6.0 Quality

  5. Influence of Extraterrestrial Radiation on Radiation Portal Monitors

    SciTech Connect (OSTI)

    Keller, Paul E.; Kouzes, Richard T.

    2009-06-01

    Cosmic radiation and solar flares can be a major source of background radiation at the Earths surface. This paper examines the relationship between extraterrestrial radiation and the detectable background in radiation portal monitors used for homeland security applications. Background radiation data from 13 radiation portal monitor facilities are examined and compared against external sources of data related to extraterrestrial radiation, including measurements at neutron monitors located at 53 cosmic-ray observatories around the Earth, four polar orbiting satellites, three geostationary satellites, ground-based geomagnetic field data from observatories around the Earth, a solar magnetic index, solar radio flux data, and sunspot activity data. Four-years (January 2003 through December 2006) of data are used in this study, which include the latter part of Solar Cycle 23 as solar activity was on the decline. The analysis shows a significant relationship between some extraterrestrial radiation and the background detected in the radiation portal monitors. A demonstrable decline is shown in the average gamma ray and neutron background at the radiation portal monitors as solar activity declined over the period of the study.

  6. Handheld CZT radiation detector

    DOE Patents [OSTI]

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  7. SERI QC Solar Data Quality Assessment Software

    Energy Science and Technology Software Center (OSTI)

    1994-12-31

    SERI QC is a mathematical software package that assesses the quality of solar radiation data. The SERI QC software is a function written in the C programming language. IT IS NOT A STANDALONE SOFTWARE APPLICATION. The user must write the calling application that requires quality assessment of solar data. The C function returns data quality flags to the calling program. A companion program, QCFIT, is a standalone Windows application that provides support files for themore » SERI QC function (data quality boundaries). The QCFIT software can also be used as an analytical tool for visualizing solar data quality independent of the SERI QC function.« less

  8. Solar and Infrared Radiation Station (SIRS) Handbook

    SciTech Connect (OSTI)

    Stoffel, T

    2005-07-01

    The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: Direct normal shortwave (solar beam) Diffuse horizontal shortwave (sky) Global horizontal shortwave (total hemispheric) Upwelling shortwave (reflected) Downwelling longwave (atmospheric infrared) Upwelling longwave (surface infrared)

  9. RADIATION DETECTING AND TELEMETERING SYSTEM

    DOE Patents [OSTI]

    Richards, H.K.

    1959-12-15

    A system is presented for measuring ionizing radiation at several remote stations and transmitting the measured information by radio to a central station. At each remote station a signal proportioned to the counting rate is applied across an electrical condenser made of ferroelectric material. The voltage across the condenser will vary as a function of the incident radiation and the capacitance of the condenser will vary accordingly. This change in capacitance is used to change the frequency of a crystalcontrolled oscillator. The output of the oscillator is coupled to an antenna for transmitting a signal proportional to the incident radiation.

  10. SRNL Deploys Innovative Radiation Mapping Device

    Broader source: Energy.gov [DOE]

    The Savannah River National Laboratory (SRNL), EM’s national lab, has made strides with remote technology designed to reduce worker exposure while measuring radiation in contaminated areas.

  11. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    SciTech Connect (OSTI)

    Cossairt, J.D.

    1996-10-01

    In the first chapter, terminology, physical and radiological quantities, and units of measurement used to describe the properties of accelerator radiation fields are reviewed. The general considerations of primary radiation fields pertinent to accelerators are discussed. The primary radiation fields produced by electron beams are described qualitatively and quantitatively. In the same manner the primary radiation fields produced by proton and ion beams are described. Subsequent chapters describe: shielding of electrons and photons at accelerators; shielding of proton and ion accelerators; low energy prompt radiation phenomena; induced radioactivity at accelerators; topics in radiation protection instrumentation at accelerators; and accelerator radiation protection program elements.

  12. Radiation receiver

    DOE Patents [OSTI]

    Hunt, A.J.

    1983-09-13

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  13. Radiation receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA)

    1983-01-01

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  14. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  15. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  16. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1981-01-16

    To provide Department of Energy (DOE) policy, set forth principles, and assign responsibilities for establishing, implementing, and maintaining programs of plans and actions to assure quality achievement in DOE programs. Canceled by DOE O 5700.6A, dated 7-21-1981.

  17. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1981-07-21

    To provide Department of Energy (DOE) policy, set forth principles, and assign responsibilities for establishing, implementing, and maintaining programs of plans and actions to assure quality achievement in DOE programs. Cancels DOE O 5700.6, dated 1-16-1981. Canceled by DOE O 5700.6B, dated 9-23-1986.

  18. The use of computed radiography plates to determine light and radiation field coincidence

    SciTech Connect (OSTI)

    Kerns, James R.; Anand, Aman

    2013-11-15

    Purpose: Photo-stimulable phosphor computed radiography (CR) has characteristics that allow the output to be manipulated by both radiation and optical light. The authors have developed a method that uses these characteristics to carry out radiation field and light field coincidence quality assurance on linear accelerators.Methods: CR detectors from Kodak were used outside their cassettes to measure both radiation and light field edges from a Varian linear accelerator. The CR detector was first exposed to a radiation field and then to a slightly smaller light field. The light impinged on the detector's latent image, removing to an extent the portion exposed to the light field. The detector was then digitally scanned. A MATLAB-based algorithm was developed to automatically analyze the images and determine the edges of the light and radiation fields, the vector between the field centers, and the crosshair center. Radiographic film was also used as a control to confirm the radiation field size.Results: Analysis showed a high degree of repeatability with the proposed method. Results between the proposed method and radiographic film showed excellent agreement of the radiation field. The effect of varying monitor units and light exposure time was tested and found to be very small. Radiation and light field sizes were determined with an uncertainty of less than 1 mm, and light and crosshair centers were determined within 0.1 mm.Conclusions: A new method was developed to digitally determine the radiation and light field size using CR photo-stimulable phosphor plates. The method is quick and reproducible, allowing for the streamlined and robust assessment of light and radiation field coincidence, with no observer interpretation needed.

  19. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-07-12

    To establish an effective management system [i.e., quality assurance programs(QAPs)] using the performance requirements of this Order, coupled with technical standards where appropriate. Change 1, dated 7/12/01, facilitates the Department's organizational transition necessitated by establishment of the NNSA. (Attachment 2 of this Order is canceled by DOE O 470.2B.) Cancels: DOE O 414.1

  20. Letter on Low-Level Radiation Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Letter on Low-Level Radiation Research Letter on Low-Level Radiation Research The Secretary of Energy Advisory Board (SEAB) transmitted a letter to the Department regarding its perspective on how DOE should pursue research on low-level radiation. SEAB recommends DOE continue to sponsor a small, sustained, high quality research program primarily in DOE laboratories as well as centers of excellence within universities, medical schools, and hospitals. PDF icon SEAB Letter on Low-Level Radiation

  1. ARM - Data Quality Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality Program DQ Resources Data Quality Assessment and Control Report (PDF, 747KB) Data Quality Office Data Quality Problem Reporting (DQPR) Contact Us Submit Data Quality Findings Randy Peppler, Data Quality Manager Ken Kehoe, Data Quality Specialist Justin Monroe, Data Quality Specialist Adam Theisen, Data Quality Specialist Sean Moore, Data Quality Consultant Instrument and Site Contacts Instrument Mentors AAF Contacts AMF Contacts NSA Site Contacts SGP Site Contacts TWP Site Contacts Data

  2. Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

    2013-09-11

    Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

  3. Comparison of methods for the measurement of radiation dose distributions in high dose rate (HDR) brachytherapy: Ge-doped optical fiber, EBT3 Gafchromic film, and PRESAGE{sup Registered-Sign} radiochromic plastic

    SciTech Connect (OSTI)

    Palmer, A. L.; Di Pietro, P.; Alobaidli, S.; Issa, F.; Doran, S.; Bradley, D.; Nisbet, A.

