National Library of Energy BETA

Sample records for radiation dose ranges

  1. Extended range radiation dose-rate monitor

    DOE Patents [OSTI]

    Valentine, Kenneth H. (Knoxville, TN)

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  2. Radiation Dose From Medical Imaging: A Primer for Emergency Physicians

    E-Print Network [OSTI]

    Jones, Jesse G.A.; Mills, Christopher N.; Mogensen, Monique A.; Lee, Christoph I.

    2012-01-01

    risk imparted by low-dose radiation prove to be correct, CTattributable to low doses of ionizing radiation: assessingreducing radiation dose have developed low-dose CT protocols

  3. Radiation Dose Measurement for High-Intensity Laser Interactions...

    Office of Scientific and Technical Information (OSTI)

    Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC Citation Details In-Document Search Title: Radiation Dose Measurement for High-Intensity...

  4. Method to Improve Total Dose Radiation Hardness in a CMOS dc-dc Boost

    E-Print Network [OSTI]

    Wilamowski, Bogdan Maciej

    Method to Improve Total Dose Radiation Hardness in a CMOS dc-dc Boost Converter Huadian Pan in a wide range of radiation environment, with increasing total dose radiation, The efticieney also greatly for low-power applications (1],[2]. It is known that radiation has many effects on MOSFETs

  5. EXTRAPOLATING RADIATION-INDUCED CANCER RISKS FROM LOW DOSES TO VERY LOW DOSES

    E-Print Network [OSTI]

    Brenner, David Jonathan

    Paper EXTRAPOLATING RADIATION-INDUCED CANCER RISKS FROM LOW DOSES TO VERY LOW DOSES David J are increased at low doses ( 10 mGy). Discussed here are the issues related to extrapolating radiation risks from low radiation doses to very low doses (

  6. Radiation Leukemogenesis at Low Dose Rates

    SciTech Connect (OSTI)

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  7. We can do better than effective dose for estimating or comparing low-dose radiation risks

    E-Print Network [OSTI]

    Brenner, David Jonathan

    We can do better than effective dose for estimating or comparing low-dose radiation risks D to the radiobiological `detriment' from a particular low-dose radiation exposure ­ detriment representing a balance. Keywords: Low dose risk estimation; Effective dose; Flawed definition; Effective risk 1. INTRODUCTION

  8. Agriculture-related radiation dose calculations

    SciTech Connect (OSTI)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  9. Cardiac Computed Tomography Radiation Dose Reduction Using Interior Reconstruction Algorithm

    E-Print Network [OSTI]

    Wang, Ge

    recommendations are to use radiation dose as low as possible while satisfying the diagnosis requirement. ThereforeCardiac Computed Tomography Radiation Dose Reduction Using Interior Reconstruction Algorithm. Jeffrey Carr, MD,§¶ and Ge Wang, PhD,*Þþ Abstract: High x-ray radiation dose is a major public concern

  10. Consequences of low dose ionizing radiation exposure on the hippocampal microenvironment

    E-Print Network [OSTI]

    2015-01-01

    June 4, 2015 Low Dose Radiation Alters HippocampalJune 4, 2015 Low Dose Radiation Alters HippocampalJune 4, 2015 Low Dose Radiation Alters Hippocampal

  11. Dosimetry for quantitative analysis of the effects of low-dose ionizing radiation in radiation therapy patients

    E-Print Network [OSTI]

    2006-01-01

    for studying low- dose radiation at the doses discussed hereof the Effects of Low-Dose Ionizing Radiation in Radiationof the Effects of Low-Dose Ionizing Radiation in Ra- diation

  12. Direct determination of internal radiation dose in human blood

    E-Print Network [OSTI]

    Tan?r, Ayse Güne?

    2014-01-01

    The purpose of this study is to measure the internal radiation dose using a human blood sample. In the literature, there is no process that allows the direct measurement of the internal radiation dose received by a person. The luminescence counts from a blood sample having a laboratory-injected radiation dose and the waste blood of the patient injected with a radiopharmaceutical for diagnostic purposes were both measured. The decay and dose-response curves were plotted for the different doses. The doses received by the different blood aliquots can be determined by interpolating the luminescence counts to the dose-response curve. This study shows that the dose received by a person can be measured directly, simply and retrospectively by using only a very small amount of blood sample. The results will have important ramifications for the medicine and healthcare fields in particular. This will also be very important in cases of suspicion of radiation poisoning, malpractice and so on.

  13. Factories: The Ionising Radiations (Sealed Sources) (Radiation Dose Record) Order, 1961 

    E-Print Network [OSTI]

    Hare, John

    1961-01-01

    This Order prescribes the particulars to be contained in radiation dose records kept under paragraph (I) of Regulation 24 of the Ionising Radiations (Sealed Sources) Regulations, 1961.

  14. Radiation Dose Risk and Diagnostic Benefit in Imaging Investigations

    E-Print Network [OSTI]

    Dobrescu, Lidia

    2015-01-01

    The paper presents many facets of medical imaging investigations radiological risks. The total volume of prescribed medical investigations proves a serious lack in monitoring and tracking of the cumulative radiation doses in many health services. Modern radiological investigations equipment is continuously reducing the total dose of radiation due to improved technologies, so a decrease in per caput dose can be noticed, but the increasing number of investigations has determined a net increase of the annual collective dose. High doses of radiation are cumulated from Computed Tomography investigations. An integrated system for radiation safety of the patients investigated by radiological imaging methods, based on smart cards and Public Key Infrastructure allow radiation absorbed dose data storage.

  15. Comparison of low and high dose ionising radiation using topological analysis of gene coexpression networks

    E-Print Network [OSTI]

    Ray, Monika; Yunis, Reem; Chen, Xiucui; Rocke, David M

    2012-01-01

    gene networks for low-dose radiation using graph theoreticalthe detrimental effects of low dose radiation is not wellfollowing 10 cGy (low dose radiation) and 100 cGy (high dose

  16. Radiation dose rates from UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Friend, P.J. [Urenco, Capenhurst (United Kingdom)

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  17. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    SciTech Connect (OSTI)

    Yang, Joanna C.; Dharmarajan, Kavita V.; Wexler, Leonard H.; La Quaglia, Michael P.; Happersett, Laura; Wolden, Suzanne L.

    2012-11-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged {<=}7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  18. Implications of Intercellular Signaling for Radiation Therapy: A Theoretical Dose-Planning Study

    SciTech Connect (OSTI)

    McMahon, Stephen J.; McGarry, Conor K.; Butterworth, Karl T.; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2013-12-01

    Purpose: Recent in vitro results have shown significant contributions to cell killing from signaling effects at doses that are typically used in radiation therapy. This study investigates whether these in vitro observations can be reconciled with in vivo knowledge and how signaling may have an impact on future developments in radiation therapy. Methods and Materials: Prostate cancer treatment plans were generated for a series of 10 patients using 3-dimensional conformal therapy, intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy techniques. These plans were evaluated using mathematical models of survival following modulated radiation exposures that were developed from in vitro observations and incorporate the effects of intercellular signaling. The impact on dose–volume histograms and mean doses were evaluated by converting these survival levels into “signaling-adjusted doses” for comparison. Results: Inclusion of intercellular communication leads to significant differences between the signalling-adjusted and physical doses across a large volume. Organs in low-dose regions near target volumes see the largest increases, with mean signaling-adjusted bladder doses increasing from 23 to 33 Gy in IMRT plans. By contrast, in high-dose regions, there is a small decrease in signaling-adjusted dose due to reduced contributions from neighboring cells, with planning target volume mean doses falling from 74 to 71 Gy in IMRT. Overall, however, the dose distributions remain broadly similar, and comparisons between the treatment modalities are largely unchanged whether physical or signaling-adjusted dose is compared. Conclusions: Although incorporating cellular signaling significantly affects cell killing in low-dose regions and suggests a different interpretation for many phenomena, their effect in high-dose regions for typical planning techniques is comparatively small. This indicates that the significant signaling effects observed in vitro are not contradicted by comparison with clinical observations. Future investigations are needed to validate these effects in vivo and to quantify their ranges and potential impact on more advanced radiation therapy techniques.

  19. Human In vivo Dose-Response to Controlled, Low-Dose Low Linear EnergyTransfer Ionizing Radiation Exposure

    E-Print Network [OSTI]

    Rocke, David M.

    Human In vivo Dose-Response to Controlled, Low-Dose Low Linear EnergyTransfer Ionizing Radiation Purpose: The effect of low doses of low ^ linear energy transfer (photon) ionizing radiation (LDIR, and pathway. Conclusions: These results show for the first time that low doses of radiation have an identifi

  20. Low Dose Radiation Response Curves, Networks and Pathways in Human Lymphoblastoid Cells Exposed from 1 to 10 cGy of Acute Gamma Radiation

    E-Print Network [OSTI]

    Wyrobek, A. J.

    2011-01-01

    Low Dose Radiation Response Curves, Networks and Pathways inbrain response to low- dose radiation exposure involves245-257. G. Bauer, Low dose radiation and intercellular

  1. Direct determination of radiation dose in human blood

    E-Print Network [OSTI]

    Tanir, Ayse Gunes; Sahiner, Eren; Bolukdemir, Mustafa Hicabi; Koc, Kemal; Meric, Niyazi; Kelec, Sule Kaya

    2014-01-01

    Our purpose is to measure the internal radiation dose (ID) using human blood sample. In the literature, there is no process that allows the direct measurement of ID received by a person. This study has shown that it is possible to determine ID in human blood exposed to internal or external ionizing radiation treatment both directly and retrospectively. OSL technique was used to measure the total dose from the blood sample. OSL counts from the waste blood of the patient injected with a radiopharmaceutical for diagnostic or treatment purposes and from a blood sample having a laboratory-injected radiation dose were both used for measurements. The decay and dose-response curves (DRC) were plotted for different doses. The doses received by different blood aliquots have been determined by interpolating the natural luminescence counts to DRC. In addition, OSL counts from a healthy blood sample exposed to an external radiation source were measured. The blood aliquots were given different 0-200Gy beta doses and their ...

  2. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    SciTech Connect (OSTI)

    Kleiman, Norman Jay

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9, influence cataract development and thus radiosensitivity. These observations have direct applicability to various human populations including accidentally exposed individuals, interventional medical workers, astronauts and nuclear plant workers.

  3. Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know

    E-Print Network [OSTI]

    Brenner, David Jonathan

    Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know David J low radiation doses the situation is much less clear, but the risks of low-dose radiation terrorism. We review the difficulties involved in quantifying the risks of low-dose radiation and address

  4. ORISE: Radiation Dose Estimates and Other Compendia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSEHow ORISE is Making aDose Estimates and Other Compendia

  5. An evaluation of theories concerning the health effects of low-dose radiation exposures

    E-Print Network [OSTI]

    Wei, Elizabeth J. (Elizabeth Jay)

    2012-01-01

    The danger of high, acute doses of radiation is well documented, but the effects of low-dose radiation below 100 mSv is still heavily debated. Four theories concerning the effects of lowdose radiation are presented here: ...

  6. Dosimeter for measuring skin dose and more deeply penetrating radiation

    DOE Patents [OSTI]

    Jones, Donald E. (Idaho Falls, ID); Parker, DeRay (Idaho Falls, ID); Boren, Paul R. (Idaho Falls, ID)

    1981-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with netruon-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  7. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOE Patents [OSTI]

    Chandler, William P. (Tracy, CA); Hartmann-Siantar, Christine L. (San Ramon, CA); Rathkopf, James A. (Livermore, CA)

    1999-01-01

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.

  8. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOE Patents [OSTI]

    Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.

    1999-02-09

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.

  9. Quantitative Proteomic Profiling of Low Dose Ionizing Radiation Effects in a Human Skin Model

    SciTech Connect (OSTI)

    Hengel, Shawna; Aldrich, Joshua T.; Waters, Katrina M.; Pasa-Tolic, Ljiljana; Stenoien, David L.

    2014-07-29

    To assess molecular responses to low doses of radiation that may be encountered during medical diagnostic procedures, nuclear accidents, or terrorist acts, a quantitative global proteomic approach was used to identify protein alterations in a reconstituted human skin tissue treated with 10 cGy of ionizing radiation. Subcellular fractionation was employed to remove highly abundant structural proteins and provide insight on radiation induced alterations in protein abundance and localization. In addition, peptides were post-fractionated using high resolution 2-dimensional liquid chromatography to increase the dynamic range of detection of protein abundance and translocation changes. Quantitative data was obtained by labeling peptides with 8-plex isobaric iTRAQ tags. A total of 207 proteins were detected with statistically significant alterations in abundance and/or subcellular localization compared to sham irradiated tissues. Bioinformatics analysis of the data indicated that the top canonical pathways affected by low dose radiation are related to cellular metabolism. Among the proteins showing alterations in abundance, localization and proteolytic processing was the skin barrier protein filaggrin which is consistent with our previous observation that ionizing radiation alters profilaggrin processing with potential effects on skin barrier functions. In addition, a large number of proteases and protease regulators were affected by low dose radiation exposure indicating that altered proteolytic activity may be a hallmark of low dose radiation exposure. While several studies have demonstrated altered transcriptional regulation occurs following low dose radiation exposures, the data presented here indicates post-transcriptional regulation of protein abundance, localization, and proteolytic processing play an important role in regulating radiation responses in complex human tissues.

  10. 131I-Tositumomab Myeloablative Radioimmunotherapy for Non-Hodgkin's Lymphoma: Radiation Dose to the Testes

    SciTech Connect (OSTI)

    Hattori, Naoya; Gopal, Ajay K.; Shields, Andrew T.; Fisher, Darrell R.; Gooley, Ted; Pagel, John M.; Press, Oliver W.; Rajendran, Joseph G.

    2012-12-01

    To investigate radiation dose to testes delivered by radiolabeled anti-CD20 antibody and its effects on male sex hormone levels. METHODS: We evaluated dosimetry results for 67 male patients (54 ± 11 years old) with non-Hodgkin lymphoma who underwent myeloablative radioimmunotherapy (RIT) using 131I-tositumomab. In a subset of patients, male sex hormones were measured before and one year after the therapy. RESULTS: Absorbed dose to testes showed greater variability (range = 4.4 to 70.2 Gy) than did dose to lungs (9.5 to 28.4 Gy, p < 0.0001) or liver (6.5 to 27.2 Gy, p < 0.0001). Absorbed dose to the testes per 131I administered (1.18 ± 0.59 mGy/MBq) was not significantly different from that to the liver (1.03 ± 0.29 mGy/MBq, p = 0.08), or to the lungs (1.19 ± 0.50 mGy/MBq, p = 0.889). Pre-therapy levels of total testosterone were below the lower limit of the reference range, and post-therapy evaluation demonstrated further reduction (4.6 ± 1.8 nmol/L (pre-RIT) vs. 3.8 ± 2.9 nmol/L (post-RIT), p < 0.05). Patients receiving higher radiation doses to the testes (? 25 Gy) showed a greater reduction (4.7 ± 1.6 nmol/L (pre RIT) vs. 3.3 ± 2.7 nmol/L (post-RIT), p < 0.05) than did patients receiving lower doses (< 25 Gy), who showed no significant change in total testosterone levels. CONCLUSION: The testicular radiation absorbed dose varied highly among individual patients. Patients receiving higher doses to testes were more likely to show post-RIT suppression of testosterone levels. Key Words: 131I-tositumomab, follicular lymphoma, radioimmunotherapy, radiation dosimetry, male sex hormones. ?

  11. Radiation Dose-Response Model for Locally Advanced Rectal Cancer After Preoperative Chemoradiation Therapy

    SciTech Connect (OSTI)

    Appelt, Ane L., E-mail: ane.lindegaard.appelt@slb.regionsyddanmark.dk [Department of Oncology, Vejle Hospital, Vejle (Denmark); University of Southern Denmark, Odense (Denmark); Ploen, John [Department of Oncology, Vejle Hospital, Vejle (Denmark)] [Department of Oncology, Vejle Hospital, Vejle (Denmark); Vogelius, Ivan R. [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen (Denmark)] [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen (Denmark); Bentzen, Soren M. [Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin (United States)] [Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin (United States); Jakobsen, Anders [Department of Oncology, Vejle Hospital, Vejle (Denmark) [Department of Oncology, Vejle Hospital, Vejle (Denmark); University of Southern Denmark, Odense (Denmark)

    2013-01-01

    Purpose: Preoperative chemoradiation therapy (CRT) is part of the standard treatment of locally advanced rectal cancers. Tumor regression at the time of operation is desirable, but not much is known about the relationship between radiation dose and tumor regression. In the present study we estimated radiation dose-response curves for various grades of tumor regression after preoperative CRT. Methods and Materials: A total of 222 patients, treated with consistent chemotherapy and radiation therapy techniques, were considered for the analysis. Radiation therapy consisted of a combination of external-beam radiation therapy and brachytherapy. Response at the time of operation was evaluated from the histopathologic specimen and graded on a 5-point scale (TRG1-5). The probability of achieving complete, major, and partial response was analyzed by ordinal logistic regression, and the effect of including clinical parameters in the model was examined. The radiation dose-response relationship for a specific grade of histopathologic tumor regression was parameterized in terms of the dose required for 50% response, D{sub 50,i}, and the normalized dose-response gradient, {gamma}{sub 50,i}. Results: A highly significant dose-response relationship was found (P=.002). For complete response (TRG1), the dose-response parameters were D{sub 50,TRG1} = 92.0 Gy (95% confidence interval [CI] 79.3-144.9 Gy), {gamma}{sub 50,TRG1} = 0.982 (CI 0.533-1.429), and for major response (TRG1-2) D{sub 50,TRG1} and {sub 2} = 72.1 Gy (CI 65.3-94.0 Gy), {gamma}{sub 50,TRG1} and {sub 2} = 0.770 (CI 0.338-1.201). Tumor size and N category both had a significant effect on the dose-response relationships. Conclusions: This study demonstrated a significant dose-response relationship for tumor regression after preoperative CRT for locally advanced rectal cancer for tumor dose levels in the range of 50.4-70 Gy, which is higher than the dose range usually considered.

  12. VISTAnet: Radiation therapy treatment planning through rapid dose calculation and interactive 3D volume visualization

    E-Print Network [OSTI]

    State, Andrei

    deliver a high radiation dose to the planning target volume and a low dose to surrounding normal tissueVISTAnet: Radiation therapy treatment planning through rapid dose calculation and interactive 3D capable of real-time radiation therapy dose calculation and display. We report on the methods used

  13. Biological detection of low radiation doses by combining results of two microarray analysis

    E-Print Network [OSTI]

    Mary, Jeremie - Groupe de Recherche sur l'Apprentissage Automatique, Université Charles de Gaulle

    Biological detection of low radiation doses by combining results of two microarray analysis methods in Saccharomyces cerevisiae growing in the absence and continuous presence of varying low doses of radiation harmful effects of low doses of radiation released by these sites. The threshold dose concept, designed

  14. Proteomic Analysis of Low Dose Arsenic and Ionizing Radiation Exposure on Keratinocytes

    E-Print Network [OSTI]

    Rocke, David M.

    Proteomic Analysis of Low Dose Arsenic and Ionizing Radiation Exposure on Keratinocytes Susanne R that keratinocytes responded to either low dose arsenic and/or low dose ionizing radiation exposure, resulting arsenic; human; ionizing radiation; keratinocyte; low dose *Corresponding author: Susanne Berglund

  15. ORIGINAL PAPER The effect of low dose rate on metabolomic response to radiation

    E-Print Network [OSTI]

    Brenner, David Jonathan

    ORIGINAL PAPER The effect of low dose rate on metabolomic response to radiation in mice Maryam assessment. Keywords Metabolomics Á Low dose rate radiation Á Mass spectrometry Introduction The adverse at high dose rates (HDR), but many will experience exposure to low dose rate (LDR) radiation from fallout

  16. Radiation dose and late failures in prostate cancer

    SciTech Connect (OSTI)

    Morgan, Peter B. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Hanlon, Alexandra L. [Department of Public Health, Temple University, Philadelphia, PA (United States); Horwitz, Eric M. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Buyyounouski, Mark K. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Uzzo, Robert G. [Department of Urologic Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Pollack, Alan [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States)]. E-mail: alan.pollack@fccc.edu

    2007-03-15

    Purpose: To quantify the impact of radiation dose escalation on the timing of biochemical failure (BF) and distant metastasis (DM) for prostate cancer treated with radiotherapy (RT) alone. Methods: The data from 667 men with clinically localized intermediate- and high-risk prostate cancer treated with three-dimensional conformal RT alone were retrospectively analyzed. The interval hazard rates of DM and BF, using the American Society for Therapeutic Radiology and Oncology (ASTRO) and Phoenix (nadir + 2) definitions, were determined. The median follow-up was 77 months. Results: Multivariate analysis showed that increasing radiation dose was independently associated with decreased ASTRO BF (p < 0.0001), nadir + 2 BF (p = 0.001), and DM (p = 0.006). The preponderance (85%) of ASTRO BF occurred at {<=}4 years after RT, and nadir + 2 BF was more evenly spread throughout Years 1-10, with 55% of BF in {<=}4 years. Radiation dose escalation caused a shift in the BF from earlier to later years. The interval hazard function for DM appeared to be biphasic (early and late peaks) overall and for the <74-Gy group. In patients receiving {>=}74 Gy, a reduction occurred in the risk of DM in the early and late waves, although the late wave appeared reduced to a greater degree. Conclusion: The ASTRO definition of BF systematically underestimated late BF because of backdating. Radiation dose escalation diminished and delayed BF; the delay suggested that local persistence may still be present in some patients. For DM, a greater radiation dose reduced the early and late waves, suggesting that persistence of local disease contributed to both.

  17. Low dose ionizing radiation detection using conjugated polymers

    SciTech Connect (OSTI)

    Silva, E.A.B.; Borin, J.F.; Nicolucci, P.; Graeff, C.F.O.; Netto, T. Ghilardi; Bianchi, R.F.

    2005-03-28

    In this work, the effect of gamma radiation on the optical properties of poly[2-methoxy-5-(2{sup '}-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV) is studied. The samples were irradiated at room temperature with different doses from 0 Gy to 152 Gy using a {sup 60}Co gamma ray source. For thin films, significant changes in the UV-visible spectra were only observed at high doses (>1 kGy). In solution, shifts in absorption peaks are observed at low doses (<10 Gy), linearly dependent on dose. The shifts are explained by conjugation reduction, and possible causes are discussed. Our results indicate that MEH-PPV solution can be used as a dosimeter adequate for medical applications.

  18. Radiation Dose and Subsequent Risk for Stomach Cancer in Long-term Survivors of Cervical Cancer

    SciTech Connect (OSTI)

    Kleinerman, Ruth A.; Smith, Susan A.; Holowaty, Eric; Hall, Per; Pukkala, Eero; Vaalavirta, Leila; Stovall, Marilyn; Weathers, Rita; Gilbert, Ethel; Aleman, Berthe M.P.; Kaijser, Magnus; Andersson, Michael; Storm, Hans; Joensuu, Heikki; Lynch, Charles F.; and others

    2013-08-01

    Purpose: To assess the dose–response relationship for stomach cancer after radiation therapy for cervical cancer. Methods and Materials: We conducted a nested, matched case–control study of 201 cases and 378 controls among 53,547 5-year survivors of cervical cancer diagnosed from 1943 to 1995, from 5 international, population-based cancer registries. We estimated individual radiation doses to the site of the stomach cancer for all cases and to corresponding sites for the matched controls (overall mean stomach tumor dose, 2.56 Gy, range 0.03-46.1 and after parallel opposed pelvic fields, 1.63 Gy, range 0.12-6.3). Results: More than 90% of women received radiation therapy, mostly with external beam therapy in combination with brachytherapy. Stomach cancer risk was nonsignificantly increased (odds ratio 1.27-2.28) for women receiving between 0.5 and 4.9 Gy to the stomach cancer site and significantly increased at doses ?5 Gy (odds ratio 4.20, 95% confidence interval 1.41-13.4, P{sub trend}=.047) compared with nonirradiated women. A highly significant radiation dose–response relationship was evident when analyses were restricted to the 131 cases (251 controls) whose stomach cancer was located in the middle and lower portions of the stomach (P{sub trend}=.003), whereas there was no indication of increasing risk with increasing dose for 30 cases (57 controls) whose cancer was located in the upper stomach (P{sub trend}=.23). Conclusions: Our findings show for the first time a significant linear dose–response relationship for risk of stomach cancer in long-term survivors of cervical cancer.

  19. Efficient wireless non-radiative mid-range energy transfer

    E-Print Network [OSTI]

    Efficient wireless non-radiative mid-range energy transfer Aristeidis Karalis a,*, J.D. Joannopoulos b , Marin Soljacic´ b a Department of Electrical Engineering and Computer Science, Massachusetts-range wireless energy transfer. Ó 2007 Elsevier Inc. All rights reserved. Keywords: Wireless energy; Wireless

  20. Irradiators for measuring the biological effects of low dose-rate ionizing radiation fields

    E-Print Network [OSTI]

    Davidson, Matthew Allen

    2011-01-01

    Biological response to ionizing radiation differs with radiation field. Particle type, energy spectrum, and dose-rate all affect biological response per unit dose. This thesis describes methods of spectral analysis, ...

  1. Integrated beta and gamma radiation dose calculations for the ferrocyanide waste tanks

    SciTech Connect (OSTI)

    Parra, S.A.

    1994-11-30

    This report contains the total integrated beta and gamma radiation doses in all the ferrocyanide waste tanks. It also contains estimated gamma radiation dose rates for all single-shell waste tanks containing a liquid observation well.

  2. Radiation dose reduction in computed tomography perfusion using spatial-temporal Bayesian methods

    E-Print Network [OSTI]

    Chen, Tsuhan

    in mean-square-error (MSE) of 40% at low dose radiation of 43mA. Keywords: spatial-temporal, BayesianRadiation dose reduction in computed tomography perfusion using spatial-temporal Bayesian methods-ray radiation dose is of significant concern to patients and operators, especially CT perfusion (CTP) imaging

  3. Mercier et al. , November 2003 BIOLOGICAL DETECTION OF LOW RADIATION DOSES

    E-Print Network [OSTI]

    Antoniadis, Anestis

    Mercier et al. , November 2003 1 BIOLOGICAL DETECTION OF LOW RADIATION DOSES BY COMBINING RESULTS cerevisiae growing in the absence and continuous presence of varying low doses of radiation. Global and the accumulation of nuclear waste raise questions concerning the possible harmful effects of low doses of radiation

  4. Low-Dose Radiation Therapy (2 Gy × 2) in the Treatment of Orbital Lymphoma

    SciTech Connect (OSTI)

    Fasola, Carolina E.; Jones, Jennifer C.; Huang, Derek D.; Le, Quynh-Thu; Hoppe, Richard T.; Donaldson, Sarah S.

    2013-08-01

    Purpose: Low-dose radiation has become increasingly used in the management of indolent non-Hodgkin lymphoma (NHL), but has not been studied specifically for cases of ocular adnexal involvement. The objective of this study is to investigate the effectiveness of low-dose radiation in the treatment of NHL of the ocular adnexa. Methods and Materials: We reviewed the records of 20 NHL patients with 27 sites of ocular adnexal involvement treated with low-dose radiation consisting of 2 successive fractions of 2 Gy at our institution between 2005 and 2011. The primary endpoint of this study is freedom from local relapse (FFLR). Results: At a median follow-up time of 26 months (range 7-92), the overall response rate for the 27 treated sites was 96%, with a complete response (CR) rate of 85% (n=23) and a partial response rate of 11% (n=3). Among all treated sites with CR, the 2-year FFLR was 100%, with no in-treatment field relapses. The 2-year freedom from regional relapse rate was 96% with 1 case of relapse within the ipsilateral orbit (outside of the treatment field). This patient underwent additional treatment with low-dose radiation of 4 Gy to the area of relapse achieving a CR and no evidence of disease at an additional 42 months of follow-up. Orbital radiation was well tolerated with only mild acute side effects (dry eye, conjunctivitis, transient periorbital edema) in 30% of treated sites without any reports of long-term toxicity. Conclusions: Low-dose radiation with 2 Gy × 2 is effective and well tolerated in the treatment of indolent NHL of the ocular adnexa with high response rates and durable local control with the option of reirradiation in the case of locoregional relapse.

  5. Radiation Therapy Photon Beams Dose Conformation According to Dose Distribution Around Intracavitary-Applied Brachytherapy Sources

    SciTech Connect (OSTI)

    Jurkovic, Slaven Zauhar, Gordana; Faj, Dario; Radojcic, Deni Smilovic; Svabic, Manda

    2010-04-01

    Intracavitary application of brachytherapy sources followed by external beam radiation is essential for the local treatment of carcinoma of the cervix. Due to very high doses to the central portion of the target volume delivered by brachytherapy sources, this part of the target volume must be shielded while being irradiated by photon beams. Several shielding techniques are available, from rectangular block and standard cervix wedge to more precise, customized step wedge filters. Because the calculation of a step wedge filter's shape was usually based on effective attenuation coefficient, an approach that accounts, in a more precise way, for the scattered radiation, is suggested. The method was verified under simulated clinical conditions using film dosimetry. Measured data for various compensators were compared to the numerically determined sum of the dose distribution around brachytherapy sources and one of compensated beam. Improvements in total dose distribution are demonstrated, using our method. Agreement between calculation and measurements were within 3%. Sensitivity of the method on sources displacement during treatment has also been investigated.

  6. Population doses from environmental gamma radiation in Iraq

    SciTech Connect (OSTI)

    Marouf, B.A.; Mohamad, A.S.; Taha, J.S.; al-Haddad, I.K. (Iraq Atomic Energy Commission, Nuclear Research Center, Tuwaitha, Baghdad, (Iraq))

    1992-05-01

    The exposure rates due to external gamma radiation were measured in 11 Iraqi governerates. Measurements were performed with an Environmental Monitoring System (RSS-111) in open air 1 m above the ground. The average absorbed dose rate in each governerate was as follows (number x 10(-2) microGy h-1): Babylon (6.0), Kerbala (5.3), Al-Najaf (5.4), Al-Kadysia (6.5), Wasit (6.5), Diala (6.5), Al-Anbar (6.5), Al-Muthana (6.6), Maisan (6.8), Thee-Kar (6.6), and Al-Basrah (6.5). The collective doses to the population living in these governerates were 499, 187, 239, 269, 262, 458, 384, 153, 250, 450, and 419 person-Sv, respectively.

  7. Dose Uncertainties in IMPT for Oropharyngeal Cancer in the Presence of Anatomical, Range, and Setup Errors

    SciTech Connect (OSTI)

    Kraan, Aafke C., E-mail: aafke.kraan@pi.infn.it [Erasmus MC Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Water, Steven van de; Teguh, David N.; Al-Mamgani, Abrahim [Erasmus MC Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Madden, Tom; Kooy, Hanne M. [Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Heijmen, Ben J.M.; Hoogeman, Mischa S. [Erasmus MC Daniel den Hoed Cancer Center, Rotterdam (Netherlands)

    2013-12-01

    Purpose: Setup, range, and anatomical uncertainties influence the dose delivered with intensity modulated proton therapy (IMPT), but clinical quantification of these errors for oropharyngeal cancer is lacking. We quantified these factors and investigated treatment fidelity, that is, robustness, as influenced by adaptive planning and by applying more beam directions. Methods and Materials: We used an in-house treatment planning system with multicriteria optimization of pencil beam energies, directions, and weights to create treatment plans for 3-, 5-, and 7-beam directions for 10 oropharyngeal cancer patients. The dose prescription was a simultaneously integrated boost scheme, prescribing 66 Gy to primary tumor and positive neck levels (clinical target volume-66 Gy; CTV-66 Gy) and 54 Gy to elective neck levels (CTV-54 Gy). Doses were recalculated in 3700 simulations of setup, range, and anatomical uncertainties. Repeat computed tomography (CT) scans were used to evaluate an adaptive planning strategy using nonrigid registration for dose accumulation. Results: For the recalculated 3-beam plans including all treatment uncertainty sources, only 69% (CTV-66 Gy) and 88% (CTV-54 Gy) of the simulations had a dose received by 98% of the target volume (D98%) >95% of the prescription dose. Doses to organs at risk (OARs) showed considerable spread around planned values. Causes for major deviations were mixed. Adaptive planning based on repeat imaging positively affected dose delivery accuracy: in the presence of the other errors, percentages of treatments with D98% >95% increased to 96% (CTV-66 Gy) and 100% (CTV-54 Gy). Plans with more beam directions were not more robust. Conclusions: For oropharyngeal cancer patients, treatment uncertainties can result in significant differences between planned and delivered IMPT doses. Given the mixed causes for major deviations, we advise repeat diagnostic CT scans during treatment, recalculation of the dose, and if required, adaptive planning to improve adequate IMPT dose delivery.

  8. Overview of Fluence to Dose Conversion Coefficients for High Energy Radiations - Calculational Methods and Results of Two Kinds of Effective Dose per Unit Particle Fluence

    E-Print Network [OSTI]

    Iwai, S; Sato, O; Yoshizawa, N; Furihata, S; Takagi, S; Tanaka, S; Sakamoto, Y

    2000-01-01

    Overview of Fluence to Dose Conversion Coefficients for High Energy Radiations - Calculational Methods and Results of Two Kinds of Effective Dose per Unit Particle Fluence

  9. Applied Radiation and Isotopes 64 (2006) 6062 Weak energy dependence of EBT gafchromic film dose

    E-Print Network [OSTI]

    Yu, Peter K.N.

    2006-01-01

    Applied Radiation and Isotopes 64 (2006) 60­62 Weak energy dependence of EBT gafchromic film dose to megavoltage X-rays. The film is auto-developing and sensitive, it provides accurate dose assessment of low; Gafchromic EBT; Radiation dosimetry; Energy dependence; Dose response 1. Introduction In medical radiotherapy

  10. Radiation dose reduction and image enhancement in biological imaging through equally-sloped tomography

    E-Print Network [OSTI]

    Miao, Jianwei "John"

    Radiation dose reduction and image enhancement in biological imaging through equally Iterative reconstruction algorithm Radiation dose reduction Image enhancement Computed tomography a b s t r, 1974; Dubochet et al., 1998). The use of electronic detec- tors and the implementation of automated low-dose

  11. Brachial Plexus-Associated Neuropathy After High-Dose Radiation Therapy for Head-and-Neck Cancer

    SciTech Connect (OSTI)

    Chen, Allen M.; Hall, William H.; Li, Judy; Beckett, Laurel; Farwell, D. Gregory; Lau, Derick H.; Purdy, James A.

    2012-09-01

    Purpose: To identify clinical and treatment-related predictors of brachial plexus-associated neuropathies after radiation therapy for head-and-neck cancer. Methods and Materials: Three hundred thirty patients who had previously completed radiation therapy for head-and-neck cancer were prospectively screened using a standardized instrument for symptoms of neuropathy thought to be related to brachial plexus injury. All patients were disease-free at the time of screening. The median time from completion of radiation therapy was 56 months (range, 6-135 months). One-hundred fifty-five patients (47%) were treated by definitive radiation therapy, and 175 (53%) were treated postoperatively. Radiation doses ranged from 50 to 74 Gy (median, 66 Gy). Intensity-modulated radiation therapy was used in 62% of cases, and 133 patients (40%) received concurrent chemotherapy. Results: Forty patients (12%) reported neuropathic symptoms, with the most common being ipsilateral pain (50%), numbness/tingling (40%), motor weakness, and/or muscle atrophy (25%). When patients with <5 years of follow-up were excluded, the rate of positive symptoms increased to 22%. On univariate analysis, the following factors were significantly associated with brachial plexus symptoms: prior neck dissection (p = 0.01), concurrent chemotherapy (p = 0.01), and radiation maximum dose (p < 0.001). Cox regression analysis confirmed that both neck dissection (p < 0.001) and radiation maximum dose (p < 0.001) were independently predictive of symptoms. Conclusion: The incidence of brachial plexus-associated neuropathies after radiation therapy for head-and-neck cancer may be underreported. In view of the dose-response relationship identified, limiting radiation dose to the brachial plexus should be considered when possible.

  12. Osteoradionecrosis and Radiation Dose to the Mandible in Patients With Oropharyngeal Cancer

    SciTech Connect (OSTI)

    Tsai, Chiaojung Jillian; Hofstede, Theresa M.; Sturgis, Erich M.; Garden, Adam S.; Lindberg, Mary E.; Wei Qingyi; Tucker, Susan L.; Dong Lei

    2013-02-01

    Purpose: To determine the association between radiation doses delivered to the mandible and the occurrence of osteoradionecrosis (ORN). Methods and Materials: We reviewed the records of 402 oropharyngeal cancer patients with stage T1 or T2 disease treated with definitive radiation between January 2000 and October 2008 for the occurrence of ORN. Demographic and treatment variables were compared between patients with ORN and those without. To examine the dosimetric relationship further, a nested case-control comparison was performed. One to 2 ORN-free patients were selected to match each ORN patient by age, sex, radiation type, treatment year, and cancer subsite. Detailed radiation treatment plans for the ORN cases and matched controls were reviewed. Mann-Whitney test and conditional logistic regression were used to compare relative volumes of the mandible exposed to doses ranging from 10 Gy-60 Gy in 10-Gy increments. Results: In 30 patients (7.5%), ORN developed during a median follow-up time of 31 months, including 6 patients with grade 4 ORN that required major surgery. The median time to develop ORN was 8 months (range, 0-71 months). Detailed radiation treatment plans were available for 25 of the 30 ORN patients and 40 matched ORN-free patients. In the matched case-control analysis, there was a statistically significant difference between the volumes of mandible in the 2 groups receiving doses between 50 Gy (V50) and 60 Gy (V60). The most notable difference was seen at V50, with a P value of .02 in the multivariate model after adjustment for the matching variables and dental status (dentate or with extraction). Conclusions: V50 and V60 saw the most significant differences between the ORN group and the comparison group. Minimizing the percent mandibular volume exposed to 50 Gy may reduce ORN risk.

  13. Whole-Body Biodistribution and Estimation of Radiation-Absorbed Doses of the Dopamine D1

    E-Print Network [OSTI]

    Shen, Jun

    Whole-Body Biodistribution and Estimation of Radiation-Absorbed Doses of the Dopamine D1 Receptor and Behaviour, Monash University, Clayton, Victoria, Australia The present study estimated radiation of interest were drawn on compressed planar images of source organs that could be iden- tified. Radiation dose

  14. Low dose radiation interations with the transformation growth factor (TGF)-beta pathway 

    E-Print Network [OSTI]

    Maslowski, Amy Jesse

    2009-05-15

    A major limiting factor for long-term, deep-space missions is the radiation dose to astronauts. Because the dose to the astronauts is a mixed field of low- and high-LET radiation, there is a need to understand the effects of both radiation types...

  15. Low Dose Radiation Response Curves, Networks and Pathways in Human Lymphoblastoid Cells Exposed from 1 to 10 cGy of Acute Gamma Radiation

    SciTech Connect (OSTI)

    Wyrobek, A. J.; Manohar, C. F.; Nelson, D. O.; Furtado, M. R.; Bhattacharya, M. S.; Marchetti, F.; Coleman, M.A.

    2011-04-18

    We investigated the low dose dependency of the transcriptional response of human cells to characterize the shape and biological functions associated with the dose response curve and to identify common and conserved functions of low dose expressed genes across cells and tissues. Human lymphoblastoid (HL) cells from two unrelated individuals were exposed to graded doses of radiation spanning the range of 1-10 cGy were analyzed by transcriptome profiling, qPCR and bioinformatics, in comparison to sham irradiated samples. A set of {approx}80 genes showed consistent responses in both cell lines; these genes were associated with homeostasis mechanisms (e.g., membrane signaling, molecule transport), subcellular locations (e.g., Golgi, and endoplasmic reticulum), and involved diverse signal transduction pathways. The majority of radiation-modulated genes had plateau-like responses across 1-10 cGy, some with suggestive evidence that transcription was modulated at doses below 1 cGy. MYC, FOS and TP53 were the major network nodes of the low-dose response in HL cells. Comparison our low dose expression findings in HL cells with those of prior studies in mouse brain after whole body exposure, in human keratinocyte cultures, and in endothelial cells cultures, indicates that certain components of the low dose radiation response are broadly conserved across cell types and tissues, independent of proliferation status.

  16. SU-E-J-204: Radiation Dose to Patients Resulting From Image Guidance Procedures and AAPM TG-180 Update

    SciTech Connect (OSTI)

    Ding, G; Alaei, P

    2014-06-01

    Purpose: Image-guided radiation therapy (IGRT) is the new paradigm for patient positioning and target localization in radiotherapy. Daily imaging procedures add additional dose to the patient's treatment volume and normal tissues and may expose the organs at risk to unaccounted doses. This presentation is to update the progress of AAPM TG-180 which aims to provide strategies to quantify and account the dose from both MV and kV imaging in patient treatment planning. Methods: Our current knowledge on image guidance dose is presented. A summary of doses from image guidance procedures delivered to patients in relationship with therapeutic doses is given. Different techniques in reducing the image guidance dose are summarized. Typical organ doses resulting from different image acquisition procedures used in IGRT are tabulated. Results: Many techniques to reduce the imaging doses are available in clinical applications. There are large variations between dose to bone and dose to soft tissues for x-rays at kilovoltage energy range. Methods for clinical implementation of accounting for the imaging dose from an imaging procedure are available. Beam data from imaging systems can be generated by combining Monte Carlo simulations and experimental measurements for commissioning imaging beams in the treatment planning. Conclusion: The current treatment planning systems are not yet equipped to perform patient specific dose calculations resulting from kV imaging procedures. The imaging dose from current kV image devices has been significantly reduced and is generally much less than that resulting from MV. Because the magnitude of kV imaging dose is significantly low and the variation between patients is modest, it is feasible to estimate dose based on imaging producers or protocols using tabulated values which provides an alternative to accomplish the task of accounting and reporting imaging doses.

  17. Galactic cosmic ray induced radiation dose on terrestrial exoplanets

    E-Print Network [OSTI]

    Atri, Dimitra; Griessmeier, Jean-Mathias

    2013-01-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground and space based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets, falling in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in case of super earths. Such exoplanets are subjected to a high flux of Galactic Cosmic Rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin, which strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another fac...

  18. Radiation Dose to the Esophagus From Breast Cancer Radiation Therapy, 1943-1996: An International Population-Based Study of 414 Patients

    SciTech Connect (OSTI)

    Lamart, Stephanie; Stovall, Marilyn; Simon, Steven L.; Smith, Susan A.; Weathers, Rita E.; Howell, Rebecca M.; Curtis, Rochelle E.; Aleman, Berthe M.P.; Travis, Lois; Kwon, Deukwoo; Morton, Lindsay M.

    2013-07-15

    Purpose: To provide dosimetric data for an epidemiologic study on the risk of second primary esophageal cancer among breast cancer survivors, by reconstructing the radiation dose incidentally delivered to the esophagus of 414 women treated with radiation therapy for breast cancer during 1943-1996 in North America and Europe. Methods and Materials: We abstracted the radiation therapy treatment parameters from each patient’s radiation therapy record. Treatment fields included direct chest wall (37% of patients), medial and lateral tangentials (45%), supraclavicular (SCV, 64%), internal mammary (IM, 44%), SCV and IM together (16%), axillary (52%), and breast/chest wall boosts (7%). The beam types used were {sup 60}Co (45% of fields), orthovoltage (33%), megavoltage photons (11%), and electrons (10%). The population median prescribed dose to the target volume ranged from 21 Gy to 40 Gy. We reconstructed the doses over the length of the esophagus using abstracted patient data, water phantom measurements, and a computational model of the human body. Results: Fields that treated the SCV and/or IM lymph nodes were used for 85% of the patients and delivered the highest doses within 3 regions of the esophagus: cervical (population median 38 Gy), upper thoracic (32 Gy), and middle thoracic (25 Gy). Other fields (direct chest wall, tangential, and axillary) contributed substantially lower doses (approximately 2 Gy). The cervical to middle thoracic esophagus received the highest dose because of its close proximity to the SCV and IM fields and less overlying tissue in that part of the chest. The location of the SCV field border relative to the midline was one of the most important determinants of the dose to the esophagus. Conclusions: Breast cancer patients in this study received relatively high incidental radiation therapy doses to the esophagus when the SCV and/or IM lymph nodes were treated, whereas direct chest wall, tangentials, and axillary fields contributed lower doses.

  19. Environmental Radiation Dose Reconstruction for U.S. and Russian Weapons Production Facilities: Hanford and Mayak

    SciTech Connect (OSTI)

    Ansbaugh, Lynn R.; Degteva, M. O.; Kozheurov, V. P.; Napier, Bruce A.; Tolstykh, E. I.; Vorobiova, M. I.

    2003-05-01

    Another way to look at Cold War legacies is to examine the major environmental releases that resulted from past operation of Cold War-related facilities for the manufacture of nuclear weapons. Examining these historical releases and the resultant radiation dose to individuals living near these facilities is called environmental dose reconstruction. Dose reconstructions have been performed or are underway at most large Cold War installations in the United States, such as the Hanford facility; several are also underway in other countries, such as at the Mayak facility in Russia. The efforts in the United States are mostly based on historical operating records and current conditions, which are used to estimate environmental releases, transport, and human exposure. The Russian efforts are largely based on environmental measurements and measurements of human subjects; environmental transport modelling, when conducted, is used to organize and validate the measurements. Past operation of Cold War-related facilities for the manufacture of nuclear weapons has resulted in major releases of radionuclides into the environment. Reconstruction of the historical releases and the resultant radiation dose to individuals in the public living near these facilities is called environmental dose reconstruction. Dose reconstructions have been performed or are underway at most large Cold War installations in the United States; several are also underway in other countries. The types of activity performed, the operating histories, and the radionuclide releases vary widely across the different facilities. The U.S. Hanford Site and the Russian Mayak Production Association are used here to illustrate the nature of the assessed problems and the range of approaches developed to solve them.

  20. Risk of Low Dose/Low Dose Rate Ionizing Radiation to Humans Symposium at the EMS 2009 Annual Meeting - September 2006

    SciTech Connect (OSTI)

    Morgan, William F.; von Borstel, Robert C.; Brenner, David; Redpath, J. Leslie; Erickson, Barbra E.; Brooks, Antone L.

    2009-11-12

    The low dose symposium thoughtfully addressed controversy of risk from low dose radiation exposure, hormesis and radon therapy. The stem cell symposium cogently considered the role of DNA damage and repair in hematopoietic stem cells underlying aging and malignancy and provocatively presented evidence that stem cells may have distinct morphologies and replicative properties, as well as special roles in cancer initiation. In the epigenetics symposium, studies illustrated the long range interaction of epigenetic mechanisms, the roles of CTCF and BORIS in region/specific regulation of epigenetic processes, the impact of DNA damage on epigenetic processes as well as links between epigenetic mechanisms and early nutrition and bystander effects.

  1. Decision Regret in Men Undergoing Dose-Escalated Radiation Therapy for Prostate Cancer

    SciTech Connect (OSTI)

    Steer, Anna N.; Aherne, Noel J.; Gorzynska, Karen; Hoffman, Matthew; Last, Andrew; Hill, Jacques; Shakespeare, Thomas P.; Rural Clinical School Faculty of Medicine, University of New South Wales, Coffs Harbour

    2013-07-15

    Purpose: Decision regret (DR) is a negative emotion associated with medical treatment decisions, and it is an important patient-centered outcome after therapy for localized prostate cancer. DR has been found to occur in up to 53% of patients treated for localized prostate cancer, and it may vary depending on treatment modality. DR after modern dose-escalated radiation therapy (DE-RT) has not been investigated previously, to our knowledge. Our primary aim was to evaluate DR in a cohort of patients treated with DE-RT. Methods and Materials: We surveyed 257 consecutive patients with localized prostate cancer who had previously received DE-RT, by means of a validated questionnaire. Results: There were 220 responses (85.6% response rate). Image-guided intensity modulated radiation therapy was given in 85.0% of patients and 3-dimensional conformal radiation therapy in 15.0%. Doses received included 73.8 Gy (34.5% patients), 74 Gy (53.6%), and 76 Gy (10.9%). Neoadjuvant androgen deprivation (AD) was given in 51.8% of patients and both neoadjuvant and adjuvant AD in 34.5%. The median follow-up time was 23 months (range, 12-67 months). In all, 3.8% of patients expressed DR for their choice of treatment. When asked whether they would choose DE-RT or AD again, only 0.5% probably or definitely would not choose DE-RT again, compared with 8.4% for AD (P<.01). Conclusion: Few patients treated with modern DE-RT express DR, with regret appearing to be lower than in previously published reports of patients treated with radical prostatectomy or older radiation therapy techniques. Patients experienced more regret with the AD component of treatment than with the radiation therapy component, with implications for informed consent. Further research should investigate regret associated with individual components of modern therapy, including AD, radiation therapy and surgery.

  2. Proteomic-based mechanistic investigation of low-dose radiation-induced cellular responses/effects

    SciTech Connect (OSTI)

    Chen, Xian

    2013-10-23

    The goal of our project is to apply our unique systems investigation strategy to reveal the molecular mechanisms underlying the radiation induction and transmission of oxidative damage, adaptive response, and bystander effect at low-doses. Beginning with simple in vitro systems such as fibroblast or epithelial pure culture, our amino acid-coded mass tagging (AACT) comparative proteomic platform will be used to measure quantitatively proteomic changes at high- or low-dose level with respect to their endogenous damage levels respectively, in which a broad range of unique regulated proteins sensitive to low-dose IR will be distinguished. To zoom in how these regulated proteins interact with other in the form of networks in induction/transmission pathways, these regulated proteins will be selected as baits for making a series of fibroblast cell lines that stably express each of them. Using our newly developed method of ?dual-tagging? quantitative proteomics that integrate the capabilities of natural complex expression/formation, simple epitope affinity isolation (not through tandem affinity purification or TAP), and ?in-spectra? AACT quantitative measurements using mass spectrometry (MS), we will be able to distinguish systematically interacting proteins with each bait in real time. Further, in addition to both proteome-wide (global differentially expressed proteins) and pathway-scale (bait-specific) profiling information, we will perform a computational network analysis to elucidate a global pathway/mechanisms underlying cellular responses to real-time low-dose IR. Similarly, we will extend our scheme to investigate systematically those induction/transmission pathways occurring in a fibroblast-epithelial interacting model in which the bystander cell (fibroblast) monitor the IR damage to the target cell (epithelial cell). The results will provide the proteome base (molecular mechanisms/pathways for signaling) for the low dose radiation-induced essential tissue environment interactions, including cell-cell, extracellular matrix and extracellular paracrine interactions.

  3. First Results from the Online Radiation Dose Monitoring System in ATLAS experiment

    E-Print Network [OSTI]

    Mandi?, I; The ATLAS collaboration; Deliyergiyev, M; Gorišek, A; Kramberger, G; Mikuž, M; Franz, S; Hartert, J; Dawson, I; Miyagawa, P; Nicolas, L

    2011-01-01

    High radiation doses which will accumulate in components of ATLAS experiment during data taking will causes damage to detectors and readout electronics. It is therefore important to continuously monitor the doses to estimate the level of degradation caused by radiation. Online radiation monitoring system measures ionizing dose in SiO2 , displacement damage in silicon in terms of 1-MeV(Si) equivalent neutron fluence and fluence of thermal neutrons at several locations in ATLAS detector. In this paper design of the system, results of measurements and comparison of measured integrated doses and fluences with predictions from FLUKA simulation will be shown.

  4. Estimation of Internal Radiation Dose from both Immediate Releases and Continued Exposures to Contaminated Materials

    SciTech Connect (OSTI)

    Napier, Bruce A.

    2012-03-26

    A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, is discussed based upon a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from the damaged reactors and also to the management of wastes that may be generated in both regional cleanup and NPP decommissioning.

  5. Short CommunicationJ. Radiat. Res., 53, 475481 (2012) Triphasic Low-dose Response in Zebrafish Embryos Irradiated by

    E-Print Network [OSTI]

    Yu, Peter K.N.

    2012-01-01

    Short CommunicationJ. Radiat. Res., 53, 475­481 (2012) Triphasic Low-dose Response in Zebrafish from an ionizing-radiation exposure is linearly proportional to the dose normalized by the radiation weighting factor, and which assumes no threshold dose val- ue below which no radiation risk is expected

  6. Second Solid Cancers After Radiation Therapy: A Systematic Review of the Epidemiologic Studies of the Radiation Dose-Response Relationship

    SciTech Connect (OSTI)

    Berrington de Gonzalez, Amy; Gilbert, Ethel; Curtis, Rochelle; Inskip, Peter; Kleinerman, Ruth; Morton, Lindsay; Rajaraman, Preetha; Little, Mark P.

    2013-06-01

    Rapid innovations in radiation therapy techniques have resulted in an urgent need for risk projection models for second cancer risks from high-dose radiation exposure, because direct observation of the late effects of newer treatments will require patient follow-up for a decade or more. However, the patterns of cancer risk after fractionated high-dose radiation are much less well understood than those after lower-dose exposures (0.1-5 Gy). In particular, there is uncertainty about the shape of the dose-response curve at high doses and about the magnitude of the second cancer risk per unit dose. We reviewed the available evidence from epidemiologic studies of second solid cancers in organs that received high-dose exposure (>5 Gy) from radiation therapy where dose-response curves were estimated from individual organ-specific doses. We included 28 eligible studies with 3434 second cancer patients across 11 second solid cancers. Overall, there was little evidence that the dose-response curve was nonlinear in the direction of a downturn in risk, even at organ doses of ?60 Gy. Thyroid cancer was the only exception, with evidence of a downturn after 20 Gy. Generally the excess relative risk per Gray, taking account of age and sex, was 5 to 10 times lower than the risk from acute exposures of <2 Gy among the Japanese atomic bomb survivors. However, the magnitude of the reduction in risk varied according to the second cancer. The results of our review provide insights into radiation carcinogenesis from fractionated high-dose exposures and are generally consistent with current theoretical models. The results can be used to refine the development of second solid cancer risk projection models for novel radiation therapy techniques.

  7. First Results from the Online Radiation Dose Monitoring System in ATLAS experiment

    E-Print Network [OSTI]

    Mandi?, I; The ATLAS collaboration; Deliyergiyev, M; Gorišek, A; Kramberger, G; Mikuž, M; Franz, S; Hartert, J; Dawson, I; Miyagawa, P S; Nicolas, L

    2011-01-01

    High radiation doses which will accumulate in components of ATLAS experiment during data taking will cause damage to detectors and readout electronics. It is therefore important to continuously monitor the doses to estimate the level of degradation caused by radiation. Online radiation monitoring system measures ionizing dose in SiO2 and fluences of 1-MeV(Si) equivalent neutrons and thermal neutrons at several locations in ATLAS detector. In this paper measurements collected during two years of ATLAS data taking are presented and compared to predictions from radiation background simulations.

  8. Genetic Factors Affecting Susceptibility to Low Dose & Low Dose-Rate Radiation

    SciTech Connect (OSTI)

    Bedford, Joel

    2014-04-18

    Our laboratory has, among other things, developed and used the gamma H2AX focus assay and other chromosomal and cell killing assays to show that differences in this DNA double strand break (dsb) related response can be clearly and distinctly demonstrated for cells which are mildly hyper-radiosensitive such as those associated with A-T heterozygosity. We have found this level of mild hypersensitivity for cells from some 20 to 30 % of apparently normal individuals and from apparently normal parents of Retinoblastoma patients. We found significant differences in gene expression in somatic cells from unaffected parents of Rb patients as compared with normal controls, suggesting that these parents may harbor some as yet unidentified genetic abnormality. In other experiments we sought to determine the extent of differences in normal human cellular reaponses to radiation depending on their irradiation in 2D monolayer vs 3D organized acinar growth conditions. We exmined cell reproductive death, chromosomal aberration induction, and the levels of ?-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 hours of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose-responses of these cells under the 2D or 3D growth conditions. While this does not mean such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur. In another series of studies in collaboration with Dr Chuan Li, with supprt from this current grant. We reported a role for apoptotic cell death in promoting wound healing and tissue regeneration in mice. Apoptotic cells released growth signals that stimulated the proliferation of progenitor or stem cells. In yet another collaboration with Dr, B. Chen with funds from this grant, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase activity) were examined after exposure of synchronized G1 cells to 137Cs c rays. DNA-PKcs mutant cells defective in phosphorylation at multiple sites withinthe T2609 cluster or within the PI3K domain displayed extreme radiosensitivity. Cells defective at the S2056 cluster or T2609 single site alone were only mildly radiosensitive, but cells defective at even one site in both the S2056 and T2609 clusters were maximally radiosensitive. Thus a synergism between the capacity for phosphorylation at the S2056 and T2609 clusterswas found to be critical for induction of radiosensitivity.

