National Library of Energy BETA

Sample records for radiation emergency medicine

  1. ORISE: Radiation Emergency Medicine - Continuing Medical Education...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Emergency Medicine Dates Scheduled Register Online August 9-12, 2016 Fee: 200 ... The course begins with a discussion of the fundamentals of radiation physics, radiation ...

  2. ORISE: Radiation Emergency Medicine | REAC/TS Continuing Medical Education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Course Radiation Emergency Medicine Dates Scheduled Register Online October 11-14, 2016 February 7-10, 2017 February 28 - March 3, 2017 April 18-21, 2017 June 13-16, 2017 August 8-11, 2017 Fee: $200 Maximum enrollment: 22 24.5 hours AMA PRA Category 1 Credits(tm) This 3½-day course is intended for Physicians, Physician Assistants, Nurse Practitioners, Nurses and other healthcare providers. First responders, emergency management, and public health professionals may find the course

  3. ORISE: Radiation Emergency Assistance Center/Training Site Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Articles, manuals and guides for radiation emergency medicine from REACTS Resources The Radiation Emergency Assistance CenterTraining Site (REACTS) at the Oak Ridge ...

  4. Impact of Nuclear Medicine on Emergency Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February » Impact of Nuclear Medicine on Emergency Response Impact of Nuclear Medicine on Emergency Response WHEN: Feb 26, 2016 6:00 PM - 8:00 PM WHERE: Courtyard Marriott, Santa Fe CONTACT: Evelyn Mullen (505) 665-7576 CATEGORY: Community TYPE: Meeting INTERNAL: Calendar Login Event Description A number of novel isotopes and associated drug compounds are being developed, both in the US and elsewhere, for diagnosis and therapy in the field of nuclear medicine. The accelerator at Los Alamos is

  5. Oak Rigde Associated Universities (ORAU) Radiation Emergency...

    Broader source: Energy.gov (indexed) [DOE]

    Rigde Associated Universities (ORAU) Radiation Emergency Assistance CenterTraining Site (REACTS), ORAU Director Oak Rigde Associated Universities (ORAU) Radiation Emergency ...

  6. ORISE: Radiation Emergency Preparedeness Conference | How ORISE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Emergency Preparedness Conference White House thanks ORISE for assisting CDC in hosting radiation emergency preparedness conference How ORISE is Making a Difference The...

  7. ORISE: Radiation Emergency Training for Iraq, South Africa and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Training REACTS Provides International Radiation Emergency Medical Response ... REACTS has conducted radiation emergency medical response training in Iraq, Kuwait, ...

  8. ORISE: Advanced Radiation Medicine | REAC/TS Continuing Medical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Radiation Medicine Dates Scheduled Register Online August 15-19, 2016 Fee: 275 ... information on the diagnosis and management of ionizing radiation injuries and illnesses. ...

  9. Managing Radiation Emergencies: Prehospital Guidance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weapons Accident Introduction Radioactive materials are among the many kinds of hazardous substances emergency responders might have to deal with in a transportation accident. ...

  10. ORISE: How the Radiation Emergency Assistance Center/Training...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How ORISE is Making a Difference Radiation Emergency AssistanceTraining Site providing expert medical training and support for radiation emergencies How ORISE is Making a ...

  11. Training For Radiation Emergencies, First Responder Operations- Course Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation slides use in the Training For Radiation Emergencies, First Responder Operations refresher training course.

  12. ORISE Radiation Emergency Assistance Center/Training Site (REAC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REACTS gives consultation, advice, and education on medical management of radiation ... Organization (WHO) Collaborating Centres in the U.S. for radiation emergency response. ...

  13. Oak Rigde Associated Universities (ORAU) Radiation Emergency Assistance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center/Training Site (REAC/TS), ORAU Director | Department of Energy Rigde Associated Universities (ORAU) Radiation Emergency Assistance Center/Training Site (REAC/TS), ORAU Director Oak Rigde Associated Universities (ORAU) Radiation Emergency Assistance Center/Training Site (REAC/TS), ORAU Director Oak Rigde Associated Universities (ORAU) Radiation Emergency Assistance Center/Training Site (REAC/TS), ORAU Director Oak Rigde Associated Universities (ORAU) Radiation Emergency Assistance

  14. ORISE: Health Physics in Radiation Emergencies | REAC/TS Continuing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Physics in Radiation Emergencies Dates Scheduled Register Online To be announced ... Registration You may register online or by completing and mailing in the course brochure...

  15. REAC/TS celebrates 40 years as international leader in emergency...

    National Nuclear Security Administration (NNSA)

    medical personnel, health physicists, first responders, emergency planners, public health professionals and occupational health professionals about radiation emergency medicine. ...

  16. Emergency Exit Maps | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NNSA) Emergency Communications Emergency Communications Network logo NNSA's Emergency Communications Network (ECN) provides managers at NNSA with the capability to exchange real-time voice, data, and video information for managing emergency situations that involve NNSA assets and interests. The Emergency Communications Network is a multi-faceted communications network providing classified and unclassified voice, video, and data communications between NNSA headquarters and approximately 55

  17. Radiation Emergency Assistance Center / Training Site | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Radiation Emergency Assistance Center / Training Site NNSA's Radiation Emergency Assistance Center / Training Site (REAC/TS) is on-call 24 hours a day, to provide medical REACTS logo care or consultative assistance involving the exposure to ionizing radiation or radiological contamination. REAC/TS, located in Methodist Medical Center of Oak Ridge in Oak Ridge, Tennessee, was established in 1976 and has assisted in more than 2,400 calls for assistance

  18. ORISE: Advanced Radiation Medicine | REAC/TS Continuing Medical Education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Course Advanced Radiation Medicine Dates Scheduled Register Online April 24-28, 2017 August 14-18, 2017 Fee: $275 Maximum enrollment: 28 30 hours AMA PRA Category 1 Credits(tm) This 4½-day course includes more advanced information for medical practitioners. This program is academically more rigorous than the REM course and is primarily for Physicians, Physician Assistants, Nurse Practitioners, and Nurses desiring an advanced level of information on the diagnosis and management of ionizing

  19. ORISE: Iddins promoted to associate director of Radiation Emergency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assistance Center/Training Site Iddins promoted to associate director of Radiation Emergency Assistance Center/Training Site New director brings more than 20 years of medical expertise FOR IMMEDIATE RELEASE Oct. 14, 2014 FY15-01 Dr. Carol Iddins Dr. Carol Iddins (Click for high resolution version) OAK RIDGE, Tenn.-Dr. Carol J. Iddins has been named associate director of the Radiation Emergency Assistance Center/Training Site (REAC/TS). In this position, Iddins will provide management and

  20. Methodology for Assessing Radiation Detectors Used by Emergency Responders

    SciTech Connect (OSTI)

    Piotr Wasiolek; April Simpson

    2008-03-01

    The threat of weapons of mass destruction terrorism resulted in the U.S. Department of Homeland Security deploying large quantities of radiation detectors throughout the emergency responder community. However, emergency responders specific needs were not always met by standard health physics instrumentation used in radiation facilities. Several American National Standards Institute standards were developed and approved to evaluate the technical capabilities of detection equipment. Establishing technical capability is a critical step, but it is equally important to emergency responders that the instruments are easy to operate and can withstand the rugged situations they encounter. The System Assessment and Validation for Emergency Responders (SAVER) Program (managed by the U.S. Department of Homeland Security, Office of Grants and Training, Systems Support Division) focuses predominantly on the usability, ergonomics, readability, and other features of the detectors, rather than performance controlled by industry standards and the manufacturers. National Security Technologies, LLC, as a SAVER Technical Agent, conducts equipment evaluations using active emergency responders who are familiar with the detection equipment and knowledgeable of situations encountered in the field, which provides more relevant data to emergency responders.

  1. Current Trends in Gamma Radiation Detection for Radiological Emergency Response

    SciTech Connect (OSTI)

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken placetechniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportationthe so-called second line of defense.

  2. ORISE: Radiation Emergency Assistance Center/Training Site (REAC/TS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REAC/TS Capabilities Overview Emergency Response Radiological Incident Medical Consultation Cytogenetic Biodosimetry Continuing Medical Education How ORISE is Making a Difference Overview CBL International Exercise Emergency Response Training International Training RANET Asset Resources Overview Frequently Asked Questions about Radiation Understanding Radiation Video Series The Medical Aspects of Radiation Incidents Dose Estimates and Compendia Procedure Demonstrations for Contaminated Patients

  3. ORISE: Iddins promoted to associate director of Radiation Emergency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prior to joining ORAU, Iddins served as a staff physician for the Methodist Medical Center Healthworks and Roane Industrial Medicine where she performed occupational health ...

  4. ORISE: Health Physics in Radiation Emergencies | REAC/TS Continuing Medical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Course Health Physics in Radiation Emergencies Dates Scheduled Register Online March 13-17, 2017 June 19-23, 2017 Fee: $225 Maximum enrollment: 20 32 hours American Academy of Health Physics credit This 4½-day course is designed primarily for Health Physicists (HP), Medical Physicists (MP), Radiation Safety Officers (RSO) and others who have radiation dose assessment and/or radiological control responsibilities. The course presents an advanced level of information on

  5. New Easy-to-Use Medical Field Guide for Radiation Emergencies Published by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REAC/TS at ORISE New Easy-to-Use Medical Field Guide for Radiation Emergencies Published by REAC/TS at ORISE Field Guide Available as Free ePub for Smart Phones FOR IMMEDIATE RELEASE Dec. 6, 2010 FY11-4 REAC/TS Radiation Emergency Field Guide New medical field guide created by REAC/TS prepares healthcare providers to treat patients exposed to or contaminated with radioactive materials. Oak Ridge, Tenn. - A new pocket field guide titled "The Medical Aspects of Radiation Incidents"

  6. Training For Radiation Emergencies, First Responder Operations- Student Guide

    Office of Energy Efficiency and Renewable Energy (EERE)

    The purpose of this program is to provide refresher operations training, as well as in-depth training in radiation, to fire fighters who are currently trained to the National Fire Protection Association (NFPA) Standard for Professional Competence of Responders to Hazardous Materials (NFPA 472).

  7. Training For Radiation Emergencies, First Responder Operations- Instructors Guide

    Broader source: Energy.gov [DOE]

    The purpose of this program is to provide refresher operations training, as well as in-depth training in radiation, to fire fighters who are currently trained to the National Fire Protection Association (NFPA) Standard for Professional Competence of Responders to Hazardous Materials (NFPA 472).

  8. Prototyping and validating requirements of radiation and nuclear emergency plan simulator

    SciTech Connect (OSTI)

    Hamid, AHA.; Rozan, MZA.; Ibrahim, R.; Deris, S.; Selamat, A.

    2015-04-29

    Organizational incapability in developing unrealistic, impractical, inadequate and ambiguous mechanisms of radiological and nuclear emergency preparedness and response plan (EPR) causing emergency plan disorder and severe disasters. These situations resulting from 65.6% of poor definition and unidentified roles and duties of the disaster coordinator. Those unexpected conditions brought huge aftermath to the first responders, operators, workers, patients and community at large. Hence, in this report, we discuss prototyping and validating of Malaysia radiation and nuclear emergency preparedness and response plan simulation model (EPRM). A prototyping technique was required to formalize the simulation model requirements. Prototyping as systems requirements validation was carried on to endorse the correctness of the model itself against the stakeholders intensions in resolving those organizational incapability. We have made assumptions for the proposed emergency preparedness and response model (EPRM) through the simulation software. Those assumptions provided a twofold of expected mechanisms, planning and handling of the respective emergency plan as well as in bringing off the hazard involved. This model called RANEPF (Radiation and Nuclear Emergency Planning Framework) simulator demonstrated the training emergency response perquisites rather than the intervention principles alone. The demonstrations involved the determination of the casualties absorbed dose range screening and the coordination of the capacity planning of the expected trauma triage. Through user-centred design and sociotechnical approach, RANEPF simulator was strategized and simplified, though certainly it is equally complex.

  9. Patient-Physician Communication About Complementary and Alternative Medicine in a Radiation Oncology Setting

    SciTech Connect (OSTI)

    Ge Jin; Fishman, Jessica; Annenberg School for Communication at University of Pennsylvania, University of Pennsylvania Health System, Philadelphia, Pennsylvania ; Vapiwala, Neha; Department of Radiation Oncology, University of Pennsylvania Health System, Philadelphia, Pennsylvania ; Li, Susan Q.; Desai, Krupali; Xie, Sharon X.; Mao, Jun J.

    2013-01-01

    Purpose: Despite the extensive use of complementary and alternative medicine (CAM) among cancer patients, patient-physician communication regarding CAM therapies remains limited. This study quantified the extent of patient-physician communication about CAM and identified factors associated with its discussion in radiation therapy (RT) settings. Methods and Materials: We conducted a cross-sectional survey of 305 RT patients at an urban academic cancer center. Patients with different cancer types were recruited in their last week of RT. Participants self-reported their demographic characteristics, health status, CAM use, patient-physician communication regarding CAM, and rationale for/against discussing CAM therapies with physicians. Multivariate logistic regression was used to identify relationships between demographic/clinical variables and patients' discussion of CAM with radiation oncologists. Results: Among the 305 participants, 133 (43.6%) reported using CAM, and only 37 (12.1%) reported discussing CAM therapies with their radiation oncologists. In multivariate analyses, female patients (adjusted odds ratio [AOR] 0.45, 95% confidence interval [CI] 0.21-0.98) and patients with full-time employment (AOR 0.32, 95% CI 0.12-0.81) were less likely to discuss CAM with their radiation oncologists. CAM users (AOR 4.28, 95% CI 1.93-9.53) were more likely to discuss CAM with their radiation oncologists than were non-CAM users. Conclusions: Despite the common use of CAM among oncology patients, discussions regarding these treatments occur rarely in the RT setting, particularly among female and full-time employed patients. Clinicians and patients should incorporate discussions of CAM to guide its appropriate use and to maximize possible benefit while minimizing potential harm.

  10. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    SciTech Connect (OSTI)

    Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

    2005-10-03

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology

  11. A Prospective, Multicenter Study of Complementary/Alternative Medicine (CAM) Utilization During Definitive Radiation for Breast Cancer

    SciTech Connect (OSTI)

    Moran, Meena S.; Ma Shuangge; Jagsi, Reshma; Yang, Tzu-I Jonathan; Higgins, Susan A.; Department of Radiation Therapy, Shoreline Medical Center, Guilford, Connecticut ; Weidhaas, Joanne B.; Wilson, Lynn D.; Department of Radiation Therapy, Lawrence and Memorial Hospital, New London, Connecticut ; Lloyd, Shane; Peschel, Richard; Department of Radiation Therapy, Lawrence and Memorial Hospital, New London, Connecticut ; Gaudreau, Bryant; Rockwell, Sara

    2013-01-01

    Purpose: Although complementary and alternative medicine (CAM) utilization in breast cancer patients is reported to be high, there are few data on CAM practices in breast patients specifically during radiation. This prospective, multi-institutional study was conducted to define CAM utilization in breast cancer during definitive radiation. Materials/Methods: A validated CAM instrument with a self-skin assessment was administered to 360 Stage 0-III breast cancer patients from 5 centers during the last week of radiation. All data were analyzed to detect significant differences between users/nonusers. Results: CAM usage was reported in 54% of the study cohort (n=194/360). Of CAM users, 71% reported activity-based CAM (eg, Reiki, meditation), 26% topical CAM, and 45% oral CAM. Only 16% received advice/counseling from naturopathic/homeopathic/medical professionals before initiating CAM. CAM use significantly correlated with higher education level (P<.001), inversely correlated with concomitant hormone/radiation therapy use (P=.010), with a trend toward greater use in younger patients (P=.066). On multivariate analysis, level of education (OR: 6.821, 95% CI: 2.307-20.168, P<.001) and hormones/radiation therapy (OR: 0.573, 95% CI: 0.347-0.949, P=.031) independently predicted for CAM use. Significantly lower skin toxicity scores were reported in CAM users vs nonusers, respectively (mild: 34% vs 25%, severe: 17% vs 29%, P=.017). Conclusion: This is the first prospective study to assess CAM practices in breast patients during radiation, with definition of these practices as the first step for future investigation of CAM/radiation interactions. These results should alert radiation oncologists that a large percentage of breast cancer patients use CAM during radiation without disclosure or consideration for potential interactions, and should encourage increased awareness, communication, and documentation of CAM practices in patients undergoing radiation treatment for breast

  12. REAC/TS Management of Radiation Accidents 2015-16 Course Brochure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Emergency Medicine (REM) (200) October 20-23, 2015 February 9-12, 2016 March 8-11, 2016 April 5-8, 2016 June 14-17, 2016 August 9-12, 2016 Health Physics in Radiation ...

  13. Emergence of Integrated Urology-Radiation Oncology Practices in the State of Texas

    SciTech Connect (OSTI)

    Jhaveri, Pavan M. [Section of Radiation Oncology, Department of Radiology, Baylor College of Medicine, Houston, Texas (United States)] [Section of Radiation Oncology, Department of Radiology, Baylor College of Medicine, Houston, Texas (United States); Sun Zhuyi [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ballas, Leslie [Valley Radiotherapy Associates Medical Group, Manhattan Beach, California (United States)] [Valley Radiotherapy Associates Medical Group, Manhattan Beach, California (United States); Followill, David S. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hoffman, Karen E. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jiang Jing [Division of Quantitative Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Division of Quantitative Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Benjamin D., E-mail: BSmith3@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-09-01

    Purpose: Integrated urology-radiation oncology (RO) practices have been advocated as a means to improve community-based prostate cancer care by joining urologic and radiation care in a single-practice environment. However, little is known regarding the scope and actual physical integration of such practices. We sought to characterize the emergence of such practices in Texas, their extent of physical integration, and their potential effect on patient travel times for radiation therapy. Methods and Materials: A telephone survey identified integrated urology-RO practices, defined as practices owned by urologists that offer RO services. Geographic information software was used to determine the proximity of integrated urology-RO clinic sites with respect to the state's population. We calculated patient travel time and distance from each integrated urology-RO clinic offering urologic services to the RO treatment facility owned by the integrated practice and to the nearest nonintegrated (independent) RO facility. We compared these times and distances using the Wilcoxon-Mann-Whitney test. Results: Of 229 urology practices identified, 12 (5%) offered integrated RO services, and 182 (28%) of 640 Texas urologists worked in such practices. Approximately 53% of the state population resides within 10 miles of an integrated urology-RO clinic site. Patients with a diagnosis of prostate cancer at an integrated urology-RO clinic site travel a mean of 19.7 miles (26.1 min) from the clinic to reach the RO facility owned by the integrated urology-RO practice vs 5.9 miles (9.2 min) to reach the nearest nonintegrated RO facility (P<.001). Conclusions: Integrated urology-RO practices are common in Texas and are generally clustered in urban areas. In most integrated practices, the urology clinics and the integrated RO facilities are not at the same location, and driving times and distances from the clinic to the integrated RO facility exceed those from the clinic to the nearest

  14. Medicine Lodge Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medicine Lodge

  15. AND NUCLEAR MEDICINE; DIAGNOSIS; DISEASES; GAMMA CAMERAS; GENETICS...

    Office of Scientific and Technical Information (OSTI)

    Converting energy to medical progress nuclear medicine NONE 62 RADIOLOGY AND NUCLEAR MEDICINE; DIAGNOSIS; DISEASES; GAMMA CAMERAS; GENETICS; NUCLEAR MEDICINE; PATIENTS; RADIATION...

  16. POTENTIAL AND FUTURE TRENDS ON INDUSTRIAL RADIATION PROCESSING TECHNOLOGY APPLICATION IN EMERGING COUNTRY - BRAZIL

    SciTech Connect (OSTI)

    Sampa, M.H.O.; Omi, N.M.; Rela, C.S.; Tsai, D.

    2004-10-06

    Brazil started the use of radiation technology in the seventies on crosslinking polyethylene for insulation of wire and electronic cables and sterilization of medical care devices. The present status of industrial applications of radiation shows that the use of this technology is increasing according to the economical development and the necessity to become the products manufactured in the local industries competitive in quality and price for internal and external market. The on going development activities in this area are concentrated on polymers processing (materials modification), foodstuff treatment and environmental protection. The development, the promotion and the technical support to consolidate this technology to the local industries is the main attribution of Institute for Energetic and Nuclear Research-IPEN, a governmental Institution.

  17. Alpha Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments

  18. RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL

    Office of Scientific and Technical Information (OSTI)

    The early days Richards, P. 38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL ASPECTS; TECHNETIUM 99; COLLOIDS; MOLYBDENUM...

  19. Types of Radiation Exposure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    External Irradiation Contamination Incorporation Biological Effects of Acute, Total Body Irradiation Managing Radiation Emergencies Procedure Demonstration Types of radiation ...

  20. Radiation Emergency Procedure Demonstrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dressing To Prevent the Spread of Radioactive Contamination This demonstration shows how ... Preparing The Area This demonstration shows basic steps you can take to gather equipment ...

  1. emergency exercise | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Emergency Exercise to Focus on Aerial Radiation Detection and Measuring Systems at Nevada ... WINGS is a series of tabletop exercises... Emergency Exercise to Focus on Aerial Radiation ...

  2. NNSA Provides Training to Emergency Responders in Singapore ...

    National Nuclear Security Administration (NNSA)

    Office of Emergency Operation's Radiation Emergency Assistance CenterTraining Site (REACTS). REACTS is tasked with medical management of radiation incidents and accidents. ...

  3. SU-E-J-92: On-Line Cone Beam CT Based Planning for Emergency and Palliative Radiation Therapy

    SciTech Connect (OSTI)

    Held, M; Morin, O; Pouliot, J

    2014-06-01

    Purpose: To evaluate and develop the feasibility of on-line cone beam CT based planning for emergency and palliative radiotherapy treatments. Methods: Subsequent to phantom studies, a case library of 28 clinical megavoltage cone beam CT (MVCBCT) was built to assess dose-planning accuracies on MVCBCT for all anatomical sites. A simple emergency treatment plan was created on the MVCBCT and copied to its reference CT. The agreement between the dose distributions of each image pair was evaluated by the mean dose difference of the dose volume and the gamma index of the central 2D axial plane. An array of popular urgent and palliative cases was also evaluated for imaging component clearance and field-of-view. Results: The treatment cases were categorized into four groups (head and neck, thorax/spine, pelvis and extremities). Dose distributions for head and neck treatments were predicted accurately in all cases with a gamma index of >95% for 2% and 2 mm criteria. Thoracic spine treatments had a gamma index as low as 60% indicating a need for better uniformity correction and tissue density calibration. Small anatomy changes between CT and MVCBCT could contribute to local errors. Pelvis and sacral spine treatment cases had a gamma index between 90% and 98% for 3%/3 mm criteria. The limited FOV became an issue for large pelvis patients. Imaging clearance was difficult for cases where the tumor was positioned far off midline. Conclusion: The MVCBCT based dose planning and delivery approach is feasible in many treatment cases. Dose distributions for head and neck patients are unrestrictedly predictable. Some FOV restrictions apply to other treatment sites. Lung tissue is most challenging for accurate dose calculations given the current imaging filters and corrections. Additional clinical cases for extremities need to be included in the study to assess the full range of site-specific planning accuracies. This work is supported by Siemens.