    2013-06-15

    Purpose: Dose distribution measurement in clinical high dose rate (HDR) brachytherapy is challenging, because of the high dose gradients, large dose variations, and small scale, but it is essential to verify accurate treatment planning and treatment equipment performance. The authors compare and evaluate three dosimetry systems for potential use in brachytherapy dose distribution measurement: Ge-doped optical fibers, EBT3 Gafchromic film with multichannel analysis, and the radiochromic material PRESAGE{sup Registered-Sign} with optical-CT readout. Methods: Ge-doped SiO{sub 2} fibers with 6 {mu}m active core and 5.0 mm length were sensitivity-batched and their thermoluminescent properties used via conventional heating and annealing cycles. EBT3 Gafchromic film of 30 {mu}m active thickness was calibrated in three color channels using a nominal 6 MV linear accelerator. A 48-bit transmission scanner and advanced multichannel analysis method were utilized to derive dose measurements. Samples of the solid radiochromic polymer PRESAGE{sup Registered-Sign }, 60 mm diameter and 100 mm height, were analyzed with a parallel beam optical CT scanner. Each dosimetry system was used to measure the dose as a function of radial distance from a Co-60 HDR source, with results compared to Monte Carlo TG-43 model data. Each system was then used to measure the dose distribution along one or more lines through typical clinical dose distributions for cervix brachytherapy, with results compared to treatment planning system (TPS) calculations. Purpose-designed test objects constructed of Solid Water and held within a full-scatter water tank were utilized. Results: All three dosimetry systems reproduced the general shape of the isolated source radial dose function and the TPS dose distribution. However, the dynamic range of EBT3 exceeded those of doped optical fibers and PRESAGE{sup Registered-Sign }, and the latter two suffered from unacceptable noise and artifact. For the experimental conditions used in this study, the useful range from an isolated HDR source was 5-40 mm for fibers, 3-50 mm for EBT3, and 4-21 mm for PRESAGE{sup Registered-Sign }. Fibers demonstrated some over-response at very low dose levels, suffered from volume averaging effects in the dose distribution measurement, and exhibited up to 9% repeatability variation over three repeated measurements. EBT3 demonstrated excellent agreement with Monte Carlo and TPS dose distributions, with up to 3% repeatability over three measurements. PRESAGE{sup Registered-Sign} gave promising results, being the only true 3D dosimeter, but artifacts and noise were apparent. Conclusions: The comparative response of three emerging dosimetry systems for clinical brachytherapy dose distribution measurement has been investigated. Ge-doped optical fibers have excellent spatial resolution for single-direction measurement but are currently too large for complex dose distribution assessment. The use of PRESAGE{sup Registered-Sign} with optical-CT readout gave promising results in the measurement of true 3D dose distributions but further development work is required to reduce noise and improve dynamic range for brachytherapy dose distribution measurements. EBT3 Gafchromic film with multichannel analysis demonstrated accurate and reproducible measurement of dose distributions in HDR brachytherapy. Calibrated dose measurements were possible with agreement within 1.5% of TPS dose calculations. The suitability of EBT3 as a dosimeter for 2D quality control or commissioning work has been demonstrated.

  4. Cellular telephone-based radiation detection instrument

    DOE Patents [OSTI]

    Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

    2011-06-14

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  5. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is a hazard to human health when the particle size becomes small enough to enter the lungs, e.g., smoke. At LANL, particulate matter concentrations are measured continuously and...

  6. High efficiency, radiation-hard solar cells

    SciTech Connect (OSTI)

    Ager III, J.W.; Walukiewicz, W.

    2004-10-22

    The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.

  7. Measurement and Control of Glass Feedstocks

    SciTech Connect (OSTI)

    Arel Weisberg

    2007-04-26

    ERCo has developed a laser-based technology for rapid compositional measurements of batch, real-time sorting of cullet, and in-situ measurements of molten glass. This technology, termed LIBS (Laser Induced Breakdown Spectroscopy) can determine whether or not the batch was formulated accurately in order to control glass quality. It can also be used to determine if individual batch ingredients are within specifications. In the case of cullet feedstocks, the sensor can serve as part of a system to sort cullet by color and ensure that it is free of contaminants. In-situ compositional measurements of molten glass are achieved through immersing a LIBS probe directly into the melt in a glass furnace. This technology has been successfully demonstrated in ERCos LIBS laboratory for batch analysis, cullet sorting, and glass melt measurements. A commercial batch analyzer has been operating in a PPG fiberglass plant since August 2004. LIBS utilizes a highly concentrated laser pulse to rapidly vaporize and ionize nanograms of the material being studied. As this vapor cools, it radiates light at specific wavelengths corresponding to the elemental constituents (e.g. silicon, aluminum, iron) of the material. The strengths of the emissions correlate to the concentrations of each of the elemental constituents. By collecting the radiated light with a spectrometer capable of resolving and measuring these wavelengths, the elemental composition of the sample is found.

  8. Aerial Measuring System | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AMS Logo NNSA's Aerial Measuring System (AMS) provides specialized airborne radiation detection systems to provide real-time measurements of low levels of air and ground ...

  9. Data Driven Quality Assurance and Quality Control

    Broader source: Energy.gov [DOE]

    "Data Driven Quality Assurance & Quality Control," Patrick Roche, Conservation Services Group. Provides an overview of data QA/QC system design.

  10. METHOD AND MEANS FOR RADIATION DOSIMETRY

    DOE Patents [OSTI]

    Shulte, J.W.; Suttle, J.F.

    1958-02-18

    This patent relates to a method and device for determining quantities of gamma radiation and x radiation by exposing to such radiation a mature of a purified halogenated hydrocarbon chosen from the class consisting of chloroform, bromoform, tetrachloroethane and 1,1,2trichloroethane, and a minor quantity of a sensitizer chosen from the class consisting of oxygen, benzoyl peroxide, sodium peroxide, and nitrobenzene, the proportion of the sensitizer being at least about 10/sup -5/ moles per cubic centimeter of halogenated hydrocarbon, the total amount of sensitizer depending upon the range of radiation to be measured, and chemically measuring the amount of decomposition generated by the irradiation of the sensitized halogenated hydrocarbon.

  11. Posters Cloud Microphysical and Radiative Properties Measured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1993b). Our current investigations emphasize the backscatter intensity and vertical Doppler motions. One important technical characteristic of CO 2 lidar is coherent...