  9. High and Low Doses of Ionizing Radiation Induce Different Secretome Profiles in a Human Skin Model

    SciTech Connect (OSTI)

    Zhang, Qibin; Matzke, Melissa M.; Schepmoes, Athena A.; Moore, Ronald J.; Webb-Robertson, Bobbie-Jo M.; Hu, Zeping; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.; Morgan, William F.

    2014-03-18

    It is postulated that secreted soluble factors are important contributors of bystander effect and adaptive responses observed in low dose ionizing radiation. Using multidimensional liquid chromatography-mass spectrometry based proteomics, we quantified the changes of skin tissue secretome – the proteins secreted from a full thickness, reconstituted 3-dimensional skin tissue model 48 hr after exposure to 3, 10 and 200 cGy of X-rays. Overall, 135 proteins showed statistical significant difference between the sham (0 cGy) and any of the irradiated groups (3, 10 or 200 cGy) on the basis of Dunnett adjusted t-test; among these, 97 proteins showed a trend of downregulation and 9 proteins showed a trend of upregulation with increasing radiation dose. In addition, there were 21 and 8 proteins observed to have irregular trends with the 10 cGy irradiated group either having the highest or the lowest level among all three radiated doses. Moreover, two proteins, carboxypeptidase E and ubiquitin carboxyl-terminal hydrolase isozyme L1 were sensitive to ionizing radiation, but relatively independent of radiation dose. Conversely, proteasome activator complex subunit 2 protein appeared to be sensitive to the dose of radiation, as rapid upregulation of this protein was observed when radiation doses were increased from 3, to 10 or 200 cGy. These results suggest that different mechanisms of action exist at the secretome level for low and high doses of ionizing radiation.

  10. A hybrid approach for rapid, accurate, and direct kilovoltage radiation dose calculations in CT voxel space

    SciTech Connect (OSTI)

    Kouznetsov, Alexei; Tambasco, Mauro

    2011-03-15

    Purpose: To develop and validate a fast and accurate method that uses computed tomography (CT) voxel data to estimate absorbed radiation dose at a point of interest (POI) or series of POIs from a kilovoltage (kV) imaging procedure. Methods: The authors developed an approach that computes absorbed radiation dose at a POI by numerically evaluating the linear Boltzmann transport equation (LBTE) using a combination of deterministic and Monte Carlo (MC) techniques. This hybrid approach accounts for material heterogeneity with a level of accuracy comparable to the general MC algorithms. Also, the dose at a POI is computed within seconds using the Intel Core i7 CPU 920 2.67 GHz quad core architecture, and the calculations are performed using CT voxel data, making it flexible and feasible for clinical applications. To validate the method, the authors constructed and acquired a CT scan of a heterogeneous block phantom consisting of a succession of slab densities: Tissue (1.29 cm), bone (2.42 cm), lung (4.84 cm), bone (1.37 cm), and tissue (4.84 cm). Using the hybrid transport method, the authors computed the absorbed doses at a set of points along the central axis and x direction of the phantom for an isotropic 125 kVp photon spectral point source located along the central axis 92.7 cm above the phantom surface. The accuracy of the results was compared to those computed with MCNP, which was cross-validated with EGSnrc, and served as the benchmark for validation. Results: The error in the depth dose ranged from -1.45% to +1.39% with a mean and standard deviation of -0.12% and 0.66%, respectively. The error in the x profile ranged from -1.3% to +0.9%, with standard deviations of -0.3% and 0.5%, respectively. The number of photons required to achieve these results was 1x10{sup 6}. Conclusions: The voxel-based hybrid method evaluates the LBTE rapidly and accurately to estimate the absorbed x-ray dose at any POI or series of POIs from a kV imaging procedure.

  11. Non-Targeted Effects of Ionizing Radiation: Implications for Risk Assessment and the Radiation Dose Response Profile

    SciTech Connect (OSTI)

    Morgan, William F.; Sowa, Marianne B.

    2009-11-01

    Radiation risks at low doses remain a hotly debated topic. Recent experimental advances in our understanding of effects occurring in the progeny of irradiated cells, and/or the non-irradiated neighbors of irradiated cells, i.e., non-targeted effects associated with exposure to ionizing radiation, have influenced this debate. The goal of this document is to summarize the current status of this debate and speculate on the potential impact of non-targeted effects on radiation risk assessment and the radiation dose response profile.

  12. MOLECULAR MECHANISM OF SUPPRESSION OF NEOPLASTIC TRANSFORMATION BY LOW DOSES OF LOW LET RADIATION

    SciTech Connect (OSTI)

    J.LESIE REDPATH, PH.D.

    2011-03-29

    We are currently funded (9/01-8/04) by the DOE Low Dose Radiation Research Program to examine mechanisms underlying the suppression of neoplastic transformation in vitro by low doses of low LET radiation. For the new studies proposed under Notice 04-21, we intend to follow up on our observation that upregulation of DNA repair may be an important factor and that its importance is dose-dependent. The experimental system will be the human hybrid cell neoplastic transformation assay that we are currently using. We propose to test the following hypothesis: Down-regulation of DNA dsb repair will abrogate the low dose suppression of neoplastic transformation. Using the technique of RNA silencing, it is proposed to test the effect of down-regulation of the two major DNA dsb repair pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ), on the dose response relationship for neoplastic transformation. Based on prior studies, we predict that this will result in abrogation of the suppressive effect at doses in the range 1 to 10 cGy, but not at lower doses. The proposed experiments will also help address the question as to which of the two DNA repair pathways may be the most important in causing suppression of transformation. HR is a pathway that is predominant in S and G2 phase cells and is known to be less error-prone than the NHEJ pathway that is predominant in G1 phase. We hypothesize that down-regulation of HR will result in the most effective abrogation of suppression. An important component of this study will be the determination of the how abrogation of DNA dsb repair impacts the spontaneous transformation frequency, presumably a consequence of endogeneous DNA damage. Experiments will be carried out using partially synchronized populations of cells enriched for G1 and S/G2 respectively. In addition to the endpoint of neoplastic transformation the impact of down-regulation of HR and NHEJ on the formation and disappearance of the DNA dsb marker, gamma-H2AX, will be studied.

  13. Polylogarithmic representation of radiative and thermodynamic properties of thermal radiation in a given spectral range: II. Real-body radiation

    E-Print Network [OSTI]

    Fisenko, Anatoliy I

    2015-01-01

    The general analytical expressions for the thermal radiative and thermodynamic properties of a real-body are obtained in a finite range of frequencies at different temperatures. The frequency dependence of the spectral emissivity is represented as a power series. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and total emissivity are expressed in terms of the polylogarithm functions. The general expressions for the thermal radiative and thermodynamic functions are applied for the study of thermal radiation of liquid and solid zirconium carbide. These functions are calculated using experimental data for the frequency dependence of the normal spectral emissivity in the visible-near infrared range at the melting (freezing) point. The gaps between the thermal radiative and thermodynamic functions of liquid and solid zirconium carbide are observed. The g...

  14. Hanford waste treatment plant Immobilized High Level Waste (IHLW) canister radiation dose rate and radiolytic heat load analysis

    SciTech Connect (OSTI)

    PIERSON, R.M.

    2003-09-02

    This document provides an analysis of anticipated radiation dose rates and heat loads for immobilized high level waste (IHW) canisters

  15. Impact of Dose to the Bladder Trigone on Long-Term Urinary Function After High-Dose Intensity Modulated Radiation Therapy for Localized Prostate Cancer

    SciTech Connect (OSTI)

    Ghadjar, Pirus; Zelefsky, Michael J.; Spratt, Daniel E. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Munck af Rosenschöld, Per; Oh, Jung Hun; Hunt, Margie [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Kollmeier, Marisa [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Happersett, Laura; Yorke, Ellen; Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Jackson, Andrew, E-mail: jacksona@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2014-02-01

    Purpose: To determine the potential association between genitourinary (GU) toxicity and planning dose–volume parameters for GU pelvic structures after high-dose intensity modulated radiation therapy in localized prostate cancer patients. Methods and Materials: A total of 268 patients who underwent intensity modulated radiation therapy to a prescribed dose of 86.4 Gy in 48 fractions during June 2004-December 2008 were evaluated with the International Prostate Symptom Score (IPSS) questionnaire. Dose–volume histograms of the whole bladder, bladder wall, urethra, and bladder trigone were analyzed. The primary endpoint for GU toxicity was an IPSS sum increase ?10 points over baseline. Univariate and multivariate analyses were done by the Kaplan-Meier method and Cox proportional hazard models, respectively. Results: Median follow-up was 5 years (range, 3-7.7 years). Thirty-nine patients experienced an IPSS sum increase ?10 during follow-up; 84% remained event free at 5 years. After univariate analysis, lower baseline IPSS sum (P=.006), the V90 of the trigone (P=.006), and the maximal dose to the trigone (P=.003) were significantly associated with an IPSS sum increase ?10. After multivariate analysis, lower baseline IPSS sum (P=.009) and increased maximal dose to the trigone (P=.005) remained significantly associated. Seventy-two patients had both a lower baseline IPSS sum and a higher maximal dose to the trigone and were defined as high risk, and 68 patients had both a higher baseline IPSS sum and a lower maximal dose to the trigone and were defined as low risk for development of an IPSS sum increase ?10. Twenty-one of 72 high-risk patients (29%) and 5 of 68 low-risk patients (7%) experienced an IPSS sum increase ?10 (P=.001; odds ratio 5.19). Conclusions: The application of hot spots to the bladder trigone was significantly associated with relevant changes in IPSS during follow-up. Reduction of radiation dose to the lower bladder and specifically the bladder trigone seems to be associated with a reduction in late GU toxicity.

  16. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    E-Print Network [OSTI]

    Lowe, Xiu R

    2009-01-01

    Early brain response to low-dose radiation exposure involvesRunning Title: Low dose radiation affects cognitive functionEarly brain response to low-dose radiation exposure involves

  17. Original article High-dose and fractionation effects in stereotactic radiation therapy

    E-Print Network [OSTI]

    Brenner, David Jonathan

    Original article High-dose and fractionation effects in stereotactic radiation therapy: Analysis (hyperfractionation [5], high- vs. low dose-rate brachytherapy [6], prostate hypofractiona- tion [7]) were consistent. Brenner a a Center for Radiological Research, Columbia University, New York; b Department of Therapeutic

  18. Page 1 of 3 RADIATION DOSE IS MORE THAN A NUMBER!

    E-Print Network [OSTI]

    Perkins, Richard A.

    , Former Director of Radiological Physics Center, MD Anderson Cancer Center #12;Page 2 of 3 RADIATION DOSE of Radiation Larry Dewerd, University of Wisconsin Will Hanson, Former Director of Radiological Physics Center for solicited research Service ­ NIH-based facility (RPC-like) or fee for service or private non-profit (AAALAC

  19. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    SciTech Connect (OSTI)

    Balajee, A.S.; Meador, J.A.; Su, Y.

    2011-03-24

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellular mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the differences in cellular defense mechanisms between low and high doses of low LET radiation and to define the radiation doses where the cellular DNA damage signaling and repair mechanisms tend to shift. This information is critically important to address and advance some of the low dose research program objectives of DOE. The results of this proposed study will lead to a better understanding of the mechanisms for the cellular responses to low and high doses of low LET radiation. Further, systematic analysis of the role of PIKK signaling pathways as a function of radiation dose in tissue microenvironment will provide useful mechanistic information for improving the accuracy of radiation risk assessment for low doses. Knowledge of radiation responses in tissue microenvironment is important for the accurate prediction of ionizing radiation risks associated with cancer and tissue degeneration in humans.

  20. Radiation and litigation : analyses of the ALARA principle and low dose radiation in the courts, and the future of radiation in court cases

    E-Print Network [OSTI]

    Esparza, Enrique

    2006-01-01

    Currently there are a growing number of radiation workers. In order to ensure the safety of the employees, regulations have been established by the federal government and state governments to limit the dose equivalent to ...

  1. 75Radiation Dose and Distance This iconic photo was

    E-Print Network [OSTI]

    on March 15, a few days after the Japan 2011 earthquake, which caused severe damage to the Fukushima Press/Kyodo News) The devastating Japan 2011 earthquake damaged the nuclear reactors in Fukushima, which: Date Distance (km) Location Dose Rate (microSeiverts/hr) March 15 1 km Fukushima #2 plant 8,200 March

  2. Do Intermediate Radiation Doses Contribute to Late Rectal Toxicity? An Analysis of Data From Radiation Therapy Oncology Group Protocol 94-06

    SciTech Connect (OSTI)

    Tucker, Susan L., E-mail: sltucker@mdanderson.org [Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Dong, Lei [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX (United States)] [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Michalski, Jeff M. [Department of Radiation Oncology, Washington University, St. Louis, MO (United States)] [Department of Radiation Oncology, Washington University, St. Louis, MO (United States); Bosch, Walter R. [Department of Radiation Oncology, Washington University, St. Louis, MO (United States) [Department of Radiation Oncology, Washington University, St. Louis, MO (United States); Image-Guided Therapy QA Center, Washington University, St. Louis, MO (United States); Winter, Kathryn [American College of Radiology, Philadelphia, PA (United States)] [American College of Radiology, Philadelphia, PA (United States); Cox, James D. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States)] [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Purdy, James A. [Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States)] [Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States); Mohan, Radhe [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX (United States)] [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2012-10-01

    Purpose: To investigate whether the volumes of rectum exposed to intermediate doses, from 30 to 50 Gy, contribute to the risk of Grade {>=}2 late rectal toxicity among patients with prostate cancer receiving radiotherapy. Methods and Materials: Data from 1009 patients treated on Radiation Therapy Oncology Group protocol 94-06 were analyzed using three approaches. First, the contribution of intermediate doses to a previously published fit of the Lyman-Kutcher-Burman (LKB) normal tissue complication probability (NTCP) model was determined. Next, the extent to which intermediate doses provide additional risk information, after taking the LKB model into account, was investigated. Third, the proportion of rectum receiving doses higher than a threshold, VDose, was computed for doses ranging from 5 to 85 Gy, and a multivariate Cox proportional hazards model was used to determine which of these parameters were significantly associated with time to Grade {>=}2 late rectal toxicity. Results: Doses <60 Gy had no detectable impact on the fit of the LKB model, as expected on the basis of the small estimate of the volume parameter (n = 0.077). Furthermore, there was no detectable difference in late rectal toxicity among cohorts with similar risk estimates from the LKB model but with different volumes of rectum exposed to intermediate doses. The multivariate Cox proportional hazards model selected V75 as the only value of VDose significantly associated with late rectal toxicity. Conclusions: There is no evidence from these data that intermediate doses influence the risk of Grade {>=}2 late rectal toxicity. Instead, the critical doses for this endpoint seem to be {>=}75 Gy. It is hypothesized that cases of Grade {>=}2 late rectal toxicity occurring among patients with V75 less than approximately 12% may be due to a 'background' level of risk, likely due mainly to biological factors.

  3. Large dynamic range radiation detector and methods thereof

    DOE Patents [OSTI]

    Marrs, Roscoe E. (Livermore, CA); Madden, Norman W. (Sparks, NV)

    2012-02-14

    According to one embodiment, a radiation detector comprises a scintillator and a photodiode optically coupled to the scintillator. The radiation detector also includes a bias voltage source electrically coupled to the photodiode, a first detector operatively electrically coupled to the photodiode for generating a signal indicative of a level of a charge at an output of the photodiode, and a second detector operatively electrically coupled to the bias voltage source for generating a signal indicative of an amount of current flowing through the photodiode.

  4. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.; Amendola, Roberto

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³?Cs at 0.13, 2.4, 21, and 222 mGy d?¹, resulting in total doses up to 15.8 Gy. Radiation treatments did notmore »affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d?¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.« less

  5. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stark, Karolina [Stockholm Univ. (Sweden); Univ. of Georgia, Aiken, SC (United States); Scott, David E. [Univ. of Georgia, Aiken, SC (United States); Tsyusko, Olga [Univ. of Georgia, Aiken, SC (United States); Univ. of Kentucky, Lexington, KY (United States); Coughlin, Daniel P. [Univ. of Georgia, Aiken, SC (United States); Hinton, Thomas G. [Univ. of Georgia, Aiken, SC (United States); Inst. of Radiation Protection and Nuclear Safety, Cadarache (France); Amendola, Roberto [ENEA, (Italy)

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³?Cs at 0.13, 2.4, 21, and 222 mGy d?¹, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d?¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.

  6. Low Dose Radiation Cancer Risks: Epidemiological and Toxicological Models

    SciTech Connect (OSTI)

    David G. Hoel, PhD

    2012-04-19

    The basic purpose of this one year research grant was to extend the two stage clonal expansion model (TSCE) of carcinogenesis to exposures other than the usual single acute exposure. The two-stage clonal expansion model of carcinogenesis incorporates the biological process of carcinogenesis, which involves two mutations and the clonal proliferation of the intermediate cells, in a stochastic, mathematical way. The current TSCE model serves a general purpose of acute exposure models but requires numerical computation of both the survival and hazard functions. The primary objective of this research project was to develop the analytical expressions for the survival function and the hazard function of the occurrence of the first cancer cell for acute, continuous and multiple exposure cases within the framework of the piece-wise constant parameter two-stage clonal expansion model of carcinogenesis. For acute exposure and multiple exposures of acute series, it is either only allowed to have the first mutation rate vary with the dose, or to have all the parameters be dose dependent; for multiple exposures of continuous exposures, all the parameters are allowed to vary with the dose. With these analytical functions, it becomes easy to evaluate the risks of cancer and allows one to deal with the various exposure patterns in cancer risk assessment. A second objective was to apply the TSCE model with varing continuous exposures from the cancer studies of inhaled plutonium in beagle dogs. Using step functions to estimate the retention functions of the pulmonary exposure of plutonium the multiple exposure versions of the TSCE model was to be used to estimate the beagle dog lung cancer risks. The mathematical equations of the multiple exposure versions of the TSCE model were developed. A draft manuscript which is attached provides the results of this mathematical work. The application work using the beagle dog data from plutonium exposure has not been completed due to the fact that the research project did not continue beyond its first year.

  7. Issues in Low Dose Radiation Biology: The Controversy Continues. A Perspective

    SciTech Connect (OSTI)

    Morgan, William F.; Bair, William J.

    2013-05-01

    Both natural and man-made sources of ionizing radiation contribute to human exposure and consequently pose a risk to human health. Much of this is unavoidable, e.g., natural background radiation, and as the use of radiation in modern medicine and industry increases so does the potential health risk. This perspective reflects the author’s view of current issues in low dose radiation biology research, highlights some of the controversies therein, and suggests areas of future research to address these issues. The views expressed here are the authors own and do not represent any institution, organization or funding body.

  8. Static jaw collimation settings to minimize radiation dose to normal brain tissue during stereotactic radiosurgery

    SciTech Connect (OSTI)

    Han, Eun Young; Zhang Xin; Yan Yulong; Sharma, Sunil; Penagaricano, Jose; Moros, Eduardo; Corry, Peter

    2012-01-01

    At University of Arkansas for Medical Sciences (UAMS) intracranial stereotactic radiosurgery (SRS) is performed by using a linear accelerator with an add-on micromultileaf collimator (mMLC). In our clinical setting, static jaws are automatically adapted to the furthest edge of the mMLC-defined segments with 2-mm (X jaw) and 5-mm (Y jaw) margin and the same jaw values are applied for all beam angles in the treatment planning system. This additional field gap between the static jaws and the mMLC allows additional radiation dose to normal brain tissue. Because a radiosurgery procedure consists of a single high dose to the planning target volume (PTV), reduction of unnecessary dose to normal brain tissue near the PTV is important, particularly for pediatric patients whose brains are still developing or when a critical organ, such as the optic chiasm, is near the PTV. The purpose of this study was to minimize dose to normal brain tissue by allowing minimal static jaw margin around the mMLC-defined fields and different static jaw values for each beam angle or arc. Dose output factors were measured with various static jaw margins and the results were compared with calculated doses in the treatment planning system. Ten patient plans were randomly selected and recalculated with zero static jaw margins without changing other parameters. Changes of PTV coverage, mean dose to predefined normal brain tissue volume adjacent to PTV, and monitor units were compared. It was found that the dose output percentage difference varied from 4.9-1.3% for the maximum static jaw opening vs. static jaw with zero margins. The mean dose to normal brain tissue at risk adjacent to the PTV was reduced by an average of 1.9%, with negligible PTV coverage loss. This dose reduction strategy may be meaningful in terms of late effects of radiation, particularly in pediatric patients. This study generated clinical knowledge and tools to consistently minimize dose to normal brain tissue.

  9. Mammalian Tissue Response to Low Dose Ionizing Radiation: The Role of Oxidative Metabolism and Intercellular Communication

    SciTech Connect (OSTI)

    Azzam, Edouard I

    2013-01-16

    The objective of the project was to elucidate the mechanisms underlying the biological effects of low dose/low dose rate ionizing radiation in organs/tissues of irradiated mice that differ in their susceptibility to ionizing radiation, and in human cells grown under conditions that mimic the natural in vivo environment. The focus was on the effects of sparsely ionizing cesium-137 gamma rays and the role of oxidative metabolism and intercellular communication in these effects. Four Specific Aims were proposed. The integrated outcome of the experiments performed to investigate these aims has been significant towards developing a scientific basis to more accurately estimate human health risks from exposures to low doses ionizing radiation. By understanding the biochemical and molecular changes induced by low dose radiation, several novel markers associated with mitochondrial functions were identified, which has opened new avenues to investigate metabolic processes that may be affected by such exposure. In particular, a sensitive biomarker that is differentially modulated by low and high dose gamma rays was discovered.

  10. Radiation dose estimates for typical piloted NTR lunar and Mars mission engine operations

    SciTech Connect (OSTI)

    Schnitzler, B.G. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Borowski, S.K. (National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center)

    1991-01-01

    The natural and manmade radiation environments to be encountered during lunar and Mars missions are qualitatively summarized. The computational methods available to characterize the radiation environment produced by an operating nuclear propulsion system are discussed. Mission profiles and vehicle configurations are presented for a typical all-propulsive, fully reusable lunar mission and for a typical all-propulsive Mars mission. Estimates of crew location biological doses are developed for all propulsive maneuvers. Post-shutdown dose rates near the nuclear engine are estimated at selected mission times. 15 refs., 4 figs.

  11. Radiation Dose to the Lens During Craniospinal Irradiation-An Improvement in Proton Radiotherapy Technique

    SciTech Connect (OSTI)

    Cochran, David M. [Division of Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Cambridge, MA (United States); Yock, Torunn I.; Adams, Judith A. C. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States); Tarbell, Nancy J. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)], E-mail: ntarbell@partners.org

    2008-04-01

    Purpose: To evaluate the effect of angle modification of cranial field proton beam therapy on the radiation dose delivered to the lens during craniospinal irradiation (CSI). Methods and Materials: Thirty-nine patients with central nervous system tumors who received CSI with a posterior fossa boost were analyzed for the radiation dose to the lens. Thirteen patients received cranial field treatment using standard opposed-lateral proton beams, and 26 patients received treatment with angled posterior-oblique proton beams. The lens dose in a test case also was evaluated by comparing conventional X-rays with the two proton beam planning methods by using a CMS/Xio three-dimensional planning system. Results: Substantial lens dose sparing was realized with the angling of the cranial proton beams 15{sup o}-20{sup o} to the posterior. In the 39 treated patients who were analyzed (median age, 7 years), average dose delivered to the lens was decreased by approximately 50% by angling of the proton beams, with the average maximum dose decreasing from 74% to 40% of the prescribed dose (p < 0.0001). Significant lens sparing was seen in patients 10 years and younger (median age, 6 years; p < 0.0001), whereas an insignificant decrease was seen in older patients (median age, 16 years; p = 0.14). With the opposed-lateral technique (median age, 6 years), the lens dose increased significantly with decreasing age (p = 0.002), whereas there was no effect of age on lens dose in the angled beam-treated group (median age, 8.5 years; p = 0.73). Conclusion: The present study clearly shows an advantage in sparing of the lens dose by angling the beams used during proton beam CSI. This effect is most pronounced in patients 10 years and younger because of anatomic effects of sinus development.

  12. Low dose radiation hypersensitivity and clustered DNA damages in human fibroblasts exposed to low dose and dose rate protons or 137CS y-rays

    SciTech Connect (OSTI)

    Bennett P. V.; Bennett, P.V.; Keszenman, D.J.; Johnson, A.M.; Sutherland, B.M.; Wilson, P.F.

    2013-05-14

    Effective radioprotection for human space travelers hinges upon understanding the individual properties of charged particles. A significant fraction of particle radiation astronauts will encounter in space exploratory missions will come from high energy protons in galactic cosmic radiation (GCR) and/or possible exposures to lower energy proton flux from solar particle events (SPEs). These potential exposures present major concerns for NASA and others, in planning and executing long term space exploratory missions. We recently reported cell survival and transformation (acquisition of anchorage-independent growth in soft agar) frequencies in apparently normal NFF-28 primary human fibroblasts exposed to 0-30 cGy of 50MeV, 100MeV (SPE-like), or 1000 MeV (GCR-like) monoenergetic protons. These were modeled after 1989 SPE energies at an SPE-like low dose-rate (LDR) of 1.65 cGy/min or high dose rate (HDR) of 33.3 cGy/min delivered at the NASA Space Radiation Laboratory (NSRL) at BNL.

  13. Subsequent Malignancies in Children Treated for Hodgkin's Disease: Associations With Gender and Radiation Dose

    SciTech Connect (OSTI)

    Constine, Louis S. [Department of Radiation Oncology, James P. Wilmot Cancer Center at University of Rochester, Rochester, NY (United States); Department of Pediatrics, James P. Wilmot Cancer Center at University of Rochester, Rochester, NY (United States)], E-mail: louis_constine@urmc.rochester.edu; Tarbell, Nancy [Department of Pediatric Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Hudson, Melissa M. [Department of Hematology-Oncology, St. Jude Children's Research Hospital, Memphis, TN (United States); Schwartz, Cindy [Department of Hematology-Oncology, Johns Hopkins Hospital, Baltimore, MD (United States); Fisher, Susan G. [Department of Community and Preventative Medicine, James P. Wilmot Cancer Center at University of Rochester, Rochester, NY (United States); Muhs, Ann G. B.A. [Department of Radiation Oncology, James P. Wilmot Cancer Center at University of Rochester, Rochester, NY (United States); Basu, Swati K. [Department of Community and Preventative Medicine, James P. Wilmot Cancer Center at University of Rochester, Rochester, NY (United States); Kun, Larry E. [Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, TN (United States); Ng, Andrea; Mauch, Peter [Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA (United States); Sandhu, Ajay [Department of Radiation Oncology, University of California Medical Center-San Diego, San Diego, CA (United States); Culakova, Eva [Department of Community and Preventative Medicine, James P. Wilmot Cancer Center at University of Rochester, Rochester, NY (United States); Lyman, Gary [Department of Medicine, Duke University Medical Center, Durham, NC (United States); Mendenhall, Nancy [Department of Radiation Oncology, University of Florida Medical Center, Gainesville, FL (United States)

    2008-09-01

    Purpose: Subsequent malignant neoplasms (SMNs) are a dominant cause of morbidity and mortality in children treated for Hodgkin's disease (HD). We evaluated select demographic and therapeutic factors associated with SMNs, specifically gender and radiation dose. Methods and Materials: A total of 930 children treated for HD at five institutions between 1960 and 1990 were studied. Mean age at diagnosis was 13.6 years, and mean follow-up was 16.8 years (maximum, 39.4 years). Treatment included radiation alone (43%), chemotherapy alone (9%), or both (48%). Results: We found that SMNs occurred in 102 (11%) patients, with a 25-year actuarial rate of 19%. With 15,154 patient years of follow-up, only 7.18 cancers were expected (standardized incidence ratio [SIR] = 14.2; absolute excess risk [AER] = 63 cases/10,000 years). The SIR for female subjects, 19.93, was significantly greater than for males, 8.41 (p < 0.0001). After excluding breast cancer, the SIR for female patients was 15.4, still significantly greater than for male patients (p = 0.0012). Increasing radiation dose was associated with an increasing SIR (p = 0.0085). On univariate analysis, an increased risk was associated with female gender, increasing radiation dose, and age at treatment (12-16 years). Using logistic regression, mantle radiation dose increased risk, and this was 2.5-fold for female patients treated with more than 35 Gy primarily because of breast cancer. Conclusions: Survivors of childhood HD are at risk for SMNs, and this risk is greater for female individuals even after accounting for breast cancer. Although SMNs occur in the absence of radiation therapy, the risk increases with RT dose.

  14. Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation

    SciTech Connect (OSTI)

    Daila S. Gridley, PhD

    2012-03-30

    FINAL TECHNICAL REPORT Supported by the Low Dose Radiation Research Program, Office of Science U.S. Department of Energy Grant No. DE-FG02-07ER64345 Project ID: 0012965 Award Register#: ER64345 Project Manager: Noelle F. Metting, Sc.D. Phone: 301-903-8309 Division SC-23.2 noelle.metting@science.doe.gov Submitted March 2012 To: https://www.osti.gov/elink/241.3.jsp Title: Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation PI: Daila S. Gridley, Ph.D. Human low dose radiation data have been derived primarily from studies of space and airline flight personnel, nuclear plant workers and others exposed occupationally, as well as victims in the vicinity of atomic bomb explosions. The findings remain inconclusive due to population inconsistencies and complex interactions among total dose, dose rate, radiation quality and age at exposure. Thus, safe limits for low dose occupational irradiation are currently based on data obtained with doses far exceeding the levels expected for the general population and health risks have been largely extrapolated using the linear-nonthreshold dose-response model. The overall working hypothesis of the present study is that priming with low dose, low-linear energy transfer (LET) radiation can ameliorate the response to acute high-dose radiation exposure. We also propose that the efficacy of low-dose induced protection will be dependent upon the form and regimen of the high-dose exposure: photons versus protons versus simulated solar particle event protons (sSPE). The emphasis has been on gene expression and function of CD4+ T helper (Th) lymphocytes harvested from spleens of whole-body irradiated C57BL/6 mice, a strain that provides the genetic background for many genetically engineered strains. Evaluations of the responses of other selected cells, tissues such as skin, and organs such as lung, liver and brain were also initiated (partially funded by other sources). The long-term goal is to provide information that will be useful in estimating human health risks due to radiation that may occur during exposures in the work environment, nuclear/radiological catastrophes, as well as radiotherapy. Several papers have been published, accepted for publication or are in preparation. A number of poster and oral presentations have been made at scientific conferences and workshops. Archived tissues of various types will continue to be evaluated via funding from other sources (the DoE Low Dose Radiation Research Program, Office of Science and this specific grant will be appropriately included in the Acknowledgements of all subsequent publications/presentations). A post-doc and several students have participated in this study. More detailed description of the accomplishments is described in attached file.

  15. Factories: The Ionising Radiations (Sealed Sources) (Radiation Dosemeter and Dose Rate Meter) Order, 1961 

    E-Print Network [OSTI]

    Hare, John

    1961-01-01

    This Order prescribes the particulars to be contained In registers kept in pursuance of paragraph (3) of Regulation 13 of the Ionising Radiations (Sealed Sources) Regulations, 1961, of every test of a radiation dosemeter ...

  16. Radiation bronchitis and stenosis secondary to high dose rate endobronchial irradiation

    SciTech Connect (OSTI)

    Speiser, B.L. ); Spratling, L.

    1993-03-15

    The purpose of the study was to describe a new clinical entity observed in follow-up bronchoscopies in patients who were treated with high dose rate and medium dose rate remote afterloading brachytherapy of the tracheobronchial tree. Patients were treated by protocol with medium dose rate, 47 patients receiving 1000 cGy at a 5 mm depth times three fractions, high dose rate 144 patients receiving 1000 cGy at a 10 mm depth for three fractions and high dose rate 151 patients receiving cGy at a 10 mm depth for three fractions followed by bronchoscopy. Incidence of this entity was 9% for the first group, 12% for the second, and 13% for the third group. Reactions were grade 1 consisting of mild inflammatory response with a partial whitish circumferential membrane in an asymptomatic patient; grade 2, thicker complete white circumferential membrane with cough and/or obstructive problems requiring intervention; grade 3, severe inflammatory response with marked membranous exudate and mild fibrotic reaction; and grade 4 a predominant fibrotic reaction with progressive stenosis. Variables associated with a slightly increased incidence of radiation bronchitis and stenosis included: large cell carcinoma histology, curative intent, prior laser photoresection, and/or concurrent external radiation. Survival was the strongest predictor of the reaction. Radiation bronchitis and stenosis is a new clinical entity that must be identified in bronchial brachytherapy patients and treated appropriately. 23 refs., 3 figs., 7 tabs.

  17. Modeling proton intensity gradients and radiation dose equivalents in the inner

    E-Print Network [OSTI]

    Pringle, James "Jamie"

    Modeling proton intensity gradients and radiation dose equivalents in the inner heliosphere using exposure in IP space. In this paper, we utilize EMMREM to study the radial dependence of proton peak crossfield diffusion at large radial distances. Our results show that radial dependencies of proton peak

  18. Final Report - Epigenetics of low dose radiation effects in an animal model

    SciTech Connect (OSTI)

    Kovalchuk, Olga

    2014-10-22

    This project sought mechanistic understanding of the epigenetic response of tissues as well as the consequences of those responses, when induced by low dose irradiation in a well-established model system (mouse). Based on solid and extensive preliminary data we investigated the molecular epigenetic mechanisms of in vivo radiation responses, particularly – effects of low, occupationally relevant radiation exposures on the genome stability and adaptive response in mammalian tissues and organisms. We accumulated evidence that low dose irradiation altered epigenetic profiles and impacted radiation target organs of the exposed animals. The main long-term goal was to dissect the epigenetic basis of induction of the low dose radiation-induced genome instability and adaptive response and the specific fundamental roles of epigenetic changes (i.e. DNA methylation, histone modifications and miRNAs) in their generation. We hypothesized that changes in global and regional DNA methylation, global histone modifications and regulatory microRNAs played pivotal roles in the generation and maintenance low-dose radiation-induced genome instability and adaptive response. We predicted that epigenetic changes influenced the levels of genetic rearrangements (transposone reactivation). We hypothesized that epigenetic responses from low dose irradiation were dependent on exposure regimes, and would be greatest when organisms are exposed in a protracted/fractionated manner: fractionated exposures > acute exposures. We anticipated that the epigenetic responses were correlated with the gene expression levels. Our immediate objectives were: • To investigate the exact nature of the global and locus-specific DNA methylation changes in the LDR exposed cells and tissues and dissect their roles in adaptive response • To investigate the roles of histone modifications in the low dose radiation effects and adaptive response • To dissect the roles of regulatory microRNAs and their targets in low dose radiation effects and adaptive response • To correlate the levels of epigenetic changes with genetic rearrangement levels and gene expression patterns. In sum, we determined the precise global and locus-specific DNA methylation patterns in the LDR-exposed cells and tissues of mice, and to correlated DNA methylation changes with the gene expression patterns and manifestations of genome instability. We also determined the alterations of global histone modification pattern in the LDR exposed tissues. Additionally, we established the nature of microRNAome changes in the LDR exposed tissue. In this study we for the first time found that LDR exposure caused profound tissue-specific epigenetic changes in the exposed tissues. We established that LDR exposure affect methylation of repetitive elements in the murine genome, causes changes in histone methylation, acetylation and phosphorylation. Importantly, we found that LDR causes profound and persistent effects on small RNA profiles and gene expression, and that miRNAs are excellent biomarkers of LDR exposure. Furthermore, we extended our analysis and studied LDR effects in rat tissues and human tissues and cell lines. There we also analyzed LDR-induced gene expression, DNA methylation and miRNA changes. Our datasets laid foundation for several new research projects aimed to understand molecular underpinnings of low dose radiation responses, and biological repercussions of low dose radiation effects and radiation carcinogenesis.

  19. Development of wireless communication system in real-time internal radiation dose measurement system using magnetic field

    SciTech Connect (OSTI)

    Sato, Fumihiro; Shinohe, Kohta; Takura, Tetsuya [Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aramaki aza, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Matsuki, Hidetoshi [Graduate School of Biomedical Engineering, Tohoku University, 6-6-05 Aoba, Aramaki aza, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Yamada, Syogo [Graduate School of Medicine, Tohoku University, 1-1 Seiryou-cyo, Aoba-ku, Sendai 980-8575 (Japan); Sato, Tadakuni [NEC Tokin Corp., 6-7-1 Koriyama, Taihaku-ku, Sendai 982-8510 (Japan)

    2009-04-01

    In radiation therapy, excessive radiation occurs because the actual delivered dose to the tumor is unknown. To overcome this problem, we need a system in which the delivered dose is measured inside the body, and the dose data are transmitted from the inside to the outside of the body. In this study, a wireless communication system, using magnetic fields was studied, and an internal circuit for obtaining radiation dose data from an x-ray detector was examined. As a result, a communication distance of 200 mm was obtained. An internal circuit was developed, and a signal transmission experiment was performed using the wireless communication system. As a result, the radiation dose data from an x-ray detector was transmitted over a communication distance of 200 mm, and the delivered dose was determined from the received signal.

  20. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 8

    SciTech Connect (OSTI)

    Sullivan, S.G.; Khan, T.A.; Xie, J.W.

    1995-05-01

    The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in a continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This volume 8 of the series. The abstracts in this bibliography were selected form proceedings of technical meetings and conference journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to the many aspects of radiation protection and dose reduction, and ranges form use of robotics, to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 8 contains 232 abstracts, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 8. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

  1. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 7

    SciTech Connect (OSTI)

    Kaurin, D.G.; Khan, T.A.; Sullivan, S.G.; Baum, J.W.

    1993-07-01

    The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in the continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This is volume 7 of the series. The abstracts in this bibliography were selected from proceedings of technical meetings and conferences, journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to radiation protection and dose reduction, and ranges from use of robotics to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 7 contains 293 abstract, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 7. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

  2. Radiation-Induced Rib Fractures After Hypofractionated Stereotactic Body Radiation Therapy: Risk Factors and Dose-Volume Relationship

    SciTech Connect (OSTI)

    Asai, Kaori [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan)] [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Shioyama, Yoshiyuki, E-mail: shioyama@radiol.med.kyushu-u.ac.jp [Department of Heavy Particle Therapy and Radiation Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan)] [Department of Heavy Particle Therapy and Radiation Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Nakamura, Katsumasa; Sasaki, Tomonari; Ohga, Saiji; Nonoshita, Takeshi [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan)] [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Yoshitake, Tadamasa [Department of Heavy Particle Therapy and Radiation Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan)] [Department of Heavy Particle Therapy and Radiation Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Ohnishi, Kayoko [Department of Radiology, National Center for Global Health and Medicine, Tokyo (Japan)] [Department of Radiology, National Center for Global Health and Medicine, Tokyo (Japan); Terashima, Kotaro; Matsumoto, Keiji [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan)] [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Hirata, Hideki [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan)] [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Honda, Hiroshi [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan)] [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan)

    2012-11-01

    Purpose: The purpose of this study was to clarify the incidence, the clinical risk factors, and the dose-volume relationship of radiation-induced rib fracture (RIRF) after hypofractionated stereotactic body radiation therapy (SBRT). Methods and Materials: One hundred sixteen patients treated with SBRT for primary or metastatic lung cancer at our institution, with at least 6 months of follow-up and no previous overlapping radiation exposure, were included in this study. To determine the clinical risk factors associated with RIRF, correlations between the incidence of RIRF and the variables, including age, sex, diagnosis, gross tumor volume diameter, rib-tumor distance, and use of steroid administration, were analyzed. Dose-volume histogram analysis was also conducted. Regarding the maximum dose, V10, V20, V30, and V40 of the rib, and the incidences of RIRF were compared between the two groups divided by the cutoff value determined by the receiver operating characteristic curves. Results: One hundred sixteen patients and 374 ribs met the inclusion criteria. Among the 116 patients, 28 patients (46 ribs) experienced RIRF. The estimated incidence of rib fracture was 37.7% at 3 years. Limited distance from the rib to the tumor (<2.0 cm) was the only significant risk factor for RIRF (p = 0.0001). Among the dosimetric parameters used for receiver operating characteristic analysis, the maximum dose showed the highest area under the curve. The 3-year estimated risk of RIRF and the determined cutoff value were 45.8% vs. 1.4% (maximum dose, {>=}42.4 Gy or less), 51.6% vs. 2.0% (V40, {>=}0.29 cm{sup 3} or less), 45.8% vs. 2.2% (V30, {>=}1.35 cm{sup 3} or less), 42.0% vs. 8.5% (V20, {>=}3.62 cm{sup 3} or less), or 25.9% vs. 10.5% (V10, {>=}5.03 cm{sup 3} or less). Conclusions: The incidence of RIRF after hypofractionated SBRT is relatively high. The maximum dose and high-dose volume are strongly correlated with RIRF.

  3. ASSESSMENT OF UNCERTAINTY IN THE RADIATION DOSES FOR THE TECHA RIVER DOSIMETRY SYSTEM

    SciTech Connect (OSTI)

    Napier, Bruce A.; Degteva, M. O.; Anspaugh, L. R.; Shagina, N. B.

    2009-10-23

    In order to provide more accurate and precise estimates of individual dose (and thus more precise estimates of radiation risk) for the members of the ETRC, a new dosimetric calculation system, the Techa River Dosimetry System-2009 (TRDS-2009) has been prepared. The deterministic version of the improved dosimetry system TRDS-2009D was basically completed in April 2009. Recent developments in evaluation of dose-response models in light of uncertain dose have highlighted the importance of different types of uncertainties in the development of individual dose estimates. These include uncertain parameters that may be either shared or unshared within the dosimetric cohort, and also the nature of the type of uncertainty as aleatory or epistemic and either classical or Berkson. This report identifies the nature of the various input parameters and calculational methods incorporated in the Techa River Dosimetry System (based on the TRDS-2009D implementation), with the intention of preparing a stochastic version to estimate the uncertainties in the dose estimates. This report reviews the equations, databases, and input parameters, and then identifies the author’s interpretations of their general nature. It presents the approach selected so that the stochastic, Monte-Carlo, implementation of the dosimetry System - TRDS-2009MC - will provide useful information regarding the uncertainties of the doses.

  4. Nuclear Decay Data in the MIRD (Medical Internal Radiation Dose) Format

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    MIRD is a database of evaluated nuclear decay data for over 2,100 radioactive nuclei. Data are extracted from ENSDF, processed by the program RadList, and used for medical internal radiation dose calculations. When using the MIRD interface, tables of nuclear and atomic radiations from nuclear decay and decay scheme drawings will be produced in the MIRD format from the Evaluated Nuclear Structure Data File (ENSDF) for the specified nuclide. Output may be either HTML-formatted tables and JPEG drawings, PostScript tables and drawings, or PDF tables and drawings.

  5. Imprinted genes and transpositions: epigenomic targets for low dose radiation effects. Final report

    SciTech Connect (OSTI)

    Jirtle, Randy L.

    2012-10-11

    The overall hypothesis of this grant application is that low dose ionizing radiation (LDIR) elicits adaptive responses in part by causing heritable DNA methylation changes in the epigenome. This novel postulate was tested by determining if the level of DNA methylation at the Agouti viable yellow (A{sup vy}) metastable locus is altered, in a dose-dependent manner, by low dose radiation exposure (<10 cGy) during early gestation. This information is particularly important to ascertain given the increased use of CT scans in disease diagnosis, increased number of people predicted to live and work in space, and the present concern about radiological terrorism. We showed for the first time that LDIR significantly increased DNA methylation at the A{sup vy} locus in a sex-specific manner (p=0.004). Average DNA methylation was significantly increased in male offspring exposed to doses between 0.7 cGy and 7.6 cGy with maximum effects at 1.4 cGy and 3.0 cGy (p<0.01). Offspring coat color was concomitantly shifted towards pseudoagouti (p<0.01). Maternal dietary antioxidant supplementation mitigated both the DNA methylation changes and coat color shift in the irradiated offspring (p<0.05). Thus, LDIR exposure during gestation elicits epigenetic alterations that lead to positive adaptive phenotypic changes that are negated with antioxidants, indicating they are mediated in part by oxidative stress. These findings provide evidence that in the isogenic Avy mouse model epigenetic alterations resulting from LDIR play a role in radiation hormesis, bringing into question the assumption that every dose of radiation is harmful. Our findings not only have significant implications concerning the mechanism of hormesis, but they also emphasize the potential importance of this phenomenon in determining human risk at low radiation doses. Since the epigenetic regulation of genes varies markedly between species, the effect of LDIR on other epigenetically labile genes (e.g. imprinted genes) in animals and humans needs to be defined.

  6. Low-Dose, Ionizing Radiation and Age-Related Changes in Skeletal Microarchitecture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alwood, Joshua S.; Kumar, Akhilesh; Tran, Luan H.; Wang, Angela; Limoli, Charles L.; Globus, Ruth K.

    2012-01-01

    Osteoporosis can profoundly affect the aged as a consequence of progressive bone loss; high-dose ionizing radiation can cause similar changes, although less is known about lower doses (?100?cGy). We hypothesized that exposure to relatively low doses of gamma radiation accelerates structural changes characteristic of skeletal aging. Mice (C57BL/6J-10?wk old, male) were irradiated (total body; 0-sham, 1, 10 or 100?cGy 137 Cs) and tissues harvested on the day of irradiation, 1 or 4?months later. Microcomputed tomography was used to quantify microarchitecture of high turnover, cancellous bone. Irradiation at 100?cGy caused transient microarchitectural changes over one month that were only evidentmore »at longer times in controls (4 months). Ex vivo bone cell differentiation from the marrow was unaffected by gamma radiation. In conclusion, acute ionizing gamma irradiation at 100?cGy (but not at 1?cGy or 10?cGy) exacerbated microarchitectural changes normally found during progressive, postpubertal aging prior to the onset of age-related osteoporosis. « less

  7. Correlation of radiation absorbed dose to the human thyroid using the FBX dosimeter and external probe techniques 

    E-Print Network [OSTI]

    Bateman, Sarah Caroline Louisa

    1986-01-01

    calculational dose response. 25 9 Counts per minute of "'I as obtained using a 1" x 1" Nal external probe bioassay system as a function of '"I activity present. 26 INTRODUCTION The objective of this research is to measure the radiation absorbed dose from... dosimeter system, the energy imparted by radiation causes the ferrous ions present in the solution to be converted to ferric ions, so that the number of iona converted is proportional to the radiation absorbed dose (Gu78a). However in the FBX dosimeter...

  8. Systematic measurements of whole-body dose distributions for various treatment machines and delivery techniques in radiation therapy

    SciTech Connect (OSTI)

    Haelg, Roger A.; Besserer, Juergen; Schneider, Uwe

    2012-12-15

    Purpose: Contemporary radiotherapy treatment techniques, such as intensity-modulated radiation therapy and volumetric modulated arc therapy, could increase the radiation-induced malignancies because of the increased beam-on time, i.e., number of monitor units needed to deliver the same dose to the target and the larger volume irradiated with low doses. In this study, whole-body dose distributions from typical radiotherapy patient plans using different treatment techniques and therapy machines were measured using the same measurement setup and irradiation intention. Methods: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The dose distributions from 6 MV beams were compared in terms of treatment technique (3D-conformal, intensity-modulated radiation therapy, volumetric modulated arc therapy, helical TomoTherapy, stereotactic radiotherapy, hard wedges, and flattening filter-free radiotherapy) and therapy machine (Elekta, Siemens and Varian linear accelerators, Accuray CyberKnife and TomoTherapy). Results: Close to the target, the doses from intensity-modulated treatments (including flattening filter-free) were below the dose from a static treatment plan, whereas the CyberKnife showed a larger dose by a factor of two. Far away from the treatment field, the dose from intensity-modulated treatments showed an increase in dose from stray radiation of about 50% compared to the 3D-conformal treatment. For the flattening filter-free photon beams, the dose from stray radiation far away from the target was slightly lower than the dose from a static treatment. The CyberKnife irradiation and the treatment using hard wedges increased the dose from stray radiation by nearly a factor of three compared to the 3D-conformal treatment. Conclusions: This study showed that the dose outside of the treated volume is influenced by several sources. Therefore, when comparing different treatment techniques, the dose ratios vary with distance to the isocenter. The effective dose outside the treated volume of intensity-modulated treatments with or without flattening filter was 10%-30% larger when compared to 3D-conformal radiotherapy. This dose increase is much lower than the monitor unit scaled effective dose from a static treatment.

  9. Occupational radiation dose assessment for the DOE spent-fuel storage facility

    SciTech Connect (OSTI)

    Hadley, J. [Duke Engineering and Services, Charlotte, NC (United States); Eble, R.G. Jr. [Duke Engineering & Services, Vienna, VA (United States)

    1997-12-01

    To expedite the licensing process of the centralized interim storage facility (CISF), the U.S. Department of Energy has completed a CISF topical safety analysis report (TSAR). The TSAR will be used in licensing the CISF when a site is designated. An occupational radiation dose assessment of the facility operations is performed as part of the CISF design. The first phase of the CISF has the capability to receive, transfer, and store spent nuclear fuel (SNF) in dual-purpose casks. Currently, there are five vendor technologies under consideration. The preliminary dose assessment is based on estimated occupational exposures using traditional power plant independent spent-fuel storage installation (ISFSI) and transport cask-handling processes. The second step in the process is to recommend as-low-as-reasonably-achievable (ALARA) techniques to reduce potential exposures. A final dose assessment is completed implementing the ALARA techniques, and a review is performed to ensure that the design is in compliance with regulatory criteria. The dose assessment and ALARA evaluation are determined using the following input information: dose estimates from vendor safety analysis reports, ISFSI experience with similar systems, traditional methods of operations, expected CISF cask receipt rates, and feasible ALARA techniques.

  10. The effect of low dose ionizing radiation on homeostasis and functional integrity in an organotypic human skin model

    SciTech Connect (OSTI)

    von Neubeck, Claere; Geniza, Matthew; Kauer, Paula M.; Robinson, Joseph E.; Chrisler, William B.; Sowa, Marianne B.

    2015-05-01

    Outside the protection of earth’s atmosphere, astronauts are exposed to low doses of high linear energy transfer (LET) radiation. Future NASA plans for deep space missions or a permanent settlement on the moon are limited by the health risks associated with space radiation exposures. There is a paucity of direct epidemiological data for low dose exposures to space radiation-relevant high LET ions. Health risk models are used to estimate the risk for such exposures, though these models are based on high dose experiments. There is increasing evidence, however, that low and high dose exposures result in different signaling events at the molecular level, and may involve different response mechanisms. Further, despite their low abundance, high LET particles have been identified as the major contributor to health risk during manned space flight. The human skin is exposed in every external radiation scenario, making it an ideal epithelial tissue model in which to study radiation induced effects. Here, we exposed an in vitro three dimensional (3-D) human organotypic skin tissue model to low doses of high LET oxygen (O), silicon (Si) and iron (Fe) ions. We measured proliferation and differentiation profiles in the skin tissue and examined the integrity of the skin’s barrier function. We discuss the role of secondary particles in changing the proportion of cells receiving a radiation dose, emphasizing the possible impact on radiation-induced health issues in astronauts.

  11. SU-E-T-66: Characterization of Radiation Dose Associated with Dark Currents During Beam Hold for Respiratory-Gated Electron Therapy

    SciTech Connect (OSTI)

    Hessler, J; Gupta, N; Rong, Y; Weldon, M

    2014-06-01

    Purpose: The main objective of this study was to estimate the radiation dose contributed by dark currents associated with the respiratory-gated electron therapy during beam hold. The secondary aim was to determine clinical benefits of using respiratory-gated electron therapy for left-sided breast cancer patients with positive internal mammary nodes (IMN). Methods: Measurements of the dark current-induced dose in all electron modes were performed on multiple Siemens and Varian linear accelerators by manually simulating beam-hold during respiratory gating. Dose was quantified at the machine isocenter by comparing the collected charge to the known output for all energies ranging from 6 to 18 MeV for a 10cm × 10cm field at 100 SSD with appropriate solid-water buildup. Using the Eclipse treatment planning system, we compared the additional dose associated with dark current using gated electron fields to the dose uncertainties associated with matching gated photon fields and ungated electron fields. Dose uncertainties were seen as hot and cold spots along the match line of the fields. Results: The magnitude of the dose associated with dark current is highly correlated to the energy of the beam and the amount of time the beam is on hold. For lower energies (6–12 MeV), there was minimal dark current dose (0.1–1.3 cGy/min). Higher energies (15–18 MeV) showed measurable amount of doses. The dark current associated with the electron beam-hold varied between linear accelerator vendors and depended on dark current suppression and the age of the linear accelerator. Conclusion: For energies up to 12 MeV, the dose associated with the dark current for respiratorygated electron therapy was shown to be negligible, and therefore should be considered an option for treating IMN positive left-sided breast cancer patients. However, at higher energies the benefit of respiratory gating may be outweighed by dose due to the dark current.

  12. Medical imaging using ionizing radiation: Optimization of dose and image quality in fluoroscopy

    SciTech Connect (OSTI)

    Jones, A. Kyle; Balter, Stephen; Rauch, Phillip; Wagner, Louis K.

    2014-01-15

    The 2012 Summer School of the American Association of Physicists in Medicine (AAPM) focused on optimization of the use of ionizing radiation in medical imaging. Day 2 of the Summer School was devoted to fluoroscopy and interventional radiology and featured seven lectures. These lectures have been distilled into a single review paper covering equipment specification and siting, equipment acceptance testing and quality control, fluoroscope configuration, radiation effects, dose estimation and measurement, and principles of flat panel computed tomography. This review focuses on modern fluoroscopic equipment and is comprised in large part of information not found in textbooks on the subject. While this review does discuss technical aspects of modern fluoroscopic equipment, it focuses mainly on the clinical use and support of such equipment, from initial installation through estimation of patient dose and management of radiation effects. This review will be of interest to those learning about fluoroscopy, to those wishing to update their knowledge of modern fluoroscopic equipment, to those wishing to deepen their knowledge of particular topics, such as flat panel computed tomography, and to those who support fluoroscopic equipment in the clinic.

  13. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA

    SciTech Connect (OSTI)

    Khan, T.A.; Vulin, D.S.; Lane, S.G.; Baum, J.W. (Brookhaven National Lab., Upton, NY (United States))

    1991-10-01

    In the continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants, the ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA. This is the sixth report in that series. The abstracts in this bibliography were selected from proceedings of technical meetings and conferences, journals, research reports, and searches of information databases of the US Department of Energy. The subject material of these abstracts relates to radiation protection and dose reduction, and ranges from the use of robotics, to operational health physics, to water chemistry. Also included is material on the design, planning, and management of nuclear power stations, as well as on decommissioning and safe storage efforts. This report contains 266 abstracts along with subject and author indices. The author index is exclusively for this volume. The subject index contains headings for this volume in bold face, as well as reference to previous volumes. All information in this and previous volumes of the series is also available through our on-line information system called ACE (ALARA Center Exchange). ACE is accessible through fax machines or personal computers interfaced with modems. The bibliography database and other databases are kept current with new abstracts, information on research projects, and recent news of international events related to ALARA at nuclear power plants. Access to the system is provided freely to the ALARA community. For password certification, manuals, and other information about our system, please contact the ALARA CENTER, Building 703M, Brookhaven National Laboratory, Upton, NY 11973, or call (516) 282-3228.