  4. How to Detect Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How to Detect Radiation How to Survey Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Detection How to Detect Radiation Radiation cannot be detected by human senses. A variety of instruments are available for detecting and measuring radiation. Examples of radiation survey meters: photos of survey meters alphacounter1.JPG (28857 bytes) This probe is used for the detection of alpha radiation. The most common type of

  5. SU-E-P-57: Radiation Doses Assessment to Paediatric Patients for Some Digital Diagnostic Radiology Examination in Emergency Department in Qatar

    SciTech Connect (OSTI)

    Abdallah, I; Aly, A; Al Naemi, H

    2015-06-15

    Purpose: The aim of this study was to evaluate radiation doses to pediatric patients undergoing standard radiographic examinations using Direct Digital Radiography (DDR) in Paediatric emergency center of Hamad General Hospital (HGH) in state of Qatar and compared with regional and international Dose Reference Levels (DRLs). Methods: Entrance Skin Dose (ESD) was measured for 2739 patients for two common X-ray examinations namely: Chest AP/PA, Abdomen. Exposure factors such as kV, mAs and Focal to Skin Distance (FSD) were recorded for each patient. Tube Output was measured for a range of selected kV values. ESD for each individual patient was calculated using the tube output and the technical exposure factors for each examination. The ESD values were compared with the some international Dose Reference Levels (DRL) for all types of examinations. Results: The most performed procedure during the time of this study was chest PA/PA (85%). The mean ESD values obtained from AP chest, PA chest and AP abdomen ranged 91–120, 80–84 and 209 – 659 µGy per radiograph for different age’s groups respectively. Two protocols have been used for chest AP and PA using different radiological parameters, and the different of ESD values for chest PA and were 41% for 1 years old child, 57% for 5 years old for chest AP. Conclusion: The mean ESD were compared with those found in literature and were found to be comparable. The radiation dose can be reduced more for Chest AP and PA examination by optimization of each investigation and hence more studies are required for this task. The results presented will serve as a baseline data needed for deriving local reference doses for pediatric X-ray examinations in this local department and hence it can be applied in the whole Qatar.

  6. ORISE: Radiation Dose Estimates and Other Compendia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rapidly estimate internal and external radiation dose magnitudes that can be used to help ... (PDF) Health Concerns Related to Radiation Exposure of the Female Nuclear Medicine ...

  7. Measuring Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Activity SI Units and Prefixes Conversions Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Measurement Activity: How Much Is Present? The size or weight of a container or shipment does not indicate how much radioactivity is in it. The amount of radioactivity in a quantity of material can be determined by noting how many curies of the material are present. This information should be found on labels and/or shipping

  8. Emergencies and Emergency Actions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Emergency Actions Emergencies and Emergency Actions Selected documents on the topic of Emergencies and Emergency Actions under NEPA. May 12, 2010 Memorandum for Heads of...

  9. emergency operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    operations REAC/TS celebrates 40 years as international leader in emergency medical response DOE NNSA-deployable asset provides 24/7 emergency medical response for radiation incidents anywhere in the world WASHINGTON - The Radiation Emergency Assistance Center/Training Site (REAC/TS) celebrated its 40th anniversary on Thursday with a luncheon, panel discussion, and tours of its Oak... NNSA sites prepared for disasters using real-time response management system Pantex Emergency Services now uses

  10. Emergency Procedures

    Broader source: Energy.gov [DOE]

    Note: This page is pending deletion, please refer to the Safety and health main page for emergency procedure information:

  11. emergency communications

    National Nuclear Security Administration (NNSA)

    0%2A en Emergency Communications http:nnsa.energy.govaboutusourprogramsemergencyoperationscounterterrorismemergencycommunications

  12. emergency policy

    National Nuclear Security Administration (NNSA)

    Toolbox

  13. Modifications to hazardous materials screening methodology
  14. Update of approach for developing Emergency Action...

  15. Emergency Preparedness

    Broader source: Energy.gov [DOE]

    The collection of Emergency Procedures documents for the Department of Energy, Headquarters buildings, in the Washington, DC, metropolitan area. All of these documents are only available to computers attached to the DOE Network. They are for use only by DOE Headquarters employees. • Emergency Procedures Pamphlets • Building Evacuation Routes • Occupant Emergency Plans (OEP's)

  16. ORISE: REAC/TS Radiation Accident Registries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accident Registries The Radiation Emergency Assistance CenterTraining Site (REACTS) at the Oak Ridge Institute for Science and Education (ORISE) maintains a number of radiation ...

  17. ORISE: REAC/TS Radiation Treatment Medications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment Medications The Radiation Emergency Assistance CenterTraining Site (REACTS) is a valuable resource in the use of drug therapies to treat radiation exposure. REACTS ...

  18. Dosimetrically Triggered Adaptive Intensity Modulated Radiation...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 62 RADIOLOGY AND NUCLEAR MEDICINE; ANATOMY; DOSIMETRY; EXTERNAL BEAM RADIATION THERAPY; HAZARDS; NEOPLASMS; NMR ...

  19. Emergency Response

    National Nuclear Security Administration (NNSA)

    It is providing direct emergency management assistance to the International Atomic Energy Agency (IAEA), Nuclear Energy Agency (NEA), Argentina, Armenia, Brazil, China,...

  20. emergency operations

    National Nuclear Security Administration (NNSA)

    logistics and mobilization actions during periods of national emergencies, natural and man-made disasters, acts of terrorism, or other extraordinary situations requiring...

  21. Emergency Response Health Physics

    SciTech Connect (OSTI)

    Mena, R., Pemberton, W., Beal, W.

    2012-05-01

    Health physics is an important discipline with regard to understanding the effects of radiation on human health. Topics of discussion included in this manuscript are related to responding to a radiation emergency, and the necessary balance between desired high accuracy laboratory results and rapid turnaround requirements. Considerations are addressed for methodology with which to provide the most competent solutions despite challenges presented from incomplete datasets and, at times, limited methodology. An emphasis is placed on error and uncertainty of sample analysis results, how error affects products, and what is communicated in the final product.

  22. emergency response assets | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    emergency response assets Federal Radiological Monitoring and Assessment Center The Federal Radiological Monitoring and Assessment Center (FRMAC) is a federal asset available on request by the Department of Homeland Security (DHS) and state and local agencies to respond to a nuclear or radiological incident. The FRMAC is an interagency organization with representation... Radiation Emergency Assistance Center / Training Site NNSA's Radiation Emergency Assistance Center / Training Site (REAC/TS)

  1. responding to emergencies | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    responding to emergencies Federal Radiological Monitoring and Assessment Center The Federal Radiological Monitoring and Assessment Center (FRMAC) is a federal asset available on request by the Department of Homeland Security (DHS) and state and local agencies to respond to a nuclear or radiological incident. The FRMAC is an interagency organization with representation... Radiation Emergency Assistance Center / Training Site NNSA's Radiation Emergency Assistance Center / Training Site (REAC/TS)

  2. Emergency Acquisitions

    Broader source: Energy.gov [DOE]

    The Office of Federal Procurement Policy, (OFPP) updated the Emergency Acquisitions Guide which is an attachment. The Acquisition Guide Chapter 18.0 Emergency Acquisitions is revised to incorporate Federal Acquisition Regulation changes through Federal Acquisition Circular 2005-49 and parts of the OFPP guide. Both the OFPP guide and the Department of Energy guide chapter may assist the contracting community with planning and carrying out procurement requirements during major disaster declarations, other emergencies, contingency operations, or defense or recovery from certain attacks.

  3. Biology and Medicine Division annual report, 1982-1983

    SciTech Connect (OSTI)

    Not Available

    1984-04-01

    This annual report presents brief summaries of research activities during 1982 to 1983. Program activities have been individually entered into EDB. They include research medicine, radiosurgery, environmental physiology, radiation biophysics, and structural biophysics. (ACR)

  4. Emergency Guides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems at Nevada National Security Site | National Nuclear Security Administration | (NNSA) and on Facebook, Twitter, Tumblr, YouTube and Flickr Systems at Nevada National Security Site | National Nuclear Security Administration | (NNSA)

    and on Facebook, Twitter, Tumblr, YouTube and Flickr

    Emergency Guides

  5. Emergent spin

    SciTech Connect (OSTI)

    Creutz, Michael

    2014-03-15

    Quantum mechanics and relativity in the continuum imply the well known spinstatistics connection. However for particles hopping on a lattice, there is no such constraint. If a lattice model yields a relativistic field theory in a continuum limit, this constraint must emerge for physical excitations. We discuss a few models where a spin-less fermion hopping on a lattice gives excitations which satisfy the continuum Dirac equation. This includes such well known systems such as graphene and staggered fermions. -- Highlights: The spinstatistics theorem is not required for particles on a lattice. Spin emerges dynamically when spinless fermions have a relativistic continuum limit. Graphene and staggered fermions are examples of this phenomenon. The phenomenon is intimately tied to chiral symmetry and fermion doubling. Anomaly cancellation is a crucial feature of any valid lattice fermion action.

  6. Safety Around Sources of Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Keeping Exposure Low Working Safely Around Radioactive Contamination Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Is it safe to be around sources? Too much radiation exposure is harmful. The degree of radiation injury depends on the amount of radiation received and the time involved. In general, the higher the amount, the greater the severity of early effects (occurring within a few weeks) and the greater the possibility of late effects such as cancer. The

  7. ORISE: Collaboration with the CDC yields Radiation Basics Made...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Online training designed to help public health and emergency medical professionals learn fundamentals of radiation How ORISE is Making a Difference Radiation Basics Made Simple, ...

  8. Occupational Medicine - Assistant PIA, Idaho National Laboratory...

    Energy Savers [EERE]

    Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho...

  9. PIA - Richland Occupational Medicine Contract | Department of...

    Energy Savers [EERE]

    PIA - Richland Occupational Medicine Contract PIA - Richland Occupational Medicine Contract PIA - Richland Occupational Medicine Contract PDF icon PIA - Richland Occupational...

  10. Integrative Genomics and Computational Systems Medicine

    SciTech Connect (OSTI)

    McDermott, Jason E.; Huang, Yufei; Zhang, Bing; Xu, Hua; Zhao, Zhongming

    2014-01-01

    The exponential growth in generation of large amounts of genomic data from biological samples has driven the emerging field of systems medicine. This field is promising because it improves our understanding of disease processes at the systems level. However, the field is still in its young stage. There exists a great need for novel computational methods and approaches to effectively utilize and integrate various omics data.

  11. Medical Applications of Synchrotron Radiation

    DOE R&D Accomplishments [OSTI]

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  12. ORISE Resources: Population Monitoring in Radiation Emergencies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Local Public Health Planners was released in April and presented at the National Association of County and City Health Officials (NACCHO) Preparedness Summit in Atlanta, Ga. ...

  13. Radiation Emergency Assistance Center / Training Site | National...

    National Nuclear Security Administration (NNSA)

    ... As well as having a dedicated medical facility within its home offices, REACTS is a training and demonstration facility where domestic and foreign physicians and nursing, ...

  14. Emergency Medical Support

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume defines coordination between emergency planners and emergency medical support. Canceled by DOE G 151.1-4.

  15. Fundamentals of health physics for the radiation-protection officer

    SciTech Connect (OSTI)

    Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.; Mann, J.C.; Munson, L.H.; Carbaugh, E.H.; Baer, J.L.

    1983-03-01

    The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)

  16. Emergency Response Health Physics

    SciTech Connect (OSTI)

    Mena, RaJah; Pemberton, Wendy; Beal, William

    2012-05-01

    Health physics is an important discipline with regard to understanding the effects of radiation on human health; however, there are major differences between health physics for research or occupational safety and health physics during a large-scale radiological emergency. The deployment of a U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) monitoring and assessment team to Japan in the wake of the March 2011 accident at Fukushima Daiichi Nuclear Power Plant yielded a wealth of lessons on these difference. Critical teams (CMOC (Consequence Management Outside the Continental U.S.) and CMHT (Consequence Management Home Team) ) worked together to collect, compile, review, and analyze radiological data from Japan to support the response needs of and answer questions from the Government of Japan, the U.S. military in Japan, the U.S. Embassy and U.S. citizens in Japan, and U.S. citizens in America. This paper addresses the unique challenges presented to the health physicist or analyst of radiological data in a large-scale emergency. A key lesson learned was that public perception and the availability of technology with social media requires a diligent effort to keep the public informed of the science behind the decisions in a manner that is meaningful to them.

  17. ORISE: Emergency Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Emergency Management Effective emergency management relies on thorough integration of preparedness plans at all levels of government. The Oak Ridge Institute for Science...

  18. In Case of Emergency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Case of Emergency In Case of Emergency Print Fire/Police Emergency: ext. 7911 Cell phone or off-site: 510-486-7911 When dialing from off-site, the following numbers need to be proceeded by 486-. the area code for the LBNL is (510). Fire Department (non-emergency): ext. 6015 Police Department (non-emergency): ext. 5472 Non-Emergency Reporting: ext. 6999 Additional information about emergency procedures at Berkeley Lab can be found on the red Emergency Response Guides posted around the lab and

  19. Biology and Medicine Division annual report, 1981-1982. [Lead abstract

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    Separate abstracts were prepared for the 61 research reports in the 1981-1982 annual report for the Biology and Medicine Division of the Lawrence Berkeley Laboratory. Programs reviewed include research medicine, Donner Pavilion, environmental physiology, radiation biophysics and structural biophysics. (KRM)

  20. Dictionary/handbook of nuclear medicine and clinical imaging

    SciTech Connect (OSTI)

    Iturralde, M.P. )

    1989-01-01

    This book covers the following topics: Fundamentals of English medical etymology, Abbreviations, acronyms, symbols, denotations, and signs commonly used or defined in the dictionary, Characteristics of the elements, Characteristics of practicable radioisotopes and of selected radionuclides commonly used in nuclear medicine, Properties and production of radionuclides, Radioactive decay, Radiopharmaceuticals, and Radiation dosimetry.

  1. Notice of Emergency Action - Emergency Order To Resume Limited...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emergency Action - Emergency Order To Resume Limited Operation at the Potomac River ... Notice of Emergency Action - Emergency Order To Resume Limited Operation at the Potomac ...

  2. Occupational Medicine | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Occupational Medicine The Occupational Medicine office provides medical surveillance examinations and consultations to Ames Laboratory and university employees according to federal and state regulations. The Occupational Medicine office enhances the efficiency of existing safety and health programs and assists in the reduction of workplace injuries and illnesses.

  3. Emergency Management: Facility Emergency Plan Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Building 219, 274 and 278 SSRL Building Facility Emergency Plan In Case of Emergency 9-911 from a SLAC phone 911 from a non-SLAC phone Then notify SLAC Site Security, Ext. 5555 SLAC Emergency Resources SLAC Site Security 5555 On-site Palo Alto Fire Station Number 7 2776 Conventional and Experimental Facilities 8901 Normal working hours only SLAC Medical Department 2281 Waste Management 2399 Building manager Larry Cadapan Assistant building manager Brian Choi Publication date

  4. Biology and Medicine Division annual report, 1985

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    This book briefly describes the activities of the Biology and Medicine Division of the Lawrence Berkeley Laboratory. During the past year the Donner Pavilion program on the treatment of arteriovenous malformations in the brain has chalked up very significant successes. The disease control rate has been high and objective measures of success using cerebral angiography have been established. The new high resolution positron emitting tomographic imager has been demonstrated to operate successfully. In the Radiation Biophysics program, the availability of higher mass ions up to uranium has allowed us cell and tissue studies in a radiation domain that is entirely new. Using uranium beams, investigators have already made new and exciting findings that are described in the body of the report.

  5. Converting Energy to Medical Progress [Nuclear Medicine

    DOE R&D Accomplishments [OSTI]

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  6. Beta Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beta Radiation 1. Beta radiation may travel meters in air and is moderately penetrating. 2. Beta radiation can penetrate human skin to the "germinal layer," where new skin cells ...

  7. emergency management systems

    National Nuclear Security Administration (NNSA)

    9%2A en Building International Emergency Management Systems http:nnsa.energy.govaboutusourprogramsemergencyoperationscounterterrorisminternationalprograms-1

  8. Emerging Threats and Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Response NNSA's Office of Emergency Operations is the United States government's primary capability for radiological and nuclear emergency response and for providing security to the nation from the threat of nuclear terrorism. The Office of Emergency Operations maintains a high level of readiness for protecting and serving the U.S. and its allies through the development, implementation and coordination of programs and systems designed to serve as a last line of defense in the event of

  9. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  10. Comprehensive Emergency Management System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-01

    To establish policy and to assign and describe roles and responsibilities for the Department of Energy (DOE) Emergency Management System. The Emergency Management System provides the framework for development, coordination, control, and direction of all emergency planning, preparedness, readiness assurance, response, and recovery actions. Canceled by DOE O 151.1B. Cancels DOE O 151.1.

  11. ORISE: REAC/TS redesignated as Pan American Health Organization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    medical personnel, health physicists, first responders, emergency planners, public health professionals and occupational health professionals about radiation emergency medicine. ...

  12. Current Trends in Gamma Ray Detection for Radiological Emergency Response

    SciTech Connect (OSTI)

    Mukhopadhyay, S., Guss, P., Maurer, R.

    2011-08-18

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies.

  13. emergency response assets

    National Nuclear Security Administration (NNSA)

    portable field radiation monitoring instrumentation for alpha, beta, gamma, and neutron detection, in addition to generators, mobile laboratories, air samplers,...

  14. ORISE: REAC/TS Medical Management of Radiation Incidents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medical Management of Radiation Incidents As part of its primary mission for the U.S. Department of Energy (DOE), the Radiation Emergency Assistance CenterTraining Site (REACTS) ...

  15. Emergency Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Emergency Operations Training Academy Emergency Operations Training Academy The Office of Emergency Operations, NA-40-The Emergency Operations Training Academy (EOTA) EOTA provides training and education to enhance the readiness of personnel in the radiological-nuclear emergency operations community. For more information or to contact us, visit the EOTA website at

    Emergency Plan Emergency

  16. Potential Health Hazards of Radiation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation (198.55 KB) More Documents & Publications Radioactive Materials Emergencies Course Presentation DOE-HDBK-1130-2008 DOE-HDBK-1130-2008

  17. Emergency Management: Facility Emergency Plan Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20, 130 ,131 Other SLAC Resources SLAC Site Security Main Gate 2551 On-site Palo Alto Fire Station Business Phone 2776 Facilities Department Service Request 8901 Normal working hours only SLAC Medical Department 2281 Waste Management 2399 Building manager Brian Choi Assistant building manager Larry Cadapan Publication dates September 24, 2010 Prepared by Behzad Bozorg-Chami Approved by 20 Jun 2007 (updated AUG. 2010) SLAC-I-730-0A14J-001-R001 2 of 12 Emergency Management: Facility Emergency Plan

  18. Emergency Preparedness Working

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 24, 2015 Emergency Preparedness Working Group (EPWG) Grant * Nevada Field Office funds the EPWG grant based on $.50 per cubic foot of low-level/mixed low-level waste disposed at the Nevada National Security Site * EPWG consists of six Nevada counties: Clark, Elko, Esmeralda, Lincoln, Nye, and White Pine * EPWG addresses grant administration issues and any cross-cutting emergency related questions that incorporate grant funding or are required to attain operations level emergency response

  19. Emergency Information | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Information Jefferson Lab's service departments and divisional offices operate Monday through Friday, 8 a.m. to 5 p.m. EST. Respond to all building and facility alarms. Follow all posted warning signs. At each location, familiarize yourself with emergency exits and procedures that may be unique or specific to that facility, including the muster point if you must evacuate a building. To contact Jefferson Lab Security, call 757-269-5822. If you see a medical or other emergency,

  20. New Emergency Equipment Notifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notifications Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Todd A. Shrader/CBFO and Philip J. Breidenbach/NWP dated October 20, 2015 Underground Fire Suppression Vehicles (2) Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Dana C. Bryson/CBFO and Philip J. Breidenbach/NWP dated September 30, 2015 Underground Ambulance #3 Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number:

  1. Emergency Readiness Assurance Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-02-27

    To establish the requirements of the Emergency Readiness Assurance Program with a goal of assurting that the Department of Energy (DOE) Emergency Management System (EMS) is ready to respond promptly, efficiently, and effectively to any emergency involving DOE facilities or requiring DOE assistance. Cancels DOE O 5500.10 dated 4-30-91. Chg 1 dated 2-27-92. Change 1 canceled by DOE O 151.1 of 9-25-95.

  2. RADIATION DOSE ESTIMATES TO ADULTS AND CHILDREN FROM VARIOUS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RADIATION DOSE ESTIMATES TO ADULTS AND CHILDREN FROM VARIOUS RADIOPHARMACEUTICALS Latest Revision Date: 4/30/96 Radiation Internal Dose Information Center Oak Ridge Institute for Science and Education P.O. Box 117 Mail Stop 51 Oak Ridge, TN 37831 The radiopharmaceuticals and nuclear medicine studies considered in this report are listed in the Table of Contents on page 2. The radiation dose estimates given in the dose tables are based on the assumptions and models given in Chapter 17, Radiation

  3. planning for emergencies

    National Nuclear Security Administration (NNSA)

    1%2A en Planning for Emergencies http:nnsa.energy.govaboutusourprogramsemergencyoperationscounterterrorismplanningforemergencies

  4. responding to emergencies

    National Nuclear Security Administration (NNSA)

    1%2A en Responding to Emergencies http:nnsa.energy.govaboutusourprogramsemergencyoperationscounterterrorismrespondingtoemergencies

  5. Emergency Public Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume defines elements of providing information to the public during and following emergencies. Canceled by DOE G 151.1-4.

  6. responding to emergencies

    National Nuclear Security Administration (NNSA)

    1%2A en Responding to Emergencies http:www.nnsa.energy.govaboutusourprogramsemergencyoperationscounterterrorismrespondingtoemergencies

  7. Comprehensive Emergency Management System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-11-02

    The Order establishes policy and assigns roles and responsibilities for the Department of Energy (DOE) Emergency Management System. Supersedes DOE O 151.1B.

  8. Emergency exercise methodology

    SciTech Connect (OSTI)

    Klimczak, C.A.

    1993-03-01

    Competence for proper response to hazardous materials emergencies is enhanced and effectively measured by exercises which test plans and procedures and validate training. Emergency exercises are most effective when realistic criteria is used and a sequence of events is followed. The scenario is developed from pre-determined exercise objectives based on hazard analyses, actual plans and procedures. The scenario should address findings from previous exercises and actual emergencies. Exercise rules establish the extent of play and address contingencies during the exercise. All exercise personnel are assigned roles as players, controllers or evaluators. These participants should receive specialized training in advance. A methodology for writing an emergency exercise plan will be detailed.

  9. Emergency exercise methodology

    SciTech Connect (OSTI)

    Klimczak, C.A.

    1993-01-01

    Competence for proper response to hazardous materials emergencies is enhanced and effectively measured by exercises which test plans and procedures and validate training. Emergency exercises are most effective when realistic criteria is used and a sequence of events is followed. The scenario is developed from pre-determined exercise objectives based on hazard analyses, actual plans and procedures. The scenario should address findings from previous exercises and actual emergencies. Exercise rules establish the extent of play and address contingencies during the exercise. All exercise personnel are assigned roles as players, controllers or evaluators. These participants should receive specialized training in advance. A methodology for writing an emergency exercise plan will be detailed.