  12. Spectral Fluctuations of Incoherent Radiation And Measurement...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Conference Resource Relation: Journal Name: Conf.Proc.C970512:2180,1997; Conference: 17th IEEE Particle Accelerator Conference (PAC 97): Accelerator Science, ...

  13. Radiation dosimeters

    DOE Patents [OSTI]

    Hoelsher, James W. (Pullman, WA); Hegland, Joel E. (Pullman, WA); Braunlich, Peter F. (Pullman, WA); Tetzlaff, Wolfgang (Pullman, WA)

    1992-01-01

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  14. Calibration method for video and radiation imagers

    DOE Patents [OSTI]

    Cunningham, Mark F. (Oak Ridge, TN); Fabris, Lorenzo (Knoxville, TN); Gee, Timothy F. (Oak Ridge, TN); Goddard, Jr., James S. (Knoxville, TN); Karnowski, Thomas P. (Knoxville, TN); Ziock, Klaus-peter (Clinton, TN)

    2011-07-05

    The relationship between the high energy radiation imager pixel (HERIP) coordinate and real-world x-coordinate is determined by a least square fit between the HERIP x-coordinate and the measured real-world x-coordinates of calibration markers that emit high energy radiation imager and reflect visible light. Upon calibration, a high energy radiation imager pixel position may be determined based on a real-world coordinate of a moving vehicle. Further, a scale parameter for said high energy radiation imager may be determined based on the real-world coordinate. The scale parameter depends on the y-coordinate of the moving vehicle as provided by a visible light camera. The high energy radiation imager may be employed to detect radiation from moving vehicles in multiple lanes, which correspondingly have different distances to the high energy radiation imager.

  15. ARM - Measurement - Shortwave broadband radiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave broadband radiance A measure of the intrinsic radiant energy flux intensity, at wavelengths between 0.4 and 4 mu, emitted by a radiator in a...

  16. ARM - Measurement - Shortwave narrowband radiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave narrowband radiance A measure of the intrinsic radiant energy flux intensity, at wavelengths between 0.4 and 4 mu, emitted by a radiator in a...

  17. WPN 14-4: Quality Work Plan Requirement

    Broader source: Energy.gov [DOE]

    It defines what constitutes a quality installation of weatherization measures, outlines how those measures are inspected and validated, and defines acceptable training and credentialing of workers.

  18. Evolving treatment plan quality criteria from institution-specific experience

    SciTech Connect (OSTI)

    Ruan, D.; Shao, W.; DeMarco, J.; Tenn, S.; King, C.; Low, D.; Kupelian, P.; Steinberg, M.

    2012-05-15

    Purpose: The dosimetric aspects of radiation therapy treatment plan quality are usually evaluated and reported with dose volume histogram (DVH) endpoints. For clinical practicality, a small number of representative quantities derived from the DVH are often used as dose endpoints to summarize the plan quality. National guidelines on reference values for such quantities for some standard treatment approaches are often used as acceptance criteria to trigger treatment plan review. On the other hand, treatment prescription and planning approaches specific to each institution warrants the need to report plan quality in terms of practice consistency and with respect to institution-specific experience. The purpose of this study is to investigate and develop a systematic approach to record and characterize the institution-specific plan experience and use such information to guide the design of plan quality criteria. In the clinical setting, this approach will assist in (1) improving overall plan quality and consistency and (2) detecting abnormal plan behavior for retrospective analysis. Methods: The authors propose a self-evolving methodology and have developed an in-house prototype software suite that (1) extracts the dose endpoints from a treatment plan and evaluates them against both national standard and institution-specific criteria and (2) evolves the statistics for the dose endpoints and updates institution-specific criteria. Results: The validity of the proposed methodology was demonstrated with a database of prostate stereotactic body radiotherapy cases. As more data sets are accumulated, the evolving institution-specific criteria can serve as a reliable and stable consistency measure for plan quality and reveals the potential use of the ''tighter'' criteria than national standards or projected criteria, leading to practice that may push to shrink the gap between plans deemed acceptable and the underlying unknown optimality. Conclusions: The authors have developed a rationale to improve plan quality and consistency, by evolving the plan quality criteria from institution-specific experience, complementary to national standards. The validity of the proposed method was demonstrated with a prototype system on prostate stereotactic body radiotherapy (SBRT) cases. The current study uses direct and indirect DVH endpoints for plan quality evaluation, but the infrastructure proposed here applies to general outcome data as well. The authors expect forward evaluation together with intelligent update based on evidence-based learning, which will evolve the clinical practice for improved efficiency, consistency, and ultimately better treatment outcome.

  19. Gamma Radiation & X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gamma Radiation and X-Rays 1. Gamma radiation and X-rays are electromagnetic radiation like visible light, radio waves, and ultraviolet light. These electromagnetic radiations...

  20. Radiation.cdr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation is a natural part of our everyday environment. Cosmic rays showering the Earth through the atmosphere and radon gas seeping up from the soil are only two examples of natural radiation. Radiation Basics The study of radiation begins with the atom. Tremendous amounts of energy are stored in an atom's nucleus. When atoms are split, heat and radiation are produced. The heat can be used to turn water into steam and produce electricity. The radiation produced from splitting an atom's

  1. Natural radiation environment III. [Lead Abstract

    SciTech Connect (OSTI)

    Gesell, T.F.; Lowder, W.M.

    1980-01-01

    Separate abstracts were prepared for the 52 research papers presented at this symposium in April 1978. The major topics in this volume deal with penetrating radiation measurements, radiation surveys and population exposure, radioactivity in the indoor environment, and technologically enhanced natural radioactivity. (KRM)

  2. Study of material properties using channeling radiation

    SciTech Connect (OSTI)

    Pantell, R.H.; Kephart, J.O.; Klein, R.K.; Park, H.; Berman, B.L.; Datz, S.

    1986-01-01

    A possible application for channeling radiation is for investigating the properties of crystals in which the channeling occurs. In this paper we present some general considerations concerning channeling radiation as a measurement technique, and then we proceed to describe several specific examples.

  3. Elecron-positron momentum distribution measurements of high-t/sub c/ superconductors and related systems

    SciTech Connect (OSTI)

    Wachs, A.L.; Turchi, P.E.A.; Howell, R.H.; Jean, Y.C.; Fluss, M.J.; West, R.N.; Kaiser, J.H.; Rayner, S.; Hahgighi, H.; Merkle, K.L.; Revcolevschi, A.

    1989-06-01

    We discuss our measurements of the 2D-angular correlation of positron annihilation radiation (ACAR) in La/sub 2/CuO/sub 4/, YBa/sub 2/Cu/sub 3/O/sub 7/ (YBCO), and NiO. The measurements for NiO are the first such 2D-ACAR measurements; the YBCO results are of a higher statistical quality than previously reported in the literature. The data are compared with complementary theoretical calculations and with each other. We discuss the implication of our analysis for ACAR studies of similar and related systems. 5 refs., 1 fig.

  4. Electron-positron momentum distribution measurements of high-T superconductors and related systems

    SciTech Connect (OSTI)

    Wachs, A.L.; Turchi, P.E.A.; Howell, R.J.; Jean, Y.C.; Fluss, M.J.; West, R.N.; Kaiser, J.H.; Rayner, S.; Hahgighi, H.; Merkle, K.L.; Revcolevschi, A.; Wang, Z.Z.