  14. Occupational radiation dose assessment for a non site specific spent fuel storage facility

    SciTech Connect (OSTI)

    Hadley, J. [Duke Engineering and Services, Inc., Charlotte, NC (United States); Eble, R.G. Jr. [Duke Engineering and Services, Inc., Vienna, VA (United States)

    1997-12-01

    To expedite the licensing process of the non site specific Centralized Interim Storage Facility (CISF) the Department of Energy has completed a phase I CISF Topical Safety Analysis Report (TSAR). The TSAR will be used in licensing the phase I CISF if a site is designated. An occupational radiation does assessment of the facility operations is performed as part of the phase I CISF design. The first phase of the CISF has the capability to receive, transfer, and store SNF in dual-purpose cask/canister systems (DPC`s). Currently there are five vendor technologies under consideration. The preliminary dose assessment is based on estimated occupational exposures using traditional power plant ISFSI and transport cask handling processes. The second step in the process is to recommend ALARA techniques to reduce potential exposures. A final dose assessment is completed implementing the ALARA techniques and a review is performed to ensure that the design is in compliance with regulatory criteria. The dose assessment and ALARA evaluation are determined using the following input information: Dose estimates from vendor SAR`s; ISFSI experience with similar systems; Traditional methods of operations; Expected CISF cask receipt rates; and feasible ALARA techniques. 5 refs., 1 tab.

  15. Hysterosalpingography using a flat panel unit: Evaluation and optimization of ovarian radiation dose

    SciTech Connect (OSTI)

    Messaris, Gerasimos A. T.; Abatzis, Ilias; Kagadis, George C.; Samartzis, Alexandros P.; Athanasopoulou, Panagiota; Christeas, Nikolaos; Katsanos, Konstantinos; Karnabatidis, Dimitrios; Nikiforidis, George C.

    2012-07-15

    Purpose: The aim of the present study was the evaluation and optimization of radiation dose to the ovaries (D) in hysterosalpingography (HSG). Methods: The study included a phantom study and a clinical one. In the phantom study, we evaluated imaging results for different geometrical setups and irradiation conditions. In the clinical study, 34 women were assigned into three different fluoroscopy modes and D was estimated with direct cervical TLD measurements. Results: In the phantom study, we used a source-to-image-distance (SID) of 110 cm and a field diagonal of 48 cm, and thus decreased air KERMA rate (KR) by 19% and 70%, respectively, for beam filtration: 4 mm Al and 0.9 mm Cu (Low dose). The least radiation exposure was accomplished by using the 3.75 pps fluoroscopy mode in conjunction with beam filtration: Low dose. In the clinical study, D normalized to 50 s of fluoroscopy time with a 3.75 pps fluoroscopy mode reached a value of 0.45 {+-} 0.04 mGy. Observers' evaluation of diagnostic image quality did not significantly differ for the three different modes of acquisition that were compared. Conclusions: Digital spot radiographs could be omitted in modern flat panel systems during HSG. Fluoroscopy image acquisitions in a modern flat panel unit at 3.75 pps and a beam filtration of 4 mm Al and 0.9 mm Cu demonstrate acceptable image quality with an average D equal to 0.45 mGy. This value is lower compared to the studied literature. For these reasons, the proposed method may be recommended for routine HSG examination in order to limit radiation exposure to the ovaries.

  16. int. j. radiat. biol 2002, vol. 78, no. 7, 593 604 Do low dose-rate bystander eVects in uence domestic radon risks?

    E-Print Network [OSTI]

    Brenner, David Jonathan

    int. j. radiat. biol 2002, vol. 78, no. 7, 593± 604 Do low dose-rate bystander eVects in uence of inverse dose-rate eVects by high- exposed to low doses of low-LET radiation (SawantLET radiation oncogenic transformation in vitro, home resident will be struck or traversed by an a-is extended to low dose

  17. Evaluation and Control of Radiation Dose to the Embryo/Fetus Guide for Use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-29

    This Guide provides an acceptable methodology for establishing and operating a program to control fetal exposure to ionizing radiation and evaluate the resultant dose that will comply with U.S. Department of Energy (DOE) requirements specified in Title 10 of the Code of Federal Regulations (CFR), Part 835, Occupational Radiation Protection (DOE 1998), hereinafter referred to as 10 CFR 835.

  18. Calculation of the lesion radiation absorbed dose in canines treated with samarium-153 EDTMP 

    E-Print Network [OSTI]

    Poston, John W

    1989-01-01

    . Schla p r Chair of Committee Dan ightower Member Jo n W. Poston, Sr. Mem er Milton E. McLain Member John W. Posto, Sr. Head of Department May 1989 ABSTRACT Calculation of the Lesion Radiation Absorbed Dose in Canines Treated With Samarium... the members of my graduate committee, Dr. Dan Hightower, who is always approachable and ready to help, and Dr. Milton E. McLain for their support during my graduate study. Special thanks to my friends, especially Dr. Tsz-yik Edmond Hui, for the help...

  19. A revised model of the kidney for medical internal radiation dose calculations 

    E-Print Network [OSTI]

    Patel, Jyoti Shivabhai

    1988-01-01

    ) G. A. Schlapper (Member) D. 'ghtower (Member) M. E. cLain (Member) ohn . Poston (Head of Department) December 1988 ABSTRACT A Revised Model of the Kidney for Medical Internal Radiation Dose. (December 1988) Jyoti Shivabhai Patel, B. A... it as their ultimate goal. ACKNOWLEDGEMENTS I would like to thank the members of my graduate committee, Dr. G. A. Schlapper, Dr. M. E. McLain, and Dr. D. Hightower. I would like to give special recognition to the committee chairman Dr. J. W. Poston for suggesting...

  20. TU-C-18A-01: Models of Risk From Low-Dose Radiation Exposures: What Does the Evidence Say?

    SciTech Connect (OSTI)

    Bushberg, J; Boreham, D; Ulsh, B

    2014-06-15

    At dose levels of (approximately) 500 mSv or more, increased cancer incidence and mortality have been clearly demonstrated. However, at the low doses of radiation used in medical imaging, the relationship between dose and cancer risk is not well established. As such, assumptions about the shape of the dose-response curve are made. These assumptions, or risk models, are used to estimate potential long term effects. Common models include 1) the linear non-threshold (LNT) model, 2) threshold models with either a linear or curvilinear dose response above the threshold, and 3) a hormetic model, where the risk is initially decreased below background levels before increasing. The choice of model used when making radiation risk or protection calculations and decisions can have significant implications on public policy and health care decisions. However, the ongoing debate about which risk model best describes the dose-response relationship at low doses of radiation makes informed decision making difficult. This symposium will review the two fundamental approaches to determining the risk associated with low doses of ionizing radiation, namely radiation epidemiology and radiation biology. The strengths and limitations of each approach will be reviewed, the results of recent studies presented, and the appropriateness of different risk models for various real world scenarios discussed. Examples of well-designed and poorly-designed studies will be provided to assist medical physicists in 1) critically evaluating publications in the field and 2) communicating accurate information to medical professionals, patients, and members of the general public. Equipped with the best information that radiation epidemiology and radiation biology can currently provide, and an understanding of the limitations of such information, individuals and organizations will be able to make more informed decisions regarding questions such as 1) how much shielding to install at medical facilities, 2) at what dose level are risk vs. benefit discussions with patients appropriate, 3) at what dose level should we tell a pregnant woman that the baby’s health risk from a prenatal radiation exposure is “significant”, 4) is informed consent needed for patients undergoing medical imaging, and 5) at what dose level is evacuation appropriate after a radiological accident. Examples of the tremendous impact that choosing different risks models can have on the answers to these types of questions will be given.A moderated panel discussion will allow audience members to pose questions to the faculty members, each of whom is an established expert in his respective discipline. Learning Objectives: Understand the fundamental principles, strengths and limitations of radiation epidemiology and radiation biology for determining the risk from exposures to low doses of ionizing radiation Become familiar with common models of risk used to describe the dose-response relationship at low dose levels Learn to identify strengths and weaknesses in studies designed to measure the effect of low doses of ionizing radiation Understand the implications of different risk models on public policy and health care decisions.

  1. Low doses ionizing radiation enhances the invasiveness of breast cancer cells by inducing epithelial-mesenchymal transition

    SciTech Connect (OSTI)

    Zhang, Xin; Li, Xiaoyan; Zhang, Ning; Yang, Qifeng; Moran, Meena S.

    2011-08-19

    Highlights: {yields} Low doses ionizing irradiation would enhance the invasiveness of breast cancer cells by inducing EMT. {yields} Low doses ionizing radiation induced morphologic changes in breast cancer cells. {yields} Low doses ionizing radiation led to upregulation of mesenchymal markers and down-regulation of epithelial markers. {yields} Low doses ionizing radiation increased migration and invasion of breast cancer cells. -- Abstract: Epithelial-mesenchymal transition (EMT) is a process cellular morphologic and molecular alterations facilitate cell invasion. We hypothesized that low dose ionizing irradiation (LDIR) enhances the invasiveness of breast cancer cells by inducing EMT. The effects of LDIR on cellular morphology and the EMT markers of MCF-7 breast cancer cells were analyzed by western blot/RT-PCR and migration/invasion was examined using the transwell assay. We found that LDIR led to the phenotypic changes of EMT in MCF-7 cells and down-regulation of epithelial differentiation markers and transcriptional induction of mesenchymal markers. Furthermore, the radiated cells demonstrated enhanced migration/invasion MCF-7 cells compared with non-radiated cells. In summary, LDIR promotes the invasiveness of breast cancer cells through epithelial to mesenchymal transition. These findings may ultimately provide a new targeted approach for improving the therapeutic effectiveness of radiation in breast cancer.

  2. A Systems Genetic Approach to Identify Low Dose Radiation-Induced Lymphoma Susceptibility/DOE2013FinalReport

    SciTech Connect (OSTI)

    Balmain, Allan; Song, Ihn Young

    2013-05-15

    The ultimate goal of this project is to identify the combinations of genetic variants that confer an individual's susceptibility to the effects of low dose (0.1 Gy) gamma-radiation, in particular with regard to tumor development. In contrast to the known effects of high dose radiation in cancer induction, the responses to low dose radiation (defined as 0.1 Gy or less) are much less well understood, and have been proposed to involve a protective anti-tumor effect in some in vivo scientific models. These conflicting results confound attempts to develop predictive models of the risk of exposure to low dose radiation, particularly when combined with the strong effects of inherited genetic variants on both radiation effects and cancer susceptibility. We have used a Â?Â?Systems Genetics approach in mice that combines genetic background analysis with responses to low and high dose radiation, in order to develop insights that will allow us to reconcile these disparate observations. Using this comprehensive approach we have analyzed normal tissue gene expression (in this case the skin and thymus), together with the changes that take place in this gene expression architecture a) in response to low or high- dose radiation and b) during tumor development. Additionally, we have demonstrated that using our expression analysis approach in our genetically heterogeneous/defined radiation-induced tumor mouse models can uniquely identify genes and pathways relevant to human T-ALL, and uncover interactions between common genetic variants of genes which may lead to tumor susceptibility.

  3. int. j. radiat. biol 1997, vol. 72, no. 4, 351 374 The link between low-LET dose-response relations and the

    E-Print Network [OSTI]

    Brenner, David Jonathan

    int. j. radiat. biol 1997, vol. 72, no. 4, 351± 374 Review The link between low-LET dose), kinetic models relations and dose-protraction eå ects are reviewed and interre- of radiation damage. (3) Almost every current kinetic model, whether based on binary by fractionation and/or low dose

  4. Radiation and Reason Why radiation at modest dose rates is quite harmless and current radiation safety regulations are flawed

    E-Print Network [OSTI]

    CERN. Geneva

    2013-01-01

    Data on the impact of ionising radiation on life are examined in the light of evolutionary biology. This comparison confirms that fear of nuclear radiation is not justified by science itself; rather it originates in a failure of public trust in nuclear science, a relic of the international politics of the Cold War era. Current ionisation safety regulations appease this fear but without scientific support and they need fundamental reformulation. This should change the reaction to accidents like Fukushima, the cost of nuclear energy and the application of nuclear technology to the supply of food and fresh water. Such a boost to the world economy would require that more citizens study and appreciate the science involved – and then tell others -- not as much fun as the Higgs, perhaps, but no less important! www.radiationandreason.com

  5. Silicon field-effect transistors as radiation detectors for the Sub-THz range

    SciTech Connect (OSTI)

    But, D. B., E-mail: but.dmitry@gmail.com; Golenkov, O. G.; Sakhno, N. V.; Sizov, F. F.; Korinets, S. V.; Gumenjuk-Sichevska, J. V.; Reva, V. P.; Bunchuk, S. G. [National Academy of Sciences of Ukraine, Lashkaryov Institute of Semiconductor Physics (Ukraine)

    2012-05-15

    The nonresonance response of silicon metal-oxide-semiconductor field-effect transistors (Si-MOSFETs) with a long channel (1-20 {mu}m) to radiation in the frequency range 43-135 GHz is studied. The transistors are fabricated by the standard CMOS technology with 1-{mu}m design rules. The volt-watt sensitivity and the noise equivalent power (NEP) for such detectors are estimated with the calculated effective area of the detecting element taken into account. It is shown that such transistors can operate at room temperature as broadband direct detectors of sub-THz radiation. In the 4-5 mm range of wavelengths, the volt-watt sensitivity can be as high as tens of kV/W and the NEP can amount to 10{sup -11} - 10{sup -12}W/{radical}Hz . The parameters of detectors under study can be improved by the optimization of planar antennas.

  6. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    SciTech Connect (OSTI)

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.; Amendola, Roberto

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³?Cs at 0.13, 2.4, 21, and 222 mGy d?¹, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d?¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.

  7. Genetic Background Modulates lncRNA-Coordinated Tissue Response to Low Dose Ionizing Radiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tang, Jonathan; Huang, Yurong; Nguyen, David H.; Costes, Sylvain V.; Snijders, Antoine M.; Mao, Jian-Hua

    2015-01-01

    Long noncoding RNAs (lncRNAs) are emerging as key regulators of diverse cell functions and processes. However, the relevance of lncRNAs in the cell and tissue response to ionizing radiation has not yet been characterized. Here we used microarray profiling to determine lncRNA and mRNA expression in mammary glands of BALB/c and SPRET/EiJ mice after low-dose ionizing radiation (LDIR) exposure. We found that unirradiated mammary tissues of these strains differed significantly in baseline expressions of 290 lncRNAs. LDIR exposure (10?cGy) induced a significant change in the expression of many lncRNAs. The vast majority of lncRNAs identified to be differentially expressed aftermore »LDIR in either BALB/c or SPRET/EiJ had a significantly correlated expression pattern with at least one LDIR responsive mRNA. Functional analysis revealed that the response to LDIR in BALB/c mice is highly dynamic with enrichment for genes involved in tissue injury, inflammatory responses, and mammary gland development at 2, 4, and 8 weeks after LDIR, respectively. Our study demonstrates that genetic background strongly influences the expression of lncRNAs and their response to radiation and that lncRNAs may coordinate the tissue response to LDIR exposure via regulation of coding mRNAs.« less

  8. Genetic background modulates lncRNA-coordinated tissue response to low dose ionizing radiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tang, Jonathan; Huang, Yurong; Nguyen, David H.; Costes, Sylvain V.; Snijders, Antoine M.; Mao, Jian -Hua

    2015-02-04

    Long noncoding RNAs (lncRNAs) are emerging as key regulators of diverse cell functions and processes. However, the relevance of lncRNAs in the cell and tissue response to ionizing radiation has not yet been characterized. Here we used microarray profiling to determine lncRNA and mRNA expression in mammary glands of BALB/c and SPRET/EiJ mice after low-dose ionizing radiation (LDIR) exposure. We found that unirradiated mammary tissues of these strains differed significantly in baseline expressions of 290 lncRNAs. LDIR exposure (10 cGy) induced a significant change in the expression of many lncRNAs. The vast majority of lncRNAs identified to be differentially expressedmore »after LDIR in either BALB/c or SPRET/EiJ had a significantly correlated expression pattern with at least one LDIR responsive mRNA. Functional analysis revealed that the response to LDIR in BALB/c mice is highly dynamic with enrichment for genes involved in tissue injury, inflammatory responses, and mammary gland development at 2, 4, and 8 weeks after LDIR, respectively. Our study demonstrates that genetic background strongly influences the expression of lncRNAs and their response to radiation and that lncRNAs may coordinate the tissue response to LDIR exposure via regulation of coding mRNAs.« less

  9. Primate polonium metabolic models and their use in estimation of systemic radiation doses from bioassay data. Final report

    SciTech Connect (OSTI)

    Cohen, N. [New York Univ. Medical Center, Tuxedo, NY (United States). Dept. of Environmental Medicine

    1989-03-15

    A Polonium metabolic model was derived and incorporated into a Fortran algorithm which estimates the systemic radiation dose from {sup 210}Po when applied to occupational urine bioassay data. The significance of the doses estimated are examined by defining the degree of uncertainty attached to them through comprehensive statistical testing procedures. Many parameters necessary for dosimetry calculations (such as organ partition coefficients and excretion fractions), were evaluated from metabolic studies of {sup 210}Po in non-human primates. Two tamarins and six baboons were injected intravenously with {sup 210}Po citrate. Excreta and blood samples were collected. Five of the baboons were sacrificed at times ranging from 1 day to 3 months post exposure. Complete necropsies were performed and all excreta and the majority of all skeletal and tissue samples were analyzed radiochemically for their {sup 210}Po content. The {sup 210}Po excretion rate in the baboon was more rapid than in the tamarin. The biological half-time of {sup 210}Po excretion in the baboon was approximately 15 days while in the tamarin, the {sup 210}Po excretion rate was in close agreement with the 50 day biological half-time predicted by ICRP 30. Excretion fractions of {sup 210}Po in the non-human primates were found to be markedly different from data reported elsewhere in other species, including man. A thorough review of the Po urinalysis procedure showed that significant recovery losses resulted when metabolized {sup 210}Po was deposited out of raw urine. Polonium-210 was found throughout the soft tissues of the baboon but not with the partition coefficients for liver, kidneys, and spleen that are predicted by the ICRP 30 metabolic model. A fractional distribution of 0.29 for liver, 0.07 for kidneys, and 0.006 for spleen was determined. Retention times for {sup 210}Po in tissues are described by single exponential functions with biological half-times ranging from 15 to 50 days.

  10. Radiation dose in coronary angiography and intervention: initial results from the establishment of a multi-centre diagnostic reference level in Queensland public hospitals

    SciTech Connect (OSTI)

    Crowhurst, James A; Whitby, Mark; Thiele, David; Halligan, Toni; Westerink, Adam; Crown, Suzanne; Milne, Jillian

    2014-09-15

    Radiation dose to patients undergoing invasive coronary angiography (ICA) is relatively high. Guidelines suggest that a local benchmark or diagnostic reference level (DRL) be established for these procedures. This study sought to create a DRL for ICA procedures in Queensland public hospitals. Data were collected for all Cardiac Catheter Laboratories in Queensland public hospitals. Data were collected for diagnostic coronary angiography (CA) and single-vessel percutaneous intervention (PCI) procedures. Dose area product (P{sub KA}), skin surface entrance dose (K{sub AR}), fluoroscopy time (FT), and patient height and weight were collected for 3 months. The DRL was set from the 75th percentile of the P{sub KA.} 2590 patients were included in the CA group where the median FT was 3.5 min (inter-quartile range = 2.3–6.1). Median K{sub AR} = 581 mGy (374–876). Median P{sub KA} = 3908 uGym{sup 2} (2489–5865) DRL = 5865 uGym{sup 2}. 947 patients were included in the PCI group where median FT was 11.2 min (7.7–17.4). Median K{sub AR} = 1501 mGy (928–2224). Median P{sub KA} = 8736 uGym{sup 2} (5449–12,900) DRL = 12,900 uGym{sup 2}. This study established a benchmark for radiation dose for diagnostic and interventional coronary angiography in Queensland public facilities.

  11. Modeling of transient ionizing radiation effects in bipolar devices at high dose-rates

    SciTech Connect (OSTI)

    FJELDLY,T.A.; DENG,Y.; SHUR,M.S.; HJALMARSON,HAROLD P.; MUYSHONDT,ARNOLDO

    2000-04-25

    To optimally design circuits for operation at high intensities of ionizing radiation, and to accurately predict their a behavior under radiation, precise device models are needed that include both stationary and dynamic effects of such radiation. Depending on the type and intensity of the ionizing radiation, different degradation mechanisms, such as photoelectric effect, total dose effect, or single even upset might be dominant. In this paper, the authors consider the photoelectric effect associated with the generation of electron-hole pairs in the semiconductor. The effects of low radiation intensity on p-II diodes and bipolar junction transistors (BJTs) were described by low-injection theory in the classical paper by Wirth and Rogers. However, in BJTs compatible with modem integrated circuit technology, high-resistivity regions are often used to enhance device performance, either as a substrate or as an epitaxial layer such as the low-doped n-type collector region of the device. Using low-injection theory, the transient response of epitaxial BJTs was discussed by Florian et al., who mainly concentrated on the effects of the Hi-Lo (high doping - low doping) epilayer/substrate junction of the collector, and on geometrical effects of realistic devices. For devices with highly resistive regions, the assumption of low-level injection is often inappropriate, even at moderate radiation intensities, and a more complete theory for high-injection levels was needed. In the dynamic photocurrent model by Enlow and Alexander. p-n junctions exposed to high-intensity radiation were considered. In their work, the variation of the minority carrier lifetime with excess carrier density, and the effects of the ohmic electric field in the quasi-neutral (q-n) regions were included in a simplified manner. Later, Wunsch and Axness presented a more comprehensive model for the transient radiation response of p-n and p-i-n diode geometries. A stationary model for high-level injection in p-n junctions was developed by Isaque et al. They used a more complete ambipolar transport equation, which included the dependencies of the transport parameters (ambipolar diffusion constant, mobility, and recombination rate) on the excess minority carrier concentration. The expression used for the recombination rate was that of Shockley-Reed-Hall (SRH) recombination which is dominant for low to mid-level radiation intensities. However, at higher intensities, Auger recombination becomes important eventually dominant. The complete ambipolar transport equation including the complicated dependence of transport parameters on the radiation intensity, cannot be solved analytically. This solution is obtained for each of the regimes where a given recombination mechanism dominates, and then by joining these solutions using appropriate smoothing functions. This approach allows them to develop a BJT model accounting for the photoelectric effect of the ionizing radiation that can be implemented in SPICE.

  12. Biological effects of long-term exposure to low dose-rate radiation -- Comparisons of WAM model and LQ model

    E-Print Network [OSTI]

    Wada, Takahiro; Nakamura, Issei; Tsunoyama, Yuichi; Nakajima, Hiroo; Bando, Masako

    2015-01-01

    Newly proposed Whack-A-Mole (WAM) model which is to be used to estimate the biological effects of artificial radiations is compared with conventionally used Linear-Quadratic model. Basic properties of WAM model are discussed emphasizing on the dose-rate dependence. By adopting the parameters that are determined to fit the mega mouse experiments, biological effects of long-term exposure to extremely low dose-rate radiation are discussed. In WAM model, the effects of the long-term exposure show a saturation property, which makes a clear distinction from the LNT hypothesis which predicts a linear increase of the effects with time.

  13. System and method for radiation dose calculation within sub-volumes of a monte carlo based particle transport grid

    DOE Patents [OSTI]

    Bergstrom, Paul M. (Livermore, CA); Daly, Thomas P. (Livermore, CA); Moses, Edward I. (Livermore, CA); Patterson, Jr., Ralph W. (Livermore, CA); Schach von Wittenau, Alexis E. (Livermore, CA); Garrett, Dewey N. (Livermore, CA); House, Ronald K. (Tracy, CA); Hartmann-Siantar, Christine L. (Livermore, CA); Cox, Lawrence J. (Los Alamos, NM); Fujino, Donald H. (San Leandro, CA)

    2000-01-01

    A system and method is disclosed for radiation dose calculation within sub-volumes of a particle transport grid. In a first step of the method voxel volumes enclosing a first portion of the target mass are received. A second step in the method defines dosel volumes which enclose a second portion of the target mass and overlap the first portion. A third step in the method calculates common volumes between the dosel volumes and the voxel volumes. A fourth step in the method identifies locations in the target mass of energy deposits. And, a fifth step in the method calculates radiation doses received by the target mass within the dosel volumes. A common volume calculation module inputs voxel volumes enclosing a first portion of the target mass, inputs voxel mass densities corresponding to a density of the target mass within each of the voxel volumes, defines dosel volumes which enclose a second portion of the target mass and overlap the first portion, and calculates common volumes between the dosel volumes and the voxel volumes. A dosel mass module, multiplies the common volumes by corresponding voxel mass densities to obtain incremental dosel masses, and adds the incremental dosel masses corresponding to the dosel volumes to obtain dosel masses. A radiation transport module identifies locations in the target mass of energy deposits. And, a dose calculation module, coupled to the common volume calculation module and the radiation transport module, for calculating radiation doses received by the target mass within the dosel volumes.

  14. A study on leakage radiation dose at ELV-4 electron accelerator bunker

    SciTech Connect (OSTI)

    Chulan, Mohd Rizal Md E-mail: redzuwan@ukm.my; Yahaya, Redzuwan E-mail: redzuwan@ukm.my; Ghazali, Abu BakarMhd

    2014-09-03

    Shielding is an important aspect in the safety of an accelerator and the most important aspects of a bunker shielding is the door. The bunker’s door should be designed properly to minimize the leakage radiation and shall not exceed the permitted limit of 2.5?Sv/hr. In determining the leakage radiation dose that passed through the door and gaps between the door and the wall, 2-dimensional manual calculations are often used. This method is hard to perform because visual 2-dimensional is limited and is also very difficult in the real situation. Therefore estimation values are normally performed. In doing so, the construction cost would be higher because of overestimate or underestimate which require costly modification to the bunker. Therefore in this study, two methods are introduced to overcome the problem such as simulation using MCNPX Version 2.6.0 software and manual calculation using 3-dimensional model from Autodesk Inventor 2010 software. The values from the two methods were eventually compared to the real values from direct measurements using Ludlum Model 3 with Model 44-9 probe survey meter.

  15. Automatic Measurement of Radiation Dose Using an Autonomous Mobile Robot Two-Step Measurement Aimed to Accurately Measure in Wide Area, Short Time

    E-Print Network [OSTI]

    Ohya, Akihisa

    -- The purpose of the research is to create a radiation map. Radiation is harmful to the human body so we must avoid radiation as much as possible. A radiation map enables to avoid the high radiation point for human The experiment which finds average dose-of-radiation time 5.3 1 0.3m/s 50 100m 3 4 2 2 4 Fig. 4 0.3m/s 20m 4 Fig

  16. Biomarkers and Surrogate Endpoints for Normal-Tissue Effects of Radiation Therapy: The Importance of Dose-Volume Effects

    SciTech Connect (OSTI)

    Bentzen, Soren M.; Parliament, Matthew; Deasy, Joseph O.; Dicker, Adam; Curran, Walter J.; Williams, Jacqueline P.; Rosenstein, Barry S.

    2010-03-01

    Biomarkers are of interest for predicting or monitoring normal tissue toxicity of radiation therapy. Advances in molecular radiobiology provide novel leads in the search for normal tissue biomarkers with sufficient sensitivity and specificity to become clinically useful. This article reviews examples of studies of biomarkers as predictive markers, as response markers, or as surrogate endpoints for radiation side effects. Single nucleotide polymorphisms are briefly discussed in the context of candidate gene and genomewide association studies. The importance of adjusting for radiation dose distribution in normal tissue biomarker studies is underlined. Finally, research priorities in this field are identified and discussed.

  17. Mechanistic and quantitative studies of bystander response in 3D tissues for low-dose radiation risk estimations

    SciTech Connect (OSTI)

    Amundson, Sally A.

    2013-06-12

    We have used the MatTek 3-dimensional human skin model to study the gene expression response of a 3D model to low and high dose low LET radiation, and to study the radiation bystander effect as a function of distance from the site of irradiation with either alpha particles or low LET protons. We have found response pathways that appear to be specific for low dose exposures, that could not have been predicted from high dose studies. We also report the time and distance dependent expression of a large number of genes in bystander tissue. the bystander response in 3D tissues showed many similarities to that described previously in 2D cultured cells, but also showed some differences.

  18. Identification and Characterization of Soluble Factors Involved in Delayed Effects of Low Dose Radiation. Final report

    SciTech Connect (OSTI)

    Baulch, Janet

    2013-09-11

    This is a 'glue grant' that was part of a DOE Low Dose project entitled 'Identification and Characterization of Soluble Factors Involved in Delayed Effects of Low Dose Radiation'. This collaborative program has involved Drs. David L. Springer from Pacific Northwest National Laboratory (PNNL), John H. Miller from Washington State University, Tri-cities (WSU) and William F. Morgan then from the University of Maryland, Baltimore (UMB). In July 2008, Dr. Morgan moved to PNNL and Dr. Janet E. Baulch became PI for this project at University of Maryland. In November of 2008, a one year extension with no new funds was requested to complete the proteomic analyses. The project stemmed from studies in the Morgan laboratory demonstrating that genomically unstable cells secret a soluble factor or factors into the culture medium, that cause cytogenetic aberrations and apoptosis in normal parental GM10115 cells. The purpose of this project was to identify the death inducing effect (DIE) factor or factors, estimate their relative abundance, identify the cell signaling pathways involved and finally recapitulate DIE in normal cells by exogenous manipulation of putative DIE factors in culture medium. As reported in detail in the previous progress report, analysis of culture medium from the parental cell line, and stable and unstable clones demonstrated inconsistent proteomic profiles as relate to candidate DIE factors. While the proposed proteomic analyses did not provide information that would allow DIE factors to be identified, the analyses provided another important set of observations. Proteomic analysis suggested that proteins associated with the cellular response to oxidative stress and mitochondrial function were elevated in the medium from unstable clones in a manner consistent with mitochondrial dysfunction. These findings correlate with previous studies of these clones that demonstrated functional differences between the mitochondria of stable and unstable clones. These mitochondrial abnormalities in the unstable clones contributes to oxidative stress.

  19. Dose–Volume Modeling of Brachial Plexus-Associated Neuropathy After Radiation Therapy for Head-and-Neck Cancer: Findings From a Prospective Screening Protocol

    SciTech Connect (OSTI)

    Chen, Allen M.; Wang, Pin-Chieh; Daly, Megan E.; Cui, Jing; Hall, William H.; Vijayakumar, Srinivasan; Phillips, Theodore L.; Farwell, D. Gregory; Purdy, James A.

    2014-03-15

    Purpose: Data from a prospective screening protocol administered for patients previously irradiated for head-and-neck cancer was analyzed to identify dosimetric predictors of brachial plexus-associated neuropathy. Methods and Materials: Three hundred fifty-two patients who had previously completed radiation therapy for squamous cell carcinoma of the head and neck were prospectively screened from August 2007 to April 2013 using a standardized self-administered instrument for symptoms of neuropathy thought to be related to brachial plexus injury. All patients were disease-free at the time of screening. The median time from radiation therapy was 40 months (range, 6-111 months). A total of 177 patients (50%) underwent neck dissection. Two hundred twenty-one patients (63%) received concurrent chemotherapy. Results: Fifty-one patients (14%) reported brachial plexus-related neuropathic symptoms with the most common being ipsilateral pain (50%), numbness/tingling (40%), and motor weakness and/or muscle atrophy (25%). The 3- and 5-year estimates of freedom from brachial plexus-associated neuropathy were 86% and 81%, respectively. Clinical/pathological N3 disease (P<.001) and maximum radiation dose to the ipsilateral brachial plexus (P=.01) were significantly associated with neuropathic symptoms. Cox regression analysis revealed significant dose–volume effects for brachial plexus-associated neuropathy. The volume of the ipsilateral brachial plexus receiving >70 Gy (V70) predicted for symptoms, with the incidence increasing with V70 >10% (P<.001). A correlation was also observed for the volume receiving >74 Gy (V74) among patients treated without neck dissection, with a cutoff of 4% predictive of symptoms (P=.038). Conclusions: Dose–volume guidelines were developed for radiation planning that may limit brachial plexus-related neuropathies.

  20. Characterization of the role of Fhit in maintenance of genomic integrity following low dose radiation, in vivo and in vitro

    SciTech Connect (OSTI)

    Ya Wang

    2010-05-31

    The major goal of this study is to determine the effects of the Fhit pathway on low dose ({le} 0.1 Gy) ionizing radiation (IR)-induced genetic instability. Reduction of Fhit protein expression is observed in most solid tumors particularly in those tumors resulting from exposure to environmental carcinogens. Therefore, characterization of the role of the Fhit-dependent pathway in preventing low dose IR-induced genetic instability will provide useful parameters for evaluating the low dose IR-induced risk of mutagenesis and carcinogenesis. We pursued 3 specific aims to study our hypothesis that the Fhit-dependent pathways maintain genomic integrity through adjusting checkpoint response and repair genes expression following low dose IR. Aim 1: Determine whether Fhit interaction with RPA is necessary for Fhit to affect the cellular response to low dose IR. We combined the approaches of in vitro (GST pull-down and site-directed mutagenesis) and in vivo (observing the co-localization and immunoprecipitation of Fhit and RPA in Fhit knock out mouse cells transfected with mutant Fhit which has lost ability to interact with RPA in vitro). Aim 2: Determine the role of genes whose expression is affected by Fhit in low dose irradiated cells. We analyzed the distinct signature of gene expression in low dose irradiated Fhit-/- cells compared with Fhit+/+ cells by combining microarray, gene transfection and siRNA approaches. Aim 3: Determine the role of Fhit in genetic susceptibility to low dose IR in vivo. We compared the gene mutation frequency and the fragile site stability in the cells isolated from the Fhit+/+ and Fhit-/- mice at 1.5 years following low dose IR. These results determine the role of the Fhit-dependent pathway in maintaining genomic integrity in vitro and in vivo, which provide a basis for choosing surrogate markers in the Fhit-dependent pathway to evaluate low dose IR-induced risk of mutagenesis and carcinogenesis.

  1. Characterization of the role of Fhit in maintenance of genomic integrity following low dose radiation, in vivo and in vitro

    SciTech Connect (OSTI)

    Wang, Ya

    2010-05-14

    The major goal of this study is to determine the effects of the Fhit pathway on low dose (< 0.1 Gy) ionizing radiation (IR)-induced genetic instability. Reduction of Fhit protein expression is observed in most solid tumors particularly in those tumors resulting from exposure to environmental carcinogens. Therefore, characterization of the role of the Fhit-dependent pathway in preventing low dose IR-induced genetic instability will provide useful parameters for evaluating the low dose IR-induced risk of mutagenesis and carcinogenesis. We pursued 3 specific aims to study our hypothesis that the Fhit-dependent pathways maintain genomic integrity through adjusting checkpoint response and repair genes expression following low dose IR. Aim 1: Determine whether Fhit interaction with RPA is necessary for Fhit to affect the cellular response to low dose IR. We combined the approaches of in vitro (GST pull-down and site-directed mutagenesis) and in vivo (observing the co-localization and immunoprecipitation of Fhit and RPA in Fhit knock out mouse cells transfected with mutant Fhit which has lost ability to interact with RPA in vitro). Aim 2: Determine the role of genes whose expression is affected by Fhit in low dose irradiated cells. We analyzed the distinct signature of gene expression in low dose irradiated Fhit-/- cells compared with Fhit+/+ cells by combining microarray, gene transfection and siRNA approaches. Aim 3: Determine the role of Fhit in genetic susceptibility to low dose IR in vivo. We compared the gene mutation frequency and the fragile site stability in the cells isolated from the Fhit+/+ and Fhit-/- mice at 1.5 years following low dose IR. These results determine the role of the Fhit-dependent pathway in maintaining genomic integrity in vitro and in vivo, which provide a basis for choosing surrogate markers in the Fhit-dependent pathway to evaluate low dose IR-induced risk of mutagenesis and carcinogenesis.

  2. Quantifying the Impact of Immediate Reconstruction in Postmastectomy Radiation: A Large, Dose-Volume Histogram-Based Analysis

    SciTech Connect (OSTI)

    Ohri, Nisha; Cordeiro, Peter G.; Keam, Jennifer; Ballangrud, Ase; Shi Weiji; Zhang Zhigang; Nerbun, Claire T.; Woch, Katherine M.; Stein, Nicholas F.; Zhou Ying; McCormick, Beryl; Powell, Simon N.; Ho, Alice Y.

    2012-10-01

    Purpose: To assess the impact of immediate breast reconstruction on postmastectomy radiation (PMRT) using dose-volume histogram (DVH) data. Methods and Materials: Two hundred forty-seven women underwent PMRT at our center, 196 with implant reconstruction and 51 without reconstruction. Patients with reconstruction were treated with tangential photons, and patients without reconstruction were treated with en-face electron fields and customized bolus. Twenty percent of patients received internal mammary node (IMN) treatment. The DVH data were compared between groups. Ipsilateral lung parameters included V20 (% volume receiving 20 Gy), V40 (% volume receiving 40 Gy), mean dose, and maximum dose. Heart parameters included V25 (% volume receiving 25 Gy), mean dose, and maximum dose. IMN coverage was assessed when applicable. Chest wall coverage was assessed in patients with reconstruction. Propensity-matched analysis adjusted for potential confounders of laterality and IMN treatment. Results: Reconstruction was associated with lower lung V20, mean dose, and maximum dose compared with no reconstruction (all P<.0001). These associations persisted on propensity-matched analysis (all P<.0001). Heart doses were similar between groups (P=NS). Ninety percent of patients with reconstruction had excellent chest wall coverage (D95 >98%). IMN coverage was superior in patients with reconstruction (D95 >92.0 vs 75.7%, P<.001). IMN treatment significantly increased lung and heart parameters in patients with reconstruction (all P<.05) but minimally affected those without reconstruction (all P>.05). Among IMN-treated patients, only lower lung V20 in those without reconstruction persisted (P=.022), and mean and maximum heart doses were higher than in patients without reconstruction (P=.006, P=.015, respectively). Conclusions: Implant reconstruction does not compromise the technical quality of PMRT when the IMNs are untreated. Treatment technique, not reconstruction, is the primary determinant of target coverage and normal tissue doses.

  3. Regularized Equally Sloped Tomography Algorithm for Low Dose X-Ray Computed Tomography

    E-Print Network [OSTI]

    Zhao, Yunzhe

    2012-01-01

    benefits most for the low dose radiation CT protocols, whenet al. “Exposure to low-dose ionizing radiation from medicalobtained from low radiation dose. In theory, radiation dose

  4. Sci—Sat AM: Stereo — 01: 3D Pre-treatment Dose Verification for Stereotactic Body Radiation Therapy Patients

    SciTech Connect (OSTI)

    Asuni, G; Beek, T van; Van Utyven, E; McCowan, P; McCurdy, B.M.C.

    2014-08-15

    Radical treatment techniques such as stereotactic body radiation therapy (SBRT) are becoming popular and they involve delivery of large doses in fewer fractions. Due to this feature of SBRT, a high-resolution, pre-treatment dose verification method that makes use of a 3D patient representation would be appropriate. Such a technique will provide additional information about dose delivered to the target volume(s) and organs-at-risk (OARs) in the patient volume compared to 2D verification methods. In this work, we investigate an electronic portal imaging device (EPID) based pre-treatment QA method which provides an accurate reconstruction of the 3D-dose distribution in the patient model. Customized patient plans are delivered ‘in air’ and the portal images are collected using the EPID in cine mode. The images are then analysed to determine an estimate of the incident energy fluence. This is then passed to a collapsed-cone convolution dose algorithm which reconstructs a 3D patient dose estimate on the CT imaging dataset. To date, the method has been applied to 5 SBRT patient plans. Reconstructed doses were compared to those calculated by the TPS. Reconstructed mean doses were mostly within 3% of those in the TPS. DVHs of target volumes and OARs compared well. The Chi pass rates using 3%/3mm in the high dose region are greater than 97% in all cases. These initial results demonstrate clinical feasibility and utility of a robust, efficient, effective and convenient pre-treatment QA method using EPID. Research sponsored in part by Varian Medical Systems.

  5. Radiation Doses to Members of the U.S. Population from Ubiquitous Radionuclides in the Body: Part 2, Methods and Dose Calculations

    SciTech Connect (OSTI)

    Watson, David J.; Strom, Daniel J.

    2011-02-25

    This paper is part two of a three-part series investigating annual effective doses to residents of the United States from intakes of ubiquitous radionuclides, including radionuclides occurring naturally, radionuclides whose concentrations are technologically enhanced, and anthropogenic radionuclides. This series of papers explicitly excludes intakes from inhaling 222Rn, 220Rn, and their short-lived decay products; it also excludes intakes of radionuclides in occupational and medical settings. Part one reviewed, summarized, characterized, and grouped all published and some unpublished data for U.S. residents on ubiquitous radionuclide concentrations in tissues and organs. Assumptions about equilibrium with long-lived parents are made for the 28 other radionuclides in these series lacking data. This paper describes the methods developed to group the collected data into source regions described in the Radiation Dose Assessment Resource (RADAR) dosimetric methodology. Methods for converting the various units of data published over 50 years into a standard form are developed and described. Often, meaningful values of uncertainty of measurements were not published so that variability in data sets is confounded with measurement uncertainty. A description of the methods developed to estimate variability is included in this paper. The data described in part one are grouped by gender and age to match the RADAR dosimetric phantoms. Within these phantoms, concentration values are grouped into source tissue regions by radionuclide, and they are imputed for source regions lacking tissue data. Radionuclide concentrations are then imputed for other phantoms’ source regions with missing concentration values, and the uncertainties of the imputed values are increased. The content concentrations of hollow organs are calculated, and activities are apportioned to the bone source regions using assumptions about each radionuclide’s bone-seeking behavior. The data sets are then ready to be used to estimate equivalent doses to target tissues from these source regions. The target tissues are then mapped to lists of tissues with International Commission on Radiation Protection (ICRP) tissue weighting factors, or they are mapped to surrogate tissue regions when there is no direct match. Effective doses, using ICRP tissue weighting factors recommended in 1977, 1990, and 2007, are calculated from tissue and organ equivalent doses.

  6. Radiation doses in cone-beam breast computed tomography: A Monte Carlo simulation study

    SciTech Connect (OSTI)

    Yi Ying; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Shen Youtao; Liu Xinming; Ge Shuaiping; You Zhicheng; Wang Tianpeng; Shaw, Chris C.

    2011-02-15

    Purpose: In this article, we describe a method to estimate the spatial dose variation, average dose and mean glandular dose (MGD) for a real breast using Monte Carlo simulation based on cone beam breast computed tomography (CBBCT) images. We present and discuss the dose estimation results for 19 mastectomy breast specimens, 4 homogeneous breast models, 6 ellipsoidal phantoms, and 6 cylindrical phantoms. Methods: To validate the Monte Carlo method for dose estimation in CBBCT, we compared the Monte Carlo dose estimates with the thermoluminescent dosimeter measurements at various radial positions in two polycarbonate cylinders (11- and 15-cm in diameter). Cone-beam computed tomography (CBCT) images of 19 mastectomy breast specimens, obtained with a bench-top experimental scanner, were segmented and used to construct 19 structured breast models. Monte Carlo simulation of CBBCT with these models was performed and used to estimate the point doses, average doses, and mean glandular doses for unit open air exposure at the iso-center. Mass based glandularity values were computed and used to investigate their effects on the average doses as well as the mean glandular doses. Average doses for 4 homogeneous breast models were estimated and compared to those of the corresponding structured breast models to investigate the effect of tissue structures. Average doses for ellipsoidal and cylindrical digital phantoms of identical diameter and height were also estimated for various glandularity values and compared with those for the structured breast models. Results: The absorbed dose maps for structured breast models show that doses in the glandular tissue were higher than those in the nearby adipose tissue. Estimated average doses for the homogeneous breast models were almost identical to those for the structured breast models (p=1). Normalized average doses estimated for the ellipsoidal phantoms were similar to those for the structured breast models (root mean square (rms) percentage difference=1.7%; p=0.01), whereas those for the cylindrical phantoms were significantly lower (rms percentage difference=7.7%; p<0.01). Normalized MGDs were found to decrease with increasing glandularity. Conclusions: Our results indicate that it is sufficient to use homogeneous breast models derived from CBCT generated structured breast models to estimate the average dose. This investigation also shows that ellipsoidal digital phantoms of similar dimensions (diameter and height) and glandularity to actual breasts may be used to represent a real breast to estimate the average breast dose with Monte Carlo simulation. We have also successfully demonstrated the use of structured breast models to estimate the true MGDs and shown that the normalized MGDs decreased with the glandularity as previously reported by other researchers for CBBCT or mammography.

  7. Dose-Effect Relationships for Adverse Events After Cranial Radiation Therapy in Long-term Childhood Cancer Survivors

    SciTech Connect (OSTI)

    Dijk, Irma W.E.M. van, E-mail: i.w.vandijk@amc.uva.nl [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands); Cardous-Ubbink, Mathilde C. [Department of Medical Oncology, Academic Medical Center, Amsterdam (Netherlands)] [Department of Medical Oncology, Academic Medical Center, Amsterdam (Netherlands); Pal, Helena J.H. van der [Department of Medical Oncology, Academic Medical Center, Amsterdam (Netherlands); Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam (Netherlands); Heinen, Richard C. [Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam (Netherlands)] [Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam (Netherlands); Leeuwen, Flora E. van [Department of Epidemiology, Netherlands Cancer Institute, Amsterdam (Netherlands)] [Department of Epidemiology, Netherlands Cancer Institute, Amsterdam (Netherlands); Oldenburger, Foppe; Os, Rob M. van [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands)] [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands); Ronckers, Cécile M. [Dutch Childhood Oncology Group, Long-term Effects after Childhood Cancer, The Hague (Netherlands)] [Dutch Childhood Oncology Group, Long-term Effects after Childhood Cancer, The Hague (Netherlands); Schouten–van Meeteren, Antoinette Y.N. [Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam (Netherlands); Caron, Huib N. [Department of Medical Oncology, Academic Medical Center, Amsterdam (Netherlands) [Department of Medical Oncology, Academic Medical Center, Amsterdam (Netherlands); Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam (Netherlands); Koning, Caro C.E. [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands)] [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands); Kremer, Leontien C.M. [Department of Medical Oncology, Academic Medical Center, Amsterdam (Netherlands) [Department of Medical Oncology, Academic Medical Center, Amsterdam (Netherlands); Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam (Netherlands)

    2013-03-01

    Purpose: To evaluate the prevalence and severity of clinical adverse events (AEs) and treatment-related risk factors in childhood cancer survivors treated with cranial radiation therapy (CRT), with the aim of assessing dose-effect relationships. Methods and Materials: The retrospective study cohort consisted of 1362 Dutch childhood cancer survivors, of whom 285 were treated with CRT delivered as brain irradiation (BI), as part of craniospinal irradiation (CSI), and as total body irradiation (TBI). Individual CRT doses were converted into the equivalent dose in 2-Gy fractions (EQD{sub 2}). Survivors had received their diagnoses between 1966 and 1996 and survived at least 5 years after diagnosis. A complete inventory of Common Terminology Criteria for Adverse Events grade 3.0 AEs was available from our hospital-based late-effect follow-up program. We used multivariable logistic and Cox regression analyses to examine the EQD{sub 2} in relation to the prevalence and severity of AEs, correcting for sex, age at diagnosis, follow-up time, and the treatment-related risk factors surgery and chemotherapy. Results: There was a high prevalence of AEs in the CRT group; over 80% of survivors had more than 1 AE, and almost half had at least 5 AEs, both representing significant increases in number of AEs compared with survivors not treated with CRT. Additionally, the proportion of severe, life-threatening, or disabling AEs was significantly higher in the CRT group. The most frequent AEs were alopecia and cognitive, endocrine, metabolic, and neurologic events. Using the EQD{sub 2}, we found significant dose-effect relationships for these and other AEs. Conclusion: Our results confirm that CRT increases the prevalence and severity of AEs in childhood cancer survivors. Furthermore, analyzing dose-effect relationships with the cumulative EQD{sub 2} instead of total physical dose connects the knowledge from radiation therapy and radiobiology with the clinical experience.

  8. Oxidative Stress and Skeletal Health with Low-Dose, Low-LET (Linear Energy Transfer) Ionizing Radiation

    SciTech Connect (OSTI)

    Globus, Ruth K.

    2014-11-03

    We performed in vivo and in vitro experiments to accomplish the following specific aims of this project: 1) determine if low dose, low LET radiation affects skeletal remodeling at structural, cellular and molecular levels and 2) determine if low dose, low LET radiation modulates skeletal health during aging via oxidative mechanisms. A third aim is supported by NASA supplement to this DOE grant focusing on the influence of high LET radiation on bone. A series of experiments were conducted at the NASA Space Radiation Laboratory at Brookhaven, NSRL-BNL, using iron (56Fe) or a sequential exposure to protons / iron / protons, and separate experiments at NASA Ames Research Center (ARC) using 137Cs. The following provides a summary of key findings. (1) Exposure of nine-week old female mice to priming doses of gamma radiation (10cGy x 5) did not significantly affect bone volume/total volume (BV/TV) or microarchitecture as analyzed by 3D microcomputed tomography. As expected, exposure to the challenge dose of 2 Gy gamma irradiation resulted in significant decreases in BV/TV. The priming dose combined with the 2Gy challenge dose had no further effect on BV/TV compared to challenge dose alone, with the sole exception of the Structural Model Index (SMI). SMI reflects the ratio of rods-to-plates in cancellous bone tissue, such that higher SMI values indicate a tendency toward a weaker structure compared to lower SMI values. Mice treated with both priming and challenge dose had 25% higher SMI values compared to sham-irradiated controls and 7% higher values compared to mice treated with the challenge dose alone. Thus, although this priming regimen had relatively modest effects on cancellous tissue, the difference in SMI suggests this fractionated priming doses have adverse, rather than beneficial, effects on bone structure. (2) In 10-week old male mice, a single exposure to 100cGy of 137Cs reduces trabecular bone number and connectivity density by 20% and 36% respectively one month after irradiation (IR). At four months post-IR, these animals were comparable to sham-treated controls with regards to the abovementioned structural parameters. Irradation at 1 or 10 cGy did not result in any significant changes in bone structural parameters. (3) Irradiation of 16-wk old male mice with high doses of 56Fe or proton (50 or 200cGy), but not at low doses (5 or 10cGy), showed a similar loss of cancellous BV/TV and trabecular number at five weeks post-IR. (4) Age-related bone loss overtook acute radiation-induced decrements in bone structure within four months post-IR with 100 cGy gamma and 12 months post-IR with 200 cGy iron. Transgenic mice globally overexpressing human catalase gene in mitochondria did not exhibit cancellous bone loss as assessed at four month post-IR with 10 cGy proton, 50 cGy iron, or in combination. (5) The cellular and molecular mechanisms responsible for loss of bone with radiation are mediated primarily through increased osteoclastogenesis. Our data provide evidence that there are increases in gene expression of TNF alpha and MCP1 in the bone marrow cells 24 hours post-IR and of osteoclastogenic differentiation factor RANKL by day 3. These cytokines in the marrow may stimulate mature osteoclasts or drive osteoclastogenesis from precursors. (6) Osteoblastogenesis from marrow progenitors evaluated ex vivo decreased following whole body 56Fe irradiation at a dose threshold between 20 and 50 cGy whereas osteoclastogenesis ex vivo increased with doses as low as 10cGy two days post-IR of mice. However, the latter finding was not observed in more than a single experiment. (7) Gamma irradiation of cells in vitro requires relatively high doses (200cGy) to disturb normal osteoblastogenesis and osteoclastogenesis as evidenced by decrements in mineralized nodule formation, osteoclast counts, and expression of osteoblast related genes such as runx2, col1a1. (8) We also investigated the effect of antioxidants on osteoblastogenesis following low dose in vitro gamma irradiation (15cGy) on day four bone marrow stromal cell cultures. Super

  9. Low Dose Radiation-Induced Genome and Epigenome Instability Symposium and Epigenetic Mechanisms, DNA Repair, and Chromatin Symposium at the EMS 2008 Annual Meeting - October 2008

    SciTech Connect (OSTI)

    Morgan, William F.; Kovalchuk, Olga; Dolinoy, Dana C.; Dubrova, Yuri E.; Coleman, Matthew A.; Schär, Primo; Pogribny, Igor; Hendzel, Michael

    2010-02-19

    The Low Dose Radiation Symposium thoughtfully addressed ionizing radiation non-mutational but transmissable alterations in surviving cells. Deregulation of epigenetic processes has been strongly implicated in carcinogenesis, and there is increasing realization that a significant fraction of non-targeted and adaptive mechanisms in response to ionizing radiation are likely to be epigenetic in nature. Much remains to be learned about how chromatin and epigenetic regulators affect responses to low doses of radiation, and how low dose radiation impacts other epigenetic processes. The Epigenetic Mechanisms Symposium focused on on epigenetic mechanisms and their interplay with DNA repair and chromatin changes. Addressing the fact that the most well understood mediators of epigenetic regulation are histone modifications and DNA methylation. Low levels of radiation can lead to changes in the methylation status of certain gene promoters and the expression of DNA methyltransferases, However, epigenetic regulation can also involve changes in higher order chromosome structure.

  10. What Dose of External-Beam Radiation is High Enough for Prostate Cancer?

    SciTech Connect (OSTI)

    Eade, Thomas N. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Hanlon, Alexandra L. [Department of Public Health, Temple University, Philadelphia, PA (United States); Horwitz, Eric M. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Buyyounouski, Mark K. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Hanks, Gerald E. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Pollack, Alan [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States)]. E-mail: Alan.Pollack@fccc.edu

    2007-07-01

    Purpose: To quantify the radiotherapy dose-response of prostate cancer, adjusted for prognostic factors in a mature cohort of men treated relatively uniformly at a single institution. Patients and Methods: The study cohort consisted of 1,530 men treated with three-dimensional conformal external-beam radiotherapy between 1989 and 2002. Patients were divided into four isocenter dose groups: <70 Gy (n = 43), 70-74.9 Gy (n = 552), 75-79.9 Gy (n = 568), and {>=}80 Gy (n = 367). The primary endpoints were freedom from biochemical failure (FFBF), defined by American Society for Therapeutic Radiology and Oncology (ASTRO) and Phoenix (nadir + 2.0 ng/mL) criteria, and freedom from distant metastases (FFDM). Multivariate analyses were performed and adjusted Kaplan-Meier estimates were calculated. Logit regression dose-response functions were determined at 5 and 8 years for FFBF and at 5 and 10 years for FFDM. Results: Radiotherapy dose was significant in multivariate analyses for FFBF (ASTRO and Phoenix) and FFDM. Adjusted 5-year estimates of ASTRO FFBF for the four dose groups were 60%, 68%, 76%, and 84%. Adjusted 5-year Phoenix FFBFs for the four dose groups were 70%, 81%, 83%, and 89%. Adjusted 5-year and 10-year estimates of FFDM for the four dose groups were 96% and 93%, 97% and 93%, 99% and 95%, and 98% and 96%. Dose-response functions showed an increasing benefit for doses {>=}80 Gy. Conclusions: Doses of {>=}80 Gy are recommended for most men with prostate cancer. The ASTRO definition of biochemical failure does not accurately estimate the effects of radiotherapy at 5 years because of backdating, compared to the Phoenix definition, which is less sensitive to follow-up and more reproducible over time.

  11. PSA Response to Neoadjuvant Androgen Deprivation Therapy Is a Strong Independent Predictor of Survival in High-Risk Prostate Cancer in the Dose-Escalated Radiation Therapy Era

    SciTech Connect (OSTI)

    McGuire, Sean E.; Lee, Andrew K.; Cerne, Jasmina Z.; Munsell, Mark F.; Levy, Lawrence B.; Kudchadker, Rajat J.; Choi, Seungtaek L.; Nguyen, Quynh N.; Hoffman, Karen E.; Pugh, Thomas J.; Frank, Steven J.; Corn, Paul G.; Logothetis, Christopher J.; Kuban, Deborah A.