  10. Emergency Assistance Center/Training Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CBL is operated as part of the Radiation Emergency Assistance Center/Training Site (REAC/TS) of the Oak Ridge Institute for Sci- ence and Education (ORISE). The reestablishment of the CBL was funded by the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NA-40) and the Offce of Worker Safety and Health (EH-51), as well as the U.S. Nuclear Regulatory Commission. REAC/TS is recognized as the established leader in the management of medical accidents involving radiation,

  11. Nuclear medicine imaging system

    DOE Patents [OSTI]

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  12. Nuclear medicine imaging system

    DOE Patents [OSTI]

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J.; Rowe, R. Wanda; Zubal, I. George

    1986-01-07

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  13. Assessment of OEP health's risk in nuclear medicine

    SciTech Connect (OSTI)

    Santacruz-Gomez, K.; Manzano, C.; Melendrez, R.; Castaneda, B.; Barboza-Flores, M.; Pedroza-Montero, M.

    2012-10-23

    The use of ionizing radiation has been increased in recent years within medical applications. Nuclear Medicine Department offers both treatment and diagnosis of diseases using radioisotopes to controlled doses. Despite the great benefits to the patient, there is an inherent risk to workers which remains in contact with radiation sources for long periods. These personnel must be monitored to avoid deterministic effects. In this work, we retrospectively evaluated occupationally exposed personnel (OEP) to ionizing radiation in nuclear medicine during the last five years. We assessed both area and personal dosimetry of this department in a known Clinic in Sonora. Our results show an annual equivalent dose average of 4.49 {+-} 0.70 mSv in OEP without showing alarming changes in clinical parameters analyzed. These results allow us to conclude that health of OEP in nuclear medicine of this clinic has not been at risk during the evaluated period. However, we may suggest the use of individual profiles based on specific radiosensitivity markers.

  14. Emergency generator facility noise control

    SciTech Connect (OSTI)

    Cass, G.R.

    1982-01-01

    In the past decade, great strides have been made in the adoption of noise control regulations and implementation of noise control measures; however, still prevelant are problems in the interpretation and enforcement of these regulations. Many planning commissions, building departments, and other local government officials are not aware of acoustical nomenclature and principles, although their responsibilities include making binding decisions regarding their community's noise control programs. This paper discusses a project undertaken by Dames and Moore to aid a developer to comply with strict noise regulation. Construction called for a computer/office complex in a light industrial park, located adjacent to an established suburban residential neighborhood. The major noise source consisted of an emergency generating facility including twelve-1200 kw diesel generators, twelve rooftop-mounted radiator units, six rooftop-mounted 20-hp, 50,000 cfm vaneaxial exhaust fans, and four 100-hp cooling towers.

  15. Occupant Emergency Plans

    Broader source: Energy.gov [DOE]

    The collection of Emergency Procedures documents for the Department of Energy, Headquarters buildings, in the Washington, DC, metropolitan area. All of these documents are only available to computers attached to the DOE Network. They are for use only by DOE Headquarters employees. • Building Diagrams and Assembly Areas • Occupant Emergency Plans (OEP's)

  16. Electric power emergency handbook

    SciTech Connect (OSTI)

    Labadie, J.R.

    1980-09-01

    The Emergency Electric Power Administration's Emergency Operations Handbook is designed to provide guidance to the EEPA organization. It defines responsibilities and describes actions performed by the government and electric utilities in planning for, and in operations during, national emergencies. The EEPA Handbook is reissued periodically to describe organizational changes, to assign new duties and responsibilities, and to clarify the responsibilities of the government to direct and coordinate the operations of the electric utility industry under emergencies declared by the President. This Handbook is consistent with the assumptions, policies, and procedures contained in the National Plan for Emergency Preparedness. Claimancy and restoration, communications and warning, and effects of nuclear weapons are subjects covered in the appendices.

  17. Danger radiations

    ScienceCinema (OSTI)

    None

    2011-04-25

    Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

  18. emergency management | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    management NNSA labs fight fire with simulation Fire season is in full swing in the driest parts of the United States, and capabilities of NNSA's labs are helping equip firefighters in the heated battle to save property and environment. NNSA's labs are perfectly suited to support emergency response related to fire. A long history of... NNSA to Participate in Aerial Radiation Training Exercise in Philadelphia, Pennsylvania (WASHINGTON, D.C.) - On March 21 through March 24, the Department of

  19. radiological emergency | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    emergency NNSA administrator visits NNSS to meet team, see national security work Last month, Department of Energy Under Secretary for Nuclear Security and NNSA Administrator Lt. Gen. Frank G. Klotz (Ret.) visited NNSA's Nevada Field Office where he hosted an all-hands for NNSA-Nevada staff and presented several service awards. During the trip he visited the NNSA... NNSA to Participate in Aerial Radiation Training Exercise in Philadelphia, Pennsylvania (WASHINGTON, D.C.) - On March 21 through

  20. Occupational Medicine Workshops and Webinars

    Broader source: Energy.gov [DOE]

    The DOE Annual Occupational Medicine Workshop & Webinar (OMWW) is a valuable training opportunity established by the Office of Health, Safety, and Security in support of hundreds of medical and allied health professionals located at over four dozen locations across the Department. Their vital work in the field of Occupational Medicine encompasses medical qualification examinations, injury and illness management, disability management, workers’ compensation, and much more.

  1. Emergent cosmology revisited

    SciTech Connect (OSTI)

    Bag, Satadru; Sahni, Varun; Shtanov, Yuri; Unnikrishnan, Sanil E-mail: varun@iucaa.ernet.in E-mail: sanil@lnmiit.ac.in

    2014-07-01

    We explore the possibility of emergent cosmology using the effective potential formalism. We discover new models of emergent cosmology which satisfy the constraints posed by the cosmic microwave background (CMB). We demonstrate that, within the framework of modified gravity, the emergent scenario can arise in a universe which is spatially open/closed. By contrast, in general relativity (GR) emergent cosmology arises from a spatially closed past-eternal Einstein Static Universe (ESU). In GR the ESU is unstable, which creates fine tuning problems for emergent cosmology. However, modified gravity models including Braneworld models, Loop Quantum Cosmology (LQC) and Asymptotically Free Gravity result in a stable ESU. Consequently, in these models emergent cosmology arises from a larger class of initial conditions including those in which the universe eternally oscillates about the ESU fixed point. We demonstrate that such an oscillating universe is necessarily accompanied by graviton production. For a large region in parameter space graviton production is enhanced through a parametric resonance, casting serious doubts as to whether this emergent scenario can be past-eternal.

  2. REAC/TS celebrates 40 years as international leader in emergency medical

    National Nuclear Security Administration (NNSA)

    response | National Nuclear Security Administration | (NNSA) REAC/TS celebrates 40 years as international leader in emergency medical response July 01, 2016 DOE NNSA-deployable asset provides 24/7 emergency medical response for radiation incidents anywhere in the world WASHINGTON - The Radiation Emergency Assistance Center/Training Site (REAC/TS) celebrated its 40th anniversary on Thursday with a luncheon, panel discussion, and tours of its Oak Ridge facility, which originally opened its

  3. Occupational Medicine - Assistant PIA, Idaho National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory (268.86 KB) More Documents & Publications Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory Occupational Injury & Illness System (01&15) PIA, Idaho National Laboratory PIA - INL Education

  4. emergency management team

    National Nuclear Security Administration (NNSA)

    elements and other activities. The EMT structure and support resources vary with nature and severity of emergency.

  5. Nuclear Emergency Search Team

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-09-20

    To establish Department of Energy (DOE) policy for Nuclear Emergency Search Team (NEST) operations to malevolent radiological incidents. This directive does not cancel another directive. Canceled by DOE O 153.1.

  6. Comprehensive Emergency Management System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2016-08-11

    The Order establishes policy and assigns roles and responsibilities for the Department of Energy (DOE) Emergency Management System. Supersedes DOE O 151.1C. Cancels DOE M 151.1-1.

  7. Emergency Management: Facility Emergency Plan Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    37 East and West Other SLAC Resources SLAC Site Security Main Gate 2551 On-site Palo Alto Fire Station Business Phone 2776 Facilities Department Service Request 8901 Normal working hours only SLAC Medical Department 2281 Waste Management 2399 Building manager Todd SLater Assistant building manager Brian Choi Publication date 1/14/2010 Revision date 1/14/2010 Prepared by Behzad Bozorg-Chami Approved by Todd Slater 20 Jun 2007 (updated AUG. 2010) SLAC-I-730-0A14J-001-R001 2 of 12 Emergency

  8. ORISE: REAC/TS Radiation Accident Registries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accident Registries The Radiation Emergency Assistance Center/Training Site (REAC/TS) at the Oak Ridge Institute for Science and Education (ORISE) maintains a number of radiation accident registries that provide medical professionals with up-to-date radiation accident information. Information for these accident registries is gathered from many sources, including the World Health Organization, International Atomic Energy Agency, U.S. Nuclear Regulatory Commission, state radiological health

  9. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Home MSDS Search MSDS Help Safety Training and Tests Contact Links LSU Campus Safety Glossary Radiation Safety Manual Radiation Safety Test NOTE: All Training and Testing Material is for LSU CAMD Users ONLY! **Please allow two weeks for your badge to be processed.** Regulations and Hierarchy The CAMD Safety Officer reports to two separate individuals regarding safety. These are the Radiation Safety Officer for the University, and the Campus Safety Officer in all other matters. Thus safety

  10. LPG emergency response training

    SciTech Connect (OSTI)

    Dix, R.B.; Newton, B.

    1995-12-31

    ROVER (Roll Over Vehicle for Emergency Response) is a specially designed and constructed unit built to allow emergency response personnel and LPG industry employees to get ``up close and personal`` with the type of equipment used for the highway transportation of liquefied petroleum gas (LPG). This trailer was constructed to simulate an MC 331 LPG trailer. It has all the valves, piping and emergency fittings found on highway tankers. What makes this unit different is that it rolls over and opens up to allow program attendees to climb inside the trailer and see it in a way they have never seen one before. The half-day training session is composed of a classroom portion during which attendees will participate in a discussion of hazardous material safety, cargo tank identification and construction. The specific properties of LPG, and the correct procedures for dealing with an LPG emergency. Attendees will then move outside to ROVER, where they will participate in a walkaround inspection of the rolled over unit. All fittings and piping will be representative of both modern and older equipment. Participants will also be able to climb inside the unit through a specially constructed hatch to view cutaway valves and interior construction. While the possibility of an LPG emergency remains remote, ROVER represents Amoco`s continuing commitment to community, education, and safety.

  11. emergencies | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Improving Emergency Communications Functionality at Lower Cost NNSA's Emergency Communications Network (ECN) provides the capability to exchange real-time voice, data, and video ...

  12. PFP Emergency Lighting Study

    SciTech Connect (OSTI)

    BUSCH, M.S.

    2000-02-02

    NFPA 101, section 5-9 mandates that, where required by building classification, all designated emergency egress routes be provided with adequate emergency lighting in the event of a normal lighting outage. Emergency lighting is to be arranged so that egress routes are illuminated to an average of 1.0 footcandle with a minimum at any point of 0.1 footcandle, as measured at floor level. These levels are permitted to drop to 60% of their original value over the required 90 minute emergency lighting duration after a power outage. The Plutonium Finishing Plant (PFP) has two designations for battery powered egress lights ''Emergency Lights'' are those battery powered lights required by NFPA 101 to provide lighting along officially designated egress routes in those buildings meeting the correct occupancy requirements. Emergency Lights are maintained on a monthly basis by procedure ZSR-12N-001. ''Backup Lights'' are battery powered lights not required by NFPA, but installed in areas where additional light may be needed. The Backup Light locations were identified by PFP Safety and Engineering based on several factors. (1) General occupancy and type of work in the area. Areas occupied briefly during a shiftly surveillance do not require backup lighting while a room occupied fairly frequently or for significant lengths of time will need one or two Backup lights to provide general illumination of the egress points. (2) Complexity of the egress routes. Office spaces with a standard hallway/room configuration will not require Backup Lights while a large room with several subdivisions or irregularly placed rooms, doors, and equipment will require Backup Lights to make egress safer. (3) Reasonable balance between the safety benefits of additional lighting and the man-hours/exposure required for periodic light maintenance. In some plant areas such as building 236-Z, the additional maintenance time and risk of contamination do not warrant having Backup Lights installed in all rooms

  13. July 2013 Most Viewed Documents for Biology And Medicine | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information July 2013 Most Viewed Documents for Biology And Medicine Carbon Dioxide Sequestering Using Microalgal Systems Daniel J. Stepan; Richard E. Shockey; Thomas A. Moe; Ryan Dorn (2002) 51 SURVEY OF NOISE SUPPRESSION SYSTEMS FOR ENGINE GENERATOR SETS. KRISHNA,C.R. (1999) 46 Human radiation studies: Remembering the early years. Oral history of Donner Lab Administrator Baird G. Whaley, August 15, 1994 NONE (1995) 40 Human radiation studies:

  14. Radiation detector

    DOE Patents [OSTI]

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  15. Radiation detector

    DOE Patents [OSTI]

    Fultz, Brent T.

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  16. Comprehensive Emergency Management System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-08-21

    The Order establishes policy and assigns and describes roles and responsibilities for the DOE Emergency Management System. Cancels DOE 5500.1B, DOE 5500.2B, DOE 5500.3A, DOE 5500.4A, 5500.5A,5500.7B, 5500.8A, 5500.9A, DOE 5500.10

  17. Comprehensive Emergency Management System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-10-29

    To establish policy and to assign and describe roles and responsibilities for the Department of Energy (DOE) Emergency Management System. (This is an administrative change to DOE O 151.1A). Canceled by DOE O 151.1C. Cancels DOE O 151.1A.

  18. Emergency Response Synchronization Matrix

    Energy Science and Technology Software Center (OSTI)

    1999-06-01

    An emergency response to a disaster is complex, requiring the rapid integration, coordination, and synchronization of multiple levels of governmental and non-governmental organizations from numerous jurisdictions into a unified community response. For example, a community’s response actions to a fixed site hazardous materials incident could occur in an area extending from an on-site storage location to points 25 or more miles away. Response actions are directed and controlled by local governments and agencies situated withinmore » the response area, as well as by state and federal operaticns centers quite removed from the area of impact. Time is critical and the protective action decision-making process is greatly compressed. The response community must carefully plan and coordinate response operations in order to have confidence that they will be effectively implemented when faced with the potentially catastrophic nature of such releases. A graphical depiction of the entire response process via an emergency response synchronization matrix is an effective tool in optimizing the planning, exercising, and implementation of emergency plans. This system—based approach to emergency planning depicts how a community organizes its response tasks across space and time in relation to hazard actions. It provides the opportunity to make real—time adjustments as necessary for maximizing the often limited resources in protecting area residents. A response must involve the entire community and must not be limited by individual jurisdictions and organizations acting on their own without coordination, integration, and synchronization.« less

  19. OFFICE FOR EMERGENCY MANAGEMENT

    Office of Legacy Management (LM)

    OFFICE FOR EMERGENCY MANAGEMENT 155OP STREETNW. WiSHINGTON. D.C. ' , iQns 25,19&L At-t :. I' .' at l530 P Btmat, IO&, XtwMn&m, 0. 6., at 9130 A.Jb Sa 1 llmbemupoftbaaomlttaal8f...

  20. Definition of Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of ...

  1. DOE Emergency Public Affairs Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Headquarters Office of Public Affairs Emergency Public Affairs Plan The DOE HQ Office of Public Affairs Emergency Public Affairs Plan has been approved for implementation by: __________________________________________________________ Dan Leistikow, Director, HQ Office of Public Affairs Date: ______________ __________________________________________________________ Joseph Krol, Director, HQ Office of Emergency Management Date: ______________ DOE Office of Public Affairs Emergency Public Affairs

  2. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, R.J.

    1981-09-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  3. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, Richard J.

    1983-01-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  4. Emerging nondestructive inspection methods for aging aircraft

    SciTech Connect (OSTI)

    Beattie, A; Dahlke, L; Gieske, J

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  5. Emergency department management of patients internally contaminated with radioactive material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz; Christensen, Doran

    2014-11-15

    After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with one or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome (ARS) to the long term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, Calcium DTPA and Zinc DTPA.

  6. RADIATION DETECTOR

    DOE Patents [OSTI]

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  7. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  8. Emergency Management System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-25

    The order establishes policy, and assigns and describes roles and responsibilities for the DOE Emergency Management System. DOE 5500.1B Chg 1; DOE 5500.2B Chg 1; DOE 5500.3A Chg 1; DOE 5500.4A; DOE 5500.5A; DOE 5500.7B; DOE 5500.8A; DOE 5500.9A, and DOE 5500.10A Chg 1. Canceled by DOE O 151.1A.

  9. Emergency Exercise to Focus on Aerial Radiation Detection and Measuring

    National Nuclear Security Administration (NNSA)

    Systems at Nevada National Security Site | National Nuclear Security Administration | (NNSA) and on Facebook, Twitter, Tumblr, YouTube and Flickr

  10. Emergency Exercise to Focus on Aerial Radiation Detection and Measuring

    National Nuclear Security Administration (NNSA)

    Systems at Nevada National Security Site | National Nuclear Security Administration | (NNSA) and on Facebook, Twitter, Tumblr, YouTube and Flickr

  11. ORISE: REAC/TS Strengthens Preparedness for Radiation Emergencies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant complex in Wolsong, South Korea. The Republic of Korea Ministry of Science and Technology (MOST) invited REACTS Director Albert Wiley, M.D., Ph.D., to report on his...

  12. ORISE: Operating Public Shelters in a Radiation Emergency | How...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The guide will be promoted during the Public Health Preparedness Summit in Atlanta, Ga., April 14-17. How ORISE is Making a Difference The project began with a series of workshops ...

  13. Emergency Responder Radioactive Material Quick Reference Sheet

    Broader source: Energy.gov [DOE]

    Transportation Emergency Preparedness Program (TEPP) Emergency Responder Radioactive Material Quick Reference Sheet

  14. Emergency Management Concepts, Existing Guidance, and Changes

    Broader source: Energy.gov [DOE]

    Presenter: David Freshwater, Emergency Management Specialist, Office of Emergency Management, National Nuclear Security Administration

  15. Emergency Management Fundamentals and the Operational Emergency Base Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11

    The Guide provides information about the emergency management fundamentals imbedded in the requirements of DOE O 151.1C, as well as acceptable methods of meeting the requirements for the Operational Emergency Base Program, which ensures that all DOE facilities have effective capabilities for all emergency response. Supersedes DOE G 151.1-1, Volume 1.

  16. Attachment E: Emergency Response Activities

    Broader source: Energy.gov [DOE]

    States may or may not elect to fund emergency management activities with AIP money. If they do, the AIP should include an Emergency Management section. This section may be implemented at any time —...

  17. WIPP Activates Emergency Operations Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 5, 2015 WIPP Activates Emergency Operations Center At approximately 7:00 p.m. MDT on Tuesday, August 4, the Waste Isolation Pilot Plant (WIPP) activated the Emergency...

  18. RADIATION INTEGRATOR

    DOE Patents [OSTI]

    Glass, F.M.; Wilson, H.N.

    1959-02-17

    Radiation detecting and measuring systems, particularly a compact, integrating, background monitor, are discussed. One of the principal features of the system is the use of an electrometer tube where the input of the tube is directly connected to an electrode of the radiation detector and a capacitor is coupled to the tube input. When a predetermined quantity of radiation has been integrated, a trigger signal is fed to a recorder and a charge is delivered to the capacitor to render the tube inoperative. The capacitor is then recharged for the next period of operation. With this arrangement there is a substantial reduction in lead lengths and the principal components may be enclosed and hermetically sealed to insure low leakage.

  19. Radiation receiver

    DOE Patents [OSTI]

    Hunt, Arlon J.

    1983-01-01

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  20. Radiation receiver

    DOE Patents [OSTI]

    Hunt, A.J.

    1983-09-13

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  1. ORISE: REAC/TS Radiation Treatment Medications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment Medications The Radiation Emergency Assistance Center/Training Site (REAC/TS) is a valuable resource in the use of drug therapies to treat radiation exposure. REAC/TS maintains a repository of clinical information and qualified staff provide expertise to practitioners worldwide on the use of calcium and zinc diethylenetriaminepentaacetic acid (DTPA) and Radiogardase (Prussian Blue). Calcium-DTPA and zinc-DTPA are injectable chelating agents used to enhance the excretion of plutonium

  2. Radiation Shielding Properties of Some Marbles in Turkey

    SciTech Connect (OSTI)

    Guenoglu, K.; Akkurt, I.

    2011-12-26

    Especially after development of technology, radiation started to be used in a large fields such as medicine, industry and energy. Using radiation in those fields bring hazardous effect of radiation into humancell. Thus radiation protection becomes important in physics. Although there are three ways for radiation protection, shielding of the radiation is the most commonly used method. Natural Stones such as marble is used as construction material especially in critical building and thus its radiation shielding capability should be determined.In this study, gamma ray shielding properties of some different types of marble mined in Turkey, have been measured using a NaI(Tl) scintillator detector. The measured results were also compared with the theoretical calculations XCOM.

  3. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes

    SciTech Connect (OSTI)

    Basyigit, Celalettin; Uysal, Volkan; Kilincarslan, Semsettin; Akkas, Ayse; Mavi, Betuel; Guenoglu, Kadir; Akkurt, Iskender

    2011-12-26

    The radiation although has hazardous effects for human health, developing technologies bring lots of usage fields to radiation like in medicine and nuclear power station buildings. In this case protecting from undesirable radiation is a necessity for human health. Heavyweight concrete is one of the most important materials used in where radiation should be shielded, like those areas. In this study, used heavyweight aggregates of different mineral origin (Limonite, Siderite), in order to prepare different series in concrete mixtures and investigated radiation shielding properties. The experimental results on measuring the radiation shielding, the heavyweight concrete prepared with heavyweight aggregates of different mineral origin show that, are useful radiation absorbents when they used in concrete mixtures.

  4. OFFICE FOR EMERGENCY MANAGEMENT

    Office of Legacy Management (LM)

    OFFICE FOR EMERGENCY MANAGEMENT 155OP STREETNW. WiSHINGTON. D.C. ' , iQns 25,19&L At-t :. I' .' ~ at l530 P Btmat, IO&, XtwMn&m, 0. 6., at 9130 A.Jb Sa 1 llmbemupoftbaaomlttaal8~f~r :::i.: :;::j:/ :::.,:.,::: . . . -2, . -3- .,... .:.:. . . ,::;:: 2. lktlv4rsityof-ta ?oral8rtbnsfoaofth4~cnlLmd farumd4rContraotO~~9 t4a : lwlnde the d4v4logmullt. construotion j andop4ratloaofadditl~auls, s~tNm4t4ln. /; ./ 3. alllY4rsltyofcb.l4s&o on4fth4w*callyd sar tmdor OoBtroct OEUS~ 7 :;::.

  5. radiation.p65

    Office of Legacy Management (LM)

    Potential Health Hazards of Radiation Man-made sources of radiation, most notably from medical uses and consumer products, contribute to the remaining radiation dose that ...

  6. Medicine Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Page Technique Activity Start Date Activity End Date Reference Material Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Geothermal Literature Review 1984...

  7. Texas Emerging Technology Fund | Open Energy Information

    Open Energy Info (EERE)

    Emerging Technology Fund Jump to: navigation, search Name: Texas Emerging Technology Fund Place: Texas Product: String representation "The Texas Emerg ... hnology fields." is too...