    1989-08-01

    We discuss our measurements of the 2D-angular correlation of positron annihilation radiation (ACAR) in La{sub 2}CuO{sub 4}, YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO), and NiO. The measurements for NiO are the first such 2D-ACAR measurements; the YBCO results are of a higher statistical quality than previously reported in the literature. The data are compared with complementary theoretical calculations and with each other. We discuss the implication of our analysis for ACAR studies of similar and related systems. 5 refs., 1 fig.

  5. ARM - PI Product - Radiative Flux Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsRadiative Flux Analysis ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Radiative Flux Analysis The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and

  6. Types of Radiation Exposure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    External Irradiation Contamination Incorporation Biological Effects of Acute, Total Body Irradiation Managing Radiation Emergencies Procedure Demonstration Types of radiation exposure Regardless of where or how an accident involving radiation happens, three types of radiation-induced injury can occur: external irradiation, contamination with radioactive materials, and incorporation of radioactive material into body cells, tissues, or organs. External Irradiation External irradiation occurs when

  7. Apparatus and method for detecting gamma radiation

    DOE Patents [OSTI]

    Sigg, Raymond A. (Martinez, GA)

    1994-01-01

    A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

  8. Apparatus and method for detecting gamma radiation

    DOE Patents [OSTI]

    Sigg, R.A.

    1994-12-13

    A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

  9. Radiation absorption properties of different plaster samples

    SciTech Connect (OSTI)

    Akkurt, Iskender; Guenoglu, Kadir; Mavi, Betuel; K Latin-Small-Letter-Dotless-I l Latin-Small-Letter-Dotless-I ncarslan, Semsettin; Seven, Aysun

    2012-09-06

    Although the plaster is one of the oldest known synthetic building materials, nowadays, it is used as interior coating of walls and ceilings of buildings. Thus measuring its radiation shielding properties is vital. For this purpose, radiation absorption properties of different plaster samples in this study. The measurements have been performed using gamma spectrometer system which connected to 3'' Multiplication-Sign 3''NaI (TI) detector.

  10. ARM User Survey Report: Data Access, Quality, and Delivery

    SciTech Connect (OSTI)

    Mather, JH; Roeder, LR; Sivaraman, C

    2012-06-28

    The objective of this survey was to obtain user feedback to determine how users of the Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive interact with the more than 2000 available types of datastreams. The survey also gathered information about data discovery and data quality. The Market and Competitive Analysis group at Pacific Northwest National Laboratory worked with web administrators to develop a landing page from which users could access the survey. A survey invitation was sent by ARM via email to about 6100 users on February 22, 2012. The invitation was also posted on the ARM website and Facebook page. Reminders were sent via e-mail and posted on Facebook while the survey was open, February 22-March 23, 2012.

  11. HSS Quality Initiatives

    Broader source: Energy.gov [DOE]

    Presenter: Colette Broussard, Office of Quality Assurance Policy and Assistance, Office of Nuclear Safety, Quality Assurance and Environment Track 9-2

  12. Section 22: Quality Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Quality Assurance (40 CFR 194.22) Table of Contents 22.0 Quality Assurance (40 CFR ...

  13. Objective assessment of image quality and dose reduction in CT iterative reconstruction

    SciTech Connect (OSTI)

    Vaishnav, J. Y. Jung, W. C.; Popescu, L. M.; Zeng, R.; Myers, K. J.

    2014-07-15

    Purpose: Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve. Methods: The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction. Results: The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance. Conclusions: Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality.

  14. Forecasting Water Quality & Biodiversity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting Water Quality & Biodiversity March 25, 2015 Cross-cutting Sustainability Platform Review Principle Investigator: Dr. Henriette I. Jager Organization: Oak Ridge National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information 2015 DOE Bioenergy Technologies Office (BETO) Project Peer Review Goal Statement Addresses the following MYPP BETO goals:  Advance scientific methods and models for measuring and understanding

  15. Radiative Decays Involving Light Scalar Mesons

    SciTech Connect (OSTI)

    Deirdre Black; Masayasu Harada; Joseph Schechter

    2002-09-01

    We present a vector dominance model to describe radiative decays involving the light scalar mesons. Assuming that the light scalar mesons form a nonet this model gives relations among various decay amplitudes of the form S--> gamma gamma, V-->Sgamma and S--> Vgamma, where S and V denote scalar and vector mesons. By comparing with experimental radiative decay rates, including those recently measured for phi--> PP'gamma, we obtain various predictions. We discuss briefly ongoing extensions of the present work in an attempt to describe the radiative phi decay measurements in detail.

  16. ARM - Measurement - Surface skin temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    skin temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface skin temperature The radiative surface skin temperature, from an IR thermometer measuring the narrowband radiating temperature of the ground surface in its field of view. Categories Radiometric, Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the

  17. Keys to Successful Quality Assurance and Quality Control Programs (101) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Keys to Successful Quality Assurance and Quality Control Programs (101) Keys to Successful Quality Assurance and Quality Control Programs (101) January 28

  18. Keys to Successful Quality Assurance and Quality Control Programs...

    Office of Environmental Management (EM)

    Keys to Successful Quality Assurance and Quality Control Programs (101) Keys to Successful Quality Assurance and Quality Control Programs (101) January 28...

  19. Modelled Black Carbon Radiative Forcing and Atmospheric Lifetime...

    Office of Scientific and Technical Information (OSTI)

    from four recent aircraft measurement campaigns with 13 state of the art aerosol models, and show that recent assessments may have overestimated present day BC radiative forcing. ...

  20. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsAerosols

  1. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsRadiometric

  2. Radiation Protection and Safety Training | Environmental Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Protection and Safety Training (3 hrs) Instructors: John Seaman and Neil Miller Course Description: The objective of this course is to provide students with an...

  3. Radiation Embrittlement Archive Project

    SciTech Connect (OSTI)

    Klasky, Hilda B; Bass, Bennett Richard; Williams, Paul T; Phillips, Rick; Erickson, Marjorie A; Kirk, Mark T; Stevens, Gary L

    2013-01-01

    The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.

  4. Radiation Safety Poster | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety Poster Radiation Safety Poster Radiation Safety Poster

  5. 222-S laboratory quality assurance plan

    SciTech Connect (OSTI)

    Meznarich, H.K.

    1995-04-01

    This document provides quality assurance guidelines and quality control requirements for analytical services. This document is designed on the basis of Hanford Analytical Services Quality Assurance Plan (HASQAP) technical guidelines and is used for governing 222-S and 222-SA analytical and quality control activities. The 222-S Laboratory provides analytical services to various clients including, but not limited to, waste characterization for the Tank Waste Remediation Systems (TWRS), waste characterization for regulatory waste treatment, storage, and disposal (TSD), regulatory compliance samples, radiation screening, process samples, and TPA samples. A graded approach is applied on the level of sample custody, QC, data verification, and data reporting to meet the specific needs of the client.

