Sample records for radiation emi generated

  1. Mitigation of Radiation and EMI Effects on the Vacuum Control System of LHC

    E-Print Network [OSTI]

    Pigny, G; Krakowski, P; Rio, B

    2014-01-01T23:59:59.000Z

    The 26 km of vacuum chambers where circulates the beam of the Large Hadron Collider (LHC) must be maintained under Ultra High Vacuum (UHV) to minimize the beam interactions with residual gases, and allow the operation of specific systems. The vacuum level is measured by several thousands of gauges along the accelerator. Bad vacuum quality may trigger a beam dump and close the associated sector valves. The effects of radiation or Electromagnetic Interferences (EMI) on components that may stop the machine must be evaluated and minimized. We report on the actions implemented to mitigate their impact on the vacuum control system.

  2. Power converter having improved EMI shielding

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2006-06-13T23:59:59.000Z

    EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  3. Vehicle drive module having improved EMI shielding

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2006-11-28T23:59:59.000Z

    EMI shielding in an electric vehicle drive is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  4. Microscreen radiation shield for thermoelectric generator

    DOE Patents [OSTI]

    Hunt, Thomas K. (Ann Arbor, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

    1990-01-01T23:59:59.000Z

    The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.

  5. Electromagnetic Interference (EMI) Resisting Analog Integrated Circuit Design Tutorial 

    E-Print Network [OSTI]

    Yu, Jingjing

    2012-10-19T23:59:59.000Z

    This work introduces fundamental knowledge of EMI, and presents three basic features correlated to EMI susceptibility: nonlinear distortion, asymmetric slew rate (SR) and parasitic capacitance. Different existing EMI-resisting ...

  6. Generation and characterization of superradiant undulator radiation

    SciTech Connect (OSTI)

    Bocek, D.

    1997-06-01T23:59:59.000Z

    High-power, pulsed, coherent, far-infrared (FIR) radiation has many scientific applications, such as pump-probe studies of surfaces, liquids, and solids, studies of high-T{sub c} superconductors, biophysics, plasma diagnostics, and excitation of Rydberg atoms. Few sources of such FIR radiation currently exist. Superradiant undulator radiation produced at the SUNSHINE (Stanford UNiversity SHort INtense Electron-source) is such a FIR source. First proposed in the mm-wave spectral range by Motz, superradiant undulator radiation has been realized in the 45 {micro}m to 300 {micro}m spectral range by using sub-picosecond electron bunches produced by the SUNSHINE facility. The experimental setup and measurements of this FIR radiation are reported in this thesis. In addition, to being a useful FIR source, the superradiant undulator radiation produced at SUNSHINE is an object of research in itself. Measured superlinear growth of the radiated energy along the undulator demonstrates the self-amplification of radiation by the electron bunch. This superlinear growth is seen at 47 {micro}m to 70 {micro}m wavelengths. These wavelengths are an order of magnitude shorter than in previous self-amplification demonstrations.

  7. Electricity and short wavelength radiation generator

    DOE Patents [OSTI]

    George, E.V.

    1985-08-26T23:59:59.000Z

    Methods and associated apparati for use of collisions of high energy atoms and ions of He, Ne, or Ar with themselves or with high energy neutrons to produce short wavelength radiation (lambda approx. = 840-1300 A) that may be utilized to produce cathode-anode currents or photovoltaic currents.

  8. Apparatus for generating partially coherent radiation

    DOE Patents [OSTI]

    Naulleau, Patrick P.

    2004-09-28T23:59:59.000Z

    The effective coherence of an undulator beamline can be tailored to projection lithography requirements by using a simple single moving element and a simple stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (i) source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence; (ii) a reflective surface that receives incident radiation from said source; (iii) means for moving the reflective surface through a desired range of angles in two dimensions wherein the rate of the motion is fast relative to integration time of said image processing system; and (iv) a condenser optic that re-images the moving reflective surface to the entrance plane of said image processing system, thereby, making the illumination spot in said entrance plane essentially stationary.

  9. Lamp for generating high power ultraviolet radiation

    DOE Patents [OSTI]

    Morgan, Gary L. (Elkridge, MD); Potter, James M. (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

  10. Spectrum of second-harmonic radiation generated from incoherent light

    SciTech Connect (OSTI)

    Stabinis, A.; Pyragaite, V.; Tamosauskas, G.; Piskarskas, A. [Department of Quantum Electronics, Vilnius University, Sauletekio Avenue 9, Building 3, LT-10222 Vilnius (Lithuania)

    2011-10-15T23:59:59.000Z

    We report on the development of the theory of second-harmonic generation by an incoherent pump with broad angular and frequency spectra. We show that spatial as well as temporal walk-off effects in a nonlinear crystal result in angular dispersion of the second-harmonic radiation. We demonstrate that the acceptance angle in second-harmonic generation by incoherent light is caused by the width of the pump angular spectrum and the resulting angular dispersion of second-harmonic radiation but does not depend on crystal length. In this case the frequency spectrum of second-harmonic radiation is determined by its angular dispersion and the pump angular spectrum. The theory is supported by an experiment in which a LiIO{sub 3} crystal was pumped by a tungsten halogen lamp.

  11. IEC International Standards Under Development For Radiation-Generating Devices

    SciTech Connect (OSTI)

    Voytchev, M; Radev, R; Chiaro, P; Thomson, I; Dray, C; Li, J

    2007-12-06T23:59:59.000Z

    The International Electrotechnical Commission (IEC) is the leading and oldest global organization with over 100 years history of developing and publishing international standards for all electrical, electronic and related technologies, including radiation detection instrumentation. Subcommittee 45B 'Radiation Protection Instrumentation' of the IEC has recently started the development of two standards on radiation-generating devices. IEC 62463 'Radiation protection instrumentation--X-ray Systems for the Screening of Persons for Security and the Carrying of Illicit Items' is applicable to X-ray systems designed for screening people to detect if they are carrying objects such as weapons, explosives, chemical and biological agents and other concealed items that could be used for criminal purposes, e.g. terrorist use, drug smuggling, etc. IEC 62523 'Radiation protection instrumentation--Cargo/Vehicle radiographic inspection systems' applies to cargo/vehicle imaging inspection systems using accelerator produced X-ray or gamma radiation to obtain images of the screened objects (e.g. cargo containers, transport and passenger vehicles and railroad cars). The objective of both standards is to specify standard requirements and general characteristics and test procedures, as well as, radiation, electrical, environmental, mechanical, and safety requirements and to provide examples of acceptable methods to test these requirements. In particular the standards address the design requirements as they relate to the radiation protection of the people being screened, people who are in the vicinity of the equipment and the operators. The standard IEC 62463 does not deal with the performance requirements for the quality of the object detection. Compliance with the standards requirements will provide the manufacturers with internationally acceptable specifications and the device users with assurance of the rigorous quality and accuracy of the measurements in relation to the radiological safety of the equipment. The main characteristics of IEC 62463 and IEC 62523 standards are presented and as well as the IEC methodology of standard development and approval.

  12. Generation of Coherent X-Ray Radiation Through Modulation Compression

    E-Print Network [OSTI]

    Qiang, Ji

    2010-01-01T23:59:59.000Z

    In this letter, we propose a scheme to generate tunable coherent X-ray radiation for future light source applications. This scheme uses an energy chirped electron beam, a laser modulators, a laser chirper and two bunch compressors to generate a prebunched kilo-Ampere current electron beam from a few tens Ampere electron beam out of a linac. The initial modulation energy wavelength can be compressed by a factor of $1+h_b R_{56}^a$ in phase space, where $h_b$ is the energy bunch length chirp introduced by the laser chirper, $R_{56}^a$ is the momentum compaction factor of the first bunch compressor. As an illustration, we present an example to generate more than $400$ MW, $170$ atto-seconds pulse, $1$ nm coherent X-ray radiation using a $60$ Ampere electron beam out of the linac and $200$ nm laser seed. Both the final wavelength and the radiation pulse length in the proposed scheme are tunable by adjusting the compression factor and the laser parameters.

  13. Generation of Coherent X-Ray Radiation Through Modulation Compression

    SciTech Connect (OSTI)

    Qiang, Ji; Wu, Juhao

    2010-12-14T23:59:59.000Z

    In this letter, we propose a scheme to generate tunable coherent X-ray radiation for future light source applications. This scheme uses an energy chirped electron beam, a laser modulators, a laser chirper and two bunch compressors to generate a prebunched kilo-Ampere current electron beam from a few tens Ampere electron beam out of a linac. The initial modulation energy wavelength can be compressed by a factor of 1 + h{sub b}R{sub 56}{sup a} phase space, where h{sub b} is the energy bunch length chirp introduced by the laser chirper, R{sub 56}{sup a} is the momentum compaction factor of the first bunch compressor. As an illustration, we present an example to generate more than 400 MW, 170 atto-seconds pulse, 1 nm coherent X-ray radiation using a 60 Ampere electron beam out. of the linac and 200 nm laser seed. Both the final wavelength and the radiation pulse length in the proposed scheme are tunable by adjusting the compression factor and the laser parameters.

  14. High Efficiency, Low EMI and Positioning Tolerant Wireless Charging...

    Office of Environmental Management (EM)

    Low EMI and Positioning Tolerant Wireless Charging of EVs 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  15. Ferromagnetic Antenna and its Application to Generation and Detection of Gravitational Radiation

    E-Print Network [OSTI]

    Fran De Aquino

    2002-10-30T23:59:59.000Z

    A new type of antenna, which we have called Ferromagnetic Antenna, has been considered for Generation and Detection of Gravitational Radiation. A simple experiment, in which gravitational radiation at 10 GHz can be emitted and received in laboratory, is presented.

  16. Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon

    E-Print Network [OSTI]

    Gao, Hongjun

    , electrically conducting polymer composites have gained popularity recently because of their light weight (SWNT)-polymer composites have been fabricated to evaluate the electromagnetic interference (EMI) of a composite material depends on many factors, including the filler's intrinsic conductivity, dielectric

  17. Improved method for calculating the radiation heat generation in the BOR-60 reactor

    SciTech Connect (OSTI)

    Varivtsev, A. V., E-mail: vav3@niiar.ru; Zhemkov, I. Yu. [JSC “SSC RIAR,” Dimitrovgrad-10 (Russian Federation)

    2014-12-15T23:59:59.000Z

    The results of theoretical and experimental studies aimed at determining the radiation heat generation in the BOR-60 reactor reveal the drawbacks of the computational methods used at present. An algorithm that is free from these drawbacks and allows one to determine the radiation heat generation computationally is proposed.

  18. OPTICAL DIFFERENCE FREQUENCY GENERATION OF FAR INFRARED RADIATION

    E-Print Network [OSTI]

    Morris, J.R.

    2010-01-01T23:59:59.000Z

    Absorption on Far-Infrared Generation IV. V. Comparison withIII CHAPTER IV. PHASE MATCHED FAR-INFRARED GENERATION BY THE1970). CHAPTER IV. PHASE MATCHED FAR-INFRARED GENERATION BY

  19. Generation of Coherent X-Ray Radiation Through Modulation Compression

    E-Print Network [OSTI]

    Qiang, Ji

    2011-01-01T23:59:59.000Z

    ultra-short coherent X-ray radiation by controlling the fraction of the beam that can be properly unchirped using a few-cycle laser

  20. Oscillator Seeding of a High Gain Harmonic Generation FEL in a Radiator-First Configuration

    E-Print Network [OSTI]

    Gandhi, P.

    2014-01-01T23:59:59.000Z

    Proceedings of the 2010 FEL Conference, Malm¨o, Sweden,Proceedings of the 2010 FEL Conference, Malm¨o, Sweden,of a high gain harmonic generation FEL in a radiator-first

  1. Generation of ultrashort radiation pulses by injection locking a regenerative free-electron-laser amplifier

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Generation of ultrashort radiation pulses by injection locking a regenerative free-electron-laser 12609-5 PACS number s : 41.60.Cr, 42.60.Da I. INTRODUCTION AND MOTIVATION The free-electron laser FEL demonstrate how a steady-state train of ultrashort radiation pulses can be produced utilizing a new free-electron

  2. Custom Spectral Shaping for EMI Reduction in Electronic Ballasts

    E-Print Network [OSTI]

    waveforms, resulting in the elimination of power spectral density (PSD) distortion and reduced peak currents power and light color, increase lifetime and realize smaller and lighter ballasts. With such a source used extensively to reduce EMI in power supplies [1-10]. The power spectral density (PSD) is spread

  3. EMIE DES SCIENCES S ' EANCE DU 8 JUIN 1938

    E-Print Network [OSTI]

    ACAD ' EMIE DES SCIENCES ­ S ' EANCE DU 8 JUIN 1938 PHYSIQUE NUCL ' EAIRE.­ Grandes gerbes cosmiques atmosph'eriques contenant des corpuscules ultra­p'en'etrantes. Note de MM. PIERRE AUGER, RAYMOND de corpuscules atteignent­ ils ind'ependamment la haute atmosph`ere, ou bien l'un est­il produit

  4. EMIS Quick User Guide Search page (details on page 2)

    E-Print Network [OSTI]

    Barthelat, Francois

    search terms in foreign languages You can enter search terms in foreign languages by: - Using your: Please note that we have a Cyrillic and Arabic keyboards available through the Search page. EnteringEMIS Quick User Guide Search page (details on page 2) The News page: Access the latest news

  5. Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    1 Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar. The devices investigated were first, second and third-generation Silicon- Germanium (SiGe) Heterojunction-engineered SiGe technology [1] have potential advantages when compared with Complementary Metal Oxide

  6. Assessment and Mitigation of Diagnostic-Generated Electromagnetic Interference at the National Ignition Facility

    SciTech Connect (OSTI)

    Brown, C G; Ayers, M J; Felker, B; Ferguson, W; Holder, J P; Nagel, S R; Piston, K W; Simanovskaia, N; Throop, A L; Chung, M; Hilsabeck, T

    2012-04-20T23:59:59.000Z

    Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.

  7. Electro-optic crystal mosaics for the generation of terahertz radiation

    DOE Patents [OSTI]

    Carrig, Timothy J. (Los Alamos, NM); Taylor, Antoinette J. (Los Alamos, NM); Stewart, Kevin R. (Schenectady, NY)

    1996-01-01T23:59:59.000Z

    Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification.

  8. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOE Patents [OSTI]

    Dawson, J.M.; Mori, W.B.; Lai, C.H.; Katsouleas, T.C.

    1998-07-14T23:59:59.000Z

    Method and apparatus ar disclosed for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing. 4 figs.

  9. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOE Patents [OSTI]

    Dawson, John M. (Pacific Palisades, CA); Mori, Warren B. (Hermosa Beach, CA); Lai, Chih-Hsiang (So. Pasadena, CA); Katsouleas, Thomas C. (Malibu, CA)

    1998-01-01T23:59:59.000Z

    Method and apparatus for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing.

  10. Radiative Generation of Quark Masses and Mixing Angles in the Two Higgs Doublet Model

    E-Print Network [OSTI]

    Alejandro Ibarra; Ana Solaguren-Beascoa

    2014-07-04T23:59:59.000Z

    We present a framework to generate the quark mass hierarchies and mixing angles by extending the Standard Model with one extra Higgs doublet. The charm and strange quark masses are generated by small quantum effects, thus explaining the hierarchy between the second and third generation quark masses. All the mixing angles are also generated by small quantum effects: the Cabibbo angle is generated at zero-th order in perturbation theory, while the remaining off-diagonal entries of the Cabibbo-Kobayashi-Maskawa matrix are generated at first order, hence explaining the observed hierarchy $|V_{ub}|,|V_{cb}|\\ll |V_{us}|$. The values of the radiatively generated parameters depend only logarithmically on the heavy Higgs mass, therefore this framework can be reconciled with the stringent limits on flavor violation by postulating a sufficiently large new physics scale.

  11. Generation of terahertz radiation from a low-density plasma slab irradiated by a laser pulse

    SciTech Connect (OSTI)

    Frolov, A. A. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2010-04-15T23:59:59.000Z

    The generation of terahertz electromagnetic radiation when a laser pulse propagates through a low-density plasma slab is considered. It is shown that terahertz waves are excited because of the growth of a weakly damped, antisymmetric leaking mode of the plasma slab. The spectral, angular, and energy parameters of the terahertz radiation are investigated, as well as the spatiotemporal structure of the emitted waves. It is demonstrated that terahertz electromagnetic wave fields are generated most efficiently when the pulse length is comparable to the slab thickness.

  12. Raman shifted third harmonic generation of upper hybrid radiation in a plasma

    SciTech Connect (OSTI)

    Magesh Kumar, K.K.; Singh, Ranjeet; Tripathi, V. K. [Department of Physics, Indian Institute of Technology Delhi, New Delhi-110016 (India)

    2012-11-15T23:59:59.000Z

    Raman shifted third harmonic generation of upper hybrid radiation is proposed and studied. In the presence of ambient magnetic field, the plasma wave present in the system produces electron density ripple (perturbation) which couples with the velocity imparted by the nonlinear ponderomotive force at twice the laser frequency producing the Raman shifted third harmonic field. The wave vector of the plasma wave provides the uncompensated momentum necessary for phase matching condition. The applied magnetic field can be adjusted to have the phase matching for the given plasma frequency. The energy conversion ratio from pump to the Raman shifted third harmonic generation of upper hybrid radiation is analyzed.

  13. Electromagnetic Interference (EMI) Resisting Analog Integrated Circuit Design Tutorial

    E-Print Network [OSTI]

    Yu, Jingjing

    2012-10-19T23:59:59.000Z

    confusing sometimes, because parasitic capacitances influence the slew rates, the strong and also the weak nonlinear distortion in the input stage. When a high frequency EMI signal that does not force the transistors into cut-off is applied to the inputs...-stage OTA circuit simplified at high frequency .................................... 23 Fig. 3. 1. Diode-connected NMOS transistor .............................................................. 26 Fig. 3. 2. DC shifting of Vgs in diode...

  14. COHERENT INFRARED RADIATION FROM THE ALS GENERATED VIA FEMTOSECOND LASER MODULATION OF THE ELECTRON BEAM*

    E-Print Network [OSTI]

    the energy of an ultra-short (~ 30 micron) slice of a stored electron bunch as they co-propagate throughCOHERENT INFRARED RADIATION FROM THE ALS GENERATED VIA FEMTOSECOND LASER MODULATION OF THE ELECTRON Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS

  15. A Statistical Model for Generating a Population of Unclassified Objects and Radiation Signatures Spanning Nuclear Threats

    SciTech Connect (OSTI)

    Nelson, K; Sokkappa, P

    2008-10-29T23:59:59.000Z

    This report describes an approach for generating a simulated population of plausible nuclear threat radiation signatures spanning a range of variability that could be encountered by radiation detection systems. In this approach, we develop a statistical model for generating random instances of smuggled nuclear material. The model is based on physics principles and bounding cases rather than on intelligence information or actual threat device designs. For this initial stage of work, we focus on random models using fissile material and do not address scenarios using non-fissile materials. The model has several uses. It may be used as a component in a radiation detection system performance simulation to generate threat samples for injection studies. It may also be used to generate a threat population to be used for training classification algorithms. In addition, we intend to use this model to generate an unclassified 'benchmark' threat population that can be openly shared with other organizations, including vendors, for use in radiation detection systems performance studies and algorithm development and evaluation activities. We assume that a quantity of fissile material is being smuggled into the country for final assembly and that shielding may have been placed around the fissile material. In terms of radiation signature, a nuclear weapon is basically a quantity of fissile material surrounded by various layers of shielding. Thus, our model of smuggled material is expected to span the space of potential nuclear weapon signatures as well. For computational efficiency, we use a generic 1-dimensional spherical model consisting of a fissile material core surrounded by various layers of shielding. The shielding layers and their configuration are defined such that the model can represent the potential range of attenuation and scattering that might occur. The materials in each layer and the associated parameters are selected from probability distributions that span the range of possibilities. Once an object is generated, its radiation signature is calculated using a 1-dimensional deterministic transport code. Objects that do not make sense based on physics principles or other constraints are rejected. Thus, the model can be used to generate a population of spectral signatures that spans a large space, including smuggled nuclear material and nuclear weapons.

  16. Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric-field-induced contributions

    E-Print Network [OSTI]

    Reid, Matthew

    time due to a growing number of applications such as imaging,1­3 illicit-drug detection,4Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric July 2005 Polarized second-harmonic generation and terahertz radiation in reflection from 100 , 110

  17. Emergency Management Issues Special Interest Group (EMI SIG)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseCElizabeth O'Malley DeputyEly8,8CBL isSystemsEMI

  18. Cross-Fertilization between Spallation Neutron Source and Third Generation Synchrotron Radiation Detectors

    SciTech Connect (OSTI)

    Gebauer, B.; Schulz, Ch.; Alimov, S.S.; Wilpert, Th. [Hahn-Meitner-Instiut Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Levchanovsky, F.V. [Hahn-Meitner-Instiut Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Frank Laboratory of Neutron Physics, Joint Institute of Nuclear Research, 141980 Dubna (Russian Federation); Litvinenko, E.I.; Nikiforov, A.S. [Frank Laboratory of Neutron Physics, Joint Institute of Nuclear Research, 141980 Dubna (Russian Federation)

    2004-05-12T23:59:59.000Z

    Suffering presently from relatively low source strengths compared to synchrotron radiation investigations, neutron scattering methods will greatly benefit from the increase of instantaneous flux attained at the next generation of pulsed spallation neutron sources. In particular at ESS, the strongest projected source, the counting rate load on the detectors will rise by factors of up to 50-150 in comparison with present generic instruments. For these sources the detector requirements overlap partly with those for modern synchrotron radiation detectors as far as counting rate capability and two-dimensional position resolution are concerned. In this paper, examples of the current and forthcoming detector development, comprising e.g. novel solutions for low-pressure micro-strip gas chamber detectors, for silicon micro-strip detectors and for the related front-end ASICs and data acquisition (DAQ) systems, are summarized, which will be of interest for detection of synchrotron radiation as well.

  19. Second-harmonic generation efficiency for multifrequency ytterbium-doped fibre laser radiation

    SciTech Connect (OSTI)

    Politko, M O; Kablukov, S I; Nemov, I N; Babin, Sergei A

    2013-02-28T23:59:59.000Z

    The second-harmonic generation (SHG) efficiency for cw Yb-doped fibre laser radiation, which is characterised by many longitudinal modes with random phases, is compared with the SHG efficiency for amplified single-frequency Nd : YAG laser radiation in ppLN and KTP crystals, characterised by the type-I and type-IIphase matching, respectively. It is shown that the conversion efficiency into the second harmonic in the multifrequency regime for both crystals is higher by a factor of about 1.6, a value close to the calculated enhancement (2 for the Gaussian mode statistics). This difference is explained by possible deviation of the statistics of the Yb-doped fibre laser radiation from Gaussian, which is confirmed by measurements of the laser temporal dynamics. (laser optics 2012)

  20. EMC/EMI Analysis in Wireless Communication Networks Department of Electrical Engineering

    E-Print Network [OSTI]

    Loyka, Sergey

    EMC/EMI Analysis in Wireless Communication Networks S. Loyka Department of Electrical Engineering: sergey.loyka@ieee.org Abstract: Main challenges in EMC/EMI modeling and simulation for modern and future difference between simulating analog and digital systems. A computationally-efficient approach for EMC

  1. ON ACCURACY OF NUMERICAL EMC/EMI MODELING OVER A WIDE FREQUENCY RANGE

    E-Print Network [OSTI]

    Loyka, Sergey

    1 ON ACCURACY OF NUMERICAL EMC/EMI MODELING OVER A WIDE FREQUENCY RANGE Sergey Loyka EMC Lab: loyka@nemc.belpak.minsk.by Abstract - Numerical EMC/EMI modeling over a wide frequency range requires computational efficiency is proposed. I. INTRODUCTION Almost all the EMC problems are wide frequency range ones

  2. Radiation Environments and Exposure Considerations for the Multi-Mission Radioisotope Thermoelectric Generator

    SciTech Connect (OSTI)

    Kelly, William M.; Low, Nora M.; Zillmer, Andrew; Johnson, Gregory A. [Pratt and Whitney Rocketdyne, 6633 Canoga Avenue, Canoga Park, CA 91309 (United States); Normand, Eugene [Boeing Radiation Effects Laboratory, P.O. Box 3707, M/S 2T-50, Seattle, WA 98124-22079 (United States)

    2006-01-20T23:59:59.000Z

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is the next generation (RTG) being developed by DOE to provide reliable, long-life electric power for NASA's planetary exploration programs. The MMRTG is being developed by Pratt and Whitney Rocketdyne and Teledyne Energy Systems Incorporated (TESI) for use on currently planned and projected flyby, orbital and planet landing missions. This is a significant departure from the design philosophy of the past which was to match specific mission requirements to RTG design capabilities. Undefined mission requirements provide a challenge to system designers by forcing them to put a design envelope around 'all possible missions'. These multi-mission requirements include internal and external radiation sources. Internal sources include the particles ejected by decaying Pu-238 and its daughters plus particles resulting from the interaction of these particles with other MMRTG materials. External sources include the full spectrum of charged particle radiation surrounding planets with magnetic fields and the surfaces of extraterrestrial objects not shielded by magnetic fields. The paper presents the results of investigations into the environments outlined above and the impact of radiation exposure on potential materials to be used on MMRTG and ground support personnel. Mission requirements were also reviewed to evaluate total integrated dose and to project potential shielding requirements for materials. Much of the information on mission shielding requirements was provided by NASA's Jet Propulsion Laboratory. The primary result is an ionizing radiation design curve which indicates the limits to which a particular mission can take the MMRTG in terms of ionizing radiation exposure. Estimates of personnel radiation exposure during ground handling are also provided.

  3. Inner-shell radiation from wire array implosions on the Zebra generator

    SciTech Connect (OSTI)

    Ouart, N. D.; Giuliani, J. L.; Dasgupta, A. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States)] [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Shrestha, I.; Weller, M. E.; Shlyaptseva, V.; Osborne, G. C.; Stafford, A.; Keim, S. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States)] [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); Apruzese, J. P. [Consultant to NRL through Engility Corp., Chantilly, Virginia 20151 (United States)] [Consultant to NRL through Engility Corp., Chantilly, Virginia 20151 (United States); Clark, R. W. [Berkeley Research Associates, Beltsville, Maryland 20705 (United States)] [Berkeley Research Associates, Beltsville, Maryland 20705 (United States)

    2014-03-15T23:59:59.000Z

    Implosions of brass wire arrays on Zebra have produced L-shell radiation as well as inner-shell K? and K? transitions. The L-shell radiation comes from ionization stages around the Ne-like charge state that is largely populated by a thermal electron energy distribution function, while the K-shell photons are a result of high-energy electrons ionizing or exciting an inner-shell (1s) electron from ionization stages around Ne-like. The K- and L-shell radiations were captured using two time-gated and two axially resolved time-integrated spectrometers. The electron beam was measured using a Faraday cup. A multi-zone non-local thermodynamic equilibrium pinch model with radiation transport is used to model the x-ray emission from experiments for the purpose of obtaining plasma conditions. These plasma conditions are used to discuss some properties of the electron beam generated by runaway electrons. A simple model for runaway electrons is examined to produce the K? radiation, but it is found to be insufficient.

  4. Resonantly enhanced method for generation of tunable, coherent vacuum ultraviolet radiation

    DOE Patents [OSTI]

    Glownia, James H. (Los Alamos, NM); Sander, Robert K. (Los Alamos, NM)

    1985-01-01T23:59:59.000Z

    Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but to higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.

  5. Resonantly enhanced method for generation of tunable, coherent vacuum-ultraviolet radiation

    DOE Patents [OSTI]

    Glownia, J.H.; Sander, R.K.

    1982-06-29T23:59:59.000Z

    Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but no higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.

  6. Method for generation of THz frequency radiation and sensing of large amplitude material strain waves in piezoelectric materials

    DOE Patents [OSTI]

    Reed, Evan J. (Pine Island, MN); Armstrong, Michael R. (Albuquerque, NM)

    2010-09-07T23:59:59.000Z

    Strain waves of THz frequencies can coherently generate radiation when they propagate past an interface between materials with different piezoelectric coefficients. Such radiation is of detectable amplitude and contains sufficient information to determine the time-dependence of the strain wave with unprecedented subpicosecond, nearly atomic time and space resolution.

  7. Generation of high-power tunable terahertz-radiation by nonrelativistic beam-echo harmonic effect

    SciTech Connect (OSTI)

    Gong Huarong; Xu Jin; Wei Yanyu; Gong Yubin [National Key Laboratory of Science and Technology on Vacuum Electronics, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Travish, Gil [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Feng Jinjun [Vacuum Electronics National Laboratory, Vacuum Electronics research Institute, Beijing 100016 (China)

    2013-01-15T23:59:59.000Z

    A new type of terahertz radiation source based on the nonrelativistic electron beam-wave interaction is proposed. Here, the beam echo harmonic effect is applied to a traveling wave tube like device. The scheme is configured as a combination of a frequency multiplier and amplifier with, for instance, W-band (millimeter wave) input signals and terahertz output power. A one-dimensional model of this device shows that a 10th order harmonic-wave can be generated while other harmonic waves are suppressed. The device only requires a readily available input source (W-band), and the output frequency can be tuned continuously over a wide band.

  8. Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks

    E-Print Network [OSTI]

    K. -I. Nishikawa; P. Hardee; G. Richardson; R. Preece; H. Sol; G. J. Fishman

    2003-12-03T23:59:59.000Z

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The ``jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  9. EMI shield enhancement through the addition of copper coated glass fibers

    E-Print Network [OSTI]

    Montanye, Jeffrey Richard

    1988-01-01T23:59:59.000Z

    EMI SHIELD ENHANCEMENT THROUGH THE ADDITION OF COPPER COATED GLASS FIBERS A Thesis by JEFFREY RICHARD MONTANYE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August f988 Major Subject: Interdisciplinary Engineering EMI SHIELD ENHANCEMENT THROUGH THE ADDITION OF COPPER COATED GLASS FIBERS A Thesis by JEFFREY RICHARD MONTANYE Approved as to style and content by: George W. Halldin (Chair...