  8. Standard Format and Content for Emergency Plans

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume addresses recommended emergency plan format and content for Operational Emergency Base Programs and Operational Emergency Hazardous Material Programs. Canceled by DOE G 151.1-3.

  9. West Valley Demonstration Project Transportation Emergency Management...

    Office of Environmental Management (EM)

    EOC Emergency Operations Center EPZ Emergency Planning Zone ERO Emergency Response ... that contributed to MPOSS performance problems identified later in this report: * ...

  10. Emergent Horava gravity in graphene

    SciTech Connect (OSTI)

    Volovik, G.E.; L. D. Landau Institute for Theoretical Physics, Kosygina 2, 119334 Moscow ; Zubkov, M.A.

    2014-01-15

    First of all, we reconsider the tight-binding model of monolayer graphene, in which the variations of the hopping parameters are allowed. We demonstrate that the emergent 2D Weitzenbock geometry as well as the emergent U(1) gauge field appear. The emergent gauge field is equal to the linear combination of the components of the zweibein. Therefore, we actually deal with the gauge fixed version of the emergent 2+1 D teleparallel gravity. In particular, we work out the case, when the variations of the hopping parameters are due to the elastic deformations, and relate the elastic deformations with the emergent zweibein. Next, we investigate the tight-binding model with the varying intralayer hopping parameters for the multilayer graphene with the ABC stacking. In this case the emergent 2D Weitzenbock geometry and the emergent U(1) gauge field appear as well, and the emergent low energy effective field theory has the anisotropic scaling. -- Highlights: The tight-binding model for graphene with varying hopping parameters is considered. The emergent gravity and emergent gauge fields are derived. For the case of the multilayer graphene we obtain the analogue of Horava gravity with anisotropic scaling.

  11. User Facility Access Policy | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Access Policy 1. Summary The Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC National Accelerator Laboratory is a U.S. Department of Energy (DOE) Office of Science national user facility that provides synchrotron radiation to researchers in many fields of science and technology, including biology, catalysis, chemistry, energy, engineering, forensics, geoscience, materials science, medicine, molecular environmental science, and physics. With a pioneering start in 1974, the

  12. Radiation Protection and Safety Training | Environmental Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Protection and Safety Training (3 hrs) Instructors: John Seaman and Neil Miller ... with an introduction to the fundamentals of ionizing radiation protection and safety. ...

  13. PIA - Richland Occupational Medicine Contract | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medicine Contract PIA - Richland Occupational Medicine Contract PIA - Richland Occupational Medicine Contract PIA - Richland Occupational Medicine Contract (60.05 KB) More Documents & Publications Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory

  14. Revealing the Nature of Emergent Ferromagnetism at an Oxide Heterointerface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Stanford Synchrotron Radiation Lightsource Revealing the Nature of Emergent Ferromagnetism at an Oxide Heterointerface Monday, September 30, 2013 image [Figure 1] Using circularly polarized x-rays at the Ti L2,3-edges, the researchers directly probed the ferromagnetism in the Ti dxy orbitals at the LaAlO3/SrTiO3 heterointerface. A fundamental feature of emergent materials such as oxide heterostructures is the interplay between charge, spin, orbital, and lattice degrees of freedom that

  15. Emergency core cooling system

    DOE Patents [OSTI]

    Schenewerk, William E.; Glasgow, Lyle E.

    1983-01-01

    A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

  16. Emerging Technologies and MOUT

    SciTech Connect (OSTI)

    YONAS,GEROLD; MOY,TIMOTHY DAVID

    2000-11-15

    Operating in a potentially hostile city is every soldier's nightmare. The staggering complexity of the urban environment means that deadly threats--or non-combatants-may lurk behind every corner, doorway, or window. Urban operations present an almost unparalleled challenge to the modern professional military. The complexity of urban operations is further amplified by the diversity of missions that the military will be called upon to conduct in urban terrain. Peace-making and peace-keeping missions, urban raids to seize airports or WMD sites or to rescue hostages, and extended urban combat operations all present different sorts of challenges for planners and troops on the ground. Technology almost never serves as a magic bullet, and past predictions of technological miracles pile high on the ash heap of history. At the same time, it is a vital element of planning in the modern age to consider and, if possible, take advantage of emerging technologies. We believe that technologies can assist military operations in urbanized terrain (MOUT) in three primary areas, which are discussed.

  17. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Hirohito Ogasawara, Stanford Synchrotron Radiation Lightsource Dennis Nordlund, Stanford Synchrotron Radiation Lightsource Anders Nilsson, Stanford Synchrotron ...

  18. Emergency Readiness Assurance Plans (ERAPs)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume describes the assessments and documentation that would ensure that stated response capabilities are sufficient to implement emergency plans. Canceled by DOE G 151.1-3.

  19. emergency | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure ...

  20. Drill Program Ensures Emergency Preparedness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Preparedness As part of its Corrective Action Plans in response to the Accident Investigation Board reports for the February fire and radiological events, the WIPP ...

  1. Transportation Emergency Preparedness Program (TEPP)

    Broader source: Energy.gov [DOE]

    In an effort to address responder concerns, the Department retooled its approach to emergency responder preparedness and implemented the more simplified and responder-friendly Transportation...

  2. ORISE: REAC/TS Medical Management of Radiation Incidents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medical Management of Radiation Incidents As part of its primary mission for the U.S. Department of Energy (DOE), the Radiation Emergency Assistance Center/Training Site (REAC/TS) at the Oak Ridge Institute for Science and Education (ORISE) is available 24 hours a day, seven days a week to consult with officials from any federal, state or local government agency; industries; international governments or organizations; or individuals needing assistance with the medical management of a radiation

  3. Order Module--NNSA OCCUPATIONAL RADIATION PROTECTION | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NNSA OCCUPATIONAL RADIATION PROTECTION Order Module--NNSA OCCUPATIONAL RADIATION PROTECTION The familiar level of this module is designed to provide the basic information to meet the requirements that are related to 10 CFR 835, "Occupational Radiation Protection," in the following DOE Functional Area Qualification Standards: DOE-STD-1177-2004, Emergency Management DOE-STD-1151-2002, Facility Representative DOE-STD-1146-2007, General Technical Base DOE-STD-1138-2007, Industrial Hygiene

  4. Emergency Situation Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Center » Reporting » Emergency Situation Reports Emergency Situation Reports VIEW EMERGENCY SITUATION REPORTS The Office of Electricity Delivery and Energy Reliability issues public Situation Reports during large scale energy emergencies. View current and past reports. Related Links Community Guidelines for Energy Emergencies Energy Assurance Daily (EAD) Emergency Situation Reports Congressional Testimony Library Educational Resources Reporting Electric Disturbance Events Incident

  5. Code System for Emergency Response Dose Assessment.

    Energy Science and Technology Software Center (OSTI)

    2002-01-16

    Version: 00 A dose assessment model for emergency response applications. Dose pathways represented in the model are those that are most likely to be important during and immediately following a release (hours) rather than over an extended time frame (days or weeks). The doses computed include: external dose resulting from exposure to radiation emitted by radionuclides in the air and deposited on the ground, internal dose commitment resulting from inhalation, and total whole-body dose. Threemore » preprocessors are included. RSFPREP generates the MESORAD run specification (input) file, METWR creates the meteorological data file, and RELPREP prepares the release definition file. PRNT is a postprocessor for generating printer or screen-compatible output. All four programs run interactively. MESORAD was developed from version 2.0 of the MESOI atmospheric dispersion model (NESC 9862) retaining its modular nature.« less

  6. Emergent universe in spatially flat cosmological model

    SciTech Connect (OSTI)

    Zhang, Kaituo; Yu, Hongwei; Wu, Puxun E-mail: wpx0227@gmail.com

    2014-01-01

    The scenario of an emergent universe provides a promising resolution to the big bang singularity in universes with positive or negative spatial curvature. It however remains unclear whether the scenario can be successfully implemented in a spatially flat universe which seems to be favored by present cosmological observations. In this paper, we study the stability of Einstein static state solutions in a spatially flat Shtanov-Sahni braneworld scenario. With a negative dark radiation term included and assuming a scalar field as the only matter energy component, we find that the universe can stay at an Einstein static state past eternally and then evolve to an inflation phase naturally as the scalar field climbs up its potential slowly. In addition, we also propose a concrete potential of the scalar field that realizes this scenario.

  7. Departmental Radiological Emergency Response Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-06-27

    The order establishes requirements and responsibilities for the DOE/NNSA national radiological emergency response assets and capabilities and Nuclear Emergency Support Team assets. Supersedes DOE O 5530.1A, DOE O 5530.2, DOE O 5530.3, DOE O 5530.4, and DOE O 5530.5.

  8. Energy Emergency Planning and Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-07-08

    To establish the administrative and operational framework of the Energy Emergency Management System (EEMS), and to establish the general criteria for the development and coordination of the Department's energy emergency planning activities. Cancels DOE 5500.8. Canceled by DOE O 151.1 of 9-25-95.

  9. Emergency Operating Records Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-10-23

    To establish the policy, responsibilities, and requirements for a Departmental Emergency Operating Records Protection Program to safeguard that core or records deemed necessary to assure continuity of essential Governmental activities during and following disaster and attack-related emergency conditions. Cancels DOE 5500.7A. Chanceled by DOE O 151.1 of 9-25-1995.

  10. September 2013 Most Viewed Documents for Biology And Medicine | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information September 2013 Most Viewed Documents for Biology And Medicine Drug Retention Times Center for Human Reliability Studies (2007) 29 Oleoresin Capsicum toxicology evaluation and hazard review Archuleta, M.M. (1995) 27 SURVEY OF NOISE SUPPRESSION SYSTEMS FOR ENGINE GENERATOR SETS. KRISHNA,C.R. (1999) 27 Site-Directed Research and Development FY 2012 Annual Report , (2013) 27 Human radiation studies: Remembering the early years. Oral

  11. Structure of Chinese Herbal-based Medicine Captured by ATP on a Human tRNA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthetase | Stanford Synchrotron Radiation Lightsource Structure of Chinese Herbal-based Medicine Captured by ATP on a Human tRNA Synthetase Thursday, October 31, 2013 For thousands of years the Chinese have been using the Chang Shan herb (Dichroa febrifuga Lour) to treat malaria-induced fevers (1). The active ingredient in the herb was eventually shown to be a small molecule known as febrifugine. A halogenated derivative of febrifugine, called halofuginone (HF), has been tested in clinical

  12. January 2013 Most Viewed Documents for Biology And Medicine | OSTI, US Dept

    Office of Scientific and Technical Information (OSTI)

    of Energy Office of Scientific and Technical Information January 2013 Most Viewed Documents for Biology And Medicine Nevada Test Site Radiological Control Manual Radiological Control Managers' Council Nevada Test Site Effects of ionizing radiation on the boreal forest: Canada's FIG experiment, with implications for radionuclides Amiro, B.D.; Sheppard, S.C Assessment of atmospheric metallic pollution in the metropolitan region of Sao Paulo, Brazil, employing Tillandsia usneoides L. as

  13. Symes Hotel and Medicinal Springs Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Symes Hotel and Medicinal Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Symes Hotel and Medicinal Springs Pool & Spa Low Temperature...

  14. Converting energy to medical progress [nuclear medicine] (Technical...

    Office of Scientific and Technical Information (OSTI)

    Converting energy to medical progress nuclear medicine Citation Details In-Document Search Title: Converting energy to medical progress nuclear medicine You are accessing a ...

  15. Medicine Bow Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Medicine Bow Wind Farm II Facility Medicine Bow Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Platte...

  16. Medicine Bow Wind Farm IV | Open Energy Information

    Open Energy Info (EERE)

    IV Jump to: navigation, search Name Medicine Bow Wind Farm IV Facility Medicine Bow Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Platte...

  17. Static Temperature Survey At Medicine Lake Area (Warpinski, Et...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Medicine Lake Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Medicine...

  18. Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy...

    Open Energy Info (EERE)

    Medicine Lake Area (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration...

  19. Medicine Bow Wind Farm III | Open Energy Information

    Open Energy Info (EERE)

    III Jump to: navigation, search Name Medicine Bow Wind Farm III Facility Medicine Bow Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Platte...

  20. Medicine Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Medicine Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Medicine Hot...

  1. Medicine Bow Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Medicine Bow Wind Farm I Facility Medicine Bow Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Platte...

  2. Flexible nuclear medicine camera and method of using

    DOE Patents [OSTI]

    Dilmanian, F.A.; Packer, S.; Slatkin, D.N.

    1996-12-10

    A nuclear medicine camera and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera includes a flexible frame containing a window, a photographic film, and a scintillation screen, with or without a gamma-ray collimator. The frame flexes for following the contour of the examination site on the patient, with the window being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film and the radiation source inside the patient. The frame is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms. 11 figs.

  3. Flexible nuclear medicine camera and method of using

    DOE Patents [OSTI]

    Dilmanian, F. Avraham; Packer, Samuel; Slatkin, Daniel N.

    1996-12-10

    A nuclear medicine camera 10 and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera 10 includes a flexible frame 20 containing a window 22, a photographic film 24, and a scintillation screen 26, with or without a gamma-ray collimator 34. The frame 20 flexes for following the contour of the examination site on the patient, with the window 22 being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film 24 and the radiation source inside the patient. The frame 20 is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame 20 for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms.

  4. Challenges With the Diagnosis and Treatment of Cerebral Radiation Necrosis

    SciTech Connect (OSTI)

    Chao, Samuel T.; Ahluwalia, Manmeet S.; Barnett, Gene H.; Stevens, Glen H.J.; Murphy, Erin S.; Stockham, Abigail L.; Shiue, Kevin; Suh, John H.

    2013-11-01

    The incidence of radiation necrosis has increased secondary to greater use of combined modality therapy for brain tumors and stereotactic radiosurgery. Given that its characteristics on standard imaging are no different that tumor recurrence, it is difficult to diagnose without use of more sophisticated imaging and nuclear medicine scans, although the accuracy of such scans is controversial. Historically, treatment had been limited to steroids, hyperbaric oxygen, anticoagulants, and surgical resection. A recent prospective randomized study has confirmed the efficacy of bevacizumab in treating radiation necrosis. Novel therapies include using focused interstitial laser thermal therapy. This article will review the diagnosis and treatment of radiation necrosis.

  5. RADIATION COUNTER

    DOE Patents [OSTI]

    Goldsworthy, W.W.

    1958-02-01

    This patent relates to a radiation counter, and more particularly, to a scintillation counter having high uniform sensitivity over a wide area and capable of measuring alpha, beta, and gamma contamination over wide energy ranges, for use in quickly checking the contami-nation of personnel. Several photomultiplier tubes are disposed in parallel relationship with a light tight housing behind a wall of scintillation material. Mounted within the housing with the photomultipliers are circuit means for producing an audible sound for each pulse detected, and a range selector developing a voltage proportional to the repetition rate of the detected pulses and automatically altering its time constant when the voltage reaches a predetermined value, so that manual range adjustment of associated metering means is not required.

  6. Radiation dosimeters

    DOE Patents [OSTI]

    Hoelsher, James W.; Hegland, Joel E.; Braunlich, Peter F.; Tetzlaff, Wolfgang

    1992-01-01

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  7. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative

  8. planning for emergencies | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    planning for emergencies HQ Emergency Management Team (EMT) NNSA's Headquarters (HQ) EMT is the sole emergency focal point for HQ during an emergency. The HQ EMT acquires and manages event-related information, monitors HQ and field response actions, coordinates with other federal agencies, and receives/elicits emergency-related information: ... Homeland Security and Emergency Management Coordination (HSEMC) Program The Office of Emergency Management assists the NNSA and Department of Energy

  9. Adaptors for radiation detectors

    DOE Patents [OSTI]

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  10. Adaptors for radiation detectors

    SciTech Connect (OSTI)

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  11. CRAD, NNSA- Emergency Preparedness (EP)

    Broader source: Energy.gov [DOE]

    CRAD for Emergency Preparedness (EP). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  12. New Emergency Equipment Notifications 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notifications 2016 Addition of New Emergency Equipment, Hazardous Waste Facility Permit Number: NM4890139088-TSDF Todd A. Shrader/CBFO and Philip J. Breidenbach/NWP dated January 8, 2016 Underground Fire Suppression Vehicles

  13. Emergency Information | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delayed Start or Cancellation of Business Hours Winter Road Closings Winter Weather FAQs Westgate Alternate Routes Reporting Illegal/Unethical Activity Working Remotely Extracurricular Activities Library Alumni Emergency Information Current status: Laboratory Operations are normal. All employees should report to work for their assigned shifts. Employees should check this page for information in the event of an operational emergency or other change in operations at Argonne National Laboratory.

  14. Emergency Response Exercise | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preparedness Emergency Preparedness ISER is responsible for coordinating the protection of critical energy assets and assisting Federal, State, and local governments with disruption preparation, response, and mitigation in support of Presidential Policy Directive 8. DOE (through ISER) is the lead office for executing the Emergency Support Function 12 Energy (ESF-12) mission. This mission is outlined in the National Response Framework (NRF), and it facilitates the assessment, reporting, and

  15. Emergency Preparedness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preparedness Emergency Preparedness ISER is responsible for coordinating the protection of critical energy assets and assisting Federal, State, and local governments with disruption preparation, response, and mitigation in support of Presidential Policy Directive 8. DOE (through ISER) is the lead office for executing the Emergency Support Function 12 Energy (ESF-12) mission. This mission is outlined in the National Response Framework (NRF), and it facilitates the assessment, reporting, and

  16. Emerging Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies Emerging Technologies EERE Success Story-Software Platform Offers Underserved Smaller Buildings Sector an Innovative Solution for Cutting Energy Costs EERE Success Story-Software Platform Offers Underserved Smaller Buildings Sector an Innovative Solution for Cutting Energy Costs Virginia Tech is working with DOE to make BEMOSS a scalable, interoperable, plug-and-play building automation and energy management solution. Read more Report Highlights Significant Energy Savings

  17. Emergency Operations Training Academy | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Emergency Operations Training Academy Emergency Operations Training Academy The Office of Emergency Operations, NA-40-The Emergency Operations Training Academy (EOTA) EOTA provides training and education to enhance the readiness of personnel in the radiological-nuclear emergency operations community. For more information or to contact us, visit the EOTA website at

  18. Building International Emergency Management Systems | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Building International Emergency Management Systems NNSA helps nations develop the core elements of an emergency response program. Based on preliminary discussions with counterparts, NNSA develops emergency management programs with partner nations to exchange views and enhance development of effective emergency management systems. Generally, NNSA will assist foreign governments and international organizations with integration of emergency-program core

  19. Emergency Response Health & Safety Manual

    Office of Scientific and Technical Information (OSTI)

    ... in immediate injury or death if not done appropriately. ... decision of the Supreme Court of the United States in UAEW v. ... radiation exposure rate of 0.05 rem (50 mrem) per month. ...

  20. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sheep Cortical Bone Using Synchrotron Radiation Transmission X-ray Microscopy", PLoS ONE ... Garry R. Brock, Cornell University Joy C. Andrews, Stanford Synchrotron Radiation ...

  1. Radiation Effects Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Atmospheric Radiation Measurement Climate Reasearch Facility Geomechanics and ... Twitter Google + Vimeo Newsletter Signup SlideShare Radiation Effects Sciences Home...

  2. emergency management systems | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    systems NNSA sites prepared for disasters using real-time response management system Pantex Emergency Services now uses the Emergency Management Information System, or EMInS. From left: Maribel Martinez, Brenda Graham and Greg Roddahl. One of NNSA's missions is emergency response, so it only makes sense that our sites and labs excel at emergency management on the local level. When... Building International Emergency Management Systems NNSA helps nations develop the core elements of an emergency

  3. emergency management team | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    team NNSA sites prepared for disasters using real-time response management system Pantex Emergency Services now uses the Emergency Management Information System, or EMInS. From left: Maribel Martinez, Brenda Graham and Greg Roddahl. One of NNSA's missions is emergency response, so it only makes sense that our sites and labs excel at emergency management on the local level. When... HQ Emergency Management Team (EMT) NNSA's Headquarters (HQ) EMT is the sole emergency focal point for HQ during an

  4. 3510T1 Emergency Response Protocol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    510 Appendix T1 Emergency Response Protocol 1.0 Purpose This emergency response procedure is used by everyone at Jefferson Lab as the basis for response during an emergency situation in the absence of management direction. By their very nature, emergencies pose unique challenges, Jefferson Lab recognizes that listing the requirements for every possible emergency is prohibitive, but has used identified plausible situations to produce this guidance. For general lab-wide emergency procedures: 2.0

  5. Emergency Information | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Emergency Information The Sandia Field Office (SFO) Emergency Management System is designed to ensure that SFO, its contractors, and its tenants can respond effectively and efficiently to events categorized as operational emergencies and significant non-emergency events, and can provide emergency assistance so that appropriate response measures can be taken to protect workers, the public, the environment, and national security. The SFO maintains a cadre of experienced emergency response subject

  6. OPPORTUNITIES IN SMR EMERGENCY PLANNING

    SciTech Connect (OSTI)

    Moe, Wayne

    2014-06-01

    This paper discusses the results of a cost/benefit-oriented assessment related to sizing of the emergency planning zones (EPZs) for advanced, small modular reactors (SMRs). An appropriately sized EPZ could result in significant cost savings for SMR licensees. Papers published by the U.S. Nuclear Regulatory Commission and other organizations discuss the applicability of current emergency preparedness regulatory requirements to SMRs, including determining an appropriate EPZ size. Both the NRC and the industry recognize that a methodology should be developed for determining appropriate EPZ sizing for SMRs. Relative costs for smaller EPZs envisioned for SMRs have been assessed qualitatively as discussed in this paper. Building off the foundation provided in the earlier papers, this paper provides a quantitative cost/benefit-oriented assessment of offsite emergency planning costs for EPZ sizes that may be justified for SMRs as compared to costs typically incurred for the current fleet of U.S. nuclear power plants. This assessment determined that a licensee utilizing a smaller EPZ could realize significant savings in offsite emergency planning costs over the nominal 40-year lifetime for an SMR. This cost/benefit-oriented assessment suggests that a reduction of the plume exposure pathway EPZ from 10 miles to the site boundary could reduce offsite emergency planning related costs by more than 90% over the 40 year life of a typical single unit nuclear power plant.

  7. Radiation effects on corrosion of zirconium alloys

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.

    1989-06-01

    From the wide use of zirconium alloys as components in nuclear reactors, has come clear evidence that reactor radiation is a major corrosion parameter. The evidence emerges from comparisons of zirconium alloy corrosion behavior in different reactor types, for example, BWRs versus PWRs and in corresponding reactor loop chemistries; also, oxidation rates differ with location along components such as fuel rods and reactor pressure tubes. In most respects, oxidation effects on power reactor components are paralleled by oxidation behavior on specimens exposed to radiation in reactor loops.

  8. Security, Emergency Planning & Safety Records | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security, Emergency Planning & Safety Records Security, Emergency Planning & Safety Records PDF icon ADM 180.pdf More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 18: ...

  9. Emergency First Responders' Experience with Colorimetric Detection...

    Office of Scientific and Technical Information (OSTI)

    Emergency First Responders' Experience with Colorimetric Detection Methods Citation Details In-Document Search Title: Emergency First Responders' Experience with Colorimetric ...

  10. Emerging Lighting Technology | Department of Energy

    Energy Savers [EERE]

    Emerging Lighting Technology Emerging Lighting Technology Presentation covers emergying light technologies and is given at the Spring 2011 Federal Utility Partnership Working Group ...