  6. Track 9: Quality Assurance

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 9: Quality Assurance

  7. Annual DOE Occupational Radiation Exposure | 1992 - 1994 Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 - 1994 Report Annual DOE Occupational Radiation Exposure | 1992 - 1994 Report The DOE Occupational Radiation Exposure Report, 1992-1994 reports occupational radiation exposures incurred by individuals at U.S. Department of Energy (DOE) facilities from 1992 through 1994. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure

  8. Annual DOE Occupational Radiation Exposure | 1995 Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5 Report Annual DOE Occupational Radiation Exposure | 1995 Report The DOE Occupational Radiation Exposure Report, 1995 reports occupational radiation exposures incurred by individuals at U.S. Department of Energy (DOE) facilities during the calendar year 1995. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of the DOE's performance

  9. Annual DOE Occupational Radiation Exposure | 1996 Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 6 Report Annual DOE Occupational Radiation Exposure | 1996 Report The DOE Occupational Radiation Exposure Report, 1996 reports occupational radiation exposures incurred by individuals at U.S. Department of Energy (DOE) facilities during the calendar year 1996. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of the DOE's performance

  10. Annual DOE Occupational Radiation Exposure | 1997 Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 7 Report Annual DOE Occupational Radiation Exposure | 1997 Report The DOE Occupational Radiation Exposure Report, 1997 reports occupational radiation exposures incurred by individuals at U.S. Department of Energy (DOE) facilities during the calendar year 1997. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of DOE's performance in

  11. Annual DOE Occupational Radiation Exposure | 1998 Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 8 Report Annual DOE Occupational Radiation Exposure | 1998 Report The DOE Occupational Radiation Exposure Report, 1998 reports occupational radiation exposures incurred by individuals at DOE facilities during the calendar year 1998. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of DOE's performance in protecting its workers from

  12. Plutonium radiation surrogate

    DOE Patents [OSTI]

    Frank, Michael I. (Dublin, CA)

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  13. Method for measuring the density of lightweight materials

    DOE Patents [OSTI]

    Snow, Samuel G. (Oak Ridge, TN); Giacomelli, Edward J. (Knoxville, TN)

    1980-01-01

    This invention relates to a nondestructive method for measuring the density of articles composed of elements having a low atomic number such as plastic and carbon composites. The measurement is accomplished by striking the article with a collimated beam of X radiation, simultaneously monitoring the radiation scattered and the radiation transmitted by the article, then relating the ratio of the radiation scattered to the radiation transmitted with the density of the article. The above method is insensitive to all variables except density.

  14. Zirconium Plate Measuring Instrument (ZPMI) Design Report

    SciTech Connect (OSTI)

    K. Davies; J. H. Jackson

    2013-10-01

    This report describes the design of a device intended to measure radiation-induced strain in zirconium plate specimens as a function of neutron fluence.

  15. ARM - Publications: Science Team Meeting Documents: Measuring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring Solar Irradiance from Space: The SOlar Radiation and Climate Experiment Harder, Jerry LASP University of Colorado Fontenla, Juan LASP University of Colorado Kopp, Greg...

  16. CASL - Radiation Transport Methods Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Transport Methods Update The Radiation Transport Methods (RTM) focus area is responsible for the development of methods, algorithms, and implementations of radiation...

  17. Validation of the National Solar Radiation Database (NSRDB) (2005-2012): Preprint

    SciTech Connect (OSTI)

    Sengupta, Manajit; Weekley, Andrew; Habte, Aron; Lopez, Anthony; Molling, Christine

    2015-09-15

    Publicly accessible, high-quality, long-term, satellite-based solar resource data is foundational and critical to solar technologies to quantify system output predictions and deploy solar energy technologies in grid-tied systems. Solar radiation models have been in development for more than three decades. For many years, the National Renewable Energy Laboratory (NREL) developed and/or updated such models through the National Solar Radiation Data Base (NSRDB). There are two widely used approaches to derive solar resource data from models: (a) an empirical approach that relates ground-based observations to satellite measurements and (b) a physics-based approach that considers the radiation received at the satellite and creates retrievals to estimate clouds and surface radiation. Although empirical methods have been traditionally used for computing surface radiation, the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from the National Oceanic and Atmospheric Administration (NOAA) that computes global horizontal irradiance (GHI) using the visible and infrared channel measurements from the Geostationary Operational Environmental Satellites (GOES) system. GSIP uses a two-stage scheme that first retrieves cloud properties and then uses those properties in the Satellite Algorithm for Surface Radiation Budget (SASRAB) model to calculate surface radiation. NREL, the University of Wisconsin, and NOAA have recently collaborated to adapt GSIP to create a high temporal and spatial resolution data set. The product initially generates the cloud properties using the AVHRR Pathfinder Atmospheres-Extended (PATMOS-x) algorithms [3], whereas the GHI is calculated using SASRAB. Then NREL implements accurate and high-resolution input parameters such as aerosol optical depth (AOD) and precipitable water vapor (PWV) to compute direct normal irradiance (DNI) using the DISC model. The AOD and PWV, temperature, and pressure data are also combined with the MMAC model to simulate solar radiation under clear-sky conditions. The current NSRDB update is based on a 4-km x 4-km resolution at a 30-minute time interval, which has a higher temporal and spatial resolution. This paper demonstrates the evaluation of the data set using ground-measured data and detailed evaluation statistics. The result of the comparison shows a good correlation to the NSRDB data set. Further, an outline of the new version of the NSRDB and future plans for enhancement and improvement are provided.

  18. Environmental radiation detection via thermoluminescence

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1993-01-01

    The method and apparatus of the present invention relate to cryogenically cooling a thermoluminescent material, exposing it to a low level of radiation (less than about 1 R) while it is at the cooled temperature, warming the thermoluminescent material to "room temperature", and counting the photons emitted during heating. Sufficient sensitivity is achieved without exposing the thermoluminescent material to ultraviolet light thereby simplifying the measurements.

  19. Environmental radiation detection via thermoluminescence

    DOE Patents [OSTI]

    Miller, S.D.

    1993-03-23

    The method and apparatus of the present invention relate to cryogenically cooling a thermoluminescent material, exposing it to a low level of radiation (less than about 1 R) while it is at the cooled temperature, warming the thermoluminescent material to room temperature'' and counting the photons emitted during heating. Sufficient sensitivity is achieved without exposing the thermoluminescent material to ultraviolet light thereby simplifying the measurements.

  20. Method for detecting moisture in soils using secondary cosmic radiation

    DOE Patents [OSTI]

    Condreva, Kenneth

    2003-12-16

    Water content in a soil is determined by measuring the attenuation of secondary background cosmic radiation as this radiation propagates through a layer of soil and water. By measuring the attenuation of secondary cosmic radiation in the range of 5 MeV-15 MeV it is possible to obtain a relative measure of the water content in a soil layer above a suitable radiation detector and thus establish when and how much irrigation is needed. The electronic circuitry is designed so that a battery pack can be used to supply power.

  1. THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH MIMETIC...

    Office of Scientific and Technical Information (OSTI)

    THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH MIMETIC DIFFUSION FOR EXAFLAG Citation Details In-Document Search Title: THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH...