  10. EMI shield enhancement through the addition of copper coated glass fibers 

    E-Print Network [OSTI]

    Montanye, Jeffrey Richard

    1988-01-01T23:59:59.000Z

    EMI SHIELD ENHANCEMENT THROUGH THE ADDITION OF COPPER COATED GLASS FIBERS A Thesis by JEFFREY RICHARD MONTANYE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August f988 Major Subject: Interdisciplinary Engineering EMI SHIELD ENHANCEMENT THROUGH THE ADDITION OF COPPER COATED GLASS FIBERS A Thesis by JEFFREY RICHARD MONTANYE Approved as to style and content by: George W. Halldin (Chair...

  11. Hot spot generation in energetic materials created by long-wavelength infrared radiation

    SciTech Connect (OSTI)

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S.; Dlott, Dana D., E-mail: dlott@illinois.edu [School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-02-10T23:59:59.000Z

    Hot spots produced by long-wavelength infrared (LWIR) radiation in an energetic material, crystalline RDX (1,3,5-trinitroperhydro-1,3,5-triazine), were studied by thermal-imaging microscopy. The LWIR source was a CO{sub 2} laser operating in the 28-30?THz range. Hot spot generation was studied using relatively low intensity (?100?W cm{sup ?2}), long-duration (450 ms) LWIR pulses. The hot spots could be produced repeatedly in individual RDX crystals, to investigate the fundamental mechanisms of hot spot generation by LWIR, since the peak hot-spot temperatures were kept to ?30?K above ambient. Hot spots were generated preferentially beneath RDX crystal planes making oblique angles with the LWIR beam. Surprisingly, hot spots were more prominent when the LWIR wavelength was tuned to be weakly absorbed (absorption depth ?30??m) than when the LWIR wavelength was strongly absorbed (absorption depth ?5??m). This unexpected effect was explained using a model that accounts for LWIR refraction and RDX thermal conduction. The weakly absorbed LWIR is slightly focused underneath the oblique crystal planes, and it penetrates the RDX crystals more deeply, increasing the likelihood of irradiating RDX defect inclusions that are able to strongly absorb or internally focus the LWIR beam.

  12. Validated Models for Radiation Response and Signal Generation in Scintillators: Final Report

    SciTech Connect (OSTI)

    Kerisit, Sebastien N.; Gao, Fei; Xie, YuLong; Campbell, Luke W.; Van Ginhoven, Renee M.; Wang, Zhiguo; Prange, Micah P.; Wu, Dangxin

    2014-12-01T23:59:59.000Z

    This Final Report presents work carried out at Pacific Northwest National Laboratory (PNNL) under the project entitled “Validated Models for Radiation Response and Signal Generation in Scintillators” (Project number: PL10-Scin-theor-PD2Jf) and led by Drs. Fei Gao and Sebastien N. Kerisit. This project was divided into four tasks: 1) Electronic response functions (ab initio data model) 2) Electron-hole yield, variance, and spatial distribution 3) Ab initio calculations of information carrier properties 4) Transport of electron-hole pairs and scintillation efficiency Detailed information on the results obtained in each of the four tasks is provided in this Final Report. Furthermore, published peer-reviewed articles based on the work carried under this project are included in Appendix. This work was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy (DOE).

  13. Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors

    SciTech Connect (OSTI)

    Simos, N.

    2011-05-01T23:59:59.000Z

    In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the operating envelope of both fission and fusion reactors. In advanced fission reactors composite materials are being designed in an effort to extend the life and improve the reliability of fuel rod cladding as well as structural materials. Composites are being considered for use as core internals in the next generation of gas-cooled reactors. Further, next-generation plasma-fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER) will rely on the capabilities of advanced composites to safely withstand extremely high neutron fluxes while providing superior thermal shock resistance.

  14. Generation of tunable mid-IR radiation by second harmonic in a CdGeAs{sub 2} crystal

    SciTech Connect (OSTI)

    Das, S [Laser Laboratory, Department of Physics, Burdwan University, Burdwan (India)

    2012-03-31T23:59:59.000Z

    Tunable mid-IR radiation is obtained during second harmonic generation of tunable CO{sub 2}-laser radiation using a CdGeAs{sub 2} crystal. Its angular tuning characteristics at the CO{sub 2}- laser wavelength, angular acceptance angle and spectral acceptance are measured. For second harmonic generation at 10.6 {mu}m, the conversion efficiency in the CdGeAs{sub 2} crystal is 90 times higher than that in the ZnGeP{sub 2} crystal.

  15. Testing the improved method for calculating the radiation heat generation at the periphery of the BOR-60 reactor core

    SciTech Connect (OSTI)

    Varivtsev, A. V., E-mail: vav3@niiar.ru; Zhemkov, I. Yu. [JSC “SSC RIAR,” Dimitrovgrad-10 (Russian Federation)

    2014-12-15T23:59:59.000Z

    The application of the improved method for calculating the radiation heat generation in the elements of an experimental device located at the periphery of the BOR-60 reactor core results in a significant reduction in the discrepancies between the calculated and the experimental data. This allows us to conclude that the improved method has an advantage over the one used earlier.

  16. Numerical and simulation study of terahertz radiation generation by laser pulses propagating in the extraordinary mode in magnetized plasma

    SciTech Connect (OSTI)

    Jha, Pallavi; Kumar Verma, Nirmal [Department of Physics, University of Lucknow, Lucknow-226007 (India)

    2014-06-15T23:59:59.000Z

    A one-dimensional numerical model for studying terahertz radiation generation by intense laser pulses propagating, in the extraordinary mode, through magnetized plasma has been presented. The direction of the static external magnetic field is perpendicular to the polarization as well as propagation direction of the laser pulse. A transverse electromagnetic wave with frequency in the terahertz range is generated due to the presence of the magnetic field. Further, two-dimensional simulations using XOOPIC code show that the THz fields generated in plasma are transmitted into vacuum. The fields obtained via simulation study are found to be compatible with those obtained from the numerical model.

  17. Radiation-Generating Devices Guide for Use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-15T23:59:59.000Z

    For use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection. This Guide provides an acceptable methodology for establishing and operating a sealed radioactive source accountability and control program that will comply with U.S. Department of Energy (DOE) requirements specified in Title 10 of the Code of Federal Regulations (CFR), Part 835, Occupational Radiation Protection (DOE 1998a), hereinafter referred to as 10 CFR 835. In particular, this Guide provides guidance for achieving compliance with subpart M of 10 CFR 835. Canceled by DOE G 441.1-1B.

  18. X-ray optics developments at the APS for third-generation synchrotron radiation sources

    SciTech Connect (OSTI)

    Mills, D.M. [Argonne National Lab., IL (United States). Advanced Photon Source

    1996-09-01T23:59:59.000Z

    High brilliance third-generation synchrotron radiation sources simultaneously provide both a need and an opportunity for the development of new x-ray optical components. The high power and power densities of the x-ray beams produced by insertion devices have forced researchers to consider novel, and what may seem like exotic, approaches to the mitigation of thermal distortions that can dilute the beam brilliance delivered to the experiment or next optical component. Once the power has been filtered by such high heat load optical elements, specialized components can be employed that take advantage of the high degree of brilliance. This presentation reviews the performance of optical components that have been designed, fabricated, and tested at the Advanced Photon Source, starting with high heat load components and followed by examples of several specialized devices such as a milli-eV resolution (in-line) monochromator, a high energy x-ray phase retarder, and a phase zone plate with submicron focusing capability.

  19. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL)

    2000-01-01T23:59:59.000Z

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  20. EnvironMEntAl chEMiStry College of Natural Science and Mathematics

    E-Print Network [OSTI]

    Hartman, Chris

    EnvironMEntAl chEMiStry College of Natural Science and Mathematics Department of Chemistry education and research opportunities focused on the molecular scale as- pects of environmental science prepares students for careers in the environmental science and technology sector as specialists

  1. Apparatus and method for generating continuous wave 16. mu. m laser radiation using gaseous CF/sub 4/

    DOE Patents [OSTI]

    Telle, J.M.

    1984-05-01T23:59:59.000Z

    Apparatus and method for generating continuous wave 16 ..mu..m laser radiation using gaseous CF/sub 4/. Laser radiation at 16 ..mu..m has been observed in a cooled static cell containing low pressure CF/sub 4/ optically pumped by an approximately 3 W output power c-w CO/sub 2/ laser. The laser cavity employed was a multiple-pass off-axis-path two spherical mirror ring resonator. Unidirectional CF/sub 4/ laser output power at 615 cm/sup -1/ exceeded 2 mW. Computer calculations indicate that for modest pump powers of about 40 W, approximately 1 W of emitted laser radiation at 16 ..mu..m might be obtained.

  2. Apparatus and method for generating continuous wave 16 .mu.m laser radiation using gaseous CF.sub.4

    DOE Patents [OSTI]

    Telle, John M. (Los Alamos, NM)

    1986-01-01T23:59:59.000Z

    Apparatus and method for generating continuous wave 16 .mu.m laser radiation using gaseous CF.sub.4. Laser radiation at 16 .mu.m has been observed in a cooled static cell containing low pressure CF.sub.4 optically pumped by an approximately 3 W output power cw CO.sub.2 laser. The laser cavity employed was a multiple-pass off-axis-path two spherical mirror ring resonator. Unidirectional CF.sub.4 laser output power at 615 cm.sup.-1 exceeded 2 mW. Computer calculations indicate that for modest pump powers of about 40 W, approximately 1 W of emitted laser radiation at 16 .mu.m might be obtained.

  3. Effect of radiative heat transfer on the coagulation dynamics of combustion-generated particles

    SciTech Connect (OSTI)

    Mackowski, D.W. (Auburn Univ., AL (United States)); Tassopoulos, M.; Rosner, D.E. (Yale Univ., New Haven, CT (United States))

    1994-01-01T23:59:59.000Z

    We examine the influences of radiation heat transfer on the size and number density evolution of small coagulating particles. On a microscopic level, radiative emission and/or absorption by the particle will perturb the gas temperature field adjacent to each particle. As a result of thermophoretic particle transport, the nonequilibrium condition can alter the collision rates with neighboring particles. A simplified analysis of the thermophoretic coagulation mechanism suggests that net radiative cooling of the particles can lead to an accelerated growth of [mu]m-sized particles, whereas net radiative heating can act to essentially freeze coagulation rates. On the macroscopic level, the addition or removal of heat in the gas through radiative absorption emission by the particle cloud can also significantly alter, through thermophoretic transport, the local particle number density. Under certain cases these effects can augment the accelerated coagulation rates that occur under radiative cooling conditions. We also examine the particular situation of equilibrium between particle cloud radiative absorption and emission - which results in no net macroscopic effect on the gas. 30 refs., 9 figs.

  4. The generation of high field terahertz radiation and its application in terahertz nonlinear spectroscopy

    E-Print Network [OSTI]

    Yeh, Ka-Lo

    2009-01-01T23:59:59.000Z

    In this thesis research, I implemented a terahertz generation scheme that enables high-field near-single-cycle terahertz (THz) pulse generation via optical rectification in a LiNbO3 (LN) crystal. I also developed a method ...

  5. Filamantation and White Light Generation with Spatially and Temporally Controlled Femtosecond Radiation

    E-Print Network [OSTI]

    Kaya, Necati

    2014-10-21T23:59:59.000Z

    or crossing two femtosecond laser beams in a medium. Additionally, as the first step toward coherent control and manipulation of the interaction of femtosecond radiation with molecular systems, a reconstruction of the momentum fragment distribution of laser...

  6. Vehicle Technologies Office Merit Review 2015: High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs

    Broader source: Energy.gov [DOE]

    Presentation given by Hyundai at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency, low EMI and...

  7. Vehicle Technologies Office Merit Review 2014: High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs

    Broader source: Energy.gov [DOE]

    Presentation given by Hyundai at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency, low EMI and...

  8. Characterization and Application of Hard X-Ray Betatron Radiation Generated by Relativistic Electrons from a Laser-Wakefield Accelerator

    E-Print Network [OSTI]

    Schnell, Michael; Uschmann, Ingo; Jansen, Oliver; Kaluza, Malte Christoph; Spielmann, Christian

    2015-01-01T23:59:59.000Z

    The necessity for compact table-top x-ray sources with higher brightness, shorter wavelength and shorter pulse duration has led to the development of complementary sources based on laser-plasma accelerators, in contrast to conventional accelerators. Relativistic interaction of short-pulse lasers with underdense plasmas results in acceleration of electrons and in consequence in the emission of spatially coherent radiation, which is known in the literature as betatron radiation. In this article we report on our recent results in the rapidly developing field of secondary x-ray radiation generated by high-energy electron pulses. The betatron radiation is characterized with a novel setup allowing to measure the energy, the spatial energy distribution in the far-field of the beam and the source size in a single laser shot. Furthermore, the polarization state is measured for each laser shot. In this way the emitted betatron x-rays can be used as a non-invasive diagnostic tool to retrieve very subtle information of t...

  9. Study of the spatial coherence of high order harmonic radiation generated from pre-formed plasma plumes

    SciTech Connect (OSTI)

    Kumar, M.; Singhal, H.; Chakera, J. A.; Naik, P. A.; Khan, R. A.; Gupta, P. D. [Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013, M.P. (India)

    2013-07-21T23:59:59.000Z

    A study of the spatial coherence of the high order harmonic radiation generated by the interaction of 45 fs Ti:sapphire laser beam with carbon (graphite) plasma plume has been carried out using Young's double slit interferometry. It is observed that the spatial coherence varies with harmonic order, laser focal spot size in plasma plume, and peaks at an optimal spot size. It is also observed that the spatial coherence is higher when the laser pulse is focused before the plasma plume than when focused after the plume, and it decreases with increase in the harmonic order. The optimum laser parameters and the focusing conditions to achieve good spatial coherence with high harmonic conversion have been identified, which is desirable for practical applications of the harmonic radiation.

  10. A first generation compact microbeam radiation therapy system based on carbon nanotube X-ray technology

    SciTech Connect (OSTI)

    Hadsell, M.; Shan, J.; Burk, L. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)] [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Zhang, J.; Chang, S. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States) [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Laganis, P.; Sprenger, F. [XinRay Systems, Inc., 7020 Kit Creek Road, Suite 210, Research Triangle Park, North Carolina 27709 (United States)] [XinRay Systems, Inc., 7020 Kit Creek Road, Suite 210, Research Triangle Park, North Carolina 27709 (United States); Zhang, L. [Curriculum in Applied and Materials Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)] [Curriculum in Applied and Materials Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Yuan, H. [Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)] [Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Lu, J.; Zhou, O. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States) [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Curriculum in Applied and Materials Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

    2013-10-28T23:59:59.000Z

    We have developed a compact microbeam radiation therapy device using carbon nanotube cathodes to create a linear array of narrow focal line segments on a tungsten anode and a custom collimator assembly to select a slice of the resulting wedge-shaped radiation pattern. Effective focal line width was measured to be 131 ?m, resulting in a microbeam width of ?300 ?m. The instantaneous dose rate was projected to be 2 Gy/s at full-power. Peak to valley dose ratio was measured to be >17 when a 1.4 mm microbeam separation was employed. Finally, multiple microbeams were delivered to a mouse with beam paths verified through histology.

  11. Applications of photon-in, photon-out spectroscopy with third-generation, synchrotron-radiation sources

    SciTech Connect (OSTI)

    Lindle, D.W.; Perera, R.C.C. [eds.

    1991-12-31T23:59:59.000Z

    This report discusses the following topics: Mother nature`s finest test probe; soft x-ray emission spectroscopy with high-brightness synchrotron radiation sources; anisotropy and polarization of x-ray emission from atoms and molecules; valence-hole fluorescence from molecular photoions as a probe of shape-resonance ionization: progress and prospects; structural biophysics on third-generation synchrotron sources; ultra-soft x-ray fluorescence-yield XAFS: an in situ photon-in, photon-out spectroscopy; and x-ray microprobe: an analytical tool for imaging elemental composition and microstructure.

  12. Applications of photon-in, photon-out spectroscopy with third-generation, synchrotron-radiation sources

    SciTech Connect (OSTI)

    Lindle, D.W.; Perera, R.C.C. (eds.)

    1991-01-01T23:59:59.000Z

    This report discusses the following topics: Mother nature's finest test probe; soft x-ray emission spectroscopy with high-brightness synchrotron radiation sources; anisotropy and polarization of x-ray emission from atoms and molecules; valence-hole fluorescence from molecular photoions as a probe of shape-resonance ionization: progress and prospects; structural biophysics on third-generation synchrotron sources; ultra-soft x-ray fluorescence-yield XAFS: an in situ photon-in, photon-out spectroscopy; and x-ray microprobe: an analytical tool for imaging elemental composition and microstructure.

  13. Radiative generation of the CPT-even gauge term of the SME from a dimension-five nonminimal coupling term

    E-Print Network [OSTI]

    R. Casana; M. M. Ferreira Jr; R. V. Maluf; F. E. P. dos Santos

    2013-09-07T23:59:59.000Z

    In this letter we show for the first time that the usual CPT-even gauge term of the standard model extension (SME) can be radiatively generated, in a gauge invariant level, in the context of a modified QED endowed with a dimension-five nonminimal coupling term recently proposed in the literature. As a consequence, the existing upper bounds on the coefficients of the tensor $(K_{F}) $ can be used improve the bounds on the magnitude of the nonminimal coupling, $\\lambda(K_{F}),$ by the factors $10^{5}$ or $10^{25}.$ The nonminimal coupling also generates higher-order derivative contributions to the gauge field effective action quadratic terms.

  14. Radiative generation of the CPT-even gauge term of the SME from a dimension-five nonminimal coupling term

    E-Print Network [OSTI]

    Casana, R; Maluf, R V; Santos, F E P dos

    2013-01-01T23:59:59.000Z

    In this letter we show for the first time that the usual CPT-even gauge term of the standard model extension (SME) can be radiatively generated, \\textbf{}in a gauge invariant level, in the context of a modified QED endowed with a dimension-five nonminimal coupling term recently proposed in the literature. As a consequence, the existing upper bounds on the coefficients of the tensor $(K_{F}) $ can be used improve the bounds on the magnitude of the nonminimal coupling, $\\lambda(K_{F}),$ by the factors $10^{5}$ or $10^{25}.$ The nonminimal coupling also generates higher-order derivative contributions to the gauge field effective action quadratic terms.

  15. High-Order Harmonic Generation Yielding Tunable Extreme-Ultraviolet Radiation of High Spectral Purity

    E-Print Network [OSTI]

    harmonic photon. The universal cutoff in high-order har- monic generation (HHG) processes exists at Ip 3 (ponderomotive) energy of a quasifree electron quivering in the laser field in the neighborhood of the ionic core [9] and for resonance-enhanced wave mixing [10]. In contrast to these studies, in the nonperturbative

  16. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride

    SciTech Connect (OSTI)

    Trivedi, Sudhir B [Brimrose Technology Corporation; Kutcher, Susan W [Brimrose Technology Corporation; Berding, Martha . [SRI International; Burger, Arnold . [Independent Consultant; Palosz, Witold . [Brimrose Technology Corporation

    2014-11-17T23:59:59.000Z

    The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated. Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.

  17. Radiative feedback by low-mass stars in the first generation

    SciTech Connect (OSTI)

    Whalen, Daniel James [Los Alamos National Laboratory; Hueckstaedt, Robert [Los Alamos National Laboratory; Mcconkie, Thomas [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The survival of cosmological minihalos in both ionizing and Lyman-Werner (LW) UV fields from nearby and distant sources has attracted recent attention for its role in regulating the rise of stellar populations at high red-shifts. Numerical models suggest that the first stars form in isolation in small dark matter halos of {approx} 10{sup 5}-10{sup 7} M{sub {circle_dot}} at z {approx} 20-30 and that they are very massive, 25-500 M{sub {circle_dot}}. These stars form large H II regions 2.5-5 kpc in radius capable of engulfing nearby halos. With the rise of Population III stars throughout the cosmos also comes a global LW background that sterilizes mini-halos of H{sub 2}, delaying or preventing new star formation in them. At high redshifts, ionizaing radiation is therefore relatively local while LW photons can originate from many megaparsects away because their energies lie below the ionization limit of H.

  18. Mechanism and computational model for Lyman-{alpha}-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    SciTech Connect (OSTI)

    Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Bakule, Pavel [STFC, ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX (United Kingdom); Yokoyama, Koji [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Advanced Meson Science Laboratory, RIKEN Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Ishida, Katsuhiko; Iwasaki, Masahiko [Advanced Meson Science Laboratory, RIKEN Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)

    2011-09-15T23:59:59.000Z

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-{alpha} (Ly-{alpha}) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-{alpha} generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-{alpha} radiation generation can achieve a value of {approx}5x10{sup -4} which is restricted by the total combined absorption of the fundamental and generated radiation.

  19. Generation of high power sub-terahertz radiation from a gyrotron with second harmonic oscillation

    SciTech Connect (OSTI)

    Saito, Teruo; Yamada, Naoki; Ikeuti, Shinji; Tatematsu, Yoshinori; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507 (Japan); Ogasawara, Shinya [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8463 (Japan); Manuilov, Vladimir N. [Nizhny Novgorod State University, Nizhny Novgorod 603600 (Russian Federation); Shimozuma, Takashi; Kubo, Shin; Nishiura, Masaki; Tanaka, Kenji; Kawahata, Kazuo [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

    2012-06-15T23:59:59.000Z

    New power records of second harmonic gyrotron oscillation have been demonstrated in the sub-THz band. The first step gyrotron of demountable type had succeeded in oscillation with power more than 50 kW at 350 GHz and nearly 40 kW at 390 GHz [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009)]. Then, the second step gyrotron of sealed-off type was manufactured. A cavity mode was carefully selected to avoid mode competition with a neighboring fundamental harmonic mode. Matching of the selected mode with the electron gun was also circumspectly considered. The second step gyrotron has attained higher power radiation than the first gyrotron. The maximum single mode power was 62 kW at 388 GHz. Then, the electron gun was modified for use of a different cavity mode with a higher coupling coefficient than that for the 62 kW mode. The new mode proved single mode oscillation power of 83 kW at about 389 GHz. These results are new second-harmonic-oscillation power records for sub-THz gyrotrons. The present study constitutes foundations of development of high power second harmonic sub-THz gyrotron for application to collective Thomson scattering measurement on fusion plasmas, especially on high-density plasmas such as those produced in LHD [N. Ohyabu et al., Phys. Rev. Lett. 97, 055002 (2006)]. This paper reports the design consideration to realize high power single mode gyrotron oscillation at second harmonic and the examination of oscillation characteristics of the gyrotron.

  20. GENII (Generation II): The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    SciTech Connect (OSTI)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01T23:59:59.000Z

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs.

  1. The effect of the operation modes of a gas discharge low-pressure amalgam lamp on the intensity of generation of 185 nm UV vacuum radiation

    SciTech Connect (OSTI)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru [Russian Academy of Sciences, Joint Institute of High Temperatures (Russian Federation); Drozdov, L. A., E-mail: lit@npo.lit.ru; Kostyuchenko, S. V.; Sokolov, D. V. [ZAO LIT (Russian Federation); Kudryavtsev, N. N.; Sobur, D. A., E-mail: soburda@gmail.com [Moscow Institute for Physics and Technology (Russian Federation)

    2011-12-15T23:59:59.000Z

    The effect of the discharge current, mercury vapor pressure, and the inert gas pressure on the intensity and efficiency of the 185 nm line generation are considered. The spectra of the UV radiation (vacuum ultraviolet) transmission by protective coatings from the oxides of rare earth metals and aluminum are investigated.

  2. High-power ELF radiation generated by modulated HF heating of the ionosphere can cause Earthquakes, Cyclones and localized heating

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    transmitter radiates a strong beam of high- frequency (HF) waves modulated at ELF. This HF heating modulates-frequency (HF) radiation in the megahertz range [7]. This heating modulates the electron's temperature in the D

  3. An analogue model for controllable Casimir radiation in a nonlinear cavity with amplitude-modulated pumping: Generation and quantum statistical properties

    E-Print Network [OSTI]

    Ali Motazedifard; M. H. Naderi; R. Roknizadeh

    2015-05-07T23:59:59.000Z

    We present and investigate an analogue model for a controllable photon geberation via the dynamical Casimir effect (DCE) in a cavity containing a degenerate optical amplifier (OPA) which is pumed by an amplitude-modulated field. The time modulation of the pump field in the model OPA system is equivalent to a periodic modulation of the cavity length, which is responsible for the generation of the Casimir radiation. By taking into account the rapidly oscillating terms of the modulation frequency, the effects of the corresponding counter-rotating terms (CRTs) on the analogue Casimir radiation emerge clearly. We find that the mean number of generated photons and their quantum statistical properties exhibit oscillatory behaviors, which are controllable through the modulation frequency as an external control parameter.We also recognize a new phenomenon, the so-called "Anti-DCE," in which pair photons can be coherently annihilated due to the time-modulated pumping. We show that the Casimir radiation exhibits quadrature squeezing, photon bunching and super-Poissonian statistics which are controllable by modulation frequency. We also calculate the power spectrum of the intracavity light field. We find that the appearance of the side bands in the spectrum is due to the presence of the CRTs.

  4. Radiation detector

    DOE Patents [OSTI]

    Fultz, Brent T. (Berkeley, CA)

    1983-01-01T23:59:59.000Z

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  5. Radiation detector

    DOE Patents [OSTI]

    Fultz, B.T.

    1980-12-05T23:59:59.000Z

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  6. Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies

    SciTech Connect (OSTI)

    Wilson, Daniel; Rudolf, Denis, E-mail: d.rudolf@fz-juelich.de; Juschkin, Larissa [RWTH Aachen University, Experimental Physics of EUV, Steinbachstraße 15, 52074 Aachen (Germany); Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-9), JARA-FIT, 52425 Jülich (Germany); Weier, Christian; Adam, Roman; Schneider, Claus M. [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), JARA-FIT, 52425 Jülich (Germany); Winkler, Gerrit; Frömter, Robert [Institut für Angewandte Physik, Universität Hamburg, Jungiusstraße 11, 20355 Hamburg (Germany); Danylyuk, Serhiy [RWTH Aachen University, Chair for Technology of Optical Systems, JARA-FIT, Steinbachstraße 15, 52074 Aachen (Germany); Bergmann, Klaus [Fraunhofer Institute for Laser Technology, Steinbachstrasse 15, 52074 Aachen (Germany); Grützmacher, Detlev [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-9), JARA-FIT, 52425 Jülich (Germany)

    2014-10-15T23:59:59.000Z

    Generation of circularly polarized light in the extreme ultraviolet (EUV) spectral region (about 25 eV–250 eV) is highly desirable for applications in spectroscopy and microscopy but very challenging to achieve in a small-scale laboratory. We present a compact apparatus for generation of linearly and circularly polarized EUV radiation from a gas-discharge plasma light source between 50 eV and 70 eV photon energy. In this spectral range, the 3p absorption edges of Fe (54 eV), Co (60 eV), and Ni (67 eV) offer a high magnetic contrast often employed for magneto-optical and electron spectroscopy as well as for magnetic imaging. We simulated and designed an instrument for generation of linearly and circularly polarized EUV radiation and performed polarimetric measurements of the degree of linear and circular polarization. Furthermore, we demonstrate first measurements of the X-ray magnetic circular dichroism at the Co 3p absorption edge with a plasma-based EUV light source. Our approach opens the door for laboratory-based, element-selective spectroscopy of magnetic materials and spectro-microscopy of ferromagnetic domains.

  7. Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas

    SciTech Connect (OSTI)

    Berry, Christopher W. [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hashemi, Mohammad R.; Jarrahi, Mona [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States)

    2014-02-24T23:59:59.000Z

    An array of 3?×?3 plasmonic photoconductive terahertz emitters with logarithmic spiral antennas is fabricated on a low temperature (LT) grown GaAs substrate and characterized in response to a 200 fs optical pump from a Ti:sapphire mode-locked laser at 800?nm wavelength. A microlens array is used to split and focus the optical pump beam onto the active area of each plasmonic photoconductive emitter element. Pulsed terahertz radiation with record high power levels up to 1.9 mW in the 0.1–2 THz frequency range is measured at an optical pump power of 320 mW. The record high power pulsed terahertz radiation is enabled by the use of plasmonic contact electrodes, enhancing the photoconductor quantum efficiencies, and by increasing the overall device active area, mitigating the carrier screening effect and thermal breakdown at high optical pump power levels.

  8. 1214 OPTICS LETTERS / Vol. 22, No. 16 / August 15, 1997 Tunable ultraviolet radiation by second-harmonic generation

    E-Print Network [OSTI]

    Fejer, Martin M.

    - optical interactions in the mid UV than lithium niobate (LiNbO3), which is transparent to 330 nm. Second-harmonic generation in periodically poled lithium tantalate J.-P. Meyn* and M. M. Fejer E. L. Ginzton Laboratory of fine-pitch ferroelectric domain gratings in lithium tantalate and character- ization of nonlinear

  9. Incorporation of time-dependent thermodynamic models and radiation propagation models into JR 3-D synthetic image generation models

    E-Print Network [OSTI]

    Salvaggio, Carl

    images representing what an airborne or satellite thermal infrared imaging sensor would record. The scene sensors to a point where the model can be usedas a research tool to evaluate the limitations in our infrared (TIR) imagery generated by midwave (3-5 Rm) and longwave (8-14 pm) sensors is being increasingly

  10. Scheme for generating and transporting THz radiation to the X-ray experimental floor at the LCLS baseline

    E-Print Network [OSTI]

    Geloni, Gianluca; Saldin, Evgeni

    2011-01-01T23:59:59.000Z

    This paper describes a novel scheme for integrating a coherent THz source in the baseline of the LCLS facility. Any method relying on the spent electron beam downstream of the baseline undulator should provide a way of transporting the radiation up to the experimental floor. Here we propose to use the dump area access maze. In this way the THz output must propagate with limited size at least for one hundred meters in a maze, following many turns, to reach the near experimental hall. The use of a standard, discrete, open beam-waveguide formed by periodic reflectors, that is a mirror guide, would lead to unacceptable size of the system. To avoid these problems, in this paper we propose an alternative approach based on periodically spaced metallic screens with holes. This quasi-optical transmission line is referred to as an iris line. We present complete calculations for the iris line using both analytical and numerical methods, which we find in good agreement. We present a design of a THz edge radiation source ...