  11. Emergence BioEnergy | Open Energy Information

    Open Energy Info (EERE)

    Emergence BioEnergy Jump to: navigation, search Name: Emergence BioEnergy Place: Massachusetts Product: MA-based startup company focused on providing power generation capabilities...

  12. WIPP Receives New Emergency Response Vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 19, 2015 WIPP Receives New Emergency Response Vehicle WIPP recently placed a new emergency response vehicle into service. The new fire engine "Engine 24" will enhance...

  13. ORISE: Chemical Stockpile Emergency Preparedness Program Training...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training HSEEP Training Spokesperson Training Incident Command System Training Emergency Management Emergency Response Crisis and Risk Communication Forensic Science How ORISE is...

  14. ORISE: National Security and Emergency Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Management Emergency Response Crisis and Risk Communication Forensic Science How ORISE is Making a Difference Overview Exercises and Planning Training and Technology...

  15. nuclear emergency | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home nuclear emergency nuclear emergency Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, and ...

  16. Research & Development Roadmap: Emerging Water Heating Technologies...

    Office of Environmental Management (EM)

    Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies ...

  17. Power Marketing Administration Emergency Management Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-18

    This Manual establishes emergency management policy and requirements for emergency planning, preparedness, readiness assurance, and response for the Department's Power Marketing Administrations. Supersedes DOE O 5500.11.

  18. Enterprise Assessments Emergency Management Assessment of the...

    Office of Environmental Management (EM)

    Emergency Management Assessment of the Waste Isolation Pilot Plant - April 2016 Enterprise Assessments Emergency Management Assessment of the Waste Isolation Pilot Plant - April ...

  19. High resolution amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  20. High resolution amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  1. Emerging Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies Emerging Technologies Last January, we took a look at how ARPA-E performer, 1366 Technologies is working to dramatically reduce the cost of solar energy. A year later, we revisited their headquarters in Lexington, MA to see the progress they've made. Featured Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power

  2. Apparatus and method to compensate for refraction of radiation

    DOE Patents [OSTI]

    Allen, G.R.; Moskowitz, P.E.

    1990-03-27

    An apparatus to compensate for refraction of radiation passing through a curved wall of an article is provided. The apparatus of a preferred embodiment is particularly advantageous for use in arc tube discharge diagnostics. The apparatus of the preferred embodiment includes means for pre-refracting radiation on a predetermined path by an amount equal and inverse to refraction which occurs when radiation passes through a first wall of the arc tube such that, when the radiation passes through the first wall of the arc tube and into the cavity thereof, the radiation passes through the cavity approximately on the predetermined path; means for releasably holding the article such that the radiation passes through the cavity thereof; and means for post-refracting radiation emerging from a point of the arc tube opposite its point of entry by an amount equal and inverse to refraction which occurs when radiation emerges from the arc tube. In one embodiment the means for pre-refracting radiation includes a first half tube comprising a longitudinally bisected tube obtained from a tube which is approximately identical to the arc tube's cylindrical portion and a first cylindrical lens, the first half tube being mounted with its concave side facing the radiation source and the first cylindrical lens being mounted between the first half tube and the arc tube and the means for post-refracting radiation includes a second half tube comprising a longitudinally bisected tube obtained from a tube which is approximately identical to the arc tube's cylindrical portion and a second cylindrical lens, the second half tube being mounted with its convex side facing the radiation source and the second cylindrical lens being mounted between the arc tube and the second half tube. Methods to compensate for refraction of radiation passing into and out of an arc tube is also provided. 4 figs.

  3. Apparatus and method to compensate for refraction of radiation

    DOE Patents [OSTI]

    Allen, Gary R.; Moskowitz, Philip E.

    1990-01-01

    An apparatus to compensate for refraction of radiation passing through a curved wall of an article is provided. The apparatus of a preferred embodiment is particularly advantageous for use in arc tube discharge diagnostics. The apparatus of the preferred embodiment includes means for pre-refracting radiation on a predetermined path by an amount equal and inverse to refraction which occurs when radiation passes through a first wall of the arc tube such that, when the radiation passes through the first wall of the arc tube and into the cavity thereof, the radiation passes through the cavity approximately on the predetermined path; means for releasably holding the article such that the radiation passes through the cavity thereof; and means for post-refracting radiation emerging from a point of the arc tube opposite its point of entry by an amount equal and inverse to refraction which occurs when radiation emerges from the arc tube. In one embodiment the means for pre-refracting radiation includes a first half tube comprising a longitudinally bisected tube obtained from a tube which is approximately identical to the arc tube's cylindrical portion and a first cylindrical lens, the first half tube being mounted with its concave side facing the radiation source and the first cylindrical lens being mounted between the first half tube and the arc tube and the means for post-refracting radiation includes a second half tube comprising a longitudinally bisected tube obtained from a tube which is approximately identical to the arc tube's cylindrical portion and a second cylindrical lens, the second half tube being mounted with its convex side facing the radiation source and the second cylindrical lens being mounted between the arc tube and the second half tube. Methods to compensate for refraction of radiation passing into and out of an arc tube is also provided.

  4. Biology and Medicine Division: Annual report 1986

    SciTech Connect (OSTI)

    Not Available

    1987-04-01

    The Biology and Medicine Division continues to make important contributions in scientific areas in which it has a long-established leadership role. For 50 years the Division has pioneered in the application of radioisotopes and charged particles to biology and medicine. There is a growing emphasis on cellular and molecular applications in the work of all the Division's research groups. The powerful tools of genetic engineering, the use of recombinant products, the analytical application of DNA probes, and the use of restriction fragment length polymorphic DNA are described and proposed for increasing use in the future.

  5. Wireless radiation sensor

    DOE Patents [OSTI]

    Lamberti, Vincent E.; Howell, Jr, Layton N.; Mee, David K.; Kress, Reid L.

    2016-08-09

    Disclosed is a sensor for detecting radiation. The sensor includes a ferromagnetic metal and a radiation sensitive material coupled to the ferromagnetic metal. The radiation sensitive material is operable to change a tensile stress of the ferromagnetic metal upon exposure to radiation. The radiation is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  6. Radiation effects in the environment

    SciTech Connect (OSTI)

    Begay, F.; Rosen, L.; Petersen, D.F.; Mason, C.; Travis, B.; Yazzie, A.; Isaac, M.C.P.; Seaborg, G.T.; Leavitt, C.P.

    1999-04-01

    Although the Navajo possess substantial resource wealth-coal, gas, uranium, water-this potential wealth has been translated into limited permanent economic or political power. In fact, wealth or potential for wealth has often made the Navajo the victims of more powerful interests greedy for the assets under limited Navajo control. The primary focus for this education workshop on the radiation effects in the environment is to provide a forum where scientists from the nuclear science and technology community can share their knowledge toward the advancement and diffusion of nuclear science and technology issues for the Navajo public. The scientists will make an attempt to consider the following basic questions; what is science; what is mathematics; what is nuclear radiation? Seven papers are included in this report: Navajo view of radiation; Nuclear energy, national security and international stability; ABC`s of nuclear science; Nuclear medicine: 100 years in the making; Radon in the environment; Bicarbonate leaching of uranium; and Computational methods for subsurface flow and transport. The proceedings of this workshop will be used as a valuable reference materials in future workshops and K-14 classrooms in Navajo communities that need to improve basic understanding of nuclear science and technology issues. Results of the Begay-Stevens research has revealed the existence of strange and mysterious concepts in the Navajo Language of nature. With these research results Begay and Stevens prepared a lecture entitled The Physics of Laser Fusion in the Navajo language. This lecture has been delivered in numerous Navajo schools, and in universities and colleges in the US, Canada, and Alaska.

  7. emergency

    Broader source: Energy.gov (indexed) [DOE]

    ... When in doubt, throw it out. s Use portable generators cautiously. They can be used to provide limited electrical power during an outage. But, take care to ensure that they do not ...

  8. EMERGENCY SHUTDOWN FOR NUCLEAR REACTORS

    DOE Patents [OSTI]

    Paget, J.A.; Koutz, S.L.; Stone, R.S.; Stewart, H.B.

    1963-12-24

    An emergency shutdown or scram apparatus for use in a nuclear reactor that includes a neutron absorber suspended from a temperature responsive substance that is selected to fail at a preselected temperature in excess of the normal reactor operating temperature, whereby the neutron absorber is released and allowed to fall under gravity to a preselected position within the reactor core is presented. (AEC)

  9. Florida's Emergency Shelters Go Solar

    Broader source: Energy.gov [DOE]

    Florida has its fair share of dangerous weather conditions including hurricanes, tornados and floods. Florida legislature passed various laws and made revisions addressing disaster planning which required that the Department of Education, in consultation with school boards and county and state emergency management offices, develop design standards for public shelters to be incorporated into State Requirements for Educational Facilities.

  10. Radioactive Materials Emergencies Course Presentation

    Broader source: Energy.gov [DOE]

    The Hanford Fire Department has developed this training to assist emergency responders in understanding the hazards in responding to events involving radioactive materials, to know the fundamentals of radioactive contamination, to understand the biological affects of exposure to radioactive materials, and to know how to appropriately respond to hazardous material events involving radioactive materials.

  11. Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant

    SciTech Connect (OSTI)

    Hickey, Eva E.; Strom, Daniel J.

    2005-08-01

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

  12. Responding to Emergencies | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    radiological data, medical care, and advice for individuals exposed to ionizing radiation. ... use and interpretation of specialized radiation detection equipment; core technical ...

  13. Transportation Emergency Preparedness Program - Making A Difference |

    Office of Environmental Management (EM)

    Department of Energy - Making A Difference Transportation Emergency Preparedness Program - Making A Difference Overview of TEPP presented by Tom Clawson. Transportation Emergency Preparedness Program - Making A Difference (493.76 KB) More Documents & Publications Transportation Emergency Preparedness Program Exercise Overview Transportation Emergency Preparedness Program 2012 TEPP Annual Report

  14. Transportation Emergency Preparedness Program | Department of Energy

    Office of Environmental Management (EM)

    Program Transportation Emergency Preparedness Program Planning for a Shipment Campaign - Identification of Responder Needs Transportation Emergency Preparedness Program (721.32 KB) More Documents & Publications Transportation Emergency Preparedness Program - Making A Difference 2012 TEPP Annual Report Transportation Emergency Preparedness Program Exercise Overview

  15. Energy Emergency Energy Emergency Preparedness Quarterly Preparedness Quarterly

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 J U L Y 1 5 , 2 0 1 2 U.S. DEPARTMENT OF ENERGY OE Hosts National Energy Assurance Conference Office of Electricity Delivery and Energy Reliability (OE) Infrastructure Security and Energy Restoration (ISER) Deputy Assistant Secretary ISER William N. Bryan Director Infrastructure Reliability ISER Stewart Cedres DOE Supports 2012 NATO Summit Visit us at: http://energy.gov/oe/services/energy-assurance/emergency-preparedness OE and the National Association of State Energy Officials (NASEO) hosted

  16. About Emergency Response | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Emergency Response About Emergency Response NNSA's Office of Emergency Operations is the United States government's primary capability for radiological and nuclear emergency response and for providing security to the nation from the threat of nuclear terrorism. The Office of Emergency Operations maintains a high level of readiness for protecting and serving the U.S. and its allies through the development, implementation and coordination of programs and systems designed to serve as a

  17. Emergency Communications | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Emergency Communications Emergency Communications Network logo NNSA's Emergency Communications Network (ECN) provides managers at NNSA with the capability to exchange real-time voice, data, and video information for managing emergency situations that involve NNSA assets and interests. The Emergency Communications Network is a multi-faceted communications network providing classified and unclassified voice, video, and data communications between NNSA headquarters and approximately 55

  18. Emergency Operations Training Academy | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Response / Training Emergency Operations Training Academy Rotating image showing pictures of Classroom, Online and Hands on trainings The Office of Emergency Operations, NA-40-The Emergency Operations Training Academy (EOTA) EOTA provides training and education to enhance the readiness of personnel in the radiological-nuclear emergency operations community. For more information or to contact us, visit the EOTA website at: http://eota.energy.gov/ Vision The Emergency

  19. DOE - NNSA/NFO -- Emergency Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Information NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Emergency Information In the event of an emergency, the Nevada Field Office will provide you with needed information here as it becomes available. The Nevada Field Office Emergency Public Information Plan provides a framework for coordinated, accurate and timely release of information to Nevada Field Office employees, the news media, potentially affected members of the public and other stakeholders. Emergency

  20. Issues in Low Dose Radiation Biology: The Controversy Continues. A Perspective

    SciTech Connect (OSTI)

    Morgan, William F.; Bair, William J.

    2013-05-01

    Both natural and man-made sources of ionizing radiation contribute to human exposure and consequently pose a risk to human health. Much of this is unavoidable, e.g., natural background radiation, and as the use of radiation in modern medicine and industry increases so does the potential health risk. This perspective reflects the authors view of current issues in low dose radiation biology research, highlights some of the controversies therein, and suggests areas of future research to address these issues. The views expressed here are the authors own and do not represent any institution, organization or funding body.

  1. Radiation Safety Poster | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety Poster Radiation Safety Poster Radiation Safety Poster

  2. Plutonium radiation surrogate

    DOE Patents [OSTI]

    Frank, Michael I.

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  3. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling

    SciTech Connect (OSTI)

    NSTec Aerial Measurement Systems

    2012-07-31

    The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

  4. NREL: Solar Radiation Research - Solar Radiation Research Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Radiation Research Laboratory Photographs The Solar Radiation Research Laboratory (SRRL) houses more than 70 instruments to analyze and record solar radiation and surface ...

  5. Collisional-Radiative Modeling for Radiation Hydrodynamics (Book...

    Office of Scientific and Technical Information (OSTI)

    Publisher: Modern Methods in Collisional-Radiative Modelling of Plasmas, Collisional-Radiative Modeling for Radiation Hydrodynamics, Springer International Publishing, unknown, ...

  6. Emerging Technologies Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies Program supports R&D of technologies and systems that are capable of substantially reducing building primary energy use, and accelerates their introduction into the marketplace. External Influences: DOE budget, Spin-off products, Legislation, Market incentives, Private sector R&D, Energy prices, Legislation / Regulation Sub- Programs Objectives Activities / Partners Key Outputs Short Term Outcome Mid-Term Outcome Long Term Outcome Support R&D of high efficiency

  7. Emergency cooling system and method

    DOE Patents [OSTI]

    Oosterkamp, W.J.; Cheung, Y.K.

    1994-01-04

    An improved emergency cooling system and method are disclosed that may be adapted for incorporation into or use with a nuclear BWR wherein a reactor pressure vessel (RPV) containing a nuclear core and a heat transfer fluid for circulation in a heat transfer relationship with the core is housed within an annular sealed drywell and is fluid communicable therewith for passage thereto in an emergency situation the heat transfer fluid in a gaseous phase and any noncondensibles present in the RPV, an annular sealed wetwell houses the drywell, and a pressure suppression pool of liquid is disposed in the wetwell and is connected to the drywell by submerged vents. The improved emergency cooling system and method has a containment condenser for receiving condensible heat transfer fluid in a gaseous phase and noncondensibles for condensing at least a portion of the heat transfer fluid. The containment condenser has an inlet in fluid communication with the drywell for receiving heat transfer fluid and noncondensibles, a first outlet in fluid communication with the RPV for the return to the RPV of the condensed portion of the heat transfer fluid and a second outlet in fluid communication with the drywell for passage of the noncondensed balance of the heat transfer fluid and the noncondensibles. The noncondensed balance of the heat transfer fluid and the noncondensibles passed to the drywell from the containment condenser are mixed with the heat transfer fluid and the noncondensibles from the RPV for passage into the containment condenser. A water pool is provided in heat transfer relationship with the containment condenser and is thermally communicable in an emergency situation with an environment outside of the drywell and the wetwell for conducting heat transferred from the containment condenser away from the wetwell and the drywell. 5 figs.

  8. Geothermal Literature Review At Medicine Lake Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location...

  9. Radiation.cdr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation is a natural part of our everyday environment. Cosmic rays showering the Earth ... and radon gas seeping up from the soil are only two examples of natural radiation. ...

  10. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan -

  11. Hybrid radiator cooling system

    DOE Patents [OSTI]

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  12. Energy Emergency Energy Emergency Preparedness Quarterly Preparedness Quarterly

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 J A N U A R Y 1 5 , 2 0 1 3 U.S. DEPARTMENT OF ENERGY Superstorm Sandy: DOE's Efforts to Help the Nation Recover Office of Electricity Delivery and Energy Reliability (OE) Infrastructure Security and Energy Restoration (ISER) Deputy Assistant Secretary ISER William N. Bryan Director, Preparedness and Response ISER Stewart Cedres Visit us at: http://energy.gov/oe/services/energy-assurance/emergency-preparedness November 30 marked the end of the 2012 Atlantic hurricane season-another busy season

  13. GUIDELINES FOR BREASTFEEDING MOTHERS IN NUCLEAR MEDICINE LATEST REVISION DATE: 9/3/96

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GUIDELINES FOR BREASTFEEDING MOTHERS IN NUCLEAR MEDICINE LATEST REVISION DATE: 9/3/96 The material in this document has been developed as part of a NUREG document (1492). The data in this document may also be quoted as a personal communication from the Radiation Internal Dose Information Center. Please contact the center with any questions or comments about the data. Richard E. Toohey, 423-576-3448 phone, 423-576-8673 fax, tooheyr@orau.gov e-mail Audrey T. Stelson, 423-576-3450 phone,

  14. THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH MIMETIC...

    Office of Scientific and Technical Information (OSTI)

    THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH MIMETIC DIFFUSION FOR EXAFLAG Citation Details In-Document Search Title: THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH ...

  15. THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH MIMETIC...

    Office of Scientific and Technical Information (OSTI)

    THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH MIMETIC DIFFUSION FOR EXAFLAG Citation Details In-Document Search Title: THE VEX RADIATION MODULE: 2D RADIATION TRANSPORT WITH...

  16. Therapeutic potential of nanoceria in regenerative medicine

    SciTech Connect (OSTI)

    Das, Soumen; Chigurupati, Srinivasulu; Dowding, Janet; Munusamy, Prabhakaran; Baer, Donald R.; McGinnis, James F.; Mattson, Mark P.; Self, William; Seal, Sudipta

    2014-11-01

    Tissue engineering and regenerative medicine aim to achieve functional restoration of tissue or cells damaged through disease, aging or trauma. Advancement of tissue engineering requires innovation in the field of 3D scaffolding, and functionalization with bioactive molecules. Nanotechnology offers advanced materials with patterned nano-morphologies for cell growth and different molecular substrates which can support cell survival and functions. Cerium oxide nanoparticles (nanoceria) can control intracellular as well as extracellular reactive oxygen and nitrogen species. Recent findings suggest that nanoceria can enhance long-term cell survival, enable cell migration and proliferation, and promote stem cell differentiation. Moreover, the self-regenerative property of nanoceria permits a small dose to remain catalytically active for extended time. This review summarizes the possibilities and applications of nanoceria in the field of tissue engineering and regenerative medicine.

  17. (Coordinated research programs in nuclear medicine)

    SciTech Connect (OSTI)

    Knapp, F.F. Jr.

    1990-10-03

    The traveler visited the Clinic for Nuclear Medicine at the University of Bonn, West Germany, to review, organize, and plan collaborative studies. He also met with the editorial board of the journal NucCompact -- European/American Communications in Nuclear Medicine, on which he serves as US editor. He also visited colleagues at the Cyclotron Research Center (CRC) at the University of Liege, Belgium, to coordinate clinical applications of the ultrashort-lived iridium-191m radionuclide obtained from the osmium-190/iridium-191m generator system. The traveler planned and coordinated continuing collaboration with colleagues at the CRC for further applications of this generator system. He also visited the University of Metz, Metz, France, to organize a three-center project for the synthesis and evaluation of various receptor-specific cerebral imaging agents, involving the Oak Ridge National Laboratory (ORNL), CRC, and the University of Metz.

  18. Space Radiation and Cataracts (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Blakely, Eleanor

    2011-04-28

    Summer Lecture Series 2009: Eleanor Blakely, radiation biologist of the Life Sciences Division at Lawrence Berkeley National Laboratory, has been a scientist at Berkeley Lab since 1975. She is studying the effect of radiation on cataracts which concerns not only cancer patients, but also astronauts. As astronauts spend increasingly longer time in space, the effects of cosmic radiation exposure will become an increasingly important health issue- yet there is little human data on these effects. Blakely reviews this emerging field and the contributions made at Berkeley Lab

  19. PRIVACY IMPACT ASSESSMENT: OCCUPATIONAL MEDICINE- INL OCCUPATIONAL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OCCUPATIONAL MEDICINE- INL OCCUPATIONAL MEDICAL SUVEILLANCE SYSTEM (OMSS) PIA Template Version 3 - May, 2009 Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1, Department of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetextlneword/206/o2061.pdf Please complete electronically: no hand-written submissions will be

  20. PRIVACY IMPACT ASSESSMENT: Occupational Medicine Assistant PIA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medicine - Assistant PIA Template Version 3 - May, 2009 Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1, Deparlment of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetextlneword/206/o2061.pdf Please complete electronically: no hand-written submissions will be accepted. This template may not be modified. MODULE 1-

  1. Standardizing Naming Conventions in Radiation Oncology

    SciTech Connect (OSTI)

    Santanam, Lakshmi; Hurkmans, Coen; Mutic, Sasa; Vliet-Vroegindeweij, Corine van; Brame, Scott; Straube, William; Galvin, James; Tripuraneni, Prabhakar; Michalski, Jeff; Bosch, Walter

    2012-07-15

    satisfactorily identified using this nomenclature. Conclusions: Use of standardized naming conventions is important to facilitate comparison of dosimetry across patient datasets. The guidelines presented here will facilitate international acceptance across a wide range of efforts, including groups organizing clinical trials, Radiation Oncology Institute, Dutch Radiation Oncology Society, Integrating the Healthcare Enterprise, Radiation Oncology domain (IHE-RO), and Digital Imaging and Communication in Medicine (DICOM).

  2. Ames Laboratory Emergency Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Emergency Plan Version Number: 14.0 Document Number: Plan 46300.001 Effective Date: 04/2016 File (public): PDF icon Plan 46300.001 Rev14 Emergency Plan

  3. Radiation detection system

    DOE Patents [OSTI]

    Nelson, Melvin A.; Davies, Terence J.; Morton, III, John R.

    1976-01-01

    A radiation detection system which utilizes the generation of Cerenkov light in and the transmission of that light longitudinally through fiber optic wave guides in order to transmit intelligence relating to the radiation to a remote location. The wave guides are aligned with respect to charged particle radiation so that the Cerenkov light, which is generated at an angle to the radiation, is accepted by the fiber for transmission therethrough. The Cerenkov radiation is detected, recorded, and analyzed at the other end of the fiber.

  4. RADIATION WAVE DETECTOR

    DOE Patents [OSTI]

    Wouters, L.F.

    1958-10-28

    The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.

  5. PERSONAL RADIATION MONITOR

    DOE Patents [OSTI]

    Dilworth, R.H.; Borkowski, C.J.