    2013-01-01

    Purpose: The aim of the study was to evaluate the prognostic value of prostate-specific antigen (PSA) response to neoadjuvant androgen deprivation therapy (ADT) prior to dose-escalated radiation therapy (RT) and long-term ADT in high-risk prostate cancer. Methods and Materials: We reviewed the charts of all patients diagnosed with high-risk prostate cancer and treated with a combination of long-term ADT (median, 24 months) and dose-escalated (median, 75.6 Gy) RT between 1990 and 2007. The associations among patient, tumor, and treatment characteristics with biochemical response to neoadjuvant ADT and their effects on failure-free survival (FFS), time to distant metastasis (TDM), prostate cancer-specific mortality (PCSM) and overall survival (OS) were examined. Results: A total of 196 patients met criteria for inclusion. Median follow-up time for patients alive at last contact was 7.0 years (range, 0.5-18.1 years). Multivariate analysis identified the pre-RT PSA concentration (<0.5 vs {>=}0.5 ng/mL) as a significant independent predictor of FFS (P=.021), TDM (P=.009), PCSM (P=.039), and OS (P=.037). On multivariate analysis, pretreatment PSA (iPSA) and African-American race were significantly associated with failure to achieve a pre-RT PSA of <0.5 ng/mL. Conclusions: For high-risk prostate cancer patients treated with long-term ADT and dose-escalated RT, a pre-RT PSA level {>=}0.5 ng/mL after neoadjuvant ADT predicts for worse survival measures. Both elevated iPSA and African-American race are associated with increased risk of having a pre-RT PSA level {>=}0.5 ng/mL. These patients should be considered for clinical trials that test newer, more potent androgen-depleting therapies such as abiraterone and MDV3100 in combination with radiation.

  12. Evaluation of Radiation Dose Reduction during CT Scans Using Oxide Bismuth and Nano-Barium Sulfate Shields

    E-Print Network [OSTI]

    Seoung, Youl-Hun

    2015-01-01

    The purpose of the present study was to evaluate radiation dose reduction and image quality during CT scanning by using a new dose reduction fiber sheet (DRFS) with commercially available bismuth shields. These DRFS were composed of nano-barium sulfate (BaSO4), filling the gaps left by the large oxide bismuth (Bi2O3) particle sizes. The radiation dose was measured five times at directionss of 12 o'clock from the center of the polymethyl methacrylate (PMMA) head phantom to calculate an average value using a CT ionization chamber. The image quality measured CT transverse images of the PMMA head phantom depending on X-ray tube voltages and the type of shielding. Two regions of interest in CT transverse images were chosen from the right and left areas under the surface of the PMMA head phantom and from ion chamber holes located at directions of 12 o'clock from the center of the PMMA head phantom. The results of this study showed that the new DRFS shields could reduce dosages to 15.61%, 23.05%, and 22.71% more in ...

  13. SU-E-I-89: Assessment of CT Radiation Dose and Image Quality for An Automated Tube Potential Selection Algorithm Using Pediatric Anthropomorphic and ACR Phantoms

    SciTech Connect (OSTI)

    Mahmood, U; Erdi, Y; Wang, W

    2014-06-01

    Purpose: To assess the impact of General Electrics automated tube potential algorithm, kV assist (kVa) on radiation dose and image quality, with an emphasis on optimizing protocols based on noise texture. Methods: Radiation dose was assessed by inserting optically stimulated luminescence dosimeters (OSLs) throughout the body of a pediatric anthropomorphic phantom (CIRS). The baseline protocol was: 120 kVp, 80 mA, 0.7s rotation time. Image quality was assessed by calculating the contrast to noise ratio (CNR) and noise power spectrum (NPS) from the ACR CT accreditation phantom. CNRs were calculated according to the steps described in ACR CT phantom testing document. NPS was determined by taking the 3D FFT of the uniformity section of the ACR phantom. NPS and CNR were evaluated with and without kVa and for all available adaptive iterative statistical reconstruction (ASiR) settings, ranging from 0 to 100%. Each NPS was also evaluated for its peak frequency difference (PFD) with respect to the baseline protocol. Results: For the baseline protocol, CNR was found to decrease from 0.460 ± 0.182 to 0.420 ± 0.057 when kVa was activated. When compared against the baseline protocol, the PFD at ASiR of 40% yielded a decrease in noise magnitude as realized by the increase in CNR = 0.620 ± 0.040. The liver dose decreased by 30% with kVa activation. Conclusion: Application of kVa reduces the liver dose up to 30%. However, reduction in image quality for abdominal scans occurs when using the automated tube voltage selection feature at the baseline protocol. As demonstrated by the CNR and NPS analysis, the texture and magnitude of the noise in reconstructed images at ASiR 40% was found to be the same as our baseline images. We have demonstrated that 30% dose reduction is possible when using 40% ASiR with kVa in pediatric patients.

  14. NCRP Forty-Eighth Annual Meeting: Radiation Dose and the Impacts on Exposed Populations

    SciTech Connect (OSTI)

    Napier, Bruce A.

    2013-04-01

    This is a brief article for the Health Physics Newsletter describing the presentations made at the 2013 annual meeting of the National Council on Radiation Protection and Measurements 11-12 March 2013 in Bethesda, MD.

  15. Phase I Three-Dimensional Conformal Radiation Dose Escalation Study in Newly Diagnosed Glioblastoma: Radiation Therapy Oncology Group Trial 98-03

    SciTech Connect (OSTI)

    Tsien, Christina Moughan, Jennifer; Michalski, Jeff M.; Gilbert, Mark R.; Purdy, James; Simpson, Joseph; Kresel, John J.; Curran, Walter J.; Diaz, Aidnag; Mehta, Minesh P.

    2009-03-01

    Purpose: To evaluate in a Phase I trial the feasibility and toxicity of dose-escalated three-dimensional conformal radiotherapy (3D-CRT) concurrent with chemotherapy in patients with primary supratentorial glioblastoma (GBM). Methods and Materials: A total of 209 patients were enrolled. All received 46 Gy in 2-Gy fractions to the first planning target volume (PTV{sub 1}), defined as the gross tumor volume (GTV) plus 1.8 cm. A subsequent boost was given to PTV{sub 2}, defined as GTV plus 0.3 cm. Patients were stratified into two groups (Group 1: PTV{sub 2} <75 cm{sup 3}; Group 2: PTV{sub 2} {>=}75 cm{sup 3}). Four RT dose levels were evaluated: 66, 72, 78, and 84 Gy. Carmustine 80 mg/m{sup 2} was given during RT, then every 8 weeks for 6 cycles. Pretreatment characteristics were well balanced. Results: Acute and late Grade 3/4 RT-related toxicities were no more frequent at higher RT dose or with larger tumors. There were no dose-limiting toxicities (acute Grade {>=}3 irreversible central nervous system toxicities) observed on any dose level in either group. On the basis of the absence of dose-limiting toxicities, dose was escalated to 84 Gy in both groups. Late RT necrosis was noted at 66 Gy (1 patient), 72 Gy (2 patients), 78 Gy (2 patients), and 84 Gy (3 patients) in Group 1. In Group 2, late RT necrosis was noted at 78 Gy (1 patient) and 84 Gy (2 patients). Median time to RT necrosis was 8.8 months (range, 5.1-12.5 months). Median survival in Group 1 was 11.6-19.3 months. Median survival in Group 2 was 8.2-13.9 months. Conclusions: Our study shows the feasibility of delivering higher than standard (60 Gy) RT dose with concurrent chemotherapy for primary GBM, with an acceptable risk of late central nervous system toxicity.

  16. SU-E-I-81: Assessment of CT Radiation Dose and Image Quality for An Automated Tube Potential Selection Algorithm Using Adult Anthropomorphic and ACR Phantoms

    SciTech Connect (OSTI)

    Mahmood, U; Erdi, Y; Wang, W

    2014-06-01

    Purpose: To assess the impact of General Electrics (GE) automated tube potential algorithm, kV assist (kVa) on radiation dose and image quality, with an emphasis on optimizing protocols based on noise texture. Methods: Radiation dose was assessed by inserting optically stimulated luminescence dosimeters (OSLs) throughout the body of an adult anthropomorphic phantom (CIRS). The baseline protocol was: 120 kVp, Auto mA (180 to 380 mA), noise index (NI) = 14, adaptive iterative statistical reconstruction (ASiR) of 20%, 0.8s rotation time. Image quality was evaluated by calculating the contrast to noise ratio (CNR) and noise power spectrum (NPS) from the ACR CT accreditation phantom. CNRs were calculated according to the steps described in ACR CT phantom testing document. NPS was determined by taking the 3D FFT of the uniformity section of the ACR phantom. NPS and CNR were evaluated with and without kVa and for all available adaptive iterative statistical reconstruction (ASiR) settings, ranging from 0 to 100%. Each NPS was also evaluated for its peak frequency difference (PFD) with respect to the baseline protocol. Results: The CNR for the adult male was found to decrease from CNR = 0.912 ± 0.045 for the baseline protocol without kVa to a CNR = 0.756 ± 0.049 with kVa activated. When compared against the baseline protocol, the PFD at ASiR of 40% yielded a decrease in noise magnitude as realized by the increase in CNR = 0.903 ± 0.023. The difference in the central liver dose with and without kVa was found to be 0.07%. Conclusion: Dose reduction was insignificant in the adult phantom. As determined by NPS analysis, ASiR of 40% produced images with similar noise texture to the baseline protocol. However, the CNR at ASiR of 40% with kVa fails to meet the current ACR CNR passing requirement of 1.0.

  17. Measurement of accelerator neutron radiation field spectrum by Extended Range Neutron Multisphere Spectrometers and unfolding program

    E-Print Network [OSTI]

    Li, Guanjia; Ma, Zhongjian; Guo, Siming; Yan, Mingyang; Shi, Haoyu; Xu, Chao

    2015-01-01

    This paper described a measurement of accelerator neutron radiation field at a transport beam line of Beijing-TBF. The experiment place was be selected around a Faraday Cup with a graphite target impacted by electron beam at 2.5GeV. First of all, we simulated the neutron radiation experiment by FLUKA. Secondly, we chose six appropriate ERNMS according to their neutron fluence response function to measure the neutron count rate. Then the U_M_G package program was be utilized to unfolding experiment data. Finally, we drew a comparison between the unfolding with the simulation spectrum and made an analysis about the result.

  18. Evaluation of Radiation Doses Due to Consumption of Contaminated Food Items and Calculation of Food Class-Specific Derived Intervention Levels

    SciTech Connect (OSTI)

    Heinzelman, K M; Mansfield, W G

    2010-04-27

    This document evaluates the expected radiation dose due to the consumption of several specific food classes (dairy, meat, produce, etc.) contaminated with specific radionuclides, and relates concentration levels in food to the detection abilities of typical aboratory analysis/measurement methods. The attached charts present the limiting organ dose as a function of the radionuclide concentration in a particular food class, and allow the user to compare these concentrations and doses to typical analytical detection apabilities. The expected radiation dose depends on several factors: the age of the individual; the radionuclide present in the food; the concentration of the radionuclide in the food; and the amount of food consumed. Food consumption rates for individuals of various ges were taken from the 1998 United States Food and Drug Administration (FDA) document, Accidental Radioactive Contamination of HUman Food and Animal Feeds: Recommendations for State and Local Agencies. In that document, the FDA defines the erived Intervention Level (DIL), which is the concentration of a particular radionuclide in food that if consumed could result in an individual receiving a radiation dose exceeding the Protection Action Guide (PAG) thresholds for intervention. This document also resents odified, food class specific DIL, which is calculated using a somewhat modified version of the FDA's procedure. This document begins with an overview of the FDA's DIL calculation, followed by a description of the food class specific DIL calculations, and finally charts of the radiation dose per radioactivity concentration for several food class/radionuclide combinations.

  19. Dose reconstruction for the Urals population. Joint Coordinating Committee on Radiation Effects Research, Project 1.1 -- Final report

    SciTech Connect (OSTI)

    Degteva, M.O.; Drozhko, E.; Anspaugh, L.R.; Napier, B.A.; Bouville, A.C.; Miller, C.W.

    1996-02-01

    This work is being carried out as a feasibility study to determine if a long-term course of work can be implemented to assess the long-term risks of radiation exposure delivered at low to moderate dose rates to the populations living in the vicinity of the Mayak Industrial Association (MIA). This work was authorized and conducted under the auspices of the US-Russian Joint Coordinating Committee on Radiation Effects Research (JCCRER) and its Executive Committee (EC). The MIA was the first Russian site for the production and separation of plutonium. This plant began operation in 1948, and during its early days there were technological failures that resulted in the release of large amounts of waste into the rather small Techa River. There were also gaseous releases of radioiodines and other radionuclides during the early days of operation. In addition, there was an accidental explosion in a waste storage tank in 1957 that resulted in a significant release. The Techa River Cohort has been studied for several years by scientists from the Urals Research Centre for Radiation Medicine and an increase in both leukemia and solid tumors has been noted.

  20. The influence of TRP53 in the dose response of radiation-induced apoptosis, DNA repair and genomic stability in murine haematopoietic cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lemon, Jennifer A.; Taylor, Kristina; Verdecchia, Kyle; Phan, Nghi; Boreham, Douglas R.

    2014-01-01

    Apoptotic and DNA damage endpoints are frequently used as surrogate markers of cancer risk, and have been well-studied in the Trp53+/- mouse model. We report the effect of differing Trp53 gene status on the dose response of ionizing radiation exposures (0.01-2 Gy), with the unique perspective of determining if effects of gene status remain at extended time points. Here we report no difference in the dose response for radiation-induced DNA double-strand breaks in bone marrow and genomic instability (MN-RET levels) in peripheral blood, between wild-type (Trp53+/+) and heterozygous (Trp53+/-) mice. The dose response for Trp53+/+ mice showed higher initial levelsmore »of radiation-induced lymphocyte apoptosis relative to Trp53+/- between 0 and 1 Gy. Although this trend was observed up to 12 hours post-irradiation, both genotypes ultimately reached the same level of apoptosis at 14 hours, suggesting the importance of late-onset p53-independent apoptotic responses in this mouse model. Expected radiation-induced G1 cell cycle delay was observed in Trp53+/+ but not Trp53+/-. Although p53 has an important role in cancer risk, we have shown its influence on radiation dose response can be temporally variable. This research highlights the importance of caution when using haematopoietic endpoints as surrogates to extrapolate radiation-induced cancer risk estimation.« less

  1. SU-E-T-145: Effects of Temporary Tachytherapy Inhibition Magnet On MOSFET Dose Measurements of Cardiovascular Implantable Electronic Devices (CIED) in Radiation Therapy Patients

    SciTech Connect (OSTI)

    P, Joshi; Salomons, G; Kerr, A; Peters, C; Lalonde, M

    2014-06-01

    Purpose: To determine the effects of temporary tachytherapy inhibition magnet on MOSFET dose measurements of cardiovascular implantable electronic devices (CIED) in radiation therapy patients. Methods: Infield and peripheral MOSFET dose measurements with 6MV photon beams were performed to evaluate dose to a CIED in the presence of a doughnut shaped temporary tachytherapy inhibition magnet. Infield measurements were done to quantify the effects of the magnetic field alone and shielding by the magnet. MOSFETs were placed inside a 20×20cm{sup 2} field at a depth of 3cm in the isocentre plane in the presence and absence of the magnet. Peripheral dose measurements were done to determine the impact of the magnet on dose to the CIED in a clinical setting. These measurements were performed at the centre, under the rim and half way between a 10×10cm{sup 2} field edge and the magnet with MOSFETS placed at the surface, 0.5cm and 1cm depths in the presence and absence of the magnet. Results: Infield measurements showed that effects of magnetic field on the MOSFET readings were within the 2% MOSFET dose measurement uncertainty; a 20% attenuation of dose under the magnet rim was observed. Peripheral dose measurements at the centre of the magnet show an 8% increase in surface dose and a 6% decrease in dose at 1cm depth. Dose under the magnet rim was reduced by approximately 68%, 45% and 25% for MOSFET placed at 0.0, 0.5 and 1.0cm bolus depths, respectively. Conclusions: The magnetic field has an insignificant effect on MOSFET dose measurements. Dose to the central region of CIED represented by centre of the magnet doughnut increases at the surface, and decreases at depths due to low energy scattering contributions from the magnet. Dose under the magnet rim, representing CIED edges, decreased significantly due to shielding.

  2. Causes of Mortality After Dose-Escalated Radiation Therapy and Androgen Deprivation for High-Risk Prostate Cancer

    SciTech Connect (OSTI)

    Tendulkar, Rahul D.; Hunter, Grant K.; Reddy, Chandana A.; Stephans, Kevin L.; Ciezki, Jay P.; Abdel-Wahab, May; Stephenson, Andrew J.; Klein, Eric A.; Mahadevan, Arul; Kupelian, Patrick A.

    2013-09-01

    Purpose: Men with high-risk prostate cancer have other competing causes of mortality; however, current risk stratification schema do not account for comorbidities. We aim to identify the causes of death and factors predictive for mortality in this population. Methods and Materials: A total of 660 patients with high-risk prostate cancer were treated with definitive high-dose external beam radiation therapy (?74 Gy) and androgen deprivation (AD) between 1996 and 2009 at a single institution. Cox proportional hazards regression analysis was conducted to determine factors predictive of survival. Results: The median radiation dose was 78 Gy, median duration of AD was 6 months, and median follow-up was 74 months. The 10-year overall survival (OS) was 60.6%. Prostate cancer was the leading single cause of death, with 10-year mortality of 14.1% (95% CI 10.7-17.6), compared with other cancers (8.4%, 95% CI 5.7-11.1), cardiovascular disease (7.3%, 95% CI 4.7-9.9), and all other causes (10.4%, 95% CI 7.2-13.6). On multivariate analysis, older age (HR 1.55, P=.002) and Charlson comorbidity index score (CS) ?1 (HR 2.20, P<.0001) were significant factors predictive of OS, whereas Gleason score, T stage, prostate-specific antigen, duration of AD, radiation dose, smoking history, and body mass index were not. Men younger than 70 years of age with CS = 0 were more likely to die of prostate cancer than any other cause, whereas older men or those with CS ?1 more commonly suffered non-prostate cancer death. The cumulative incidences of prostate cancer-specific mortality were similar regardless of age or comorbidities (P=.60). Conclusions: Men with high-risk prostate cancer are more likely to die of causes other than prostate cancer, except for the subgroup of men younger than 70 years of age without comorbidities. Only older age and presence of comorbidities significantly predicted for OS, whereas prostate cancer- and treatment-related factors did not.

  3. Long-term Survival and Toxicity in Patients Treated With High-Dose Intensity Modulated Radiation Therapy for Localized Prostate Cancer

    SciTech Connect (OSTI)

    Spratt, Daniel E.; Pei, Xin; Yamada, Josh; Kollmeier, Marisa A.; Cox, Brett; Zelefsky, Michael J.

    2013-03-01

    Purpose: To report long-term survival and toxicity outcomes with the use of high-dose intensity modulated radiation therapy (IMRT) to 86.4 Gy for patients with localized prostate cancer. Methods and Materials: Between August 1997 and December 2008, 1002 patients were treated to a dose of 86.4 Gy using a 5-7 field IMRT technique. Patients were stratified by prognostic risk group based on National Comprehensive Cancer Network risk classification criteria. A total of 587 patients (59%) were treated with neoadjuvant and concurrent androgen deprivation therapy. The median follow-up for the entire cohort was 5.5 years (range, 1-14 years). Results: For low-, intermediate-, and high-risk groups, 7-year biochemical relapse-free survival outcomes were 98.8%, 85.6%, and 67.9%, respectively (P<.001), and distant metastasis-free survival rates were 99.4%, 94.1%, and 82.0% (P<.001), respectively. On multivariate analysis, T stage (P<.001), Gleason score (P<.001), and >50% of initial biopsy positive core (P=.001) were predictive for distant mestastases. No prostate cancer-related deaths were observed in the low-risk group. The 7-year prostate cancer-specific mortality (PCSM) rates, using competing risk analysis for intermediate- and high-risk groups, were 3.3% and 8.1%, respectively (P=.008). On multivariate analysis, Gleason score (P=.004), percentage of biopsy core positivity (P=.003), and T-stage (P=.033) were predictive for PCSM. Actuarial 7-year grade 2 or higher late gastrointestinal and genitourinary toxicities were 4.4% and 21.1%, respectively. Late grade 3 gastrointestinal and genitourinary toxicity was experienced by 7 patients (0.7%) and 22 patients (2.2%), respectively. Of the 427 men with full potency at baseline, 317 men (74%) retained sexual function at time of last follow-up. Conclusions: This study represents the largest cohort of patients treated with high-dose radiation to 86.4 Gy, using IMRT for localized prostate cancer, with the longest follow-up to date. Our findings indicate that this treatment results in excellent clinical outcomes with acceptable toxicity.

  4. Evidence for formation of DNA repair centers and dose-response non-linearity in human cells

    E-Print Network [OSTI]

    Neumaier, Teresa

    2013-01-01

    exposure to low doses of ionizing radiation. Mutat Res 683(high doses to low doses of ionizing radiation. However, ourhypothesize that low doses of ionizing radiation induce a

  5. Comparison of methods for the measurement of radiation dose distributions in high dose rate (HDR) brachytherapy: Ge-doped optical fiber, EBT3 Gafchromic film, and PRESAGE{sup Registered-Sign} radiochromic plastic

    SciTech Connect (OSTI)

    Palmer, A. L.; Di Pietro, P.; Alobaidli, S.; Issa, F.; Doran, S.; Bradley, D.; Nisbet, A.

    2013-06-15

    Purpose: Dose distribution measurement in clinical high dose rate (HDR) brachytherapy is challenging, because of the high dose gradients, large dose variations, and small scale, but it is essential to verify accurate treatment planning and treatment equipment performance. The authors compare and evaluate three dosimetry systems for potential use in brachytherapy dose distribution measurement: Ge-doped optical fibers, EBT3 Gafchromic film with multichannel analysis, and the radiochromic material PRESAGE{sup Registered-Sign} with optical-CT readout. Methods: Ge-doped SiO{sub 2} fibers with 6 {mu}m active core and 5.0 mm length were sensitivity-batched and their thermoluminescent properties used via conventional heating and annealing cycles. EBT3 Gafchromic film of 30 {mu}m active thickness was calibrated in three color channels using a nominal 6 MV linear accelerator. A 48-bit transmission scanner and advanced multichannel analysis method were utilized to derive dose measurements. Samples of the solid radiochromic polymer PRESAGE{sup Registered-Sign }, 60 mm diameter and 100 mm height, were analyzed with a parallel beam optical CT scanner. Each dosimetry system was used to measure the dose as a function of radial distance from a Co-60 HDR source, with results compared to Monte Carlo TG-43 model data. Each system was then used to measure the dose distribution along one or more lines through typical clinical dose distributions for cervix brachytherapy, with results compared to treatment planning system (TPS) calculations. Purpose-designed test objects constructed of Solid Water and held within a full-scatter water tank were utilized. Results: All three dosimetry systems reproduced the general shape of the isolated source radial dose function and the TPS dose distribution. However, the dynamic range of EBT3 exceeded those of doped optical fibers and PRESAGE{sup Registered-Sign }, and the latter two suffered from unacceptable noise and artifact. For the experimental conditions used in this study, the useful range from an isolated HDR source was 5-40 mm for fibers, 3-50 mm for EBT3, and 4-21 mm for PRESAGE{sup Registered-Sign }. Fibers demonstrated some over-response at very low dose levels, suffered from volume averaging effects in the dose distribution measurement, and exhibited up to 9% repeatability variation over three repeated measurements. EBT3 demonstrated excellent agreement with Monte Carlo and TPS dose distributions, with up to 3% repeatability over three measurements. PRESAGE{sup Registered-Sign} gave promising results, being the only true 3D dosimeter, but artifacts and noise were apparent. Conclusions: The comparative response of three emerging dosimetry systems for clinical brachytherapy dose distribution measurement has been investigated. Ge-doped optical fibers have excellent spatial resolution for single-direction measurement but are currently too large for complex dose distribution assessment. The use of PRESAGE{sup Registered-Sign} with optical-CT readout gave promising results in the measurement of true 3D dose distributions but further development work is required to reduce noise and improve dynamic range for brachytherapy dose distribution measurements. EBT3 Gafchromic film with multichannel analysis demonstrated accurate and reproducible measurement of dose distributions in HDR brachytherapy. Calibrated dose measurements were possible with agreement within 1.5% of TPS dose calculations. The suitability of EBT3 as a dosimeter for 2D quality control or commissioning work has been demonstrated.

  6. SU-E-I-10: Automatic Monitoring of Accumulated Dose Indices From DICOM RDSR to Improve Radiation Safety in X-Ray Angiography

    SciTech Connect (OSTI)

    Omar, A; Bujila, R; Nowik, P; Karambatsakidou, A

    2014-06-01

    Purpose: To investigate the potential benefits of automatic monitoring of accumulated patient and staff dose indicators, i.e., CAK and KAP, from DICOM Radiation Dose Structured Reports (RDSR) in x-ray angiography (XA). Methods: Recently RDSR has enabled the convenient aggregation of dose indices and technique parameters for XA procedures. The information contained in RDSR objects for three XA systems, dedicated to different types of clinical procedures, has been collected and aggregated in a database for over one year using a system developed with open-source software at the Karolinska University Hospital. Patient weight was complemented to the RDSR data via an interface with the Hospital Information System (HIS). Results: The linearly approximated trend in KAP over a time period of a year for cerebrovascular, pelvic/peripheral vascular, and cardiovascular procedures showed a decrease of 12%, 20%, and 14%, respectively. The decrease was mainly due to hardware/software upgrades and new low-dose imaging protocols, and partially due to ongoing systematic radiation safety education of the clinical staff. The CAK was in excess of 3 Gy for 15 procedures, and exceeded 5 Gy for 3 procedures. The dose indices have also shown a significant dependence on patient weight for cardiovascular and pelvic/peripheral vascular procedures; a 10 kg shift in mean patient weight can result in a dose index increase of 25%. Conclusion: Automatic monitoring of accumulated dose indices can be utilized to notify the clinical staff and medical physicists when the dose index has exceeded a predetermined action level. This allows for convenient and systematic follow-up of patients in risk of developing deterministic skin injuries. Furthermore, trend analyses of dose indices over time is a valuable resource for the identification of potential positive or negative effects (dose increase/decrease) from changes in hardware, software, and clinical work habits.

  7. Scattering of an ultrashort electromagnetic radiation pulse by an atom in a broad spectral range

    SciTech Connect (OSTI)

    Astapenko, V. A., E-mail: astval@mail.ru [Moscow Institute of Physics and Technology (Russian Federation)

    2011-02-15

    The scattering of an ultrashort electromagnetic pulse by atomic particles is described using a consistent quantum-mechanical approach taking into account excitation of a target and nondipole electromagnetic interaction, which is valid in a broad spectral range. This approach is applied to the scattering of single- and few-cycle pulses by a multielectron atom and a hydrogen atom. Scattering spectra are obtained for ultrashort pulses of different durations. The relative contribution of 'elastic' scattering of a single-cycle pulse by a hydrogen atom is studied in the high-frequency limit as a function of the carrier frequency and scattering angle.

  8. Community Surveys: Low Dose Radiation. Fernald, Ohio and Rocky Flats, Colorado

    SciTech Connect (OSTI)

    C. K. Mertz; James Flynn; Donald G. MacGregor; Theresa Satterfield; Stephen M. Johnson; Seth Tuler; Thomas Webler

    2002-10-16

    This report is intended to present a basic description of the data from the two community surveys and to document the text of the questions; the methods used for the survey data collection; and a brief overview of the results. Completed surveys were conducted at local communities near the Rocky Flats, Colorado and the Fernald, Ohio sites; no survey was conducted for the Brookhaven, New York site. Fernald. The Fernald sample was randomly selected from 98% of all potential residential telephones in the townships of Ross, Morgan, and Crosby. The only telephone exchanges not used for the Fernald study had 4%, or fewer, of the holders of the telephone numbers actually living in either of the three target townships. Surveying started on July 24, 2001 and finished on August 30, 2001. A total of 399 completed interviews were obtained resulting in a CASRO response rate of 41.8%. The average length of an interview was 16.5 minutes. Rocky Flats. The sample was randomly selected from all potential residential telephones in Arvada and from 99% of the potential telephones in Westminster. Surveying started on August 10, 2001 and finished on September 25, 2001. A total of 401 completed interviews were obtained with a CASRO response rate of 32.5%. The average length of an interview was 15.7 minutes. Overall, respondents hold favorable views of science. They indicate an interest in developments in science and technology, feel that the world is better off because of science, and that science makes our lives healthier, easier, and more comfortable. However, respondents are divided on whether science should decide what is safe or not safe for themselves and their families. The majority of the respondents think that standards for exposure to radiation should be based on what science knows about health effects of radiation and on what is possible with today's technology. Although few respondents had visited the sites, most had heard or read something about Fernald or Rocky Flat s in the media. Impressions of the sites tend to be negative. Most respondents feel that overall their community would be better off without the site. However, when asked about the economic future of their community after cleanup and closure of the site, only 31-43% thought that it will be better, 47-56% thought their local economy will be about the same.

  9. Dose distribution in water for monoenergetic photon point sources in the energy range of interest in brachytherapy: Monte Carlo simulations with PENELOPE and GEANT4

    E-Print Network [OSTI]

    Almansa, J F; Anguiano, M; Guerrero, R; Lallena, A M; Al-Dweri, Feras M.O.; Almansa, Julio F.; Guerrero, Rafael

    2006-01-01

    Monte Carlo calculations using the codes PENELOPE and GEANT4 have been performed to characterize the dosimetric properties of monoenergetic photon point sources in water. The dose rate in water has been calculated for energies of interest in brachytherapy, ranging between 10 keV and 2 MeV. A comparison of the results obtained using the two codes with the available data calculated with other Monte Carlo codes is carried out. A chi2-like statistical test is proposed for these comparisons. PENELOPE and GEANT4 show a reasonable agreement for all energies analyzed and distances to the source larger than 1 cm. Significant differences are found at distances from the source up to 1 cm. A similar situation occurs between PENELOPE and EGS4.

  10. Prognostic Significance of Carbohydrate Antigen 19-9 in Unresectable Locally Advanced Pancreatic Cancer Treated With Dose-Escalated Intensity Modulated Radiation Therapy and Concurrent Full-Dose Gemcitabine: Analysis of a Prospective Phase 1/2 Dose Escalation Study

    SciTech Connect (OSTI)

    Vainshtein, Jeffrey M., E-mail: jvainsh@med.umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Schipper, Matthew [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Zalupski, Mark M. [Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States)] [Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Abrams, Ross [Department of Radiation Oncology, Rush Medical Center, Chicago, Illinois (United States)] [Department of Radiation Oncology, Rush Medical Center, Chicago, Illinois (United States); Francis, Isaac R. [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Khan, Gazala [Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States)] [Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States); Leslie, William [Division of Hematology Oncology, Department of Internal Medicine, Rush Medical Center, Chicago, Illinois (United States)] [Division of Hematology Oncology, Department of Internal Medicine, Rush Medical Center, Chicago, Illinois (United States); Ben-Josef, Edgar [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)] [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2013-05-01

    Purpose: Although established in the postresection setting, the prognostic value of carbohydrate antigen 19-9 (CA19-9) in unresectable locally advanced pancreatic cancer (LAPC) is less clear. We examined the prognostic utility of CA19-9 in patients with unresectable LAPC treated on a prospective trial of intensity modulated radiation therapy (IMRT) dose escalation with concurrent gemcitabine. Methods and Materials: Forty-six patients with unresectable LAPC were treated at the University of Michigan on a phase 1/2 trial of IMRT dose escalation with concurrent gemcitabine. CA19-9 was obtained at baseline and during routine follow-up. Cox models were used to assess the effect of baseline factors on freedom from local progression (FFLP), distant progression (FFDP), progression-free survival (PFS), and overall survival (OS). Stepwise forward regression was used to build multivariate predictive models for each endpoint. Results: Thirty-eight patients were eligible for the present analysis. On univariate analysis, baseline CA19-9 and age predicted OS, CA19-9 at baseline and 3 months predicted PFS, gross tumor volume (GTV) and black race predicted FFLP, and CA19-9 at 3 months predicted FFDP. On stepwise multivariate regression modeling, baseline CA19-9, age, and female sex predicted OS; baseline CA19-9 and female sex predicted both PFS and FFDP; and GTV predicted FFLP. Patients with baseline CA19-9 ?90 U/mL had improved OS (median 23.0 vs 11.1 months, HR 2.88, P<.01) and PFS (14.4 vs 7.0 months, HR 3.61, P=.001). CA19-9 progression over 90 U/mL was prognostic for both OS (HR 3.65, P=.001) and PFS (HR 3.04, P=.001), and it was a stronger predictor of death than either local progression (HR 1.46, P=.42) or distant progression (HR 3.31, P=.004). Conclusions: In patients with unresectable LAPC undergoing definitive chemoradiation therapy, baseline CA19-9 was independently prognostic even after established prognostic factors were controlled for, whereas CA19-9 progression strongly predicted disease progression and death. Future trials should stratify by baseline CA19-9 and incorporate CA19-9 progression as a criterion for progressive disease.

  11. Low-Dose Involved-Field Radiation in the Treatment of Non-Hodgkin Lymphoma: Predictors of Response and Treatment Failure

    SciTech Connect (OSTI)

    Russo, Andrea L.; Chen, Yu-Hui; Martin, Neil E.; Vinjamoori, Anant; Luthy, Sarah K.; Freedman, Arnold; Michaelson, Evan M.; Silver, Barbara; Mauch, Peter M.; Ng, Andrea K.

    2013-05-01

    Purpose: To investigate clinical and pathologic factors significant in predicting local response and time to further treatment after low-dose involved-field radiation therapy (LD-IFRT) for non-Hodgkin lymphoma (NHL). Methods and Materials: Records of NHL patients treated at a single institution between April 2004 and September 2011 were retrospectively reviewed. Low-dose involved-field radiation therapy was given as 4 Gy in 2 fractions over 2 consecutive days. Treatment response and disease control were determined by radiographic studies and/or physical examination. A generalized estimating equation model was used to assess the effect of tumor and patient characteristics on disease response. A Cox proportional hazards regression model was used to assess time to further treatment. Results: We treated a total of 187 sites in 127 patients with LD-IFRT. Histologies included 66% follicular, 9% chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma, 10% marginal zone, 6% mantle cell lymphoma (MCL), and 8% other. Median follow-up time was 23.4 months (range, 0.03-92.2 months). The complete response, partial response, and overall response rates were 57%, 25%, and 82%, respectively. A CLL histology was associated with a lower response rate (odds ratio 0.2, 95% confidence interval 0.1-0.5, P=.02). Tumor size, site, age at diagnosis, and prior systemic therapy were not associated with response. The median time to first recurrence was 13.6 months. Those with CLL and age ?50 years at diagnosis had a shorter time to further treatment for local failures (hazard ratio [HR] 3.63, P=.01 and HR 5.50, P=.02, respectively). Those with CLL and MCL had a shorter time to further treatment for distant failures (HR 11.1 and 16.3, respectively, P<.0001). Conclusions: High local response rates were achieved with LD-IFRT across most histologies. Chronic lymphocytic leukemia and MCL histologies and age ?50 years at diagnosis had a shorter time to further treatment after LD-IFRT.

  12. The influence of TRP53 in the dose response of radiation-induced apoptosis, DNA repair and genomic stability in murine haematopoietic cells

    SciTech Connect (OSTI)

    Lemon, Jennifer A.; Taylor, Kristina; Verdecchia, Kyle; Phan, Nghi; Boreham, Douglas R.

    2014-01-01

    Apoptotic and DNA damage endpoints are frequently used as surrogate markers of cancer risk, and have been well-studied in the Trp53+/- mouse model. We report the effect of differing Trp53 gene status on the dose response of ionizing radiation exposures (0.01-2 Gy), with the unique perspective of determining if effects of gene status remain at extended time points. Here we report no difference in the dose response for radiation-induced DNA double-strand breaks in bone marrow and genomic instability (MN-RET levels) in peripheral blood, between wild-type (Trp53+/+) and heterozygous (Trp53+/-) mice. The dose response for Trp53+/+ mice showed higher initial levels of radiation-induced lymphocyte apoptosis relative to Trp53+/- between 0 and 1 Gy. Although this trend was observed up to 12 hours post-irradiation, both genotypes ultimately reached the same level of apoptosis at 14 hours, suggesting the importance of late-onset p53-independent apoptotic responses in this mouse model. Expected radiation-induced G1 cell cycle delay was observed in Trp53+/+ but not Trp53+/-. Although p53 has an important role in cancer risk, we have shown its influence on radiation dose response can be temporally variable. This research highlights the importance of caution when using haematopoietic endpoints as surrogates to extrapolate radiation-induced cancer risk estimation.

  13. RADIATION DOSE ASSESSMENT FOR THE BIOTA OF TERRESTRIAL ECOSYSTEMS IN THE SHORELINE ZONE OF THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    SciTech Connect (OSTI)

    Farfan, E.; Jannik, T.

    2011-10-01

    Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. The article addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from {sup 90}Sr and {sup 137}Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota doses calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to drawdown naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can be documented following the lowering of the reservoir water. Additionally, the study provided useful radioecological data on biota concentration ratios for some species that are poorly represented in the literature.

  14. Radiation leukaemogenesis at low doses DE-FG02-05 ER 63947 Final Technical Report 15 May 2005 â?? 14 May 2010

    SciTech Connect (OSTI)

    Simon Bouffler; Christophe Badie; Natalie Brown; Rosemary Finnon

    2010-07-28

    This report provides a full summary of the results obtained under grant DE-FG02-05ER63947, Radiation Leukaemogenesis at low doses. The studies employed an experimental model of radiation leukaemogenesis with the main aim of identifying key events that convert normal cells into leukaemic cells follwoing exposure to radiation. Important aspect of the work was to understand dose-response relationships and time course relationships for leakaemogenis events. The studies performed provided evidence for direct radiation-induced losses of the Sfpi1/PU.1 gene being critical for induction of the disease. No threshold below 0.1 Gy in the induction of the gene losses was observed. The critical cell type in which the myeloid lekaemias arise has been identified and point mutations in the Sfpi1/PU.1 gene are common in leukaemias. The consequences of the genetic losses and mutation have been examined and these provide evidence of a disruption of differentiation in leukaemic cells. Additional pathways to leukaemogenesis have been identified also. Overall the study provides quantitiative data suitable for testing approaches to modelling of leukaemia rosk at low doses.

  15. SU-D-BRD-01: Cloud-Based Radiation Treatment Planning: Performance Evaluation of Dose Calculation and Plan Optimization

    SciTech Connect (OSTI)

    Na, Y; Kapp, D; Kim, Y; Xing, L; Suh, T

    2014-06-01

    Purpose: To report the first experience on the development of a cloud-based treatment planning system and investigate the performance improvement of dose calculation and treatment plan optimization of the cloud computing platform. Methods: A cloud computing-based radiation treatment planning system (cc-TPS) was developed for clinical treatment planning. Three de-identified clinical head and neck, lung, and prostate cases were used to evaluate the cloud computing platform. The de-identified clinical data were encrypted with 256-bit Advanced Encryption Standard (AES) algorithm. VMAT and IMRT plans were generated for the three de-identified clinical cases to determine the quality of the treatment plans and computational efficiency. All plans generated from the cc-TPS were compared to those obtained with the PC-based TPS (pc-TPS). The performance evaluation of the cc-TPS was quantified as the speedup factors for Monte Carlo (MC) dose calculations and large-scale plan optimizations, as well as the performance ratios (PRs) of the amount of performance improvement compared to the pc-TPS. Results: Speedup factors were improved up to 14.0-fold dependent on the clinical cases and plan types. The computation times for VMAT and IMRT plans with the cc-TPS were reduced by 91.1% and 89.4%, respectively, on average of the clinical cases compared to those with pc-TPS. The PRs were mostly better for VMAT plans (1.0 ? PRs ? 10.6 for the head and neck case, 1.2 ? PRs ? 13.3 for lung case, and 1.0 ? PRs ? 10.3 for prostate cancer cases) than for IMRT plans. The isodose curves of plans on both cc-TPS and pc-TPS were identical for each of the clinical cases. Conclusion: A cloud-based treatment planning has been setup and our results demonstrate the computation efficiency of treatment planning with the cc-TPS can be dramatically improved while maintaining the same plan quality to that obtained with the pc-TPS. This work was supported in part by the National Cancer Institute (1R01 CA133474) and by Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) (Grant No.2009-00420)

  16. Change of primary cosmic radiation nuclear composition in the energy range 10^{15} - 10^{17} eV

    E-Print Network [OSTI]

    T. T. Barnaveli; T. T. Barnaveli; A. P. Chubenko; N. A. Eristavi; I. V. Khaldeeva; N. M. Nesterova; Yu. G. Verbetsky

    2002-08-14

    The dependence E_h (N_e) of Extensive Air Shower (EAS) hadronic component energy flux on the number N_e of particles in EAS is investigated in the primary energy range of the order of 10^{15} - 10^{17} eV. The work was aimed at checking the existence of irregularities of E_h (N_e)/N_e behavior at these energies in several independent experiments. The investigation is carried out using large statistical material obtained at different configurations of experimental apparatus and under different triggering conditions. The existence of irregularities of E_h (N_e)/N_e behavior in the region Ne > 2*10^6 is confirmed. These irregularities have the character of sharp deeps and are located near the same values of N_e regardless of the experimental material and selection conditions used. So, at recent stage of research the existence of these irregularities of E_h (N_e)/N_e behavior in the range of N_e > 2*10^6 may be regarded as reliably established. This fact supports our earlier conclusion on the existence of primary cosmic radiation (PCR) nuclei spectra cutoff effect in the primary energy region 10^{15} - 10^{17} eV.

  17. Localized acne induced by radiation therapy

    E-Print Network [OSTI]

    Hubiche, T; Sibaud, V

    2014-01-01

    total dose, radiation dose to the skin, fractionation timing, type of beam, treated volume, and irradiation

  18. An Overview of the Regulation of Low Dose Radiation in the Nuclear and Non-nuclear Industries

    SciTech Connect (OSTI)

    Menon, Shankar; Valencia, Luis; Teunckens, Lucien

    2003-02-27

    Now that increasing numbers of nuclear power stations are reaching the end of their commercially useful lives, the management of the large quantities of very low level radioactive material that arises during their decommissioning has become a major subject of discussion, with very significant economic implications. Much of this material can, in an environmentally advantageous manner, be recycled for reuse without radiological restrictions. Much larger quantities--2-3 orders of magnitude larger--of material, radiologically similar to the candidate material for recycling from the nuclear industry, arise in non-nuclear industries like coal, fertilizer, oil and gas, mining, etc. In such industries, naturally occurring radioactivity is artificially concentrated in products, by-products or waste to form TENORM (Technologically Enhanced Naturally Occurring Radioactive Material). It is only in the last decade that the international community has become aware of the prevalence of TENORM, specially the activity levels and quantities arising in so many non-nuclear industries. The first reaction of international organizations seems to have been to propose different standards for the nuclear and non-nuclear industries, with very stringent release criteria for radioactive material from the regulated nuclear industry and up to thirty to a hundred times more liberal criteria for the release/exemption of TENORM from the as yet unregulated non-nuclear industries. There are significant strategic issues that need to be discussed and resolved. Some examples of these are: - Disposal aspects of long-lived nuclides, - The use of radioactive residues in building materials, - Commercial aspects of differing and discriminating criteria in competing power industries in a world of deregulated electric power production. Of even greater importance is the need for the discussion of certain basic issues, such as - The quantitative risk levels of exposure to ionizing radiation, - The need for in-depth studies on populations of the naturally high background dose level areas of the world, - The validity of the various calculation codes currently used to arrive at mass specific clearance levels for redundant material. The paper discusses these and other strategic issues regarding the management of redundant low radiation material from both the nuclear and non-nuclear industries, underlining the need for consistency in regulatory treatment.

  19. Radiation Dose Estimates from

    E-Print Network [OSTI]

    - Richland Public Reading room or from: Technical Steering Panel c/o Nuclear Waste Program Department than 40years, the U.S. Government made plutonium for nuclear weapons at the Hanford, Washington. The Project is funded by the U.S. Centersfor DiseaseCon- trol and Prevention (CDC). In July 1990

  20. Low Dose Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogoFeet) DeliveriesSubstratesNuclearAncient

  1. Discovery and Characterization of Radiation Mitigator Yel002

    E-Print Network [OSTI]

    Rivina, Yelena Olegovna

    2013-01-01

    20. Bonner WM. Low-dose radiation: thresholds, bystanderR. ; Haran-Ghera, N. Low doses of radiation induce systemicattributable to low doses of ionizing radiation: assessing

  2. IONIZING RADIATION RISKS TO SATELLITE POWER SYSTEMS (SPS) WORKERS

    E-Print Network [OSTI]

    Lyman, J.T.

    2010-01-01

    of carcinogenesis at low-dose radiation. These include: theeffect of low-dose ionizing radiation. Different organs and1980). However, low doses of radiation may accelerate the

  3. Stromal Modulation of Radiation Carcinogenesis in Breast Cancer

    E-Print Network [OSTI]

    Nguyen, David Hiendat Hua

    2011-01-01

    reports that low doses radiation alters the response toexposed to long-term low-dose radiation exhibit significantthe biology following low dose radiation differs from that

  4. Introduction and Fundamentals: Course on Advances in Radiation

    E-Print Network [OSTI]

    Thomas, Ralph H.

    2010-01-01

    1972, Radiation Carcinogenisis at Low Doses, Science 175,may underestimate radiation effects at low doses. Despitelow dose problem it is prudent to assume that all radiation

  5. American Society for Radiation Oncology (ASTRO) and American College of Radiology (ACR) Practice Guideline for the Performance of High-Dose-Rate Brachytherapy

    SciTech Connect (OSTI)

    Erickson, Beth A. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Demanes, D. Jeffrey [Department of Radiation Oncology , University of California, Los Angeles, CA (United States); Ibbott, Geoffrey S. [Radiological Physics Center, MD Anderson Cancer Center, Houston, TX (United States); Hayes, John K. [Gamma West Brachytherapy, Salt Lake City, UT (United States); Hsu, I-Chow J. [Department of Radiation Oncology, University of California San Francisco, San Francisco, CA (United States); Morris, David E. [Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC (United States); Rabinovitch, Rachel A. [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Tward, Jonathan D. [Department of Radiation Oncology, Huntsman Cancer Institute, Salt Lake City, UT (United States); Rosenthal, Seth A. [Radiation Oncology Centers, Radiological Associates of Sacramento, Sacramento, CA (United States)

    2011-03-01

    High-Dose-Rate (HDR) brachytherapy is a safe and efficacious treatment option for patients with a variety of different malignancies. Careful adherence to established standards has been shown to improve the likelihood of procedural success and reduce the incidence of treatment-related morbidity. A collaborative effort of the American College of Radiology (ACR) and American Society for Therapeutic Radiation Oncology (ASTRO) has produced a practice guideline for HDR brachytherapy. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist and dosimetrists. Review of the leading indications for HDR brachytherapy in the management of gynecologic, thoracic, gastrointestinal, breast, urologic, head and neck, and soft tissue tumors is presented. Logistics with respect to the brachytherapy implant procedures and attention to radiation safety procedures and documentation are presented. Adherence to these practice guidelines can be part of ensuring quality and safety in a successful HDR brachytherapy program.

  6. Dose-to-water conversion for the backscatter-shielded EPID: A frame-based method to correct for EPID energy response to MLC transmitted radiation

    SciTech Connect (OSTI)

    Zwan, Benjamin J. O’Connor, Daryl J.; King, Brian W.; Greer, Peter B.

    2014-08-15

    Purpose: To develop a frame-by-frame correction for the energy response of amorphous silicon electronic portal imaging devices (a-Si EPIDs) to radiation that has transmitted through the multileaf collimator (MLC) and to integrate this correction into the backscatter shielded EPID (BSS-EPID) dose-to-water conversion model. Methods: Individual EPID frames were acquired using a Varian frame grabber and iTools acquisition software then processed using in-house software developed inMATLAB. For each EPID image frame, the region below the MLC leaves was identified and all pixels in this region were multiplied by a factor of 1.3 to correct for the under-response of the imager to MLC transmitted radiation. The corrected frames were then summed to form a corrected integrated EPID image. This correction was implemented as an initial step in the BSS-EPID dose-to-water conversion model which was then used to compute dose planes in a water phantom for 35 IMRT fields. The calculated dose planes, with and without the proposed MLC transmission correction, were compared to measurements in solid water using a two-dimensional diode array. Results: It was observed that the integration of the MLC transmission correction into the BSS-EPID dose model improved agreement between modeled and measured dose planes. In particular, the MLC correction produced higher pass rates for almost all Head and Neck fields tested, yielding an average pass rate of 99.8% for 2%/2 mm criteria. A two-sample independentt-test and fisher F-test were used to show that the MLC transmission correction resulted in a statistically significant reduction in the mean and the standard deviation of the gamma values, respectively, to give a more accurate and consistent dose-to-water conversion. Conclusions: The frame-by-frame MLC transmission response correction was shown to improve the accuracy and reduce the variability of the BSS-EPID dose-to-water conversion model. The correction may be applied as a preprocessing step in any pretreatment portal dosimetry calculation and has been shown to be beneficial for highly modulated IMRT fields.

  7. A Monte Carlo Study of the Relationship between the Time Structures of Prompt Gammas and in vivo Radiation Dose in Proton Therapy

    E-Print Network [OSTI]

    Shin, Wook-Geun; Shin, Jae-Ik; Jeong, Jong Hwi; Lee, Se Byeong

    2015-01-01

    For the in vivo range verification in proton therapy, it has been tried to measure the spatial distribution of the prompt gammas generated by the proton-induced interactions with the close relationship with the proton dose distribution. However, the high energy of the prompt gammas and background gammas are still problematic in measuring the distribution. In this study, we suggested a new method determining the in vivo range by utilizing the time structure of the prompt gammas formed with the rotation of a range modulation wheel (RMW) in the passive scattering proton therapy. To validate the Monte Carlo code simulating the proton beam nozzle, axial percent depth doses (PDDs) were compared with the measured PDDs with the varying beam range of 4.73-24.01 cm. And the relationship between the proton dose rate and the time structure of the prompt gammas was assessed and compared in the water phantom. The results of the PDD showed accurate agreement within the relative errors of 1.1% in the distal range and 2.9% in...

  8. Topographic Effects on Ambient Dose Equivalent Rates from Radiocesium Fallout

    E-Print Network [OSTI]

    Malins, Alex; Machida, Masahiko; Saito, Kimiaki

    2015-01-01

    Land topography can affect air radiation dose rates by locating radiation sources closer to, or further, from detector locations when compared to perfectly flat terrain. Hills and slopes can also shield against the propagation of gamma rays. To understand the possible magnitude of topographic effects on air dose rates, this study presents calculations for ambient dose equivalent rates at a range of heights above the ground for varying land topographies. The geometries considered were angled ground at the intersection of two planar surfaces, which is a model for slopes neighboring flat land, and a simple conical geometry, representing settings from hilltops to valley bottoms. In each case the radiation source was radioactive cesium fallout, and the slope angle was varied systematically to determine the effect of topography on the air dose rate. Under the assumption of homogeneous fallout across the land surface, and for these geometries and detector locations, the dose rates at high altitudes are more strongly...

  9. Radiation Doses to Members of the U.S. Population from Ubiquitous Radionuclides in the Body: Part 3, Results, Variability, and Uncertainty

    SciTech Connect (OSTI)

    Watson, David J.; Strom, Daniel J.

    2011-02-25

    This paper is part three of a three-part series investigating annual effective doses to residents of the United States from intakes of ubiquitous radionuclides, including radionuclides occurring naturally, radionuclides whose concentrations are technologically enhanced, and anthropogenic radionuclides. The radionuclides of interest are the 238U series (14 nuclides), the actinium series (headed by 235U; 11 nuclides), and the 232Th series (11 nuclides); primordial radionuclides 87Rb and 40K; cosmogenic and fallout radionuclides 14C and 3H; and purely anthropogenic radionuclides 137Cs-137mBa, 129I and 90Sr-90Y. This series of papers explicitly excludes intakes from inhaling 222Rn, 220Rn, and their short-lived decay products; it also excludes intakes of radionuclides in occupational and medical settings. Part one reviewed, summarized, characterized, and grouped all published and some unpublished data for U.S. residents on ubiquitous radionuclide concentrations in tissues and organs. Part two described the methods used to organize the data collected in part one and segregate it into the ages and genders defined by the study, imputed missing values from the existing data, apportioned activity in bone, and imputed activity in hollow organ contents and the remainder of the body. This paper estimates equivalent doses to target tissues from source regions and maps target tissues to lists of tissues with International Commission on Radiation Protection (ICRP) tissue-weighting factors or to surrogate tissue regions when there is no direct match. Effective doses, using ICRP tissue-weighting factors recommended in 1977, 1990, and 2007, are then calculated, and an upper bound of variability of the effective dose is estimated by calculating the average coefficients of variation (CV), assuming all variance is due to variability. Most of the data were for adult males, whose average annual effective dose is estimated to be 337 ?Sv (CV = 0.65, geometric mean = 283 ?Sv, geometric standard deviation sG = 1.81) using 2007 ICRP tissue-weighting factors. This result is between the National Council on Radiation Protection & Measurements’ 1987 estimate of 390 ?Sv (using 1977 wTs) and its 2009 estimate of 285 ?Sv (using 2007 wTs) and is higher than the United Nations Scientific Committee on the Effects of Atomic Radiation’s 2000 estimate of 310 ?Sv (using 1990 wTs). The methods and software developed for this project are sufficiently detailed and sufficiently general to be usable with autopsy data from any or all countries.

  10. SU-E-T-481: Dosimetric Comparison of Acuros XB and Anisotropic Analytic Algorithm with Commercial Monte Carlo Based Dose Calculation Algorithm for Stereotactic Body Radiation Therapy of Lung Cancer

    SciTech Connect (OSTI)

    Cao, M; Tenn, S; Lee, C; Yang, Y; Lamb, J; Agazaryan, N; Lee, P; Low, D

    2014-06-01

    Purpose: To evaluate performance of three commercially available treatment planning systems for stereotactic body radiation therapy (SBRT) of lung cancer using the following algorithms: Boltzmann transport equation based algorithm (AcurosXB AXB), convolution based algorithm Anisotropic Analytic Algorithm (AAA); and Monte Carlo based algorithm (XVMC). Methods: A total of 10 patients with early stage non-small cell peripheral lung cancer were included. The initial clinical plans were generated using the XVMC based treatment planning system with a prescription of 54Gy in 3 fractions following RTOG0613 protocol. The plans were recalculated with the same beam parameters and monitor units using AAA and AXB algorithms. A calculation grid size of 2mm was used for all algorithms. The dose distribution, conformity, and dosimetric parameters for the targets and organs at risk (OAR) are compared between the algorithms. Results: The average PTV volume was 19.6mL (range 4.2–47.2mL). The volume of PTV covered by the prescribed dose (PTV-V100) were 93.97±2.00%, 95.07±2.07% and 95.10±2.97% for XVMC, AXB and AAA algorithms, respectively. There was no significant difference in high dose conformity index; however, XVMC predicted slightly higher values (p=0.04) for the ratio of 50% prescription isodose volume to PTV (R50%). The percentage volume of total lungs receiving dose >20Gy (LungV20Gy) were 4.03±2.26%, 3.86±2.22% and 3.85±2.21% for XVMC, AXB and AAA algorithms. Examination of dose volume histograms (DVH) revealed small differences in targets and OARs for most patients. However, the AAA algorithm was found to predict considerable higher PTV coverage compared with AXB and XVMC algorithms in two cases. The dose difference was found to be primarily located at the periphery region of the target. Conclusion: For clinical SBRT lung treatment planning, the dosimetric differences between three commercially available algorithms are generally small except at target periphery. XVMC and AXB algorithms are recommended for accurate dose estimation at tissue boundaries.

  11. Using a mobile transparent plastic-lead-boron shielding barrier to reduce radiation dose exposure in the work place

    SciTech Connect (OSTI)

    Parra, S A; Mecozzi, J M

    2001-01-11

    Moveable radiation shielding barriers made of plastic material containing lead and boron can be used to reduce radiation exposure near the work place. Personnel can maneuver and position the transparent radiation shielding barriers anywhere within the work place. The lead in the shielding barrier provides an effective shielding material against radiation exposure (approximately a 1.0 mm lead equivalent protection) while the boron in the shielding barrier provides neutron absorption to reduce the moderation/reflection effects of the shielding materials (approximately a 2% {Delta}k/k reduction).