  11. Generation of primordial cosmological density inhomogeneities with scale invariant power spectrum during the standard radiation dominated expansion of the universe

    E-Print Network [OSTI]

    Oaknin, David H

    2007-01-01T23:59:59.000Z

    The expansion/contraction of a bubble of gas of radius $R_0(t)$ immersed in an incompressible fluid that fills the infinite 3D space around it, $r \\ge R_0(t)$, generates a radial flow, ${\\vec v}(r,t) = \\frac{R^2_0(t)}{r^2}\\ \\dot{R}_0(t) {\\hat r}$, which is set by the velocity of the bubble surface, $\\dot{R}_0(t)$. The kinetic energy that the expanding/contracting bubble pumps, at the expense of its own internal energy, into each unit volume of the flowing incompressible fluid is ${\\it e}(r,t) = \\frac{\\rho_0}{2} |{\\vec v}(r,t)|^2 = \\frac{\\rho_0}{2} \\dot{R}^2_0(t) R^4_0(t) r^{-4}$, where $\\rho_0$ is the mass density of the fluid. This incompressible flow generates equal time energy density (anti)correlations over infinitely long distances. They are imposed by global conservation laws and, therefore, do not violate causality. We notice that energy density inhomogeneities that are (anti)correlated as $f(r) \\sim - r^{-4}$ as $r \\to \\infty$ have scale invariant power spectrum in the range of very small wavenumbers,...

  12. https://empcs.nv.doe.gov/emis2/fa/pg/FFACO.Obligations_Commitments...

    National Nuclear Security Administration (NNSA)

    and cleared by the RCT who will issue a radiation clearance certification (i.e., a green tag) prior to waste removal. The survey will include field screening andor...

  13. DTERMINATION PRCISE DE L'NERGIE DES RAYONS 03B1 EMIS PAR LE THORIUM Par M. GEORGES PHILBERT, Mme JEANNINE GNIN et M. LOPOLD VIGNERON,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    16 DÉTERMINATION PRÉCISE DE L'ÉNERGIE DES RAYONS 03B1 EMIS PAR LE THORIUM Par M. GEORGES PHILBERT. Sommaire. 2014 Du thorium, de l'ionium et du polonium ont été introduits ensemble dans une émulsion, les et autres nous ont permis de ne pas être gênés par les dérivés radioactifs du thorium. L

  14. Plutonium radiation surrogate

    DOE Patents [OSTI]

    Frank, Michael I. (Dublin, CA)

    2010-02-02T23:59:59.000Z

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  15. On the connection between gamma and radio radiation spectra in pulsars

    E-Print Network [OSTI]

    V. M. Kontorovich; A. B. Flanchik

    2007-12-29T23:59:59.000Z

    The model of pulsar radio emission is discussed in which a coherent radio emis-sion is excited in a vacuum gap above polar cap of neutron star. Pulsar X and gamma radiation are considered as the result of low-frequency radio emission inverse Comp-ton scattering on ultra relativistic electrons accelerated in the gap. The influence of the pulsar magnetic field on Compton scattering is taken into account. The relation of radio and gamma radiation spectra has been found in the framework of the model.

  16. Fermion masses and neutrino mixing in an U(1){sub H} flavor symmetry model with hierarchical radiative generation for light charged fermion masses

    SciTech Connect (OSTI)

    Hernandez-Galeana, Albino [Departamento de Fisica de la Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, U.P. Adolfo Lopez Mateos, C.P. 07738. Mexico D.F. (Mexico)

    2007-11-01T23:59:59.000Z

    I report the analysis performed on fermion masses and mixing, including neutrino mixing, within the context of a model with hierarchical radiative mass generation mechanism for light charged fermions, mediated by exotic scalar particles at one and two loops, respectively, meanwhile the neutrinos get Majorana mass terms at tree level through the Yukawa couplings with two SU(2){sub L} Higgs triplets. All the resulting mass matrices in the model, for the u, d, and e fermion charged sectors, the neutrinos and the exotic scalar particles, are diagonalized in exact analytical form. Quantitative analysis shows that this model is successful to accommodate the hierarchical spectrum of masses and mixing in the quark sector as well as the charged lepton masses. The lepton mixing matrix, V{sub PMNS}, is written completely in terms of the neutrino masses m{sub 1}, m{sub 2}, and m{sub 3}. Large lepton mixing for {theta}{sub 12} and {theta}{sub 23} is predicted in the range of values 0.7 < or approx. sin{sup 2}2{theta}{sub 12} < or approx. 0.7772 and 0.87 < or approx. sin{sup 2}2{theta}{sub 23} < or approx. 0.9023 by using 0.033 < or approx. s{sub 13}{sup 2} < or approx. 0.04. These values for lepton mixing are consistent with 3{sigma} allowed ranges provided by recent global analysis of neutrino data oscillation. From {delta}m{sub sol}{sup 2} bounds, neutrino masses are predicted in the range of values m{sub 1}{approx_equal}(1.706-2.494)x10{sup -3} eV, m{sub 2}{approx_equal}(6.675-12.56)x10{sup -3} eV, and m{sub 3}{approx_equal}(1.215-2.188)x10{sup -2} eV, respectively. The above allowed lepton mixing leads to the quark-lepton complementary relations {theta}{sub 12}{sup CKM}+{theta}{sub 12}{sup PMNS}{approx_equal}41.543 deg. -44.066 deg. and {theta}{sub 23}{sup CKM}+{theta}{sub 23}{sup PMNS}{approx_equal}36.835 deg. -38.295 deg. The new exotic scalar particles induce flavor changing neutral currents and contribute to lepton flavor violating processes such as E{yields}e{sub 1}e{sub 2}e{sub 3}, to radiative rare decays, {tau}{yields}{mu}{gamma}, {tau}{yields}e{gamma}, {mu}{yields}e{gamma}, as well as to the anomalous magnetic moments of fermions. I give general analytical expressions for the branching ratios of these rare decays and for the anomalous magnetic moments for charged leptons.

  17. Synthetic guide star generation

    DOE Patents [OSTI]

    Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

    2004-03-09T23:59:59.000Z

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  18. Synthetic guide star generation

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA) [Castro Valley, CA; Page, Ralph H. (Castro Valley, CA) [Castro Valley, CA; Ebbers, Christopher A. (Livermore, CA) [Livermore, CA; Beach, Raymond J. (Livermore, CA) [Livermore, CA

    2008-06-10T23:59:59.000Z

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  19. Free-Electron Laser Generation of VUV and X-Ray Radiation using a Conditioned Beam and Ion-Channel Focusing

    E-Print Network [OSTI]

    Yu, L.-H.

    2008-01-01T23:59:59.000Z

    a) Accelerator Conditioner Free-Electron Laser L ---~>~ . Free Electron Laser Conference, Santain the Proceedings Free-Electron Laser Generation of VUV and

  20. Radiation from laser accelerated electron bunches: Coherent terahertz and femtosecond X-rays

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    of coherent transition radiation generated at a plasma-and G. Fubiani, “Terahertz radiation from laser acceleratedW. P. Leemans, “Synchrotron radiation from electron beams in

  1. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15T23:59:59.000Z

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  2. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28T23:59:59.000Z

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  3. Rotating bubble membrane radiator

    DOE Patents [OSTI]

    Webb, Brent J. (West Richland, WA); Coomes, Edmund P. (West Richland, WA)

    1988-12-06T23:59:59.000Z

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  4. Radiation detector spectrum simulator

    DOE Patents [OSTI]

    Wolf, M.A.; Crowell, J.M.

    1985-04-09T23:59:59.000Z

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  5. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  6. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  7. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  8. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  9. Radiation: Radiation Control (Indiana)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

  10. Quantum Properties of Cavity Cerenkov Radiation

    E-Print Network [OSTI]

    Gao, J; Gao, Ju; Shen, Fang

    2005-01-01T23:59:59.000Z

    Cerenkov radiation from cavities have been analyzed by quantum electrodynamic theory. Analytical expressions of some basic radiation properties including Einstein's $A$ and $B$ coefficients are derived and shown to be directly modified by the cavities. Coherent and incoherent radiations are analyzed with the aim of generating THz radiation from the devices.

  11. Kingdom of Saudi Arabia Solar Radiation Atlas

    SciTech Connect (OSTI)

    NREL

    1998-12-16T23:59:59.000Z

    This atlas provides a record of monthly mean solar radiation generated by a Climatological Solar Radiation model, using quasi-climatological inputs of cloud cover, aerosol optical depth, precipitable water vapor, ozone, surface albedo, and atmospheric pressure.

  12. X-Ray Radiation Measurements With Photodiodes In Plasmas Generated By 1017 W/Cm2 Intensity Krf Excimer Laser Pulses

    SciTech Connect (OSTI)

    Racz, E.; Foeldes, I. B. [KFKI RMKI, EURATOM Association, P.O.Box 49, H-1525 Budapest (Hungary); Ryc, L. [Institute of Plasma Physics and Laser Microfusion, Hery 23, 00-908 Warsaw (Poland)

    2006-01-15T23:59:59.000Z

    Experiments were carried out using a prepulse-free hybrid KrF excimer-dye laser system (700fs pulse duration, 248nm wavelength, 15mJ pulse energy). The intensity of the p-polarized, focused laser beam was 1.5{center_dot}1017 W/cm2. Vacuum ultraviolet (VUV) and x-rays from solid state laser plasmas were generated in the laser-plasma interaction of subpicosecond laser pulses of nonrelativistic laser intensities. An x-ray sensitive FLM photodiode (ITE, Warsaw) was used to detect x-rays between 1-19 keV in front of the targets. The diode was filtered by a 4{mu}m Al foil. The dependence of the x-ray flux on laser intensity and the angular distribution of x-rays for aluminum and copper targets in the half space of the front side of the targets were investigated.

  13. Packet personal radiation monitor

    DOE Patents [OSTI]

    Phelps, James E. (Knoxville, TN)

    1989-01-01T23:59:59.000Z

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiation events, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible "chirp". The rate of the "chirps" is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field.

  14. Year GBClass Make Model M/M/Specs EmisStd City Hiwy Green Score 2014 01_TS AUDI TT ROADSTER QUATTRO 2.0L 4, auto Awd [P] ULEV II / Bin 5 22 31 42

    E-Print Network [OSTI]

    Derisi, Joseph

    Year GBClass Make Model M/M/Specs EmisStd City Hiwy Green Score 2014 01_TS MERCEDES-BENZ SMART FORTWO (CONVERTIBLE) 1.0L 3, auto [P] ULEV II / Bin 5 34 38 53 2014 01_TS MERCEDES-BENZ SMART FORTWO (COUPE) 1.0L 3, auto [P] ULEV II / Bin 5 34 38 53 2014 01_TS MERCEDES

  15. Packet personal radiation monitor

    DOE Patents [OSTI]

    Phelps, J.E.

    1988-03-31T23:59:59.000Z

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiatonevents, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible ''chirp''. The rate of the ''chirps'' is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field. 2 figs.

  16. Radiation trapping in coherent media

    E-Print Network [OSTI]

    A. B. Matsko; I. Novikova; M. O. Scully; G. R. Welch

    2001-01-31T23:59:59.000Z

    We show that the effective decay rate of Zeeman coherence, generated in a Rb87 vapor by linearly polarized laser light, increases significantly with the atomic density. We explain this phenomenon as the result of radiation trapping. Our study shows that radiation trapping must be taken into account to fully understand many electromagnetically induced transparency experiments with optically thick media.

  17. Radiation physics, biophysics, and radiation biology

    SciTech Connect (OSTI)

    Hall, E.J.

    1992-05-01T23:59:59.000Z

    The following research programs from the Center for Radiological Research of Columbia University are described: Design and development of a new wall-less ultra miniature proportional counter for nanodosimetry; some recent measurements of ionization distributions for heavy ions at nanometer site sizes with a wall-less proportional counter; a calculation of exciton energies in periodic systems with helical symmetry: application to a hydrogen fluoride chain; electron energy-loss function in polynucleotide and the question of plasmon excitation; a non-parametric, microdosimetric-based approach to the evaluation of the biological effects of low doses of ionizing radiation; high-LET radiation risk assessment at medium doses; high-LET radiobiological effects: increased lesion severity or increased lesion proximity; photoneutrons generated by high energy medical linacs; the biological effectiveness of neutrons; implications for radiation protection; molecular characterization of oncogenes induced by neutrons; and the inverse dose-rate effect for oncogenic transformation by charged particles is LET dependent.

  18. Solid-state radiation-emitting compositions and devices

    DOE Patents [OSTI]

    Ashley, Carol S. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Reed, Scott (Albuquerque, NM); Walko, Robert J. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    The invention relates to a composition for the volumetric generation of radiation, wherein a first substance functions as a source of exciting radiation, and a second substance interacts with the exciting radiation to provide a second radiation. The compositions comprise a porous substrate which is loaded with: a source of exciting radiation, a component capable of emitting radiation upon interaction with the exciting radiation, or both. Preferably, the composition is an aerogel substrate loaded with both a source of exciting radiation, such as tritium, and a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce radiation of a second energy.

  19. Solid-state radiation-emitting compositions and devices

    DOE Patents [OSTI]

    Ashley, C.S.; Brinker, C.J.; Reed, S.; Walko, R.J.

    1992-08-11T23:59:59.000Z

    The invention relates to a composition for the volumetric generation of radiation, wherein a first substance functions as a source of exciting radiation, and a second substance interacts with the exciting radiation to provide a second radiation. The compositions comprise a porous substrate which is loaded with: a source of exciting radiation, a component capable of emitting radiation upon interaction with the exciting radiation, or both. Preferably, the composition is an aerogel substrate loaded with both a source of exciting radiation, such as tritium, and a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce radiation of a second energy. 4 figs.

  20. Danger radiations

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

  1. Multilayer radiation shield

    DOE Patents [OSTI]

    Urbahn, John Arthur (Saratoga Springs, NY); Laskaris, Evangelos Trifon (Niskayuna, NY)

    2009-06-16T23:59:59.000Z

    A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.

  2. Radiation physics, biophysics, and radiation biology

    SciTech Connect (OSTI)

    Hall, E.J.; Zaider, M.

    1993-05-01T23:59:59.000Z

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood biological fingerprint'' of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons.

  3. Scintillator Waveguide For Sensing Radiation

    DOE Patents [OSTI]

    Bliss, Mary (West Richland, WA); Craig, Richard A. (West Richland, WA); Reeder; Paul L. (Richland, WA)

    2003-04-22T23:59:59.000Z

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  4. Dual amplitude pulse generator for radiation detectors

    DOE Patents [OSTI]

    Hoggan, Jerry M. (Idaho Falls, ID); Kynaston, Ronnie L. (Blackfoot, ID); Johnson, Larry O. (Island Park, ID)

    2001-01-01T23:59:59.000Z

    A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.

  5. Remote radiation dosimetry

    DOE Patents [OSTI]

    Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

    1991-03-12T23:59:59.000Z

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

  6. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, C.A.

    1983-12-29T23:59:59.000Z

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  7. Coherent Nuclear Radiation

    E-Print Network [OSTI]

    V. I. Yukalov; E. P. Yukalova

    2004-06-22T23:59:59.000Z

    The main part of this review is devoted to the comprehensive description of coherent radiation by nuclear spins. The theory of nuclear spin superradiance is developed and the experimental observations of this phenomenon are considered. The intriguing problem of how coherence develops from initially incoherent quantum fluctuations is analysed. All main types of coherent radiation by nuclear spins are discussed, which are: free nuclear induction, collective induction, maser generation, pure superradiance, triggered superradiance, pulsing superradiance, punctuated superradiance, and induced emission. The influence of electron-nuclear hyperfine interactions and the role of magnetic anisotropy are studied. Conditions for realizing spin superradiance by magnetic molecules are investigated. The possibility of nuclear matter lasing, accompanied by pion or dibaryon radiation, is briefly touched.

  8. Generated using V3.2 of the official AMS LATEX templatejournal page layout FOR AUTHOR USE ONLY, NOT FOR SUBMISSION! Can Top of Atmosphere Radiation Measurements Constrain Climate Predictions? Part

    E-Print Network [OSTI]

    . The model configurations were produced from several independent optimisation experiments in which four of perturbed-physics simulations of the HadAM3 atmospheric model were compared with the CERES (Clouds and Earth's Radiant Energy System) estimates of Outgoing Longwave Radiation (OLR) and Reflected Shortwave Radiation

  9. GENERATION OF SUBPICOSECOND X-RAY PULSES IN STORAGE RINGS

    E-Print Network [OSTI]

    Zholents, Alexander A.

    2007-01-01T23:59:59.000Z

    at ALS, BESSY and SLS that coherent synchrotron radiationsynchrotron radiation [5]. This radiation was detected at ALS [12], BESSY [BESSY SLS Figure 1. Schematic of the laser slicing method for generating sub-ps synchrotron

  10. Quasi light fields: Extending the light field to coherent radiation

    E-Print Network [OSTI]

    Accardi, Anthony J.

    Imaging technologies such as dynamic viewpoint generation are engineered for incoherent radiation using the traditional light field, and for coherent radiation using electromagnetic field theory. We present a model of ...

  11. Continental-scale net radiation and evapotranspiration estimated using MODIS satellite observations

    E-Print Network [OSTI]

    Jin, Yufang; Randerson, James T.; Goulden, Michael L.

    2011-01-01T23:59:59.000Z

    mean direct and diffuse radiation data from the GEWEX/SRBa new generation of radiation budget data that use up to 11Project Surface Radiation Budget (GAPP/SRB) data (http://

  12. Gravitational Radiation From Cosmological Turbulence

    E-Print Network [OSTI]

    Arthur Kosowsky; Andrew Mack; Tinatin Kahniashvili

    2002-06-27T23:59:59.000Z

    An injection of energy into the early Universe on a given characteristic length scale will result in turbulent motions of the primordial plasma. We calculate the stochastic background of gravitational radiation arising from a period of cosmological turbulence, using a simple model of isotropic Kolmogoroff turbulence produced in a cosmological phase transition. We also derive the gravitational radiation generated by magnetic fields arising from a dynamo operating during the period of turbulence. The resulting gravitational radiation background has a maximum amplitude comparable to the radiation background from the collision of bubbles in a first-order phase transition, but at a lower frequency, while the radiation from the induced magnetic fields is always subdominant to that from the turbulence itself. We briefly discuss the detectability of such a signal.

  13. RADIATION SAFETY TRAINING MANUAL Radiation Safety Office

    E-Print Network [OSTI]

    Sibille, Etienne

    protection and the potential risks of ionizing radiation. Radiation Safety Office personnel provide.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. OVERVIEW OF REGULATIONS, PROTECTION STANDARDS, AND RADIATION SAFETY ORGANIZATION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 V. BASIC RADIATION PROTECTION PRINCIPLES

  14. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The Federal Regulation

  15. Echo-Enabled Harmonic Generation

    SciTech Connect (OSTI)

    Stupakov, Gennady; /SLAC

    2012-06-28T23:59:59.000Z

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  16. auroral kilometric radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation (AKR) is generated by the accelerated electrons Strangeway, Robert J. 2 Propagation of electromagnetic waves in the source region of thePropagation of...

  17. Radiation detector system having heat pipe based cooling

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31T23:59:59.000Z

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  18. Photon rockets and gravitational radiation

    E-Print Network [OSTI]

    T. Damour

    1994-12-21T23:59:59.000Z

    The absence of gravitational radiation in Kinnersley's ``photon rocket'' solution of Einstein's equations is clarified by studying the mathematically well-defined problem of point-like photon rockets in Minkowski space (i.e. massive particles emitting null fluid anisotro\\-pically and accelerating because of the recoil). We explicitly compute the (uniquely defined) {\\it linearized} retarded gravitational waves emitted by such objects, which are the coherent superposition of the gravitational waves generated by the motion of the massive point-like rocket and of those generated by the energy-momentum distribution of the photon fluid. In the special case (corresponding to Kinnersley's solution) where the anisotropy of the photon emission is purely dipolar we find that the gravitational wave amplitude generated by the energy-momentum of the photons exactly cancels the usual $1/r$ gravitational wave amplitude generated by the accelerated motion of the rocket. More general photon anisotropies would, however, generate genuine gravitational radiation at infinity. Our explicit calculations show the compatibility between the non-radiative character of Kinnersley's solution and the currently used gravitational wave generation formalisms based on post-Minkowskian perturbation theory.

  19. Split SUSY Radiates Flavor

    E-Print Network [OSTI]

    Matthew Baumgart; Daniel Stolarski; Thomas Zorawski

    2014-09-19T23:59:59.000Z

    Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of Mini-Split Supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and WIMP dark matter. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.

  20. Terahertz radiation mixer

    DOE Patents [OSTI]

    Wanke, Michael C. (Albuquerque, NM); Allen, S. James (Santa Barbara, CA); Lee, Mark (Albuquerque, NM)

    2008-05-20T23:59:59.000Z

    A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.

  1. Time encoded radiation imaging

    DOE Patents [OSTI]

    Marleau, Peter; Brubaker, Erik; Kiff, Scott

    2014-10-21T23:59:59.000Z

    The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

  2. General Relativistic Radiative Transfer

    E-Print Network [OSTI]

    S. Knop; P. H. Hauschildt; E. Baron

    2006-11-30T23:59:59.000Z

    We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in spherically symmetric systems that are influenced by the effects of general relativity (GR). We utilize a comoving wavelength ansatz that allows to resolve spectral lines throughout the atmosphere. The used numerical solution is an operator splitting (OS) technique that uses a characteristic formal solution. The bending of photon paths and the wavelength shifts due to the effects of GR are fully taken into account, as is the treatment of image generation in a curved spacetime. We describe the algorithm we use and demonstrate the effects of GR on the radiative transport of a two level atom line in a neutron star like atmosphere for various combinations of continuous and line scattering coefficients. In addition, we present grey continuum models and discuss the effects of different scattering albedos on the emergent spectra and the determination of effective temperatures and radii of neutron star atmospheres.

  3. Radiation receiver

    DOE Patents [OSTI]

    Hunt, A.J.

    1983-09-13T23:59:59.000Z

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  4. Radiation receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA)

    1983-01-01T23:59:59.000Z

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  5. Gravitational Radiation

    E-Print Network [OSTI]

    Bernard F Schutz

    2000-03-16T23:59:59.000Z

    Gravity is one of the fundamental forces of Nature, and it is the dominant force in most astronomical systems. In common with all other phenomena, gravity must obey the principles of special relativity. In particular, gravitational forces must not be transmitted or communicated faster than light. This means that when the gravitational field of an object changes, the changes ripple outwards through space and take a finite time to reach other objects. These ripples are called gravitational radiation or gravitational waves. This article gives a brief introduction to the physics of gravitational radiation, including technical material suitable for non-specialist scientists.

  6. Thermoelectric Generators 1. Thermoelectric generator

    E-Print Network [OSTI]

    Lee, Ho Sung

    1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 effects are called the thermoelectric effects. The mechanisms of thermoelectricity were not understood. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large

  7. Radiation Protection Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

  8. New wave generation

    E-Print Network [OSTI]

    Mercier, Matthieu J; Mathur, Manikandan; Gostiaux, Louis; Peacock, Thomas; Dauxois, Thierry

    2015-01-01T23:59:59.000Z

    We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (2007). This mechanism, which involves a tunable source comprised of oscillating plates, has so far been used for a few fundamental studies of internal waves, but its full potential has yet to be realized. Our studies reveal that this approach is capable of producing a wide variety of two-dimensional wave fields, including plane waves, wave beams and discrete vertical modes in finite-depth stratifications. The effects of discretization by a finite number of plates, forcing amplitude and angle of propagation are investigated, and it is found that the method is remarkably efficient at generating a complete wave field despite forcing only one velocity component in a controllable manner. We furthermore find that the nature of the radiated wave field is well predicted using Fourier transforms of the spatial structure of the wave generator.

  9. WESTERN MONTANA ELECTRIC GENERATING & TRANSMISSION COOPERATIVE, INC.

    E-Print Network [OSTI]

    Technical Forum," prepared by Energy Market Innovations (EMI), Inc. and Navigant Consulting, contains to the attainment of energy efficiency goals for the region. This report also notes, however, that the current is prioritized. Assuming there will be additional demands placed on the RTF, issues of adequacy of funding

  10. Adaptors for radiation detectors

    DOE Patents [OSTI]

    Livesay, Ronald Jason

    2014-04-22T23:59:59.000Z

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  11. Solid-state radiation-emitting compositions and devices

    DOE Patents [OSTI]

    Ashley, Carol S. (14316 Bauer Rd., NE., Albuquerque, NM 87123); Brinker, C. Jeffrey (14 Eagle Nest Dr., NE., Albuquerque, NM 87122); Reed, Scott (10308 Leymon Ct., NW., Albuquerque, NM 87114); Shepodd, Timothy J. (1838 Broadmore St., Livermore, CA 94550); Leonard, Leroy E. (4944 Ten Oaks Rd., Dayton, MD 21036); Ellefson, Robert E. (193 Elmwood Dr., Centerville, OH 45459); Gill, John T. (906 E. Linden Ave., Miamisburg, OH 45342); Walko, Robert J. (3215 Blume, NE., Albuquerque, NM 87111); Renschler, Clifford L. (7 Lagarto Rd., Tijeras, NM 87059)

    1992-01-01T23:59:59.000Z

    The invention relates to a composition for the volumetric generation of radiation, wherein a first substance functions as a source of exciting radiation, and a second substance interacts with the exciting radiation to provide a second radiation. The compositions comprise a porous substrate which is loaded with: a source of exciting radiation, a component capable of emitting radiation upon interaction with the exciting radiation, or both. In the composition, a composite is formed from a carrier material and at least one of the source of the exciting radiation or the component which is capable of interacting with the exciting radiation. The composite is then employed for loading a porous substrate, preferably an aerogel substrate.

  12. Radiation dosimeters

    DOE Patents [OSTI]

    Hoelsher, James W. (Pullman, WA); Hegland, Joel E. (Pullman, WA); Braunlich, Peter F. (Pullman, WA); Tetzlaff, Wolfgang (Pullman, WA)

    1992-01-01T23:59:59.000Z

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  13. Tailpulse signal generator

    DOE Patents [OSTI]

    Baker, John (Walnut Creek, CA); Archer, Daniel E. (Knoxville, TN); Luke, Stanley John (Pleasanton, CA); Decman, Daniel J. (Livermore, CA); White, Gregory K. (Livermore, CA)

    2009-06-23T23:59:59.000Z

    A tailpulse signal generating/simulating apparatus, system, and method designed to produce electronic pulses which simulate tailpulses produced by a gamma radiation detector, including the pileup effect caused by the characteristic exponential decay of the detector pulses, and the random Poisson distribution pulse timing for radioactive materials. A digital signal process (DSP) is programmed and configured to produce digital values corresponding to pseudo-randomly selected pulse amplitudes and pseudo-randomly selected Poisson timing intervals of the tailpulses. Pulse amplitude values are exponentially decayed while outputting the digital value to a digital to analog converter (DAC). And pulse amplitudes of new pulses are added to decaying pulses to simulate the pileup effect for enhanced realism in the simulation.

  14. Generation Planning (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFundingGene ControlsCounselGeneral User Generation

  15. environmental management radiation protection

    E-Print Network [OSTI]

    Entekhabi, Dara

    EHS environmental management biosafety radiation protection industrial hygiene safety Working: Biosafety, Environmental Management, Industrial Hygiene, Radiation Protection and Safety. Each specialized Management Program, Industrial Hygiene, Radiation Protection Program, and the Safety Program. (http

  16. DETECTORS FOR RADIATION DOSIMETRY

    E-Print Network [OSTI]

    Perez-Mendez, V.

    2010-01-01T23:59:59.000Z

    J. Price, "Nuclear Radiation Detection" (2nd ed. , New York:4) G. F. Knoll, "Radiation Detection and Measurement" (NewSons, Inc. from "Radiation Detection and Measurement," G. F.

  17. Guided wave methods and apparatus for nonlinear frequency generation

    DOE Patents [OSTI]

    Durfee, III, Charles G. (Ann Arbor, MI); Rundquist, Andrew (Austin, TX); Kapteyn, Henry C. (Ann Arbor, MI); Murnane, Margaret M. (Ann Arbor, MI)

    2000-01-01T23:59:59.000Z

    Methods and apparatus are disclosed for the nonlinear generation of sum and difference frequencies of electromagnetic radiation propagating in a nonlinear material. A waveguide having a waveguide cavity contains the nonlinear material. Phase matching of the nonlinear generation is obtained by adjusting a waveguide propagation constant, the refractive index of the nonlinear material, or the waveguide mode in which the radiation propagates. Phase matching can be achieved even in isotropic nonlinear materials. A short-wavelength radiation source uses phase-matched nonlinear generation in a waveguide to produce high harmonics of a pulsed laser.

  18. Courses on Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation The following is an incomplete list of courses on Synchrotron Radiation. For additional courses, check lightsources.org. XAFS School The APS XAFS School...

  19. Solar radiation resource assessment

    SciTech Connect (OSTI)

    Not Available

    1990-11-01T23:59:59.000Z

    The bulletin discusses the following: introduction; Why is solar radiation resource assessment important Understanding the basics; the solar radiation resource assessment project; and future activities.

  20. Radiation Control (Virginia)

    Broader source: Energy.gov [DOE]

    The Department of Health is responsible for regulating radiation and radioactive materials in the Commonwealth of Virginia. Although the Department's Radiation Control Program primarily focuses on...

  1. Radiation stability of graphene under extreme conditions

    SciTech Connect (OSTI)

    Kumar, Sunil, E-mail: kumar.sunil092@gmail.com; Tripathi, Ambuj; Khan, Saif A.; Pannu, Compesh; Avasthi, Devesh K. [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2014-09-29T23:59:59.000Z

    In this letter, we report radiation stability of graphene under extreme condition of high energy density generated by 150?MeV Au ion irradiation. The experiment reveals that graphene is radiation resistant for irradiation at 10{sup 14?}ions/cm{sup 2} of 150?MeV Au ions. It is significant to note that annealing effects are observed at lower fluences whereas defect production occurs at higher fluences but significant crystallinity is retained. Our results demonstrate applicability of graphene based devices in radiation environment and space applications.