    1961-12-26

    A transistorized, fountain pen type radiation monitor to be worn on the person is described. Radiation produces both light flashes in a small bulb and an audible warning tone, the frequency of both the tone and light flashes being proportional to radiation intensity. The device is powered by a battery and a blocking oscillator step-up power supply The oscillator frequency- is regulated to be proportional to the radiation intensity, to provide adequate power in high radiation fields, yet minimize battery drain at low operating intensities. (AEC)

  6. Turn emergency generators into dollars

    SciTech Connect (OSTI)

    Sheahen, T.P.; Stegen, G.R.

    1997-10-01

    The concept of distributed, dispatchable power generation is essentially the reverse of interruptible service. It can be understood by regarding both power and money as vectors: when the direction of the power flow switches, so does the direction of the money flow. At a signal given by the utility, a factory activates its emergency generating system and briefly becomes an independent power producer (IPP), feeding power into a local region of the grid. Upon receipt of another signal, it retires from that role. It may, however, continue to generate power for its own use.

  7. Emergency planning | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs Emergency Response NNSA's Office of Emergency Operations is the United States government's primary capability for radiological and nuclear emergency response and for providing security to the nation from the threat of nuclear terrorism. The Office of Emergency Operations maintains a high level of readiness for protecting and serving the U.S. and its allies through the development, implementation and coordination of programs and systems designed to serve as a last line of defense in the

  8. Planning for Emergencies | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Response Planning for Emergencies Emergency Management is the application of the necessary resources to mitigate consequences of an emergency and protect workers, the public, the environment, and national security. It consists of key activities: planning, preparedness, readiness assurance, and response. NNSA has a fully implemented and fully integrated departmental comprehensive emergency management system at the ready. To accomplish this, we develop and implement specific programs,

  9. Emergency Response | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Programs Emergency Response NNSA's Office of Emergency Operations is the United States government's primary capability for radiological and nuclear emergency response and for providing security to the nation from the threat of nuclear terrorism. The Office of Emergency Operations maintains a high level of readiness for protecting and serving the U.S. and its allies through the development, implementation and coordination of programs and systems designed to serve as a last line of defense in the

  10. Emergency Responder Radioactive Material Quick Reference Sheet

    Office of Environmental Management (EM)

    Emergency Preparedness Resources Emergency Preparedness Resources The files listed below deal with varied types of emergency preparedness. Disaster Supplies Kit Information - Produced by the National Disaster Education Coalition: American Red Cross, FEMA, IAEM, IBHS, NFPA, NWS, USDA/CSREES, and USGS FEMA/Red Cross Emergency Preparedness Checklist - Learn how to protect yourself and cope with disaster by planning ahead. This checklist will help you get started. Discuss these ideas with your

  11. Emergency Vocabulary | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Vocabulary Emergency Vocabulary In the event of an emergency on the Oak Ridge Reservation, you will hear one of the following terms during public announcements. Each term indicates the magnitude of the event and will help you understand any necessary protective actions. Operational Emergency: an event that does not involve a release of hazardous material, but may require a response by the site (such as calling the fire department). Events resulting in the airborne release of hazardous

  12. Laboratory Delayed Opening, Closure or Emergency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Closure Laboratory Delayed Opening, Closure or Emergency What to do and where to get information about delays, closures and emergencies Contact (505) 667-4451, Option 5 Email Los Alamos National Laboratory may at times experience a work delay or closure due to inclement weather or unexpected Laboratory emergencies. In the event of a delay, closure or emergency, Laboratory new hires should call the following number to receive information regarding the delay or closure: Lab Update Hotline:

  13. emergency policy | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About...

  14. emergency recovery | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About...

  15. About Emerging Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » About Emerging Technologies About Emerging Technologies The Emerging Technologies (ET) Program of the Building Technologies Office (BTO) supports applied research and development (R&D) for technologies, systems, and models that contribute to building energy consumption. BTO's goal is to reduce the energy use intensity of the U.S. buildings sector by 30% by 2030, relative to 2010. The ET Program is helping to meet this goal by enabling cost-effective, energy-efficient

  16. Planning for Emergencies | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    including radioactive materials, toxic chemicals, and biological agents and toxins. ... Program Homeland Security and Emergency Management Coordination (HSEMC) Program HQ ...

  17. Synchrotron Radiation in Polymer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation in Polymer Science Synchrotron Radiation in Polymer Science March 30-April 2, 2012; San Francisco...

  18. Synchrotron Radiation in Polymer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation in Polymer Science Synchrotron Radiation in Polymer Science March 30-April 2, 2012; San Francisco

  19. emergency preparedness | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    emergency preparedness NNSA hosts IAEA Directors to discuss emergency preparedness & response partnership NNSA hosted the International Atomic Energy Agency (IAEA) - a core partner of the agency's global nonproliferation and counterterrorism efforts - to discuss cooperative efforts in emergency preparedness and response. Early in their visit, IAEA Deputy Director General Juan Carlos Lentijo... NNSA & Nuclear Security Enterprise support nation's preparedness Scientists at NNSA facilities

  20. TEPP Training - Modular Emergency Response Radiological Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training (MERRTT) | Department of Energy Training - Modular Emergency Response Radiological Transportation Training (MERRTT) TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) Once the jurisdiction has completed an evaluation of their plans and procedures, they will need to address any gaps in training. To assist, TEPP has developed the Modular Emergency Response Radiological Transportation Training (MERRTT) program. MERRTT provides fundamental knowledge

  1. 340 Facility emergency preparedness hazards assessment

    SciTech Connect (OSTI)

    CAMPBELL, L.R.

    1998-11-25

    This document establishes the technical basis in support of Emergency Planning activities for the 340 Facility on the Hanford Site. Through this document, the technical basis for the development of facility specific Emergency Action Levels and Emergency Planning Zone, is demonstrated.

  2. The Global Environment Radiation Monitoring Network (GERMON)

    SciTech Connect (OSTI)

    Zakheim, B.J.; Goellner, D.A.

    1994-12-31

    Following the Chernobyl accident in 1986, a group of experts from the World Health Organization (WHO) and the United Nations Environment Program (UNEP) met in France to discuss and develop the basic principles of a global environmental radiation monitoring network (GERMON). The basic functions of this network were to provide regular reports on environmental radiation levels and to be in a position to provide reliable and accurate radiation measurements on a quick and accurate radiation measurements on a quick turnaround basis in the event of a major radiation release. By 1992, although 58 countries had indicated an interest in becoming a part of the GERMON system, only 16 were providing data on a regular basis. This paper traces the history of GERMON from its inception in 1987 through its activities during 1993-4. It details the objectives of the network, describes functions, lists its participants, and presents obstacles in the current network. The paper examines the data requirements for radiological emergency preparedness and offers suggestions for the current system. The paper also describes the growing need for such a network. To add a domestic perspective, the authors present a summary of the environmental monitoring information system that was used by the NRC in 1986 in its analyses of the Chernobyl incident. Then we will use this 1986 experience to propose a method for the use of GERMON should a similar occasion arise in the future.

  3. US Department of Energy standardized radiation safety training

    SciTech Connect (OSTI)

    Trinoskey, P.A.

    1997-02-01

    The following working groups were formed under the direction of a radiological training coordinator: managers, supervisors, DOE auditors, ALARA engineers/schedulers/planners, radiological control personnel, radiation-generating device operators, emergency responders, visitors, Pu facilities, U facilities, tritium facilities, accelerator facilities, biomedical researchers. General courses for these groups are available, now or soon, in the form of handbooks.

  4. CRC handbook of management of radiation protection programs

    SciTech Connect (OSTI)

    Miller, K.L.; Weider, W.A.

    1985-01-01

    This volume details the organization and management of radiation safety programs, including both preventive and emergency response measures. Included are guidelines and checklists for managing radioactive waste processing programs, dealing with litigation, and responding to public or news media concerns. The last sections list state, federal, and international requirements for transportation of radioactive materials.

  5. CRC handbook of management of radiation protection programs

    SciTech Connect (OSTI)

    Miller, K.L.; Weidner, A.

    1986-01-01

    This guidebook organizes the profusion of rules and regulations surrounding radiation protection into a single-volume reference. Employee and public protection, accident prevention, and emergency preparedness are included in this comprehensive coverage. Whenever possible, information is presented in convenient checklists, tables, or outlines that enable you to locate information quickly.

  6. RADIATION CHEMISTRY 2010 GORDON RESEARCH CONFERENCE JULY 18-23

    SciTech Connect (OSTI)

    Thomas Orlando

    2010-07-23

    The 2010 Gordon Conference on Radiation Chemistry will present cutting edge research regarding the study of radiation-induced chemical transformations. Radiation Chemistry or 'high energy' chemistry is primarily initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. These transients often interact or 'react' to form products vastly different than those produced under thermal equilibrium conditions. The non-equilibrium, non-thermal conditions driving radiation chemistry exist in plasmas, star-forming regions, the outer solar system, nuclear reactors, nuclear waste repositories, radiation-based medical/clinical treatment centers and in radiation/materials processing facilities. The 2010 conference has a strong interdisciplinary flavor with focus areas spanning (1) the fundamental physics and chemistry involved in ultrafast (atto/femtosecond) energy deposition events, (2) radiation-induced processes in biology (particularly spatially resolved studies), (3) radiation-induced modification of materials at the nanoscale and cosmic ray/x-ray mediated processes in planetary science/astrochemistry. While the conference concentrates on fundamental science, topical applied areas covered will also include nuclear power, materials/polymer processing, and clinical/radiation treatment in medicine. The Conference will bring together investigators at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present work in poster format or as contributors to the Young Investigator session. The program and format provides excellent avenues to promote cross-disciplinary collaborations.

  7. Rapidly deployable emergency communication system

    DOE Patents [OSTI]

    Gladden, Charles A.; Parelman, Martin H.

    1979-01-01

    A highly versatile, highly portable emergency communication system which permits deployment in a very short time to cover both wide areas and distant isolated areas depending upon mission requirements. The system employs a plurality of lightweight, fully self-contained repeaters which are deployed within the mission area to provide communication between field teams, and between each field team and a mobile communication control center. Each repeater contains a microcomputer controller, the program for which may be changed from the control center by the transmission of digital data within the audible range (300-3,000 Hz). Repeaters are accessed by portable/mobile transceivers, other repeaters, and the control center through the transmission and recognition of digital data code words in the subaudible range.

  8. RADIATION WAVE DETECTION

    DOE Patents [OSTI]

    Wouters, L.F.

    1960-08-30

    Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

  9. ORISE Video: What is the difference between radiation exposure and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation contamination?

  10. RHOBOT: Radiation hardened robotics

    SciTech Connect (OSTI)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  11. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRLUO functions include: sponsoring and presenting the Annual Farrel W. Lytle Award to promote important technical or scientific accomplishments in synchrotron radiation-based ...

  12. Radiation coloration resistant glass

    DOE Patents [OSTI]

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  13. Radiation coloration resistant glass

    DOE Patents [OSTI]

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  14. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Now the Synchrotron Medical Imaging Team, a group of Canadian, US, and European scientists (including scientists from the Stanford Synchrotron Radiation Lightsource) are using ...

  15. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This work demonstrates that synchrotron radiation-based spectroscopies provide invaluable, atom-specific tools to determine the electronic properties of different dopant and defect ...

  16. Rotating bubble membrane radiator

    DOE Patents [OSTI]

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  17. IEA Response System for Oil Supply Emergencies 2012 | Department...

    Office of Environmental Management (EM)

    Emergencies 2012 IEA Response System for Oil Supply Emergencies 2012 IEA Response System for Oil Supply Emergencies 2012.pdf (3.86 MB) More Documents & Publications IEA Response ...

  18. Emergency Management Issues Special Interest Group (EMI SIG)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Products page. DOE News Information from DOENA-41 FAQs on DOE O 151.1 Emergency Management Updates Emergency Management Guides Emergency Management Accreditation Guide...

  19. Evaluation of the Los Alamos National Security Emergency Operations...

    Office of Environmental Management (EM)

    and Emergency Management Evaluations Activity Report for the Evaluation of the Los Alamos National Security Emergency Operations Division Emergency Management Self-assessment...

  20. Ernest Orlando Lawrence (1901-1958), Cyclotron and Medicine

    SciTech Connect (OSTI)

    Chu, William T.

    2005-09-01

    On August 8, 2001, Lawrence Berkeley National Laboratory celebrated the centennial of the birth of its founder (and namesake), Ernest Orlando Lawrence. For the occasion, many speeches were given and old speeches were remembered. We recall the words of the late Luis Alvarez, a Nobel Laureate and one of the Lawrence's closest colleagues: ''Lawrence will always be remembered as the inventor of the cyclotron, but more importantly, he should be remembered as the inventor of the modern way of doing science''. J. L. Heilbron and R. W. Seidel, in the introduction of their book, ''Lawrence and His Laboratory'' stated, ''The motives and mechanisms that shaped the growth of the Laboratory helped to force deep changes in the scientific estate and in the wider society. In the entrepreneurship of its founder, Ernest Orlando Lawrence, these motives, mechanisms, and changes came together in a tight focus. He mobilized great and small philanthropists, state and local governments, corporations, and plutocrats, volunteers and virtuosos. The work they supported, from astrophysics and atomic bombs, from radiochemistry to nuclear medicine, shaped the way we observe, control, and manipulate our environment.'' Indeed, all over the civilized world, the ways we do science changed forever after Lawrence built his famed Radiation Laboratory. In this editorial, we epitomize his legacy of changing the way we do medicine, thereby affecting the health and well being of all humanity. This year marks the 75th anniversary of the invention of the cyclotron by Ernest Orlando Lawrence at the University of California at Berkeley. Lawrence conceived the idea of the cyclotron early in 1929 after reading an article by Rolf Wideroe on high-energy accelerators. In the spring of 1930 one of his students, Nels Edlefsen, constructed two crude models of a cyclotron. Later in the fall of the same year, another student, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early

  1. The role of general nuclear medicine in breast cancer

    SciTech Connect (OSTI)

    Greene, Lacey R; Wilkinson, Deborah

    2015-03-15

    The rising incidence of breast cancer worldwide has prompted many improvements to current care. Routine nuclear medicine is a major contributor to a full gamut of clinical studies such as early lesion detection and stratification; guiding, monitoring, and predicting response to therapy; and monitoring progression, recurrence or metastases. Developments in instrumentation such as the high-resolution dedicated breast device coupled with the diagnostic versatility of conventional cameras have reinserted nuclear medicine as a valuable tool in the broader clinical setting. This review outlines the role of general nuclear medicine, concluding that targeted radiopharmaceuticals and versatile instrumentation position nuclear medicine as a powerful modality for patients with breast cancer.

  2. March 2016 Most Viewed Documents for Biology And Medicine | OSTI...

    Office of Scientific and Technical Information (OSTI)

    March 2016 Most Viewed Documents for Biology And Medicine Measuring dopamine release in the human brain with PET Volkow, N.D. Brookhaven National Lab., Upton, NY (United ...

  3. Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et...

    Open Energy Info (EERE)

    2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et Al., 2002) Exploration Activity...

  4. National Library of Medicine Web Resources for Student Health Professionals

    SciTech Connect (OSTI)

    Womble, R.

    2010-04-02

    Familiarize students affiliated with the Student National Medical Association with the National Library of Medicine's online resources that address medical conditions, health disparities, and public health preparedness needs.

  5. DOE Research and Development Accomplishments Nobels in Medicine Associated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with the DOE and Predecessors Nobels in Medicine Associated with the DOE and Predecessors Information about affiliations: Office of Science DOE Nobel Laureates Alphabetical Listing Chronological Listing A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 2003 1997 1983 1979 1962 1958 1946 1934 Name Year Nobel Prize In Year Nobel Prize In B 2003 George Wells Beadle 1958 Physiology or Medicine Sir Peter Mansfield Physiology or Medicine C 1997 Allan M. Cormack 1979 Physiology or Medicine

  6. April 2013 Most Viewed Documents for Biology And Medicine | OSTI...

    Office of Scientific and Technical Information (OSTI)

    April 2013 Most Viewed Documents for Biology And Medicine Publications in biomedical and environmental sciences programs, 1981 Moody, J.B. (comp.) (1982) 306 Drug Retention Times ...

  7. June 2015 Most Viewed Documents for Biology And Medicine | OSTI...

    Office of Scientific and Technical Information (OSTI)

    June 2015 Most Viewed Documents for Biology And Medicine Measuring dopamine release in the human brain with PET Volkow, N.D. Brookhaven National Lab., Upton, NY (United ...

  8. September 2015 Most Viewed Documents for Biology And Medicine...

    Office of Scientific and Technical Information (OSTI)

    September 2015 Most Viewed Documents for Biology And Medicine Measuring dopamine release in the human brain with PET Volkow, N.D. Brookhaven National Lab., Upton, NY (United ...

  9. March 2014 Most Viewed Documents for Biology And Medicine | OSTI...

    Office of Scientific and Technical Information (OSTI)

    March 2014 Most Viewed Documents for Biology And Medicine Carbon Dioxide Sequestering Using Microalgal Systems Daniel J. Stepan; Richard E. Shockey; Thomas A. Moe; Ryan Dorn (2002) ...

  10. Most Viewed Documents - Biology and Medicine | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    - Biology and Medicine Drug Retention Times Center for Human Reliability Studies (2007) External dose-rate conversion factors for calculation of dose to the public Not Available ...

  11. December 2015 Most Viewed Documents for Biology And Medicine...

    Office of Scientific and Technical Information (OSTI)

    December 2015 Most Viewed Documents for Biology And Medicine Measuring dopamine release in the human brain with PET Volkow, N.D. Brookhaven National Lab., Upton, NY (United ...

  12. January 2013 Most Viewed Documents for Biology And Medicine ...

    Office of Scientific and Technical Information (OSTI)

    January 2013 Most Viewed Documents for Biology And Medicine Nevada Test Site Radiological Control Manual Radiological Control Managers' Council Nevada Test Site Effects of ionizing ...

  13. Radiative Flux Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Long, Chuck [NOAA

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  14. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2007-01-09

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  15. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2010-06-15

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  16. Instrument for assaying radiation

    DOE Patents [OSTI]

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2016-03-22

    An instrument for assaying radiation includes a flat panel detector having a first side opposed to a second side. A collimated aperture covers at least a portion of the first side of the flat panel detector. At least one of a display screen or a radiation shield may cover at least a portion of the second side of the flat panel detector.

  17. Radiation detection system

    DOE Patents [OSTI]

    Franks, Larry A.; Lutz, Stephen S.; Lyons, Peter B.

    1981-01-01

    A radiation detection system including a radiation-to-light converter and fiber optic wave guides to transmit the light to a remote location for processing. The system utilizes fluors particularly developed for use with optical fibers emitting at wavelengths greater than about 500 nm and having decay times less than about 10 ns.

  18. Electromagnetic radiation detector

    DOE Patents [OSTI]

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  19. Responding to Emergencies | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Response Responding to Emergencies emergency response logo NNSA serves as the premier technical leader in responding to and successfully resolving nuclear and radiological threats worldwide. When the need arises, NNSA is prepared to respond immediately to any type of nuclear or radiological accident or incident. Part of NNSA's mission is to protect the public, environment, and emergency responders from both terrorist and non-terrorist events by providing a responsive, flexible,

  20. Social Media's New Role in Emergency Management

    SciTech Connect (OSTI)

    Ethan Huffman; Sara Prentice

    2008-03-01

    As technology continues to evolve, emergency management organizations must adapt to new ways of responding to the media and public. This paper examines a brief overview of social media's new role in emergency management. This includes definitions of social media, the benefits of utilizing social media, examples of social media being used and finally a discussion of how agencies, such as Department of Energy national laboratories, can begin including social media in their emergency management plans.

  1. Community invited to learn about emerging technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community invited to learn about emerging technologies Community invited to learn about emerging technologies New technologies emerging from Los Alamos National Laboratory that address everything from fusion energy to medical testing will be on display for members of the community, investors and business leaders at the DisrupTech showcase. July 6, 2016 Perovskite research team spin-casts crystals for efficient and resilient optoelectronic devices. PuLMo, a miniature artificial lung, mimics the

  2. Nevada Test Site Radiation Protection Program - Revision 1

    SciTech Connect (OSTI)

    Radiological Control Managers' Council

    2008-06-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

  3. Underwater radiation detector

    DOE Patents [OSTI]

    Kruse, Lyle W.; McKnight, Richard P.

    1986-01-01

    A detector apparatus for differentiating between gamma and neutron radiation is provided. The detector includes a pair of differentially shielded Geiger-Mueller tubes. The first tube is wrapped in silver foil and the second tube is wrapped in lead foil. Both the silver and lead foils allow the passage of gamma rays at a constant rate in a gamma ray only field. When neutrons are present, however, the silver activates and emits beta radiation that is also detected by the silver wrapped Geiger-Mueller tube while the radiation detected by the lead wrapped Geiger-Mueller tube remains constant. The amount of radiation impinging on the separate Geiger-Mueller tubes is then correlated in order to distinguish between the neutron and gamma radiations.

  4. Nuclear radiation actuated valve

    DOE Patents [OSTI]

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  5. Radiation Effects In Space

    SciTech Connect (OSTI)

    Tripathi, Ram K.

    2011-06-01

    Protecting space missions from severe exposures from radiation, in general, and long duration/deep space human missions, in particular, is a critical design driver, and could be a limiting factor. The space radiation environment consists of galactic cosmic rays (GCR), solar particle events (SPE), trapped radiation, and includes ions of all the known elements over a very broad energy range. These ions penetrate spacecraft materials producing nuclear fragments and secondary particles that damage biological tissues and microelectronic devices. One is required to know how every element (and all isotopes of each element) in the periodic table interacts and fragments on every other element in the same table as a function of kinetic energy ranging over many decades. In addition, the accuracy of the input information and database, in general and nuclear data in particular, impacts radiation exposure health assessments and payload penalty. After a brief review of effects of space radiation on materials and electronics, human space missions to Mars is discussed.

  6. Nation's Radiological Assistance Program teams practice emergency...

    National Nuclear Security Administration (NNSA)

    Home Blog Nation's Radiological Assistance Program teams practice emergency response ... of Department of Energy (DOE)National Nuclear Security Administration (NNSA) nuclear ...

  7. Emergency Response | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    of defense in the event of a nuclear terrorist incident or other types of radiological accident Learn More Planning for Emergencies Exercise Program Field Assistance and Oversight ...

  8. ORISE: Chemical Stockpile Emergency Preparedness Program Exercise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Stockpile Emergency Preparedness Program Exercise Training and Analysis Tool Training Tool Improves Information Sharing Between CSEPP and its Response Partners In 2006,...

  9. EAC Recommendations Regarding Emerging and Alternative Regulatory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    focused on the concepts of regulatoryutility business models. The paper includes a summary of regulatory model initiatives, current and emerging regulatory models, and ...

  10. Nanogeochemistry: Nanostructures emergent properties and their...

    Office of Scientific and Technical Information (OSTI)

    their control on geochemical reactions and mass transfers. Citation Details In-Document Search Title: Nanogeochemistry: Nanostructures emergent properties and their control on ...

  11. Nanogeochemistry: Nanostructures emergent properties and their...

    Office of Scientific and Technical Information (OSTI)

    their control on geochemical reactions and mass transfer. Citation Details In-Document Search Title: Nanogeochemistry: Nanostructures emergent properties and their control on ...

  12. State Awards for Energy Emergency Preparation

    Broader source: Energy.gov [DOE]

    List of States receiving awards from the Energy Emergency Preparation project under the American Recovery and Reinvestment Act alphabetically by State including the amount of Recovery Act funding.