  12. Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review

    E-Print Network [OSTI]

    2010-01-01

    both PET and CT studies. The ALARA principle must be appliedprotocols that follow the ALARA principle (as low asis necessary to apply the ALARA principle in the radiation

  13. Sexual Functioning Among Endometrial Cancer Patients Treated With Adjuvant High-Dose-Rate Intra-Vaginal Radiation Therapy

    SciTech Connect (OSTI)

    Damast, Shari; Alektiar, Kaled M.; Goldfarb, Shari; Eaton, Anne; Patil, Sujata; Mosenkis, Jeffrey; Bennett, Antonia; Atkinson, Thomas; Jewell, Elizabeth; Leitao, Mario; Barakat, Richard; Carter, Jeanne; Basch, Ethan

    2012-10-01

    Purpose: We used the Female Sexual Function Index (FSFI) to investigate the prevalence of sexual dysfunction (SD) and factors associated with diminished sexual functioning in early stage endometrial cancer (EC) patients treated with simple hysterectomy and adjuvant brachytherapy. Methods and Materials: A cohort of 104 patients followed in a radiation oncology clinic completed questionnaires to quantify current levels of sexual functioning. The time interval between hysterectomy and questionnaire completion ranged from <6 months to >5 years. Multivariate regression was performed using the FSFI as a continuous variable (score range, 1.2-35.4). SD was defined as an FSFI score of <26, based on the published validation study. Results: SD was reported by 81% of respondents. The mean ({+-} standard deviation) domain scores in order of highest-to-lowest functioning were: satisfaction, 2.9 ({+-}2.0); orgasm, 2.5 ({+-}2.4); desire, 2.4 ({+-}1.3); arousal, 2.2 ({+-}2.0); dryness, 2.1 ({+-}2.1); and pain, 1.9 ({+-}2.3). Compared to the index population in which the FSFI cut-score was validated (healthy women ages 18-74), all scores were low. Compared to published scores of a postmenopausal population, scores were not statistically different. Multivariate analysis isolated factors associated with lower FSFI scores, including having laparotomy as opposed to minimally invasive surgery (effect size, -7.1 points; 95% CI, -11.2 to -3.1; P<.001), lack of vaginal lubricant use (effect size, -4.4 points; 95% CI, -8.7 to -0.2, P=.040), and short time interval (<6 months) from hysterectomy to questionnaire completion (effect size, -4.6 points; 95% CI, -9.3-0.2; P=.059). Conclusions: The rate of SD, as defined by an FSFI score <26, was prevalent. The postmenopausal status of EC patients alone is a known risk factor for SD. Additional factors associated with poor sexual functioning following treatment for EC included receipt of laparotomy and lack of vaginal lubricant use.

  14. Quantification of Contralateral Breast Dose and Risk Estimate of Radiation-Induced Contralateral Breast Cancer Among Young Women Using Tangential Fields and Different Modes of Breathing

    SciTech Connect (OSTI)

    Zurl, Brigitte; Stranzl, Heidi; Winkler, Peter; Kapp, Karin Sigrid

    2013-02-01

    Purpose: Whole breast irradiation with deep-inspiration breath-hold (DIBH) technique among left-sided breast cancer patients significantly reduces cardiac irradiation; however, a potential disadvantage is increased incidental irradiation of the contralateral breast. Methods and Materials: Contralateral breast dose (CBD) was calculated by comparing 400 treatment plans of 200 left-sided breast cancer patients whose tangential fields had been planned on gated and nongated CT data sets. Various anatomic and field parameters were analyzed for their impact on CBD. For a subgroup of patients (aged {<=}45 years) second cancer risk in the contralateral breast (CB) was modeled by applying the linear quadratic model, compound models, and compound models considering dose-volume information (DVH). Results: The mean CBD was significantly higher in DIBH with 0.69 Gy compared with 0.65 Gy in normal breathing (P=.01). The greatest impact on CBD was due to a shift of the inner field margin toward the CB in DIBH (mean 0.4 cm; range, 0-2), followed by field size in magnitude. Calculation with different risk models for CBC revealed values of excess relative risk/Gy ranging from 0.48-0.65 vs 0.46-0.61 for DIBH vs normal breathing, respectively. Conclusion: Contralateral breast dose, although within a low dose range, was mildly but significantly increased in 200 treatment plans generated under gated conditions, predominately due to a shift in the medial field margin. Risk modeling for CBC among women aged {<=}45 years also pointed to a higher risk when comparing DIBH with normal breathing. This risk, however, was substantially lower in the model considering DVH information. We think that clinical decisions should not be affected by this small increase in CBD with DIBH because DIBH is effective in reducing the dose to the heart in all patients.

  15. Poly [1,1'-bis(ethynyl)-4,4'-biphenyl(bis-tributylphosphine)Pt(II)] solutions used as low dose ionizing radiation dosimeter

    SciTech Connect (OSTI)

    Bronze-Uhle, E. S.; Graeff, C. F. O.; Batagin-Neto, A.; Fernandes, D. M.; Fratoddi, I.; Russo, M. V.

    2013-06-17

    In this work, the effect of gamma radiation on the optical properties of polymetallayne poly[1,1'-bis(ethynyl)-4,4'-biphenyl(bis-tributylphosphine)Pt(II)] (Pt-DEBP) in chloroform solution is studied. The samples were irradiated at room temperature with doses from 0.01 Gy to 1 Gy using a {sup 60}Co gamma ray source. A new band at 420 nm is observed in the emission spectra, in superposition to the emission maximum at 398 nm, linearly dependent on dose. We propose to use the ratio of the emission amplitude bands as the dosimetric parameter. This method proved to be robust, accurate, and can be used as a dosimeter in medical applications.

  16. Regulation Of Nf=kb And Mnsod In Low Dose Radiation Induced Adaptive Protection Of Mouse And Human Skin Cells

    SciTech Connect (OSTI)

    Jian Li

    2012-11-07

    A sampling of publications resulting from this grant is provided. One is on the subject of NF-κB-Mediated HER2 Overexpression in Radiation-Adaptive Resistance. Another is on NF-κB-mediated adaptive resistance to ionizing radiation.

  17. SU-E-I-82: Improving CT Image Quality for Radiation Therapy Using Iterative Reconstruction Algorithms and Slightly Increasing Imaging Doses

    SciTech Connect (OSTI)

    Noid, G; Chen, G; Tai, A; Li, X

    2014-06-01

    Purpose: Iterative reconstruction (IR) algorithms are developed to improve CT image quality (IQ) by reducing noise without diminishing spatial resolution or contrast. For CT in radiation therapy (RT), slightly increasing imaging dose to improve IQ may be justified if it can substantially enhance structure delineation. The purpose of this study is to investigate and to quantify the IQ enhancement as a result of increasing imaging doses and using IR algorithms. Methods: CT images were acquired for phantoms, built to evaluate IQ metrics including spatial resolution, contrast and noise, with a variety of imaging protocols using a CT scanner (Definition AS Open, Siemens) installed inside a Linac room. Representative patients were scanned once the protocols were optimized. Both phantom and patient scans were reconstructed using the Sinogram Affirmed Iterative Reconstruction (SAFIRE) and the Filtered Back Projection (FBP) methods. IQ metrics of the obtained CTs were compared. Results: IR techniques are demonstrated to preserve spatial resolution as measured by the point spread function and reduce noise in comparison to traditional FBP. Driven by the reduction in noise, the contrast to noise ratio is doubled by adopting the highest SAFIRE strength. As expected, increasing imaging dose reduces noise for both SAFIRE and FBP reconstructions. The contrast to noise increases from 3 to 5 by increasing the dose by a factor of 4. Similar IQ improvement was observed on the CTs for selected patients with pancreas and prostrate cancers. Conclusion: The IR techniques produce a measurable enhancement to CT IQ by reducing the noise. Increasing imaging dose further reduces noise independent of the IR techniques. The improved CT enables more accurate delineation of tumors and/or organs at risk during RT planning and delivery guidance.

  18. Weldon Spring historical dose estimate

    SciTech Connect (OSTI)

    Meshkov, N.; Benioff, P.; Wang, J.; Yuan, Y.

    1986-07-01

    This study was conducted to determine the estimated radiation doses that individuals in five nearby population groups and the general population in the surrounding area may have received as a consequence of activities at a uranium processing plant in Weldon Spring, Missouri. The study is retrospective and encompasses plant operations (1957-1966), cleanup (1967-1969), and maintenance (1969-1982). The dose estimates for members of the nearby population groups are as follows. Of the three periods considered, the largest doses to the general population in the surrounding area would have occurred during the plant operations period (1957-1966). Dose estimates for the cleanup (1967-1969) and maintenance (1969-1982) periods are negligible in comparison. Based on the monitoring data, if there was a person residing continually in a dwelling 1.2 km (0.75 mi) north of the plant, this person is estimated to have received an average of about 96 mrem/yr (ranging from 50 to 160 mrem/yr) above background during plant operations, whereas the dose to a nearby resident during later years is estimated to have been about 0.4 mrem/yr during cleanup and about 0.2 mrem/yr during the maintenance period. These values may be compared with the background dose in Missouri of 120 mrem/yr.

  19. SIRAD e Personal radiation detectors Hani Alnawaf c

    E-Print Network [OSTI]

    Yu, Peter K.N.

    , Australia c Illawarra Health and Medical Research Institute, Centre for Medical Radiation Physics qualitative measurement of exposure to radiation for mid range dose exposure. This is performed using;Cheung et al., 2002, 2004, 2006a, b). When measuring low-level personal radiation, devices

  20. Radiation Safety (Revised March 2010)

    E-Print Network [OSTI]

    of radiation and a unit of exposure 14 Biological effects of radiation and units of dose 19 ALARA policy

  1. Use of benchmark dose-volume histograms for selection of the optimal technique between three-dimensional conformal radiation therapy and intensity-modulated radiation therapy in prostate cancer

    SciTech Connect (OSTI)

    Luo Chunhui [Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States); Yang, Claus Chunli [Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States); Narayan, Samir [Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States); Stern, Robin L. [Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States); Perks, Julian [Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States); Goldberg, Zelanna [Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States); Ryu, Janice [Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States); Purdy, James A. [Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States); Vijayakumar, Srinivasan [Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States)]. E-mail: Srinivasan.Vijayakumar@ucdmc.ucdavis.edu

    2006-11-15

    Purpose: The aim of this study was to develop and validate our own benchmark dose-volume histograms (DVHs) of bladder and rectum for both conventional three-dimensional conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT), and to evaluate quantitatively the benefits of using IMRT vs. 3D-CRT in treating localized prostate cancer. Methods and Materials: During the implementation of IMRT for prostate cancer, our policy was to plan each patient with both 3D-CRT and IMRT. This study included 31 patients with T1b to T2c localized prostate cancer, for whom we completed double-planning using both 3D-CRT and IMRT techniques. The target volumes included prostate, either with or without proximal seminal vesicles. Bladder and rectum DVH data were summarized to obtain an average DVH for each technique and then compared using two-tailed paired t test analysis. Results: For 3D-CRT our bladder doses were as follows: mean 28.8 Gy, v60 16.4%, v70 10.9%; rectal doses were: mean 39.3 Gy, v60 21.8%, v70 13.6%. IMRT plans resulted in similar mean dose values: bladder 26.4 Gy, rectum 34.9 Gy, but lower values of v70 for the bladder (7.8%) and rectum (9.3%). These benchmark DVHs have resulted in a critical evaluation of our 3D-CRT techniques over time. Conclusion: Our institution has developed benchmark DVHs for bladder and rectum based on our clinical experience with 3D-CRT and IMRT. We use these standards as well as differences in individual cases to make decisions on whether patients may benefit from IMRT treatment rather than 3D-CRT.

  2. EPIDEMIOLOGICAL STUDIES ON RADIATION CARCINOGENESIS IN HUMAN POPULATIONS FOLLOWING ACUTE EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01

    carcinogenic risk of low-dose, low-LET radiation is subjectcan be made for low-dose, low- LET radiation. Nevertheless,for radiation carcino­ Extrapolation to low doses. Radiation

  3. SU-E-T-493: Analysis of the Impact of Range and Setup Uncertainties On the Dose to Brain Stem and Whole Brain in the Passively Scattered Proton Therapy Plans

    SciTech Connect (OSTI)

    Sahoo, N; Zhu, X; Zhang, X; Poenisch, F; Li, H; Wu, R; Lii, M; Umfleet, W; Gillin, M; Mahajan, A; Grosshans, D

    2014-06-01

    Purpose: To quantify the impact of range and setup uncertainties on various dosimetric indices that are used to assess normal tissue toxicities of patients receiving passive scattering proton beam therapy (PSPBT). Methods: Robust analysis of sample treatment plans of six brain cancer patients treated with PSPBT at our facility for whom the maximum brain stem dose exceeded 5800 CcGE were performed. The DVH of each plan was calculated in an Eclipse treatment planning system (TPS) version 11 applying ±3.5% range uncertainty and ±3 mm shift of the isocenter in x, y and z directions to account for setup uncertainties. Worst-case dose indices for brain stem and whole brain were compared to their values in the nominal plan to determine the average change in their values. For the brain stem, maximum dose to 1 cc of volume, dose to 10%, 50%, 90% of volume (D10, D50, D90) and volume receiving 6000, 5400, 5000, 4500, 4000 CcGE (V60, V54, V50, V45, V40) were evaluated. For the whole brain, maximum dose to 1 cc of volume, and volume receiving 5400, 5000, 4500, 4000, 3000 CcGE (V54, V50, V45, V40 and V30) were assessed. Results: The average change in the values of these indices in the worst scenario cases from the nominal plan were as follows. Brain stem; Maximum dose to 1 cc of volume: 1.1%, D10: 1.4%, D50: 8.0%, D90:73.3%, V60:116.9%, V54:27.7%, V50: 21.2%, V45:16.2%, V40:13.6%,Whole brain; Maximum dose to 1 cc of volume: 0.3%, V54:11.4%, V50: 13.0%, V45:13.6%, V40:14.1%, V30:13.5%. Conclusion: Large to modest changes in the dosiemtric indices for brain stem and whole brain compared to nominal plan due to range and set up uncertainties were observed. Such potential changes should be taken into account while using any dosimetric parameters for outcome evaluation of patients receiving proton therapy.

  4. Randomized Noninferiority Trial of Reduced High-Dose Volume Versus Standard Volume Radiation Therapy for Muscle-Invasive Bladder Cancer: Results of the BC2001 Trial (CRUK/01/004)

    SciTech Connect (OSTI)

    Huddart, Robert A.; Hall, Emma; Hussain, Syed A.; Jenkins, Peter; Rawlings, Christine; Tremlett, Jean; Crundwell, Malcolm; Adab, Fawzi A.; Sheehan, Denise; Syndikus, Isabel; Hendron, Carey; Lewis, Rebecca; Waters, Rachel; James, Nicholas D.

    2013-10-01

    Purpose: To test whether reducing radiation dose to uninvolved bladder while maintaining dose to the tumor would reduce side effects without impairing local control in the treatment of muscle-invasive bladder cancer. Methods and Materials: In this phase III multicenter trial, 219 patients were randomized to standard whole-bladder radiation therapy (sRT) or reduced high-dose volume radiation therapy (RHDVRT) that aimed to deliver full radiation dose to the tumor and 80% of maximum dose to the uninvolved bladder. Participants were also randomly assigned to receive radiation therapy alone or radiation therapy plus chemotherapy in a partial 2 × 2 factorial design. The primary endpoints for the radiation therapy volume comparison were late toxicity and time to locoregional recurrence (with a noninferiority margin of 10% at 2 years). Results: Overall incidence of late toxicity was less than predicted, with a cumulative 2-year Radiation Therapy Oncology Group grade 3/4 toxicity rate of 13% (95% confidence interval 8%, 20%) and no statistically significant differences between groups. The difference in 2-year locoregional recurrence free rate (RHDVRT ? sRT) was 6.4% (95% confidence interval ?7.3%, 16.8%) under an intention to treat analysis and 2.6% (?12.8%, 14.6%) in the “per-protocol” population. Conclusions: In this study RHDVRT did not result in a statistically significant reduction in late side effects compared with sRT, and noninferiority of locoregional control could not be concluded formally. However, overall low rates of clinically significant toxicity combined with low rates of invasive bladder cancer relapse confirm that (chemo)radiation therapy is a valid option for the treatment of muscle-invasive bladder cancer.

  5. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA

    SciTech Connect (OSTI)

    Dionne, B.J.; Lane, S.G.; Baum, J.W.

    1991-11-01

    Promoting the exchange of information related to implementation of the As Low as Reasonably Achievable (ALARA) philosophy is a continuing objective for the Department of Energy (DOE). This report, prepared by the Brookhaven National Laboratory (BNL) ALARA Center for the DOE Office of Health, contains the third in a series of bibliographies on dose reduction at DOE facilities. This report also contains abstracts from the two previous volumes. The BNL ALARA Center was originally established in 1983 under the sponsorship of the Nuclear Regulatory Commission to monitor dose-reduction research and ALARA activities at nuclear power plants. This effort was expanded in 1988 by the DOE's Office of Environment, Safety and Health to include DOE nuclear facilities. This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose-reduction activities, with a specific focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy Data Base, and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, storage, and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, and accelerators. Material on improved shielding design, decontamination, containments, robotics, job planning, improved operational techniques, and other topics are also included.

  6. A novel variable-distance antenna test range and high spatial resolution corroboration of the inverse square law for 433.5 MHz radiation

    E-Print Network [OSTI]

    de Haën, Christoph; Erhardt, Matthias

    2015-01-01

    A novel, low-budget, open-air, slant-geometry antenna test range for UHF radiation is presented. It was designed primarily to facilitate variation of the distance between emitter and receiver antennas, but has also the potential for adaptation to simultaneous variation of distance and receiver antenna orientation. In support of the validity of the range the inverse square law for 433.5 MHz radiation between two naked half-wave dipole antennas was tested with high spatial resolution from close to the far field limit outward to 46 wavelengths. Sine amplitude input voltage at the receiver antenna varied with the distance to the power -0.9970 +/- 0.0051 (R^2 = 0.992), thus corroborating the inverse square law for transmission power at the lowest frequency for which thus far data have been published. Keywords: inverse square law; dipole antenna; test facility; electromagnetic propagation; UHF measurements; distance dependence.

  7. Radiation exposure in X-ray-based imaging techniques used in osteoporosis

    E-Print Network [OSTI]

    Damilakis, John; Adams, Judith E.; Guglielmi, Giuseppe; Link, Thomas M.

    2010-01-01

    associated with a low radiation dose because radiosensitiveand pQCT involve low radiation doses enables these techni-small because radiation doses are low. Despite uncertainty

  8. Appl. Radiat. lsot. Vol.48, No. 7, pp. 985-990, 1997 ('J 1997ElsevierScienceLtd.Allrightsreserved

    E-Print Network [OSTI]

    Yu, Peter K.N.

    calculating the dose close to the wire source in a low energy range. '~) 1997Elsevier Science Ltd Introduction that of an unexposed film) versus the dose for radiation energy from 28 keV to 1.71 MeV is linear up to a dose of about absorbed dose is the same as that to gamma radiation within the estimated uncertainty of the measurements

  9. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA; Volume 5

    SciTech Connect (OSTI)

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1994-01-01

    Promoting the exchange of information related to implementation of the As Low as Reasonably Achievable (ALARA) philosophy is a continuing objective for the Department of Energy (DOE). This report was prepared by the Brookhaven National Laboratory (BNL) ALARA Center for the DOE Office of Health. It contains the fifth in a series of bibliographies on dose reduction at DOE facilities. The BNL ALARA Center was originally established in 1983 under the sponsorship of the Nuclear Regulatory Commission to monitor dose-reduction research and ALARA activities at nuclear power plants. This effort was expanded in 1988 by the DOE`s Office of Environment, Safety and Health, to include DOE nuclear facilities. This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose-reduction activities, with a specific focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and accelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts.

  10. Radiation leukaemogenesis at low doses DE-FG02-05 ER 63947 Final Technical Report 15 May 2005 ���������������¢�������������������������������� 14 May 2010

    SciTech Connect (OSTI)

    Simon Bouffler

    2010-07-28

    This report provides a complete summary of the work undertaken and results obtained under US Department of Energy grant DF-FG02-05 ER 63947, Radiation leukaemogenesis at low doses. There is ample epidemiological evidence indicating that ionizing radiation is carcinogenic in the higher dose range. This evidence, however, weakens and carries increasing uncertainties at doses below 100-200 mSv. At these low dose levels the form of the dose-response curve for radiation-induced cancer cannot be determined reliably or directly from studies of human populations. Therefore animal, cellular and other experimental systems must be employed to provide supporting evidence on which to base judgements of risk at low doses. Currently in radiological protection a linear non-threshold (LNT) extrapolation of risk estimates derived from human epidemiological studies is used to estimate risks in the dose range of interest for protection purposes. Myeloid leukaemias feature prominently among the cancers associated with human exposures to ionising radiation (eg UNSCEAR 2006; IARC 2000). Good animal models of radiation-induced acute myeloid leukaemia (AML) are available including strains such as CBA, RFM and SJL (eg Major and Mole 1978; Ullrich et al 1976; Resnitzky et al 1985). Early mechanistic studies using cytogenetic methods in these mouse models established that the majority of radiation-induced AMLs carried substantial interstitial deletions in one copy of chromosome (chr) 2 (eg Hayata et al 1983; Trakhtenbrot et al 1988; Breckon et al 1991; Rithidech et al 1993; Bouffler et al 1996). Chr2 aberrations are known to occur in bone marrow cells as early as 24 hours after in vivo irradiation (Bouffler et al 1997). Subsequent molecular mapping studies defined a distinct region of chr2 that is commonly lost in AMLs (Clark et al 1996; Silver et al 1999). Further, more detailed, analysis identified point mutations at a specific region of the Sfpi1/PU.1 haemopoietic transcription factor gene which lies in the commonly deleted region of chr2 (Cook et al 2004; Suraweera et al 2005). These lines of evidence strongly implicate the Sfpi1/PU.1 gene as a tumour suppressor gene, dysregulation of which leads to myeloid leukaemia. The main focus of this project was to utilize the CBA mouse model of radiation leukaemogenesis to explore mechanisms of low dose and low dose-rate leukaemogenesis. A series of mechanistic investigations were undertaken, the central aim of which was to identify the events that convert normal cells into myeloid leukaemia cells and explore the dose-response relationships for these. Much of the work centred on the Sfpi1/PU.1 gene and its role in leukaemogenesis. Specific studies considered the dose-response and time-course relationships for loss of the gene, the functional consequences of Sfpi1/PU.1 loss and mutation on transcriptional programmes and developing an in vivo reporter gene system for radiation-induced alterations to PU.1 expression. Additional work sought further genetic changes associated with radiation-induced AMLs and a better characterization of the cell of origin or 'target cell' for radiation-induced AML. All the information gathered is of potential use in developing biologically realistic mathematical models for low dose cancer risk projection.

  11. Shared dosimetry error in epidemiological dose-response analyses

    SciTech Connect (OSTI)

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope ? is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of ?) is biased for ??0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.

  12. Shared dosimetry error in epidemiological dose-response analyses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore »up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope ? is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of ?) is biased for ??0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.« less

  13. Threshold Doses for Focal Liver Reaction After Stereotactic Ablative Body Radiation Therapy for Small Hepatocellular Carcinoma Depend on Liver Function: Evaluation on Magnetic Resonance Imaging With Gd-EOB-DTPA

    SciTech Connect (OSTI)

    Sanuki, Naoko; Takeda, Atsuya; Oku, Yohei; Eriguchi, Takahisa; Nishimura, Shuichi; Aoki, Yosuke; Mizuno, Tomikazu; Iwabuchi, Shogo; Kunieda, Etsuo

    2014-02-01

    Purpose: Focal liver reaction (FLR) appears on radiographic images after stereotactic ablative body radiation therapy (SABR) in patients with hepatocellular carcinoma (HCC) and chronic liver disease. We investigated the threshold dose (TD) of FLR and possible factors affecting the TD on gadoxetate acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). Methods and Materials: In 50 patients who were treated with SABR for small HCC and followed up by MRI for >6 months, FLR, seen as a hypointense area, was evaluated on the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI. The follow-up MRI with the largest extent of FLR was fused to the planning computed tomography (CT) image, and patients with good image fusion concordance were eligible. After delineating the border of the FLR manually, a dose–volume histogram was used to identify the TD for the FLR. Clinical and volumetric factors were analyzed for correlation with the TD. Results: A total of 45 patients were eligible for analysis with a median image fusion concordance of 84.9% (range, 71.6-95.4%). The median duration between SABR and subsequent hepatobiliary phase MRI with the largest extent of FLR was 3 months (range, 1-6 months). The median TD for FLR was 28.0 Gy (range, 22.3-36.4 Gy). On univariate analysis, pre-treatment Child-Pugh (CP) score and platelet count were significantly correlated with the TD. On multiple linear regression analysis, CP score was the only parameter that predicted TD. Median TDs were 30.5 Gy (range, 26.2.3-36.4 Gy) and 25.2 Gy (range, 22.3-27.5 Gy) for patients with CP-A and CP-B disease, respectively. Conclusion: The TD was significantly correlated with baseline liver function. We propose 30 Gy for CP-A disease and 25 Gy for CP-B disease in 5 fractions as TDs for FLR after SABR for patients with HCC and chronic liver disease. Use of these TDs will help to predict potential loss of liver tissue after SABR.

  14. Real-time Molecular Study of Bystander Effects of Low dose Low LET radiation Using Living Cell Imaging and Nanoparticale Optics

    SciTech Connect (OSTI)

    Natarajan, Mohan; Xu, Nancy R; Mohan, Sumathy

    2013-06-03

    In this study two novel approaches are proposed to investigate precisely the low dose low LET radiation damage and its effect on bystander cells in real time. First, a flow shear model system, which would provide us a near in vivo situation where endothelial cells in the presence of extra cellular matrix experiencing continuous flow shear stress, will be used. Endothelial cells on matri-gel (simulated extra cellular matrix) will be subjected to physiological flow shear (that occurs in normal blood vessels). Second, a unique tool (Single nano particle/single live cell/single molecule microscopy and spectroscopy; Figure A) will be used to track the molecular trafficking by single live cell imaging. Single molecule chemical microscopy allows one to single out and study rare events that otherwise might be lost in assembled average measurement, and monitor many target single molecules simultaneously in real-time. Multi color single novel metal nanoparticle probes allow one to prepare multicolor probes (Figure B) to monitor many single components (events) simultaneously and perform multi-complex analysis in real-time. These nano-particles resist to photo bleaching and hence serve as probes for unlimited timeframe of analysis. Single live cell microscopy allows one to image many single cells simultaneously in real-time. With the combination of these unique tools, we will be able to study under near-physiological conditions the cellular and sub-cellular responses (even subtle changes at one molecule level) to low and very low doses of low LET radiation in real time (milli-second or nano-second) at sub-10 nanometer spatial resolution. This would allow us to precisely identify, at least in part, the molecular mediators that are responsible of radiation damage in the irradiated cells and the mediators that are responsible for initiating the signaling in the neighboring cells. Endothelial cells subjected to flow shear (2 dynes/cm2 or 16 dynes/cm2) and exposed to 0.1, 1 and 10 cGy on coverslips will be examined for (a) low LET radiation-induced alterations of cellular function and its physiological relevance in real time; and (b) radiation damage triggered bystander effect on the neighboring unirradiated cells. First, to determine the low LET radiation induced alteration of cellular function we will examine: (i) the real time transformation of single membrane transporters in single living cells; (ii) the pump efficiency of membrane efflux pump of live cells in real time at the molecular level; (iii) the kinetics of single-ligand receptor interaction on single live cell surface (Figure C); and (iv) alteration in chromosome replication in living cell. Second, to study the radiation triggered bystander responses, we will examine one of the key signaling pathway i.e. TNF- alpha/NF-kappa B mediated signaling. TNF-alpha specific nano particle sensors (green) will be developed to detect the releasing dynamics, transport mechanisms and ligand-receptor binding on live cell surface in real time. A second sensor (blue) will be developed to simultaneously monitor the track of NF-kB inside the cell. The proposed nano-particle optics approach would complement our DOE funded study on biochemical mechanisms of TNF-alpha- NF-kappa B-mediated bystander effect.

  15. Handbook for dose enhancement effects in electronic devices. Final technical report Jun-Sep 81

    SciTech Connect (OSTI)

    Long, D.M.; Millward, D.G.; Fitzwilson, R.L.; Chadsey, W.L.

    1983-03-01

    The handbook provides tabulation of dose enhancement factors for electronic devices in X-ray and gamma environments. The data are applicable to a wide range of semiconductor devices and selected types of capacitors. The radiation environment includes energy spectra for system design and for radiation test facilities.

  16. The use of intensity-modulated radiation therapy photon beams for improving the dose uniformity of electron beams shaped with MLC

    SciTech Connect (OSTI)

    Mosalaei, Homeira; Karnas, Scott; Shah, Sheel; Van Doodewaard, Sharon; Foster, Tim; Chen, Jeff

    2012-04-01

    Electrons are ideal for treating shallow tumors and sparing adjacent normal tissue. Conventionally, electron beams are collimated by cut-outs that are time-consuming to make and difficult to adapt to tumor shape throughout the course of treatment. We propose that electron cut-outs can be replaced using photon multileaf collimator (MLC). Two major problems of this approach are that the scattering of electrons causes penumbra widening because of a large air gap, and available commercial treatment planning systems (TPSs) do not support MLC-collimated electron beams. In this study, these difficulties were overcome by (1) modeling electron beams collimated by photon MLC for a commercial TPS, and (2) developing a technique to reduce electron beam penumbra by adding low-energy intensity-modulated radiation therapy (IMRT) photons (4 MV). We used blocks to simulate MLC shielding in the TPS. Inverse planning was used to optimize boost photon beams. This technique was applied to a parotid and a central nervous system (CNS) clinical case. Combined photon and electron plans were compared with conventional plans and verified using ion chamber, film, and a 2D diode array. Our studies showed that the beam penumbra for mixed beams with 90 cm source to surface distance (SSD) is comparable with electron applicators and cut-outs at 100 cm SSD. Our mixed-beam technique yielded more uniform dose to the planning target volume and lower doses to various organs at risk for both parotid and CNS clinical cases. The plans were verified with measurements, with more than 95% points passing the gamma criteria of 5% in dose difference and 5 mm for distance to agreement. In conclusion, the study has demonstrated the feasibility and potential advantage of using photon MLC to collimate electron beams with boost photon IMRT fields.

  17. A Novel Method for Predicting Late Genitourinary Toxicity After Prostate Radiation Therapy and the Need for Age-Based Risk-Adapted Dose Constraints

    SciTech Connect (OSTI)

    Ahmed, Awad A.; Egleston, Brian; Alcantara, Pino; Li, Linna; Pollack, Alan; Horwitz, Eric M.; Buyyounouski, Mark K.

    2013-07-15

    Background: There are no well-established normal tissue sparing dose–volume histogram (DVH) criteria that limit the risk of urinary toxicity from prostate radiation therapy (RT). The aim of this study was to determine which criteria predict late toxicity among various DVH parameters when contouring the entire solid bladder and its contents versus the bladder wall. The area under the histogram curve (AUHC) was also analyzed. Methods and Materials: From 1993 to 2000, 503 men with prostate cancer received 3-dimensional conformal RT (median follow-up time, 71 months). The whole bladder and the bladder wall were contoured in all patients. The primary endpoint was grade ?2 genitourinary (GU) toxicity occurring ?3 months after completion of RT. Cox regressions of time to grade ?2 toxicity were estimated separately for the entire bladder and bladder wall. Concordance probability estimates (CPE) assessed model discriminative ability. Before training the models, an external random test group of 100 men was set aside for testing. Separate analyses were performed based on the mean age (? 68 vs >68 years). Results: Age, pretreatment urinary symptoms, mean dose (entire bladder and bladder wall), and AUHC (entire bladder and bladder wall) were significant (P<.05) in multivariable analysis. Overall, bladder wall CPE values were higher than solid bladder values. The AUHC for bladder wall provided the greatest discrimination for late bladder toxicity when compared with alternative DVH points, with CPE values of 0.68 for age ?68 years and 0.81 for age >68 years. Conclusion: The AUHC method based on bladder wall volumes was superior for predicting late GU toxicity. Age >68 years was associated with late grade ?2 GU toxicity, which suggests that risk-adapted dose constraints based on age should be explored.

  18. THE BIOLOGICAL EFFECTS OF IONIZING RADIATION

    E-Print Network [OSTI]

    Slatton, Clint

    sickness · Chronic ­ Low dose over long period of time ­ Cancer, anemia, cataracts #12;Appearance of Biological Effects · Prompt/Acute effect ­ effects seen immediately after large doses of radiation if no treatment is given #12;Dose / Radiation Syndrome Relationship · Dose

  19. DOE occupational radiation exposure. Report 1992--1994

    SciTech Connect (OSTI)

    1997-05-01

    The DOE Occupational Radiation Exposure Report, 1992-1994 reports occupational radiation exposures incurred by individuals at US Department of Energy (DOE) facilities from 1992 through 1994. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of the DOE`s performance in protecting its workers from radiation. Occupational radiation exposure at DOE has been decreasing over the past 5 years. In particular, doses in the higher dose ranges are decreasing, including the number of doses in excess of the DOE limits and doses in excess of the 2 rem Administrative Control Level (ACL). This is an indication of greater attention being given to protecting these individuals from radiation in the workplace.

  20. Meeting Report--NASA Radiation Biomarker Workshop

    E-Print Network [OSTI]

    Straume, Tore

    2008-01-01

    analysis of low–dose radiation -associated changes incellular responses to low-dose radiation using genomic gene-cellular responses to low-dose radiation and to reduce the

  1. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA

    SciTech Connect (OSTI)

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1993-12-01

    This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose reduction activities, with a focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and aocelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts. An author index and a subject index are provided to facilitate use. Both indices contain the abstract numbers from previous volumes, as well as the current volume. Information that the reader feels might be included in the next volume of this bibliography should be submitted to the BNL ALARA Center.

  2. The Association between Cancers and Low Level Radiation: an evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility

    E-Print Network [OSTI]

    Britton, Julie

    2010-01-01

    between leukemia and low dose radiation is critical evidenceassociations between low dose radiation and cancer might notrelationship exists with low dose radiation. In addition,

  3. "We will die and become science" : the production of invisibility and public knowledge about Chernobyl radiation effects in Belarus

    E-Print Network [OSTI]

    Kuchinskaya, Olga

    2007-01-01

    of health effects from low-dose radiation exposures, andis suggested. conditions of low-dose radiation is available,imperceptibility, low-dose radiation exposure is associated

  4. Flash polymerization of silicone oils using gamma radiation for conserving waterlogged wood 

    E-Print Network [OSTI]

    Gidden, Richmond Paul

    1996-01-01

    the SFD-I /SFD-5 mix. These bulked samples were exposed to gamma radiation emitted from a nuclear research reactor and received gamma doses ranging from 30 Gy to 228 Gy with dose rates ranging from 0.6 Gy/min to 5.1 Gy/min. Following irradiation, thin...

  5. EPIDEMIOLOGICAL STUDIES ON RADIATION CARCINOGENESIS IN HUMAN POPULATIONS FOLLOWING ACUTE EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01

    Implications for radio­ low doses: Radiation Res 71:61-74,effect of ological low-dose radiation in man, and surveyscarcinogenic of low-dose, low-LET radiation is subject to

  6. 2011 DOE Occupational Radiation Exposure Summary poster

    SciTech Connect (OSTI)

    ORAU

    2012-12-12

    This poster graphically presents data pertaining to occupational radiation exposure in terms of total effective dose (TED), primarily, but also collective dose and average measureable dose.

  7. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  8. Phase II Study of Accelerated High-Dose Radiotherapy With Concurrent Chemotherapy for Patients With Limited Small-Cell Lung Cancer: Radiation Therapy Oncology Group Protocol 0239

    SciTech Connect (OSTI)

    Komaki, Ritsuko; Paulus, Rebecca; Ettinger, David S.; Videtic, Gregory M.M.; Bradley, Jeffrey D.; Glisson, Bonnie S.; Sause, William T.; Curran, Walter J.; Choy, Hak

    2012-07-15

    Purpose: To investigate whether high-dose thoracic radiation given twice daily during cisplatin-etoposide chemotherapy for limited small-cell lung cancer (LSCLC) improves survival, acute esophagitis, and local control rates relative to findings from Intergroup trial 0096 (47%, 27%, and 64%). Patients and Methods: Patients were accrued over a 3-year period from 22 US and Canadian institutions. Patients with LSCLC and good performance status were given thoracic radiation to 61.2 Gy over 5 weeks (daily 1.8-Gy fractions on days 1-22, then twice-daily 1.8-Gy fractions on days 23-33). Cisplatin (60 mg/m{sup 2} IV) was given on day 1 and etoposide (120 mg/m{sup 2} IV) on days 1-3 and days 22-24, followed by 2 cycles of cisplatin plus etoposide alone. Patients who achieved complete response were offered prophylactic cranial irradiation. Endpoints included overall and progression-free survival; severe esophagitis (Common Toxicity Criteria v 2.0) and treatment-related fatalities; response (Response Evaluation Criteria in Solid Tumors); and local control. Results: Seventy-two patients were accrued from June 2003 through May 2006; 71 were evaluable (median age 63 years; 52% female; 58% Zubrod 0). Median survival time was 19 months; at 2 years, the overall survival rate was 36.6% (95% confidence interval [CI] 25.6%-47.7%), and progression-free survival 19.7% (95% CI 11.4%-29.6%). Thirteen patients (18%) experienced severe acute esophagitis, and 2 (3%) died of treatment-related causes; 41% achieved complete response, 39% partial response, 10% stable disease, and 6% progressive disease. The local control rate was 73%. Forty-three patients (61%) received prophylactic cranial irradiation. Conclusions: The overall survival rate did not reach the projected goal; however, rates of esophagitis were lower, and local control higher, than projected. This treatment strategy is now one of three arms of a prospective trial of chemoradiation for LSCLC (Radiation Therapy Oncology Group 0538/Cancer and Leukemia Group B 30610).

  9. On effective dose for radiotherapy based on doses to nontarget organs and tissues

    SciTech Connect (OSTI)

    Uselmann, Adam J. Thomadsen, Bruce R.

    2015-02-15

    Purpose: The National Council for Radiation Protection and Measurement (NCRP) published estimates for the collective population dose and the mean effective dose to the population of the United States from medical imaging procedures for 1980/1982 and for 2006. The earlier report ignored the effective dose from radiotherapy and the latter gave a cursory discussion of the topic but again did not include it in the population exposure for various reasons. This paper explains the methodology used to calculate the effective dose in due to radiotherapy procedures in the latter NCRP report and revises the values based on more detailed modeling. Methods: This study calculated the dose to nontarget organs from radiotherapy for reference populations using CT images and published peripheral dose data. Results: Using International Commission on Radiological Protection (ICRP) 60 weighting factors, the total effective dose to nontarget organs in radiotherapy patients is estimated as 298 ± 194 mSv per patient, while the U.S. population effective dose is 0.939 ± 0.610 mSv per person, with a collective dose of 283?000 ± 184?000 person Sv per year. Using ICRP 103 weighting factors, the effective dose is 281 ± 183 mSv per patient, 0.887 ± 0.577 mSv per person in the U.S., and 268?000 ± 174?000 person Sv per year. The uncertainty in the calculations is largely governed by variations in patient size, which was accounted for by considering a range of patient sizes and taking the average treatment site to nontarget organ distance. Conclusions: The methods used to estimate the effective doses from radiotherapy used in NCRP Report No. 160 have been explained and the values updated.

  10. Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia

    SciTech Connect (OSTI)

    Lin, Chuan-Yao; Zhao, Chun; Liu, Xiaohong; Lin, Neng-Huei; Chen, Wei-Nei

    2014-10-12

    Biomass burning is a major source of aerosols and air pollutants during the springtime in Southeast Asia. At Lulin mountain background station (elevation 2862 m) in Taiwan, the concentrations of carbon monoxide (CO), ozone (O3) and particulate matter particles with diameter less than 10 ?m (PM10), were measured around 150-250 ppb, 40-60 ppb, and 10-30?g/m3, respectively at spring time (February-April) during 2006 and 2009, which are about 2~3 times higher than those in other seasons. Observations and simulation results indicate that the higher concentrations during the spring time are clearly related to biomass burning plumes transported from the Indochina Peninsula of Southeast Asia. The spatial distribution of high aerosols optical depth (AOD) were identified by the satellite measurement and Aerosol Robotic Network (AERONET) ground observation, and could be reasonably captured by the WRF-Chem model during the study period of 15-18 March, 2008. AOD reached as high as 0.8-1.0 in Indochina ranging from 10 to 22°N and 95 to 107°E. Organic carbon (OC) is a major contributor of AOD over Indochina according to simulation results. The contributor of AOD from black carbon (BC) is minor when compared with OC over the Indochina. However, the direct absorption radiative forcing of BC in the atmosphere could reach 35-50 W m-2, which is about 8-10 times higher than that of OC. The belt shape of radiation reduction at surface from Indochina to Taiwan could be as high 20-40 W m-2 during the study period. The implication of the radiative forcing from biomass burning aerosols and their impact on the regional climate in East Asia is our major concern.

  11. Prediction of proton and neutron absorbed-dose distributions in proton beam radiation therapy using Monte Carlo n-particle transport code (MCNPX) 

    E-Print Network [OSTI]

    Massingill, Brian Edward

    2009-05-15

    The objective of this research was to develop a complex MCNPX model of the human head to predict absorbed dose distributions during proton therapy of ocular tumors. Absorbed dose distributions using the complex geometry ...

  12. A reappraisal of the reported dose equivalents at the boundary of the University of California Radiation Laboratory during the early days of Bevatron operation

    E-Print Network [OSTI]

    Thomas, Ralph H.; Smith, Alan R.; Zeman, Gary H.

    2008-01-01

    on Radiation Units and Measurement, Bethesda, Maryland.Commission on Radiation Units and Measurements LBNL-45224measurements of total neutron fluence and reported in units

  13. Direct 2-Arm Comparison Shows Benefit of High-Dose-Rate Brachytherapy Boost vs External Beam Radiation Therapy Alone for Prostate Cancer

    SciTech Connect (OSTI)

    Khor, Richard; Duchesne, Gillian; Monash University, Melbourne ; Tai, Keen-Hun; Foroudi, Farshad; Chander, Sarat; Van Dyk, Sylvia; Garth, Margaret; Williams, Scott

    2013-03-01

    Purpose: To evaluate the outcomes of patients treated for intermediate- and high-risk prostate cancer with a single schedule of either external beam radiation therapy (EBRT) and high-dose-rate brachytherapy (HDRB) boost or EBRT alone. Methods and Materials: From 2001-2006, 344 patients received EBRT with HDRB boost for definitive treatment of intermediate- or high-risk prostate cancer. The prescribed EBRT dose was 46 Gy in 23 fractions, with a HDR boost of 19.5 Gy in 3 fractions. This cohort was compared to a contemporaneously treated cohort who received EBRT to 74 Gy in 37 fractions, using a matched pair analysis. Three-dimensional conformal EBRT was used. Matching was performed using a propensity score matching technique. High-risk patients constituted 41% of the matched cohorts. Five-year clinical and biochemical outcomes were analyzed. Results: Initial significant differences in prognostic indicators between the unmatched treatment cohorts were rendered negligible after matching, providing a total of 688 patients. Median biochemical follow-up was 60.5 months. The 5-year freedom from biochemical failure was 79.8% (95% confidence interval [CI], 74.3%-85.0%) and 70.9% (95% CI, 65.4%-76.0%) for the HDRB and EBRT groups, respectively, equating to a hazard ratio of 0.59 (95% CI, 0.43-0.81, P=.0011). Interaction analyses showed no alteration in HDR efficacy when planned androgen deprivation therapy was administered (P=.95), but a strong trend toward reduced efficacy was shown compared to EBRT in high-risk cases (P=.06). Rates of grade 3 urethral stricture were 0.3% (95% CI, 0%-0.9%) and 11.8% (95% CI, 8.1%-16.5%) for EBRT and HDRB, respectively (P<.0001). No differences in clinical outcomes were observed. Conclusions: This comparison of 2 individual contemporaneously treated HDRB and EBRT approaches showed improved freedom from biochemical progression with the HDR approach. The benefit was more pronounced in intermediate- risk patients but needs to be weighed against an increased risk of urethral toxicity.

  14. Development of a Thermal Enhancer ? for Combined Partial Range...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Enhancer for Combined Partial Range Burning and Hydrocarbon Dosing Development of a Thermal Enhancer for Combined Partial Range Burning and Hydrocarbon Dosing Poster...

  15. Ionizing radiation predisposes non-malignant human mammary epithelial cells to undergo TGF beta-induced epithelial to mesenchymal transition

    E-Print Network [OSTI]

    2007-01-01

    Health Effects; the Low Dose Radiation Program of the DOElong-term, low-dose ionizing radiation exposure in humans.

  16. Beta dose distribution for randomly packed microspheres 

    E-Print Network [OSTI]

    Urashkin, Alexander

    2007-04-25

    of radiation dose distribution when utilizing this technique. This study focuses on random packing of microspheres and seeks to determine dose distributions for specific cases. The Monte Carlo Neutral Particle code (MCNP) developed by Los Alamos National...

  17. HEALTH EFFECTS OF LOW-LEVEL IONIZING RADIATION

    E-Print Network [OSTI]

    Fabrikant, Jacob I.

    2012-01-01

    any exposure to radiation at low levels of dose carries some1 as the dose of radiation increases above very low levels,any exposure to radiation at low levels of dose carries some

  18. THE BEIR-III REPORT AND THE HEALTH EFFECTS OF LOW-LEVEL RADIATION

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01

    the body exposed to very low radiation doses and dose rates.carcinogenic risk of low-dose, low-LET radiation is subjectbe made for low- dose, low-LET radiation. It is for these

  19. THE CONTRIBUTION OF MODERN MEDICAL IMAGING TECHNOLOGY TO RADIATION HEALTH EFFECTS IN EXPOSED POPULATIONS

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01

    health hazards of low-dose radiation exposure. During thethe body exposed to very low radiation doses and dose rates.carcinogenic risk of low-dose, low-LET radiation is subject

  20. THE BEIR-III REPORT AND ITS IMPLICATIONS FOR RADIATION PROTECTION AND PUBLIC HEALTH POLICY

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01

    somatic effect of low-dose ionizing radiation. Solid cancersof risk from low-dose low-LET radiation. For exposure toi s not observed at low radiation doses ( 1 7 ) , and dose-

  1. Dose Reduction Techniques

    SciTech Connect (OSTI)

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  2. The annual occupational dose limits as specified in the Code of Federal Regulations, Title 10, Part 20, "Standards for Protection Against Ionizing Radiation," and in the Florida

    E-Print Network [OSTI]

    Slatton, Clint

    , Title 10, Part 20, "Standards for Protection Against Ionizing Radiation," and in the Florida Department of Health, Chapter 64E-5 (July 1997), "Control of Radiation Hazards Regulations" are listed below

  3. St. Louis Sites Fact Sheet RADIATION BASICS

    E-Print Network [OSTI]

    US Army Corps of Engineers

    , radiation is described as either non-ionizing (low energy) or ionizing (high energy). Non-ionizing radiation or concrete. WHAT IS DOSE? HOW IS RADIATION MEASURED? The dose is the quantity of radiation or energy received dose and takes into account the type of radiation absorbed into the body and the likelihood of damage

  4. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, R.J.

    1981-09-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  5. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, Richard J. (Oak Ridge, TN)

    1983-01-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  6. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures

    SciTech Connect (OSTI)

    Safari, M. J.; Wong, J. H. D.; Ng, K. H.; Jong, W. L.; Cutajar, D. L.; Rosenfeld, A. B.

    2015-05-15

    Purpose: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. Methods: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. Results: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (±1%), field size (±1%), frame rate (±3%), or beam energy (±5%). The detector angular dependence was within ±5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ±3%. Conclusions: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.

  7. SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy

    SciTech Connect (OSTI)

    Chibani, O; Price, R; Ma, C; Eldib, A; Mora, G

    2014-06-01

    Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows that the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.

  8. Uterine Artery Embolization for Leiomyomata: Optimization of the Radiation Dose to the Patient Using a Flat-Panel Detector Angiographic Suite

    SciTech Connect (OSTI)

    Sapoval, Marc Pellerin, Olivier; Rehel, Jean-Luc; Houdoux, Nicolas; Rahmoune, Ghizlaine; Aubert, Bernard; Fitton, Isabelle

    2010-10-15

    The purpose of this study was to assess the ability of low-dose/low-frame fluoroscopy/angiography with a flat-panel detector angiographic suite to reduce the dose delivered to patients during uterine fibroid embolization (UFE). A two-step prospective dosimetric study was conducted, with a flat-panel detector angiography suite (Siemens Axiom Artis) integrating automatic exposure control (AEC), during 20 consecutive UFEs. Patient dosimetry was performed using calibrated thermoluminescent dosimeters placed on the lower posterior pelvis skin. The first step (10 patients; group A) consisted in UFE (bilateral embolization, calibrated microspheres) performed using the following parameters: standard fluoroscopy (15 pulses/s) and angiography (3 frames/s). The second step (next consecutive 10 patients; group B) used low-dose/low-frame fluoroscopy (7.5 pulses/s for catheterization and 3 pulses/s for embolization) and angiography (1 frame/s). We also recorded the total dose-area product (DAP) delivered to the patient and the fluoroscopy time as reported by the manufacturer's dosimetry report. The mean peak skin dose decreased from 2.4 {+-} 1.3 to 0.4 {+-} 0.3 Gy (P = 0.001) for groups A and B, respectively. The DAP values decreased from 43,113 {+-} 27,207 {mu}Gy m{sup 2} for group A to 9,515 {+-} 4,520 {mu}Gy m{sup 2} for group B (P = 0.003). The dose to ovaries and uterus decreased from 378 {+-} 238 mGy (group A) to 83 {+-} 41 mGy (group B) and from 388 {+-} 246 mGy (group A) to 85 {+-} 39 mGy (group B), respectively. Effective doses decreased from 112 {+-} 71 mSv (group A) to 24 {+-} 12 mSv (group B) (P = 0.003). In conclusion, the use of low-dose/low-frame fluoroscopy/angiography, based on a good understanding of the AEC system and also on the technique during uterine fibroid embolization, allows a significant decrease in the dose exposure to the patient.

  9. Radiation-Induced Carcinogenesis: Mechanistically Based Differences between Gamma-Rays and Neutrons, and

    E-Print Network [OSTI]

    Brenner, David Jonathan

    . For radiation doses which are sufficiently low to avoid substantial cell killing, sparsely ionizing radiation dose/dose rate. Sparsely ionizing radiation (e.g. c-rays) generally produces linear or upwardly curving dose responses at low doses, and the risk decreases when the dose rate is reduced (direct dose rate

  10. A Reanalysis of Curvature in the Dose Response for Cancer and Modifications by Age at Exposure Following Radiation Therapy for Benign Disease

    SciTech Connect (OSTI)

    Little, Mark P.; Stovall, Marilyn; Smith, Susan A.; Kleinerman, Ruth A.

    2013-02-01

    Purpose: To assess the shape of the dose response for various cancer endpoints and modifiers by age and time. Methods and Materials: Reanalysis of the US peptic ulcer data testing for heterogeneity of radiogenic risk by cancer endpoint (stomach, pancreas, lung, leukemia, all other). Results: There are statistically significant (P<.05) excess risks for all cancer and for lung cancer and borderline statistically significant risks for stomach cancer (P=.07), and leukemia (P=.06), with excess relative risks Gy{sup -1} of 0.024 (95% confidence interval [CI] 0.011, 0.039), 0.559 (95% CI 0.221, 1.021), 0.042 (95% CI -0.002, 0.119), and 1.087 (95% CI -0.018, 4.925), respectively. There is statistically significant (P=.007) excess risk of pancreatic cancer when adjusted for dose-response curvature. General downward curvature is apparent in the dose response, statistically significant (P<.05) for all cancers, pancreatic cancer, and all other cancers (ie, other than stomach, pancreas, lung, leukemia). There are indications of reduction in relative risk with increasing age at exposure (for all cancers, pancreatic cancer), but no evidence for quadratic variations in relative risk with age at exposure. If a linear-exponential dose response is used, there is no significant heterogeneity in the dose response among the 5 endpoints considered or in the speed of variation of relative risk with age at exposure. The risks are generally consistent with those observed in the Japanese atomic bomb survivors and in groups of nuclear workers. Conclusions: There are excess risks for various malignancies in this data set. Generally there is a marked downward curvature in the dose response and significant reduction in relative risk with increasing age at exposure. The consistency of risks with those observed in the Japanese atomic bomb survivors and in groups of nuclear workers implies that there may be little sparing effect of fractionation of dose or low-dose-rate exposure.

  11. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    E-Print Network [OSTI]

    Lowe, Xiu R

    2009-01-01

    map (modified from IPA), all genes that were modulated in the mouse brain by exposure to ionizing radiationmap (modified from IPA), the genes that were modulated in the mouse brain by exposure to ionizing radiation

  12. EFFECTIVE DOSE: A USEFUL CONCEPT IN DIAGNOSTIC David Brenner1 and Walter Huda2

    E-Print Network [OSTI]

    Brenner, David Jonathan

    doses of ionising radiation that are related to radiation therapy and the effects of low doses a quick but useful estimate of the overall detriment of a non-uniform low dose? Or is it con- fusing the relationship between radiation dose and image quality in diagnostic radiology, and the optimisation

  13. Radiation Safety Manual August 1999 UW Environmental Health and Safety

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    principle of keeping radiation doses and releases of radioactive material to the environment as low as can - An acronym formed from the phrase "As Low as Reasonably Achievable." The phrase refers to a radiation safety it into another type of atom and resulting in the emission of radiation. dose (absorbed dose) - Radiation dose

  14. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect (OSTI)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  15. Hanford Environmental Dose Reconstruction Project Monthly Report

    SciTech Connect (OSTI)

    Finch, S.M.; McMakin, A.H. (comps.)

    1992-03-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  16. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect (OSTI)

    Finch, S.M.; McMakin, A.H. [comps.

    1992-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  17. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  18. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA. Volumes 1--3

    SciTech Connect (OSTI)

    Dionne, B.J.; Lane, S.G.; Baum, J.W.

    1991-11-01

    Promoting the exchange of information related to implementation of the As Low as Reasonably Achievable (ALARA) philosophy is a continuing objective for the Department of Energy (DOE). This report, prepared by the Brookhaven National Laboratory (BNL) ALARA Center for the DOE Office of Health, contains the third in a series of bibliographies on dose reduction at DOE facilities. This report also contains abstracts from the two previous volumes. The BNL ALARA Center was originally established in 1983 under the sponsorship of the Nuclear Regulatory Commission to monitor dose-reduction research and ALARA activities at nuclear power plants. This effort was expanded in 1988 by the DOE`s Office of Environment, Safety and Health to include DOE nuclear facilities. This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose-reduction activities, with a specific focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy Data Base, and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, storage, and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, and accelerators. Material on improved shielding design, decontamination, containments, robotics, job planning, improved operational techniques, and other topics are also included.

  19. Report from the Radiation Therapy Committee of the Southwest Oncology Group (SWOG): Research Objectives Workshop 2008.