  2. Radiation detection system

    DOE Patents [OSTI]

    Riedel, Richard A. (Knoxville, TN); Wintenberg, Alan L. (Knoxville, TN); Clonts, Lloyd G. (Knoxville, TN); Cooper, Ronald G. (Oak Ridge, TN)

    2012-02-14T23:59:59.000Z

    A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals. A differential output stage is coupled to the second amplification stage for receiving the first and second amplified voltage signals and providing a pair of outputs from each of the first and second amplified voltage signals. Read out circuitry has an input coupled to receive both of the pair of outputs, the read out circuitry having structure for processing each of the pair of outputs, and providing a single digital output having a time-stamp therefrom.

  3. Possible generation of $?$-ray laser by electrons wiggling in a background laser

    E-Print Network [OSTI]

    Qi-Ren Zhang

    2015-04-02T23:59:59.000Z

    The possibility of $\\gamma-$ray laser generation by the radiation of wiggling electrons in an usual background laser is discussed.

  4. Possible generation of $?$-ray laser by electrons wiggling in a background laser

    E-Print Network [OSTI]

    Qi-Ren Zhang

    2014-08-13T23:59:59.000Z

    The possibility of $\\gamma-$ray laser generation by the radiation of wiggling electrons in an usual background laser is discussed.

  5. Event Generation of Large-Angle Bhabha Scattering at LEP2 Energies

    E-Print Network [OSTI]

    A. B. Arbuzov

    1999-10-08T23:59:59.000Z

    LABSMC Monte Carlo event generator is used to simulate Bhabha scattering at high energies. Different sources of radiative corrections are considered. The resulting precision is discussed.

  6. Radiation source

    DOE Patents [OSTI]

    Thode, Lester E. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.

  7. Hawking radiation in moving plasmas

    E-Print Network [OSTI]

    L. C. Garcia de Andrade

    2005-09-07T23:59:59.000Z

    Bi-metricity and Hawking radiation are exhibit in non-relativistic moving magnetohydrodynamics (MHD) plasma medium generating two Riemannian effective spacetimes. The first metric is a flat metric although the speed of "light" is given by a time dependent signal where no Hawking radiation or effective black holes are displayed. This metric comes from a wave equation which the scalar function comes from the scalar potential of the background velocity of the fluid and depends on the perturbation of the magnetic background field. The second metric is an effective spacetime metric which comes from the perturbation of the background MHD fluid. This Riemann metric exhibits a horizon and Hawking radiation which can be expressed in terms of the background constant magnetic field. The effective velocity is given Alfven wave velocity of plasma physics. The effective black hole found here is analogous to the optical black hole in moving dielectrics found by De Lorenci et al [Phys. Rev. D (2003)] where bi-metricity and Hawking radiation in terms of the electric field are found.

  8. Noninvasive emittance and energy spread monitor using optical synchrotron radiation

    E-Print Network [OSTI]

    Fiorito, R.

    We propose a design for a minimally perturbing diagnostic minichicane, which utilizes optical synchrotron radiation (OSR) generated from magnetic bends in the chicane, to measure the rms horizontal and vertical beam sizes, ...

  9. 2256 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 47, NO. 6, DECEMBER 2000 Characterization of X-Ray Radiation Damage

    E-Print Network [OSTI]

    Tolk, Norman H.

    optical methods. I. INTRODUCTION PRESENTLY, characterization of traps due to radiation damage in Si-Ray Radiation Damage in Si/SiO2 Structures Using Second-Harmonic Generation Z. Marka, S. K. Singh, W. Wang, S. C-harmonic generation (SHG) measurements for the characterization of X-ray radiation damage in Si/SiO2 structures

  10. Radiation Hard AlGaN Detectors and Imager

    SciTech Connect (OSTI)

    None

    2012-05-01T23:59:59.000Z

    Radiation hardness of AlGaN photodiodes was tested using a 65 MeV proton beam with a total proton fluence of 3x10{sup 12} protons/cm{sup 2}. AlGaN Deep UV Photodiode have extremely high radiation hardness. These new devices have mission critical applications in high energy density physics (HEDP) and space explorations. These new devices satisfy radiation hardness requirements by NIF. NSTec is developing next generation AlGaN optoelectronics and imagers.

  11. GENII. Environmental Radiation Dosimetry Suite

    SciTech Connect (OSTI)

    Napier, B.A. [Pacific Northwest Lab., Richland, WA, (United States)

    1988-12-01T23:59:59.000Z

    GENII was developed to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) into the environmental pathway analysis models used at Hanford. GENII is a coupled system of seven programs and the associated data libraries that comprise the Hanford Dosimetry System (Generation II) to estimate potential radiation doses to individuals or populations from both routine and accidental releases of radionuclides to air or water and residual contamination from spills or decontamination operations. The GENII system includes interactive menu-driven programs to assist the user with scenario generation and data input,internal and external dose factor generators, and environmental dosimetry programs. The programs analyze environmental contamination resulting from both far-field and near-field scenarios. A far-field scenario focuses outward from a source, while a near-field scenario focuses in toward a receptor. GENII can calculate annual dose, committed dose, and accumulated dose from acute and chronic releases from ground or elevated sources to air or water and from initial contamination of soil or surfaces and can evaluate exposure pathways including direct exposure via water, soil, air, inhalation pathways, and ingestion pathways. In addition, GENII can perform 10,000 years migration analyses and can be used for retrospective calculations of potential radiation doses resulting from routine emissions and for prospective dose calculations for purposes such as siting facilities, environmental impact statements, and safety analysis reports.

  12. Quantum radiation at finite temperature

    E-Print Network [OSTI]

    Ralf Schützhold; Günter Plunien; Gerhard Soff

    2001-05-23T23:59:59.000Z

    We investigate the phenomenon of quantum radiation - i.e. the conversion of (virtual) quantum fluctuations into (real) particles induced by dynamical external conditions - for an initial thermal equilibrium state. For a resonantly vibrating cavity a rather strong enhancement of the number of generated particles (the dynamical Casimir effect) at finite temperatures is observed. Furthermore we derive the temperature corrections to the energy radiated by a single moving mirror and an oscillating bubble within a dielectric medium as well as the number of created particles within the Friedmann-Robertson-Walker universe. Possible implications and the relevance for experimental tests are addressed. PACS: 42.50.Lc, 03.70.+k, 11.10.Ef, 11.10.Wx.

  13. ELECTROMAGNETIC RADIATION FROM A STRONG DC ELECTRIC FIELD

    E-Print Network [OSTI]

    Guedel, Manuel

    ELECTROMAGNETIC RADIATION FROM A STRONG DC ELECTRIC FIELD Manuel G¨udel 1 and Donat G. Wentzel 2 1 accelerated by a strong dc electric field show not only very efficient generation of beam waves but also emission of o­mode radiation. We present a set of particle simulations for which we study the behavior

  14. Understanding and Managing Generation Y

    E-Print Network [OSTI]

    Wallace, Kevin

    2007-12-14T23:59:59.000Z

    There are four generations in the workplace today; they consist of the Silent Generation, Baby Boom Generation, Generation X, and Generation Y. Generation Y, being the newest generation, is the least understood generation although marketers...

  15. Magnetic monopole searches in the cosmic radiation

    E-Print Network [OSTI]

    Ivan De Mitri

    2002-07-22T23:59:59.000Z

    There has been a big effort in the past twenty years with at least a couple of generations of experiments which searched for supermassive GUT magnetic monopoles in the cosmic radiation. Here a short review of these searches is given, together with a brief description of the theoretical framework and of the detection techniques.

  16. Isotope-labeled immunoassays without radiation waste

    E-Print Network [OSTI]

    Hammock, Bruce D.

    of California, Davis, CA 95616; and Center for Accelerator Mass Spectrometry, Lawrence Livermore National, such as liquid scintillation counting (LSC) and autoradiography, use the radiation generated in the isotope in areas such as environmental monitoring and food analysis. Accelerator mass spectrometry (AMS) developed

  17. Radiation Protection Guidance Hospital Staff

    E-Print Network [OSTI]

    Kay, Mark A.

    Page 1 Radiation Protection Guidance For Hospital Staff Prepared for Stanford ..................................................................................................................... 17 The Basic Principles of Radiation Protection........................................................... 17 Protection against Radiation Exposure

  18. Maryland Radiation Act (Maryland)

    Broader source: Energy.gov [DOE]

    The policy of the state is to provide for the constructive use of radiation and control radiation emissions. This legislation authorizes the Department of the Environment to develop comprehensive...

  19. WI Radiation Protection

    Broader source: Energy.gov [DOE]

    This statute seeks to regulate radioactive materials, to encourage the constructive uses of radiation, and to prohibit and prevent exposure to radiation in amounts which are or may be detrimental...

  20. THz generation by ultra-short laser pulses propagating in nonuniform plasma channels

    E-Print Network [OSTI]

    Anlage, Steven

    THz generation by ultra-short laser pulses propagating in nonuniform plasma channels T. Antonsen Jr Conventional sources using short pulse lasers rely on pulse generation in a solid and are generally limited in excess of 100 µJ/pulse have been generated as transition radiation by a laser generated and accelerated

  1. Radiation protection at CERN

    E-Print Network [OSTI]

    Forkel-Wirth, Doris; Silari, Marco; Streit-Bianchi, Marilena; Theis, Christian; Vincke, Heinz; Vincke, Helmut

    2013-01-01T23:59:59.000Z

    This paper gives a brief overview of the general principles of radiation protection legislation; explains radiological quantities and units, including some basic facts about radioactivity and the biological effects of radiation; and gives an overview of the classification of radiological areas at CERN, radiation fields at high-energy accelerators, and the radiation monitoring system used at CERN. A short section addresses the ALARA approach used at CERN.

  2. RADIONUCLIDE RADIATION PROTECTION

    E-Print Network [OSTI]

    Healy, Kevin Edward

    RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2002 D. Delacroix* J. P. Guerre** P. Leblanc'Energie Atomique, CEA/Saclay, France ISBN 1 870965 87 6 RADIATION PROTECTION DOSIMETRY Vol. 98 No 1, 2002 Published by Nuclear Technology Publishing #12;RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2nd Edition (2002

  3. Radiation Processing -an overview

    E-Print Network [OSTI]

    of radiation · Facilities ­ Gamma ­ electrons ­ X-ray ­ Safety · Sterilisation of medical devices · Food irradiation · Material modification #12;3 Content ­ Part 2 · Environmental applications · Other applications Radiation · Energy in the form of waves or moving subatomic particles Irradiation · Exposure to radiation

  4. Time series modeling and large scale global solar radiation forecasting from geostationary satellites data

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Time series modeling and large scale global solar radiation forecasting from geostationary global solar radiation. In this paper, we use geostationary satellites data to generate 2-D time series of solar radiation for the next hour. The results presented in this paper relate to a particular territory

  5. USING LEARNING MACHINES TO CREATE SOLAR RADIATION MAPS FROM NUMERICAL WEATHER PREDICTION MODELS,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    USING LEARNING MACHINES TO CREATE SOLAR RADIATION MAPS FROM NUMERICAL WEATHER PREDICTION MODELS to develop a methodology to generate solar radiation maps using information from different sources. First with conclusions and next works in the last section. Keywords: Solar Radiation maps, Numerical Weather Predictions

  6. High power Cherenkov radiation from a relativistic particle rotating around a dielectric ball

    E-Print Network [OSTI]

    L. Sh. Grigoryan; H. F. Khachatryan; S. R. Arzumanyan; M. L. Grigoryan

    2005-12-09T23:59:59.000Z

    Some characteristic features in the radiation from a relativistic electron uniformly rotating along an equatorial orbit around a dielectric ball have been studied. It was shown that at some harmonics, in case of weak absorption of radiation in the ball material, the electron may generate radiation field quanta exceeding in several dozens of times those generated by electron rotating in a continuous, infinite and transparent medium having the same real part of permittivity as the ball material. The rise of high power radiation is due to the fact that electromagnetic oscillations of Cherenkov radiation induced along the trajectory of particle are partially locked inside the ball and superimposed in nondestructive way.

  7. Synchrotron Radiation in Polymer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation in Polymer Science Synchrotron Radiation in Polymer Science March 30-April 2, 2012; San Francisco...

  8. TERSat: Trapped Energetic Radiation Satellite

    E-Print Network [OSTI]

    Clements, Emily B.

    2012-01-01T23:59:59.000Z

    Radiation damage caused by interactions with high-energy particles in the Van Allen Radiation Belts is a leading

  9. Generation gaps in engineering?

    E-Print Network [OSTI]

    Kim, David J. (David Jinwoo)

    2008-01-01T23:59:59.000Z

    There is much enthusiastic debate on the topic of generation gaps in the workplace today; what the generational differences are, how to address the apparent challenges, and if the generations themselves are even real. ...

  10. {mu}-{tau} symmetry and radiatively generated leptogenesis

    SciTech Connect (OSTI)

    Ahn, Y. H.; Kim, C. S.; Lee, Jake [Department of Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Kang, Sin Kyu [Center for Quantum Spacetime, Sogang University, Seoul 121-742 (Korea, Republic of)

    2007-01-01T23:59:59.000Z

    We consider a {mu}-{tau} symmetry in neutrino sectors realized at the GUT scale in the context of a seesaw model. In our scenario, the exact {mu}-{tau} symmetry realized in the basis where the charged lepton and heavy Majorana neutrino mass matrices are diagonal leads to vanishing lepton asymmetries. We find that, in the minimal supersymmetric extension of the seesaw model with large tan{beta}, the renormalization group (RG) evolution from the GUT scale to seesaw scale can induce a successful leptogenesis even without introducing any symmetry breaking terms by hand, whereas such RG effects lead to tiny deviations of {theta}{sub 23} and {theta}{sub 13} from {pi}/4 and zero, respectively. It is shown that the right amount of the baryon asymmetry {eta}{sub B} can be achieved via so-called resonant leptogenesis, which can be realized at rather low seesaw scale with large tan{beta} in our scenario so that the well-known gravitino problem is safely avoided.

  11. Experiment generates THz radiation 20,000 times brighter than...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    way for application development An experiment conducted with Jefferson Lab's Free-Electron Laser (FEL) has shown how to make a highly useful form of light - called terahertz...

  12. Multiple layer optical memory system using second-harmonic-generation readout

    DOE Patents [OSTI]

    Boyd, Gary T. (Woodbury, MN); Shen, Yuen-Ron (Berkeley, CA)

    1989-01-01T23:59:59.000Z

    A novel optical read and write information storage system is described which comprises a radiation source such as a laser for writing and illumination, the radiation source being capable of radiating a preselected first frequency; a storage medium including at least one layer of material for receiving radiation from the radiation source and capable of being surface modified in response to said radiation source when operated in a writing mode and capable of generating a pattern of radiation of the second harmonic of the preselected frequency when illuminated by the radiation source at the preselected frequency corresponding to the surface modifications on the storage medium; and a detector to receive the pattern of second harmonic frequency generated.

  13. Small Generator Aggregation (Maine)

    Broader source: Energy.gov [DOE]

    This section establishes requirements for electricity providers to purchase electricity from small generators, with the goal of ensuring that small electricity generators (those with a nameplate...

  14. Catalytic converter with thermoelectric generator

    SciTech Connect (OSTI)

    Parise, R.J.

    1998-07-01T23:59:59.000Z

    The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

  15. Generation to Generation: The Heart of Family Medicine

    E-Print Network [OSTI]

    Winter, Robin O

    2012-01-01T23:59:59.000Z

    Ageism in the Workplace. Generations Spring, 5. Westman,of caring for multiple generations simultaneously. StronglyGeneration to Generation: The Heart of Family Medicine

  16. Solar radiation intensity calculations

    E-Print Network [OSTI]

    Levine, Randolph Steven

    1978-01-01T23:59:59.000Z

    SOLAR RADIATION INTENSITY CALCULATIONS A Thesis by RANDOLPH STEVEN LEVINE Submitted to the Graduate College of Texas A&M University in partia'l fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject...: Physics SOLAR RADIATION INTENSITY CALCULATIONS A Thesis by RANDOLPH STEVEN LEVINE Approved as to style and content by: (Chairman of Committee) (Member) (Member) ( member) (Head of Department) December 1978 f219 037 ABSTRACT Solar Radiation...

  17. Gamma ray generator

    DOE Patents [OSTI]

    Firestone, Richard B; Reijonen, Jani

    2014-05-27T23:59:59.000Z

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  18. Coherent Synchrotron Radiation Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upton, NY 11973, USA Abstract Coherent Synchrotron Radiation (CSR) effects in bunch compressors are analyzed. Schemes for reducing the CSR effects are presented. 1 INTRODUCTION...

  19. Atomic Radiation (Illinois)

    Broader source: Energy.gov [DOE]

    This article states permissible levels of radiation in unrestricted areas, environmental standards for uranium fuel cycle and information about notification of incidents.

  20. Radiation Hazards Program (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

  1. Electromagnetic Isotope Separation Lab (EMIS) | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseC Supports - Energy InnovationVehicles

  2. Energy Management Inc EMI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLC Place: Ketchum,SPARQL SPARQL

  3. Unilateral radiation pneumonitis in sheep: Physiological changes and bronchoalveolar lavage

    SciTech Connect (OSTI)

    Tillman, B.F.; Loyd, J.E.; Malcolm, A.W.; Holm, B.A.; Brigham, K.L. (Vanderbilt Univ. School of Medicine, Nashville, TN (USA))

    1989-03-01T23:59:59.000Z

    Radiation pneumonitis is a life-threatening result of therapeutic thoracic irradiation, yet its mechanisms are poorly understood. We studied the effects of unilateral lung irradiation (3,000 rad) in sheep from the immediate response to the later development of radiation pneumonitis. We defined radiation pneumonitis by its diagnostic clinical feature, radiographic infiltration of the irradiated zone with a straight margin corresponding to the radiation port. The immediate response in the few hours after irradiation was characterized by cough, labored respiration, hypoxemia (arterial PO{sub 2} decreased 19 Torr), mild pulmonary hypertension (pulmonary arterial pressure increased 20%), and lymphopenia. Hemodynamics and gas exchange returned to normal by day 2 but became abnormal again before or during radiation pneumonitis at 32 +/- 2 days. Respiratory distress, hypoxemia, and pulmonary hypertension recurred during radiation pneumonitis. Bronchoalveolar lavage during radiation pneumonitis contained increased neutrophils (19 +/- 4%, control = 7%), increased protein (0.27 +/- 0.1 g/dl, control = 0.12 +/- 0.03), and severely impaired ability to lower surface tension. Alveolar macrophages from both lungs during unilateral radiation pneumonitis exhibited impaired generation of superoxide after phorbol myristate (only a 30% increase). Normal control alveolar macrophages increased superoxide production after stimulation greater than 400%. We conclude that unilateral lung irradiation in sheep causes a mild immediate response followed by radiation pneumonitis at 1 mo. Unilateral radiation pneumonitis in this model is associated with ipsilateral neutrophilic alveolitis, increased bronchoalveolar lavage protein, and impaired surfactant function, as well as bilateral functional abnormalities of alveolar macrophages.

  4. Harmonic generation from indium-rich plasmas

    SciTech Connect (OSTI)

    Ganeev, R. A.; Kulagin, I. A. [Akadempribor Scientific Association, Academy of Sciences of Uzbekistan, Tashkent 700125 (Uzbekistan); Singhal, H.; Naik, P. A.; Arora, V.; Chakravarty, U.; Chakera, J. A.; Khan, R. A.; Raghuramaiah, M.; Gupta, P. D. [Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Redkin, P. V. [Samarkand State University, Samarkand 703004 (Uzbekistan)

    2006-12-15T23:59:59.000Z

    An experimental study of high-order harmonic generation in In, InSb, InP, and InGaP plasmas using femtosecond laser radiation with variable chirp is presented. Intensity enhancement of the 13th and 21st harmonics compared to the neighboring harmonics by a factor of 200 and 10, respectively, is observed. It is shown that the harmonic spectrum from indium-containing plasma plumes can be considerably modified by controlling the chirp of the driving laser pulse.

  5. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  6. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2008-04-22T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  7. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2009-12-29T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  8. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  9. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    for increased protection from ionizing radiation for declared pregnant radiation workers. The radiation doseCOLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212 regulations of the Rules of the City of New York, Article 175, Radiation Control, there is a requirement

  10. Alloy nanoparticle synthesis using ionizing radiation

    DOE Patents [OSTI]

    Nenoff, Tina M. (Sandia Park, NM); Powers, Dana A. (Albuquerque, NM); Zhang, Zhenyuan (Durham, NC)

    2011-08-16T23:59:59.000Z

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  11. Gravitational Radiation Detection with Laser Interferometry

    E-Print Network [OSTI]

    Rana X Adhikari

    2014-03-13T23:59:59.000Z

    Gravitational-wave detection has been pursued relentlessly for over 40 years. With the imminent operation of a new generation of laser interferometers, it is expected that detections will become a common occurrence. The research into more ambitious detectors promises to allow the field to move beyond detection and into the realm of precision science using gravitational radiation. In this article, I review the state of the art for the detectors and describe an outlook for the coming decades.

  12. Gravitational Radiation Detection with Laser Interferometry

    E-Print Network [OSTI]

    Adhikari, Rana X

    2013-01-01T23:59:59.000Z

    Gravitational-wave detection has been pursued relentlessly for over 40 years. With the imminent operation of a new generation of laser interferometers, it is expected that detections will become a common occurrence. The research into more ambitious detectors promises to allow the field to move beyond detection and into the realm of precision science using gravitational radiation. In this article, I review the state of the art for the detectors and describe an outlook for the coming decades.

  13. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2010-06-15T23:59:59.000Z

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  14. Nonclassicality of Thermal Radiation

    E-Print Network [OSTI]

    Lars M. Johansen

    2004-02-16T23:59:59.000Z

    It is demonstrated that thermal radiation of small occupation number is strongly nonclassical. This includes most forms of naturally occurring radiation. Nonclassicality can be observed as a negative weak value of a positive observable. It is related to negative values of the Margenau-Hill quasi-probability distribution.

  15. Radiative Flux Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Long, Chuck [NOAA

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  16. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2007-01-09T23:59:59.000Z

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  17. Radiation detection system

    DOE Patents [OSTI]

    Franks, Larry A. (Santa Barbara, CA); Lutz, Stephen S. (Santa Barbara, CA); Lyons, Peter B. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    A radiation detection system including a radiation-to-light converter and fiber optic wave guides to transmit the light to a remote location for processing. The system utilizes fluors particularly developed for use with optical fibers emitting at wavelengths greater than about 500 nm and having decay times less than about 10 ns.

  18. Nuclear radiation actuated valve

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Schively, Dixon P. (Richland, WA)

    1985-01-01T23:59:59.000Z

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  19. RADIATION SAFETY MANUAL POLICIES AND PROCEDURES

    E-Print Network [OSTI]

    Zhang, Yuanlin

    RADIATION SAFETY MANUAL POLICIES AND PROCEDURES FOR RADIATION PROTECTION AT TEXAS TECH UNIVERSITY................................................................................................................I-1 B. Radiation Protection Program...............................................................................I-3 D. Radiation Safety Management

  20. Radiative and climate impacts of absorbing aerosols

    E-Print Network [OSTI]

    Zhu, Aihua

    2010-01-01T23:59:59.000Z

    V. Ramanathan (2008), Solar radiation budget and radiativeV. Ramanathan (2008), Solar radiation budget and radiativeapproximation for solar radiation in the NCAR Community

  1. Characteristics of cooperative spontaneous radiation with applications to atom microscopy and coherent XUV radiation generation

    E-Print Network [OSTI]

    Chang, Juntao

    2009-05-15T23:59:59.000Z

    quicker than single atom decay, with a decay rate proportional to N(?/R)2, where N is the atom numbers, R is the size of the atom cloud, and ? is the wavelength. We call it Markovian regime because the sytem does not persist memory effect. The other regime...

  2. New wave generation

    E-Print Network [OSTI]

    Mercier, Matthieu J.

    We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (Exp. Fluids, vol. 42, 2007, pp. 123–130). This ...

  3. Efficient polarization gating of high-order harmonic generation by polarization-shaped ultrashort pulses

    E-Print Network [OSTI]

    Silberberg, Yaron

    Polarization gating of high-order harmonic generation takes advantage of the significant reduction of har for generation of polarization gated pulses using wave-plate combinations is inefficient, and propose photon energy radiation from the harmonic spectrum. Need- less to say, the generation of near single

  4. T-wave generation and propagation: A comparison between data and spectral element modelinga)

    E-Print Network [OSTI]

    Boyer, Edmond

    T-wave generation and propagation: A comparison between data and spectral element modelinga August 2013) T-waves are underwater acoustic waves generated by earthquakes. Modeling of their generation realistic simulations of T-waves taking into account major aspects of this phenomenon: The radiation pattern

  5. Quantum vacuum radiation in optical glass

    E-Print Network [OSTI]

    Stefano Liberati; Angus Prain; Matt Visser

    2011-11-01T23:59:59.000Z

    A recent experimental claim of the detection of analogue Hawking radiation in an optical system [PRL 105 (2010) 203901] has led to some controversy [PRL 107 (2011) 149401, 149402]. While this experiment strongly suggests some form of particle creation from the quantum vacuum (and hence it is per se very interesting), it is also true that it seems difficult to completely explain all features of the observations by adopting the perspective of a Hawking-like mechanism for the radiation. For instance, the observed photons are emitted parallel to the optical horizon, and the relevant optical horizon is itself defined in an unusual manner by combining group and phase velocities. This raises the question: Is this really Hawking radiation, or some other form of quantum vacuum radiation? Naive estimates of the amount of quantum vacuum radiation generated due to the rapidly changing refractive index --- sometimes called the dynamical Casimir effect --- are not encouraging. However we feel that naive estimates could be misleading depending on the quantitative magnitude of two specific physical effects: "pulse steepening" and "pulse cresting". Plausible bounds on the maximum size of these two effects results in estimates much closer to the experimental observations, and we argue that the dynamical Casimir effect is now worth additional investigation.

  6. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212 Psychiatric Institute Radiation Safety Office (Please complete this form within 24 hours and send a copy to your supervisor and The Radiation Safety Office) Your Name

  7. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212: _______________ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Radiation Safety Office Approval: ______________________ Date: ________________________ Waste containers in place: Yes ___ No ___ Radiation signage on door: Yes ___ No ___ Room monitoring: Dates

  8. Radiation Safety (Revised March 2010)

    E-Print Network [OSTI]

    Kay, Mark A.

    to Workers; Inspections 27 10 CFR Part 20Standards for Protection Against Radiation 28 10 CFR Part 35Radiation Safety Manual (Revised March 2010) Updated December 2012 Stanford University, Stanford California #12; #12; Radiation Safety Manual (Revised March 2010) Updated

  9. Progress in Z-Pinch driven dynamic-hohlraums for high-temperature radiation-flow and ICF experiments at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Bailey, James E.; Haines, Malcolm G. (Imperial College, London, United Kingdom); Chandler, Gordon Andrew; Bliss, David Emery; Olson, Richard Edward; Sanford, Thomas W. L.; Olson, Craig Lee; Nash, Thomas J.; Ruiz, Carlos L.; Matzen, Maurice Keith; Idzorek, George C. (Los Alamos National Laboratory, Los Alamos, NM); Stygar, William A.; Apruzese, John P. (Naval Research Laboratory, Washington DC); Cuneo, Michael Edward; Cooper, Gary Wayne (University of New Mexico, Albuquerque, NM); Chittenden, Jeremy Paul (Imperial College, London, United Kingdom); Chrien, Robert E. (Los Alamos National Laboratory, Los Alamos, NM); Slutz, Stephen A.; Mock, Raymond Cecil; Leeper, Ramon Joe; Sarkisov, Gennady Sergeevich (Ktech Corporation, Albuquerque, NM); Peterson, Darrell L. (Los Alamos National Laboratory, Los Alamos, NM); Lemke, Raymond William; Mehlhorn, Thomas Alan; Roderick, Norman Frederick (University of New Mexico, Albuquerque, NM); Watt, Robert G. (Los Alamos National Laboratory, Los Alamos, New MM)

    2004-06-01T23:59:59.000Z

    Progress in understanding the physics of dynamic-hohlraums is reviewed for a system capable of generating 13 TW of axial radiation for high temperature (>200 eV) radiation-flow experiments and ICF capsule implosions.

  10. High power terahertz generation using 1550?nm plasmonic photomixers

    SciTech Connect (OSTI)

    Berry, Christopher W. [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hashemi, Mohammad R.; Jarrahi, Mona [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Electrical Engineering Department, University of California Los Angeles, Los Angeles, California 90095 (United States); Preu, Sascha [Department of Electrical Engineering and Information Technology, Technical University Darmstadt, D-64283 Darmstadt (Germany); Lu, Hong; Gossard, Arthur C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-07-07T23:59:59.000Z

    We present a 1550?nm plasmonic photomixer operating under pumping duty cycles below 10%, which offers significantly higher terahertz radiation power levels compared to previously demonstrated photomixers. The record-high terahertz radiation powers are enabled by enhancing the device quantum efficiency through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The repetition rate of the optical pump can be specifically selected at a given pump duty cycle to control the spectral linewidth of the generated terahertz radiation. At an average optical pump power of 150 mW with a pump modulation frequency of 1 MHz and pump duty cycle of 2%, we demonstrate up to 0.8 mW radiation power at 1 THz, within each continuous wave radiation cycle.

  11. Florida Radiation Protection Act (Florida)

    Broader source: Energy.gov [DOE]

    The Department of Public Health is responsible for administering a statewide radiation protection program. The program is designed to permit development and utilization of sources of radiation for...

  12. SYNCHROTRON RADIATION SOURCES

    SciTech Connect (OSTI)

    HULBERT,S.L.; WILLIAMS,G.P.