  13. Emerging Energy Research | Open Energy Information

    Open Energy Info (EERE)

    Energy Research Name: Emerging Energy Research Address: 700 Technology Square Place: Cambridge, Massachusetts Zip: 02139 Region: Greater Boston Area Sector: Services Website:...

  14. Emerging Energy Research EER | Open Energy Information

    Open Energy Info (EERE)

    Research EER Jump to: navigation, search Name: Emerging Energy Research (EER) Place: Cambridge, Massachusetts Zip: 2139 Product: Research and advisory company focused on new energy...

  15. ORISE: Chemical Stockpile Emergency Preparedness Program (CSEPP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    during an emergency. Topics and techniques covered include: Using the latest social media applications to provide more accurate situational awareness and to reach a...

  16. Emergency Contacts - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Contacts Emergency Contacts EMERGENCY CONTACTS During your stay, in the event of an emergency, you may contact any of the following people: During the day (8:30AM - 4:30PM): Professor C.K. Law 609.258.5271 (O); 609.306.8450 (C) Dr Abhishek Saha 609.258.4083 (O) Michelle Horgan (CES) 609.258.6116 Conference & Events Services (CES) 609.258.6115 During the day and also after hours: Princeton University Department of Public Safety, 609.258.1000 Top © 2016 The Trustees of Princeton

  17. FAQS Reference Guide – Emergency Management

    Office of Energy Efficiency and Renewable Energy (EERE)

    This reference guide addresses the competency statements in the January 2004 edition of DOE-STD-1177-2004, Emergency Management Functional Area Qualification Standard.

  18. Emergency Preparedness Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FEMARed Cross Emergency Preparedness Checklist - Learn how to protect yourself and cope with disaster by planning ... More Documents & Publications FEMA Good Ideas Book Problems ...

  19. IEA Response System for Oil Supply Emergencies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decision making...

  20. Emergency Support Function #12; Energy Annex

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consequently, energy supply and transportation problems can ... Emergency Support Function 12 - Energy Annex ESF 12-2 ESF ... into ESF 12 planning and decisionmaking processes. ...

  1. ORISE: Chemical Stockpile Emergency Preparedness Program Exercise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Education customized the structure of the U.S. Department of Energy's Office of Emergency Response Asset Readiness Management System databases to create a framework for...

  2. ORISE: Helping Strengthen Emergency Response Capabilities for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ridge Institute for Science and Education (ORISE) helps strengthen government agencies' emergency response capabilities through a variety of exercises, from tabletop training to...

  3. Loria Emerging Energy Consulting | Open Energy Information

    Open Energy Info (EERE)

    search Name: Loria Emerging Energy Consulting Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  4. Office of Safeguards, Security & Emergency Preparedness | Department...

    Office of Environmental Management (EM)

    to security and emergency management. Foster continuous improvement across the Environmental Management (EM) complex through ... managed risk, for EM's nuclear materials, facilities, ...

  5. Building International Emergency Management Systems | National...

    National Nuclear Security Administration (NNSA)

    Generally, NNSA will assist foreign governments and international organizations with integration of emergency-program core elements, including communications systems, networks and ...

  6. Transportation Emergency Preparedness Program Exercise Overview...

    Office of Environmental Management (EM)

    - Making A Difference DOE Efforts in Preparing and Improving First Response Capabilities and Performance through Drills and Exercises Transportation Emergency Preparedness Program...

  7. Emergency Operations Training Academy | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    ... Introduction Monitoring Division Mgr Training, Adv NARAC Dispersion Modeling NARAC Web Operations Overview of Consequence Management Overview of the DOENNSA Emergency ...

  8. Transportation Emergency Preparedness Program (TEPP) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In an effort to address responder concerns, the Department retooled its approach to emergency responder preparedness and implemented the more simplified and responder-friendly ...

  9. July 2013 Most Viewed Documents for Biology And Medicine | OSTI...

    Office of Scientific and Technical Information (OSTI)

    46 Human radiation studies: Remembering the early years. Oral history of Donner Lab Administrator Baird G. Whaley, August 15, 1994 NONE (1995) 40 Human radiation studies: ...

  10. April 2013 Most Viewed Documents for Biology And Medicine | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Daniela Rodica Radu (2005) 84 Advisory Committee on human radiation experiments. ... (2002) 68 Advisory Committee on human radiation experiments final report NONE (1995) 60 ...

  11. Stairs, G. R. BIOLOGY AND MEDICINE; AGE; DIFFRACTION; DIFFUSION...

    Office of Scientific and Technical Information (OSTI)

    levels of radiation, but were sporadic in appearance. It is suggested that many of the radiation damaged acorns abscised from the tree and thus escaped detection. (auth) Yale...

  12. Non-LTE Radiation Transport in High Radiation Plasmas (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Non-LTE Radiation Transport in High Radiation Plasmas Citation Details ... DOE Contract Number: W-7405-ENG-48 Resource Type: Journal Article Resource Relation: ...

  13. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments [OSTI]

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  14. Emergency Operations Training Academy | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    to Analytical Risk Management Introduction to Radiation Introduction to Training and Drills Joint Information Center (JIC) Overview Managing Corrective Actions Overview Managing...

  15. Federal Emergency Management Agency | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Federal Emergency Management Agency Third interagency WINGS exercise The third Interagency Aerial Response WINGS exercise, sponsored by the Federal Emergency Management Agency (FEMA), and hosted by the Department of Energy (DOE) and the Environmental Protection Agency (EPA), will be held June 20 - 24, 2016 in Ocean County, New Jersey. On June 21, 2016 through

  16. Guidance for evaluation of operational emergency plans

    SciTech Connect (OSTI)

    1995-03-01

    The purpose of this document is to provide guidance for development of emergency plans for the USDOE Office of Defense Programs, Office of Energy Research, and Office of Environmental Management facilities. It gathers emergency planning policy and guidance from applicable federal regulations, DOE Orders and related guidance documents. This material, along with recommended good practices, is presented as a checklist against which emergency plans can be reviewed by DOE Headquarters. The Office of Emergency Response (DP-23), Office of Environment, Safety and Health Technical Support (ER-8), and Office of Transportation, Emergency Management and Analytical Services (EM-26) will use this checklist to evaluate plans submitted by DP, ER, and EM field elements. The scope of this document encompasses plans for operational emergencies at DOE facilities, both nuclear and non-nuclear. Operational emergencies, as defined in Attachment 2 to DOE Order 5500.1B (April 30, 1991) are ``significant accidents, incidents, events, or natural phenomena which seriously degrade the safety or security of DOE facilities. Operational Emergencies apply to DOE reactors and other DOE facilities (nuclear and non-nuclear) involved with hazardous materials; DOE-controlled nuclear weapons, components, or test devices; DOE safeguards and security events; and transportation accidents involving hazardous materials under DOE control.``

  17. Low Dose Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ancient Salt Beds Repository Science Renewable Energy The WIPP Underground may be ideal to study effects of Very Low Dose Rates on Biological Systems Low Background Radiation Experiment We're all bathing in it. It's in the food we eat, the water we drink, the soil we tread and even the air we breathe. It's background radiation, it's everywhere and we can't get away from it. But what would happen if you somehow "pulled the plug" on natural background radiation? Would organisms suffer or

  18. Miniaturized radiation chirper

    DOE Patents [OSTI]

    Umbarger, C. John; Wolf, Michael A.

    1980-01-01

    The disclosure relates to a miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers.

  19. Radiation Safety System

    SciTech Connect (OSTI)

    Vylet, Vaclav; Liu, James C.; Walker, Lawrence S.; /Los Alamos

    2012-04-04

    The goal of this work is to provide an overview of a Radiation safety system (RSS) designed for protection from prompt radiation hazard at accelerator facilities. RSS design parameters, functional requirements and constraints are derived from hazard analysis and risk assessment undertaken in the design phase of the facility. The two main subsystems of a RSS are access control system (ACS) and radiation control system (RCS). In this text, a common approach to risk assessment, typical components of ACS and RCS, desirable features and general design principles applied to RSS are described.

  20. Composition for radiation shielding

    DOE Patents [OSTI]

    Kronberg, James W.

    1994-01-01

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  1. Biological Applications of Synchrotron Radiation:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Applications of Synchrotron Radiation: An Evaluation of the State of the Field ... Maxwell's equations show that electromagnetic radiation is generated when charged ...

  2. Radiation Safety Work Control Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety Work Control Form (see instructions on pg-3) Rev. May 2014 Area: Form : ... Safety Office (namesignaturedate) Radiation Physics (namesignaturedate) Section 4: ...

  3. ARM West Antarctic Radiation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    West Antarctic Radiation Experiment of the most advanced atmospheric research ... From the fall of 2015 to early 2017, the Atmospheric Radiation Measurement (ARM) West ...

  4. Radiotherapy and Nuclear Medicine Project for an Integral Oncology Center at the Oaxaca High Specialization Regional Hospital

    SciTech Connect (OSTI)

    De Jesus, M.; Trujillo-Zamudio, F. E.

    2010-12-07

    A building project of Radiotherapy and Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.

  5. Oak Ridge Institute for Science and Education (ORISE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Providing expertise in radiation emergency medicine and the medical management of ... to research health risks from occupational hazards, assess environmental cleanup, ...

  6. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    If you have any questions regarding the completion of this process please contact Matt Padilla (mpadilla@slac.stanford.edu, 1-650-926-3861 or Radiation Protection Field Operations ...

  7. Ionizing radiation detector

    DOE Patents [OSTI]

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  8. RADIATION APPLICATIONS INCORPORATED

    Office of Legacy Management (LM)

    . <' ," . . * . RADIATION APPLICATIONS INCORPORATED . 370 Lexl.ngton Avenue New York 17 New York jq.5' L- Contract No. A T (30-l)-2093 with the United States Atom ic Energy ...

  9. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 2021-08-11 SHANGHAI INST OF APPLIED PHYSICS CHINA 2020-10-23 SHANGHAI SYNCHROTRON RADIATION FACILITY 2020-10-23 SHANGHAI TECH UNIVERSITY 2019-01-23 SIMON FRASER UNIVERSITY ...

  10. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jorge L. Gardea-Torresdey, University of Texas at El Paso Joy C. Andrews, Stanford Synchrotron Radiation Lightsource Jose A. Hernandez-Viezcas, University of Texas at El Paso 2575 ...

  11. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  12. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  13. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, Lyle W.

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  14. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  15. Method of enhancing radiation response of radiation detection materials

    DOE Patents [OSTI]

    Miller, Steven D.

    1997-01-01

    The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

  16. A characteristic scale in radiation fields of fractal clouds

    SciTech Connect (OSTI)

    Wiscombe, W.; Cahalan, R.; Davis, A.; Marshak, A.

    1996-04-01

    The wavenumber spectrum of Landsat imagery for marine stratocumulus cloud shows a scale break when plotted on a double log plot. We offer an explanation of this scale break in terms of smoothing by horizontal radiative fluxes, which is parameterized and incorporated into an improved pixel approximation. We compute the radiation fields emerging from cloud models with horizontally variable optical depth fractal models. We use comparative spectral and multifractal analysis to qualify the validity of the independent pixel approximation at the largest scales and demonstrate it`s shortcomings on the smallest scales.

  17. Packet personal radiation monitor

    DOE Patents [OSTI]

    Phelps, James E.

    1989-01-01

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiation events, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible "chirp". The rate of the "chirps" is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field.

  18. Office of radiation and indoor air: Program description

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The goal of the Environmental Protection Agency`s (EPA) Office of Radiation and Indoor Air is to protect the public and the environment from exposures to radiation and indoor air pollutants. The Office develops protection criteria, standards, and policies and works with other programs within EPA and other agencies to control radiation and indoor air pollution exposures; provides technical assistance to states through EPA`s regional offices and other agencies having radiation and indoor air protection programs; directs an environmental radiation monitoring program; responds to radiological emergencies; and evaluates and assesses the overall risk and impact of radiation and indoor air pollution. The Office is EPA`s lead office for intra- and interagency activities coordinated through the Committee for Indoor Air Quality. It coordinates with and assists the Office of Enforcement in enforcement activities where EPA has jurisdiction. The Office disseminates information and works with state and local governments, industry and professional groups, and citizens to promote actions to reduce exposures to harmful levels of radiation and indoor air pollutants.

  19. FEMA Emergency Management Performance Grant Program

    Broader source: Energy.gov [DOE]

    The Emergency Management Performance Grant (EMPG) Program provides federal funds to assist state, local, tribal and territorial governments in preparing for all hazards, as authorized by Section 662 of the Post Katrina Emergency Management Reform Act (6 U.S.C. sect. 762) and the Robert T. Stafford Disaster Relief and Emergency Assistance Act, as amended (42 U.S.C. sect. 5121 et seq.). Title VI of the Stafford Act authorizes FEMA to make grants for the purpose of providing a system of emergency preparedness for the protection of life and property in the United States from hazards and to vest responsibility for emergency preparedness jointly in the federal government and the states and their political subdivisions. The FY 2015 EMPG will provide federal funds to assist state, local, tribal and territorial emergency management agencies to obtain the resources required to support the National Preparedness Goal's (NPG's) associated mission areas and core capabilities. The federal government, through the EMPG Program, provides necessary direction, coordination, and guidance, and provides necessary assistance, as authorized in this title, to support a comprehensive all hazards emergency preparedness system.

  20. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    DOE Patents [OSTI]

    Roybal, Lyle Gene

    2010-06-08

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  1. Los Alamos Lab: Radiation Protection: Annual Occupational Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dosimetry Report Annual Occupational Radiation Dosimetry Report Print information on Annual Occupational Radiation Dosimetry Report (pdf). This webpage provides information to help you understand the dose quantities being reported to you on your Annual Occupational Radiation Dosimetry Report. If you would like general information about radiation exposure, please refer to www.radiationanswers.org. Title 10 Code of Federal Regulation Part 835, Occupational Radiation Protection (10 CFR 835),

  2. LABORATORY DELAYED OPENING, CLOSURE, OR EMERGENCY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY DELAYED OPENING, CLOSURE, OR EMERGENCY Los Alamos National Laboratory (LANL) may at times experience a work delay or closure due to inclement weather or unexpected Laboratory emergencies. In the event of a delay, closure, or emergency, Laboratory New Hires should call the following number to receive information regarding the delay or closure: LANL Update Hotline: 505-667-6622, 1-877-723-4101, and/or http://www.lanl.gov (Please note, the LANL hotline and webpage are updated by 5:30

  3. Sandia National Laboratories approach to emergency preparedness

    SciTech Connect (OSTI)

    Galegar, F.H.; Yourick, P.D.; Ross, S.A.

    1997-12-31

    Sandia National Laboratories is located on Kirtland AFB on Albuquerque, NM. The Air Force Base proper covers about 74 square miles in which SNL maintains 5 technical areas and the Coyote Test Field. These SNL areas add up to about 18,000 acres. However, SNL has other locations where we conduct corporate emergency planning: Kauai Test Facility (at Pacific Missile Range Facility in Kauai, Hawaii), and the Tonopah Test Range (Nevada). SNL/California located in Livermore has an independent emergency preparedness organization for their emergency planning activities.

  4. New Mexico Center for Isotopes in Medicine

    SciTech Connect (OSTI)

    Burchiel, Scott W.

    2012-12-13

    The purpose of the New Mexico Center for Isotopes in Medicine (NMCIM) is to support research, education and service missions of the UNM College of Pharmacy Radiopharmaceutical Sciences Program (COP RSP) and the Cancer Research and Treatment Center (CRTC). NMCIM developed and coordinated unique translational research in cancer radioimaging and radiotherapy agents based on novel molecules developed at UNM and elsewhere. NMCIM was the primary interface for novel radioisotopes and radiochemistries developed at the Los Alamos National Laboratory (LANL) for SPECT/PET imaging and therapy. NMCIM coordinated the use of the small animal imaging facility with the CRTC provided support services to assist investigators in their studies. NMCIM developed education and training programs that benefited professional, graduate, and postdoctoral students that utilized its unique facilities and technologies. UNM COP RSP has been active in writing research and training grants, as well as supporting contract research with industrial partners. The ultimate goal of NMCIM is to bring new radiopharmaceutical imaging and therapeutic agents into clinical trials that will benefit the health and well being of cancer and other patients in New Mexico and the U.S.

  5. Pathways, Networks and Systems Medicine Conferences

    SciTech Connect (OSTI)

    Nadeau, Joseph H.

    2013-11-25

    The 6th Pathways, Networks and Systems Medicine Conference was held at the Minoa Palace Conference Center, Chania, Crete, Greece (16-21 June 2008). The Organizing Committee was composed of Joe Nadeau (CWRU, Cleveland), Rudi Balling (German Research Centre, Brauschweig), David Galas (Institute for Systems Biology, Seattle), Lee Hood (Institute for Systems Biology, Seattle), Diane Isonaka (Seattle), Fotis Kafatos (Imperial College, London), John Lambris (Univ. Pennsylvania, Philadelphia),Harris Lewin (Univ. of Indiana, Urbana-Champaign), Edison Liu (Genome Institute of Singapore, Singapore), and Shankar Subramaniam (Univ. California, San Diego). A total of 101 individuals from 21 countries participated in the conference: USA (48), Canada (5), France (5), Austria (4), Germany (3), Italy (3), UK (3), Greece (2), New Zealand (2), Singapore (2), Argentina (1), Australia (1), Cuba (1), Denmark (1), Japan (1), Mexico (1), Netherlands (1), Spain (1), Sweden (1), Switzerland (1). With respect to speakers, 29 were established faculty members and 13 were graduate students or postdoctoral fellows. With respect to gender representation, among speakers, 13 were female and 28 were male, and among all participants 43 were female and 58 were male. Program these included the following topics: Cancer Pathways and Networks (Day 1), Metabolic Disease Networks (Day 2), Day 3 ? Organs, Pathways and Stem Cells (Day 3), and Day 4 ? Inflammation, Immunity, Microbes and the Environment (Day 4). Proceedings of the Conference were not published.

  6. Homeland Security and Emergency Management Coordination (HSEMC...

    National Nuclear Security Administration (NNSA)

    Program NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder to any nuclear ...

  7. Research & Development Roadmap: Emerging Water Heating Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies provides recommendations to the Building Technologies Office (BTO) on R&D activities to pursue that will aid in achieving BTO’s energy savings goals.

  8. Emergency Responder Radioactive Material Quick Reference Sheet

    Broader source: Energy.gov [DOE]

    This job aid is a quick reference to assist emergency responders in identifying preliminary safety precautions that should be taken during the initial response phase after arrival at the scene of...

  9. Emerging Edge Capital EEC | Open Energy Information

    Open Energy Info (EERE)

    Edge Capital EEC Jump to: navigation, search Name: Emerging Edge Capital (EEC) Place: London, United Kingdom Zip: SW1Y 4RS Sector: Renewable Energy Product: London-based company...

  10. Chapter 18 - Emergency Acquisitions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 18.0EmergencyAcquisitions0.pdf More Documents & Publications Acqguide18pt0 March 2011 final OPAM Policy Acquisition Guides Microsoft Word - acqguide18pt0 Nov 2010...

  11. Power Marketing Administration Emergency Management Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-05-09

    To establish specific emergency management policy and requirements for the Department of Energy Power Marketing Administration appropriate to their specific regional power missions. This directive does not cancel another directive. Canceled by DOE M151.1-1.

  12. Emergency Response Planning for Radiological Releases

    SciTech Connect (OSTI)

    Biwer, B.M.; LePoire, D.J.; Lazaro, M.A.; Allison, T.; Kamboj, S.; Chen, S.Y.

    2006-07-01

    The emergency management planning tool RISK-RDD was developed to aid emergency response planners and decision makers at all levels of government to better understand and prepare for potential problems related to a radiological release, especially those in urban areas. Radioactive release scenarios were studied by using the RISK-RDD radiological emergency management program. The scenarios were selected to investigate the key aspects of radiological risk management not always considered in emergency planning as a whole. These aspects include the evaluation of both aerosolized and non-aerosolized components of an atmospheric release, methods of release, acute and chronic human health risks, and the concomitant economic impacts as a function of the risk-based cleanup level. (authors)

  13. ORISE: National Security and Emergency Management Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A few examples of ORISE-developed resources available to national security and emergency management personnel include: First Responders test WeB-MEDIS WeB-MEDIS WeB-MEDIS is a ...

  14. Emergency Filter for Low Pressure EGR

    Broader source: Energy.gov [DOE]

    This project uses CFD simulation and laboratory tests to design single- and multi-layer mesh as an EGR emergency filter to prevent combustion particles from passing back to the engine.

  15. Emergency Support Function #12; Energy Annex

    Broader source: Energy.gov [DOE]

    Emergency Support Function (ESF) #12 – Energy is intended to facilitate the restoration of damaged energy systems and components when activated by the Secretary of Homeland Security for incidents...

  16. Vital Importance of Partnerships During Emergencies | Department...

    Office of Environmental Management (EM)

    they are caused by natural disasters, deliberate attacks, or are the result of human error. DOE is also the lead agency for Emergency Support Function 12 - also known as ESF-12...

  17. Radiation delivery system and method

    DOE Patents [OSTI]

    Sorensen, Scott A.; Robison, Thomas W.; Taylor, Craig M. V.

    2002-01-01

    A radiation delivery system and method are described. The system includes a treatment configuration such as a stent, balloon catheter, wire, ribbon, or the like, a portion of which is covered with a gold layer. Chemisorbed to the gold layer is a radiation-emitting self-assembled monolayer or a radiation-emitting polymer. The radiation delivery system is compatible with medical catheter-based technologies to provide a therapeutic dose of radiation to a lesion following an angioplasty procedure.

  18. NNSA to Conduct Background Radiation Testing | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) to Conduct Background Radiation Testing July 20, 2015 The National Nuclear Security Administration (NNSA) and Federal Emergency Management Agency (FEMA) under the Nuclear Incident Response Team (NIRT) program will be sponsoring an Aerial Measuring System (AMS) WINGS exercise July 20 - 24, 2015 in conjunction with the national level exercise Southern Exposure to be held in Florence, SC. Local, state and federal agencies will participate in an interoperability exercise

  19. Atomic veterans and their families: Responses to radiation exposure

    SciTech Connect (OSTI)

    Murphy, B.C.; Ellis, P.; Greenberg, S. )

    1990-07-01

    In-depth interviews with seven atomic veterans and their families indicated powerful psychological effects on all family members from exposure to low-level ionizing radiation. Four themes emerged: the invalidation of their experiences by government and other authority figures; family concerns about genetic effects on future generations; family members' desire to protect each other from fears of physical consequences; and desire to leave a record of their experiences to help prevent future suffering.

  20. Remote radiation dosimetry

    DOE Patents [OSTI]

    Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

    1991-03-12

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

  1. AREA RADIATION MONITOR

    DOE Patents [OSTI]

    Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

    1962-06-12

    S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

  2. Synchrotron Radiation Workshop (SRW)

    Energy Science and Technology Software Center (OSTI)

    2013-03-01

    "Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations inmore » steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, soft and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.« less

  3. Remote radiation dosimetry

    DOE Patents [OSTI]

    Braunlich, Peter F.; Tetzlaff, Wolfgang; Hegland, Joel E.; Jones, Scott C.

    1991-01-01

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission.

  4. Packet personal radiation monitor

    DOE Patents [OSTI]

    Phelps, J.E.