  2. Quality Assurance | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality Assurance Is A Key Focus At Jefferson Lab Quality assurance is a critical function at Jefferson Lab, protecting workers, lab facilities, the environment and the public. A D D I T I O N A L L I N K S: Quality Home Lessons Learned Quality Plan ESH&Q Home top-right bottom-left-corner bottom-right-corner Quality Assurance The Quality Assurance & Continuous Improvement Department has the critical role of working with the U.S. Department of Energy and other regulators on the

  3. ARM Airborne Carbon Measurements VI (ACME VI) Science Plan (Program...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM Airborne Carbon Measurements VI (ACME VI) Science Plan From October 1 through September 30, 2016, the Atmospheric RadiationMeasurement (ARM) Aerial Facility will deploy ...

  4. Surface wave chemical detector using optical radiation

    DOE Patents [OSTI]

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  5. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsCloud Properties

  6. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsSurface Properties

  7. Radiation Shielding Properties of Some Marbles in Turkey

    SciTech Connect (OSTI)

    Guenoglu, K.; Akkurt, I.

    2011-12-26

    Especially after development of technology, radiation started to be used in a large fields such as medicine, industry and energy. Using radiation in those fields bring hazardous effect of radiation into humancell. Thus radiation protection becomes important in physics. Although there are three ways for radiation protection, shielding of the radiation is the most commonly used method. Natural Stones such as marble is used as construction material especially in critical building and thus its radiation shielding capability should be determined.In this study, gamma ray shielding properties of some different types of marble mined in Turkey, have been measured using a NaI(Tl) scintillator detector. The measured results were also compared with the theoretical calculations XCOM.

  8. Current Trends in Gamma Radiation Detection for Radiological Emergency Response

    SciTech Connect (OSTI)

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken placetechniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportationthe so-called second line of defense.

  9. Synchrotron Radiation in Polymer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation in Polymer Science Synchrotron Radiation in Polymer Science March 30-April 2, 2012; San Francisco

  10. Synchrotron Radiation in Polymer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation in Polymer Science Synchrotron Radiation in Polymer Science March 30-April 2, 2012; San Francisco...

  11. IT Quality Assurance

    Broader source: Energy.gov [DOE]

    Quality, error-free work holds down costs. Avoiding mistakes and rework saves valuable time, effort, and materials. Quality assurance provides the mechanisms for paying close attention to details...

  12. Cellular telephone-based wide-area radiation detection network

    DOE Patents [OSTI]

    Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

    2009-06-09

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  13. ARM - Measurement - Cloud fraction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fraction ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud fraction Fraction of sky covered by clouds. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance

  14. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    SciTech Connect (OSTI)

    Han, Xiao; Zhang, Meigen; Han, Zhiewi; Xin, Jin-Yuan; Liu, Xiaohong

    2011-11-14

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W m-2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W m-2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan

  15. Quality Work Plan Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 | Energy Efficiency and Renewable Energy eere.energy.gov ACI Detroit Quality Work Plan Update April 2014 QWP: Background Culmination of a multi-year investment aimed at demonstrating quality and accountability in the WAP Taking action on lessons learned through various quality assurance reviews Establishing WAP as a national leader in technical resources and quality assurance Improving long term sustainability by building the foundation of the national industry with WAP at the core 2

  16. ARM - Measurement - Atmospheric temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list

  17. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    DOE Patents [OSTI]

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  18. Radiation Detection Computational Benchmark Scenarios

    SciTech Connect (OSTI)

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

    2013-09-24

    Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for compilation. This is a report describing the details of the selected Benchmarks and results from various transport codes.

  19. Robust Technique for Measuring and Simulating Silicon Wafer Quality Characteristics that Enable the Prediction of Solar Cell Electrical Performance of MEMC Silicon Wafer. Cooperative Research and Development Final Report, CRADA Number CRD-11-438

    SciTech Connect (OSTI)

    Sopori, Bhushan

    2015-12-01

    NREL and MEMC Electronic Materials are interested in developing a robust technique for monitoring material quality of mc-Si and mono-Si wafers -- a technique that can provide relevant data to accurately predict the performance of solar cells fabricated on them. Previous work, performed under two TSAs between NREL and MEMC, has established that dislocation clusters are the dominant performance-limiting factor in MEMC mc-Si solar cells. The work under this CRADA will go further in verifying these results on a larger data set, evaluate possibilities of faster method(s) for mapping dislocations in wafers/ingots, understanding dislocation generation during ingot casting, and helping MEMC to have an internal capability for basic characterization that will provide feedback needed for more accurate crystallization simulations. NREL has already developed dislocation mapping technique and developed a basic electronic model (called Network Model) that uses spatial distribution of dislocations to predict the cell performance. In this CRADA work, we will use these techniques to: (i) establish dislocation, grain size, and grain orientation distributions of the entire ingots (through appropriate DOE) and compare these with theoretical models developed by MEMC, (ii) determine concentrations of some relevant impurities in selected wafers, (iii) evaluate potential of using photoluminescence for dislocation mapping and identification of recombination centers, (iv) evaluate use of diode array analysis as a detailed characterization tool, and (v) establish dislocation mapping as a wafer-quality monitoring tool for commercial mc-Si production.

  20. ORISE Video: What is the difference between radiation exposure and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation contamination?

  1. Microsoft Word - shi_y.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Data Quality Assessment at the Atmospheric Radiation Measurement Program ... data collected at all Atmospheric Radiation Measurement (ARM) Program facilities, ...

  2. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Historical Atmospheric Radiation Measurement Program Measurements to Systematically ... R. Peppler, and K. Sonntag Atmospheric Radiation Measurement Program Data Quality Office ...

  3. DOE Comments - Radiation Protection (Atomic Energy Act) | Department of

    Office of Environmental Management (EM)

    Energy - Radiation Protection (Atomic Energy Act) DOE Comments - Radiation Protection (Atomic Energy Act) PDF icon 1. United States Department of Energy Comments on "Application of Protective Action Guides (PAGs) for Radiological Dispersal Devices (RDD) and Improvised Nuclear Device (IND) Incidents"; Notice (71 FR 174; January 3, 2006) PDF icon 2. Department of Energy Comments on NCRP SC 64-23 Draft Report PDF icon 3. DOE Comments on: "Uniform Federal Policy for Quality

  4. radiation.p65

    Office of Legacy Management (LM)

    5 United States Department of Energy This fact sheet explains the potential health hazards associated with the radioactive decay of uranium and other radioactive elements found in ore and mill tailings. Potential Health Hazards of Radiation Man-made sources of radiation, most notably from medical uses and consumer products, contribute to the remaining radiation dose that individuals receive. A few household products, including smoke detectors, micro- wave ovens, and color televisions, emit small

  5. RHOBOT: Radiation hardened robotics

    SciTech Connect (OSTI)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  6. Environmental Measurements Laboratory 1994 annual report

    SciTech Connect (OSTI)

    Chieco, N.A.; Krey, P.W.; Beck, H.L.

    1995-08-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1994 and it serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the manager and staff of the Chicago Field Office, and the authors colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven general program areas: environmental radiation and radioactivity; radiation transport and dosimetry; environmental radon, thoron, and related aerosols; atmospheric and surface pollutant studies related to global climate change; atmospheric chemistry; metrology, consultation, and emergency response; environmental management. EML`s mission is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants, and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues and related national security issues.