    1998-07-01T23:59:59.000Z

    Synchrotron radiation is a very bright, broadband, polarized, pulsed source of light extending from the infrared to the x-ray region. It is an extremely important source of Vacuum Ultraviolet radiation. Brightness is defined as flux per unit area per unit solid angle and is normally a more important quantity than flux alone particularly in throughput limited applications which include those in which monochromators are used. It is well known from classical theory of electricity and magnetism that accelerating charges emit electromagnetic radiation. In the case of synchrotron radiation, relativistic electrons are accelerated in a circular orbit and emit electromagnetic radiation in a broad spectral range. The visible portion of this spectrum was first observed on April 24, 1947 at General Electric's Schenectady facility by Floyd Haber, a machinist working with the synchrotron team, although the first theoretical predictions were by Lienard in the latter part of the 1800's. An excellent early history with references was presented by Blewett and a history covering the development of the utilization of synchrotron radiation was presented by Hartman. Synchrotron radiation covers the entire electromagnetic spectrum from the infrared region through the visible, ultraviolet, and into the x-ray region up to energies of many 10's of kilovolts. If the charged particles are of low mass, such as electrons, and if they are traveling relativistically, the emitted radiation is very intense and highly collimated, with opening angles of the order of 1 milliradian. In electron storage rings there are three possible sources of synchrotron radiation; dipole (bending) magnets; wigglers, which act like a sequence of bending magnets with alternating polarities; and undulators, which are also multi-period alternating magnet systems but in which the beam deflections are small resulting in coherent interference of the emitted light.

  13. Motor/generator

    DOE Patents [OSTI]

    Hickam, Christopher Dale (Glasford, IL)

    2008-05-13T23:59:59.000Z

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  14. The Intense Radiation Gas

    E-Print Network [OSTI]

    M. Marklund; P. K. Shukla; B. Eliasson

    2005-03-08T23:59:59.000Z

    We present a new dispersion relation for photons that are nonlinearly interacting with a radiation gas of arbitrary intensity due to photon-photon scattering. It is found that the photon phase velocity decreases with increasing radiation intensity, it and attains a minimum value in the limit of super-intense fields. By using Hamilton's ray equations, a self-consistent kinetic theory for interacting photons is formulated. The interaction between an electromagnetic pulse and the radiation gas is shown to produce pulse self-compression and nonlinear saturation. Implications of our new results are discussed.

  15. Composition for radiation shielding

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC)

    1994-01-01T23:59:59.000Z

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  16. Miniaturized radiation chirper

    DOE Patents [OSTI]

    Umbarger, C. John (Los Alamos, NM); Wolf, Michael A. (Los Alamos, NM)

    1980-01-01T23:59:59.000Z

    The disclosure relates to a miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers.

  17. Radio Wave 'Messengers' of Periodic Gravitational Radiation and the Problem of Gravitationally Induced Nonlinearity in Electrodynamic Systems

    E-Print Network [OSTI]

    A. B. Balakin; Z. G. Murzakhanov; G. V. Kisun'ko

    2005-11-10T23:59:59.000Z

    We discuss a gravitationally induced nonlinearity in hierarchic systems. We consider the generation of extremely low-frequency radio waves with a frequency of the periodic gravitational radiation; the generation is due to an induced nonlinear self-action of electromagnetic radiation in the vicinity of the gravitational-radiation source. These radio waves are a fundamentally new type of response of an electrodynamic system to gravitational radiation. That is why we here use an unconventional term: radio-wave messengers of periodic gravitational radiation.

  18. Photovoltaic Power Generation in the Stellar Environments

    E-Print Network [OSTI]

    T. E. Girish; S. Aranya

    2010-12-03T23:59:59.000Z

    In this paper we have studied the problem of photovoltaic power generation near selected stars in the solar neighborhood. The nature of the optical radiation from a star will depend on its luminosity,HR classification and spectral characteristics. The solar celloperation in the habitable zones of the stars is similar to AM1.0 operation near earth.Thecurrent space solar cell technology can be adopted for power generation near G,K and Mtype stars. Silicon solar cells with good near IR response are particularly suitable in theenvironments of M type stars which are most abundant in the universe. . Photovoltaicpower generation near binary stars like Sirius and Alpha Centauri is also discussed.

  19. Creating a Cognitive Agent in a Virtual World: Planning, Navigation, and Natural Language Generation

    E-Print Network [OSTI]

    Hewlett, William

    2013-01-01T23:59:59.000Z

    Generation . . . . . . . . . . . . . . . . . . . . .Language Generation . . . . . . . . . . . . . . . . .Language Generation . . . . . . . . . . . . . . . . . . . .

  20. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, Lyle W. (Albuquerque, NM)

    1985-01-01T23:59:59.000Z

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  1. The Gravitational Cherenkov Radiation

    E-Print Network [OSTI]

    A. M. Ignatov

    2001-10-26T23:59:59.000Z

    An example of discontinuity of the energy-momentum tensor moving at superluminal velocity is discussed. It is shown that the gravitational Mach cone is formed. The power spectrum of the corresponding Cherenkov radiation is evaluated.

  2. Radiation from Accelerated Branes

    E-Print Network [OSTI]

    Mohab Abou-Zeid; Miguel S. Costa

    2000-01-29T23:59:59.000Z

    The radiation emitted by accelerated fundamental strings and D-branes is studied within the linear approximation to the supergravity limit of string theory. We show that scalar, gauge field and gravitational radiation is generically emitted by such branes. In the case where an external scalar field accelerates the branes, we derive a Larmor-type formula for the emitted scalar radiation and study the angular distribution of the outgoing energy flux. The classical radii of the branes are calculated by means of the corresponding Thompson scattering cross sections. Within the linear approximation, the interaction of the external scalar field with the velocity fields of the branes gives a contribution to the observed gauge field and gravitational radiation.

  3. Adaptive multigroup radiation diffusion

    E-Print Network [OSTI]

    Williams, Richard B., Sc. D. Massachusetts Institute of Technology

    2005-01-01T23:59:59.000Z

    This thesis describes the development and implementation of an algorithm for dramatically increasing the accuracy and reliability of multigroup radiation diffusion simulations at low group counts. This is achieved by ...

  4. Ionizing radiation detector

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1990-01-01T23:59:59.000Z

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  5. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A. (Palo Alto, CA); Perez-Mendez, Victor (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

    1992-01-01T23:59:59.000Z

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  6. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17T23:59:59.000Z

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  7. Radiation Safety Training Basic Radiation Safety Training for

    E-Print Network [OSTI]

    Dai, Pengcheng

    Radiation Safety Training Basic Radiation Safety Training for X-ray Users for Physics 461 & 462 Protocol Title: Basic Radiation Safety Training for X-ray Users Drafted By: Chris Millsaps, RSS Reviewers: ZB, TU, GS Purpose: To provide basic radiation safety training to the users of x-ray producing

  8. Radiation Safety Manual Dec 2012 Page 1 RADIATION SAFETY

    E-Print Network [OSTI]

    Grishok, Alla

    of External and Internal Doses E. Reports and Notices to Workers Chapter VII: Radiation ProtectionRadiation Safety Manual ­ Dec 2012 Page 1 RADIATION SAFETY MANUAL For Columbia University NewYork-Presbyterian Hospital New York State Psychiatric Institute Barnard College December 2012 #12;Radiation Safety Manual

  9. Method of enhancing radiation response of radiation detection materials

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1997-01-01T23:59:59.000Z

    The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

  10. Radiative Transitions in Charmonium

    SciTech Connect (OSTI)

    Jozef Dudek; Robert Edwards; David Richards

    2005-10-01T23:59:59.000Z

    The form factors for the radiative transitions between charmonium mesons are investigated. We employ an anisotropic lattice using a Wilson gauge action, and domain-wall fermion action. We extrapolate the form factors to Q{sup 2} = 0, corresponding to a real photon, using quark-model-inspired functions. Finally, comparison is made with photocouplings extracted from the measured radiative widths, where known. Our preliminary results find photocouplings commensurate with these experimentally extracted values.

  11. Radiative Processes Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The

  12. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    DOE Patents [OSTI]

    Roybal, Lyle Gene

    2010-06-08T23:59:59.000Z

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  13. Gravitational Tunneling Radiation

    E-Print Network [OSTI]

    Mario Rabinowitz

    2002-12-11T23:59:59.000Z

    The isolated black hole radiation of both Hawking and Zel'dovich are idealized abstractions as there is always another body to distort the potential. This is considered with respect to both gravitational tunneling, and black hole "no-hair" theorems. The effects of a second body are to lower the gravitational barrier of a black hole and to give the barrier a finite rather than infinite width so tha a particle can escape by tunneling (as in field emission) or over the top of the lowered barrier (as in Schottky emission). Thus radiation may be emitted from black holes in a process differing from that of Hawking radiation, P SH, which has been undetected for over 24 years. The radiated power from a black hole derived here is PR e ^2__ PSH, where e ^2__ is he ransmission probability for radiation through the barrier. This is similar to electric field emission of electrons from a metal in that the emission can in principle be modulated and beamed. The temperature and entropy of black holes are reexamined. Miniscule black holes herein may help explain the missing mass of the universe, accelerated expansion of the universe, and anomalous rotation of spiral galaxies. A gravitational interference effect for black hole radiation similar to the Aharonov-Bohm effect is also examined.

  14. Method of grid generation

    DOE Patents [OSTI]

    Barnette, Daniel W. (Veguita, NM)

    2002-01-01T23:59:59.000Z

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  15. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, J.E.

    1987-08-25T23:59:59.000Z

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  16. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, James E. (Simi Valley, CA)

    1987-01-01T23:59:59.000Z

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  17. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1991--November 30, 1992

    SciTech Connect (OSTI)

    Hall, E.J.

    1992-05-01T23:59:59.000Z

    The following research programs from the Center for Radiological Research of Columbia University are described: Design and development of a new wall-less ultra miniature proportional counter for nanodosimetry; some recent measurements of ionization distributions for heavy ions at nanometer site sizes with a wall-less proportional counter; a calculation of exciton energies in periodic systems with helical symmetry: application to a hydrogen fluoride chain; electron energy-loss function in polynucleotide and the question of plasmon excitation; a non-parametric, microdosimetric-based approach to the evaluation of the biological effects of low doses of ionizing radiation; high-LET radiation risk assessment at medium doses; high-LET radiobiological effects: increased lesion severity or increased lesion proximity; photoneutrons generated by high energy medical linacs; the biological effectiveness of neutrons; implications for radiation protection; molecular characterization of oncogenes induced by neutrons; and the inverse dose-rate effect for oncogenic transformation by charged particles is LET dependent.

  18. Working With Radiation For Research

    E-Print Network [OSTI]

    Jia, Songtao

    working with radiation The radiation badge is not a protective device It cannot shield you from ­ Negative Exponential Protection From Radiation #12;18 Time Distance Shielding Basic Principles #121 Working With Radiation For Research Thomas Cummings Junior Physicist Environmental Health

  19. Radiation Safety Annual Refresher Training

    E-Print Network [OSTI]

    Thomas, David D.

    Radiation Safety Annual Refresher Training Radiation Protection Division Department of Environmental Health & Safety #12;Topics in Radiation Safety (applicable RPD Manual sections indicated) User;Topics in Radiation Safety (applicable RPD Manual sections indicated) User and Non-user topics Types

  20. Talkin’ Bout Wind Generation

    Broader source: Energy.gov [DOE]

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  1. SNE TRAFIC GENERATOR

    Energy Science and Technology Software Center (OSTI)

    003027MLTPL00 Network Traffic Generator for Low-rate Small Network Equipment Software  http://eln.lbl.gov/sne_traffic_gen.html 

  2. Hydrogen Generation for Refineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single Cycle Shown for ATB SteamCarbon 3 * ATB reforming * Steamcarbon 3 * Syngas generated during reforming * 70% H 2 * 20% CO * Syngas composition agrees with...

  3. Next-generation transcriptome assembly

    E-Print Network [OSTI]

    Martin, Jeffrey A.

    2012-01-01T23:59:59.000Z

    technologies - the next generation. Nat Rev Genet 11, 31-algorithms for next-generation sequencing data. Genomicsassembly from next- generation sequencing data. Genome Res

  4. Analytic approximate radiation effects due to Bremsstrahlung

    SciTech Connect (OSTI)

    Ben-Zvi I.

    2012-02-01T23:59:59.000Z

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.

  5. Radiation delivery system and method

    DOE Patents [OSTI]

    Sorensen, Scott A. (Overland Park, KS); Robison, Thomas W. (Los Alamos, NM); Taylor, Craig M. V. (Jemez Springs, NM)

    2002-01-01T23:59:59.000Z

    A radiation delivery system and method are described. The system includes a treatment configuration such as a stent, balloon catheter, wire, ribbon, or the like, a portion of which is covered with a gold layer. Chemisorbed to the gold layer is a radiation-emitting self-assembled monolayer or a radiation-emitting polymer. The radiation delivery system is compatible with medical catheter-based technologies to provide a therapeutic dose of radiation to a lesion following an angioplasty procedure.

  6. Radiation Protection and Safety Training | Environmental Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiation EffectsProtection

  7. Second generation PFB for advanced power generation

    SciTech Connect (OSTI)

    Robertson, A.; Van Hook, J.

    1995-11-01T23:59:59.000Z

    Research is being conducted under a United States Department of Energy (USDOE) contract to develop a new type of coal-fueled plant for electric power generation. This new type of plant-called an advanced or second-generation pressurized fluidized bed combustion (APFBC) plant-offers the promise of 45-percent efficiency (HHV), with emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. This paper summarizes the pilot plant R&D work being conducted to develop this new type of plant. Although pilot plant testing is still underway, preliminary estimates indicate the commercial plant Will perform better than originally envisioned. Efficiencies greater than 46 percent are now being predicted.

  8. Improving the reliability and accuracy of a multipyranometer array measuring solar radiation

    E-Print Network [OSTI]

    Klima, Peter Miloslaw

    2000-01-01T23:59:59.000Z

    The measurement of solar radiation is crucial for the use of solar energy in fields including power generation, agriculture and meteorology. In the building sciences, It is essential for daylighting studies, energy use calculations, and thermal...

  9. Contemporary evolution, allelic recycling, and adaptive radiation of the threespine stickleback

    E-Print Network [OSTI]

    Aguirre, Windsor E.

    Contemporary evolution, allelic recycling, and adaptive radiation of the threespine stickleback within ten generations. Rare freshwater-adapted alleles have been recycled from freshwater to oceanic evolve very slowly led him to study artificial selection, natural selection's component mechanisms (e

  10. Contracting for wind generation

    E-Print Network [OSTI]

    Newbery, David

    The UK Government proposes offering long-term Feed-in-Tariffs (FiTs) to low-carbon generation to reduce risk and encourage new entrants. Their preference is for a Contract-for-Difference (CfD) or a premium FiT (pFiT) for all generation regardless...

  11. The fifth generation computer

    SciTech Connect (OSTI)

    Moto-Oka, T.; Kitsuregawa, M.

    1985-01-01T23:59:59.000Z

    The leader of Japan's Fifth Generation computer project, known as the 'Apollo' project, and a young computer scientist elucidate in this book the process of how the idea came about, international reactions, the basic technology, prospects for realization, and the abilities of the Fifth Generation computer. Topics considered included forecasting, research programs, planning, and technology impacts.

  12. Pulse shortening, spatial mode cleaning, and intense terahertz generation by filamentation in xenon

    SciTech Connect (OSTI)

    Akturk, Selcuk; D'Amico, Ciro; Franco, Michel; Couairon, Arnaud; Mysyrowicz, Andre [Laboratoire d'Optique Appliquee, Ecole Nationale Superieure des Techniques Avancees-Ecole Polytechnique, CNRS UMR 7639 F-91761 Palaiseau Cedex, France and Centre de Physique Theorique, CNRS UMR 7644, Ecole Polytechnique, F-91128 Palaiseau Cedex (France)

    2007-12-15T23:59:59.000Z

    We performed a comprehensive study of filamentation in xenon. Due to its high nonlinear refraction index, but relatively low ionization potential, xenon can support filamentation at peak powers lower than in air. In our experiments, we studied pulse shortening, spatial mode cleaning, and generation of terahertz radiation. We observed that in xenon, self-compression is easily obtainable and terahertz radiation generation efficiency is significantly stronger as compared to air.

  13. A facility to remotely assemble radioisotope thermoelectric generators

    SciTech Connect (OSTI)

    Engstrom, J.W.; Goldmann, L.H.; Truitt, R.W.

    1992-07-01T23:59:59.000Z

    Radioisotope Thermoelectric Generators (RTGs) are electrical power sources that use heat from decaying radioisotopes to directly generate electrical power. The RTG assembly process is performed in an inert atmosphere inside a large glovebox, which is surrounded by radiation shielding to reduce exposure to neutron and gamma radiation from the radioisotope heat source. In the past, allowable dose rate limits have allowed direct, manual assembly methods; however, current dose rate limits require a thicker radiation shielding that makes direct, manual assembly infeasible. To minimize RTG assembly process modifications, telerobotic systems are being investigated to perform remote assembly tasks. Telerobotic systems duplicate human arm motion and incorporate force feedback sensitivity to handle objects and tools in a human-like manner. A telerobotic system with two arms and a three-dimensional (3-D) vision system can be used to perform remote RTG assembly tasks inside gloveboxes and cells using unmodified, normal hand tools.

  14. Pediatric radiation oncology

    SciTech Connect (OSTI)

    Halperin, E.C.; Kun, L.E.; Constine, L.S.; Tarbell, N.J.

    1989-01-01T23:59:59.000Z

    This text covers all aspects of radiation therapy for treatment of pediatric cancer. The book describes the proper use of irradiation in each of the malignancies of childhood, including tumors that are rarely encountered in adult practice. These include acute leukemia; supratentorial brain tumors; tumors of the posterior fossa of the brain and spinal canal; retinoblastoma and optic nerve glioma; neuroblastoma; Hodgkin's disease; malignant lymphoma; Ewing's sarcoma; osteosarcoma; rhabdomyosarcoma; Desmoid tumor; Wilms' tumor; liver and biliary tumors; germ cell and stromal cell tumors of the gonads; endocrine, aerodigestive tract, and breast tumors; Langerhans' cell histiocytosis; and skin cancer and hemangiomas. For each type of malignancy, the authors describe the epidemiology, common presenting signs and symptoms, staging, and proper diagnostic workup. Particular attention is given to the indications for radiation therapy and the planning of a course of radiotherapy, including the optimal radiation dose, field size, and technique.

  15. Composition for radiation shielding

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-08-02T23:59:59.000Z

    A composition for use as a radiation shield is disclosed. The shield has a depleted uranium core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container. 2 figs.

  16. System and method for assaying radiation

    DOE Patents [OSTI]

    DiPrete, David P; Whiteside, Tad; Pak, Donald J; DiPrete, Cecilia C

    2013-11-12T23:59:59.000Z

    A system for assaying radiation includes a sample holder configured to hold a liquid scintillation solution. A photomultiplier receives light from the liquid scintillation solution and generates a signal reflective of the light. A control circuit biases the photomultiplier and receives the signal from the photomultiplier reflective of the light. A light impermeable casing surrounds the sample holder, photomultiplier, and control circuit. A method for assaying radiation includes placing a sample in a liquid scintillation solution, placing the liquid scintillation solution in a sample holder, and placing the sample holder inside a light impermeable casing. The method further includes positioning a photomultiplier inside the light impermeable casing and supplying power to a control circuit inside the light impermeable casing.

  17. Direct radiative forcing due to aerosols in Asia during Soon-Ung Parka,, Jaein I. Jeongb

    E-Print Network [OSTI]

    Park, Rokjin

    Direct radiative forcing due to aerosols in Asia during March 2002 Soon-Ung Parka,, Jaein I. Jeongb Model (CRM) of Community Climate Model 3 and the output of the fifth generation of meso-scale model (MM5 in the global climate system by changing atmospheric radiation balance (Tegen and Fung, 1994; Andreae, 1996; Li

  18. Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    E-Print Network [OSTI]

    Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2006-01-01T23:59:59.000Z

    This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

  19. Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling

    E-Print Network [OSTI]

    Gitelson, Anatoly

    Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative for Sciences, 260 Panama Street, Stanford, CA 94305, USA d Center for Advanced Land Management Information squares regression We used synthetic reflectance spectra generated by a radiative transfer model, PROSPECT

  20. Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling

    E-Print Network [OSTI]

    Gitelson, Anatoly

    Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative for Sciences, 260 Panama Street, Stanford, CA 94305, USA d Center for Advanced Land Management Information regression We used synthetic reflectance spectra generated by a radiative transfer model, PROSPECT-5

  1. Emission of terahertz radiation from SiC Jared H. Strait,a

    E-Print Network [OSTI]

    Afshari, Ehsan

    for the generation of terahertz radiation. The nonlinear optical properties of various SiC polytypes have been previ the terahertz radiation dependence on the optical pump polarization, the pump angle of incidence, and the pump for terahertz emission. Given its material hard- ness, high optical damage threshold, small optical losses

  2. Radiation-Hard Quartz Cerenkov Calorimeters U. Akgun and Y. Onel (for CMS Collaboration)

    E-Print Network [OSTI]

    Akgun, Ugur

    collection efficiencies. RADIATION DAMAGE STUDIES ON QUARTZ FIBERS The simulations show that the CMS HF) Attenuation for seven groups of fibers. Initial radiation damage studies on quartz fibers were performed irradiation seems to have generated a similar type of optical damage as neutron irradiation at fluence of 1015

  3. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1992--November 30, 1993

    SciTech Connect (OSTI)

    Hall, E.J.; Zaider, M.

    1993-05-01T23:59:59.000Z

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood ``biological fingerprint`` of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons.

  4. SOUND GENERATION 1. Introduction

    E-Print Network [OSTI]

    Berlin,Technische Universität

    source mechanisms in terms of the ratio of radiated power to supplied mechanical or electrical power of heat as in combustion processes where the temporally varying thermal expansions are #12 it locally and a small proportion of the flow energy is converted to acoustic by the forces internal

  5. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, J.E.; Bolton, R.D.

    1999-03-02T23:59:59.000Z

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  6. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, James E. (Los Alamos, NM); Bolton, Richard D. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  7. Wireless passive radiation sensor

    DOE Patents [OSTI]

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03T23:59:59.000Z

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  8. Radiation.cdr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiationRadiation Safety Work

  9. Use of Slip Ring Induction Generator for Wind Power Generation

    E-Print Network [OSTI]

    K Y Patil; D S Chavan

    Wind energy is now firmly established as a mature technology for electricity generation. There are different types of generators that can be used for wind energy generation, among which Slip ring Induction generator proves to be more advantageous. To analyse application of Slip ring Induction generator for wind power generation, an experimental model is developed and results are studied. As power generation from natural sources is the need today and variable speed wind energy is ample in amount in India, it is necessary to study more beneficial options for wind energy generating techniques. From this need a model is developed by using Slip ring Induction generator which is a type of Asynchronous generator.

  10. Curvature radiation and giant subpulses in the Crab pulsar

    E-Print Network [OSTI]

    Janusz Gil; George I. Melikidze

    2003-11-07T23:59:59.000Z

    It is argued that the nanosecond giant subpulses detected recently in the Crab pulsar are generated by means of the coherent curvature radiation of charged relativistic solitons associated with sparking discharges of the inner gap potential drop above the polar cap.

  11. US Department of Energy standardized radiation safety training

    SciTech Connect (OSTI)

    Trinoskey, P.A.

    1997-02-01T23:59:59.000Z

    The following working groups were formed under the direction of a radiological training coordinator: managers, supervisors, DOE auditors, ALARA engineers/schedulers/planners, radiological control personnel, radiation-generating device operators, emergency responders, visitors, Pu facilities, U facilities, tritium facilities, accelerator facilities, biomedical researchers. General courses for these groups are available, now or soon, in the form of handbooks.

  12. Journal of Quantitative Spectroscopy & Radiative Transfer 99 (2006) 341348

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    structure on non-LTE, non-diffusive radiation transport and X-ray production is discussed. r 2005 Elsevier Ltd. All rights reserved. Keywords: Z-pinch plasma; K-shell X-ray production and spectroscopy; Opacity tungsten wires [2]. Strong j  B forces implode the wire array, which generates nearly 2 MJ of X-rays in o

  13. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22T23:59:59.000Z

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  14. Method and apparatus for generating low energy nuclear particles

    DOE Patents [OSTI]

    Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

    1999-02-09T23:59:59.000Z

    A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

  15. Method and apparatus for generating low energy nuclear particles

    DOE Patents [OSTI]

    Powell, James R. (Shoreham, NY); Reich, Morris (Flushing, NY); Ludewig, Hans (Brookhaven, NY); Todosow, Michael (Miller Place, NY)

    1999-02-09T23:59:59.000Z

    A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

  16. Graph Generator Survey

    SciTech Connect (OSTI)

    Lothian, Josh [ORNL; Powers, Sarah S [ORNL; Sullivan, Blair D [ORNL; Baker, Matthew B [ORNL; Schrock, Jonathan [ORNL; Poole, Stephen W [ORNL

    2013-12-01T23:59:59.000Z

    The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of dierent application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.

  17. Local microwave background radiation

    E-Print Network [OSTI]

    Domingos Soares

    2014-11-13T23:59:59.000Z

    An inquiry on a possible local origin for the Microwave Background Radiation is made. Thermal MBR photons are contained in a system called {\\it magnetic bottle} which is due to Earth magnetic field and solar wind particles, mostly electrons. Observational tests are anticipated.

  18. Radiation Source Replacement Workshop

    SciTech Connect (OSTI)

    Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

    2010-12-01T23:59:59.000Z

    This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

  19. Thermostatic Radiator Valve Evaluation

    SciTech Connect (OSTI)

    Dentz, Jordan [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States); Ansanelli, Eric [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States)

    2015-01-01T23:59:59.000Z

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market.

  20. Three Dimensional Radiative Transfer

    E-Print Network [OSTI]

    Tom Abel

    2000-05-09T23:59:59.000Z

    Radiative Transfer (RT) effects play a crucial role in the thermal history of the intergalactic medium. Here I discuss recent advances in the development of numerical methods that introduce RT to cosmological hydrodynamics. These methods can also readily be applied to time dependent problems on interstellar and galactic scales.

  1. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, D.C.

    1980-12-17T23:59:59.000Z

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  2. Planets and X-rays: a radiation diet

    E-Print Network [OSTI]

    Sanz-Forcada, J; Micela, G; Pollock, A; Garcia-Alvarez, D; Solano, E; Eiroa, C

    2011-01-01T23:59:59.000Z

    According to theory, high energy emission from the coronae of cool stars can severely erode the atmosphere of orbiting planets. To test the long term effects of the erosion we study a large sample of planet-hosting stars observed in X-rays. The results reveal that massive planets (Mp sin i > 1.5 Mj) may survive only if exposed to low accumulated coronal radiation. The planet HD 209458 b might have lost more than 1 Mj already, and other cases, like tau Boo b, could be losing mass at a rate of 3.4 Earth masses per Gyr. The strongest erosive effects would take place during the first stages of the stellar life, when the faster rotation generates more energetic coronal radiation. The planets with higher density seem to resist better the radiation effects, as foreseen by models. Current models need to be improved to explain the observed distribution of planetary masses with the coronal radiation received.

  3. Coherent multiple-foil x-ray transition radiation

    SciTech Connect (OSTI)

    Moran, M.J.; Chang, B.; Schneider, M.B.

    1993-08-25T23:59:59.000Z

    Intense x-ray transition radiation can be generated when relativistic electrons pass through a multiple-foil target. When the foil spacing is periodic, the transition radiation can be spatially coherent with respect to the target period. The spatial coherence can be evident in the spectra and angular distributions of transition radiation from such targets. A series of experiments has measured coherent transition radiation distributions from multiple-foil targets (up to six foils) with spacings of 50 {mu}m and 100 {mu}m. The electron energy was about 75 MeV and the photon energies were about 200 eV. Agreement between calculation and experimental data is excellent.

  4. Impurity feedback control for enhanced divertor and edge radiation in DIII-D discharges

    SciTech Connect (OSTI)

    Jackson, G.L.; Staebler, G.M.; Allen, S.L. [and others

    1996-10-01T23:59:59.000Z

    Long pulse and steady state fusion ignition devices will require a significant radiated power fraction to minimize heat flux to, and sputtering of, the first wall. While impurity gases have been proposed to enhance radiation, precise control of impurity gas injection is essential to achieve an adequate radiative power fraction while maintaining good energy confinement and low central impurity concentration. We report here the first experiments in the DIII-D tokamak using feedback control of the rate of impurity gas injection. These experiments were carried out with active divertor pumping using the in-situ DIII-D cryopump. The radiated power fraction was controlled by sensing either UN edge line radiation (Ne{sup +7}) or mantle radiation from selected bolometer channels and using the DIII-D digital plasma control system to calculate radiated power real-time and generate an error signal to control an impurity gas injector valve.

  5. Generating electricity from viruses

    ScienceCinema (OSTI)

    Lee, Seung-Wuk

    2014-06-23T23:59:59.000Z

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  6. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, James M. (Livermore, CA); Leighton, James F. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  7. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, J.M.; Leighton, J.F.

    1988-02-05T23:59:59.000Z

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  8. Energy and Mass Generation

    E-Print Network [OSTI]

    Burra G. Sidharth

    2010-03-11T23:59:59.000Z

    Modifications in the energy momentum dispersion laws due to a noncommutative geometry, have been considered in recent years. We examine the oscillations of extended objects in this perspective and find that there is now a "generation" of energy.

  9. Local entropy generation analysis

    SciTech Connect (OSTI)

    Drost, M.K.; White, M.D.

    1991-02-01T23:59:59.000Z

    Second law analysis techniques have been widely used to evaluate the sources of irreversibility in components and systems of components but the evaluation of local sources of irreversibility in thermal processes has received little attention. While analytical procedures for evaluating local entropy generation have been developed, applications have been limited to fluid flows with analytical solutions for the velocity and temperature fields. The analysis of local entropy generation can be used to evaluate more complicated flows by including entropy generation calculations in a computational fluid dynamics (CFD) code. The research documented in this report consists of incorporating local entropy generation calculations in an existing CFD code and then using the code to evaluate the distribution of thermodynamic losses in two applications: an impinging jet and a magnetic heat pump. 22 refs., 13 figs., 9 tabs.

  10. Generating electricity from viruses

    SciTech Connect (OSTI)

    Lee, Seung-Wuk

    2013-10-31T23:59:59.000Z

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  11. Monte Carlo event generators

    SciTech Connect (OSTI)

    Frixione, Stefano [INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy)

    2005-10-06T23:59:59.000Z

    I review recent progress in the physics of parton shower Monte Carlos, emphasizing the ideas which allow the inclusion of higher-order matrix elements into the framework of event generators.