    1988-03-31

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiatonevents, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible ''chirp''. The rate of the ''chirps'' is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field. 2 figs.

  5. Emergency Response | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Emergency Response Department of Energy's chief risk officer visits Nevada National Security Site Earlier this month, Associate Deputy Secretary John MacWilliams visited the Nevada National Security Site (NNSS) in his role as Chief Risk Officer for the Department of Energy. He reviewed the various ways the NNSS contributes to the department's and NNSA's missions, including radiological... NNSA sites prepared for disasters using real-time response management system Pantex Emergency Services now

  6. emergency communications | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    communications NNSA administrator visits NNSS to meet team, see national security work Last month, Department of Energy Under Secretary for Nuclear Security and NNSA Administrator Lt. Gen. Frank G. Klotz (Ret.) visited NNSA's Nevada Field Office where he hosted an all-hands for NNSA-Nevada staff and presented several service awards. During the trip he visited the NNSA... NNSA sites prepared for disasters using real-time response management system Pantex Emergency Services now uses the Emergency

  7. Emerging Technology for Measuring Atmospheric Aerosol Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emerging Technologies Emerging Technologies EERE Success Story-Software Platform Offers Underserved Smaller Buildings Sector an Innovative Solution for Cutting Energy Costs EERE Success Story-Software Platform Offers Underserved Smaller Buildings Sector an Innovative Solution for Cutting Energy Costs Virginia Tech is working with DOE to make BEMOSS a scalable, interoperable, plug-and-play building automation and energy management solution. Read more Report Highlights Significant Energy Savings

  8. Emerging Technologies Program Accomplishments and Outcomes - 2015 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Program Accomplishments and Outcomes - 2015 Emerging Technologies Program Accomplishments and Outcomes - 2015 Learn about DOE's Building Technologies Office's Emerging Technologies R&D program's accomplishments and progress toward its goals in 2015. 2015 Highlights HVAC, Water Heating, and Appliances Honeywell commercialized Solstice N40, a low-global warming potential (GWP) refrigerant that provides a 67% reduction in GWP and up to 10% increased energy efficiency

  9. Transportation Emergency Preparedness Program Exercise Overview

    Office of Environmental Management (EM)

    Exercise Program TEPP Exercise Program Tom Clawson TEPP Contractor tom@trgroupinc.com Brief TEPP History Brief TEPP History * In 1988, identified need to address emergency preparedness concerns of DOE emergency preparedness concerns of DOE radiological shipments bl h d * EM established in 1989 - Identified need for responder training along all transportation corridors as key to EM mission - TEPP incorporated into DOE Order 151.1, with responsibility assigned to EM * WIPP adopted the the TEPP

  10. Office of Emergency Management Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emergency Management Assessments Office of Emergency Management Assessments MISSION The Office of Emergency Management Assessments conducts assessments to provide critical feedback and objective information on emergency management programs and performance. This information provides assurance to our stakeholders and identifies areas for improvement to our leadership to support the safe performance of the Department's mission. FUNCTIONS Conducts oversight of the adequacy of DOE emergency

  11. Semiconductor radiation detector

    SciTech Connect (OSTI)

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  12. Audible radiation monitor

    DOE Patents [OSTI]

    Odell, Daniel M. C.

    1993-01-01

    A method and apparatus for monitoring ionizing radiation comprising radiation detectors in electrical connection with an isotopic analyzer and a device for producing chords to which each isotope is mapped so that the device produces a unique chord for each isotope. Preferably the chords are pleasing to the ear, except for chords representing unexpected isotopes, and are louder or softer depending on the level of radioactivity produced by each isotope, and musical instrument voices may be simulated in producing the chords as an aid to distinguishing similar-sounding chords. Because of the representation by chords, information regarding the level and composition of the radiation in an area can be conveyed to workers in that area more effectively and yet without distracting them.

  13. Composition for radiation shielding

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-08-02

    A composition for use as a radiation shield is disclosed. The shield has a depleted uranium core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container. 2 figs.

  14. Optical fibers in medicine II: SPIE volume 713

    SciTech Connect (OSTI)

    Katzir, A.

    1987-01-01

    The papers are organized under the following titles: Therapeutic applications of optical fibers; Optical fibers in cardiology, Imaging and diagnostics; Selected readings in optical fibers in medicine; and Manufacturers of laser and fiber optic equipment for medical applications.

  15. Science on Tap - Why Los Alamos produces isotopes for medicine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Tap - Why Los Alamos produces isotopes for medicine and industry At the Bradbury Latest Issue:June 2016 all issues All Issues submit Science on Tap - Why Los Alamos ...

  16. March 2015 Most Viewed Documents for Biology And Medicine | OSTI...

    Office of Scientific and Technical Information (OSTI)

    5 Most Viewed Documents for Biology And Medicine Measuring dopamine release in the human brain with PET Volkow, N.D. Brookhaven National Lab., Upton, NY (United States)|State ...

  17. Medicine Lake, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Medicine Lake is a city in Hennepin County, Minnesota. It falls under Minnesota's 3rd...

  18. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, James E.; Bolton, Richard D.

    1999-01-01

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  19. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, J.E.; Bolton, R.D.

    1999-03-02

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  20. Wireless passive radiation sensor

    DOE Patents [OSTI]

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  1. NNSA emergency response assets highlighted | National Nuclear...

    National Nuclear Security Administration (NNSA)

    disasters using real-time response management system DC Survey 2013 NNSA displays helicopter in Baltimore NNSA to Conduct Aerial Radiation Monitoring Survey over Boston April 17-20

  2. ORISE: REAC/TS Emergency Response Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    management of radiation incidents. Our response teams are equipped with state-of-the-art medical equipment that can be transported to a site or used in our unique facility in...

  3. Medicine | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medicine High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Medicine Homeland Security Industry Computing Sciences Workforce Development A Growing List Accelerators for Americas Future External link Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: Email Us More

  4. Converting energy to medical progress [nuclear medicine] (Technical Report)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | SciTech Connect Converting energy to medical progress [nuclear medicine] Citation Details In-Document Search Title: Converting energy to medical progress [nuclear medicine] × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this

  5. Request for Travel Funds for Systems Radiation Biology Workshop

    SciTech Connect (OSTI)

    Barcellos-Hoff, Mary Helen

    2014-03-22

    The 3rd International Systems Radiation Biology Workshop brought together the major European, US and Japanese research programs on radiation risk as well as selected experts representing systems biological approaches to discuss how the new methodologies could be best exploited for low dose research. A significant part of the workshop was devoted to discussions organised as breakout group sessions. To facilitate discussions number of participants was limited to 60 persons. To achieve the goals of this symposium in this international conference, support from DOE is vital. Hence, this proposal requested support in the amount of $15,000 to cover the travel expenses of international experts and radiation biology scientists from the United States. This supporting mechanism was clearly identified to the selected US participants as a conference support award from the DOE (See attached PDF). The workshop was an outstanding opportunity to strengthen interactions between leading experts in the emerging areas of radiation sciences, and will also provide opportunities for younger scientists to meet with experts and discuss their results. This workshop was designed to endorse active engagement in international collaboration. A major objective of this conference was to effectively communicate research results, in order to ensure that current thinking reflects sound science of radiation biology. Further, this international event addressed the use and success of scientific initiatives in radiation biology for policymakers, standard-setters, and the general public.

  6. Emerging Technologies Leader Awarded for Supporting Small Businesses |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Emerging Technologies Leader Awarded for Supporting Small Businesses Emerging Technologies Leader Awarded for Supporting Small Businesses June 27, 2016 - 9:00am Addthis Emerging Technologies Leader Awarded for Supporting Small Businesses Emerging Technologies Leader Awarded for Supporting Small Businesses Emerging Technologies Leader Awarded for Supporting Small Businesses Emerging Technologies Leader Awarded for Supporting Small Businesses Tony Bouza, HVAC, Water

  7. Radiation Source Replacement Workshop

    SciTech Connect (OSTI)

    Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

    2010-12-01

    This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

  8. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, D.C.

    1980-12-17

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  9. Radiation detector spectrum simulator

    DOE Patents [OSTI]

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  10. Radiation detector spectrum simulator

    DOE Patents [OSTI]

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  11. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, Dimitrios C.

    1983-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

  12. Thermostatic Radiator Valve Evaluation

    SciTech Connect (OSTI)

    Dentz, Jordan; Ansanelli, Eric

    2015-01-01

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market.

  13. An emergent universe from a loop

    SciTech Connect (OSTI)

    Mulryne, David J.; Tavakol, Reza; Lidsey, James E.; Ellis, George F. R.

    2005-06-15

    Closed, singularity-free, inflationary cosmological models have recently been studied in the context of general relativity. Despite their appeal, these so called emergent models suffer from a number of limitations. These include the fact that they rely on an initial Einstein static state to describe the past-eternal phase of the universe. Given the instability of such a state within the context of general relativity, this amounts to a very severe fine tuning. Also in order to be able to study the dynamics of the universe within the context of general relativity, they set the initial conditions for the universe in the classical phase. Here we study the existence and stability of such models in the context of Loop Quantum Cosmology and show that both these limitations can be partially remedied, once semiclassical effects are taken into account. An important consequence of these effects is to give rise to a static solution (not present in GR), which dynamically is a center equilibrium point and located in the more natural semiclassical regime. This allows the construction of emergent models in which the universe oscillates indefinitely about such an initial static state. We construct an explicit emergent model of this type, in which a nonsingular past-eternal oscillating universe enters a phase where the symmetry of the oscillations is broken, leading to an emergent inflationary epoch, while satisfying all observational and semiclassical constraints. We also discuss emergent models in which the universe possesses both early- and late-time accelerating phases.

  14. Ultra-Scale Computing for Emergency Evacuation

    SciTech Connect (OSTI)

    Bhaduri, Budhendra L; Nutaro, James J; Liu, Cheng; Zacharia, Thomas

    2010-01-01

    Emergency evacuations are carried out in anticipation of a disaster such as hurricane landfall or flooding, and in response to a disaster that strikes without a warning. Existing emergency evacuation modeling and simulation tools are primarily designed for evacuation planning and are of limited value in operational support for real time evacuation management. In order to align with desktop computing, these models reduce the data and computational complexities through simple approximations and representations of real network conditions and traffic behaviors, which rarely represent real-world scenarios. With the emergence of high resolution physiographic, demographic, and socioeconomic data and supercomputing platforms, it is possible to develop micro-simulation based emergency evacuation models that can foster development of novel algorithms for human behavior and traffic assignments, and can simulate evacuation of millions of people over a large geographic area. However, such advances in evacuation modeling and simulations demand computational capacity beyond the desktop scales and can be supported by high performance computing platforms. This paper explores the motivation and feasibility of ultra-scale computing for increasing the speed of high resolution emergency evacuation simulations.

  15. 2012 RADIATION CHEMISTRY GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR, JULY 28, - AUGUST 3, 2012

    SciTech Connect (OSTI)

    y LaVerne

    2012-08-03

    The overarching objective of this conference is to catalyze the interchange of new ideas and recent discoveries within the basic radiation sciences of physics, chemistry, and biology, and to facilitate translating this knowledge to applications in medicine and industry. The 9 topics for the GRC are: "?From Energy Absorption to Disease", "?Biodosimetry after a Radiological Incident," "?Track Structure and Low Energy Electrons," "Free Radical Processes in DNA and Proteins," "Irradiated Polymers for Industrial/ Medical Applications," "Space Radiation Chemistry/Biology," "Nuclear Power and Waste Management," "Nanoparticles and Surface Interfaces", and the "Young Investigator" session.

  16. Guidance for Requesting Emergency Oil from the SPR | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services Petroleum Reserves Strategic Petroleum Reserve Guidance for Requesting Emergency Oil from the SPR Guidance for Requesting Emergency Oil from the SPR If hurricanes ...

  17. Potential Health and Environmental Impact from Emerging Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health and Environmental Impact from Emerging Technologies and Fuels: A report from the Health Effects Insitute Potential Health and Environmental Impact from Emerging Technologies ...

  18. CRAD, Emergency Management - Office of River Protection K Basin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A section ...

  19. NNSA, NATO Conduct Emergency Response Training in the Czech Republic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NNSA, NATO Conduct Emergency Response Training in the Czech Republic June 04, 2014 ... Radiological Assistance Program Training for Emergency Response (I-RAPTER) course ...

  20. Boiling water reactor-full length emergency core cooling heat...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Boiling water reactor-full length emergency core cooling heat transfer ... Citation Details In-Document Search Title: Boiling water reactor-full length emergency ...

  1. Emergency Support Function #12; Energy Annex - Support Agencies...

    Energy Savers [EERE]

    Annex - Support Agencies Emergency Support Function 12; Energy Annex - Support Agencies Emergency Support Function 12 - Energy Annex - Support Agencies and their related...

  2. Chemical Imaging and Dynamical Studies of Reactivity and Emergent...

    Office of Scientific and Technical Information (OSTI)

    Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in Complex ... Title: Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in ...

  3. Persons Who Received the DC PSC's Emergency Petition and Complaint...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ("DC PSC") Emergency Petition Comments on Department of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed Mirant ...

  4. Energy Emergency Preparedness Quarterly Vol 3, Issue 2 - Spring...

    Broader source: Energy.gov (indexed) [DOE]

    the Energy Assurance page. Energy Emergency Preparedness Quarterly Vol 3 Issue 2 - SpringSummer 2014 More Documents & Publications Energy Emergency Preparedness Quarterly Vol...

  5. AVTA: Battery Testing - Best Practices for Responding to Emergency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AVTA: Battery Testing - Best Practices for Responding to Emergency Incidents in Plug-in Electric Vehicles (EV) AVTA: Battery Testing - Best Practices for Responding to Emergency ...

  6. Best Practices: Policies for Building Efficiency and Emerging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Best Practices: Policies for Building Efficiency and Emerging Technologies Best Practices: Policies for Building Efficiency and Emerging Technologies Information about appliance ...

  7. Microsoft Word - Appendix H - Emergency Response Plan for Dams...

    Office of Legacy Management (LM)

    Flow Charts Appendix G Potential Problems and Emergency Actions Appendix H Emergency ... boundary should be considered as a minimum for evacuation planning purposes. ...

  8. OE Releases 2014 Issue 2 of Energy Emergency Preparedness Quarterly...

    Broader source: Energy.gov (indexed) [DOE]

    Clear Path II exercise held in May 2014 to support a whole community approach to energy emergency response, the DOE Community Guidelines for Energy Emergencies, and the April...

  9. Leveraging Service Calls and Emergency Repairs for Energy Efficiency...

    Energy Savers [EERE]

    Service Calls and Emergency Repairs for Energy Efficiency Marketing Leveraging Service Calls and Emergency Repairs for Energy Efficiency Marketing Better Buildings Residential ...

  10. Research and Development Roadmap for Emerging Water Heating Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Water Heating Technologies W. Goetzler, M. Guernsey, and M. Droesch September ... AND DEVELOPMENT ROADMAP FOR EMERGING WATER HEATING TECHNOLOGIES ii Preface Preface ...

  11. National Hydrogen Safety Training Resource for Emergency Responders...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Training Resource for Emergency Responders Webinar Slides National Hydrogen Safety Training Resource for Emergency Responders Webinar Slides Presentation slides from the ...

  12. Community Guidelines for Energy Emergencies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State and local emergency management authorities and local utilities may also provide helpful guidance. Energy Emergency Guidelines Overview Homeowners Respond to Power Outages ...

  13. China-Quantifying Emission Reduction Opportunities in Emerging...

    Open Energy Info (EERE)

    Emission Reduction Opportunities in Emerging Economies Jump to: navigation, search Name China-Quantifying Emission Reduction Opportunities in Emerging Economies AgencyCompany...

  14. Before the House Subcommittee on Emerging Threats, Cyber Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subcommittee on Emerging Threats, Cyber Security and Science and Technology Committee on Homeland Security Before the House Subcommittee on Emerging Threats, Cyber Security and ...

  15. NNSA Concludes Nuclear Security Training with Singapore Emergency...

    National Nuclear Security Administration (NNSA)

    Because of this expertise, the agency also provides nuclear emergency response support to local law enforcement, DHS, the FBI and emergency responders in other countries. During a ...

  16. Emerging Technologies Program Overview - 2016 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies Program Overview - 2016 BTO Peer Review Emerging Technologies Program Overview - 2016 BTO Peer Review Presenter: Pat Phelan. U.S. Department of Energy This ...

  17. Emergence of the Persistent Spin Helix in Semiconductor Quantum...

    Office of Scientific and Technical Information (OSTI)

    Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells Citation Details In-Document Search Title: Emergence of the Persistent Spin Helix in Semiconductor Quantum ...

  18. Enterprise Assessments Review of the Pantex Plant Emergency Management...

    Office of Environmental Management (EM)

    the Pantex Plant Emergency Management Exercise Program - November 2015 Enterprise Assessments Review of the Pantex Plant Emergency Management Exercise Program - November 2015 ...

  19. Evaluation of Emerging Technology for Geothermal Drilling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of ...

  20. 3M COMPANY SEP PRESENTATION AT 2015 EMERGING GREEN | Department...

    Energy Savers [EERE]

    Technical Assistance Superior Energy Performance 3M COMPANY SEP PRESENTATION AT 2015 EMERGING GREEN 3M COMPANY SEP PRESENTATION AT 2015 EMERGING GREEN seplogoborderless.jpg ...

  1. Oak_Ridge_Associated_Universities_Radiation_Emergency_Assistance_Center-Training_Site.pdf

    Energy Savers [EERE]

    Building K-27 Disappearing Quickly Oak Ridge's Building K-27 Disappearing Quickly May 31, 2016 - 1:00pm Addthis Crews are moving at an impressive pace on Building K-27, completing more than 65 percent of the demolition since February. Crews are moving at an impressive pace on Building K-27, completing more than 65 percent of the demolition since February. Oak Ridge is moving quickly toward fulfilling its Vision 2016 by the year's end. Oak Ridge is moving quickly toward fulfilling its Vision 2016

  2. New Easy-to-Use Medical Field Guide for Radiation Emergencies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concepts, terminology, and definitions Occupational exposure and radiological terrorist exposure risks Guidelines for initial medical response to acute local and whole-body...

  3. Lesson 4 - Ionizing Radiation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 - Ionizing Radiation Lesson 4 - Ionizing Radiation Lesson Three showed that unstable isotopes emit energy as they become more stable. This energy is known as radiation. This lesson explores forms of radiation, where radiation is found, how we detect and measure radiation, what sources of radiation people are exposed to, whether radiation is harmful, and how we can limit our exposure. Specific topics covered in this lesson include: Types of radiation Non-ionizing Ionizing Forms of ionizing

  4. Radiological Emergency Response Health and Safety Manual

    SciTech Connect (OSTI)

    D. R. Bowman

    2001-05-01

    This manual was created to provide health and safety (H&S) guidance for emergency response operations. The manual is organized in sections that define each aspect of H and S Management for emergency responses. The sections are as follows: Responsibilities; Health Physics; Industrial Hygiene; Safety; Environmental Compliance; Medical; and Record Maintenance. Each section gives guidance on the types of training expected for managers and responders, safety processes and procedures to be followed when performing work, and what is expected of managers and participants. Also included are generic forms that will be used to facilitate or document activities during an emergency response. These ensure consistency in creating useful real-time and archival records and help to prevent the loss or omission of information.

  5. The safety implications of emerging software paradigms

    SciTech Connect (OSTI)

    Suski, G.J.; Persons, W.L.; Johnson, G.L.

    1994-10-01

    This paper addresses some of the emerging software paradigms that may be used in developing safety-critical software applications. Paradigms considered in this paper include knowledge-based systems, neural networks, genetic algorithms, and fuzzy systems. It presents one view of the software verification and validation activities that should be associated with each paradigm. The paper begins with a discussion of the historical evolution of software verification and validation. Next, a comparison is made between the verification and validation processes used for conventional and emerging software systems. Several verification and validation issues for the emerging paradigms are discussed and some specific research topics are identified. This work is relevant for monitoring and control at nuclear power plants.

  6. Solar Radiation Research Laboratory | Energy Systems Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Radiation Research Laboratory Since 1981, NREL's Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar radiation components, ...

  7. Kentucky National Guard Radiation Specialist Course | Department...

    Office of Environmental Management (EM)

    Kentucky National Guard Radiation Specialist Course Kentucky National Guard Radiation Specialist Course Kentucky National Guard Radiation Specialist Course (628.78 KB) More ...

  8. ORISE: The Medical Aspects of Radiation Incidents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Medical Aspects of Radiation Incidents The Medical Aspects of Radiation Incidents provides the basic information needed for the medical management of victims of radiation ...

  9. ORISE: Radiation Treatment Medication Package Inserts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training RANET Asset Resources Overview Frequently Asked Questions about Radiation Understanding Radiation Video Series The Medical Aspects of Radiation Incidents Dose Estimates ...

  10. Radiation Effects Facility - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Effects Facility Typical DUT(device under test) set-up at the end of the Radiation Effects beamline. The Radiation Effects Facility is available for commercial, ...

  11. Annual DOE Occupational Radiation Exposure Reports | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual DOE Occupational Radiation Exposure Reports Annual DOE Occupational Radiation Exposure Reports November 17, 2015 Annual DOE Occupational Radiation Exposure | 2014 Report The...

  12. Apparatus for generating partially coherent radiation

    DOE Patents [OSTI]

    Naulleau, Patrick P.

    2005-02-22

    Techniques for generating partially coherent radiation and particularly for converting effectively coherent radiation from a synchrotron to partially coherent EUV radiation suitable for projection lithography.

  13. "Radiative Liquid Lithium (metal) Divertor" Inventor..-- Masayuki...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Radiative Liquid Lithium (metal) Divertor" Inventor..-- Masayuki Ono The invention utilizes liquid lithium as a radiative material. The radiative process greatly reduces the ...

  14. Radiation Levels in Real Time?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gamma radiation levels in the southern Nevada area will soon be accessible around the world at the touch of a finger. Makers of the cell phone application EcoData: Radiation are ...

  15. Emergency Care Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Place Where Emergency Care Belongs Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) The Place Where Emergency Care Belongs Jason Castle is a biologist five days out of the week and an EMT for seven. As an EMT, his job is to get to the scene and figure out what the patient needs-fast. As a biologist, Jason is working

  16. Solid State Marx Modulators for Emerging Applications

    SciTech Connect (OSTI)

    Kemp, M.A.; /SLAC

    2012-09-14

    Emerging linear accelerator applications increasingly push the boundaries of RF system performance and economics. The power modulator is an integral part of RF systems whose characteristics play a key role in the determining parameters such as efficiency, footprint, cost, stability, and availability. Particularly within the past decade, solid-state switch based modulators have become the standard in high-performance, high power modulators. One topology, the Marx modulator, has characteristics which make it particularly attractive for several emerging applications. This paper is an overview of the Marx topology, some recent developments, and a case study of how this architecture can be applied to a few proposed linear accelerators.

  17. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  18. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  19. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  20. radiation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    radiation NNSA to conduct Aerial Radiation Assessment Survey over Boston area BOSTON - On April 12 through April 15, the U.S. Department of Energy's National Nuclear Security Administration's (NNSA) will conduct low-altitude helicopter flights around Boston to measure naturally occurring background radiation. Officials from NNSA announced that the... NNSA to Participate in Aerial Radiation Training Exercise in Philadelphia, Pennsylvania (WASHINGTON, D.C.) - On March 21 through March 24, the