  7. Environmental Measurements Laboratory, annual report 1995

    SciTech Connect (OSTI)

    Krey, P.W.; Heit, M.

    1996-07-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1995 and serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the Manager and staff of the Chicago Operations Office, and our colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven research program areas: (1) Environmental Radiation and Radioactivity; (2) Radiation Transport and Dosimetry; (3) Environmental Radon, Thoron, and Related Aerosols; (4) Atmospheric and Surface Pollutant Studies Related to Global Climate Change; (5) Atmospheric Chemistry; and (6) Metrology, Consultation, and Emergency Response Environmental Management The mission of EML is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues, and related national security issues.

  8. Rotating bubble membrane radiator

    DOE Patents [OSTI]

    Webb, Brent J. (West Richland, WA); Coomes, Edmund P. (West Richland, WA)

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  9. Radiation coloration resistant glass

    DOE Patents [OSTI]

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  10. Radiation coloration resistant glass

    DOE Patents [OSTI]

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  11. SU-E-I-62: Assessing Radiation Dose Reduction and CT Image Optimization Through the Measurement and Analysis of the Detector Quantum Efficiency (DQE) of CT Images Using Different Beam Hardening Filters

    SciTech Connect (OSTI)

    Collier, J; Aldoohan, S; Gill, K

    2014-06-01

    Purpose: Reducing patient dose while maintaining (or even improving) image quality is one of the foremost goals in CT imaging. To this end, we consider the feasibility of optimizing CT scan protocols in conjunction with the application of different beam-hardening filtrations and assess this augmentation through noise-power spectrum (NPS) and detector quantum efficiency (DQE) analysis. Methods: American College of Radiology (ACR) and Catphan phantoms (The Phantom Laboratory) were scanned with a 64 slice CT scanner when additional filtration of thickness and composition (e.g., copper, nickel, tantalum, titanium, and tungsten) had been applied. A MATLAB-based code was employed to calculate the image of noise NPS. The Catphan Image Owl software suite was then used to compute the modulated transfer function (MTF) responses of the scanner. The DQE for each additional filter, including the inherent filtration, was then computed from these values. Finally, CT dose index (CTDIvol) values were obtained for each applied filtration through the use of a 100 mm pencil ionization chamber and CT dose phantom. Results: NPS, MTF, and DQE values were computed for each applied filtration and compared to the reference case of inherent beam-hardening filtration only. Results showed that the NPS values were reduced between 5 and 12% compared to inherent filtration case. Additionally, CTDIvol values were reduced between 15 and 27% depending on the composition of filtration applied. However, no noticeable changes in image contrast-to-noise ratios were noted. Conclusion: The reduction in the quanta noise section of the NPS profile found in this phantom-based study is encouraging. The reduction in both noise and dose through the application of beam-hardening filters is reflected in our phantom image quality. However, further investigation is needed to ascertain the applicability of this approach to reducing patient dose while maintaining diagnostically acceptable image qualities in a clinical setting.

  12. Fluidization quality analyzer for fluidized beds

    DOE Patents [OSTI]

    Daw, C. Stuart (Knoxville, TN); Hawk, James A. (Oak Ridge, TN)

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  13. ARM - Measurement - Microwave narrowband brightness temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsMicrowave narrowband brightness temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Microwave narrowband brightness temperature A descriptive measure of radiation in terms of the temperature of a hypothetical black body emitting an identical amount of radiation in the same narrow bands of wavelengths. Categories Radiometric Instruments The above measurement is considered

  14. Executive Order 11514: Protection and Enhancement of Environmental Quality

    Energy Savers [EERE]

    | Department of Energy 514: Protection and Enhancement of Environmental Quality Executive Order 11514: Protection and Enhancement of Environmental Quality The Federal Government shall provide leadership in protecting and enhancing the quality of the Nation's environment to sustain and enrich human life. Federal agencies shall initiate measures needed to direct their policies, plans and programs so as to meet national environmental goals. The Council on Environmental Quality, through the

  15. Mesh Quality Improvement Toolkit

    Energy Science and Technology Software Center (OSTI)

    2002-11-15

    MESQUITE is a linkable software library to be used by simulation and mesh generation tools to improve the quality of meshes. Mesh quality is improved by node movement and/or local topological modifications. Various aspects of mesh quality such as smoothness, element shape, size, and orientation are controlled by choosing the appropriate mesh qualtiy metric, and objective function tempate, and a numerical optimization solver to optimize the quality of meshes, MESQUITE uses the TSTT mesh interfacemore » specification to provide an interoperable toolkit that can be used by applications which adopt the standard. A flexible code design makes it easy for meshing researchers to add additional mesh quality metrics, templates, and solvers to develop new quality improvement algorithms by making use of the MESQUITE infrastructure.« less

  16. Report: EM Quality Assurance

    Office of Environmental Management (EM)

    EM QUALITY ASSURANCE September 25, 2008 Submitted by the EMAB Quality Assurance Subcommittee Background: In Fiscal Year (FY) 2008, the Environmental Management Advisory Board (EMAB) was tasked to dialogue with the Office of Quality Assurance (EM-60, QA) as it works to revitalize standards and institutionalize QA into Departmental and EM processes. In addition, EMAB was directed to dialogue with EM-60 on incorporating QA and engineering into the procurement process. Board members reviewed and

  17. WPN 15-4: Quality Work Plan Requirement Update

    Broader source: Energy.gov [DOE]

    This guidance provides updates to WPN 14-4 issued Dec. 2, 2013, and defines what constitutes a quality installation of weatherization measures, outlines how those measures are inspected and validated, and prescribes acceptable training and credentialing of workers.

  18. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes

    SciTech Connect (OSTI)

    Basyigit, Celalettin; Uysal, Volkan; Kilincarslan, Semsettin; Akkas, Ayse; Mavi, Betuel; Guenoglu, Kadir; Akkurt, Iskender

    2011-12-26

    The radiation although has hazardous effects for human health, developing technologies bring lots of usage fields to radiation like in medicine and nuclear power station buildings. In this case protecting from undesirable radiation is a necessity for human health. Heavyweight concrete is one of the most important materials used in where radiation should be shielded, like those areas. In this study, used heavyweight aggregates of different mineral origin (Limonite, Siderite), in order to prepare different series in concrete mixtures and investigated radiation shielding properties. The experimental results on measuring the radiation shielding, the heavyweight concrete prepared with heavyweight aggregates of different mineral origin show that, are useful radiation absorbents when they used in concrete mixtures.

  19. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    SciTech Connect (OSTI)

    Asner, David M.; Bradley, Rich; De Viveiros Souza Filho, Luiz A.; Doe, Peter J.; Fernandes, Justin L.; Fertl, M.; Finn, Erin C.; Formaggio, Joseph; Furse, Daniel L.; Jones, Anthony M.; Kofron, Jared N.; LaRoque, Benjamin; Leber, Michelle; MCBride, Lisa; Miller, M. L.; Mohanmurthy, Prajwal T.; Monreal, Ben; Oblath, Noah S.; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Rysewyk, Devyn M.; Sternberg, Michael G.; Tedeschi, Jonathan R.; Thummler, Thomas; VanDevender, Brent A.; Woods, N. L.