  12. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25T23:59:59.000Z

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  13. Radiation Characteristics of Glass Containing Gas Bubbles

    E-Print Network [OSTI]

    Pilon, Laurent; Viskanta, Raymond

    2003-01-01T23:59:59.000Z

    B. L. Drolen, “Thermal radiation in particulate media withRadiation Characteristics of Glass Containing Gas Bubblesthermophysical properties and radiation characteristics of

  14. Radiation damage evolution in ceramics. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation damage evolution in ceramics. Radiation damage evolution in ceramics. Abstract: A review is presented of recent results on radiation damage production, defect...

  15. Preliminary radiation shielding design for BOOMERANG

    E-Print Network [OSTI]

    Donahue, Richard J.

    2002-01-01T23:59:59.000Z

    Preliminary Radiation Shielding Design for BOOMERANG R. J.2003 Abstract Preliminary radiation shielding speci?cationsElectron Photon Stray Radiation from a High Energy Electron

  16. Terahertz radiation from laser accelerated electron bunches

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    NUMBER 5 MAY 2004 Terahertz radiation from laser acceleratedand millimeter wave radiation from laser acceleratedNo. 5, May 2004 Terahertz radiation from laser accelerated

  17. Meeting Report--NASA Radiation Biomarker Workshop

    E-Print Network [OSTI]

    Straume, Tore

    2008-01-01T23:59:59.000Z

    ionizing radiation. In: Advances in Medical Physics (A. B.for medical management of radiation casualties. ADVANCES INMedical Center presented the radiation oncology perspective on biomarkers. Advances

  18. Nanoscale Engineering Of Radiation Tolerant Silicon Carbide....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Of Radiation Tolerant Silicon Carbide. Nanoscale Engineering Of Radiation Tolerant Silicon Carbide. Abstract: Radiation tolerance is determined by how effectively the...

  19. Radiation Safety Training Basic Radiation Safety Training for

    E-Print Network [OSTI]

    Dai, Pengcheng

    Radiation Safety Training Basic Radiation Safety Training for Sealed Source Users for Physics 461 Protocol Title: Training for Sealed Source Users Drafted By: Chris Millsaps, RSS Reviewers: ZB, TU, GS Purpose: To provide basic radiation safety training to the users of sealed sources located

  20. Steam generator tube failures

    SciTech Connect (OSTI)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01T23:59:59.000Z

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  1. Prediction of Solar Radiation on Building Rooftops: A Data-Mining Approach

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A [ORNL; Bhaduri, Budhendra L [ORNL; Kodysh, Jeffrey B [ORNL

    2012-01-01T23:59:59.000Z

    Solar energy technologies offer a clean, renewable, and domestic energy source, and are essential components of a sustainable energy future. The accurate measurement of solar radiation data is essential for optimum site selection of future distributed solar power plants as well as sizing photovoltaic systems. However, solar radiation data are not readily available because measured sequences of radiation values are obtained for a few locations in a country. When the data are available, they are usually at different time periods and spatial scale. The availability of solar radiation data at hourly or daily time scale will enhance the integration of solar energy into electricity generation and promote a sustainable energy future. The ability to generate approximate solar radiation values is often the only practical way to obtain radiation data at hourly or daily time scale. As a result, several models have been developed for estimating solar radiation values based on analytical, numerical simulation, and statistical approaches. However, these models have inherent challenges. We will discuss some of those challenges in this paper. To enhance the prediction of solar radiation values, a novel approach is presented for estimating solar radiation values using support vector machine technique. The approach accounts for unique characteristics that influence solar radiation values. The preliminary results obtained offer useful insights for model enhancements.

  2. High efficiency radioisotope thermophotovoltaic prototype generator

    SciTech Connect (OSTI)

    Avery, J.E.; Samaras, J.E.; Fraas, L.M.; Ewell, R. [JX Crystals, Inc., Issaquah, WA (United States)

    1995-10-01T23:59:59.000Z

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, the authors present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. They compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. They find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. The authors propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter.

  3. Pacific Northwest Solar Radiation Data

    E-Print Network [OSTI]

    Oregon, University of

    Pacific Northwest Solar Radiation Data UO SOLAR MONITORING LAB Physics Department -- Solar Energy Center 1274 University of Oregon Eugene, Oregon 97403-1274 April 1, 1999 #12;Hourly solar radiation data

  4. RADIATION DAMAGE OF GERMANIUM DETECTORS

    E-Print Network [OSTI]

    Pehl, Richard H.

    2011-01-01T23:59:59.000Z

    the high-energy proton damage than was the planar detector.as far as radiation damage is concerned. Unfortunately, some28-29, 1978 LBL-7967 RADIATION DAMAGE OF GERMANIUM DETECTORS

  5. Renewable energy generation sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)RenewableRenewableIndustrialenergy

  6. DOE Radiation Records Contacts List

    Broader source: Energy.gov [DOE]

    DOE radiation records contact list for individuals to obtain records of occupational exposure directly from a DOE site.

  7. Terahertz Radiation from a Pipe with Small Corrugations

    SciTech Connect (OSTI)

    Bane, K.L.F.; Stupakov, G.; /SLAC

    2012-01-26T23:59:59.000Z

    We have studied through analytical and numerical methods the use of a relativistic electron bunch to drive a metallic beam pipe with small corrugations for the purpose of generating terahertz radiation. For the case of a pipe with dimensions that do not change along its length, we have shown that - with reasonable parameters - one can generate a narrow-band radiation pulse with frequency {approx}1 THz, and total energy of a few milli-Joules. The pulse length tends to be on the order of tens of picoseconds. We have also shown that, if the pipe radius is tapered along its length, the generated pulse will end up with a frequency chirp; if the pulse is then made to pass through a compressor, its final length can be reduced to a few picoseconds and its peak power increased to 1 GW. We have also shown that wall losses tend to be significant and need to be included in the structure design.

  8. Apparatus for detecting alpha radiation in difficult access areas

    DOE Patents [OSTI]

    Steadman, Peter (Santa Fe, NM); MacArthur, Duncan W. (Los Alamos, NM)

    1997-09-02T23:59:59.000Z

    An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure.

  9. Apparatus for detecting alpha radiation in difficult access areas

    DOE Patents [OSTI]

    Steadman, P.; MacArthur, D.W.

    1997-09-02T23:59:59.000Z

    An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure is disclosed. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure. 4 figs.

  10. NCSRNCSR ""DEMOKRITOSDEMOKRITOS"" INSTITUTE OF NUCLEAR TECHNOLOGY & RADIATION PROTECTIONINSTITUTE OF NUCLEAR TECHNOLOGY & RADIATION PROTECTION

    E-Print Network [OSTI]

    PROTECTIONINSTITUTE OF NUCLEAR TECHNOLOGY & RADIATION PROTECTION ·· ENVIRONMENTAL RESEARCH LABORATORYENVIRONMENTAL·· NCSRNCSR ""DEMOKRITOSDEMOKRITOS"" ·· INSTITUTE OF NUCLEAR TECHNOLOGY & RADIATION

  11. Radiative Reactions and Coherence Modeling in the High Altitude Electromagnetic Pulse

    E-Print Network [OSTI]

    Charles N. Vittitoe; Mario Rabinowitz

    2003-06-03T23:59:59.000Z

    A high altitude nuclear electromagnetic pulse (EMP) with a peak field intensity of 5 x 10^4 V/m carries momentum that results in a retarding force on the average Compton electron (radiating coherently to produce the waveform) with magnitude near that of the geomagnetic force responsible for the coherent radiation. The retarding force results from a self field effect. The Compton electron interaction with the self generated magnetic field due to the other electrons accounts for the momentum density in the propagating wave; interaction with the self generated electric field accounts for the energy flux density in the propagating wave. Coherent addition of radiation is also quantitatively modeled.

  12. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212-305-0318 rso-clinical@columbia by more than 50 percent. #12;COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212 ________________________________________________________ ________________________________________________________ #12;COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212-305-0318 rso-clinical@columbia

  13. 6, 52315250, 2006 Radiative properties

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the short- wave (SW) and longwave (LW) cloud radiative effects (CRE), but the impact is small: 0.02 W m-2 tests are conducted to evaluate the impact that5 such an over-layer would have on the radiative effects, terrestrial) radiation. The SW "albedo" effect brings about cooling and the LW "greenhouse" effect warming

  14. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01T23:59:59.000Z

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  15. MCNP LWR Core Generator

    SciTech Connect (OSTI)

    Fischer, Noah A. [Los Alamos National Laboratory

    2012-08-14T23:59:59.000Z

    The reactor core input generator allows for MCNP input files to be tailored to design specifications and generated in seconds. Full reactor models can now easily be created by specifying a small set of parameters and generating an MCNP input for a full reactor core. Axial zoning of the core will allow for density variation in the fuel and moderator, with pin-by-pin fidelity, so that BWR cores can more accurately be modeled. LWR core work in progress: (1) Reflectivity option for specifying 1/4, 1/2, or full core simulation; (2) Axial zoning for moderator densities that vary with height; (3) Generating multiple types of assemblies for different fuel enrichments; and (4) Parameters for specifying BWR box walls. Fuel pin work in progress: (1) Radial and azimuthal zoning for generating further unique materials in fuel rods; (2) Options for specifying different types of fuel for MOX or multiple burn assemblies; (3) Additional options for replacing fuel rods with burnable poison rods; and (4) Control rod/blade modeling.

  16. MHD Generating system

    DOE Patents [OSTI]

    Petrick, Michael (Joliet, IL); Pierson, Edward S. (Chicago, IL); Schreiner, Felix (Mokena, IL)

    1980-01-01T23:59:59.000Z

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  17. National Ambient Radiation Database

    SciTech Connect (OSTI)

    Dziuban, J.; Sears, R.

    2003-02-25T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) recently developed a searchable database and website for the Environmental Radiation Ambient Monitoring System (ERAMS) data. This site contains nationwide radiation monitoring data for air particulates, precipitation, drinking water, surface water and pasteurized milk. This site provides location-specific as well as national information on environmental radioactivity across several media. It provides high quality data for assessing public exposure and environmental impacts resulting from nuclear emergencies and provides baseline data during routine conditions. The database and website are accessible at www.epa.gov/enviro/. This site contains (1) a query for the general public which is easy to use--limits the amount of information provided, but includes the ability to graph the data with risk benchmarks and (2) a query for a more technical user which allows access to all of the data in the database, (3) background information on ER AMS.

  18. Radiation shielding composition

    DOE Patents [OSTI]

    Quapp, William J. (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID)

    2000-12-26T23:59:59.000Z

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  19. Semiconductor radiation detector

    DOE Patents [OSTI]

    Patt, Bradley E. (Sherman Oaks, CA); Iwanczyk, Jan S. (Los Angeles, CA); Tull, Carolyn R. (Orinda, CA); Vilkelis, Gintas (Westlake Village, CA)

    2002-01-01T23:59:59.000Z

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  20. Radiation shielding composition

    DOE Patents [OSTI]

    Quapp, William J. (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID)

    1998-01-01T23:59:59.000Z

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  1. Radiation shielding composition

    DOE Patents [OSTI]

    Quapp, W.J.; Lessing, P.A.

    1998-07-28T23:59:59.000Z

    A composition is disclosed for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm{sup 3} and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile. 5 figs.

  2. Handheld CZT radiation detector

    DOE Patents [OSTI]

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24T23:59:59.000Z

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  3. Theoretical foundations of detection of terahertz radiation in laser-plasma interactions

    SciTech Connect (OSTI)

    Frolov, A. A., E-mail: frolov@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2013-02-15T23:59:59.000Z

    A theory is developed enabling one to calculate the temporal profile and spectrum of a terahertz wave packet from the energy of the second harmonic of optical radiation generated during the nonlinear interaction between terahertz and circularly polarized laser pulses in the skin layer of an overdense plasma. It is shown that the spectral and temporal characteristics of the envelope of the second harmonic of optical radiation coincide with those of the terahertz pulse only at small durations of the detecting laser radiation. For long laser pulses, the temporal profile and spectrum of the second harmonic are mainly determined by the characteristics of optical radiation at the carrier frequency.

  4. Using Backup Generators: Choosing the Right Backup Generator...

    Office of Environmental Management (EM)

    Choose the generator's fuel source-Backup generators are typically powered by either diesel fuel or natural gas, and both have associated advantages and disadvantages. Speak with...

  5. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16T23:59:59.000Z

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  6. Spherical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2006-11-21T23:59:59.000Z

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  7. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1986-01-01T23:59:59.000Z

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  8. Hyperbolic Graph Generator

    E-Print Network [OSTI]

    Aldecoa, Rodrigo; Krioukov, Dmitri

    2015-01-01T23:59:59.000Z

    Networks representing many complex systems in nature and society share some common structural properties like heterogeneous degree distributions and strong clustering. Recent research on network geometry has shown that those real networks can be adequately modeled as random geometric graphs in hyperbolic spaces. In this paper, we present a computer program to generate such graphs. Besides real-world-like networks, the program can generate random graphs from other well-known graph ensembles, such as the soft configuration model, random geometric graphs on a circle, or Erd\\H{o}s-R\\'enyi random graphs. The simulations show a good match between the expected values of different network structural properties and the corresponding empirical values measured in generated graphs, confirming the accurate behavior of the program.

  9. Training For Radiation Emergencies, First Responder Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training For Radiation Emergencies, First Responder Operations - Instructors Guide Training For Radiation Emergencies, First Responder Operations - Instructors Guide COURSE...

  10. POLARIZATION OF THE COSMIC BACKGROUND RADIATION

    E-Print Network [OSTI]

    Lubin, Philip Lubin

    2010-01-01T23:59:59.000Z

    a 45° angle. Radiation whose electric field (polarization)radiation field, it can be uniquely characterized by its electric

  11. Radiation Reaction, Renormalization and Poincaré Symmetry

    E-Print Network [OSTI]

    Yurij Yaremko

    2005-11-25T23:59:59.000Z

    We consider the self-action problem in classical electrodynamics of a massive point-like charge, as well as of a massless one. A consistent regularization procedure is proposed, which exploits the symmetry properties of the theory. The radiation reaction forces in both 4D and 6D are derived. It is demonstrated that the Poincar\\'e-invariant six-dimensional electrodynamics of the massive charge is renormalizable theory. Unlike the massive case, the rates of radiated energy-momentum tend to infinity whenever the source is accelerated. The external electromagnetic fields, which do not change the velocity of the particle, admit only its presence within the interaction area. The effective equation of motion is the equation for eigenvalues and eigenvectors of the electromagnetic tensor. The interference part of energy-momentum radiated by two massive point charges arbitrarily moving in flat spacetime is evaluated. It is shown that the sum of work done by Lorentz forces of charges acting on one another exhausts the effect of combination of outgoing electromagnetic waves generated by the charges.

  12. Methods for implementing microbeam radiation therapy

    DOE Patents [OSTI]

    Dilmanian, F. Avraham; Morris, Gerard M.; Hainfeld, James F.

    2007-03-20T23:59:59.000Z

    A method of performing radiation therapy includes delivering a therapeutic dose such as X-ray only to a target (e.g., tumor) with continuous broad beam (or in-effect continuous) using arrays of parallel planes of radiation (microbeams/microplanar beams). Microbeams spare normal tissues, and when interlaced at a tumor, form a broad-beam for tumor ablation. Bidirectional interlaced microbeam radiation therapy (BIMRT) uses two orthogonal arrays with inter-beam spacing equal to beam thickness. Multidirectional interlaced MRT (MIMRT) includes irradiations of arrays from several angles, which interleave at the target. Contrast agents, such as tungsten and gold, are administered to preferentially increase the target dose relative to the dose in normal tissue. Lighter elements, such as iodine and gadolinium, are used as scattering agents in conjunction with non-interleaving geometries of array(s) (e.g., unidirectional or cross-fired (intersecting) to generate a broad beam effect only within the target by preferentially increasing the valley dose within the tumor.

  13. The Generation Effect and Memory

    E-Print Network [OSTI]

    Rosner, Zachary Alexander

    2012-01-01T23:59:59.000Z

    M. A. (2007). The generation effect: A meta- analyticBjork, R. A. (1988). The generation effect: Support for aE. J. (2012). The next generation: The value of reminding.

  14. Options for Generating Steam Efficiently

    E-Print Network [OSTI]

    Ganapathy, V.

    This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment...

  15. Global aspects of radiation memory

    E-Print Network [OSTI]

    J. Winicour

    2014-10-11T23:59:59.000Z

    Gravitational radiation has a memory effect represented by a net change in the relative positions of test particles. Both the linear and nonlinear sources proposed for this radiation memory are of the "electric" type, or E mode, as characterized by the even parity of the polarization pattern. Although "magnetic" type, or B mode, radiation memory is mathematically possible, no physically realistic source has been identified. There is an electromagnetic counterpart to radiation memory in which the velocity of charged particles obtain a net "kick". Again, the physically realistic sources of electromagnetic radiation memory that have been identified are of the electric type. In this paper, a global null cone description of the electromagnetic field is applied to establish the non-existence of B mode radiation memory and the non-existence of E mode radiation memory due to a bound charge distribution.

  16. Method for microbeam radiation therapy

    DOE Patents [OSTI]

    Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

    1994-08-16T23:59:59.000Z

    A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

  17. Apparatus for generating x-ray holograms

    DOE Patents [OSTI]

    Rhodes, C.K.; Boyer, K.; Solem, J.C.; Haddad, W.S.

    1990-09-11T23:59:59.000Z

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced. 7 figs.

  18. Apparatus for generating x-ray holograms

    DOE Patents [OSTI]

    Rhodes, Charles K. (Chicago, IL); Boyer, Keith (Los Alamos, NM); Solem, Johndale C. (Los Alamos, NM); Haddad, Waleed S. (Chicago, IL)

    1990-01-01T23:59:59.000Z

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced.

  19. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOE Patents [OSTI]

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12T23:59:59.000Z

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  20. Nuclear Power Generating Facilities (Maine)

    Broader source: Energy.gov [DOE]

    The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

  1. Next-Generation Photovoltaic Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next-Generation Photovoltaic Technologies Next-Generation Photovoltaic Technologies Print Monday, 06 February 2012 15:48 Organic solar cells based on the polymerfullerene bulk...

  2. THz-radiation production using dispersively-selected flat electron bunches

    E-Print Network [OSTI]

    Thangaraj, Jayakar

    2013-01-01T23:59:59.000Z

    We propose an alternative scheme for a tunable THz radiation source generated by relativistic electron bunches. This technique relies on the combination of dispersive selection and flat electron bunch. The dispersive selection uses a slit mask inside a bunch compressor to transform the energy-chirped electron beam into a bunch train. The flat beam transformation boosts the frequency range of the THz source by reducing the beam emittance in one plane. This technique generates narrow-band THz radiation with a tuning range between 0.2 - 4 THz. Single frequency THz spectrum can also be generated by properly choosing the slit spacing, slit width, and the energy chirp.

  3. Generating Resources Advisory Committee

    E-Print Network [OSTI]

    Generating Resources Advisory Committee May 28, 2014 Steve Simmons Gillian Charles #12;2 9:30 AM plants 10:45 AM Break 11:00 AM Peaking Technologies Continued... 11:30 AM Combined Cycle Combustion Turbine and Utility Scale Solar PV Reference plant updates Levelized cost of energy 12:00 PM Lunch

  4. Generating Resources Advisory Committee

    E-Print Network [OSTI]

    Generating Resources Advisory Committee February 27, 2014 Steven Simmons and Gillian Charles Upcoming Symposium 9:15 am Natural Gas Peaking Technologies Technology Trends Proposed reference plant Costing, Economies of Scale, Normalizations Reference Plants 12:30 pm Discussion of Next GRAC Meetings

  5. CONSULTANT REPORT DISTRIBUTED GENERATION

    E-Print Network [OSTI]

    an independent cost analysis to interconnect and integrate increased penetration levels of renewable distributed costs. The Energy Commission considers this study a first step toward the 2012 Integrated Energy Policy Generation Integration Cost Study: Analytical Framework. California Energy Commission. CEC2002013007. i

  6. Energy generation in stars

    E-Print Network [OSTI]

    B. V. Vasiliev

    2001-10-29T23:59:59.000Z

    It is a current opinion that thermonuclear fusion is the main source of the star activity. It is shown below that this source is not unique. There is another electrostatic mechanism of the energy generation which accompanies thermonuclear fusion. Probably, this approach can solve the solar neutrino problem.

  7. National Institutes of Health Funding in Radiation Oncology: A Snapshot

    SciTech Connect (OSTI)

    Steinberg, Michael; McBride, William H.; Vlashi, Erina [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), and Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States)] [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), and Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States); Pajonk, Frank, E-mail: fpajonk@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), and Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States)] [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), and Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States)

    2013-06-01T23:59:59.000Z

    Currently, pay lines for National Institutes of Health (NIH) grants are at a historical low. In this climate of fierce competition, knowledge about the funding situation in a small field like radiation oncology becomes very important for career planning and recruitment of faculty. Unfortunately, these data cannot be easily extracted from the NIH's database because it does not discriminate between radiology and radiation oncology departments. At the start of fiscal year 2013 we extracted records for 952 individual grants, which were active at the time of analysis from the NIH database. Proposals originating from radiation oncology departments were identified manually. Descriptive statistics were generated using the JMP statistical software package. Our analysis identified 197 grants in radiation oncology. These proposals came from 134 individual investigators in 43 academic institutions. The majority of the grants (118) were awarded to principal investigators at the full professor level, and 122 principal investigators held a PhD degree. In 79% of the grants, the research topic fell into the field of biology, 13% in the field of medical physics. Only 7.6% of the proposals were clinical investigations. Our data suggest that the field of radiation oncology is underfunded by the NIH and that the current level of support does not match the relevance of radiation oncology for cancer patients or the potential of its academic work force.

  8. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01T23:59:59.000Z

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  9. Status of Monte-Carlo Event Generators

    SciTech Connect (OSTI)

    Hoeche, Stefan; /SLAC

    2011-08-11T23:59:59.000Z

    Recent progress on general-purpose Monte-Carlo event generators is reviewed with emphasis on the simulation of hard QCD processes and subsequent parton cascades. Describing full final states of high-energy particle collisions in contemporary experiments is an intricate task. Hundreds of particles are typically produced, and the reactions involve both large and small momentum transfer. The high-dimensional phase space makes an exact solution of the problem impossible. Instead, one typically resorts to regarding events as factorized into different steps, ordered descending in the mass scales or invariant momentum transfers which are involved. In this picture, a hard interaction, described through fixed-order perturbation theory, is followed by multiple Bremsstrahlung emissions off initial- and final-state and, finally, by the hadronization process, which binds QCD partons into color-neutral hadrons. Each of these steps can be treated independently, which is the basic concept inherent to general-purpose event generators. Their development is nowadays often focused on an improved description of radiative corrections to hard processes through perturbative QCD. In this context, the concept of jets is introduced, which allows to relate sprays of hadronic particles in detectors to the partons in perturbation theory. In this talk, we briefly review recent progress on perturbative QCD in event generation. The main focus lies on the general-purpose Monte-Carlo programs HERWIG, PYTHIA and SHERPA, which will be the workhorses for LHC phenomenology. A detailed description of the physics models included in these generators can be found in [8]. We also discuss matrix-element generators, which provide the parton-level input for general-purpose Monte Carlo.

  10. Apparatus and method to achieve high-resolution microscopy with non-diffracting or refracting radiation

    DOE Patents [OSTI]

    Tobin, Jr., Kenneth W.; Bingham, Philip R.; Hawari, Ayman I.

    2012-11-06T23:59:59.000Z

    An imaging system employing a coded aperture mask having multiple pinholes is provided. The coded aperture mask is placed at a radiation source to pass the radiation through. The radiation impinges on, and passes through an object, which alters the radiation by absorption and/or scattering. Upon passing through the object, the radiation is detected at a detector plane to form an encoded image, which includes information on the absorption and/or scattering caused by the material and structural attributes of the object. The encoded image is decoded to provide a reconstructed image of the object. Because the coded aperture mask includes multiple pinholes, the radiation intensity is greater than a comparable system employing a single pinhole, thereby enabling a higher resolution. Further, the decoding of the encoded image can be performed to generate multiple images of the object at different distances from the detector plane. Methods and programs for operating the imaging system are also disclosed.

  11. Radiation imaging apparatus

    DOE Patents [OSTI]

    Anger, Hal O. (Berkeley, CA); Martin, Donn C. (Berkeley, CA); Lampton, Michael L. (Berkeley, CA)

    1983-01-01T23:59:59.000Z

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally.

  12. Radiation Field on Superspace

    E-Print Network [OSTI]

    P. F. Gonzalez-Diaz

    1994-03-18T23:59:59.000Z

    We study the dynamics of multiwormhole configurations within the framework of the Euclidean Polyakov approach to string theory, incorporating a modification to the Hamiltonian which makes it impossible to interpret the Coleman Alpha parameters of the effective interactions as a quantum field on superspace, reducible to an infinite tower of fields on space-time. We obtain a Planckian probability measure for the Alphas that allows $\\frac{1}{2}\\alpha^{2}$ to be interpreted as the energy of the quanta of a radiation field on superspace whose values may still fix the coupling constants.

  13. Solar radiation intensity calculations 

    E-Print Network [OSTI]

    Levine, Randolph Steven

    1978-01-01T23:59:59.000Z

    , radiation per unit area per unit time, on a flat-plate collector is given by: I = I cos B (2. 1a) where I is the solar constant. insolation received at one astro- nomical unit from the sun. Since clear sky conditions are assumed I o w i 1 1 b e a.... INSOLATION EQUATIONS TABLE OF CONTENTS Page III. RESULTS AND CONCLUSIONS REFERENCES APPENDIX VITA 25 47 48 52 Vi LIST OF TABLES TABLE I. Optimal Inclination for Ap=O, No Checks for Ip &0 and a Time Independent Solar Constant. II. Optimal...

  14. Radiative ?(1S) decays

    E-Print Network [OSTI]

    Baringer, Philip S.

    1990-03-01T23:59:59.000Z

    — wW~ ii~ ~ + v~ 1''&WV'' V 0.20 0.45 0.70 ~y ~ EBFA~ 0.95 l.20 FIG. 4. Energy spectrum (normalized to beam energy) for Y~y2(h+h ) event candidates, with continuum data and ex- pected background from Y~m 2(h +h ) overplotted. 40 30— ~ 20— LLI IO— hl...PHYSICAL REVIEW 0 VOLUME 41, NUMBER 5 Radiative T(lS) decays 1 MARCH 1990 R. Fulton, M. Hempstead, T. Jensen, D. R. Johnson, H. Kagan, R. Kass, F. Morrow, and J. Whitmore Ohio State University, Columbus, Ohio 43210 W.-Y. Chen, J. Dominick, R. L. Mc...

  15. Radiation imaging apparatus

    DOE Patents [OSTI]

    Anger, H.O.; Martin, D.C.; Lampton, M.L.

    1983-07-26T23:59:59.000Z

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally. 15 figs.

  16. Radiation Emergency Procedure Demonstrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiation Effects

  17. Radiation Safety Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiation

  18. Radiation Control Program and Radiation Control Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This statute authorizes the state to implement a regulatory program for sources of radiation, and contains rules for the Department, licensing and registration, and taxation of radioactive materials.

  19. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    SciTech Connect (OSTI)

    Scott Wilde, Raymond Keegan

    2008-07-01T23:59:59.000Z

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  20. Fuel cell generator energy dissipator

    DOE Patents [OSTI]

    Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

    2000-01-01T23:59:59.000Z

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  1. Energy Replacement Generation Tax Exemption

    Broader source: Energy.gov [DOE]

    Under the Energy Replacement Generation Tax Exemption, the following facilities are exempt from the replacement tax:

  2. RADIATIVE RAYLEIGH-TAYLOR INSTABILITIES

    SciTech Connect (OSTI)

    Jacquet, Emmanuel [Laboratoire de Mineralogie et Cosmochimie de Museum (LMCM), CNRS and Museum National d'Histoire Naturelle, UMR 7202, 57 rue Cuvier, 75005 Paris (France); Krumholz, Mark R., E-mail: ejacquet@mnhn.fr, E-mail: krumholz@ucolick.org [Department of Astronomy, University of California, Santa Cruz, CA 95064 (United States)

    2011-04-01T23:59:59.000Z

    We perform analytic linear stability analyses of an interface separating two stratified media threaded by a radiation flux, a configuration relevant in several astrophysical contexts. We develop a general framework for analyzing such systems and obtain exact stability conditions in several limiting cases. In the optically thin, isothermal regime, where the discontinuity is chemical in nature (e.g., at the boundary of a radiation pressure-driven H II region), radiation acts as part of an effective gravitational field, and instability arises if the effective gravity per unit volume toward the interface overcomes that away from it. In the optically thick 'adiabatic' regime where the total (gas plus radiation) specific entropy of a Lagrangian fluid element is conserved, for example at the edge of radiation pressure-driven bubble around a young massive star, we show that radiation acts like a modified equation of state and derive a generalized version of the classical Rayleigh-Taylor stability condition.

  3. Generation of energy

    DOE Patents [OSTI]

    Kalina, Alexander I. (12214 Clear Fork, Houston, TX 77077)

    1984-01-01T23:59:59.000Z

    A method of generating energy which comprises utilizing relatively lower temperature available heat to effect partial distillation of at least portion of a multicomponent working fluid stream at an intermediate pressure to generate working fluid fractions of differing compositions. The fractions are used to produce at least one main rich solution which is relatively enriched with respect to the lower boiling component, and to produce at least one lean solution which is relatively improverished with respect to the lower boiling component. The pressure of the main rich solution is increased whereafter it is evaporated to produce a charged gaseous main working fluid. The main working fluid is expanded to a low pressure level to release energy. The spent low pressure level working fluid is condensed in a main absorption stage by dissolving with cooling in the lean solution to regenerate an initial working fluid for reuse.

  4. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26T23:59:59.000Z

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  5. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, John P. (Idaho Falls, ID); Larson, Ronald A. (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Hall, Harold J. (Idaho Falls, ID); Stoddard, Billy D. (Idaho Falls, ID); Davis, Sean G. (Idaho Falls, ID); Kaser, Timothy G. (Idaho Falls, ID); Conrad, Frank J. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  6. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); Galvin, James (2 Commodore #276, Emeryville, CA 94608)

    1987-01-01T23:59:59.000Z

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  7. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, I.G.; Galvin, J.