    E-Print Network [OSTI]

    2009-01-01

    2008 It is likely that low-dose radiation combined with anthe impact of low dose radiation in Rituxan-resistantal. Low dose pulsed paclitaxel and concurrent radiation for

  20. THE CONTRIBUTION OF MODERN MEDICAL IMAGING TECHNOLOGY TO RADIATION HEALTH EFFECTS IN EXPOSED POPULATIONS

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01

    health hazards of low-dose radiation exposure. During thecarcinogenic risk of low-dose, low-LET radiation is subjectcan be made for low-dose, low-LET radiation. What are the

  1. Coronary calcium scans and radiation exposure in the multi-ethnic study of atherosclerosis

    E-Print Network [OSTI]

    Messenger, B; Li, D; Nasir, K; Carr, JJ; Blankstein, R; Budoff, MJ

    2015-01-01

    10]. The risk of low dose radiation exposure remains spec-2.3 mSv [6]. While low radiation doses have been reported inactually exist at the low radiation doses associ- ated with

  2. Lack of Bystander Effects From High LET Radiation For Early Cytogenetic Endpoints.

    E-Print Network [OSTI]

    Groesser, Torsten

    2009-01-01

    Department of Energy, Low Dose Radiation Research Program,review for modelling low-dose radiation action. Mutat Reslow doses (see (20) for a review) this phenomenon is important for radiation

  3. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization

    E-Print Network [OSTI]

    Costes, Sylvain V

    2010-01-01

    germ cells and after low-dose gamma-radiation: relationshipsexposure to low doses of ionizing radiation. Mutat Res (after exposure to low doses of ionizing radiation. Mutat Res

  4. THE HEALTH EFFECTS IN WOMEN EXPOSED TO LOW-LEVELS OF IONIZING RADIATION

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01

    cancer following low-dose radiation exposure. Radiology 131:is the matter of low-dose radiation and the pregnant woman.considered incorrect; low-dose radiation can cause cancer,

  5. Retrospective Evaluation Reveals That Long-term Androgen Deprivation Therapy Improves Cause-Specific and Overall Survival in the Setting of Dose-Escalated Radiation for High-Risk Prostate Cancer

    SciTech Connect (OSTI)

    Feng, Felix Y.; Blas, Kevin; Olson, Karin; Stenmark, Matthew; Sandler, Howard; Hamstra, Daniel A.

    2013-05-01

    Purpose: To evaluate the role of androgen deprivation therapy (ADT) and duration for high-risk prostate cancer patients treated with dose-escalated radiation therapy (RT). Methods and Materials: A retrospective analysis of high-risk prostate cancer patients treated with dose-escalated RT (minimum 75 Gy) with or without ADT was performed. The relationship between ADT use and duration with biochemical failure (BF), metastatic failure (MF), prostate cancer-specific mortality (PCSM), non-prostate cancer death (NPCD), and overall survival (OS) was assessed as a function of pretreatment characteristics, comorbid medical illness, and treatment using Fine and Gray's cumulative incidence methodology. Results: The median follow-up time was 64 months. In men with National Comprehensive Cancer Network defined high-risk prostate cancer treated with dose-escalated RT, on univariate analysis, both metastasis (P<.0001; hazard ratio 0.34; 95% confidence interval 0.18-0.67; cumulative incidence at 60 months 13% vs 35%) and PCSM (P=.015; hazard ratio 0.41; 95% confidence interval 0.2-1.0; cumulative incidence at 60 months 6% vs 11%) were improved with the use of ADT. On multivariate analysis for all high-risk patients, Gleason score was the strongest negative prognostic factor, and long-term ADT (LTAD) improved MF (P=.002), PCSM (P=.034), and OS (P=.001). In men with prostate cancer and Gleason scores 8 to 10, on multivariate analysis after adjustment for other risk features, there was a duration-dependent improvement in BF, metastasis, PCSM, and OS, all favoring LTAD in comparison with STAD or RT alone. Conclusion: For men with high-risk prostate cancer treated with dose-escalated EBRT, this retrospective study suggests that the combination of LTAD and RT provided a significant improvement in clinical outcome, which was especially true for those with Gleason scores of 8 to 10.

  6. Development and characterization of a novel variable low-dose rate irradiator for in vivo mouse studies

    E-Print Network [OSTI]

    Davidson, Matthew Allen

    Radiation exposure of humans generally results in low doses delivered at low dose rate. Our limited knowledge of the biological effects of low dose radiation is mainly based on data from the atomic bomb Life Span Study ...

  7. Use of 4-Dimensional Computed Tomography-Based Ventilation Imaging to Correlate Lung Dose and Function With Clinical Outcomes

    SciTech Connect (OSTI)

    Vinogradskiy, Yevgeniy, E-mail: yevgeniy.vinogradskiy@ucdenver.edu [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado (United States)] [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado (United States); Castillo, Richard [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Castillo, Edward [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States) [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Computational and Applied Mathematics, Rice University, Houston, Texas (United States); Tucker, Susan L. [Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Guerrero, Thomas [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States) [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Computational and Applied Mathematics, Rice University, Houston, Texas (United States); Martel, Mary K. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-06-01

    Purpose: Four-dimensional computed tomography (4DCT)-based ventilation is an emerging imaging modality that can be used in the thoracic treatment planning process. The clinical benefit of using ventilation images in radiation treatment plans remains to be tested. The purpose of the current work was to test the potential benefit of using ventilation in treatment planning by evaluating whether dose to highly ventilated regions of the lung resulted in increased incidence of clinical toxicity. Methods and Materials: Pretreatment 4DCT data were used to compute pretreatment ventilation images for 96 lung cancer patients. Ventilation images were calculated using 4DCT data, deformable image registration, and a density-change based algorithm. Dose–volume and ventilation-based dose function metrics were computed for each patient. The ability of the dose–volume and ventilation-based dose–function metrics to predict for severe (grade 3+) radiation pneumonitis was assessed using logistic regression analysis, area under the curve (AUC) metrics, and bootstrap methods. Results: A specific patient example is presented that demonstrates how incorporating ventilation-based functional information can help separate patients with and without toxicity. The logistic regression significance values were all lower for the dose–function metrics (range P=.093-.250) than for their dose–volume equivalents (range, P=.331-.580). The AUC values were all greater for the dose–function metrics (range, 0.569-0.620) than for their dose–volume equivalents (range, 0.500-0.544). Bootstrap results revealed an improvement in model fit using dose–function metrics compared to dose–volume metrics that approached significance (range, P=.118-.155). Conclusions: To our knowledge, this is the first study that attempts to correlate lung dose and 4DCT ventilation-based function to thoracic toxicity after radiation therapy. Although the results were not significant at the .05 level, our data suggests that incorporating ventilation-based functional imaging can improve prediction for radiation pneumonitis. We present an important first step toward validating the use of 4DCT-based ventilation imaging in thoracic treatment planning.

  8. Total ionizing dose effect of ?-ray radiation on the switching characteristics and filament stability of HfOx resistive random access memory

    SciTech Connect (OSTI)

    Fang, Runchen; Yu, Shimeng; Gonzalez Velo, Yago; Chen, Wenhao; Holbert, Keith E.; Kozicki, Michael N.; Barnaby, Hugh

    2014-05-05

    The total ionizing dose (TID) effect of gamma-ray (?-ray) irradiation on HfOx based resistive random access memory was investigated by electrical and material characterizations. The memory states can sustain TID level ?5.2 Mrad (HfO{sub 2}) without significant change in the functionality or the switching characteristics under pulse cycling. However, the stability of the filament is weakened after irradiation as memory states are more vulnerable to flipping under the electrical stress. X-ray photoelectron spectroscopy was performed to ascertain the physical mechanism of the stability degradation, which is attributed to the Hf-O bond breaking by the high-energy ?-ray exposure.

  9. DOE 2010 Occupational Radiation Exposure November 2011

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Analysis

    2011-11-11

    This report discusses radiation protection and dose reporting requirements, presents the 2010 occupational radiation dose data trended over the past 5 years, and includes instructions to submit successful ALARA projects.

  10. Population dose commitments due to radioactive releases from nuclear power plant sites in 1986

    SciTech Connect (OSTI)

    Baker, D.A. (Pacific Northwest Lab., Richland, WA (USA))

    1989-10-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1986. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 66 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 31 person-rem to a low of 0.0007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.7 person-rem. The total population dose for all sites was estimated at 110 person-rem for the 140 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 2 {times} 10{sup -6} mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. 12 refs.

  11. Population dose commitments due to radioactive releases from nuclear power plant sites in 1984

    SciTech Connect (OSTI)

    Baker, D.A.

    1988-01-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1984. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 56 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 110 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 5 person-rem. The total population dose for all sites was estimated at 280 person-rem for the 100 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 6 x 10/sup -6/ mrem to a high of 0.04 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.

  12. Air concentrations of /sup 239/Pu and /sup 240/Pu and potential radiation doses to persons living near Pu-contaminated areas in Palomares, Spain

    SciTech Connect (OSTI)

    Iranzo, E.; Salvador, S.; Iranzo, C.E.

    1987-04-01

    On 17 January 1966, an accident during a refueling operation resulted in the destruction of an air force KC-135 tanker and a B-52 bomber carrying four thermonuclear weapons. Two weapons, whose parachutes opened, were found intact. The others experienced non-nuclear explosion with some burning and release of the fissile fuel at impact. Joint efforts by the United States and Spain resulted in remedial action and a long-term program to monitor the effectiveness of the cleanup. Air concentrations of /sup 239/Pu and /sup 240/Pu have been continuously monitored since the accident. The average annual air concentration for each location was used to estimate committed dose equivalents for individuals living and working around the air sampling stations. The average annual /sup 239/Pu and /sup 240/Pu air concentrations during the 15-y period corresponding to 1966-1980 and the potential committed dose equivalents for various tissues due to the inhalation of the /sup 239/Pu and /sup 240/Pu average annual air concentration during this period are shown and discussed in the report.

  13. Higher Biologically Effective Dose of Radiotherapy Is Associated With Improved Outcomes for Locally Advanced Non-Small Cell Lung Carcinoma Treated With Chemoradiation: An Analysis of the Radiation Therapy Oncology Group

    SciTech Connect (OSTI)

    Machtay, Mitchell; Movsas, Benjamin; Paulus, Rebecca; Gore, Elizabeth M.; Komaki, Ritsuko; Albain, Kathy; Sause, William T.; Curran, Walter J.

    2012-01-01

    Purpose: Patients treated with chemoradiotherapy for locally advanced non-small-cell lung carcinoma (LA-NSCLC) were analyzed for local-regional failure (LRF) and overall survival (OS) with respect to radiotherapy dose intensity. Methods and Materials: This study combined data from seven Radiation Therapy Oncology Group (RTOG) trials in which chemoradiotherapy was used for LA-NSCLC: RTOG 88-08 (chemoradiation arm only), 90-15, 91-06, 92-04, 93-09 (nonoperative arm only), 94-10, and 98-01. The radiotherapeutic biologically effective dose (BED) received by each individual patient was calculated, as was the overall treatment time-adjusted BED (tBED) using standard formulae. Heterogeneity testing was done with chi-squared statistics, and weighted pooled hazard ratio estimates were used. Cox and Fine and Gray's proportional hazard models were used for OS and LRF, respectively, to test the associations between BED and tBED adjusted for other covariates. Results: A total of 1,356 patients were analyzed for BED (1,348 for tBED). The 2-year and 5-year OS rates were 38% and 15%, respectively. The 2-year and 5-year LRF rates were 46% and 52%, respectively. The BED (and tBED) were highly significantly associated with both OS and LRF, with or without adjustment for other covariates on multivariate analysis (p < 0.0001). A 1-Gy BED increase in radiotherapy dose intensity was statistically significantly associated with approximately 4% relative improvement in survival; this is another way of expressing the finding that the pool-adjusted hazard ratio for survival as a function of BED was 0.96. Similarly, a 1-Gy tBED increase in radiotherapy dose intensity was statistically significantly associated with approximately 3% relative improvement in local-regional control; this is another way of expressing the finding that the pool-adjusted hazard ratio as a function of tBED was 0.97. Conclusions: Higher radiotherapy dose intensity is associated with improved local-regional control and survival in the setting of chemoradiotherapy.

  14. Cellular transformation by radiation: induction, promotion, and inhibition

    SciTech Connect (OSTI)

    Borek, C.

    1981-01-01

    Radiation oncogenesis induced in utero in hamsters is expressed at a lower frequency than that induced in vitro. Quantitative studies carried out on hamster embryo cells indicate that neutrons are more effective in their carcinogenic potential than x-rays but also more toxic, that splitting the dose of x-rays at low doses leads to enhanced transformation, but that at high doses protracted radiation has a sparing effect. At all dose ranges survival was increased by protracting the radiation dose, thus suggesting that different repair processes must be involved for survival and transformation. In our qualitative studies, once cells are transformed by radiation, they exhibit a wide range of structural and functional phenotypic changes, some of which are membrane-associated and are expressed within days after induction. Our current studies on nutritional and hormonal influences on radiation transformation indicate the following: Pyrolysate products from broiled protein foods act in synergism with radiation to produce transformation, whereas vitamin A analogs are powerful, preventive agents. Retinoids inhibit both x-ray-induced transformation and its promotion by TPA; these modifications (enhancement by TPA, inhibition by retinoids) are not reflected in sister chromatid exchanges, but are reflected in the level of membrane associated enzymes Na/K ATPase. Whereas retinoids modify late events (expression, promotion), we find that thyroid hormone plays a crucial role in the early phases of radiation and chemically induced transformation. Our recent success in transforming human skin fibroblasts will enable quantitative and qualitative studies of radiation carcinogenesis in a system relevant to man.

  15. High dynamic range measurement of spectral responsivity and linearity of a radiation thermometer using a super-continuum laser and LEDs

    SciTech Connect (OSTI)

    Yoo, Y. S.; Lee, D. H.; Park, C. W.; Park, S. N. [Korea Research Institute of Standards and Science 209 Gajeong-Ro, Yuseong-Gu, Daejon 305-340 (Korea, Republic of)] [Korea Research Institute of Standards and Science 209 Gajeong-Ro, Yuseong-Gu, Daejon 305-340 (Korea, Republic of)

    2013-09-11

    To realize the temperature scale above the freezing point of silver according to the definition of ITS-90, the dynamic range of the spectral responsivity is one of the most important factors which limit its uncertainty. When the residual spectral response at both side bands of a spectral band is not negligible, a significant uncertainty can be caused by a low dynamic range of the spectral responsivity measurement. In general, incandescent lamps are used to measure the spectral responsivity and the linearity. The dynamic range of the spectral responsivity measurement is often limited by a trade-off with the desired spectral resolution, which is less than 6 decades. Nonlinearity is another limiting fact of uncertainties of the temperature scale. Tungsten lamps have disadvantage in the nonlinearity measurements in terms of adjustability of radiance level and spectral selectivity. We report spectral responsivity measurements of which the measurable dynamic range is enhanced 50 times after replacing a QTH lamp with a super continuum laser. We also present a spectrally selected linearity measurement over a wide dynamic range using high-brightness light emitting diode arrays to observe a slight saturation of linearity.

  16. Radiation doses for Marshall Islands Atolls Affected by U.S. Nuclear Testing:All Exposure Pathways, Remedial Measures, and Environmental Loss of 137Cs

    SciTech Connect (OSTI)

    Robison, W L; Hamilton, T F

    2009-04-20

    The United States conducted 24 nuclear tests at Bikini Atoll with a total yield of 76.8 Megatons (MT). The Castle series produced about 60% of this total and included the Bravo test that was the primary source of contamination of Bikini Island and Rongelap and Utrok Atolls. One of three aerial drops missed the atoll and the second test of the Crossroads series, the Baker test, was an underwater detonation. Of the rest, 17 were on barges on water and 3 were on platforms on an island; they produced most of the contamination of islands at the atoll. There were 42 tests conducted at Enewetak Atoll with a total yield of 31.7 MT (Simon and Robison, 1997; UNSCEAR, 2000). Of these tests, 18 were on a barge over wateror reef, 7 were surface shots, 2 aerial drops, 2 under water detonations, and 13 tower shots on either land or reef. All produced some contamination of various atoll islands. Rongelap Atoll received radioactive fallout as a result of the Bravo test on March 1, 1954 that was part of the Castle series of tests. This deposition was the result of the Bravo test producing a yield of 15 MT, about a factor of three to four greater than the predicted yield that resulted in vaporization of more coral reef and island than expected and in the debris-cloud reaching a much higher altitude than anticipated. High-altitude winds were to the east at the time of detonation and carried the debris-cloud toward Rongelap Atoll. Utrok Atoll also received fallout from the Bravo test but at much lower air and ground-level concentrations than at Rongelap atoll. Other atolls received Bravo fallout at levels below that of Utrok [other common spellings of this island and atoll (Simon, et al., 2009)]. To avoid confusion in reading other literature, this atoll and island are spelled in a variety of ways (Utrik, Utirik, Uterik or Utrok). Dose assessments for Bikini Island at Bikini Atoll (Robison et al., 1997), Enjebi Island at Enewetak Atoll (Robison et al., 1987), Rongelap Island at Rongelap Atoll (Robison et al., 1994; Simon et al., 1997), and Utrok Island at Utrok Atoll (Robison, et al., 1999) indicate that about 95-99% of the total estimated dose to people who may return to live at the atolls today (Utrok Island is populated) is the result of exposure to {sup 137}Cs. External gamma exposure from {sup 137}Cs in the soil accounts for about 10 to 15% of the total dose and {sup 137}Cs ingested during consumption of local food crops such as drinking coconut meat and fluid (Cocos nucifera L.), copra meat and milk, Pandanus fruit, and breadfruit accounts for about 85 to 90%. The other 1 to 2% of the estimated dose is from {sup 90}Sr, {sup 239+240}Pu, and {sup 241}Am. The {sup 90}Sr exposure is primarily through the food chain while the exposure to {sup 239+240}Pu, and {sup 241}Am is primarily via the inhalation pathway as a result of breathing re-suspended soil particles.

  17. Enhancement of photoluminescence of structures with nanocrystalline silicon stimulated by low-dose irradiation with {gamma}-ray photons

    SciTech Connect (OSTI)

    Lisovskyy, I. P. Indutnii, I. Z.; Muravskaya, M. V.; Voitovich, V. V.; Gule, E. G.; Shepelyavyi, P. E.

    2008-05-15

    The spectra of infrared transmittance and photoluminescence of thin-film nc-Si/SiO{sub 2} structures containing nanocrystalline silicon (nc-Si) and subjected to ionizing radiation ({sup 60}Co) in the dose range D= 10{sup 4}-10{sup 7} rad are studied. It is shown for the first time that low radiation doses (5 x 10{sup 3} rad < D < 10{sup 5} rad) lead to significant (as large as 40%) increases in the intensity of the photoluminescence band at 1.33 eV. The infrared spectra indicate that there is no variation in the composition and structure of the nanocomposite. The observed effect is accounted for by structural ordering of the nanocrystal-matrix interface; this ordering is stimulated by low-dose irradiation, i.e., removal of defects (recombination centers) at the nc-Si/SiO{sub 2} interfaces and resulting enhancement of the radiative-recombination channel.

  18. Microsoft PowerPoint - Low Dose Update Metting 6 Dec 2012

    Broader source: Energy.gov (indexed) [DOE]

    Dose DOE's Low Dose R di ti R h R di ti R h Radiation Research Radiation Research Program Program g g NF Metting, Sc.D., Program Manager Nuclear Energy Advisory Committee Meeting...

  19. Molecular stress response in the CNS of mice after systemic exposure to interferon-alpha, ionizing radiation and ketamine

    E-Print Network [OSTI]

    Lowe, Xiu R.

    2009-01-01

    demonstrated that low-dose radiation (at 10 cGy whole body)brain response to low- dose radiation exposure involvesafter exposure to low-dose ionizing radiation. International

  20. THE BIOLOGICAL EFFECTS OF IONIZING RADIATION: EPIDEMIOLOGICAL SURVEYS AND LABORATORY ANIMAL EXPERIMENTS. IMPLICATIONS FOR RISK EVALUATION AND DECISION PROCESSES

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01

    human cancer risk from low radiation doses primarily frommodel for low-dose, low-LET radiation and carcinogenesis theis not observed at low radiation doses [ 1 9 ] . ships for

  1. Perspectives of Decision-Making and Estimation of Risk in Populations Exposed to Low Levels of Ionizing Radiations

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01

    Extrapolation to low doses. Radiation Res. 71: Upton, A.C.for high LET radiations at low doses, risk values may beof radiation-induced leukemia, fow'LET, low dose: 6/rad)

  2. Method for microbeam radiation therapy

    DOE Patents [OSTI]

    Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

    1994-08-16

    A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

  3. Breast radiotherapy in the prone position primarily reduces the maximum out-of-field measured dose to the ipsilateral lung

    E-Print Network [OSTI]

    Brenner, David Jonathan

    breast, lung dose, secondary cancer, low dose measurements, breast cancer I. INTRODUCTION Radiation position, using 50 Gy prescription dose intensity modulated radiation therapy (IMRT) and 3D-CRT plans radiotherapy is of potentially considerable significance. The dose-response relation for radiation-induced lung

  4. Radiation Doses to Members of the U.S. Population from Ubiquitous Radionuclides in the Body: Part 1, Autopsy and In Vivo Data

    SciTech Connect (OSTI)

    Watson, David J.; Strom, Daniel J.

    2011-02-25

    This paper is part one of a three-part series investigating annual effective doses to residents of the United States from intakes of ubiquitous radionuclides, including radionuclides occurring naturally, radionuclides whose concentrations are technologically enhanced, and anthropogenic radionuclides. This series of papers explicitly excludes intakes from inhaling 222Rn, 220Rn, and their short-lived decay products; it also excludes intakes of radionuclides in occupational and medical settings. The goal of part one of this work was to review, summarize, and characterize all published and some unpublished data for U.S. residents on ubiquitous radionuclide concentrations in tissues and organs. Forty-five papers and reports were obtained and their data reviewed, and three data sets were obtained via private communication. The 45 radionuclides of interest are the 238U series (14 nuclides), the actinium series (headed by 235U; 11 nuclides), and the 232Th series (11 nuclides); primordial radionuclides 87Rb and 40 K; cosmogenic and fallout radionuclides 14C and 3H; and purely anthropogenic radionuclides 137Cs-137mBa, 129I, and 90Sr-90Y. Measurements judged to be relevant were available for only 15 of these radionuclides: 238U, 235U, 234U, 232Th, 230Th, 228Th, 228Ra, 226Ra, 210Pb, 210Po, 137Cs, 87Rb, 40K, 14C, and 3H. Recent and relevant measurements were not available for 129I and 90Sr-90Y. A total of 11,714 radionuclide concentration measurements were found in one or more tissues or organs from 14 States. Data on age, sex, geographic locations, height, and weight of subjects were available only sporadically. Too often authors did not provide meaningful values of uncertainty of measurements so that variability in data sets is confounded with measurement uncertainty. The following papers detail how these shortcomings are overcome to achieve the goals of the three-part series.

  5. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    SciTech Connect (OSTI)

    Brady, Samuel L.; Shulkin, Barry L.

    2015-02-15

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.

  6. Prospective Evaluation to Establish a Dose Response for Clinical Oral Mucositis in Patients Undergoing Head-and-Neck Conformal Radiotherapy

    SciTech Connect (OSTI)

    Narayan, Samir Lehmann, Joerg; Coleman, Matthew A.; Vaughan, Andrew; Yang, Claus Chunli; Enepekides, Danny; Farwell, Gregory; Purdy, James A.; Laredo, Grace; Nolan, Kerry A.S.; Pearson, Francesca S.; Vijayakumar, Srinivasan

    2008-11-01

    Purpose: We conducted a clinical study to correlate oral cavity dose with clinical mucositis, perform in vivo dosimetry, and determine the feasibility of obtaining buccal mucosal cell samples in patients undergoing head-and-neck radiation therapy. The main objective is to establish a quantitative dose response for clinical oral mucositis. Methods and Materials: Twelve patients undergoing radiation therapy for head-and-neck cancer were prospectively studied. Four points were chosen in separate quadrants of the oral cavity. Calculated dose distributions were generated by using AcQPlan and Eclipse treatment planning systems. MOSFET dosimeters were used to measure dose at each sampled point. Each patient underwent buccal sampling for future RNA analysis before and after the first radiation treatment at the four selected points. Clinical and functional mucositis were assessed weekly according to National Cancer Institute Common Toxicity Criteria, Version 3. Results: Maximum and average doses for sampled sites ranged from 7.4-62.3 and 3.0-54.3 Gy, respectively. A cumulative point dose of 39.1 Gy resulted in mucositis for 3 weeks or longer. Mild severity (Grade {<=} 1) and short duration ({<=}1 week) of mucositis were found at cumulative point doses less than 32 Gy. Polymerase chain reaction consistently was able to detect basal levels of two known radiation responsive genes. Conclusions: In our sample, cumulative doses to the oral cavity of less than 32 Gy were associated with minimal acute mucositis. A dose greater than 39 Gy was associated with longer duration of mucositis. Our technique for sampling buccal mucosa yielded sufficient cells for RNA analysis using polymerase chain reaction.

  7. Risk Estimation; Background Radiation (Natural and Artificial )

    E-Print Network [OSTI]

    Massey, Thomas N.

    . · This is necessary to obtain reasonable statistics on these rare events of radiation effects at low dose is based artificial and natural · response to low-level radiation. · personal background radiation level. #12;An Organism's Response to Radiation · The dose response can be linear or nonlinear and threshold or non

  8. A Radiation-Hard Dual Channel 4-bit Pipeline for a 12-bit 40 MS/s ADC Prototype with extended Dynamic Range for the ATLAS Liquid Argon Calorimeter Readout Electronics Upgrade at the CERN LHC

    E-Print Network [OSTI]

    Jayanth Kuppambatti; Jaroslav Ban; Timothy Andeen; Peter Kinget; Gustaaf Brooijmans

    2013-07-31

    The design of a radiation-hard dual channel 12-bit 40 MS/s pipeline ADC with extended dynamic range is presented, for use in the readout electronics upgrade for the ATLAS Liquid Argon Calorimeters at the CERN Large Hadron Collider. The design consists of two pipeline A/D channels with four Multiplying Digital-to-Analog Converters with nominal 12-bit resolution each. The design, fabricated in the IBM 130 nm CMOS process, shows a performance of 68 dB SNDR at 18 MHz for a single channel at 40 MS/s while consuming 55 mW/channel from a 2.5 V supply, and exhibits no performance degradation after irradiation. Various gain selection algorithms to achieve the extended dynamic range are implemented and tested.

  9. Absorbed Dose (Gy) 10-4 10-3 10-2 10-1 100

    E-Print Network [OSTI]

    Stewart, Robert D.

    , School of Health Sciences, West Lafayette, IN 47907-2051 Research supported by the Low Dose Radiation of Ionizing Radiationat Low Doses of Ionizing Radiation V. A. Semenenko and R. D. Stewart Purdue University transformation is reversed, the model predicts that the response to low doses of low-LET radiation becomes supra

  10. BIOLOGY CONTRIBUTION TRANSIENT GENOME-WIDE TRANSCRIPTIONAL RESPONSE TO LOW-DOSE

    E-Print Network [OSTI]

    Rocke, David M.

    BIOLOGY CONTRIBUTION TRANSIENT GENOME-WIDE TRANSCRIPTIONAL RESPONSE TO LOW-DOSE IONIZING RADIATION of low-dose low linear energy transfer ionizing radiation on healthy human skin are largely unknown- ples, which returned to baseline by 24 hours postexposure. Conclusions: Low doses of ionizing radiation

  11. A mm-Scale Dosimetry System Based on Optically Stimulated Luminescence of Beryllium Oxide for Investigation of Dose Rate Profiles in Constricted Environments - 12219

    SciTech Connect (OSTI)

    Sommer, Marian; Jahn, Axel; Sommer, Dora; Henniger, Juergen [Technische Universitaet Dresden, Institute for Nuclear and Particle Physics, Radiation Physics Group, D-01062 Dresden (Germany); Praetorius, Reiner M. [Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs- GmbH, POB 1263, D-76339 Eggenstein-Leopoldshafen (Germany)

    2012-07-01

    The dismantling of the former German fuel reprocessing research center Wiederaufbeitungsanlage Karlsruhe requires extensive investigations of contamination and dose rate inside of the shielded areas. Particularly for first the exploration of radiation field existing thermo-element pipes may offer access to the tanks and to other interesting points without the risk of contamination. Because of their small dimension, almost no active dosimetry systems are able to measure inside the pipes. New mm-scale luminescence dosimeters in combination with a packing and transport technique are presented. The dosimeters could measure doses from 0.1 mGy up to more than 100 Gy. Hence, over the possible exposure time durations, dose rates from ?Gyh{sup -1} up to 1000 Gyh{sup -1} are ascertainable. For potential users the system opens the opportunity for investigation of dose rates inside of shielding and in contaminated environments. Particularly in constricted environments the technique is a unique solution for dose and dose rate measurement tasks. Within the linear dose range up to several ten Gy, the uncertainty of the results is less than 5%. 100 Gy-doses can be specified within 20%, with individual high dose calibration of the detectors even better. For WAK and other potential users the system offers the opportunity to investigate dose rates inside of shieldings and in contaminated environments. Particularly in constricted environments the technique is an unique solution for dose and dose rate measurements. (authors)

  12. Population dose commitments due to radioactive releases from nuclear power plant sites in 1987

    SciTech Connect (OSTI)

    Baker, D.A. )

    1990-08-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1987. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 70 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for reach of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The site average individual dose commitment from all pathways ranged from a low of 2 {times} 10{sup {minus}6} mrem to a high of 0.009 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year). 2 refs., 2 figs., 7 tabs.

  13. SU-E-T-183: Feasibility of Extreme Dose Escalation for Glioblastoma Multiforme Using 4? Radiotherapy

    SciTech Connect (OSTI)

    Nguyen, D; Rwigema, J; Yu, V; Kaprealian, T; Kupelian, P; Selch, M; Low, D; Sheng, K

    2014-06-01

    Purpose: GBM recurrence primarily occurs inside or near the high-dose radiation field of original tumor site requiring greater than 100 Gy to significantly improve local control. We utilize 4? non-coplanar radiotherapy to test the feasibility of planning target volume (PTV) margin expansions or extreme dose escalations without incurring additional radiation toxicities. Methods: 11 GBM patients treated with VMAT to a prescription dose of 59.4 Gy or 60 Gy were replanned with 4?. Original VMAT plans were created with 2 to 4 coplanar or non-coplanar arcs using 3 mm hi-res MLC. The 4? optimization, using 5 mm MLC, selected and inverse optimized 30 beams from a candidate pool of 1162 beams evenly distributed through 4? steradians. 4? plans were first compared to clinical plans using the same prescription dose. Two more studies were then performed to respectively escalate the GTV and PTV doses to 100 Gy, followed by a fourth plan expanding the PTV by 5 mm and maintaining the prescription dose. Results: The standard 4? plan significantly reduced (p<0.01) max and mean doses to critical structures by a range of 47.0–98.4% and 61.0–99.2%, respectively. The high dose PTV/high dose GTV/expanded PTV studies showed a reduction (p<0.05) or unchanged* (p>0.05) maximum dose of 72.1%/86.7%/77.1% (chiasm), 7.2%*/27.7%*/30.7% (brainstem), 39.8%*/84.2%/51.9%* (spinal cord), 69.0%/87.0%/66.9% (L eye), 76.2%/88.1%/84.1% (R eye), 95.0%/98.6%/97.5% (L lens), 93.9%/98.8%/97.6% (R lens), 74.3%/88.5%/72.4% (L optical nerve), 80.4%/91.3%/75.7% (R optical nerve), 64.8%/84.2%/44.9%* (L cochlea), and 85.2%/93.0%/78.0% (R cochlea), respectively. V30 and V36 for both brain and (brain - PTV) were reduced for all cases except the high dose PTV plan. PTV dose coverage increased for all 4? plans. Conclusion: Extreme dose escalation or further margin expansion is achievable using 4?, maintaining or reducing OAR doses. This study indicates that clinical trials employing 4? delivery using prescription doses up to 100 Gy are feasible. Funding support partially contributed by Varian.

  14. Dose equivalent neutron dosimeter

    DOE Patents [OSTI]

    Griffith, Richard V. (Pleasanton, CA); Hankins, Dale E. (Livermore, CA); Tomasino, Luigi (Rome, IT); Gomaa, Mohamed A. M. (Heliopolis, EG)

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  15. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    E-Print Network [OSTI]

    Marchetti, Francesco

    2009-01-01

    Development and the DOE Low Dose Radiation Research Program.in vivo by low doses of gamma radiation. Rad Res 156, 324-7.

  16. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  17. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  18. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  19. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  20. X-Ray Data Booklet Section 5.4 RADIOACTIVITY AND RADIATION PROTECTION

    E-Print Network [OSTI]

    dose in Sv = absorbed dose in grays × wR, where wR is the radiation weighting factor (formerly-3. The equivalent dose expresses the long-term risk (primarily due to cancer and leukemia) from low-level chronic-made radiation dose: The greatest contribution to man-made radiation dose has been from irradiation from x

  1. Axillary lymph node dose with tangential breast irradiation

    SciTech Connect (OSTI)

    Reed, Daniel R. . E-mail: drreed@u.washington.edu; Lindsley, Skyler Karen; Mann, Gary N.; Austin-Seymour, Mary; Korssjoen, Tammy; Anderson, Benjamin O.; Moe, Roger

    2005-02-01

    Purpose: The advent of sentinel lymph node mapping and biopsy in the staging of breast cancer has resulted in a significant decrease in the extent of axillary nodal surgery. As the extent of axillary surgery decreases, the radiation dose and distribution within the axilla becomes increasingly important for current therapy planning and future analysis of results. This analysis examined the radiation dose distribution delivered to the anatomically defined axillary level I and II lymph node volume and surgically placed axillary clips with conventional tangential breast fields and CT-based three-dimensional (3D) planning. Methods and materials: Fifty consecutive patients with early-stage breast cancer undergoing breast conservation therapy were evaluated. All patients underwent 3D CT-based planning with conventional breast tangential fields designed to encompass the entire breast parenchyma. Using CT-based 3D planning, the dose distribution of the standard tangential breast irradiation fields was examined in relationship to the axillary level I and II lymph node volumes. Axillary level I and II lymph node anatomic volumes were defined by CT and surgical clips placed during complete level I-II lymph node dissection. Axillary level I-II lymph node volume doses were examined on the basis of the prescribed breast radiation dose and 3D dose distribution. Results: All defined breast volumes received {>=}95% of the prescribed dose. By contrast, the 95% isodose line encompassed only an average of 55% (range, 23-87%) of the axillary level I-II lymph node anatomic volume. No patient had complete coverage of the axillary level I-II lymph node region by the 95% isodose line. The mean anatomic axillary level I-II volume was 146.3 cm{sup 3} (range, 83.1-313.0 cm{sup 3}). The mean anatomic axillary level I-II volume encompassed by the 95% isodose line was 84.9 cm{sup 3} (range, 25.1-219.0 cm{sup 3}). The mean 95% isodose coverage of the surgical clip volume was 80%, and the median value was 81% (range, 58-98%). The mean volume deficit between the axillary level I-II volume and the surgical clip volume was 41.7 cm{sup 3} (median, 30.0 cc). Conclusion: In this study, standard tangential breast radiation fields failed to deliver a therapeutic dose adequately to the axillary level I-II lymph node anatomic volume. No patient received complete coverage of the axillary level I-II lymph node volume. Surgically placed axillary clips also failed to delineate the level I-II axilla adequately. Definitive irradiation of the level I and II axillary lymph node region requires significant modification of standard tangential fields, best accomplished with 3D treatment planning, with specific targeting of anatomically defined axillary lymph node volumes as described, in addition to the breast parenchymal volumes.

  2. Method for microbeam radiation therapy

    DOE Patents [OSTI]

    Slatkin, Daniel N. (Sound Beach, NY); Dilmanian, F. Avraham (Yaphank, NY); Spanne, Per O. (Shoreham, NY)

    1994-01-01

    A method of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation, in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue.

  3. A review of ground-based heavy-ion radiobiology relevant to space radiation risk assessment: Part II. Cardiovascular and immunological effects

    E-Print Network [OSTI]

    Blakely, Eleanor A.

    2008-01-01

    individuals exposed to low-dose radiation exposures can inS.C. Darby, Low doses of ionizing radiation and circulatoryconstant, relatively low-dose complex radiation field in an

  4. Low Dose Suppression of Neoplastic Transformation in Vitro

    SciTech Connect (OSTI)

    John Leslie Redpath

    2012-05-01

    This grant was to study the low dose suppression of neoplastic transformation in vitro and the shape of the dose-response curve at low doses and dose-rates of ionizing radiation. Previous findings had indicated a suppression of transformation at dose <10cGy of low-LET radiation when delivered at high dose-rate. The present study indicates that such suppression extends out to doses in excess of 100cGy when the dose (from I-125 photons) is delivered at dose-rates as low as 0.2 mGy/min and out to in excess of {approx}25cGy the highest dose studied at the very low dose-rate of 0.5 mGy/day. We also examined dose-rate effects for high energy protons (which are a low-LET radiation) and suppression was evident below {approx}10cGy for high dose-rate delivery and at least out to 50cGy for low dose-rate (20cGy/h) delivery. Finally, we also examined the effect of low doses of 1 GeV/n iron ions (a high-LET radiation) delivered at high dose-rate on transformation at low doses and found a suppression below {approx}10cGy that could be attributable to an adaptive response in bystander cells induced by the associated low-LET delta rays. These results have implications for cancer risk assessment at low doses.

  5. SU-E-I-57: Evaluation and Optimization of Effective-Dose Using Different Beam-Hardening Filters in Clinical Pediatric Shunt CT Protocol

    SciTech Connect (OSTI)

    Gill, K; Aldoohan, S; Collier, J

    2014-06-01

    Purpose: Study image optimization and radiation dose reduction in pediatric shunt CT scanning protocol through the use of different beam-hardening filters Methods: A 64-slice CT scanner at OU Childrens Hospital has been used to evaluate CT image contrast-to-noise ratio (CNR) and measure effective-doses based on the concept of CT dose index (CTDIvol) using the pediatric head shunt scanning protocol. The routine axial pediatric head shunt scanning protocol that has been optimized for the intrinsic x-ray tube filter has been used to evaluate CNR by acquiring images using the ACR approved CT-phantom and radiation dose CTphantom, which was used to measure CTDIvol. These results were set as reference points to study and evaluate the effects of adding different filtering materials (i.e. Tungsten, Tantalum, Titanium, Nickel and Copper filters) to the existing filter on image quality and radiation dose. To ensure optimal image quality, the scanner routine air calibration was run for each added filter. The image CNR was evaluated for different kVps and wide range of mAs values using above mentioned beam-hardening filters. These scanning protocols were run under axial as well as under helical techniques. The CTDIvol and the effective-dose were measured and calculated for all scanning protocols and added filtration, including the intrinsic x-ray tube filter. Results: Beam-hardening filter shapes energy spectrum, which reduces the dose by 27%. No noticeable changes in image low contrast detectability Conclusion: Effective-dose is very much dependent on the CTDIVol, which is further very much dependent on beam-hardening filters. Substantial reduction in effective-dose is realized using beam-hardening filters as compare to the intrinsic filter. This phantom study showed that significant radiation dose reduction could be achieved in CT pediatric shunt scanning protocols without compromising in diagnostic value of image quality.

  6. Total ionizing dose effects of domestic SiGe HBTs under different dose rate

    E-Print Network [OSTI]

    Mo-Han, Liu; Wu-Ying, Ma; Xin, Wang; Qi, Guo; Cheng-Fa, He; Ke, Jiang; Xiao-Long, Li; Ming-Zhu, Xiong

    2015-01-01

    The total ionizing radiation (TID) response of commercial NPN silicon germanium hetero-junction bipolar transistors (SiGe HBTs) produced domestic were investigated under the dose rate of 800mGy(Si)/s and 1.3mGy(Si)/s with Co-60 gamma irradiation source, respectively. The changes of the transistor parameter such as Gummel characteristics, excess base current before and after irradiation are investigated. The results of the experiments shows that for the KT1151, the radiation damage have slightly difference under the different dose rate after the prolonged annealing, shows an time dependent effect(TDE). But for the KT9041, the degradations of low dose rate irradiation are more higher than the high dose rate, demonstrate that there have potential enhanced low dose rate sensitive(ELDRS) effect exist on KT9041. The underlying physical mechanisms of the different dose rates response induced by the gamma ray are detailed discussed.

  7. A Statistical Approach for Achievable Dose Querying in IMRT Planning

    E-Print Network [OSTI]

    Kazhdan, Michael

    Introduction We explore a data-driven approach for achievable dose querying in intensity- modulated radiation specifies too low a target dose to the OAR, the treatment plan may not be realiz- able and the treatmentA Statistical Approach for Achievable Dose Querying in IMRT Planning Patricio Simari1 , Binbin Wu2

  8. Dose optimization in cardiac x-ray imaging

    SciTech Connect (OSTI)

    Gislason-Lee, Amber J.; McMillan, Catherine; Cowen, Arnold R.; Davies, Andrew G.

    2013-09-15

    Purpose: The aim of this research was to optimize x-ray image quality to dose ratios in the cardiac catheterization laboratory. This study examined independently the effects of peak x-ray tube voltage (kVp), copper (Cu), and gadolinium (Gd) x-ray beam filtration on the image quality to radiation dose balance for adult patient sizes.Methods: Image sequences of polymethyl methacrylate (PMMA) phantoms representing two adult patient sizes were captured using a modern flat panel detector based x-ray imaging system. Tin and copper test details were used to simulate iodine-based contrast medium and stents/guide wires respectively, which are used in clinical procedures. Noise measurement for a flat field image and test detail contrast were used to calculate the contrast to noise ratio (CNR). Entrance surface dose (ESD) and effective dose measurements were obtained to calculate the figure of merit (FOM), CNR{sup 2}/dose. This FOM determined the dose efficiency of x-ray spectra investigated. Images were captured with 0.0, 0.1, 0.25, 0.4, and 0.9 mm Cu filtration and with a range of gadolinium oxysulphide (Gd{sub 2}O{sub 2}S) filtration.Results: Optimum x-ray spectra were the same for the tin and copper test details. Lower peak tube voltages were generally favored. For the 20 cm phantom, using 2 Lanex Fast Back Gd{sub 2}O{sub 2}S screens as x-ray filtration at 65 kVp provided the highest FOM considering ESD and effective dose. Considering ESD, this FOM was only marginally larger than that from using 0.4 mm Cu at 65 kVp. For the 30 cm phantom, using 0.25 mm copper filtration at 80 kVp was most optimal; considering effective dose the FOM was highest with no filtration at 65 kVp.Conclusions: These settings, adjusted for x-ray tube loading limits and clinically acceptable image quality, should provide a useful option for optimizing patient dose to image quality in cardiac x-ray imaging. The same optimal x-ray beam spectra were found for both the tin and copper details, suggesting that iodine contrast based imaging and visualization of interventional devices could potentially be optimized for dose using similar x-ray beam spectra.

  9. Population dose commitments due to radioactive releases from nuclear power plant sites in 1988. Volume 10

    SciTech Connect (OSTI)

    Baker, D.A. [Pacific Northwest Lab., Richland, WA (United States)

    1992-01-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1988. Fifty-year commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 71 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 16 person-rem to a low of 0.0011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.1 person-rem. The total population dose for all sites was estimated at 75 person-rem for the 150 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 3 {times} 10{sup {minus}7} mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year).

  10. ORISE: Worker Health Studies - Radiation Exposure Data Collection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) is assessing the radiation dose to the world population from all sources, and data from the effluent database...

  11. Dose commitments due to radioactive releases from nuclear power plant sites in 1989

    SciTech Connect (OSTI)

    Baker, D.A. (Pacific Northwest Lab., Richland, WA (United States))

    1993-02-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1989. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses which are compared with 10 CFR Part 50, Appendix I design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 14 person-rem to a low of 0.005 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 1.2 person-rem. The total population dose for all sites was estimated at 84 person-rem for the 140 million people considered at risk. The individual dose commitments estimated for all sites were below the Appendix I design objectives.

  12. Dose commitments due to radioactive releases from nuclear power plant sites in 1992. Volume 14

    SciTech Connect (OSTI)

    Aaberg, R.L.; Baker, D.A.

    1996-03-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1992. Fifty-year dose commitments for a 1-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teenager, and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses, which are compared with 10 CFR Part 50, Appendix I, design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 3.7 person-rem to a low of 0.0015 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 0.66 person-rem. The total population dose for all sites was estimated at 47 person-rem for the 130-million people considered at risk. The individual dose commitments estimated for all sites were below the 10 CFR 50, Appendix I, design objectives.

  13. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    SciTech Connect (OSTI)

    Scott, Bobby, R., Ph.D.

    2003-06-27

    OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase one¡¯s risk of cancer. Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low-LET radiation). Such phantom risks also may arise from risk assessments conducted for com

  14. Towards the clinical implementation of iterative low-dose cone-beam CT reconstruction in image-guided radiation therapy: Cone/ring artifact correction and multiple GPU implementation

    SciTech Connect (OSTI)

    Yan, Hao, E-mail: steve.jiang@utsouthwestern.edu, E-mail: xun.jia@utsouthwestern.edu; Shi, Feng; Jiang, Steve B.; Jia, Xun, E-mail: steve.jiang@utsouthwestern.edu, E-mail: xun.jia@utsouthwestern.edu [Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390 (United States); Wang, Xiaoyu; Cervino, Laura [Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037 (United States); Bai, Ti [Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390 and Institute of Image Processing and Pattern Recognition, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Folkerts, Michael [Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390 and Department of Physics, University of California San Diego, La Jolla, California 92037 (United States)

    2014-11-01

    Purpose: Compressed sensing (CS)-based iterative reconstruction (IR) techniques are able to reconstruct cone-beam CT (CBCT) images from undersampled noisy data, allowing for imaging dose reduction. However, there are a few practical concerns preventing the clinical implementation of these techniques. On the image quality side, data truncation along the superior–inferior direction under the cone-beam geometry produces severe cone artifacts in the reconstructed images. Ring artifacts are also seen in the half-fan scan mode. On the reconstruction efficiency side, the long computation time hinders clinical use in image-guided radiation therapy (IGRT). Methods: Image quality improvement methods are proposed to mitigate the cone and ring image artifacts in IR. The basic idea is to use weighting factors in the IR data fidelity term to improve projection data consistency with the reconstructed volume. In order to improve the computational efficiency, a multiple graphics processing units (GPUs)-based CS-IR system was developed. The parallelization scheme, detailed analyses of computation time at each step, their relationship with image resolution, and the acceleration factors were studied. The whole system was evaluated in various phantom and patient cases. Results: Ring artifacts can be mitigated by properly designing a weighting factor as a function of the spatial location on the detector. As for the cone artifact, without applying a correction method, it contaminated 13 out of 80 slices in a head-neck case (full-fan). Contamination was even more severe in a pelvis case under half-fan mode, where 36 out of 80 slices were affected, leading to poorer soft tissue delineation and reduced superior–inferior coverage. The proposed method effectively corrects those contaminated slices with mean intensity differences compared to FDK results decreasing from ?497 and ?293 HU to ?39 and ?27 HU for the full-fan and half-fan cases, respectively. In terms of efficiency boost, an overall 3.1 × speedup factor has been achieved with four GPU cards compared to a single GPU-based reconstruction. The total computation time is ?30 s for typical clinical cases. Conclusions: The authors have developed a low-dose CBCT IR system for IGRT. By incorporating data consistency-based weighting factors in the IR model, cone/ring artifacts can be mitigated. A boost in computational efficiency is achieved by multi-GPU implementation.

  15. Stromal Modulation of Radiation Carcinogenesis in Breast Cancer

    E-Print Network [OSTI]

    Nguyen, David Hiendat Hua

    2011-01-01

    radiation research related to human health is to predict the biological impact of exposure to low dose (

  16. MO-G-BRF-09: Investigating Magnetic Field Dose Effects in Mice: A Monte Carlo Study

    SciTech Connect (OSTI)

    Rubinstein, A; Guindani, M; Followill, D; Melancon, A; Hazle, J; Court, L

    2014-06-15

    Purpose: In MRI-linac treatments, radiation dose distributions are affected by magnetic fields, especially at high-density/low-density interfaces. Radiobiological consequences of magnetic field dose effects are presently unknown; therefore, preclinical studies are needed to ensure the safe clinical use of MRI-linacs. This study investigates the optimal combination of beam energy and magnetic field strength needed for preclinical murine studies. Methods: The Monte Carlo code MCNP6 was used to simulate the effects of a magnetic field when irradiating a mouse-sized lung phantom with a 1.0cmx1.0cm photon beam. Magnetic field effects were examined using various beam energies (225kVp, 662keV[Cs-137], and 1.25MeV[Co-60]) and magnetic field strengths (0.75T, 1.5T, and 3T). The resulting dose distributions were compared to Monte Carlo results for humans with various field sizes and patient geometries using a 6MV/1.5T MRI-linac. Results: In human simulations, the addition of a 1.5T magnetic field caused an average dose increase of 49% (range:36%–60%) to lung at the soft tissue-to-lung interface and an average dose decrease of 30% (range:25%–36%) at the lung-to-soft tissue interface. In mouse simulations, the magnetic fields had no effect on the 225kVp dose distribution. The dose increases for the Cs-137 beam were 12%, 33%, and 49% for 0.75T, 1.5T, and 3.0T magnetic fields, respectively while the dose decreases were 7%, 23%, and 33%. For the Co-60 beam, the dose increases were 14%, 45%, and 41%, and the dose decreases were 18%, 35%, and 35%. Conclusion: The magnetic field dose effects observed in mouse phantoms using a Co-60 beam with 1.5T or 3T fields and a Cs-137 beam with a 3T field compare well with those seen in simulated human treatments with an MRI-linac. These irradiator/magnet combinations are suitable for preclinical studies investigating potential biological effects of delivering radiation therapy in the presence of a magnetic field. Partially funded by Elekta.

  17. ORISE Video: What is radiation dose?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer underI REEECNO OF DOCUMENT2 DIRECTORTHES.Joemeasuring

  18. RADIATION SAFETY MANUAL 2014 RICE UNIVERSITY 1

    E-Print Network [OSTI]

    Natelson, Douglas

    microscopes. Notify the RSO of any new radiation sources. Notify the RSO if any radiation sources with radioactive materials must attend formal radiation safety training provided by EHS. #12;RADIATION SAFETY with information concerning risk. 4. Provide suggestions for reducing exposure. 5. Monitor your radiation dose wit

  19. Radiation damage issues for superconducting magnet

    E-Print Network [OSTI]

    McDonald, Kirk

    and "RAL 71A", developed at RAL · What are the disadvantages? · Can have low radiation hardness so polymer dictates magnet lifetime #12;Known radiation dose limits for polymers Many factors influence rad ions and radicals Ideally we should consider more than just dose... Radiation types do have different

  20. General Radiation Safety Information About USF Research Small amounts of radioactive materials are used in research work at the University of South Florida

    E-Print Network [OSTI]

    Arslan, Hüseyin

    Radiation Safety office strives to keep radiation doses to workers, the public, and the environment As Low in a person, he or she receives a radiation dose. Radiation doses are measured in millirems (mrem) or rems, the average background radiation dose is 300 mrem/yr. Manufactured sources contribute an additional background

  1. Hanford Environmental Dose Reconstruction Project monthly report, May 1992

    SciTech Connect (OSTI)

    Finch, S.M.; McMakin, A.H. [comps.

    1992-08-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These task correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  2. Hanford Environmental Dose Reconstruction Project monthly report, May 1992

    SciTech Connect (OSTI)

    Finch, S.M.; McMakin, A.H. (comps.)

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These task correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates.

  3. ORIGINAL ARTICLE Effect of bismuth breast shielding on radiation

    E-Print Network [OSTI]

    Brenner, David Jonathan

    ORIGINAL ARTICLE Effect of bismuth breast shielding on radiation dose and image quality in coronary angiography (CCTA) is associated with high radiation dose to the female breasts. Bismuth breast shielding shielding, breast radiation dose was reduced 46%-57% depending on breast size and scanning technique

  4. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect (OSTI)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.

  5. DOE Low Dose Program Workshop V April 25-27, 2005 http://www.orau.gov/lowdoseworkshop/

    E-Print Network [OSTI]

    Stewart, Robert D.

    of radiation are largely unknown. The transition from high to low dose involves qualitative and quantitative of the trends in the time-integrated signal intensity after a uniform dose of low- or high-LET radiation to the initial radiation-induced signal. #12;DOE Low Dose Program Workshop V April 25-27, 2005 http

  6. Radiation physics, biophysics, and radiation biology

    SciTech Connect (OSTI)

    Hall, E.J.

    1992-05-01

    The following research programs from the Center for Radiological Research of Columbia University are described: Design and development of a new wall-less ultra miniature proportional counter for nanodosimetry; some recent measurements of ionization distributions for heavy ions at nanometer site sizes with a wall-less proportional counter; a calculation of exciton energies in periodic systems with helical symmetry: application to a hydrogen fluoride chain; electron energy-loss function in polynucleotide and the question of plasmon excitation; a non-parametric, microdosimetric-based approach to the evaluation of the biological effects of low doses of ionizing radiation; high-LET radiation risk assessment at medium doses; high-LET radiobiological effects: increased lesion severity or increased lesion proximity; photoneutrons generated by high energy medical linacs; the biological effectiveness of neutrons; implications for radiation protection; molecular characterization of oncogenes induced by neutrons; and the inverse dose-rate effect for oncogenic transformation by charged particles is LET dependent.

  7. Multicriteria optimization of the spatial dose distribution

    SciTech Connect (OSTI)

    Schlaefer, Alexander; Viulet, Tiberiu; Muacevic, Alexander; Fürweger, Christoph

    2013-12-15

    Purpose: Treatment planning for radiation therapy involves trade-offs with respect to different clinical goals. Typically, the dose distribution is evaluated based on few statistics and dose–volume histograms. Particularly for stereotactic treatments, the spatial dose distribution represents further criteria, e.g., when considering the gradient between subregions of volumes of interest. The authors have studied how to consider the spatial dose distribution using a multicriteria optimization approach.Methods: The authors have extended a stepwise multicriteria optimization approach to include criteria with respect to the local dose distribution. Based on a three-dimensional visualization of the dose the authors use a software tool allowing interaction with the dose distribution to map objectives with respect to its shape to a constrained optimization problem. Similarly, conflicting criteria are highlighted and the planner decides if and where to relax the shape of the dose distribution.Results: To demonstrate the potential of spatial multicriteria optimization, the tool was applied to a prostate and meningioma case. For the prostate case, local sparing of the rectal wall and shaping of a boost volume are achieved through local relaxations and while maintaining the remaining dose distribution. For the meningioma, target coverage is improved by compromising low dose conformality toward noncritical structures. A comparison of dose–volume histograms illustrates the importance of spatial information for achieving the trade-offs.Conclusions: The results show that it is possible to consider the location of conflicting criteria during treatment planning. Particularly, it is possible to conserve already achieved goals with respect to the dose distribution, to visualize potential trade-offs, and to relax constraints locally. Hence, the proposed approach facilitates a systematic exploration of the optimal shape of the dose distribution.

  8. Population dose commitments due to radioactive releases from nuclear power plant sites in 1983

    SciTech Connect (OSTI)

    Baker, D.A.; Peloquin, R.A.

    1987-04-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1983. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 52 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 45 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 170 person-rem for the 100 million people considered at risk.

  9. Body radiation exposure in breast cancer radiotherapy: Impact of breast IMRT and virtual wedge compensation techniques

    SciTech Connect (OSTI)

    Woo, Tony [Department of Radiation Oncology, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario (Canada); Pignol, Jean-Philippe [Department of Radiation Oncology, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario (Canada)]. E-mail: Jean-Philippe.Pignol@sw.ca; Rakovitch, Eileen [Department of Radiation Oncology, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario (Canada); Vu, Toni [Department of Radiation Oncology, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario (Canada); Hicks, Deanna [Department of Radiation Oncology, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario (Canada); O'Brien, Peter [Department of Medical Physics, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario (Canada); Pritchard, Kathleen [Department of Medical Oncology, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario (Canada)

    2006-05-01

    Purpose: Recent reports demonstrate a dramatically increased rate of secondary leukemia for breast cancer patients receiving adjuvant high-dose anthracycline and radiotherapy, and that radiation is an independent factor for the development of leukemia. This study aimed to evaluate the radiation body exposure during breast radiotherapy and to characterize the factors associated with an increased exposure. Patients and Methods: In a prospective cohort of 120 women, radiation measurements were taken from four sites on the body at the time of adjuvant breast radiotherapy. Multiple regression analysis was performed to analyze patient and treatment factors associated with the amount of scattered radiation. Results: For standard 50 Gy breast radiotherapy, the minimal dose received by abdominal organs is on average 0.45 Gy, ranging from 0.06 to 1.55 Gy. The use of physical wedges as a compensation technique was the most significant factor associated with increased scattered dose (p < 0.001), resulting in approximately three times more exposure compared with breast intensity-modulated radiation therapy (IMRT) and dynamic wedge. Conclusions: The amount of radiation that is scattered to a patient's body is consistent with exposure reported to be associated with excess of leukemia. In accordance with the As Low As Reasonably Achievable (ALARA) principle, we recommend using breast IMRT or virtual wedging for the radiotherapy of breast cancer receiving high-dose anthracycline chemotherapy.