    2015-04-01

    It has been understood since 1897 that accelerating charges should emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spectrometer. We observe the cyclotron radiation emitted by individual electrons that are produced with mildly-relativistic energies by a gaseous radioactive source and are magnetically trapped. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work is a proof-of-concept for future neutrino mass experiments using this technique.

  20. Solar Resource Measurements at FPL Energy - Equipment Only. Cooperative Research and Development Final Report, CRADA Number CRD-08-283

    SciTech Connect (OSTI)

    Dooraghi, Mike

    2015-05-07

    Site-specific, long-term, continuous, and high-resolution measurements of solar irradiance are important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: Establish a national 30-year climatological database of measured solar irradiances; Provide high quality ground-truth data for satellite remote sensing validation; Support development of radiative transfer models for estimating solar irradiance from available meteorological observations; Provide solar resource information needed for technology deployment and operations.

  1. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2010-06-15

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  2. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2007-01-09

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  3. Nuclear radiation actuated valve

    DOE Patents [OSTI]

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  4. Underwater radiation detector

    DOE Patents [OSTI]

    Kruse, Lyle W. (Albuquerque, NM); McKnight, Richard P. (Albuquerque, NM)

    1986-01-01

    A detector apparatus for differentiating between gamma and neutron radiation is provided. The detector includes a pair of differentially shielded Geiger-Mueller tubes. The first tube is wrapped in silver foil and the second tube is wrapped in lead foil. Both the silver and lead foils allow the passage of gamma rays at a constant rate in a gamma ray only field. When neutrons are present, however, the silver activates and emits beta radiation that is also detected by the silver wrapped Geiger-Mueller tube while the radiation detected by the lead wrapped Geiger-Mueller tube remains constant. The amount of radiation impinging on the separate Geiger-Mueller tubes is then correlated in order to distinguish between the neutron and gamma radiations.

  5. WPN 15-4 Quality Work Plan Requirement Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WEATHERIZATION PROGRAM NOTICE 15-4 EFFECTIVE DATE: October 21, 2014 SUBJECT: Quality Work Plan Requirement Update PURPOSE: This guidance provides updates to WPN 14-4 issued December 2, 2013. This guidance supersedes 14-4 and describes requirements to support and verify quality work in the Department of Energy's (DOE) Weatherization Assistance Program (WAP). It defines what constitutes a quality installation of weatherization measures, outlines how those measures are inspected and validated, and

  6. November 17 PSERC Webinar: Meeting PMU Data Quality Requirements for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mission Critical Applications | Department of Energy November 17 PSERC Webinar: Meeting PMU Data Quality Requirements for Mission Critical Applications November 17 PSERC Webinar: Meeting PMU Data Quality Requirements for Mission Critical Applications November 13, 2015 - 3:25pm Addthis Phasor Measurement Units (PMU's) provide synchronized measurements at high rates for wide area situational awareness and decision support for mission critical applications. High quality PMU data is vital for

  7. Aerosol Radiative Effects in the Tropical Western Pacific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects in the Tropical Western Pacific A. M. Vogelmann Center for Atmospheric Sciences Scripps Institution of Oceanography University of California San Diego, California Introduction Atmospheric Radiation Measurement (ARM) Program observations are used to quantify the aerosol radiative effects in the climatically important Tropical Western Pacific (TWP). This quantification addresses two primary ARM objectives by (1) ascertaining the existing variability of the radiative forcing and its

  8. A simulation technique for 3D MR-guided acoustic radiation force imaging

    SciTech Connect (OSTI)

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison with experimentally obtained 3D displacement data in homogeneous gelatin phantoms using a 3D MR-ARFI sequence. The agreement of the experimentally measured and simulated results demonstrates the potential to use MR-ARFI displacement data in MRgFUS therapies.

  9. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments [OSTI]

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  10. Composition for radiation shielding

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC)

    1994-01-01

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  11. Radiation Safety System

    SciTech Connect (OSTI)

    Vylet, Vaclav; Liu, James C.; Walker, Lawrence S.; /Los Alamos

    2012-04-04

    The goal of this work is to provide an overview of a Radiation safety system (RSS) designed for protection from prompt radiation hazard at accelerator facilities. RSS design parameters, functional requirements and constraints are derived from hazard analysis and risk assessment undertaken in the design phase of the facility. The two main subsystems of a RSS are access control system (ACS) and radiation control system (RCS). In this text, a common approach to risk assessment, typical components of ACS and RCS, desirable features and general design principles applied to RSS are described.

  12. Low Dose Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ancient Salt Beds Repository Science Renewable Energy The WIPP Underground may be ideal to study effects of Very Low Dose Rates on Biological Systems Low Background Radiation Experiment We're all bathing in it. It's in the food we eat, the water we drink, the soil we tread and even the air we breathe. It's background radiation, it's everywhere and we can't get away from it. But what would happen if you somehow "pulled the plug" on natural background radiation? Would organisms suffer or

  13. Radiation Protection | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Protection Radiation Protection Regulations: The Federal Regulation governing the use of radioactive materials at Ames Laboratory is 10 CFR 835. To implement this...

  14. ARM - Measurement - Longwave narrowband brightness temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    narrowband brightness temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave narrowband brightness temperature A descriptive measure of radiation in terms of the temperature of a hypothetical black body emitting an identical amount of radiation in the same narrow band of wavelengths. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the

  15. ARM - Measurement - Longwave spectral brightness temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectral brightness temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave spectral brightness temperature A descriptive measure of radiation in terms of the temperature of a hypothetical black body emitting an identical amount of radiation at the same spectrally resolved wavelengths. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the

  16. Apparatus for accurately measuring high temperatures

    DOE Patents [OSTI]

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  17. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, Lyle W. (Albuquerque, NM)

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  18. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  19. Ionizing radiation detector

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  20. The Global Environment Radiation Monitoring Network (GERMON)

    SciTech Connect (OSTI)

    Zakheim, B.J.; Goellner, D.A.

    1994-12-31

    Following the Chernobyl accident in 1986, a group of experts from the World Health Organization (WHO) and the United Nations Environment Program (UNEP) met in France to discuss and develop the basic principles of a global environmental radiation monitoring network (GERMON). The basic functions of this network were to provide regular reports on environmental radiation levels and to be in a position to provide reliable and accurate radiation measurements on a quick and accurate radiation measurements on a quick turnaround basis in the event of a major radiation release. By 1992, although 58 countries had indicated an interest in becoming a part of the GERMON system, only 16 were providing data on a regular basis. This paper traces the history of GERMON from its inception in 1987 through its activities during 1993-4. It details the objectives of the network, describes functions, lists its participants, and presents obstacles in the current network. The paper examines the data requirements for radiological emergency preparedness and offers suggestions for the current system. The paper also describes the growing need for such a network. To add a domestic perspective, the authors present a summary of the environmental monitoring information system that was used by the NRC in 1986 in its analyses of the Chernobyl incident. Then we will use this 1986 experience to propose a method for the use of GERMON should a similar occasion arise in the future.