    1987-12-22T23:59:59.000Z

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  8. Radiator Labs | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: TheCompetition » Radiator Labs

  9. Radiation Embrittlement Archive Project

    SciTech Connect (OSTI)

    Klasky, Hilda B [ORNL] [ORNL; Bass, Bennett Richard [ORNL] [ORNL; Williams, Paul T [ORNL] [ORNL; Phillips, Rick [ORNL] [ORNL; Erickson, Marjorie A [ORNL] [ORNL; Kirk, Mark T [ORNL] [ORNL; Stevens, Gary L [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.

  10. Milliwatt Generator Project

    SciTech Connect (OSTI)

    Latimer, T.W.; Rinehart, G.H.

    1992-05-01T23:59:59.000Z

    This report covers progress on the Milliwatt Generator Project from April 1986 through March 1988. Activities included fuel processing and characterization, production of heat sources, fabrication of pressure-burst test units, compatibility studies, impact testing, and examination of surveillance units. The major task of the Los Alamos Milliwatt Generator Project is to fabricate MC2893A heat sources (4.0 W) for MC2730A radioisotope thermoelectric generators (RTGS) and MC3599 heat sources (4.5 W) for MC3500 RTGs. The MWG Project interfaces with the following contractors: Sandia National Laboratories, Albuquerque (designer); E.I. du Pont de Nemours and Co. (Inc.), Savannah River Plant (fuel); Monsanto Research Corporation, Mound Facility (metal hardware); and General Electric Company, Neutron Devices Department (RTGs). In addition to MWG fabrication activities, Los Alamos is involved in (1) fabrication of pressure-burst test units, (2) compatibility testing and evaluation, (3) examination of surveillance units, and (4) impact testing and subsequent examination of compatibility and surveillance units.

  11. Optical harmonic generator

    DOE Patents [OSTI]

    Summers, Mark A. (Livermore, CA); Eimerl, David (Pleasanton, CA); Boyd, Robert D. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The "extraordinary" or "e" directions of the crystal elements are oriented in the integral assembly to be in quadrature (90.degree.). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude "o" and "e" components. For a third-harmonic generation, the input fundamental wave has "o" and "e" components whose amplitudes are in a ratio of 2:1 ("o":"e" reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10.degree.. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axes ("o").

  12. Optical harmonic generator

    DOE Patents [OSTI]

    Summers, M.A.; Eimerl, D.; Boyd, R.D.

    1982-06-10T23:59:59.000Z

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).

  13. EPIDEMIOLOGICAL STUDIES ON RADIATION CARCINOGENESIS IN HUMAN POPULATIONS FOLLOWING ACUTE EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01T23:59:59.000Z

    EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION . Jacobexposed to nuclear explosions and medical radiation. Sinceto nuclear explo ions or medical radiation, describes the

  14. Measurement and analysis of near ultraviolet solar radiation

    SciTech Connect (OSTI)

    Mehos, M.S.; Pacheco, K.A.; Link, H.F.

    1991-12-01T23:59:59.000Z

    The photocatalytic detoxification of organic contaminants is currently being investigated by a number of laboratories, universities, and institutions throughout the world. The photocatalytic oxidation process requires that contaminants come in contact with a photocatalyst such as titanium dioxide, under illumination of ultraviolet (UV) radiation in order for the decomposition reaction to take place. Researches from the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories are currently investigating the use of solar energy as a means of driving this photocatalytic process. Measurements of direct-normal and global-horizontal ultraviolet (280--385 nm) and full-spectrum (280--4000 nm) solar radiation taken in Golden, Colorado over a one-year period are analyzed, and comparisons are made with data generated from a clear-sky solar radiation model (BRITE) currently in use for predicting the performance of solar detoxification processes. Analysis of the data indicates a ratio of global-horizontal ultraviolet to full-spectrum radiation of 4%--6% that is weakly dependent on air mass. Conversely, data for direct-normal ultraviolet radiation indicate a much large dependence on air mass, with a ratio of approximately 5% at low air mass to 1% at higher at masses. Results show excellent agreement between the measured data and clear-sky predictions for both the ultraviolet and the full-spectrum global-horizontal radiation. For the direct-normal components, however, the tendency is for the clear-sky model to underpredict the measured that. Averaged monthly ultraviolet radiation available for the detoxification process indicates that the global-horizontal component of the radiation exceeds the direct-normal component throughout the year. 9 refs., 7 figs.

  15. Radiation Safety Work Control Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety Work Control Form (see instructions on pg-3) Rev. May 2014 Area: Form : Date: Preliminary Applicability Screen: (a) Will closing the beam line injection stoppers...

  16. Inverse problem for Bremsstrahlung radiation

    SciTech Connect (OSTI)

    Voss, K.E.; Fisch, N.J.

    1991-10-01T23:59:59.000Z

    For certain predominantly one-dimensional distribution functions, an analytic inversion has been found which yields the velocity distribution of superthermal electrons given their Bremsstrahlung radiation. 5 refs.

  17. Enhanced radiation resistant fiber optics

    DOE Patents [OSTI]

    Lyons, P.B.; Looney, L.D.

    1993-11-30T23:59:59.000Z

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  18. Radiating Levi-Civita Spacetime

    E-Print Network [OSTI]

    Ozgur Delice

    2005-06-06T23:59:59.000Z

    This paper has been withdrawn by the author, See J.Krishna Rao, J. Phys. A: Gen. Phys., 4, 17 (1971) for radiating Levi-Civita metric.

  19. Enhanced radiation resistant fiber optics

    DOE Patents [OSTI]

    Lyons, Peter B. (Los Alamos, NM); Looney, Larry D. (Los Alamos, NM)

    1993-01-01T23:59:59.000Z

    A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

  20. Quality Services: Radiation (New York)

    Broader source: Energy.gov [DOE]

    These regulations establish standards for protection against ionizing radiation resulting from the disposal and discharge of radioactive material to the environment. The regulations apply to any...

  1. Criterion for Generation of Winds from Magnetized Accretion Disks

    E-Print Network [OSTI]

    Osamu Kaburaki

    2001-08-29T23:59:59.000Z

    An analytic model is proposed for non-radiating accretion flows accompanied by up or down winds in a global magnetic field. Physical quantities in this model solution are written in variable-separated forms, and their radial parts are simple power law functions including one parameter for wind strength. Several, mathematically equivalent but physically different expressions of the criterion for wind generation are obtained. It is suggested also that the generation of wind is a consequence of the intervention of some mechanism that redistributes the locally available gravitational energy, and that the Bernoulli sum can be a good indicator of the existence of such mechanisms.

  2. Fourth Generation Nuclear Weapons: Military effectiveness and collateral effects

    E-Print Network [OSTI]

    Gsponer, A

    2005-01-01T23:59:59.000Z

    The paper begins with a general introduction and update to Fourth Generation Nuclear Weapons (FGNW), and then addresses some particularly important military aspects on which there has been only limited public discussion so far. These aspects concern the unique military characteristics of FGNWs which make them radically different from both nuclear weapons based on previous-generation nuclear-explosives and from conventional weapons based on chemical-explosives: yields in the 1 to 100 tons range, greatly enhanced coupling to targets, possibility to drive powerful shaped charged jets and forged fragments, enhanced prompt radiation effects, reduced collateral damage and residual radioactivity, etc.

  3. Linguistic Alignment in Natural Language Generation

    E-Print Network [OSTI]

    Halberg, Gabrielle Manya

    2013-01-01T23:59:59.000Z

    that are instantiated at generation time. . . . . . . . .that are instantiated at generation time. . Illustration ofin Natural Language Generation by Gabrielle Halberg

  4. Renewable Energy: Distributed Generation Policies and Programs...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Policies & Programs Renewable Energy: Distributed Generation Policies and Programs Renewable Energy: Distributed Generation Policies and Programs Distributed generation...

  5. Nuclear Instruments and Methods in Physics Research A 565 (2006) 650656 Semiconductor high-energy radiation scintillation detector

    E-Print Network [OSTI]

    Luryi, Serge

    2006-01-01T23:59:59.000Z

    Nuclear Instruments and Methods in Physics Research A 565 (2006) 650­656 Semiconductor high-energy radiation scintillation detector A. Kastalskya , S. Luryia,Ã, B. Spivakb a University at Stony Brook, ECE scintillation-type detector in which high-energy radiation generates electron­hole pairs in a direct

  6. Simulation of free-electron lasers seeded with broadband radiation

    SciTech Connect (OSTI)

    Bajlekov, Svetoslav; Fawley, William; Schroeder, Carl; Bartolini, Riccardo; Hooker, Simon

    2011-03-10T23:59:59.000Z

    The longitudinal coherence of free-electron laser (FEL) radiation can be enhanced by seeding the FEL with high harmonics of an optical laser pulse. The radiation produced by high-harmonic generation (HHG), however, has a fast-varying temporal profile that can violate the slowly varying envelope approximation and limited frequency window that is employed in conventional free-electron laser simulation codes. Here we investigate the implications of violating this approximation on the accuracy of simulations. On the basis of both analytical considerations and 1D numerical studies, it is concluded that, for most realistic scenarios, conventional FEL codes are capable of accurately simulating the FEL process even when the seed radiation violates the slowly varying envelope approximation. We additionally discuss the significance of filtering the harmonic content of broadband HHG seeds.

  7. Infrared luminescence for real time ionizing radiation detection

    SciTech Connect (OSTI)

    Veronese, Ivan, E-mail: ivan.veronese@unimi.it; Mattia, Cristina De; Cantone, Marie Claire [Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Fasoli, Mauro; Chiodini, Norberto; Vedda, Anna [Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via Cozzi 55, 20125 Milano (Italy); Mones, Eleonora [Medical Physics Department, Azienda Ospedaliera Maggiore della Carità, Corso Mazzini 18, 28100 Novara (Italy)

    2014-08-11T23:59:59.000Z

    Radio-luminescence (RL) optical fiber sensors enable a remote, punctual, and real time detection of ionizing radiation. However, the employment of such systems for monitoring extended radiation fields with energies above the Cerenkov threshold is still challenging, since a spurious luminescence, namely, the “stem effect,” is also generated in the passive fiber portion exposed to radiation. Here, we present experimental measurements on Yb-doped silica optical fibers irradiated with photon fields of different energies and sizes. The results demonstrate that the RL of Yb{sup 3+}, displaying a sharp emission line at about 975?nm, is free from any spectral superposition with the spurious luminescence. This aspect, in addition with the suitable linearity, reproducibility, and sensitivity properties of the Yb-doped fibers, paves the way to their use in applications where an efficient stem effect removal is required.

  8. Designing Radiation Resistance in Materials for Fusion Energy

    SciTech Connect (OSTI)

    Zinkle, Steven J [University of Tennessee (UT)] [University of Tennessee (UT); Snead, Lance Lewis [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Proposed fusion and advanced (Generation IV) fission energy systems require high performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (non-structural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials where vacancies are immobile at the design operating temperatures, or construct high densities of point defect recombination sinks. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

  9. Local and Global Radiative Feedback from Population III Star Formation

    E-Print Network [OSTI]

    O'Shea, Brian W

    2010-01-01T23:59:59.000Z

    We present an overview of recent work that focuses on understanding the radiative feedback processes that are potentially important during Population III star formation. Specifically, we examine the effect of the Lyman-Werner (photodissociating) background on the early stages of primordial star formation, which serves to delay the onset of star formation in a given halo but never suppresses it entirely. We also examine the effect that both photodissociating and ionizing radiation in I-fronts from nearby stellar systems have on the formation of primordial protostellar clouds. Depending on the strength of the incoming radiation field and the central density of the halos, Pop III star formation can be suppressed, unaffected, or even enhanced. Understanding these and other effects is crucial to modeling Population III star formation and to building the earliest generations of galaxies in the Universe.

  10. Generation of a frequency comb and applications thereof

    SciTech Connect (OSTI)

    Hagmann, Mark J; Yarotski, Dmitry A

    2013-12-03T23:59:59.000Z

    Apparatus for generating a microwave frequency comb (MFC) in the DC tunneling current of a scanning tunneling microscope (STM) by fast optical rectification, cause by nonlinearity of the DC current vs. voltage curve for the tunneling junction, of regularly-spaced, short pulses of optical radiation from a focused mode-locked, ultrafast laser, directed onto the tunneling junction, is described. Application of the MFC to high resolution dopant profiling in semiconductors is simulated. Application of the MFC to other measurements is described.

  11. Electron Beam Collimation for the Next Generation Light Source

    SciTech Connect (OSTI)

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20T23:59:59.000Z

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  12. Apparatuses and method for converting electromagnetic radiation to direct current

    DOE Patents [OSTI]

    Kotter, Dale K; Novack, Steven D

    2014-09-30T23:59:59.000Z

    An energy conversion device may include a first antenna and a second antenna configured to generate an AC current responsive to incident radiation, at least one stripline, and a rectifier coupled with the at least one stripline along a length of the at least one stripline. An energy conversion device may also include an array of nanoantennas configured to generate an AC current in response to receiving incident radiation. Each nanoantenna of the array includes a pair of resonant elements, and a shared rectifier operably coupled to the pair of resonant elements, the shared rectifier configured to convert the AC current to a DC current. The energy conversion device may further include a bus structure operably coupled with the array of nanoantennas and configured to receive the DC current from the array of nanoantennas and transmit the DC current away from the array of nanoantennas.

  13. ON-BELT ANALYSIS OF MINERALS USING NATURALLY OCCURRING GAMMA RADIATION

    E-Print Network [OSTI]

    Huynh, Du

    of coal. Gamma ray spectra are collected every 900 seconds from a BGO detector with 1024 channels linearly collected with a BGO (Bis- muth Germanate) gamma ray detector, which collects emis- sions from Potassium (K is used to estimate linear drift in the detector. Index Terms-- Gamma ray detector, Poisson process

  14. Computer generated holographic microtags

    DOE Patents [OSTI]

    Sweatt, W.C.

    1998-03-17T23:59:59.000Z

    A microlithographic tag comprising an array of individual computer generated holographic patches having feature sizes between 250 and 75 nanometers is disclosed. The tag is a composite hologram made up of the individual holographic patches and contains identifying information when read out with a laser of the proper wavelength and at the proper angles of probing and reading. The patches are fabricated in a steep angle Littrow readout geometry to maximize returns in the -1 diffracted order. The tags are useful as anti-counterfeiting markers because of the extreme difficulty in reproducing them. 5 figs.

  15. Spin Seebeck power generators

    SciTech Connect (OSTI)

    Cahaya, Adam B.; Tretiakov, O. A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Bauer, Gerrit E. W. [Institute for Materials Research and WPI-AIMR, Tohoku University, Sendai 980-8577 (Japan); Kavli Institute of NanoScience, TU Delft Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2014-01-27T23:59:59.000Z

    We derive expressions for the efficiency and figure of merit of two spin caloritronic devices based on the spin Seebeck effect (SSE), i.e., the generation of spin currents by a temperature gradient. The inverse spin Hall effect is conventionally used to detect the SSE and offers advantages for large area applications. We also propose a device that converts spin current into electric one by means of a spin-valve detector, which scales favorably to small sizes and approaches a figure of merit of 0.5 at room temperature.

  16. Highly stable aerosol generator

    DOE Patents [OSTI]

    DeFord, H.S.; Clark, M.L.

    1981-11-03T23:59:59.000Z

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  17. Hermetic turbine generator

    DOE Patents [OSTI]

    Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

    1982-01-01T23:59:59.000Z

    A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

  18. Confined Thermal Multicharged Ions Produced by Synchrotron Radiation

    E-Print Network [OSTI]

    Church, David A.; Kravis, S. D.; Sellin, I. A.; Levin, J. C.; Short, R. T.; Meron, M.; Johnson, B. M.; Jones, K. W.

    1987-01-01T23:59:59.000Z

    energy transfer. We have used the "white" radiation on the X- 26C beam line of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory to generate multicharged argon ions in a Penning ion trap, using pro- posed methods designed... M. Meron, B. M. Johnson, and K. W. Jones Brookhaven National Laboratory, Upton, New York 11973 (Received 2 April 1987) Synchrotron x rays have been used to produce a confined multicharged ion gas near room tem- perature. Comparison of charge...

  19. Computation of radiative heat transport across a nanoscale vacuum gap

    SciTech Connect (OSTI)

    Budaev, Bair V., E-mail: bair@berkeley.edu; Bogy, David B., E-mail: dbogy@berkeley.edu [University of California, Etcheverry Hall, MC 1740, Berkeley, California 94720-1740 (United States)

    2014-02-10T23:59:59.000Z

    Radiation heat transport across a vacuum gap between two half-spaces is studied. By consistently applying only the fundamental laws of physics, we obtain an algebraic equation that connects the temperatures of the half-spaces and the heat flux between them. The heat transport coefficient generated by this equation for such structures matches available experimental data for nanoscale and larger gaps without appealing to any additional specific mechanisms of energy transfer.

  20. Energy Generation by State and Technology (2009) - Energy Generation...

    Open Energy Info (EERE)

    Energy Generation by Fuel ... Download Energy Generation by Fuel Source and State, 2009 URL: http:en.openei.orgdatasetsdataset03f65dc9-ddc9-41ce-806f-edafad486a1fresource...

  1. Predicted Bremsstrahlung generation by energetic electron beams

    SciTech Connect (OSTI)

    Faehl, R.J.; Snell, C.M.; Keinigs, R.K.

    1991-01-01T23:59:59.000Z

    The CYLTRAN photon/electron Monte Carlo code has been employed to predict Bremsstrahlung generation by monoenergetic electron beams from 10 to 1000 MeV. The forward-directed Bremsstrahlung intensity is investigated as a function of beam energy converter thickness, and material. At high energies, the forward extraction efficiency is maximized by using converters that are about 0.1-electron ranges thick. The largest intensities are attained with low-Z converter materials such as beryllium. Because the Bremsstrahlung radiation is strongly forward-directed, low divergence of the incident electron beam is crucial. Under deal conditions, a 1000-MeV beam can produce intensities up to 10{sup 8} MeV per steradian, per incident electron. 9 refs., 32 figs., 12 tabs.

  2. Optically generated ultrasound for enhanced drug delivery

    DOE Patents [OSTI]

    Visuri, Steven R. (Livermore, CA); Campbell, Heather L. (Baltimore, MD); Da Silva, Luiz (Danville, CA)

    2002-01-01T23:59:59.000Z

    High frequency acoustic waves, analogous to ultrasound, can enhance the delivery of therapeutic compounds into cells. The compounds delivered may be chemotherapeutic drugs, antibiotics, photodynamic drugs or gene therapies. The therapeutic compounds are administered systemically, or preferably locally to the targeted site. Local delivery can be accomplished through a needle, cannula, or through a variety of vascular catheters, depending on the location of routes of access. To enhance the systemic or local delivery of the therapeutic compounds, high frequency acoustic waves are generated locally near the target site, and preferably near the site of compound administration. The acoustic waves are produced via laser radiation interaction with an absorbing media and can be produced via thermoelastic expansion, thermodynamic vaporization, material ablation, or plasma formation. Acoustic waves have the effect of temporarily permeabilizing the membranes of local cells, increasing the diffusion of the therapeutic compound into the cells, allowing for decreased total body dosages, decreased side effects, and enabling new therapies.

  3. Hawking radiation and Quasinormal modes

    E-Print Network [OSTI]

    SangChul Yoon

    2005-10-05T23:59:59.000Z

    The spectrum of Hawking radiation by quantum fields in the curved spacetime is continuous, so the explanation of Hawking radiation using quasinormal modes can be suspected to be impossible. We find that quasinormal modes do not explain the relation between the state observed in a region far away from a black hole and the short distance behavior of the state on the horizon.

  4. Review Article RADIATION SHIELDING TECHNOLOGY

    E-Print Network [OSTI]

    Shultis, J. Kenneth

    Review Article RADIATION SHIELDING TECHNOLOGY J. Kenneth Shultis and Richard E. Faw* Abstract Physics Society INTRODUCTION THIS IS a review of the technology of shielding against the effects to the review. The first treats the evolution of radiation-shielding technology from the beginning of the 20th

  5. Abdominal radiation causes bacterial translocation

    SciTech Connect (OSTI)

    Guzman-Stein, G.; Bonsack, M.; Liberty, J.; Delaney, J.P.

    1989-02-01T23:59:59.000Z

    The purpose of this study was to determine if a single dose of radiation to the rat abdomen leads to bacterial translocation into the mesenteric lymph nodes (MLN). A second issue addressed was whether translocation correlates with anatomic damage to the mucosa. The radiated group (1100 cGy) which received anesthesia also was compared with a control group and a third group which received anesthesia alone but no abdominal radiation. Abdominal radiation lead to 100% positive cultures of MLN between 12 hr and 4 days postradiation. Bacterial translocation was almost nonexistent in the control and anesthesia group. Signs of inflammation and ulceration of the intestinal mucosa were not seen until Day 3 postradiation. Mucosal damage was maximal by Day 4. Bacterial translocation onto the MLN after a single dose of abdominal radiation was not apparently dependent on anatomical, histologic damage of the mucosa.

  6. Transition Radiation in QCD matter

    E-Print Network [OSTI]

    Magdalena Djordjevic

    2005-12-22T23:59:59.000Z

    In ultrarelativistic heavy ion collisions a finite size QCD medium is created. In this paper we compute radiative energy loss to zeroth order in opacity by taking into account finite size effects. Transition radiation occurs on the boundary between the finite size medium and the vacuum, and we show that it lowers the difference between medium and vacuum zeroth order radiative energy loss relative to the infinite size medium case. Further, in all previous computations of light parton radiation to zeroth order in opacity, there was a divergence caused by the fact that the energy loss is infinite in the vacuum and finite in the QCD medium. We show that this infinite discontinuity is naturally regulated by including the transition radiation.

  7. Radiation Reaction in Quantum Vacuum

    E-Print Network [OSTI]

    Keita Seto

    2014-11-02T23:59:59.000Z

    From the development of the electron theory by H. A. Lorentz in 1906, many authors have tried to reformulate this model named "radiation reaction". P. A. M. Dirac derived the relativistic-classical electron model in 1938, which is now called the Lorentz-Abraham-Dirac model. But this model has the big difficulty of the run-away solution. Recently, this equation has become important for ultra-intense laser-electron (plasma) interactions. Therefore, it is desirable to stabilize this model of the radiation reaction for estimations. Via my recent research, I found a stabilized model of radiation reaction in quantum vacuum. This leads us to an updated Fletcher-Millikan's charge to mass ratio including radiation, de/dm, derived as the 4th order tensor measure. In this paper, I will discuss the latest update of the model and the ability of the equation of motion with radiation reaction in quantum vacuum via photon-photon scatterings.

  8. Radiation power and linewidth of a semifluxon-based Josephson oscillator

    SciTech Connect (OSTI)

    Paramonov, M.; Fominsky, M. Yu.; Koshelets, V. P. [Kotel'nikov Institute of Radioengineering and Electronics RAS, Mokhovaya 11, 125009 Moscow (Russian Federation); Neumeier, B.; Koelle, D.; Kleiner, R.; Goldobin, E. [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen (Germany)

    2014-02-10T23:59:59.000Z

    We demonstrate a high-frequency generator operating at ?200?GHz based on flipping a semifluxon in a Josephson junction of moderate normalized length. The semifluxon spontaneously appears at the ? discontinuity of the Josephson phase artificially created by means of two tiny current injectors. The radiation is detected by an on-chip detector (tunnel junction). The estimated radiation power (at the detector) is ?8?nW and should be compared with the dc power of ?100?nW consumed by the generator. The measured radiation linewidth, as low as 1.1?MHz, is typical for geometrical (Fiske) resonances, although we tried to suppress such resonances by placing well-matched microwave transformers at its both ends. Making use of a phase-locking feedback loop, we are able to reduce the radiation linewidth to less than 1?Hz measured relative to the reference oscillator and defined just by the resolution of our measurement setup.

  9. Spatial and spectral filtering of supercontinuum emission generated in microstructure fibres

    SciTech Connect (OSTI)

    Fedotov, Andrei B; Zheltikov, Aleksei M [Department of Physics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation); Zhou, Ping; Tarasevitch, A P; Linde, D von der [Institut fur Laser- und Plasmaphysik, Universitat Essen, Essen (Germany); Kondrat'ev, Yu N; Shevandin, V S; Dukel'skii, K V; Khokhlov, A V [All-Russian Scientific Centre 'S.I. Vavilov State Optical Institute', St Petersburg (Russian Federation); Bagayev, S N [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); Smirnov, Valerii B [Russian Center of Laser Physics, St. Petersburg State University, St. Petersburg (Russian Federation)

    2002-09-30T23:59:59.000Z

    The mode structure of supercontinuum emission generated by femtosecond pulses of Ti:sapphire laser radiation in microstructure fibres is studied. The long-wavelength (720 - 900 nm) and visible (400 - 600 nm) parts of supercontinuum are shown to be emitted in spectrally separable isolated spatial modes. These spectrally sliced single modes of supercontinuum emission possess a high spatial quality, verified by efficient nonlinear-optical frequency conversion. (control of laser radiation parameters)

  10. Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography

    DOE Patents [OSTI]

    Hassanein, Ahmed (Bolingbrook, IL); Konkashbaev, Isak (Bolingbrook, IL)

    2006-10-03T23:59:59.000Z

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave uses two intersecting plasma beams generated by two plasma accelerators. The intersection of the two plasma beams emits electromagnetic radiation and in particular radiation in the extreme ultraviolet wavelength. In the preferred orientation two axially aligned counter streaming plasmas collide to produce an intense source of electromagnetic radiation at the 13.5 nm wavelength. The Mather type plasma accelerators can utilize tin, or lithium covered electrodes. Tin, lithium or xenon can be used as the photon emitting gas source.

  11. Energy Generation Project Permitting (Vermont)

    Broader source: Energy.gov [DOE]

    The Vermont Energy Generation Siting Policy Commission is mandated to survey best practices for siting approval of electric generation projects (all facilities except for net- and group-net-metered...

  12. Biofuels: Microbially Generated Methane and

    E-Print Network [OSTI]

    Wood, Thomas K.

    Biofuels: Microbially Generated Methane and Hydrogen Michael J McAnulty, Pennsylvania State, Thomas K; and Ferry, James G (March 2013) Biofuels: Microbially Generated Methane and Hydrogen. In: e

  13. Transition-fault test generation

    E-Print Network [OSTI]

    Cobb, Bradley Douglas

    2013-02-22T23:59:59.000Z

    . One way to detect these timing defects is to apply test patterns to the integrated circuit that are generated using the transition-fault model. Unfortunately, industry's current transition-fault test generation schemes produce test sets that are too...

  14. Steam generator tube rupture study

    E-Print Network [OSTI]

    Free, Scott Thomas

    1986-01-01T23:59:59.000Z

    This report describes our investigation of steam generator behavior during a postulated tube rupture accident. Our study was performed using the steam generator, thermal-hydraulic analysis code THERMIT-UTSG. The purpose ...

  15. Radiation events in astronomical CCD images

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    268. 10. “On the Rates of Radiation Events in CCD’s (Excerpt23 Jan 2002 LBNL-49316 Radiation events in astronomical CCDof depleted silicon to ionizing radiation is a nuisance to

  16. High efficiency, radiation-hard solar cells

    E-Print Network [OSTI]

    Ager III, J.W.; Walukiewicz, W.

    2004-01-01T23:59:59.000Z

    J. F. Geisz, “Superior radiation resistance of In 1-x Ga x Nand H. Itoh, “Proton radiation analysis of multi-junction56326 High efficiency, radiation-hard solar cells Final

  17. Bubble Radiation Detection: Current and Future Capability

    SciTech Connect (OSTI)

    AJ Peurrung; RA Craig

    1999-11-15T23:59:59.000Z

    Despite a number of noteworthy achievements in other fields, superheated droplet detectors (SDDs) and bubble chambers (BCs) have not been used for nuclear nonproliferation and arms control. This report examines these two radiation-detection technologies in detail and answers the question of how they can be or should be ''adapted'' for use in national security applications. These technologies involve closely related approaches to radiation detection in which an energetic charged particle deposits sufficient energy to initiate the process of bubble nucleation in a superheated fluid. These detectors offer complete gamma-ray insensitivity when used to detect neutrons. They also provide controllable neutron-energy thresholds and excellent position resolution. SDDs are extraordinarily simple and inexpensive. BCs offer the promise of very high efficiency ({approximately}75%). A notable drawback for both technologies is temperature sensitivity. As a result of this problem, the temperature must be controlled whenever high accuracy is required, or harsh environmental conditions are encountered. The primary findings of this work are listed and briefly summarized below: (1) SDDs are ready to function as electronics-free neutron detectors on demand for arms-control applications. The elimination of electronics at the weapon's location greatly eases the negotiability of radiation-detection technologies in general. (2) As a result of their high efficiency and sharp energy threshold, current BCs are almost ready for use in the development of a next-generation active assay system. Development of an instrument based on appropriately safe materials is warranted. (3) Both kinds of bubble detectors are ready for use whenever very high gamma-ray fields must be confronted. Spent fuel MPC and A is a good example where this need presents itself. (4) Both kinds of bubble detectors have the potential to function as low-cost replacements for conventional neutron detectors such as {sup 3}He tubes. For SDDs, this requires finding some way to get boron into the detector. For BCs, this requires finding operating conditions permitting a high duty cycle.

  18. Self-assembling software generator

    DOE Patents [OSTI]

    Bouchard, Ann M. (Albuquerque, NM); Osbourn, Gordon C. (Albuquerque, NM)

    2011-11-25T23:59:59.000Z

    A technique to generate an executable task includes inspecting a task specification data structure to determine what software entities are to be generated to create the executable task, inspecting the task specification data structure to determine how the software entities will be linked after generating the software entities, inspecting the task specification data structure to determine logic to be executed by the software entities, and generating the software entities to create the executable task.