  10. Radiation-induced bystander effect and adaptive response in mammalian cells

    E-Print Network [OSTI]

    responses at low doses of radiation and have the potential to impact the shape of the dose at low doses of radiation and have the potential to impact the shape of the dose­response relationship, Columbia University, New York, NY 10032, USA b Radiation Effect Research Foundation, Hiroshima, Japan

  11. Analysis of Dose at the Site of Second Tumor Formation After Radiotherapy to the Central Nervous System

    SciTech Connect (OSTI)

    Galloway, Thomas J.; Indelicato, Daniel J.; Amdur, Robert J.; Morris, Christopher G.; Swanson, Erika L.; Marcus, Robert B.

    2012-01-01

    Purpose: Second tumors are an uncommon complication of multimodality treatment of childhood cancer. The present analysis attempted to correlate the dose received as a component of primary treatment and the site of the eventual development of a second tumor. Methods and Materials: We retrospectively identified 16 patients who had received radiotherapy to sites in the craniospinal axis and subsequently developed a second tumor. We compared the historical fields and port films of the primary treatment with the modern imaging of the second tumor locations. We classified the location of the second tumors as follows: in the boost field; marginal to the boost field, but in a whole-brain field; in a whole-brain field; marginal to the whole brain/primary treatment field; and distant to the field. We divided the dose received into 3 broad categories: high dose (>45 Gy), moderate dose (20-36 Gy), and low dose (<20 Gy). Results: The most common location of the second tumor was in the whole brain field (57%) and in the moderate-dose range (81%). Conclusions: Our data contradict previous publications that suggested that most second tumors develop in tissues that receive a low radiation dose. Almost all the second tumors in our series occurred in tissue within a target volume in the cranium that had received a moderate dose (20-36 Gy). These findings suggest that a major decrease in the brain volume that receives a moderate radiation dose is the only way to substantially decrease the second tumor rate after central nervous system radiotherapy.

  12. Mechanisms of Low Dose Radio-Suppression of Genomic Instability

    SciTech Connect (OSTI)

    Engelward, Bevin P

    2009-09-16

    The major goal of this project is to contribute toward the elucidation of the impact of long term low dose radiation on genomic stability. We have created and characterized novel technologies for delivering long term low dose radiation to animals, and we have studied genomic stability by applying cutting edge molecular analysis technologies. Remarkably, we have found that a dose rate that is 300X higher than background radiation does not lead to any detectable genomic damage, nor is there any significant change in gene expression for genes pertinent to the DNA damage response. These results point to the critical importance of dose rate, rather than just total dose, when evaluating public health risks and when creating regulatory guidelines. In addition to these studies, we have also further developed a mouse model for quantifying cells that have undergone a large scale DNA sequence rearrangement via homologous recombination, and we have applied these mice in studies of both low dose radiation and space radiation. In addition to more traditional approaches for assessing genomic stability, we have also explored radiation and possible beneficial effects (adaptive response), long term effects (persistent effects) and effects on communication among cells (bystander effects), both in vitro and in vivo. In terms of the adaptive response, we have not observed any significant induction of an adaptive response following long term low dose radiation in vivo, delivered at 300X background. In terms of persistent and bystander effects, we have revealed evidence of a bystander effect in vivo and with researchers at and demonstrated for the first time the molecular mechanism by which cells “remember” radiation exposure. Understanding the underlying molecular mechanisms by which radiation can induce genomic instability is fundamental to our ability to assess the biological impact of low dose radiation. Finally, in a parallel set of studies we have explored the effects of heavy iron particle radiation on large scale sequence rearrangements and we have discovered tissue specific differences in sensitivity to homologous recombination. DOE support has given rise to critical new knowledge about the biological impact of low dose rate radiation and about the underlying mechanisms that govern genomic stability in response to radiation exposure. This work has spurred interest in radiation among MIT scientists, and has fostered ongoing research projects that will continue to contribute toward our understanding of the biological effects of low dose radiation exposure.

  13. Dose homogeneity specification for reference dosimetry of nonstandard fields

    SciTech Connect (OSTI)

    Chung, Eunah; Soisson, Emilie; Seuntjens, Jan [Medical Physics Unit, McGill University, Montreal General Hospital (L5-113), 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada); Medical Physics Unit, McGill University and Department of Medical Physics, McGill University Health Centre, Montreal General Hospital (L5-113), 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada); Medical Physics Unit, McGill University, Montreal General Hospital (L5-113), 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada)

    2012-01-15

    Purpose: To investigate the sensitivity of the plan-class specific correction factor to dose distributions in composite nonstandard field dosimetry. Methods: A cylindrical water-filled PMMA phantom was constructed at the center of which reference absorbed dose could be measured. Ten different TomoTherapy-based IMRT fields were created on the CT images of the phantom. The dose distribution for each IMRT field was estimated at the position of a radiation detector or ionization chamber. The dose in each IMRT field normalized to that in a reference 10 x 10 cm{sup 2} field was measured using a PTW micro liquid ion chamber. Based on the new dosimetry formalism, a plan-class specific correction factor k{sub Q{sub p{sub c{sub s{sub r,Q}{sup f{sub p}{sub c}{sub s}{sub r},f{sub r}{sub e}{sub f}}}}}} for each field was measured for two Farmer-type chambers, Exradin A12 and NE2571, as well as for a smaller Exradin A1SL chamber. The dependence of the measured correction factor on parameters characterizing dose distribution was analyzed. Results: Uncertainty on the plan-class specific correction factor measurement was in the range of 0.3%-0.5% and 0.3%-0.8% for the Farmer-type chambers and the Exradin A1SL, respectively. When the heterogeneity of the central region of the target volume was less than 5%, the correction factor did not differ from unity by more than 0.7% for the three air-filled ionization chambers. For more heterogeneous dose deliveries, the correction factor differed from unity by up to 2.4% for the Farmer-type chambers. For the Exradin A1SL, the correction factor was closer to unity due to the reduced effect of dose gradients, while it was highly variable in different IMRT fields because of a more significant impact of positioning uncertainties on the response of this chamber. Conclusions: The authors have shown that a plan-class specific correction factor can be specified as a function of plan evaluation parameters especially for Farmer-type chambers. This work provides a recipe based on quantifying dose distribution to accurately select air-filled ionization chamber correction factors for nonstandard fields.

  14. RESMDD'02 Radiation in Life Sciences: Hartmut F.-W. Sadrozinski , SCIPP Radiation Effects in

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    for Cancer Research to induce DNA Faults #12;RESMDD'02 Radiation in Life Sciences: Hartmut F.-W. Sadrozinski Parameters to Describe Quality of Radiation · Dose & Dose Rate · Fluence & Fluence Rate · Linear EnergyVery High Repairable ?1-5Low Damage# of Ionizations (Cluster Size) LET #12;RESMDD'02 Radiation in Life

  15. Radiation physics, biophysics, and radiation biology

    SciTech Connect (OSTI)

    Hall, E.J.; Zaider, M.

    1991-05-01

    Research at the Radiological Research Laboratory is a blend of physics, chemistry, and biology, involving research at the basic level with the admixture of a small proportion of pragmatic or applied research in support of radiation protection and/or radiotherapy. Current research topics include: oncogenic transformation assays, mutation studies involving interactions between radiation and environmental contaminants, isolation, characterization and sequencing of a human repair gene, characterization of a dominant transforming gene found in C3H 10T1/2 cells, characterize ab initio the interaction of DNA and radiation, refine estimates of the radiation quality factor Q, a new mechanistic model of oncogenesis showing the role of long-term low dose medium LET radiation, and time dependent modeling of radiation induced chromosome damage and subsequent repair or misrepair.

  16. Towards robust deconvolution of low-dose perfusion CT: Sparse perfusion deconvolution using online dictionary learning

    E-Print Network [OSTI]

    Chen, Tsuhan

    in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps usingTowards robust deconvolution of low-dose perfusion CT: Sparse perfusion deconvolution using online maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement

  17. Fractional scan algorithms for low-dose perfusion CT Jiang Hsieha)

    E-Print Network [OSTI]

    Wang, Ge

    Fractional scan algorithms for low-dose perfusion CT Jiang Hsieha) GE Medical Systems, Milwaukee be reconstructed at a fraction of the nominal radiation dose. © 2004 American Asso- ciation of Physicists to perform perfusion CT at a significantly reduced x-ray dose. One method to achieve low-dose CT is to reduce

  18. Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away

    E-Print Network [OSTI]

    Brenner, David Jonathan

    in extrapolating radiation risk estimates from epidemi- ologically accessible doses down to very low doses where) and for assessing the risk from a low-dose exposure to a carcinogen such as ionizing radiation, where only a small, New York, NY 10032; Radiation Biology Laboratory, Research and Environmental Surveillance, Radiation

  19. Development of an optimal anisotropic responding (OAR) dosimeter for two-dosimeter dosimetry for better estimation of effective dose equivalent (He) and the impact of dosimeter misposition on estimating effective dose equivalent using isotropic dosimeters 

    E-Print Network [OSTI]

    Han, Hsiang-Jung

    1998-01-01

    A single dosimeter is commonly worn on a radiation worker's chest to monitor radiation exposure. However, when a radiation worker is exposed to a posterior photon beam, effective dose equivalent (HE) can be severely underestimated using a single...

  20. DOE 2010 occupational radiation exposure

    SciTech Connect (OSTI)

    none,

    2011-11-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The DOE 2010 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  1. Electromagnetic Radiation Hardness of Diamond Detectors

    E-Print Network [OSTI]

    T. Behnke; M. Doucet; N. Ghodbane; A. Imhof; C. Martinez; W. Zeuner

    2001-08-22

    The behavior of artificially grown CVD diamond films under intense electromagnetic radiation has been studied. The properties of irradiated diamond samples have been investigated using the method of thermally stimulated current and by studying their charge collection properties. Diamonds have been found to remain unaffected after doses of 6.8 MGy of 10 keV photons and 10 MGy of MeV-range photons. This observation makes diamond an attractive detector material for a calorimeter in the very forward region of the proposed TESLA detector.

  2. Hanford Environmental Dose Reconstruction Project. Monthly report

    SciTech Connect (OSTI)

    Finch, S. M.; McMakin, A. H.

    1991-09-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into five technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (i.e., dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movements of radioactive particles from the areas of release to populations. The Environmental Monitoring Data Task assemblies, evaluates and reports historical environmental monitoring data. The Demographics, Agriculture and Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. The Environmental Pathways and Dose Estimates Task used the information derived from the other Tasks to estimate the radiation doses individuals could have received from Hanford radiation. This document lists the progress on this project as of September 1991. 3 figs., 2 tabs.

  3. Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators

    SciTech Connect (OSTI)

    Belley, Matthew D.; Wang, Chu [Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States)] [Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Nguyen, Giao; Gunasingha, Rathnayaka [Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, North Carolina 27710 (United States)] [Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, North Carolina 27710 (United States); Chao, Nelson J. [Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710 and Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710 (United States)] [Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710 and Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Chen, Benny J. [Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710 (United States)] [Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710 (United States); Dewhirst, Mark W. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)] [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Yoshizumi, Terry T., E-mail: terry.yoshizumi@duke.edu [Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-03-15

    Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigninga single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs.

  4. PROBING THE COSMIC X-RAY AND MeV GAMMA-RAY BACKGROUND RADIATION...

    Office of Scientific and Technical Information (OSTI)

    ASTROPHYSICS; BACKGROUND RADIATION; BLACK HOLES; CORRELATIONS; COSMIC PHOTONS; GALAXY NUCLEI; GAMMA RADIATION; HARD X RADIATION; KEV RANGE; MEV RANGE; QUASARS; SEYFERT...

  5. Radiotherapy Dose Fractionation under Parameter Uncertainty

    SciTech Connect (OSTI)

    Davison, Matt; Kim, Daero; Keller, Harald

    2011-11-30

    In radiotherapy, radiation is directed to damage a tumor while avoiding surrounding healthy tissue. Tradeoffs ensue because dose cannot be exactly shaped to the tumor. It is particularly important to ensure that sensitive biological structures near the tumor are not damaged more than a certain amount. Biological tissue is known to have a nonlinear response to incident radiation. The linear quadratic dose response model, which requires the specification of two clinically and experimentally observed response coefficients, is commonly used to model this effect. This model yields an optimization problem giving two different types of optimal dose sequences (fractionation schedules). Which fractionation schedule is preferred depends on the response coefficients. These coefficients are uncertainly known and may differ from patient to patient. Because of this not only the expected outcomes but also the uncertainty around these outcomes are important, and it might not be prudent to select the strategy with the best expected outcome.

  6. Potential Offsite Radiological Doses Estimated for the Proposed Divine Strake Experiment, Nevada Test Site

    SciTech Connect (OSTI)

    Ron Warren

    2006-12-01

    An assessment of the potential radiation dose that residents offsite of the Nevada Test Site (NTS) might receive from the proposed Divine Strake experiment was made to determine compliance with Subpart H of Part 61 of Title 40 of the Code of Federal Regulations, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities. The Divine Strake experiment, proposed by the Defense Threat Reduction Agency, consists of a detonation of 700 tons of heavy ammonium nitrate fuel oil-emulsion above the U16b Tunnel complex in Area 16 of the NTS. Both natural radionuclides suspended, and historic fallout radionuclides resuspended from the detonation, have potential to be transported outside the NTS boundary by wind. They may, therefore, contribute radiological dose to the public. Subpart H states ''Emissions of radionuclides to the ambient air from Department of Energy facilities shall not exceed those amounts that would cause any member of the public to receive in any year an effective dose equivalent of 10 mrem/yr'' (Title 40 of the Code of Federal Regulations [CFR] 61.92) where mrem/yr is millirem per year. Furthermore, application for U.S. Environmental Protection Agency (EPA) approval of construction of a new source or modification of an existing source is required if the effective dose equivalent, caused by all emissions from the new construction or modification, is greater than or equal to 0.1 mrem/yr (40 CFR 61.96). In accordance with Section 61.93, a dose assessment was conducted with the computer model CAP88-PC, Version 3.0. In addition to this model, a dose assessment was also conducted by the National Atmospheric Release Advisory Center (NARAC) at the Lawrence Livermore National Laboratory. This modeling was conducted to obtain dose estimates from a model designed for acute releases and which addresses terrain effects and uses meteorology from multiple locations. Potential radiation dose to a hypothetical maximally exposed individual at the closest NTS boundary to the proposed Divine Strake experiment, as estimated by the CAP88-PC model, was 0.005 mrem with wind blowing directly towards that location. Boundary dose, as modeled by NARAC, ranged from about 0.006 to 0.007 mrem. Potential doses to actual offsite populated locations were generally two to five times lower still, or about 40 to 100 times lower then the 0.1 mrem level at which EPA approval is required pursuant to Section 61.96.

  7. Scintillator Waveguide For Sensing Radiation

    DOE Patents [OSTI]

    Bliss, Mary (West Richland, WA); Craig, Richard A. (West Richland, WA); Reeder; Paul L. (Richland, WA)

    2003-04-22

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  8. United States-Russian workshop on the stochastic health effects of radiation

    SciTech Connect (OSTI)

    1992-12-31

    In August 1988, two years after the Chernobyle accident, the United States and the Soviet Union signed an agreement to sponsor a Joint coordinating Committee on Civilian Nuclear Reactor Safety, (JCCCNRS). The Soviet Union agreed to provide some information on late effects of radiation exposures and to attempt to add some new insights into low dose and low dose rate radiation consequences. At that time, it had just been revealed that significant radiation exposures had occurred in the South Ural Mountains, associated with the early years of operation of the MAYAK nuclear complex. The need to be able to better predict the long term consequences of overexposures, such as occurred with the Chernobyl accident, was a major factor in organizing this workshop. We decided to invite a small number of experts from the Soviet Union, who had direct knowledge of the situation. A small group of American experts was invited to help in a discussion of the state of knowledge of continual low level exposure. The experts and expertise included: Aspects of bask theoretical radiobiological models, studies on experimental animals exposed to chronic or fractionated external or internal radiation, studies on populations exposed to chronic intake and continual exposures, workers exposed to low or high continual levels of radiation. The intent was to begin a dialog on the issue of a better understanding of the dose rate effect in humans. No detailed conclusions could be reached at this first interaction between out two countries, but a model was prepared which seems to support a range of what are known as low dose and dose rate effectiveness factors. A beginning of an evaluation of the role of radiation dose rate on leukemia risk was also accomplished.

  9. Ureteral stent insertion for gynecologic interstitial high-dose-rate brachytherapy

    E-Print Network [OSTI]

    2015-01-01

    gynecologic interstitial brachytherapy. Int J Radiat OncolBrachytherapy Ureteral stent insertion forhigh-dose-rate brachytherapy D. Jeffrey Demanes*, Robyn

  10. Gamma Radiation Dose Rate in Air due to Terrestrial Radionuclides in Southern Brazil: Synthesis by Geological Units and Lithotypes Covered by the Serra do Mar Sul Aero-Geophysical Project

    SciTech Connect (OSTI)

    Bastos, Rodrigo O.; Appoloni, Carlos R. [Applied Nuclear Physics Laboratory-Department of Physics-CCE State University of Londrina Campus Universitario-Rodovia Celso Garcia Cid s/n, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil); Pinese, Jose P. P. [Department of Geosciences-CCE State University of Londrina Campus Universitario-Rodovia Celso Garcia Cid s/n, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil)

    2008-08-07

    The absorbed dose rates in air due to terrestrial radionuclides were estimated from aerial gamma spectrometric data for an area of 48,600 km{sup 2} in Southern Brazil. The source data was the Serra do Mar Sul Aero-Geophysical Project back-calibrated in a cooperative work among the Geological Survey of Brazil, the Geological Survey of Canada, and Paterson, Grant and Watson Ltd. The concentrations of eU (ppm), eTh (ppm) and K (%) were converted to dose rates in air (nGy{center_dot}h{sup -1}) by accounting for the contribution of each element's concentration. Regional variation was interpreted according to lithotypes and a synthesis was performed according to the basic geological units present in the area. Higher values of total dose were estimated for felsic igneous and metamorphic rocks, with average values varying up to 119{+-}24 nGy{center_dot}h{sup -1}, obtained by Anitapolis syenite body. Sedimentary, metasedimentary and metamafic rocks presented the lower dose levels, and some beach deposits reached the lowest average total dose, 18.5{+-}8.2 nGy{center_dot}h{sup -1}. Thorium gives the main average contribution in all geological units, the highest value being reached by the nebulitic gneisses of Atuba Complex, 71{+-}23 nGy{center_dot}h{sup -1}. Potassium presents the lowest average contribution to dose rate in 53 of the 72 units analyzed, the highest contribution being obtained by intrusive alkaline bodies (28{+-}12 nGy{center_dot}h{sup -1}). The general pattern of geographic dose distribution respects well the hypotheses on geo-physicochemical behavior of radioactive elements.

  11. Total dose and dose rate models for bipolar transistors in circuit simulation.

    SciTech Connect (OSTI)

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  12. Poster Session 08: Bystander and other Low Dose Effect Response of 5 hpf zebrafish embryos to low-dose microbeam protons

    E-Print Network [OSTI]

    Yu, Peter K.N.

    Poster Session 08: Bystander and other Low Dose Effect Response of 5 hpf zebrafish embryos to low-dose. Broken line: same as the one shown in (a) for comparison. Journal of Radiation Research, 2014, 55, i113 of The Japan Radiation Research Society and Japanese Society for Therapeutic Radiology and Oncology

  13. Measurement and comparison of individual external doses of high-school students living in Japan, France, Poland and Belarus -- the "D-shuttle" project --

    E-Print Network [OSTI]

    Adachi, N; Adjovi, Y; Aida, K; Akamatsu, H; Akiyama, S; Akli, A; Ando, A; Andrault, T; Antonietti, H; Anzai, S; Arkoun, G; Avenoso, C; Ayrault, D; Banasiewicz, M; Bana?kiewicz, M; Bernandini, L; Bernard, E; Berthet, E; Blanchard, M; Boreyko, D; Boros, K; Charron, S; Cornette, P; Czerkas, K; Dameron, M; Date, I; De Pontbriand, M; Demangeau, F; Dobaczewski, ?; Dobrzy?ski, L; Ducouret, A; Dziedzic, M; Ecalle, A; Edon, V; Endo, K; Endo, T; Endo, Y; Etryk, D; Fabiszewska, M; Fang, S; Fauchier, D; Felici, F; Fujiwara, Y; Gardais, C; Gaul, W; Guérin, L; Hakoda, R; Hamamatsu, I; Handa, K; Haneda, H; Hara, T; Hashimoto, M; Hashimoto, T; Hashimoto, K; Hata, D; Hattori, M; Hayano, R; Hayashi, R; Higasi, H; Hiruta, M; Honda, A; Horikawa, Y; Horiuchi, H; Hozumi, Y; Ide, M; Ihara, S; Ikoma, T; Inohara, Y; Itazu, M; Ito, A; Janvrin, J; Jout, I; Kanda, H; Kanemori, G; Kanno, M; Kanomata, N; Kato, T; Kato, S; Katsu, J; Kawasaki, Y; Kikuchi, K; Kilian, P; Kimura, N; Kiya, M; Klepuszewski, M; Kluchnikov, E; Kodama, Y; Kokubun, R; Konishi, F; Konno, A; Kontsevoy, V; Koori, A; Koutaka, A; Kowol, A; Koyama, Y; Kozio?, M; Kozue, M; Kravtchenko, O; Krucza?a, W; Kud?a, M; Kudo, H; Kumagai, R; Kurogome, K; Kurosu, A; Kuse, M; Lacombe, A; Lefaillet, E; Magara, M; Malinowska, J; Malinowski, M; Maroselli, V; Masui, Y; Matsukawa, K; Matsuya, K; Matusik, B; Maulny, M; Mazur, P; Miyake, C; Miyamoto, Y; Miyata, K; Miyata, K; Miyazaki, M; Mol?da, M; Morioka, T; Morita, E; Muto, K; Nadamoto, H; Nadzikiewicz, M; Nagashima, K; Nakade, M; Nakayama, C; Nakazawa, H; Nihei, Y; Nikul, R; Niwa, S; Niwa, O; Nogi, M; Nomura, K; Ogata, D; Ohguchi, H; Ohno, J; Okabe, M; Okada, M; Okada, Y; Omi, N; Onodera, H; Onodera, K; Ooki, S; Oonishi, K; Oonuma, H; Ooshima, H; Oouchi, H; Orsucci, M; Paoli, M; Penaud, M; Perdrisot, C; Petit, M; Piskowski, A; P?ocharski, A; Polis, A; Polti, L; Potsepnia, T; Przybylski, D; Pytel, M; Quillet, W; Remy, A; Robert, C; Sadowski, M; Saito, M; Sakuma, D; Sano, K; Sasaki, Y; Sato, N; Schneider, T; Schneider, C; Schwartzman, K; Selivanov, E; Sezaki, M; Shiroishi, K; Shustava, I; ?nieci?ska, A; Stalchenko, E; Staro?, A; Stromboni, M; Studzi?ska, W; Sugisaki, H; Sukegawa, T; Sumida, M; Suzuki, Y; Suzuki, K; Suzuki, R; Suzuki, H; Suzuki, K; ?widerski, W; Szudejko, M; Szymaszek, M; Tada, J; Taguchi, H; Takahashi, K; Tanaka, D; Tanaka, G; Tanaka, S; Tanino, K; Tazbir, K; Tcesnokova, N; Tgawa, N; Toda, N; Tsuchiya, H; Tsukamoto, H; Tsushima, T; Tsutsumi, K; Umemura, H; Uno, M; Usui, A; Utsumi, H; Vaucelle, M; Wada, Y; Watanabe, K; Watanabe, S; Watase, K; Witkowski, M; Yamaki, T; Yamamoto, J; Yamamoto, T; Yamashita, M; Yanai, M; Yasuda, K; Yoshida, Y; Yoshida, A; Yoshimura, K; ?mijewska, M; Zuclarelli, E

    2015-01-01

    Twelve high schools in Japan (of which six are in Fukushima Prefecture), four in France, eight in Poland and two in Belarus cooperated in the measurement and comparison of individual external doses in 2014. In total 216 high-school students and teachers participated in the study. Each participant wore an electronic personal dosimeter "D-shuttle" for two weeks, and kept a journal of his/her whereabouts and activities. The distributions of annual external doses estimated for each region overlap with each other, demonstrating that the personal external individual doses in locations where residence is currently allowed in Fukushima Prefecture and in Belarus are well within the range of estimated annual doses due to the background radiation level of other regions/countries.

  14. High dose rate intraluminal irradiation in recurrent endobronchial carcinoma

    SciTech Connect (OSTI)

    Seagren, S.L.; Harrell, J.H.; Horn, R.A.

    1985-12-01

    Palliative therapy for previously irradiated patients with symptomatic recurrent endobronchial malignancy is a difficult problem. We have had the opportunity to treat 20 such patients with high dose rate (50-100 rad/min) endobronchial brachytherapy. Eligible patients had received previous high dose thoracic irradiation (TDF greater than or equal to 90), a performance status of greater than or equal to 50, and symptoms caused by a bronchoscopically defined and implantable lesion. The radiation is produced by a small cobalt-60 source (0.7 Ci) remotely afterloaded by cable control. The source is fed into a 4 mm diameter catheter which is placed with bronchoscopic guidance; it may oscillate if necessary to cover the lesion. A dose of 1,000 rad at 1 cm from the source is delivered. We have performed 22 procedures in 20 patients, four following YAG laser debulking. Most had cough, some with hemoptysis. Eight had dyspnea secondary to obstruction and three had obstructive pneumonitis. In 12, symptoms recurred with a mean time to recurrence of 4.3 months (range 1-9 months). Eighteen patients were followed-up and reexamined via bronchoscope 1-2.5 months following the procedure; two were lost to follow-up. All had at least 50 percent clearance of tumor, and six had complete clearance; most regressions were documented on film or videotape. In six, the palliation was durable. The procedure has been well tolerated with no toxicity. We conclude that palliative endobronchial high dose rate brachytherapy is a useful palliative modality in patients with recurrent endobronchial symptomatic carcinoma.

  15. Enjebi Island dose assessment

    SciTech Connect (OSTI)

    Robison, W.L.; Conrado, C.L.; Phillips, W.A.

    1987-07-01

    We have updeated the radiological dose assessment for Enjebi Island at Enewetak Atoll using data derived from analysis of food crops grown on Enjebi. This is a much more precise assessment of potential doses to people resettling Enjebi Island than the 1980 assessment in which there were no data available from food crops on Enjebi. Details of the methods and data used to evaluate each exposure pathway are presented. The terrestrial food chain is the most significant potential exposure pathway and /sup 137/Cs is the radionuclide responsible for most of the estimated dose over the next 50 y. The doses are calculated assuming a resettlement date of 1990. The average wholebody maximum annual estimated dose equivalent derived using our diet model is 166 mremy;the effective dose equivalent is 169 mremy. The estimated 30-, 50-, and 70-y integral whole-body dose equivalents are 3.5 rem, 5.1 rem, and 6.2 rem, respectively. Bone-marrow dose equivalents are only slightly higher than the whole-body estimates in each case. The bone-surface cells (endosteal cells) receive the highest dose, but they are a less sensitive cell population and are less sensitive to fatal cancer induction than whole body and bone marrow. The effective dose equivalents for 30, 50, and 70 y are 3.6 rem, 5.3 rem, and 6.6 rem, respectively. 79 refs., 17 figs., 24 tabs

  16. Dosimetric Analysis of Radiation-induced Gastric Bleeding

    SciTech Connect (OSTI)

    Feng, Mary, E-mail: maryfeng@umich.edu [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States); Normolle, Daniel [Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (United States)] [Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Pan, Charlie C. [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States); Dawson, Laura A. [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada)] [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Amarnath, Sudha [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States); Ensminger, William D. [Department of Internal Medicine, Division of Hematology Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States)] [Department of Internal Medicine, Division of Hematology Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States); Lawrence, Theodore S.; Ten Haken, Randall K. [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States)

    2012-09-01

    Purpose: Radiation-induced gastric bleeding has been poorly understood. In this study, we described dosimetric predictors for gastric bleeding after fractionated radiation therapy. Methods and Materials: The records of 139 sequential patients treated with 3-dimensional conformal radiation therapy (3D-CRT) for intrahepatic malignancies were reviewed. Median follow-up was 7.4 months. The parameters of a Lyman normal tissue complication probability (NTCP) model for the occurrence of {>=}grade 3 gastric bleed, adjusted for cirrhosis, were fitted to the data. The principle of maximum likelihood was used to estimate parameters for NTCP models. Results: Sixteen of 116 evaluable patients (14%) developed gastric bleeds at a median time of 4.0 months (mean, 6.5 months; range, 2.1-28.3 months) following completion of RT. The median and mean maximum doses to the stomach were 61 and 63 Gy (range, 46-86 Gy), respectively, after biocorrection of each part of the 3D dose distributions to equivalent 2-Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis predicted gastric bleed. Best-fit Lyman NTCP model parameters were n=0.10 and m=0.21 and with TD{sub 50} (normal) = 56 Gy and TD{sub 50} (cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD{sub 50} value for the cirrhosis patients points out their greater sensitivity. Conclusions: This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation.

  17. Derivation of dose conversion factors for tritium

    SciTech Connect (OSTI)

    Killough, G. G.

    1982-03-01

    For a given intake mode (ingestion, inhalation, absorption through the skin), a dose conversion factor (DCF) is the committed dose equivalent to a specified organ of an individual per unit intake of a radionuclide. One also may consider the effective dose commitment per unit intake, which is a weighted average of organ-specific DCFs, with weights proportional to risks associated with stochastic radiation-induced fatal health effects, as defined by Publication 26 of the International Commission on Radiological Protection (ICRP). This report derives and tabulates organ-specific dose conversion factors and the effective dose commitment per unit intake of tritium. These factors are based on a steady-state model of hydrogen in the tissues of ICRP's Reference Man (ICRP Publication 23) and equilibrium of specific activities between body water and other tissues. The results differ by 27 to 33% from the estimate on which ICRP Publication 30 recommendations are based. The report also examines a dynamic model of tritium retention in body water, mineral bone, and two compartments representing organically-bound hydrogen. This model is compared with data from human subjects who were observed for extended periods. The manner of combining the dose conversion factors with measured or model-predicted levels of contamination in man's exposure media (air, drinking water, soil moisture) to estimate dose rate to an individual is briefly discussed.

  18. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  19. REVIEW ARTICLE Radiation Biology in Brachytherapy

    E-Print Network [OSTI]

    Brenner, David Jonathan

    , is reviewed with emphasis on low dose rate (LDR brachytherapy). Some of the newer alternatives that have the potential to reduce drastically the radiation dose to which staff and visitors are exposed. The biological, and continues to be used extensively in Europe, is reviewed with emphasis on low dose rate (LDR) brachytherapy

  20. Poster — Thur Eve — 42: Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    SciTech Connect (OSTI)

    Morrison, H; Menon, G; Sloboda, R

    2014-08-15

    The purpose of this study was to investigate the accuracy of radiochromic film calibration procedures used in external beam radiotherapy when applied to I-125 brachytherapy sources delivering higher doses, and to determine any necessary modifications to achieve similar accuracy in absolute dose measurements. GafChromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 6 MV, 75 kVp and (?28 keV) I-125 photon sources. A custom phantom was used for the I-125 irradiations to obtain a larger film area with nearly constant dose to reduce the effects of film heterogeneities on the optical density (OD) measurements. RGB transmission images were obtained with an Epson 10000XL flatbed scanner, and calibration curves relating OD and dose using a rational function were determined for each colour channel and at each energy using a non-linear least square minimization method. Differences found between the 6 MV calibration curve and those for the lower energy sources are large enough that 6 MV beams should not be used to calibrate film for low-energy sources. However, differences between the 75 kVp and I-125 calibration curves were quite small; indicating that 75 kVp is a good choice. Compared with I-125 irradiation, this gives the advantages of lower type B uncertainties and markedly reduced irradiation time. To obtain high accuracy calibration for the dose range up to 35 Gy, two-segment piece-wise fitting was required. This yielded absolute dose measurement accuracy above 1 Gy of ?2% for 75 kVp and ?5% for I-125 seed exposures.

  1. SU-E-I-62: Assessing Radiation Dose Reduction and CT Image Optimization Through the Measurement and Analysis of the Detector Quantum Efficiency (DQE) of CT Images Using Different Beam Hardening Filters

    SciTech Connect (OSTI)

    Collier, J; Aldoohan, S; Gill, K

    2014-06-01

    Purpose: Reducing patient dose while maintaining (or even improving) image quality is one of the foremost goals in CT imaging. To this end, we consider the feasibility of optimizing CT scan protocols in conjunction with the application of different beam-hardening filtrations and assess this augmentation through noise-power spectrum (NPS) and detector quantum efficiency (DQE) analysis. Methods: American College of Radiology (ACR) and Catphan phantoms (The Phantom Laboratory) were scanned with a 64 slice CT scanner when additional filtration of thickness and composition (e.g., copper, nickel, tantalum, titanium, and tungsten) had been applied. A MATLAB-based code was employed to calculate the image of noise NPS. The Catphan Image Owl software suite was then used to compute the modulated transfer function (MTF) responses of the scanner. The DQE for each additional filter, including the inherent filtration, was then computed from these values. Finally, CT dose index (CTDIvol) values were obtained for each applied filtration through the use of a 100 mm pencil ionization chamber and CT dose phantom. Results: NPS, MTF, and DQE values were computed for each applied filtration and compared to the reference case of inherent beam-hardening filtration only. Results showed that the NPS values were reduced between 5 and 12% compared to inherent filtration case. Additionally, CTDIvol values were reduced between 15 and 27% depending on the composition of filtration applied. However, no noticeable changes in image contrast-to-noise ratios were noted. Conclusion: The reduction in the quanta noise section of the NPS profile found in this phantom-based study is encouraging. The reduction in both noise and dose through the application of beam-hardening filters is reflected in our phantom image quality. However, further investigation is needed to ascertain the applicability of this approach to reducing patient dose while maintaining diagnostically acceptable image qualities in a clinical setting.

  2. What is the probability that radiation caused a particular cancer

    SciTech Connect (OSTI)

    Voelz, G.L.

    1983-01-01

    Courts, lawyers, health physicists, physicians, and others are searching for a credible answer to the question posed in the title of this paper. The cases in which the question arises frequently stem from an individual that has cancer and they, or their next-of-kin, are convinced that a past radiation exposure - usually small - is responsible for causing it. An arithmetic expression of this problem is simple: the probability of causation by the radiation dose in question is equal to the risk of cancer from the radiation dose divided by the risk of cancer from all causes. The application of risk factors to this equation is not so simple. It must involve careful evaluation of the reliability of and variations in risk coefficients for development of cancer due to radiation exposure, other carcinogenic agents, and natural causes for the particular individual. Examination of our knowledge of these various factors indicates that a large range in the answers can result due to the variability and imprecision of the data. Nevertheless, the attempts to calculate and the probability that radiation caused the cancer is extremely useful to provide a gross perspective on the probability of causation. It will likely rule in or out a significant number of cases despite the limitations in our understandings of the etiology of cancer and the risks from various factors. For the remaining cases, a thoughtful and educated judgment based on selected data and circumstances of the case will also be needed before the expert can develop and support his opinion.

  3. Radiation Protection Policy for Pregnant Workers Procedure: 7.40 Created: 02/03/2005

    E-Print Network [OSTI]

    Jia, Songtao

    the radiation dose to the embryo/fetus within the above limits and As Low As Reasonably Achievable (ALARA

  4. Chromosomal "Fingerprints" of Prior Exposure to Densely Ionizing Radiation

    E-Print Network [OSTI]

    Brenner, David Jonathan

    be detected and measured long after radiation exposure. Specifically, they produce an anomalously low ratio (F doses of densely ionizing radiation, such as a particles or neutrons. Consequently, determina- tion ion- izing radiation doses is an important societal and legal issue. Thus there has been considerable

  5. SU-E-T-79: Comparison of Doses Received by the Hippocampus in Patients Treated with Single Vs Multiple Isocenter Based Stereotactic Radiation Therapy to the Brain for Multiple Brain Metastases

    SciTech Connect (OSTI)

    Algan, O; Giem, J; Young, J; Ali, I; Ahmad, S; Hossain, S

    2014-06-01

    Purpose: To investigate the doses received by the hippocampus and normal brain tissue during a course of stereotactic radiotherapy utilizing a single isocenter (SI) versus multiple isocenter (MI) in patients with multiple intracranial metastases. Methods: Seven patients imaged with MRI including SPGR sequence and diagnosed with 2–3 brain metastases were included in this retrospective study. Two sets of stereotactic IMRT treatment plans, (MI vs SI), were generated. The hippocampus was contoured on SPGR sequences and doses received by the hippocampus and whole brain were calculated. The prescribed dose was 25Gy in 5 fractions. The two groups were compared using t-test analysis. Results: There were 17 lesions in 7 patients. The median tumor, right hippocampus, left hippocampus and brain volumes were: 3.37cc, 2.56cc, 3.28cc, and 1417cc respectively. In comparing the two treatment plans, there was no difference in the PTV coverage except in the tail of the DVH curve. All tumors had V95 > 99.5%. The only statistically significant parameter was the V100 (72% vs 45%, p=0.002, favoring MI). All other evaluated parameters including the V95 and V98 did not reveal any statistically significant differences. None of the evaluated dosimetric parameters for the hippocampus (V100, V80, V60, V40, V20, V10, D100, D90, D70, D50, D30, D10) revealed any statistically significant differences (all p-values > 0.31) between MI and SI plans. The total brain dose was slightly higher in the SI plans, especially in the lower dose regions, although this difference was not statistically significant. Utilizing brain-sub-PTV volumes did not change these results. Conclusion: The use of SI treatment planning for patients with up to 3 brain metastases produces similar PTV coverage and similar normal tissue doses to the hippocampus and the brain compared to MI plans. SI treatment planning should be considered in patients with multiple brain metastases undergoing stereotactic treatment.

  6. Brain necrosis after fractionated radiation therapy: Is the halftime for repair longer than we thought?

    SciTech Connect (OSTI)

    Bender, Edward T.

    2012-11-15

    Purpose: To derive a radiobiological model that enables the estimation of brain necrosis and spinal cord myelopathy rates for a variety of fractionation schemes, and to compare repair effects between brain and spinal cord. Methods: Sigmoidal dose response relationships for brain radiation necrosis and spinal cord myelopathy are derived from clinical data using nonlinear regression. Three different repair models are considered and the repair halftimes are included as regression parameters. Results: For radiation necrosis, a repair halftime of 38.1 (range 6.9-76) h is found with monoexponential repair, while for spinal cord myelopathy, a repair halftime of 4.1 (range 0-8) h is found. The best-fit alpha beta ratio is 0.96 (range 0.24-1.73)Conclusions: A radiobiological model that includes repair corrections can describe the clinical data for a variety of fraction sizes, fractionation schedules, and total doses. Modeling suggests a relatively long repair halftime for brain necrosis. This study suggests that the repair halftime for late radiation effects in the brain may be longer than is currently thought. If confirmed in future studies, this may lead to a re-evaluation of radiation fractionation schedules for some CNS diseases, particularly for those diseases where fractionated stereotactic radiation therapy is used.

  7. Effects of exogenous carbon monoxide on radiation-induced bystander effect in zebrafish embryos in vivo

    E-Print Network [OSTI]

    Yu, Peter K.N.

    that the dose-response of radiation in the low-dose regime deviated from the LNT model. A notable example radiation are linearly proportional to the absorbed dose, evidence accumulated in the past decades showed as a pharmaceutical agent to release a low dose of exogenous carbon monoxide (CO) to attenuate the effect on bystander

  8. RADIATION RESEARCH 165, 240247 (2006) 0033-7587/06 $15.00

    E-Print Network [OSTI]

    Rocke, David M.

    2006-01-01

    of the Effects of Low-Dose Ionizing Radiation in Radiation Therapy Patients Joerg Lehmann,a,b,1 Robin L. Stern by Radiation Research Society INTRODUCTION The significance of the biological activity of low-dose ionizing., Hartmann Siantar, C. L. and Goldberg, Z. Dosimetry for Quantitative Analysis of the Effects of Low-Dose

  9. CONTROVERSIAL ISSUES CONFRONTING THE BEIR III COMMITTEE---IMPLICATIONS FOR RADIATION PROTECTION

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01

    t s of risk from low-dose, low-LET radiation.. The Committeec u r v e f o r to low doses. radiation carcinogenesis,risk of low-dose, low-LET, whole-body radiation. Here, to

  10. Radiation dosimeters

    DOE Patents [OSTI]

    Hoelsher, James W. (Pullman, WA); Hegland, Joel E. (Pullman, WA); Braunlich, Peter F. (Pullman, WA); Tetzlaff, Wolfgang (Pullman, WA)

    1992-01-01

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  11. The image quality of ion computed tomography at clinical imaging dose levels

    SciTech Connect (OSTI)

    Hansen, David C., E-mail: dch@oncology.au.dk [Department of Experimental Clinical Oncology, Aarhus University Hospital, 8000 Aarhus (Denmark); Bassler, Niels [Department of Physics and Astronomy, Aarhus University, 8000 Aarhus (Denmark); Sørensen, Thomas Sangild [Department of Computer Science, Aarhus University, 8000 Aarhus, Denmark and Department of Clinical Medicine, Aarhus University, 8000 Aarhus (Denmark); Seco, Joao [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School,Boston, Massachusetts 02114 (United States)

    2014-11-01

    Purpose: Accurately predicting the range of radiotherapy ions in vivo is important for the precise delivery of dose in particle therapy. Range uncertainty is currently the single largest contribution to the dose margins used in planning and leads to a higher dose to normal tissue. The use of ion CT has been proposed as a method to improve the range uncertainty and thereby reduce dose to normal tissue of the patient. A wide variety of ions have been proposed and studied for this purpose, but no studies evaluate the image quality obtained with different ions in a consistent manner. However, imaging doses ion CT is a concern which may limit the obtainable image quality. In addition, the imaging doses reported have not been directly comparable with x-ray CT doses due to the different biological impacts of ion radiation. The purpose of this work is to develop a robust methodology for comparing the image quality of ion CT with respect to particle therapy, taking into account different reconstruction methods and ion species. Methods: A comparison of different ions and energies was made. Ion CT projections were simulated for five different scenarios: Protons at 230 and 330 MeV, helium ions at 230 MeV/u, and carbon ions at 430 MeV/u. Maps of the water equivalent stopping power were reconstructed using a weighted least squares method. The dose was evaluated via a quality factor weighted CT dose index called the CT dose equivalent index (CTDEI). Spatial resolution was measured by the modulation transfer function. This was done by a noise-robust fit to the edge spread function. Second, the image quality as a function of the number of scanning angles was evaluated for protons at 230 MeV. In the resolution study, the CTDEI was fixed to 10 mSv, similar to a typical x-ray CT scan. Finally, scans at a range of CTDEI’s were done, to evaluate dose influence on reconstruction error. Results: All ions yielded accurate stopping power estimates, none of which were statistically different from the ground truth image. Resolution (as defined by the modulation transfer function = 10% point) was the best for the helium ions (18.21 line pairs/cm) and worst for the lower energy protons (9.37 line pairs/cm). The weighted quality factor for the different ions ranged from 1.23 for helium to 2.35 for carbon ions. For the angle study, a sharp increase in absolute error was observed below 45 distinct angles, giving the impression of a threshold, rather than smooth, limit to the number of angles. Conclusions: The method presented for comparing various ion CT modalities is feasible for practical use. While all studied ions would improve upon x-ray CT for particle range estimation, helium appears to give the best results and deserves further study for imaging.

  12. Technical Reports Ultra-low Dose Lung CT Perfusion Regularized by

    E-Print Network [OSTI]

    Wang, Ge

    Technical Reports Ultra-low Dose Lung CT Perfusion Regularized by a Previous Scan1 Hengyong Yu, Ph­regularized reconstruction (PSRR) method was proposed to reduce radiation dose and applied to lung perfusion studies. Normal and ultra-low-dose lung computed tomographic perfusion studies were compared in terms of the estimation

  13. High-dose radioiodine treatment for differentiated thyroid carcinoma is not associated with change in female fertility or any genetic risk to the offspring

    SciTech Connect (OSTI)

    Bal, Chandrasekhar . E-mail: csbal@hotmail.com; Kumar, Ajay; Tripathi, Madhavi; Chandrashekar, Narayana; Phom, Hentok; Murali, Nadig R.; Chandra, Prem; Pant, Gauri S.

    2005-10-01

    Background: We tried to evaluate the female fertility and genetic risk to the offspring from the exposure to high-dose {sup 131}I by assessing the pregnancy outcomes and health status of the children of female patients with differentiated thyroid cancer who had received therapeutic doses of {sup 131}I. Materials and Methods: From 1967 to 2002, a total of 1,282 women had been treated with {sup 131}I. Of these patients, 692 (54%) were in the reproductive age group (18-45 years). Forty women had a total of 50 pregnancies after high-dose {sup 131}I. Age at presentation ranged from 16 to 36 years (mean, 23 {+-} 4 years). Histopathology was papillary thyroid cancer in 32 cases and follicular thyroid cancer in 8 cases. Results: Single high-dose therapy was given in 30 cases, 2 doses were given in 7 cases, 3 doses were given in 2 cases, and four doses were given in 1 case in which lung metastases had occurred. In 37 patients (92%), disease was successfully ablated before pregnancy. Ovarian absorbed-radiation dose calculated by the MIRD method ranged from 3.5 to 60 cGy (mean, 12 {+-} 11 cGy). The interval between {sup 131}I therapy and pregnancy varied from 7 to 120 months (37.4 {+-} 28.2 months). Three spontaneous abortions occurred in 2 women. Forty-seven babies (20 females and 27 males) were born. Forty-four babies were healthy with normal birth weight and normal developmental milestones. Twenty women delivered their first baby after {sup 131}I therapy. The youngest child in our series is 11 months of age, and the oldest is 8.5 years of age. Conclusions: Female fertility is not affected by high-dose radioiodine treatment, and the therapy does not appear to be associated with any genetic risks to the offspring.

  14. Neurodegeneration and adaptation in response to low-dose photon irradiation

    SciTech Connect (OSTI)

    Limoli, Charles L.

    2014-10-27

    Neural stem and precursor cells (i.e. multipotent neural cells) are concentrated in the neurogenic regions of the brain (hippocampal dentate gyrus, subventricular zones), and considerable evidence suggests that these cells are important in mediating the stress response of the CNS after damage from ionizing radiation. The capability of these cells to proliferate, migrate and differentiate (i.e. to undergo neurogenesis) suggests they can participate in the repair and maintenance of CNS functions by replacing brain cells damaged or depleted due to irradiation. Importantly, we have shown that multipotent neural cells are markedly sensitive to irradiation and oxidative stress, insults that compromise neurogenesis and hasten the onset and progression of degenerative processes that are likely to have an adverse impact on cognition. Our past and current work has demonstrated that relatively low doses of radiation cause a persistent (weeks-months) oxidative stress in multipotent neural cells that can elicit a range of degenerative sequelae in the CNS. Therefore, our project is focused on determining the extent that endogenous and redox sensitive multipotent neural cells represent important radioresponsive targets for low dose radiation effects. We hypothesize that the activation of redox sensitive signaling can trigger radioadaptive changes in these cells that can be either harmful or beneficial to overall cognitive health.

  15. Assessment of the point-source method for estimating dose rates to members of the public from exposure to patients with 131I thyroid treatment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dewji, Shaheen Azim; Bellamy, Michael B.; Hertel, Nolan E.; Leggett, Richard Wayne; Sherbini, Sami; Saba, Mohammad S.; Eckerman, Keith F.

    2015-09-01

    The U.S. Nuclear Regulatory Commission (USNRC) initiated a contract with Oak Ridge National Laboratory (ORNL) to calculate radiation dose rates to members of the public that may result from exposure to patients recently administered iodine-131 (131I) as part of medical therapy. The main purpose was to compare dose rate estimates based on a point source and target with values derived from more realistic simulations that considered the time-dependent distribution of 131I in the patient and attenuation of emitted photons by the patient’s tissues. The external dose rate estimates were derived using Monte Carlo methods and two representations of the Phantommore »with Movable Arms and Legs, previously developed by ORNL and the USNRC, to model the patient and a nearby member of the public. Dose rates to tissues and effective dose rates were calculated for distances ranging from 10 to 300 cm between the phantoms and compared to estimates based on the point-source method, as well as to results of previous studies that estimated exposure from 131I patients. The point-source method overestimates dose rates to members of the public in very close proximity to an 131I patient but is a broadly accurate method of dose rate estimation at separation distances of 300 cm or more at times closer to administration.« less

  16. Radiation Safety Edward O'Connell

    E-Print Network [OSTI]

    /Bureau of Environmental Radiation Protection (BERP) · Regulatory Compliance ­ State Sanitary 16 · Required Radiation to cause ionization depends on the energy #12;Radiation Can Cause Ionization #12;Units of Measurements millirem per year. · At 50,000 feet, the dose rate is about 1 millirem per hour. · There are areas

  17. RANGE-ENERGY TABLES

    E-Print Network [OSTI]

    Rich, Marvin

    2010-01-01

    Particles. II. PROTON RANGE-ENERGY DATA Stopping Medium: Be2301 III. PION RANGE-ENERGY DATA Mev. Pion Kinetic Energy2301 IV. DEUTERON RANGE-ENERGY DATA Deuteron Kinetic Energy

  18. Minibeam radiation therapy for the management of osteosarcomas: A Monte Carlo study

    SciTech Connect (OSTI)

    Martínez-Rovira, I.; Prezado, Y.

    2014-06-15

    Purpose: Minibeam radiation therapy (MBRT) exploits the well-established tissue-sparing effect provided by the combination of submillimetric field sizes and a spatial fractionation of the dose. The aim of this work is to evaluate the feasibility and potential therapeutic gain of MBRT, in comparison with conventional radiotherapy, for osteosarcoma treatments. Methods: Monte Carlo simulations (PENELOPE/PENEASY code) were used as a method to study the dose distributions resulting from MBRT irradiations of a rat femur and a realistic human femur phantoms. As a figure of merit, peak and valley doses and peak-to-valley dose ratios (PVDR) were assessed. Conversion of absorbed dose to normalized total dose (NTD) was performed in the human case. Several field sizes and irradiation geometries were evaluated. Results: It is feasible to deliver a uniform dose distribution in the target while the healthy tissue benefits from a spatial fractionation of the dose. Very high PVDR values (?20) were achieved in the entrance beam path in the rat case. PVDR values ranged from 2 to 9 in the human phantom. NTD{sub 2.0} of 87 Gy might be reached in the tumor in the human femur while the healthy tissues might receive valley NTD{sub 2.0} lower than 20 Gy. The doses in the tumor and healthy tissues might be significantly higher and lower than the ones commonly delivered used in conventional radiotherapy. Conclusions: The obtained dose distributions indicate that a gain in normal tissue sparing might be expected. This would allow the use of higher (and potentially curative) doses in the tumor. Biological experiments are warranted.

  19. Incidence of Second Malignancies Among Patients Treated With Proton Versus Photon Radiation

    SciTech Connect (OSTI)

    Chung, Christine S., E-mail: chungc1@sutterhealth.org [Department of Radiation Oncology, Alta Bates Summit Medical Center, Berkeley, California (United States); Yock, Torunn I. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Nelson, Kerrie [Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts (United States); Xu, Yang [Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts (United States); Keating, Nancy L. [Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts (United States); Department of General Internal Medicine, Brigham and Women's Hospital, Boston, Massachusetts (United States); Tarbell, Nancy J. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Office of the Executive Dean, Harvard Medical School, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: Proton radiation, when compared with photon radiation, allows delivery of increased radiation dose to the tumor while decreasing dose to adjacent critical structures. Given the recent expansion of proton facilities in the United States, the long-term sequelae of proton therapy should be carefully assessed. The objective of this study was to compare the incidence of second cancers in patients treated with proton radiation with a population-based cohort of matched patients treated with photon radiation. Methods and Materials: We performed a retrospective cohort study of 558 patients treated with proton radiation from 1973 to 2001 at the Harvard Cyclotron in Cambridge, MA and 558 matched patients treated with photon therapy in the Surveillance, Epidemiology, and End Results (SEER) Program cancer registry. Patients were matched by age at radiation treatment, sex, year of treatment, cancer histology, and site. The main outcome measure was the incidence of second malignancies after radiation. Results: We matched 558 proton patients with 558 photon patients from the Surveillance, Epidemiology, and End Results registry. The median duration of follow-up was 6.7 years (interquartile range, 7.4) and 6.0 years (interquartile range, 9.3) in the proton and photon cohorts, respectively. The median age at treatment was 59 years in each cohort. Second malignancies occurred in 29 proton patients (5.2%) and 42 photon patients (7.5%). After we adjusted for sex, age at treatment, primary site, and year of diagnosis, proton therapy was not associated with an increased risk of second malignancy (adjusted hazard ratio, 0.52 [95% confidence interval, 0.32-0.85]; P=.009). Conclusions: The use of proton radiation therapy was not associated with a significantly increased risk of secondary malignancies compared with photon therapy. Longer follow-up of these patients is needed to determine if there is a significant decrease in second malignancies. Given the limitations of the study, these results should be viewed as hypothesis generating.

  20. Phase 1 Study of Dose Escalation in Hypofractionated Proton Beam Therapy for Non-Small Cell Lung Cancer

    SciTech Connect (OSTI)

    Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gillin, Michael [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wei, Caimiao [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lin, Steven H.; Swanick, Cameron; Alvarado, Tina; Komaki, Ritsuko; Cox, James D.; Chang, Joe Y. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-07-15

    Background: Many patients with locally advanced non-small cell lung cancer (NSCLC) cannot undergo concurrent chemotherapy because of comorbidities or poor performance status. Hypofractionated radiation regimens, if tolerable, may provide an option to these patients for effective local control. Methods and Materials: Twenty-five patients were enrolled in a phase 1 dose-escalation trial of proton beam therapy (PBT) from September 2010 through July 2012. Eligible patients had histologically documented lung cancer, thymic tumors, carcinoid tumors, or metastatic thyroid tumors. Concurrent chemotherapy was not allowed, but concurrent treatment with biologic agents was. The dose-escalation schema comprised 15 fractions of 3 Gy(relative biological effectiveness [RBE])/fraction, 3.5 Gy(RBE)/fraction, or 4 Gy(RBE)/fraction. Dose constraints were derived from biologically equivalent doses of standard fractionated treatment. Results: The median follow-up time for patients alive at the time of analysis was 13 months (range, 8-28 months). Fifteen patients received treatment to hilar or mediastinal lymph nodes. Two patients experienced dose-limiting toxicity possibly related to treatment; 1 received 3.5-Gy(RBE) fractions and experienced an in-field tracheoesophageal fistula 9 months after PBT and 1 month after bevacizumab. The other patient received 4-Gy(RBE) fractions and was hospitalized for bacterial pneumonia/radiation pneumonitis 4 months after PBT. Conclusion: Hypofractionated PBT to the thorax delivered over 3 weeks was well tolerated even with significant doses to the lungs and mediastinal structures. Phase 2/3 trials are needed to compare the efficacy of this technique with standard treatment for locally advanced NSCLC.

  1. ORISE: Dose modeling and assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dose modeling and assessments The Oak Ridge Institute for Science and Education (ORISE) offers dose modeling and assessment services to demonstrate that federal andor state...

  2. 22.01 Introduction to Ionizing Radiation, Fall 2003

    E-Print Network [OSTI]

    Coderre, Jeffrey A.