  19. Thermoacoustic generation in anisotropic media

    E-Print Network [OSTI]

    Hildebrand, John A

    1986-01-01T23:59:59.000Z

    John Hildebrand: A. Thermoacoustic generation anisotropicsubstantial variation thermoacoustic in gen- erationisstress-strain relationfor thermoacoustic genera- tion and,if

  20. Wavelet Denoising of Mobile Radiation Data

    SciTech Connect (OSTI)

    Campbell, D B

    2008-10-31T23:59:59.000Z

    The FY08 phase of this project investigated the merits of video fusion as a method for mitigating the false alarms encountered by vehicle borne detection systems in an effort to realize performance gains associated with wavelet denoising. The fusion strategy exploited the significant correlations which exist between data obtained from radiation detectors and video systems with coincident fields of view. The additional information provided by optical systems can greatly increase the capabilities of these detection systems by reducing the burden of false alarms and through the generation of actionable information. The investigation into the use of wavelet analysis techniques as a means of filtering the gross-counts signal obtained from moving radiation detectors showed promise for vehicle borne systems. However, the applicability of these techniques to man-portable systems is limited due to minimal gains in performance over the rapid feedback available to system operators under walking conditions. Furthermore, the fusion of video holds significant promise for systems operating from vehicles or systems organized into stationary arrays; however, the added complexity and hardware required by this technique renders it infeasible for man-portable systems.

  1. Gas generation from Tank 241-SY-103 waste

    SciTech Connect (OSTI)

    Bryan, S.A.; King, C.M.; Pederson, L.R.; Forbes, S.V.; Sell, R.L.

    1996-04-01T23:59:59.000Z

    This report summarizes progress made in evaluating mechanisms by which flammable gases are generated in Hanford double-shell tank wastes, based on the results of laboratory tests using actual waste from Tank 241-SY-103. The objective of this work is to establish the identity and stoichiometry of degradation products formed in actual tank wastes by thermal and radiolytic processes as a function of temperature. The focus of the gas generation tests on Tank 241-SY-103 samples is first the effect of temperature on gas generation (volume and composition). Secondly, gas generation from irradiation of Tank 241-SY-103 samples at the corresponding temperatures as the thermal-only treatments will be measured in the presence of an external radiation source (using a {sup 137}Cs capsule). The organic content will be measured on a representative sample prior to gas generation experiments and again at the termination of heating and irradiation. The gas generation will be related to the extent of organic species consumption during heating. Described in this report are experimental methods used for producing and measuring gases generated at various temperatures from highly radioactive actual tank waste, and results of gas generation from Tank 241-SY-103 waste taken from its convective layer. The accurate measurement of gas generation rates from actual waste from highly radioactive waste tanks is needed to assess the potential for producing and storing flammable gases within the waste tanks. This report addresses the gas generation capacity of the waste from the convective layer of Tank 241-SY-103, a waste tank listed on the Flammable Gas Watch List due to its potential for flammable gas accumulation above the flammability limit.

  2. Radiation detection system using semiconductor detector with differential carrier trapping and mobility

    DOE Patents [OSTI]

    Whited, Richard C. (Santa Barbara, CA)

    1981-01-01T23:59:59.000Z

    A system for obtaining improved resolution in relatively thick semiconductor radiation detectors, such as HgI.sub.2, which exhibit significant hole trapping. Two amplifiers are used: the first measures the charge collected and the second the contribution of the electrons to the charge collected. The outputs of the two amplifiers are utilized to unfold the total charge generated within the detector in response to a radiation event.

  3. Laser beat wave excitation of terahertz radiation in a plasma slab

    SciTech Connect (OSTI)

    Chauhan, Santosh; Parashar, Jetendra, E-mail: j.p.parashar@gmail.com [Department of Applied Physics, Samrat Ashok Technological Institute, Vidisha 464001, Madhya Pradesh (India)

    2014-10-15T23:59:59.000Z

    Terahertz (THz) radiation generation by nonlinear mixing of lasers, obliquely incident on a plasma slab is investigated. Two cases are considered: (i) electron density profile is parabolic but density peak is below the critical density corresponding to the beat frequency, (ii) plasma boundaries are sharp and density is uniform. In both cases, nonlinearity arises through the ponderomotive force that gives rise to electron drift at the beat frequency. In the case of inhomogeneous plasma, non zero curl of the nonlinear current density gives rise to electromagnetic THz generation. In case of uniform plasma, the sharp density variation at the plasma boundaries leads to radiation generation. In a slab width of less than a terahertz wavelength, plasma density one fourth of terahertz critical density, laser intensities ?10{sup 17?}W/cm{sup 2} at 1??m, one obtains the THz intensity ?1?GW/cm{sup 2} at 3 THz radiation frequency.

  4. GENERATING EQUIVALENCE RELATIONS BY HOMEOMORPHISMS

    E-Print Network [OSTI]

    Clemens, John D.

    GENERATING EQUIVALENCE RELATIONS BY HOMEOMORPHISMS JOHN D. CLEMENS Abstract. We give a construction of a single homeomorphism of 2N which generates the equivalence relation E0. We then consider ways of generating this equivalence relation using homeomorphisms with nicer structural properties, and show

  5. Generation of strongly chaotic beats

    E-Print Network [OSTI]

    I. Sliwa; P. Szlachetka; K. Grygiel

    2007-04-25T23:59:59.000Z

    The letter proposes a procedure for generation of strongly chaotic beats that have been hardly obtainable hitherto. The beats are generated in a nonlinear optical system governing second-harmonic generation of light. The proposition is based on the concept of an optical coupler but can be easily adopted to other nonlinear systems and Chua's circuits.

  6. Electricity Generation by Rhodopseudomonas palustris

    E-Print Network [OSTI]

    ,6). Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA are two DMRB capable of electricity generationElectricity Generation by Rhodopseudomonas palustris DX-1 D E F E N G X I N G , , Y I Z U O manuscript received March 20, 2008. Accepted March 25, 2008. Bacteria able to generate electricity

  7. ransmission, rather than generation, is

    E-Print Network [OSTI]

    to expand transmission capacity adequately: Over 40 years, the amount of electricity generated in the United's power plants to its customers. It was never designed for getting power from any generator to anyT ransmission, rather than generation, is generally the con- straint preventing cus- tomers from

  8. Generational Policy Laurence J. Kotlikoff

    E-Print Network [OSTI]

    Spence, Harlan Ernest

    Generational Policy by Laurence J. Kotlikoff Boston University The National Bureau of Economic;1 Abstract Generational policy is a fundamental aspect of a nation's fiscal affairs. The policy involves generational policy works, how it's measured, and how much it matters to virtual as well as real economies

  9. Second Harmonic Generation From Surfaces

    E-Print Network [OSTI]

    Botti, Silvana

    Second Harmonic Generation From Surfaces Nicolas Tancogne-Dejean, Valérie Véniard Condensed Matter/DSM European Theoretical Spectroscopy Facility #12;2 Outline Nonlinear optic and second harmonic generation;4 Second harmonic generation First nonlinear term Centrosymmetric material : (2) = 0 (3)First nonlinear

  10. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05T23:59:59.000Z

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  11. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, John D. (Eaton's Neck, NY); El-Genk, Mohamed S. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  12. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01T23:59:59.000Z

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  13. Stratified vapor generator

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

    2008-05-20T23:59:59.000Z

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  14. Downhole hydraulic seismic generator

    DOE Patents [OSTI]

    Gregory, Danny L. (Corrales, NM); Hardee, Harry C. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  15. MHD Generation Code

    E-Print Network [OSTI]

    Frutos-Alfaro, Francisco

    2015-01-01T23:59:59.000Z

    A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a code that can be used as a seed for a MHD code for numerical applications. As an example, we present part of output of our programs for Cartesian coordinates and how to do the discretization.

  16. Fourth Generation Parity

    SciTech Connect (OSTI)

    Lee, Hye-Sung [William and Mary College, BNL, JLAB; Soni, Amarjit [William and Mary College

    2013-01-01T23:59:59.000Z

    We present a very simple 4th-generation (4G) model with an Abelian gauge interaction under which only the 4G fermions have nonzero charge. The U(1) gauge symmetry can have a Z_2 residual discrete symmetry (4G-parity), which can stabilize the lightest 4G particle (L4P). When the 4G neutrino is the L4P, it would be a neutral and stable particle and the other 4G fermions would decay into the L4P leaving the trace of missing energy plus the standard model fermions. Because of the new symmetry, the 4G particle creation and decay modes are different from those of the sequential 4G model, and the 4G particles can be appreciably lighter than typical experimental bounds.

  17. Radiation-induced lung injury

    SciTech Connect (OSTI)

    Rosiello, R.A.; Merrill, W.W. (Yale Univ. Medical Center, New Haven, CT (USA))

    1990-03-01T23:59:59.000Z

    The use of radiation therapy is limited by the occurrence of the potentially fatal clinical syndromes of radiation pneumonitis and fibrosis. Radiation pneumonitis usually becomes clinically apparent from 2 to 6 months after completion of radiation therapy. It is characterized by fever, cough, dyspnea, and alveolar infiltrates on chest roentgenogram and may be difficult to differentiate from infection or recurrent malignancy. The pathogenesis is uncertain, but appears to involve both direct lung tissue toxicity and an inflammatory response. The syndrome may resolve spontaneously or may progress to respiratory failure. Corticosteroids may be effective therapy if started early in the course of the disease. The time course for the development of radiation fibrosis is later than that for radiation pneumonitis. It is usually present by 1 year following irradiation, but may not become clinically apparent until 2 years after radiation therapy. It is characterized by the insidious onset of dyspnea on exertion. It most often is mild, but can progress to chronic respiratory failure. There is no known successful treatment for this condition. 51 references.

  18. Synchrotron radiation from massless charge

    E-Print Network [OSTI]

    Gal'tsov, D V

    2015-01-01T23:59:59.000Z

    Classical radiation power from an accelerated massive charge diverges in the zero-mass limit, while some general arguments suggest that strictly massless charge does not not radiate at all. On the other hand, the regularized classical radiation reaction force, though looking odd, is non-zero and finite. To clarify this controversy, we consider radiation problem in massless scalar quantum electrodynamics in the external magnetic field. In this framework, synchrotron radiation is found to be non-zero, finite, and essentially quantum. Its spectral distribution is calculated using Schwinger's proper time technique for {\\em ab initio} massless particle of zero spin. Provided $E^2\\gg eH$, the maximum in the spectrum is shown to be at $\\hbar \\omega=E/3$, and the average photon energy is $4E/9$. The normalized spectrum is universal, depending neither on $E$ nor on $H$. Quantum nature of radiation makes classical radiation reaction equation meaningless for massless charge. Our results are consistent with the view (sup...

  19. Annual DOE Occupational Radiation Exposure | 1974 Report

    Broader source: Energy.gov [DOE]

    The Seventh Annual Report of Radiation Exposures for AEC & AEC Contractor Employees analyzes occupational radiation exposures at the Atomic Energy Commission (AEC) and its contractor employees during 1974.

  20. ORISE: REAC/TS Radiation Accident Registries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accident Registries The Radiation Emergency Assistance CenterTraining Site (REACTS) at the Oak Ridge Institute for Science and Education (ORISE) maintains a number of radiation...

  1. ORISE: REAC/TS Radiation Treatment Medications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment Medications The Radiation Emergency Assistance CenterTraining Site (REACTS) is a valuable resource in the use of drug therapies to treat radiation exposure. REACTS...

  2. 10 CFR 835- Occupational Radiation Protection

    Broader source: Energy.gov [DOE]

    The rules in this part establish radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of DOE activities.

  3. Hybrid Radiator Cooling System | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiator Cooling System Technology available for licensing: Hybrid radiator cooling system uses conventional finned air cooling under most driving conditions that would be...

  4. Standards for Protection Against Radiation (Michigan)

    Broader source: Energy.gov [DOE]

    This rule establishes standards for protection against radiation hazards. In addition to complying with requirements set forth, every reasonable effort should be made to maintain radiation levels...

  5. Enabling Next-Generation RFID

    E-Print Network [OSTI]

    Sheng, Michael

    market research and advisory firm, the RFID market will increase from US$4.96 billion in 2007 to US$26 an RF field for detecting radio waves, and a computer network to connect the readers. A tag contains radiat

  6. VOLUME 80, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 23 MARCH 1998 Tunable Radiation Source through Upshifting without Ionization

    E-Print Network [OSTI]

    electric field is converted into radiation by rapidly changing the number of free carriers. In a gaseousVOLUME 80, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 23 MARCH 1998 Tunable Radiation for generating electromagnetic wakes of infrared radiation by a short laser pulse, propagating through

  7. Actively driven thermal radiation shield

    DOE Patents [OSTI]

    Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  8. Electron Bunch Profile Reconstruction in the Few fs Regime using Coherent Smith-Purcell Radiation

    SciTech Connect (OSTI)

    Bartolini, R.; /Oxford U., JAI /Diamond Light Source /SLAC; Clarke, C.; /SLAC; Delerue, N; /Oxford U., JAI /Diamond Light Source /SLAC; Doucas, G; Reichold, A; /Oxford U., JAI

    2012-06-20T23:59:59.000Z

    Advanced accelerators for fourth generation light sources based on high brightness linacs or laser-driven wakefield accelerators will operate with intense, highly relativistic electron bunches that are only a few fs long. Diagnostic techniques for the determination of temporal profile of such bunches are required to be non invasive, single shot, economic and with the required resolution in the fs regime. The use of a radiative process such as coherent Smith-Purcell radiation (SPR), is particularly promising with this respect. In this technique the beam is made to radiate a small amount of electromagnetic radiation and the temporal profile is reconstructed from the measured spectral distribution of the radiation. We summarise the advantages of SPR and present the design parameters and preliminary results of the experiments at the FACET facility at SLAC. We also discuss a new approach to the problem of the recovery of the 'missing phase', which is essential for the accurate reconstruction of the temporal bunch profile.

  9. SKIRT: the design of a suite of input models for Monte Carlo radiative transfer simulations

    E-Print Network [OSTI]

    Baes, Maarten

    2015-01-01T23:59:59.000Z

    The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can...

  10. Radiation-induced Genomic Instability and Radiation Sensitivity

    SciTech Connect (OSTI)

    Varnum, Susan M.; Sowa, Marianne B.; Kim, Grace J.; Morgan, William F.

    2013-01-19T23:59:59.000Z

    The obvious relationships between reactive oxygen and nitrogen species, mitochondrial dysfunction, inflammatory type responses and reactive chemokines and cytokines suggests a general stress response induced by ionizing radiation most likely leads to the non-targeted effects described after radiation exposure. We argue that true bystander effects do not occur in the radiation therapy clinic. But there is no question that effects outside the target volume do occur. These “out of field effects” are considered very low dose effects in the context of therapy. So what are the implications of non-targeted effects on radiation sensitivity? The primary goal of therapy is to eradicate the tumor. Given the genetic diversity of the human population, lifestyle and environment factors it is likely some combination of these will influence patient outcome. Non-targeted effects may contribute to a greater or lesser extent. But consider the potential situation involving a partial body exposure due to a radiation accident or radiological terrorism. Non-targeted effects suggest that the tissue at risk for demonstrating possible detrimental effects of radiation exposure might be greater than the volume actually irradiated.

  11. Estimation of Internal Radiation Dose from both Immediate Releases and Continued Exposures to Contaminated Materials

    SciTech Connect (OSTI)

    Napier, Bruce A.

    2012-03-26T23:59:59.000Z

    A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, is discussed based upon a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from the damaged reactors and also to the management of wastes that may be generated in both regional cleanup and NPP decommissioning.

  12. Electromagnetic radiation from a plasma slab during the development of Weibel instability

    SciTech Connect (OSTI)

    Vagin, K. Yu.; Romanov, A. Yu.; Uryupin, S. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2012-01-15T23:59:59.000Z

    Electromagnetic radiation from an anisotropic plasma slab formed by ionization of matter in the field of a high-power femtosecond pulse is studied. It is shown that the growth of initial field perturbations in the course of Weibel instability is accompanied by the generation of nonmonochromatic radiation with a characteristic frequency on the order of the instability growth rate. It is found that perturbations with characteristic scale lengths less than or on the order of the ratio of the speed of light to the Langmuir frequency are excited and radiated most efficiently, provided that the slab is thicker than this ratio.

  13. Enhancing the energy of terahertz radiation from plasma produced by intense femtosecond laser pulses

    SciTech Connect (OSTI)

    Jahangiri, Fazel [Advanced Research Center for Beam Science, ICR, Kyoto University, Kyoto (Japan) [Advanced Research Center for Beam Science, ICR, Kyoto University, Kyoto (Japan); Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Hashida, Masaki; Tokita, Shigeki; Sakabe, Shuji [Advanced Research Center for Beam Science, ICR, Kyoto University, Kyoto (Japan) [Advanced Research Center for Beam Science, ICR, Kyoto University, Kyoto (Japan); Department of Physics, GSS, Kyoto University, Kyoto (Japan); Nagashima, Takeshi; Hangyo, Masanori [Department of Physics, GSS, Kyoto University, Kyoto (Japan) [Department of Physics, GSS, Kyoto University, Kyoto (Japan); Institute of Laser Engineering, Osaka University, Osaka (Japan)

    2013-05-13T23:59:59.000Z

    Terahertz (THz) radiation from atomic clusters illuminated by intense femtosecond laser pulses is investigated. By studying the angular distribution, polarization properties and energy dependence of THz waves, we aim to obtain a proper understanding of the mechanism of THz generation. The properties of THz waves measured in this study differ from those predicted by previously proposed mechanisms. To interpret these properties qualitatively, we propose that the radiation is generated by time-varying quadrupoles, which are produced by the ponderomotive force of the laser pulse.

  14. Energy Flow in Interjet Radiation

    E-Print Network [OSTI]

    Carola F. Berger; Tibor Kucs; George Sterman

    2002-03-05T23:59:59.000Z

    We study the distribution of transverse energy, Q_Omega, radiated into an arbitrary interjet angular region, Omega, in high-p_T two-jet events. Using an approximation that emphasizes radiation directly from the partons that undergo the hard scattering, we find a distribution that can be extrapolated smoothly to Q_Omega=Lambda_QCD, where it vanishes. This method, which we apply numerically in a valence quark approximation, provides a class of predictions on transverse energy radiated between jets, as a function of jet energy and rapidity, and of the choice of the region Omega in which the energy is measured. We discuss the relation of our approximation to the radiation from unobserved partons of intermediate energy, whose importance was identified by Dasgupta and Salam.

  15. Georgia Radiation Control Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Radiation Control Act is designed to prevent any associated harmful effects upon the environment or the health and safety of the public through the institution and maintenance of a...

  16. Texas Radiation Control Act (Texas)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to institute and maintain a regulatory program for radiation sources that is compatible with federal standards and regulatory programs, and, to the degree possible,...

  17. Ionizing Radiation Injury (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation applies to employers that have more than one employee who engages in activities which involve the presence of ionizing radiation. Employers with less than three employees can...

  18. Survivable pulse power space radiator

    DOE Patents [OSTI]

    Mims, J.; Buden, D.; Williams, K.

    1988-03-11T23:59:59.000Z

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometerorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length. 5 figs.

  19. MULTI-POINT RADIATION MONITOR

    SciTech Connect (OSTI)

    Hofstetter, K; Donna Beals, D; Ken Odell, K; Robert Eakle, R; Russell Huffman, R; Larry Harpring, L

    2006-05-12T23:59:59.000Z

    A unique radiation monitor has been developed for performing wide-area field surveys for radiation sources. This device integrates the real-time output of multiple radiation detectors into a hand-held personal computer (e.g., a PDA) containing an intuitive graphical user interface. An independent hardware module supplies high voltage to the detectors and contains a rapid sampling system for transferring the detector count rates through an interface to the PDA. The imbedded firmware can be changed for various applications using a programmable memory card. As presently configured, the instrument contains a series of Geiger-Mueller (GM) tubes in a flexible detector string. This linear array of multiple sensors can be used by US Coast Guard and Customs container inspection personnel to measure radiation intensity in stacks of transport containers where physical access is impeded.

  20. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01T23:59:59.000Z

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  1. Using Geostationary Earth Radiation Budget dataUsing Geostationary Earth Radiation Budget data to evaluate global models and radiative processes

    E-Print Network [OSTI]

    cloud cover r.p.allan@reading.ac.uk© University of Reading 20108 #12;Radiative bias: climate models estimate radiative effect of contrail cirrus:contrail cirrus: LW ~ 40 Wm-2 SW up to 80 Wm-2 rUsing Geostationary Earth Radiation Budget dataUsing Geostationary Earth Radiation Budget data

  2. Radiation-Associated Liver Injury

    SciTech Connect (OSTI)

    Pan, Charlie C., E-mail: cpan@umich.ed [Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Kavanagh, Brian D. [Department of Radiation Oncology, University of Colorado, Aurora, CO (United States); Dawson, Laura A. [Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Li, X. Allen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Das, Shiva K. [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Miften, Moyed [Department of Radiation Oncology, University of Colorado, Aurora, CO (United States); Ten Haken, Randall K. [Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States)

    2010-03-01T23:59:59.000Z

    The liver is a critically important organ that has numerous functions including the production of bile, metabolism of ingested nutrients, elimination of many waste products, glycogen storage, and plasma protein synthesis. The liver is often incidentally irradiated during radiation therapy (RT) for tumors in the upper- abdomen, right lower lung, distal esophagus, or during whole abdomen or whole body RT. This article describes the endpoints, time-course, and dose-volume effect of radiation on the liver.

  3. Cataractogenic effects of proton radiation 

    E-Print Network [OSTI]

    Kyzar, James Ronald

    1972-01-01T23:59:59.000Z

    the cyclotron would induce cataracts in the exposed eye (1). In 1949 the National Research Council's Committee on Ophthalmology delegated an investigational team to Japan to study the occurrence of radiation cataracts among atom bomb survivors. This team... for the most part to ophthalmological circles arousing little interest in other elements of the scien- tific world (13) . In the decade of the 1940's conditions arose which were to vastly change research into the area of radiation damage. These conditions...

  4. Ghost Imaging with Blackbody Radiation

    E-Print Network [OSTI]

    Yangjian Cai; Shiyao Zhu

    2004-07-29T23:59:59.000Z

    We present a theoretical study of ghost imaging by using blackbody radiation source. A Gaussian thin lens equation for the ghost imaging, which depends on both paths, is derived. The dependences of the visibility and quality of the image on the transverse size and temperature of the blackbody are studied. The main differences between the ghost imaging by using the blackbody radiation and by using the entangled photon pairs are image-forming equation, and the visibility and quality of the image

  5. Angular Ordering in Gluon Radiation

    E-Print Network [OSTI]

    Jong B. Choi; Byeong S. Choi; Su K. Lee

    2002-01-28T23:59:59.000Z

    The assumption of angular ordering in gluon radiation is essential to obtain quantitative results concerning gluonic behaviors. In order to prove the validity of this assumption, we have applied our momentum space flux-tube formalism to check out the angular dependences of gluon radiation. We have calculated the probability amplitudes to get new gluon, and have found that the new gluon is generally expected to have the maximum amplitude when it is produced between the momentum directions of the last two partons.

  6. Solar Radiation and Asteroidal Motion

    E-Print Network [OSTI]

    Jozef Klacka

    2000-09-07T23:59:59.000Z

    Effects of solar wind and solar electromagnetic radiation on motion of asteroids are discussed. The results complete the statements presented in Vokrouhlick\\'{y} and Milani (2000). As for the effect of electromagnetic radiation, the complete equation of motion is presented to the first order in $v/c$ -- the shape of asteroid (spherical body is explicitly presented) and surface distribution of albedo should be taken into account. Optical quantities must be calculated in proper frame of reference.

  7. In-Ground Radiation Detection

    SciTech Connect (OSTI)

    McCormick, Kathleen R.; Stromswold, David C.; Woodring, Mitchell L.; Ely, James H.; Siciliano, Edward R.; Caggiano, Joseph A.; Hensley, Walter K.

    2006-10-29T23:59:59.000Z

    Vertically oriented radiation detectors may not provide sufficient screening in rail or aviation applications. Railcars can be heavily shielded on the sides, reducing the sensitivity of vertically mounted monitors. For aviation, the distance required for wingspan clearance reduces a vertical detector’s coverage of the fuselage. To surmount these, and other, challenging operational and sensitivity issues, we have investigated the use of in-ground radiation detectors. (PIET-43741-TM-605).

  8. Radiation Protection | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The Federal Regulation governing

  9. Matter-radiation interactions in extremes

    SciTech Connect (OSTI)

    Garnett, Robert W [Los Alamos National Laboratory; Gulley, Mark S [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    LANSCE has been the centerpiece of large-scale science at Los Alamos National Laboratory for many decades. Recently, funding has been obtained to ensure continued reliable operation of the LANSCE linac and to allow planning to enable the first in a new generation of scientific facilities for the materials community. The emphasis of this new facility is 'Matter-Radiation Interactions in Extremes' (MaRIE) which will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges. MaRIE will provide the tools scientists need to develop next-generation materials that will perform predictably and on-demand for currently unattainable lifetimes in extreme environments. The MaRIE facility is based on a high-power upgrade to the existing LANSCE proton linac, a new electron linac and associated X-ray FEL to provide additional probe beams, and new experimental areas. A conceptual description of this new facility and its requirements will be presented.

  10. Stochastic Generator of Chemical Structure. 3. Reaction Network Generation

    SciTech Connect (OSTI)

    FAULON,JEAN-LOUP; SAULT,ALLEN G.

    2000-07-15T23:59:59.000Z

    A new method to generate chemical reaction network is proposed. The particularity of the method is that network generation and mechanism reduction are performed simultaneously using sampling techniques. Our method is tested for hydrocarbon thermal cracking. Results and theoretical arguments demonstrate that our method scales in polynomial time while other deterministic network generator scale in exponential time. This finding offers the possibility to investigate complex reacting systems such as those studied in petroleum refining and combustion.

  11. Evidence of High Harmonics from Echo-Enabled Harmonic Generation for Seeding X-ray Free Electron Lasers

    SciTech Connect (OSTI)

    Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodle, M.; /SLAC; ,

    2012-02-15T23:59:59.000Z

    Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.

  12. NEXT GENERATION TURBINE PROGRAM

    SciTech Connect (OSTI)

    William H. Day

    2002-05-03T23:59:59.000Z

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

  13. Next generation information systems

    SciTech Connect (OSTI)

    Limback, Nathan P [Los Alamos National Laboratory; Medina, Melanie A [Los Alamos National Laboratory; Silva, Michelle E [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    The Information Systems Analysis and Development (ISAD) Team of the Safeguards Systems Group at Los Alamos National Laboratory (LANL) has been developing web based information and knowledge management systems for sixteen years. Our vision is to rapidly and cost effectively provide knowledge management solutions in the form of interactive information systems that help customers organize, archive, post and retrieve nonproliferation and safeguards knowledge and information vital to their success. The team has developed several comprehensive information systems that assist users in the betterment and growth of their organizations and programs. Through our information systems, users are able to streamline operations, increase productivity, and share and access information from diverse geographic locations. The ISAD team is also producing interactive visual models. Interactive visual models provide many benefits to customers beyond the scope of traditional full-scale modeling. We have the ability to simulate a vision that a customer may propose, without the time constraints of traditional engineering modeling tools. Our interactive visual models can be used to access specialized training areas, controlled areas, and highly radioactive areas, as well as review site-specific training for complex facilities, and asset management. Like the information systems that the ISAD team develops, these models can be shared and accessed from any location with access to the internet. The purpose of this paper is to elaborate on the capabilities of information systems and interactive visual models as well as consider the possibility of combining the two capabilities to provide the next generation of infonnation systems. The collection, processing, and integration of data in new ways can contribute to the security of the nation by providing indicators and information for timely action to decrease the traditional and new nuclear threats. Modeling and simulation tied to comprehensive databases are progressions of the tools that can be used in new ways and further developed to enhance the mission of nonproliferation and threat reduction.

  14. Email To Friend Steam Electricity Generator

    E-Print Network [OSTI]

    . keymanengravables.com Steam Turbine Generator Info, Pictures And Deals For Steam turbine generator ediscountshoppingBack One Email To Friend Steam Electricity Generator Need Steam Electricity Generator? See Steam Electricity Generator. greenshieldsindustrial.com Steam Generators Deals on Steam Generators Find what you

  15. Western University Nuclear Radiation Safety Inspection Checklist

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    May 2012 Western University Nuclear Radiation Safety Inspection Checklist Permit Holder to nuclear substances or radiation devices is restricted to authorized radiation users listed on the permit radiation labs whenever unsealed nuclear substances are used in these designated locations. 1.7(d

  16. Dynamical instability of collapsing radiating fluid

    SciTech Connect (OSTI)

    Sharif, M., E-mail: msharif.math@pu.edu.pk; Azam, M., E-mail: azammath@gmail.com [University of the Punjab, Department of Mathematics (Pakistan)

    2013-06-15T23:59:59.000Z

    We take the collapsing radiative fluid to investigate the dynamical instability with cylindrical symmetry. We match the interior and exterior cylindrical geometries. Dynamical instability is explored at radiative and non-radiative perturbations. We conclude that the dynamical instability of the collapsing cylinder depends on the critical value {gamma} < 1 for both radiative and nonradiative perturbations.

  17. Liquid cooled fiber thermal radiation receiver

    DOE Patents [OSTI]

    Butler, B.L.

    1985-03-29T23:59:59.000Z

    A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

  18. Special Clinical Staff Training Specialized Radiation Safety

    E-Print Network [OSTI]

    Baker, Chris I.

    Special Clinical Staff Training Specialized Radiation Safety Training Courses for: Nurses these training courses by contacting the Radiation Safety Training Office at 496-2255. Radiation Safety for Clinical Center Employees A great introduction to radiation and radioactive material for new Clinical

  19. International Conference Synchrotron Radiation Instrumentation SRI `94

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This report contains abstracts for the international conference on Synchrotron Radiation Instrumentation at Brookhaven National Laboratory.

  20. Solar Radiation and Meteorological Data Support

    E-Print Network [OSTI]

    Homes, Christopher C.

    Solar Radiation and Meteorological Data Support for the Long Island Solar Farm and NSERCand NSERC-9 2011March 8 9, 2011 #12;LISF Solar Radiation and Meteorological Sensor Network ·· Technology Needs on intermittent source of solar radiationintermittent source of solar radiation #12;LISF Solar Radiation