    Introduction to basic properties of ionizing radiations and their uses in medicine, industry, science, and environmental studies. Discusses natural and man-made radiation sources, energy deposition and dose calculations, ...

  3. Factories: The Ionising Radiations (Sealed Sources) (Transfer Record) Order, 1961 

    E-Print Network [OSTI]

    Hare, John

    1961-01-01

    This Order prescribes the form of transfer record containing particulars of sums of radiation doses received by certain workers, which record is required by Regulation 31 of the Ionising Radiations (Sealed Sources)Regulations, ...

  4. Hanford Environmental Dose Reconstruction Project, Quarterly report, September--November 1993

    SciTech Connect (OSTI)

    Cannon, S.D.; Finch, S.M.

    1993-12-31

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates); Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  5. Hanford Environmental Dose Reconstruction Project. Quarterly report, December 1993--February 1994

    SciTech Connect (OSTI)

    Cannon, S.D.

    1994-04-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radio-nuclides followed from release to impact on humans(dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, agriculture; environmental pathways; and dose estimates.

  6. Hanford Environmental Dose Reconstruction Project. Quarterly report, June--August 1993

    SciTech Connect (OSTI)

    Cannon, S.D.; Finch, S.M. [comps.

    1993-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  7. Estimating the actual dose delivered by intravascular coronary brachytherapy using geometrically correct

    E-Print Network [OSTI]

    Wahle, Andreas

    Estimating the actual dose delivered by intravascular coronary brachytherapy using geometrically of Chicago, Department of Medicine, Chicago, IL 60637, USA ABSTRACT Intravascular brachytherapy has shown brachytherapy with the target range determined from the patient's prescribed dose. Furthermore, di

  8. Estimating the actual dose delivered by intravascular coronary brachytherapy using geometrically correct

    E-Print Network [OSTI]

    Wahle, Andreas

    Estimating the actual dose delivered by intravascular coronary brachytherapy using geometrically of Chicago, Department of Medicine, Chicago, IL 60637, USA ABSTRACT Intravascular brachytherapy has shown brachytherapy with the target range determined from the patient's prescribed dose. Furthermore, differences

  9. Dose-equivalent neutron dosimeter

    DOE Patents [OSTI]

    Griffith, R.V.; Hankins, D.E.; Tomasino, L.; Gomaa, M.A.M.

    1981-01-07

    A neutron dosimeter is disclosed which provides a single measurement indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer contaning conversion material such as /sup 6/Li and /sup 10/B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet.

  10. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    DOE Patents [OSTI]

    Roybal, Lyle Gene

    2010-06-08

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  11. PERSPECTIVE ON THE USE OF LNT FOR RADIATION PROTECTION AND RISK ASSESSMENT BY THE U.S. ENVIRONMENTAL PROTECTION AGENCY

    E-Print Network [OSTI]

    to a low dose exposure is proportional to dose, with no threshold. The use of LNT for radiation protection of risk to low dose radiation reflect a broad scientific consensus. Based on extensive epidemiological methodology. Although recent radiobiological findings indicate novel damage and repair processes at low doses

  12. Radiation-induced risk of resettling Bikini atoll. Final report, November 7, 1981-May 28, 1982

    SciTech Connect (OSTI)

    Kohn, H.I.; Dreyer, N.A.

    1982-01-01

    The Department of Energy (DOE) has concluded that the Bikini atoll is unsafe for resettlement. In response to the Bikinians' request for an independent review, we have examined the following DOE findings: (a) radionuclide contamination of Eneu and Bikini Islands, (b) radiation dosage to those who might resettle the islands, and (c) risks to the health of such settlers. We are in practical agreement with the DOE estimates. Resettlement of either island in 1983 would lead to a range of annual or 30-year cumulative doses that exceed the Federal Radiation Council (FRC) guides for the general population, but not those for occupation exposure. By 2013 resettlement of Eneu probably would be permissible. The principal source of radiation dose is local food, especially coconut, owing to contamination of the soil by cesium-137. A precise estimate of dose is impossible. The availability of imported foods would lessen local food consumption, but not sufficiently to meet the FRC guides for the general population. The 30-year cumulative index dose is 61 (25-122) rem for Bikini, and about 8 (3-16) rem for Eneu.

  13. Radiation: Radiation Control (Indiana)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

  14. DOE 2012 Occupational Radiation Exposure October 2013

    SciTech Connect (OSTI)

    2012-02-02

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. As an indicator of the overall amount of radiation dose received during the conduct of operations at DOE, the report includes information on collective total effective dose (TED). The TED is comprised of the effective dose (ED) from external sources, which includes neutron and photon radiation, and the internal committed effective dose (CED), which results from the intake of radioactive material into the body. The collective ED from photon exposure decreased by 23% between 2011 and 2012, while the neutron dose increased by 5%. The internal dose components of the collective TED decreased by 7%. Over the past 5-year period, 99.99% of the individuals receiving measurable TED have received doses below the 2 roentgen equivalent in man (rems) (20 millisievert [mSv]) TED administrative control level (ACL), which is well below the DOE regulatory limit of 5 rems (50 mSv) TED annually. The occupational radiation exposure records show that in 2012, DOE facilities continued to comply with DOE dose limits and ACLs and worked to minimize exposure to individuals. The DOE collective TED decreased 17.1% from 2011 to 2012. The collective TED decreased at three of the five sites with the largest collective TED. u Idaho Site – Collective dose reductions were achieved as a result of continuing improvements at the Advanced Mixed Waste Treatment Project (AMWTP) through the planning of drum movements that reduced the number of times a container is handled; placement of waste containers that created highradiation areas in a centralized location; and increased worker awareness of high-dose rate areas. In addition, Idaho had the largest decrease in the total number of workers with measurable TED (1,143 fewer workers). u Hanford Site (Hanford) – An overall reduction of decontamination and decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP) and Transuranic (TRU) retrieval activities resulted in collective dose reductions. u Savannah River Site (SRS) – Reductions were achieved through ALARA initiatives employed site wide. The Solid Waste Management Facility used extended specialty tools, cameras and lead shield walls to facilitate removal of drums. These tools and techniques reduce exposure time through improved efficiency, increase distance from the source of radiation by remote monitoring, shield the workers to lower the dose rate, and reduce the potential for contamination and release of material through repacking of waste. Overall, from 2011 to 2012, there was a 19% decrease in the number of workers with measurable dose. Furthermore, due to a slight decrease in both the DOE workforce (7%) and monitored workers (10%), the ratio of workers with measurable doses to monitored workers decreased to 13%. Another primary indicator of the level of radiation exposure covered in this report is the average measurable dose, which normalizes the collective dose over the population of workers who actually received a measurable dose. The average measurable TED in

  15. Method for preparing dosimeter for measuring skin dose

    DOE Patents [OSTI]

    Jones, Donald E. (Idaho Falls, ID); Parker, DeRay (Idaho Falls, ID); Boren, Paul R. (Idaho Falls, ID)

    1982-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with neutron-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  16. SU-E-T-315: The Change of Optically Stimulated Luminescent Dosimeters (OSLDs) Sensitivity by Accumulated Dose and High Dose

    SciTech Connect (OSTI)

    Han, S; Jung, H; Kim, M; Ji, Y; Kim, K [University of Science and Technology, Daejeon (Korea, Republic of); Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Choi, S; Park, S; Yoo, H [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Yi, C [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2014-06-01

    Purpose: The objective of this study is to evaluate radiation sensitivity of optical stimulated luminance dosimeters (OSLDs) by accumulated dose and high dose. Methods: This study was carried out in Co-60 unit (Theratron 780, AECL, and Canada) and used InLight MicroStar reader (Landauer, Inc., Glenwood, IL) for reading. We annealed for 30 min using optical annealing system which contained fluorescent lamps (Osram lumilux, 24 W, 280 ?780 nm). To evaluate change of OSLDs sensitivity by repeated irradiation, the dosimeters were repeatedly irradiated with 1 Gy. And whenever a repeated irradiation, we evaluated OSLDs sensitivity. To evaluate OSLDs sensitivity after accumulated dose with 5 Gy, We irradiated dose accumulatively (from 1 Gy to 5 Gy) without annealing. And OSLDs was also irradiated with 15, 20, 30 Gy to certify change of OSLDs sensitivity after high dose irradiation. After annealing them, they were irradiated with 1Gy, repeatedly. Results: The OSLDs sensitivity increased up to 3% during irradiating seven times and decreased continuously above 8 times. That dropped by about 0.35 Gy per an irradiation. Finally, after 30 times irradiation, OSLDs sensitivity decreased by about 7%. For accumulated dose from 1 Gy to 5 Gy, OSLDs sensitivity about 1 Gy increased until 4.4% after second times accumulated dose compared with before that. OSLDs sensitivity about 1 Gy decreased by 1.6% in five times irradiation. When OSLDs were irradiated ten times with 1Gy after irradiating high dose (10, 15, 20 Gy), OSLDs sensitivity decreased until 6%, 9%, 12% compared with it before high dose irradiation, respectively. Conclusion: This study certified OSLDs sensitivity by accumulated dose and high dose. When irradiated with 1Gy, repeatedly, OSLDs sensitivity decreased linearly and the reduction rate of OSLDs sensitivity after high dose irradiation had dependence on irradiated dose.

  17. Cancer risk estimates from radiation therapy for heterotopic ossification prophylaxis after total hip arthroplasty

    SciTech Connect (OSTI)

    Mazonakis, Michalis; Berris, Theoharris; Damilakis, John; Lyraraki, Efrossyni

    2013-10-15

    Purpose: Heterotopic ossification (HO) is a frequent complication following total hip arthroplasty. This study was conducted to calculate the radiation dose to organs-at-risk and estimate the probability of cancer induction from radiotherapy for HO prophylaxis.Methods: Hip irradiation for HO with a 6 MV photon beam was simulated with the aid of a Monte Carlo model. A realistic humanoid phantom representing an average adult patient was implemented in Monte Carlo environment for dosimetric calculations. The average out-of-field radiation dose to stomach, liver, lung, prostate, bladder, thyroid, breast, uterus, and ovary was calculated. The organ-equivalent-dose to colon, that was partly included within the treatment field, was also determined. Organ dose calculations were carried out using three different field sizes. The dependence of organ doses upon the block insertion into primary beam for shielding colon and prosthesis was investigated. The lifetime attributable risk for cancer development was estimated using organ, age, and gender-specific risk coefficients.Results: For a typical target dose of 7 Gy, organ doses varied from 1.0 to 741.1 mGy by the field dimensions and organ location relative to the field edge. Blocked field irradiations resulted in a dose range of 1.4–146.3 mGy. The most probable detriment from open field treatment of male patients was colon cancer with a high risk of 564.3 × 10{sup ?5} to 837.4 × 10{sup ?5} depending upon the organ dose magnitude and the patient's age. The corresponding colon cancer risk for female patients was (372.2–541.0) × 10{sup ?5}. The probability of bladder cancer development was more than 113.7 × 10{sup ?5} and 110.3 × 10{sup ?5} for males and females, respectively. The cancer risk range to other individual organs was reduced to (0.003–68.5) × 10{sup ?5}.Conclusions: The risk for cancer induction from radiation therapy for HO prophylaxis after total hip arthroplasty varies considerably by the treatment parameters, organ site in respect to treatment volume and patient's gender and age. The presented risk estimates may be useful in the follow-up studies of irradiated patients.

  18. Change of Primary Cosmic Radiation Nuclear Conposition in the Energy Range $10^{15} - 10^{17}$ eV as a Result of the Interaction with the Interstellar Cold Background of Light Particles

    E-Print Network [OSTI]

    T. T. Barnaveli; T. T. Barnaveli Jr; N. A. Eristavi; I. V. Khaldeeva

    2003-10-19

    In this paper the updated arguments in favor of a simple model, explaining from the united positions all peculiarities of the Extensive Air Shower (EAS) hadron E_h(E_0) (and muon E_mu(E_0)) component energy fluxes dependence on the primary particle energy E_0 in the primary energy region 10^{15} - 10^{17} eV are represented. These peculiarities have shapes of consequent distinct deeps of a widths dE_h/E_h of the order of 0.2 and of relative amplitudes dL/L of the order of {0.1 - 1.0}, and are difficult to be explained via known astrophysical mechanisms of particle generation and acceleration. In the basis of the model lies the destruction of the Primary Cosmic Radiation (PCR) nuclei on some monochromatic background of interstellar space, consisting of the light particles of the mass in the area of 36 eV (maybe the component of a dark matter). The destruction thresholds of PCR different nuclear components correspond to the peculiarities of E_h(E_0). In this work the results of the recent treatment of large statistical material are analyzed. The experimental results are in good agreement with the Monte-Carlo calculations carried out in the frames of the proposed model.

  19. LOW-LEVEL RADIATION HEALTH EFFECTS: PROGRAMS AND PANEL DISCUSSION

    E-Print Network [OSTI]

    Shlyakhter, Ilya

    41 LOW-LEVEL RADIATION HEALTH EFFECTS: PROGRAMS AND PANEL DISCUSSION Cosponsored by the Biology. The reduction was presumably due to the reduced effects at low dose rate. THE DATA SETS In the former USSR dose: Of those we expect up to 50 to develop cancers due to radiation. 2. The 25 000 people evacuated

  20. Low-Dose Radiotherapy in Indolent Lymphoma

    SciTech Connect (OSTI)

    Rossier, Christine [Department of Radiation Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne (Switzerland); Schick, Ulrike; Miralbell, Raymond [Department of Radiation Oncology, University Hospital of Geneva (Switzerland); Mirimanoff, Rene O. [Department of Radiation Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne (Switzerland); Weber, Damien C. [Department of Radiation Oncology, University Hospital of Geneva (Switzerland); Ozsahin, Mahmut, E-mail: Esat-Mahmut.Ozsahin@chuv.ch [Department of Radiation Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne (Switzerland)

    2011-11-01

    Purpose: To assess the response rate, duration of response, and overall survival after low-dose involved-field radiotherapy in patients with recurrent low-grade lymphoma or chronic lymphocytic leukemia (CLL). Methods and Materials: Forty-three (24 women, 19 men) consecutive patients with indolent lymphoma or CLL were treated with a total dose of 4 Gy (2 x 2 Gy) using 6- 18-MV photons. The median age was 73 years (range, 39-88). Radiotherapy was given either after (n = 32; 75%) or before (n = 11; 25%) chemotherapy. The median time from diagnosis was 48 months (range, 1-249). The median follow-up period was 20 months (range, 1-56). Results: The overall response rate was 90%. Twelve patients (28%) had a complete response, 15 (35%) had a partial response, 11 (26%) had stable disease, and 5 (11%) had progressive disease. The median overall survival for patients with a positive response (complete response/partial response/stable disease) was 41 months; for patients with progressive disease it was 6 months (p = 0.001). The median time to in-field progression was 21 months (range, 0-24), and the median time to out-field progression was 8 months (range, 0-40). The 3-year in-field control was 92% in patients with complete response (median was not reached). The median time to in-field progression was 9 months (range, 0.5-24) in patients with partial response and 6 months (range, 0.6-6) in those with stable disease (p < 0.05). Younger age, positive response to radiotherapy, and no previous chemotherapy were the best factors influencing the outcome. Conclusions: Low-dose involved-field radiotherapy is an effective treatment in the management of patients with recurrent low-grade lymphoma or CLL.

  1. Intraoperative radiation therapy in recurrent ovarian cancer

    SciTech Connect (OSTI)

    Yap, O.W. Stephanie . E-mail: stbeast@stanford.edu; Kapp, Daniel S.; Teng, Nelson N.H.; Husain, Amreen

    2005-11-15

    Purpose: To evaluate disease outcomes and complications in patients with recurrent ovarian cancer treated with cytoreductive surgery and intraoperative radiation therapy (IORT). Methods and Materials: A retrospective study of 24 consecutive patients with ovarian carcinoma who underwent secondary cytoreduction and intraoperative radiation therapy at our institution between 1994 and 2002 was conducted. After optimal cytoreductive surgery, IORT was delivered with orthovoltage X-rays (200 kVp) using individually sized and beveled cone applications. Outcomes measures were local control of disease, progression-free interval, overall survival, and treatment-related complications. Results: Of these 24 patients, 22 were available for follow-up analysis. Additional treatment at the time of and after IORT included whole abdominopelvic radiation, 9; pelvic or locoregional radiation, 5; chemotherapy, 6; and no adjuvant treatment, 2. IORT doses ranged from 9-14 Gy (median, 12 Gy). The anatomic sites treated were pelvis (sidewalls, vaginal cuff, presacral area, anterior pubis), para-aortic and paracaval lymph node beds, inguinal region, or porta hepatitis. At a median follow-up of 24 months, 5 patients remain free of disease, whereas 17 patients have recurred, of whom 4 are alive with disease and 13 died from disease. Five patients recurred within the radiation fields for a locoregional relapse rate of 32% and 12 patients recurred at distant sites with a median time to recurrence of 13.7 months. Five-year overall survival was 22% with a median survival of 26 months from time of IORT. Nine patients (41%) experienced Grade 3 toxicities from their treatments. Conclusion: In carefully selected patients with locally recurrent ovarian cancer, combined IORT and tumor reductive surgery is reasonably tolerated and may contribute to achieving local control and disease palliation.

  2. TH-A-BRD-01: Radiation Biology for Radiation Therapy Physicists

    SciTech Connect (OSTI)

    Orton, C; Borras, C; Carlson, D

    2014-06-15

    Mechanisms by which radiation kills cells and ways cell damage can be repaired will be reviewed. The radiobiological parameters of dose, fractionation, delivery time, dose rate, and LET will be discussed. The linear-quadratic model for cell survival for high and low dose rate treatments and the effect of repopulation will be presented and discussed. The rationale for various radiotherapy techniques such as conventional fractionation, hyperfractionation, hypofractionation, and low and high dose rate brachytherapy, including permanent implants, will be presented. The radiobiological principles underlying radiation protection guidelines and the different radiation dosimetry terms used in radiation biology and in radiation protection will be reviewed. Human data on radiation induced cancer, including increases in the risk of second cancers following radiation therapy, as well as data on radiation induced tissue reactions, such as cardiovascular effects, for follow up times up to 20–40 years, published by ICRP, NCRP and BEIR Committees, will be examined. The latest risk estimates per unit dose will be presented. Their adoption in recent radiation protection standards and guidelines and their impact on patient and workers safety in radiotherapy will be discussed. Biologically-guided radiotherapy (BGRT) provides a systematic method to derive prescription doses that integrate patient-specific information about tumor and normal tissue biology. Treatment individualization based on patient-specific biology requires the identification of biological objective functions to facilitate the design and comparison of competing treatment modalities. Biological objectives provide a more direct approach to plan optimization instead of relying solely on dose-based surrogates and can incorporate factors that alter radiation response, such as DNA repair, tumor hypoxia, and relative biological effectiveness. We review concepts motivating biological objectives and provide examples of how they might be used to address clinically relevant problems. Underlying assumptions and limitations of existing models and their proper application will be discussed. This multidisciplinary educational session combines the fundamentals of radiobiology for radiation therapy and radiation protection with the practical application of biophysical models for treatment planning and evaluation. Learning Objectives: To understand fractionation in teletherapy and dose rate techniques in brachytherapy. To understand how the linear-quadratic models the effect of radiobiological parameters for radiotherapy. To understand the radiobiological basis of radiation protection standards applied to radiotherapy. To distinguish between stochastic effects and tissue reactions. To learn how to apply concepts of biological effective dose and RBE-weighted dose and to incorporate biological factors that alter radiation response. To discuss clinical strategies to increase therapeutic ratio, i.e., maximize local control while minimizing the risk of acute and late normal tissue effects.

  3. Genetic susceptibility to radiation E.J. Hall *, D.J. Brenner, B. Worgul, L. Smilenov

    E-Print Network [OSTI]

    Brenner, David Jonathan

    they might receive a large dose of radiation because of the possible severe clinical re- sponse. Second of the dose­response relationship, thereby rendering a linear extrapolation from high to low doses invalidGenetic susceptibility to radiation E.J. Hall *, D.J. Brenner, B. Worgul, L. Smilenov Columbia

  4. GROUND-WATER CONTRIBUTION TO DOSE FROM PAST HANFORD OPERATIONS

    SciTech Connect (OSTI)

    Freshley, M. D.; Thorne, P. D.

    1992-01-01

    The Hanford Environmental Dose Reconstruction (HEOR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides originating in ground water on the Hanford Site could have reached the public have been identified: 1) through contaminated ground water migrating to the Columbia River; 2) through wells on or adjacent to the Hanford Site; 3) through wells that draw some or all of their water from the Columbia River (riparian wells); and 4) through atmospheric deposition resulting in the contamination of a small watershed that, in turn, results in contamination of a shallow well or spring. These four pathways make up the "ground-water pathway ," which is the subject of this study. The objective of the study was to assess the extent to which the groundwater pathway contributed to radiation doses that populations or individuals may have received from past operations at Hanford. The assessment presented in this report was performed by 1) reviewing the extensive ?literature on ground water and ground-water monitoring at Hanford and 2) performing simple calculations to estimate radionuclide concentrations in ground water and the Columbia River resulting from ground-water discharge. Radiation doses that would result from exposure to this ground water and surface water were calculated. The study conclusion is that the ground-water pathways did not contribute significantly to dose. Compared with background radiation in the TriCities {300 mrem/yr), estimated doses are small: 0.02 mrem/yr effective dose equivalent from discharge of contaminated ground water to the Columbia River; 1 mrem/yr effective dose equivalent from Hanford Site wells; 11 mrem/yr effective dose equivalent from riparian wells; and 1 mrem/yr effective dose equivalent from the watershed. Because the estimated doses are so small, the recommendation is that further work on the ground-water pathway be limited to tracking ongoing ground-water studies at the Hanford Site.

  5. PACIFIC SOUTHWEST Forest and Range

    E-Print Network [OSTI]

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Solar Radiation.211:614 Retrieval Terms: insolation; reproduction; snow management; environ mental planning. Solar radiation environmental factor. Incident solar radia tion creates a secondary form of radiation which af fects the forest

  6. DOE 2011 Occupational Radiation Exposure report, _Prepared for the U.S. Department of Energy, Office of Health, Safety and Security. December 2012

    SciTech Connect (OSTI)

    Derek Hagemeyer, Yolanda McCormick

    2012-12-12

    This report discusses radiation protection and dose reporting requirements, presents the 2011 occupational radiation dose data along with trends over the past 5 years, and provides instructions to submit successful as low as reasonably achievable (ALARA) projects.

  7. The Effects of Low Dose Irradiation on Inflammatory Response Proteins in a 3D Reconstituted Human Skin Tissue Model

    SciTech Connect (OSTI)

    Varnum, Susan M.; Springer, David L.; Chaffee, Mary E.; Lien, Katie A.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Sacksteder, Colette A.

    2012-12-01

    Skin responses to moderate and high doses of ionizing radiation include the induction of DNA repair, apoptosis, and stress response pathways. Additionally, numerous studies indicate that radiation exposure leads to inflammatory responses in skin cells and tissue. However, the inflammatory response of skin tissue to low dose radiation (<10 cGy) is poorly understood. In order to address this, we have utilized a reconstituted human skin tissue model (MatTek EpiDerm FT) and assessed changes in 23 cytokines twenty-four and forty eight hours following treatment of skin with either 3 or 10 cGy low-dose of radiation. Three cytokines, IFN-?, IL-2, MIP-1?, were significantly altered in response to low dose radiation. In contrast, seven cytokines were significantly altered in response to a high radiation dose of 200 cGy (IL-2, IL-10, IL-13, IFN-?, MIP-1?, TNF ?, and VEGF) or the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (G-CSF, GM-CSF, IL-1?, IL-8, MIP-1?, MIP-1?, RANTES). Additionally, radiation induced inflammation appears to have a distinct cytokine response relative to the non-radiation induced stressor, TPA. Overall, these results indicate that there are subtle changes in the inflammatory protein levels following exposure to low dose radiation and this response is a sub-set of what is seen following a high dose in a human skin tissue model.

  8. High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers

    E-Print Network [OSTI]

    Miao, Jianwei "John"

    High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers% of biopsied lesions are malignant. Here we report a high-resolution, low-dose phase contrast X-ray tomographic dimensions and identified a malignant cancer with a pixel size of 92 m and a radiation dose less than

  9. 1682 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 31, NO. 9, SEPTEMBER 2012 Low-Dose X-ray CT Reconstruction

    E-Print Network [OSTI]

    Wang, Ge

    1682 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 31, NO. 9, SEPTEMBER 2012 Low-Dose X-ray CT and other diseases. How to reduce radiation dose while maintaining the diagnostic per- formance is a major- straint in terms of total variation (TV) minimization has already led to promising results for low-dose CT

  10. Noise properties of low-dose X-ray CT sinogram data in Radon space , Hongbing Lu2

    E-Print Network [OSTI]

    Noise properties of low-dose X-ray CT sinogram data in Radon space Jing Wang1 , Hongbing Lu2 statistical moments will improve low-dose CT image reconstruction for screening applications. Keywords: Low-dose]. However, clinical use of CT frequently exposes the patients to excessive X-ray radiation [4

  11. Prospective Study of Local Control and Late Radiation Toxicity After Intraoperative Radiation Therapy Boost for Early Breast Cancer

    SciTech Connect (OSTI)

    Chang, David W.; Marvelde, Luc te; Chua, Boon H.

    2014-01-01

    Purpose: To report the local recurrence rate and late toxicity of intraoperative radiation therapy (IORT) boost to the tumor bed using the Intrabeam System followed by external-beam whole-breast irradiation (WBI) in women with early-stage breast cancer in a prospective single-institution study. Methods and Materials: Women with breast cancer ?3 cm were recruited between February 2003 and May 2005. After breast-conserving surgery, a single dose of 5 Gy IORT boost was delivered using 50-kV x-rays to a depth of 10 mm from the applicator surface. This was followed by WBI to a total dose of 50 Gy in 25 fractions. Patients were reviewed at regular, predefined intervals. Late toxicities were recorded using the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring systems. Results: Fifty-five patients completed both IORT boost and external-beam WBI. Median follow-up was 3.3 years (range, 1.4-4.1 years). There was no reported locoregional recurrence or death. One patient developed distant metastases. Grade 2 and 3 subcutaneous fibrosis was detected in 29 (53%) and 8 patients (15%), respectively. Conclusions: The use of IORT as a tumor bed boost using kV x-rays in breast-conserving therapy was associated with good local control but a clinically significant rate of grade 2 and 3 subcutaneous fibrosis.

  12. Ionizing radiation detector

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  13. Pediatric radiation oncology

    SciTech Connect (OSTI)

    Halperin, E.C.; Kun, L.E.; Constine, L.S.; Tarbell, N.J.

    1989-01-01

    This text covers all aspects of radiation therapy for treatment of pediatric cancer. The book describes the proper use of irradiation in each of the malignancies of childhood, including tumors that are rarely encountered in adult practice. These include acute leukemia; supratentorial brain tumors; tumors of the posterior fossa of the brain and spinal canal; retinoblastoma and optic nerve glioma; neuroblastoma; Hodgkin's disease; malignant lymphoma; Ewing's sarcoma; osteosarcoma; rhabdomyosarcoma; Desmoid tumor; Wilms' tumor; liver and biliary tumors; germ cell and stromal cell tumors of the gonads; endocrine, aerodigestive tract, and breast tumors; Langerhans' cell histiocytosis; and skin cancer and hemangiomas. For each type of malignancy, the authors describe the epidemiology, common presenting signs and symptoms, staging, and proper diagnostic workup. Particular attention is given to the indications for radiation therapy and the planning of a course of radiotherapy, including the optimal radiation dose, field size, and technique.

  14. Mean glandular dose in a breast screening programme

    SciTech Connect (OSTI)

    Galvan, H. A.; Perez-Badillo, M. P.; Villasenor, Y.

    2012-10-23

    Breast density has an important role in early detection of breast cancer, because has been reported the strong association between breast density and invasive breast cancer risk. Mammography is the gold standard to early detection of breast cancer, despite of this require ionizing radiation that may increase radio-induced cancer risk. This maybe limited with a quality control programme of mammographic units, with the main goal of achieving high quality images with low radiation dose. International Atomic Energy Agency (IAEA) published in 2011 the {sup Q}uality assurance programme for digital mammography{sup ,} where glandular tissue quantity is an important parameter to compute mean glandular dose (MGD), which is necessary to reduce its associated risk. In this work we show the first results in our country applying this protocol and studying breast density in a small group. MGD complies with national and IAEA dose limits.

  15. Method for radiation detection and measurement

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1993-01-01

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength.

  16. Phase 1 of the Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Not Available

    1990-07-20

    For more than 40 years, the US government made plutonium for nuclear weapons at the Hanford Site in southeastern Washington State. Radioactive materials were released to both the air and water from Hanford. People could have been exposed to these materials, called radionuclides. The Hanford Environmental Dose Reconstruction (HEDR) Project is a multi-year scientific study to estimate the radiation doses the public may have received as a results of these releases. The study began in 1988. During the first phase, scientists began to develop and test methods for reconstructing the radiation doses. To do this, scientists found or reconstructed information about the amount and type of radionuclides that were released from Hadford facilities, where they traveled in environment, and how they reached people. Information about the people who could have been exposed was also found or reconstructed. Scientists then developed a computer model that can estimate doses from radiation exposure received many years ago. All the information that had been gathered was fed into the computer model. Then scientists did a test run'' to see whether the model was working properly. As part of its test run,'' scientists asked the computer model to generate two types of preliminary results: amounts of radionuclides in the environment (air, soil, pasture grass, food, and milk) and preliminary doses people could have received from all the routes of radiation exposure, called exposure pathways. Preliminary dose estimates were made for categories of people who shared certain characteristics and for the Phase 1 population as a whole. 26 refs., 48 figs.

  17. SU-E-I-59: Image Quality and Dose Measurement for Partial Cone-Beam CT

    SciTech Connect (OSTI)

    Abouei, E; Ford, N

    2014-06-01

    Purpose: To characterize performance of cone beam CT (CBCT) used in dentistry investigating quantitatively the image quality and radiation dose during dental CBCT over different settings for partial rotation of the x-ray tube. Methods: Image quality and dose measurements were done on a variable field of view (FOV) dental CBCT (Carestream 9300). X-ray parameters for clinical settings were adjustable for 2–10 mA, 60–90 kVp, and two optional voxel size values, but time was fixed for each FOV. Image quality was assessed by scanning cylindrical poly-methyl methacrylate (PMMA) image quality phantom (SEDENTEXCT IQ), and then the images were analyzed using ImageJ to calculate image quality parameters such as noise, uniformity, and contrast to noise ratio (CNR). A protocol proposed by SEDENTEXCT, dose index 1 (DI1), was applied to dose measurements obtained using a thimble ionization chamber and cylindrical PMMA dose index phantom (SEDENTEXCT DI). Dose distributions were obtained using Gafchromic film. The phantoms were positioned in the FOV to imitate a clinical positioning. Results: The image noise was 6–12.5% which, when normalized to the difference of mean voxel value of PMMA and air, was comparable between different FOVs. Uniformity was 93.5ß 99.7% across the images. CNR was 1.7–4.2 and 6.3–14.3 for LDPE and Aluminum, respectively. Dose distributions were symmetric about the rotation angle's bisector. For large and medium FOVs at 4 mA and 80–90 kVp, DI1 values were in the range of 1.26–3.23 mGy. DI1 values were between 1.01–1.93 mGy for small FOV (5×5 cm{sup 2}) at 4–5 mA and 75–84 kVp. Conclusion: Noise decreased by increasing kVp, and the CNR increased for each FOV. When FOV size increased, image noise increased and CNR decreased. DI1 values were increased by increasing tube current (mA), tube voltage (kVp), and/or FOV. Funding for this project from NSERC Discovery grant, UBC Faculty of Dentistry Research Equipment Grant and UBC Faculty of Dentistry S. Wah Leung Endowment Fund.

  18. Individualized Estimates of Second Cancer Risks After Contemporary Radiation Therapy for

    E-Print Network [OSTI]

    Brenner, David Jonathan

    are largely based on radiation therapy (RT) fields and doses no longer in use, and these estimates do and low-dose (20 Gy) RT for mediastinal Hodgkin lymphoma. METHODS. Three RT plans were constructed for 37 tissue doses with the omission of axillary RT. Low-dose (20 Gy) IFRT was associated with a 77% and 57

  19. SU-E-J-190: Characterization of Radiation Induced CT Number Changes in Tumor and Normal Lung During Radiation Therapy for Lung Cancer

    SciTech Connect (OSTI)

    Yang, C; Liu, F; Tai, A; Gore, E; Johnstone, C; Li, X

    2014-06-01

    Purpose: To measure CT number (CTN) changes in tumor and normal lung as a function of radiation therapy (RT) dose during the course of RT delivery for lung cancer using daily IGRT CT images and single respiration phase CT images. Methods: 4D CT acquired during planning simulation and daily 3D CT acquired during daily IGRT for 10 lung cancer cases randomly selected in terms of age, caner type and stage, were analyzed using an in-house developed software tool. All patients were treated in 2 Gy fractions to primary tumors and involved nodal regions. Regions enclosed by a series of isodose surfaces in normal lung were delineated. The obtained contours along with target contours (GTVs) were populated to each singlephase planning CT and daily CT. CTN in term of Hounsfield Unit (HU) of each voxel in these delineated regions were collectively analyzed using histogram, mean, mode and linear correlation. Results: Respiration induced normal lung CTN change, as analyzed from single-phase planning CTs, ranged from 9 to 23 (±2) HU for the patients studied. Normal lung CTN change was as large as 50 (±12) HU over the entire treatment course, was dose and patient dependent and was measurable with dose changes as low as 1.5 Gy. For patients with obvious tumor volume regression, CTN within the GTV drops monotonically as much as 10 (±1) HU during the early fractions with a total dose of 20 Gy delivered. The GTV and CTN reductions are significantly correlated with correlation coefficient >0.95. Conclusion: Significant RT dose induced CTN changes in lung tissue and tumor region can be observed during even the early phase of RT delivery, and may potentially be used for early prediction of radiation response. Single respiration phase CT images have dramatically reduced statistical noise in ROIs, making daily dose response evaluation possible.

  20. SU-E-I-49: The Evaluation of Usability of Multileaf Collimator for Diagnostic Radiation in Cephalometric Exposure

    SciTech Connect (OSTI)

    Han, S; Kim, K; Jung, H; Kim, M; Ji, Y; Park, S; Choi, S

    2014-06-01

    Purpose: This study evaluated usability of Multileaf collimator (MLC) for diagnostic radiation in cephalometric exposure using optical stimulated luminance dosimeters (OSLDs) Methods: The MLC material was made alloy tool steel (SKD-11) and the density of it is 7.89g/m3 that is similar to it of steel (Fe, 7.85 g/m3) and the MLC was attached to general radiography unit (Rex-650R, Listem Inc, Korea) for cephalometric exposure. The OSLDs that used were nanoDotTM Dosimeter (Landauer Inc, Glenwood, USA) and we read out OSLDs with micro star system (Landauer Inc, Glenwood, USA). The Optical annealing system contained fluorescent lamps (Osram lumilux, 24 W, 280 ?780 nm). To measure absorbed dose using OSLDs, was carried out dosimetric characteristics of OSLDs. Based on these, we evaluated dose reduction of critical organ (Eyes, Thyroids) with MLC in cephalometric exposure Results: The dosimetric characteristics were following that batch homogeneity was 1.21% and reproducibility was 0.96% of the coefficient of variation The linearity was that the correlation of between dose and count was fitted by linear function (dose,mGy = 0.00029 × Count, R2 =0.997). The range of angular dependence was from ?3.6% to 3.7% variation when each degree was normalized by zero degree. The organ dose of Rt. eye, Lt eye, thyroids were 77.8 ?Gy, 337.0 ?Gy, 323.1?Gy, respectively in open field and the dose reduction of organ dose was 10.6%(8.3?Gy), 12.4 %(42 ?Gy), 87.1%(281.4?Gy) with MLC Conclusion: We certified dose reduction of organ dose in cephalometric exposure. The dose reduction of Eye was 11% because of reduction of field size and it of thyroids was 87% by primary beam shielding.

  1. Poster Session 08: Bystander and other Low Dose Effect Exogenous carbon monoxide suppresses adaptive response induced

    E-Print Network [OSTI]

    Yu, Peter K.N.

    Poster Session 08: Bystander and other Low Dose Effect Exogenous carbon monoxide suppresses; adaptive response; zebrafish embryos Journal of Radiation Research, 2014, 55, i115 Supplement doi: 10 prepared medium with the chemical at different time points after the application of the priming dose. Our

  2. Monte Carlo Simulations of Grid Walled Proportional Counters with Different Site Sizes for HZE Radiation 

    E-Print Network [OSTI]

    Liu, Haifeng

    2012-07-16

    Tissue-equivalent proportional counters are frequently used to measure dose and dose equivalent in cosmic radiation fields that include high-Z, high-energy (HZE) particles. The fact that particles with different stopping powers can produce the same...

  3. Ground-water contribution to dose from past Hanford Operations. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ``ground-water pathway,`` which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  4. Dose masking feature for BNCT radiotherapy planning

    DOE Patents [OSTI]

    Cook, Jeremy L. (Greeley, CO); Wessol, Daniel E. (Bozeman, MT); Wheeler, Floyd J. (Idaho Falls, ID)

    2000-01-01

    A system for displaying an accurate model of isodoses to be used in radiotherapy so that appropriate planning can be performed prior to actual treatment on a patient. The nature of the simulation of the radiotherapy planning for BNCT and Fast Neutron Therapy, etc., requires that the doses be computed in the entire volume. The "entire volume" includes the patient and beam geometries as well as the air spaces in between. Isodoses derived from the computed doses will therefore extend into the air regions between the patient and beam geometries and thus depict the unrealistic possibility that radiation deposition occurs in regions containing no physical media. This problem is solved by computing the doses for the entire geometry and then masking the physical and air regions along with the isodose contours superimposed over the patient image at the corresponding plane. The user is thus able to mask out (remove) the contour lines from the unwanted areas of the image by selecting the appropriate contour masking region from the raster image.

  5. Real time sensor for therapeutic radiation delivery

    DOE Patents [OSTI]

    Bliss, Mary (West Richland, WA); Craig, Richard A. (West Richland, WA); Reeder, Paul L. (Richland, WA)

    1998-01-01

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body.

  6. Real time sensor for therapeutic radiation delivery

    DOE Patents [OSTI]

    Bliss, M.; Craig, R.A.; Reeder, P.L.

    1998-01-06

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body. 14 figs.

  7. Design, calibration and tests of an extended-range Bonner sphere spectrometer

    E-Print Network [OSTI]

    Mitaroff, Angela; Silari, Marco

    2001-01-01

    Stray radiation fields outside the shielding of hadron accelerators are of complex nature. They consist of a multiplicity of radiation components (neutrons, photons, electrons, pions, muons, ...) which extend over a wide range of energies. Since the dose equivalent in these mixed fields is mainly due to neutrons, neutron dosimetry is a particularly important task. The neutron energy in these fields ranges from thermal up to several hundreds of MeV, thus making dosimetry difficult. A well known instrument for measuring neutron energy distributions from thermal energies up to about E=10 MeV is the Bonner sphere spectrometer (BSS). It consists of a set of moderating spheres of different radii made of polyethylene, with a thermal neutron counter in the centre. Each detector (sphere plus counter) has a maximum response at a certain energy value depending on its size, but the overall response of the conventional BSS drops sharply between E=10-20 MeV. This thesis focuses on the development, the calibration and tests...

  8. Standardized radiological dose evaluations

    SciTech Connect (OSTI)

    Peterson, V.L.; Stahlnecker, E.

    1996-05-01

    Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

  9. Dermatofibrosarcoma Protuberans: Long-term Outcomes of 53 Patients Treated With Conservative Surgery and Radiation Therapy

    SciTech Connect (OSTI)

    Castle, Katherine O. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Guadagnolo, B. Ashleigh, E-mail: aguadagn@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Tsai, C. Jillian [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Feig, Barry W. [Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zagars, Gunar K. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-07-01

    Purpose: To evaluate outcomes of conservative surgery and radiation therapy (RT) treatment in patients with dermatofibrosarcoma protuberans. Methods and Materials: We retrospectively reviewed the medical records of 53 consecutive dermatofibrosarcoma protuberans patients treated with surgery and preoperative or postoperative radiation therapy between 1972 and 2010. Median tumor size was 4 cm (range, 1-25 cm). Seven patients (13%) were treated with preoperative RT (50-50.4 Gy) and 46 patients (87%) with postoperative RT (60-66 Gy). Of the 46 patients receiving postoperative radiation, 3 (7%) had gross disease, 14 (30%) positive margins, 26 (57%) negative margins, and 3 (7%) uncertain margin status. Radiation dose ranged from 50 to 66 Gy (median dose, 60 Gy). Results: At a median follow-up time of 6.5 years (range, 0.5 months-23.5 years), 2 patients (4%) had disease recurrence, and 3 patients (6%) had died. Actuarial overall survival was 98% at both 5 and 10 years. Local control was 98% and 93% at 5 and 10 years, respectively. Disease-free survival was 98% and 93% at 5 and 10 years, respectively. The presence of fibrosarcomatous change was not associated with increased risk of local or distant relapse (P=.43). One of the patients with a local recurrence had gross residual disease at the time of RT and despite RT to 65 Gy developed both an in-field recurrence and a nodal and distant recurrence 3 months after RT. The other patient with local recurrence was found to have in-field recurrence 10 years after initial treatment. Thirteen percent of patients had an RT complication at 5 and 10 years, and 9% had a moderate or severe complication at 5 and 10 years. Conclusions: Dermatofibrosarcoma protuberans is a radioresponsive disease with excellent local control after conservative surgery and radiation therapy. Adjuvant RT should be considered for patients with large or recurrent tumors or when attempts at wide surgical margins would result in significant morbidity.

  10. March 18, 2005 Page 1 of 6 Acute Radiation Syndrome: A Fact Sheet for Physicians

    E-Print Network [OSTI]

    Laughlin, Robert B.

    caused by irradiation of the entire body (or most of the body) by a high dose of penetrating radiation. The required conditions for Acute Radiation Syndrome (ARS) are: · The radiation dose must be large (i.e., greater than 0.7 Gray (Gy)1,2 or 70 rads). o Mild symptoms may be observed with doses as low as 0.3 Gy

  11. Los Alamos Science: Number 23, 1995. Radiation protection and the human radiation experiments

    SciTech Connect (OSTI)

    Cooper, N.G.

    1995-12-31

    There are a variety of myths and misconceptions about the ionizing radiation that surrounds and penetrates us all. Dispel a few of these by taking a leisurely tour of radiation and its properties, of the natural and man-made sources of ionizing radiation, and of the way doses are calculated. By damaging DNA and inducing genetic mutations, ionizing radiation can potentially initiate a cell on the road to cancer. The authors review what is currently known about regulation of cellular reproduction, DNA damage and repair, cellular defense mechanisms, and the specific cancer-causing genes that are susceptible to ionizing radiation. A rapid survey of the data on radiation effects in humans shows that high radiation doses increase the risk of cancer, whereas the effects of low doses are very difficult to detect. The hypothetical risks at low doses, which are estimated from the atomic-bomb survivors, are compared to the low-dose data so that the reader can assess the present level of uncertainty. As part of the openness initiative, ten individuals who have worked with plutonium during various periods in the Laboratory`s history were asked to share their experiences including their accidental intakes. The history and prognosis of people who have had plutonium exposures is discussed by the Laboratory`s leading epidemiologist.

  12. CENTER FOR ENVIRONMENTAL RADIATION STUDIES Texas Tech University

    E-Print Network [OSTI]

    Rock, Chris

    year. A BBC Special on Low-Dose radiation effects focused on their work, #12;resulting in a one of the Center for Environmental Radiation Studies (CERS) is to promote research on the dispersion and biologicalCENTER FOR ENVIRONMENTAL RADIATION STUDIES Texas Tech University MISSION / PURPOSE: The mission

  13. RANGE-ENERGY TABLES

    E-Print Network [OSTI]

    Rich, Marvin

    2010-01-01

    Mev gm/ era Mev gm/crn" Mev-cnf/gm 5. 817 x 10" 1. 685 x 10"2301 RANGE OF DEUTERONS IN CARBON J T Mev R gm/cm - dT "dTi T Mev R gm/cm - dT dF Mev- Mev-cn^gm cm/gm 5. 517 x lu" 3.

  14. Poster Session 08: Bystander and other Low Dose Effect Roles of nitric oxide in adaptive response induced in zebrafish

    E-Print Network [OSTI]

    Yu, Peter K.N.

    Poster Session 08: Bystander and other Low Dose Effect Roles of nitric oxide in adaptive response Radiat Res 2013;54:736­47. Journal of Radiation Research, 2014, 55, i114 Supplement doi: 10.1093/jrr/rrt161 © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research

  15. Conditioning of the 4 Curies Radium-226 Sealed Radiation Source in Thailand

    SciTech Connect (OSTI)

    Punnachaiya, M.; Sawangsri, T.; Wanabongse, P.; Pruantonsai, P.; Nunjan, P.; Phattanasub, A.; Ya-Anant, N.; Thiangtrongjit, S.

    2006-07-01

    This paper describes the conditioning of the 4 curies Radium-226 (Ra-226) sealed radiation source using as a teletherapy unit for cancer treatment in Thailand. The conditioning was under the International Atomic Energy Agency (IAEA) supervision and budgetary supports, comprised of 6 operational steps: the surface dose rate and actual dimension of radium unit measurements, the appropriate lead shielding design with IAEA approval, confirmation of radioactive contamination before conditioning (smear test and radon gas leakage test), transfer of radium source unit into the designed shielding, confirmation of radioactive contamination and dose rate measurement after conditioning, and transportation of Ra-226 conditioning waste package to OAP interim waste storage. The Ra-226 unit was taken out of OAP temporary waste storage for the surface dose rate and the actual dimension measurements behind the 12 inches thick heavy concrete shielding. The maximum measured surface dose rate was 70 R/hr. The special lead container was designed according to its surface dose rate along the source unit which the maximum permissible dose limit for surface dose rate of waste package after conditioning at 2 mSv/hr was applied. The IAEA approved container had total weight of 2.4 ton. After the confirmation of radioactive contamination, Ra-226 source unit was transferred and loaded in the designed lead shielding within 2 minutes. The results of smear test before and after conditioning including radon gas leakage test revealed that there was no radioactive contamination. After conditioning, the surface dose rate measured on the top, bottom were 15,10 mR/hr and varied from 6 - 50 mR/hr around lead container. The Ra-226 conditioning waste package was safely transported to store in OAP interim waste storage. Total working time including the time consumed for radon gas leakage test was 3.5 hours. The total radiation dose received by 16 operators, were ranged from 1 - 69.84 {mu}Sv and the operational team completed the conditioning safely within the effective dose limit for occupational exposure of 50 mSv/year (200 {mu}Sv/day). (authors)

  16. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect (OSTI)

    Wasiolek, Maryla A.

    2000-12-21

    The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

  17. SU-E-T-129: Dosimetric Evaluation of the Impact of Density Correction On Dose Calculation of Breast Cancer Treatment: A Study Based On RTOG 1005 Cases

    SciTech Connect (OSTI)

    Li, J; Yu, Y

    2014-06-01

    Purpose: RTOG 1005 requires density correction in the dose calculation of breast cancer radiation treatment. The aim of the study was to evaluate the impact of density correction on the dose calculation. Methods: Eight cases were studied, which were planned on an XiO treatment planning system with pixel-by-pixel density correction using a superposition algorithm, following RTOG 1005 protocol requirements. Four were protocol Arm 1 (standard whole breast irradiation with sequential boost) cases and four were Arm 2 (hypofractionated whole breast irradiation with concurrent boost) cases. The plans were recalculated with the same monitor units without density correction. Dose calculations with and without density correction were compared. Results: Results of Arm 1 and Arm 2 cases showed similar trends in the comparison. The average differences between the calculations with and without density correction (difference = Without - With) among all the cases were: -0.82 Gy (range: -2.65??0.18 Gy) in breast PTV Eval D95, ?0.75 Gy (range: ?1.23?0.26 Gy) in breast PTV Eval D90, ?1.00 Gy (range: ?2.46??0.29 Gy) in lumpectomy PTV Eval D95, ?0.78 Gy (range: ?1.30?0.11 Gy) in lumpectomy PTV Eval D90, ?0.43% (range: ?0.95??0.14%) in ipsilateral lung V20, ?0.81% (range: ?1.62??0.26%) in V16, ?1.95% (range: ?4.13??0.84%) in V10, ?2.64% (?5.55??1.04%) in V8, ?4.19% (range: ?6.92??1.81%) in V5, and ?4.95% (range: ?7.49??2.01%) in V4, respectively. The differences in other normal tissues were minimal. Conclusion: The effect of density correction was observed in breast target doses (an average increase of ?1 Gy in D95 and D90, compared to the calculation without density correction) and exposed ipsilateral lung volumes in low dose region (average increases of ?4% and ?5% in V5 and V4, respectively)

  18. SU-E-J-17: A Study of Accelerator-Induced Cerenkov Radiation as a Beam Diagnostic and Dosimetry Tool

    SciTech Connect (OSTI)

    Bateman, F; Tosh, R [NIST, Gaithersburg, MD (United States)

    2014-06-01

    Purpose: To investigate accelerator-induced Cerenkov radiation imaging as a possible beam diagnostic and medical dosimetry tool. Methods: Cerenkov emission produced by clinical accelerator beams in a water phantom was imaged using a camera system comprised of a high-sensitivity thermoelectrically-cooled CCD camera coupled to a large aperture (f/0.75) objective lens with 16:1 magnification. This large format lens allows a significant amount of the available Cerenkov light to be collected and focused onto the CCD camera to form the image. Preliminary images, obtained with 6 MV photon beams, used an unshielded camera mounted horizontally with the beam normal to the water surface, and confirmed the detection of Cerenkov radiation. Several improvements were subsequently made including the addition of radiation shielding around the camera, and altering of the beam and camera angles to give a more favorable geometry for Cerenkov light collection. A detailed study was then undertaken over a range of electron and photon beam energies and dose rates to investigate the possibility of using this technique for beam diagnostics and dosimetry. Results: A series of images were obtained at a fixed dose rate over a range of electron energies from 6 to 20 MeV. The location of maximum intensity was found to vary linearly with the energy of the beam. A linear relationship was also found between the light observed from a fixed point on the central axis and the dose rate for both photon and electron beams. Conclusion: We have found that the analysis of images of beam-induced Cerenkov light in a water phantom has potential for use as a beam diagnostic and medical dosimetry tool. Our future goals include the calibration of the light output in terms of radiation dose and development of a tomographic system for 3D Cerenkov imaging in water phantoms and other media.

  19. Danger radiations

    ScienceCinema (OSTI)

    None

    2011-04-25

    Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

  20. Basis for radiation protection of the nuclear worker

    SciTech Connect (OSTI)

    Guevara, F.A.

    1982-01-01

    A description is given of the standards for protection of persons who work in areas that have a potential for radiation exposure. A review is given of the units of radiation exposure and dose equivalent and of the value of the maximum permissible dose limits for occupational exposure. Federal Regulations and Regulatory Guides for radiation protection are discussed. Average occupational equivalent doses experienced in several operations typical of the United States Nuclear Industry are presented and shown to be significantly lower than the maximum permissible. The concept of maintaining radiation doses to As-Low-As-Reasonably-Achievable is discussed and the practice of imposing engineering and administrative controls to provide effective radiation protection for the nuclear worker is described.

  1. The radiation protection problems of high altitude and space flight

    SciTech Connect (OSTI)

    Fry, R.J.M.

    1993-04-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  2. The radiation protection problems of high altitude and space flight

    SciTech Connect (OSTI)

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  3. A model of interactions between radiation-induced oxidative stress, protein and DNA damage in Deinococcus radiodurans

    E-Print Network [OSTI]

    Brenner, David Jonathan

    . For example, oxidative stress triggered by even quite low doses of radiation can produce an alteration repair may function more efficiently. These processes probably occur to some extent even at low doses of radiation/oxidative stress, but they are easiest to investigate at high doses, where both DNA and protein

  4. Isotoxic Dose Escalation in the Treatment of Lung Cancer by Means of Heterogeneous Dose Distributions in the Presence of Respiratory Motion

    SciTech Connect (OSTI)

    Baker, Mariwan; Nielsen, Morten [Laboratory of Radiation Physics, Odense University Hospital, Odense (Denmark); Hansen, Olfred [Department of Oncology, Odense University Hospital, Odense (Denmark); Jahn, Jonas Westberg [Laboratory of Radiation Physics, Odense University Hospital, Odense (Denmark); Korreman, Stine [Department of Radiation Oncology, Copenhagen University Hospital, Copenhagen (Denmark); Brink, Carsten, E-mail: carsten.brink@ouh.regionsyddanmark.dk [Laboratory of Radiation Physics, Odense University Hospital, Odense (Denmark); Institute of Clinical Research, University of Southern Denmark, Odense (Denmark)

    2011-11-01

    Purpose: To test, in the presence of intrafractional respiration movement, a margin recipe valid for a homogeneous and conformal dose distribution and to test whether the use of smaller margins combined with heterogeneous dose distributions allows an isotoxic dose escalation when respiratory motion is considered. Methods and Materials: Twenty-three Stage II-III non-small-cell lung cancer patients underwent four-dimensional computed tomography scanning. The gross tumor volume and clinical target volume (CTV) were outlined in the mid-ventilation phase. The CTV-to-planning target volume (PTV) margin was calculated by use of a standard margin recipe and the patient-specific respiration pattern. Standard three-dimensional treatment plans were generated and recalculated on the remaining respiration phases. The planning was repeated for a CTV-to-PTV margin decreased by 2.5 and 5 mm relative to the initial margin in all directions. Time-averaged dose-volume histograms (four-dimensional dose-volume histograms) were calculated to evaluate the CTV-to-PTV margin. Finally, the dose was escalated in the plans with decreased PTV such that the mean lung dose (predictor of radiation-induced pneumonitis) was equal to mean lung dose in the plan by use of the initially calculated margin. Results: A reduction of the standard margin by 2.5 mm compared with the recipe resulted in too low of a minimum dose for some patients. A combination of dose escalation and use of heterogeneous dose distribution was able to increase the minimum dose to the target by approximately 10% and 20% for a CTV-to-PTV margin reduction of 2.5 mm and 5.0 mm, respectively. Conclusion: The margin recipe is valid for intrafractional respiration-induced tumor motions. It is possible to increase the dose to the target without increased mean lung dose with an inhomogeneous dose distribution.

  5. Establishment and validation of a method for multi-dose irradiation of cells in 96-well microplates

    SciTech Connect (OSTI)

    Abatzoglou, Ioannis; Zois, Christos E.; Pouliliou, Stamatia

    2013-02-15

    Highlights: ? We established a method for multi-dose irradiation of cell cultures within a 96-well plate. ? Equations to adjust to preferable dose levels are produced and provided. ? Up to eight different dose levels can be tested in one microplate. ? This method results in fast and reliable estimation of radiation dose–response curves. -- Abstract: Microplates are useful tools in chemistry, biotechnology and molecular biology. In radiobiology research, these can be also applied to assess the effect of a certain radiation dose delivered to the whole microplate, to test radio-sensitivity, radio-sensitization or radio-protection. Whether different radiation doses can be accurately applied to a single 96-well plate to further facilitate and accelerated research by one hand and spare funds on the other, is a question dealt in the current paper. Following repeated ion-chamber, TLD and radiotherapy planning dosimetry we established a method for multi-dose irradiation of cell cultures within a 96-well plate, which allows an accurate delivery of desired doses in sequential columns of the microplate. Up to eight different dose levels can be tested in one microplate. This method results in fast and reliable estimation of radiation dose–response curves.

  6. TESS-based dose-response using pediatric clonidine exposures

    SciTech Connect (OSTI)

    Benson, Blaine E. [New Mexico Poison and Drug Information Center and University of New Mexico College of Pharmacy, Albuquerque, NM 87131 (United States)]. E-mail: jebenson@salud.unm.edu; Spyker, Daniel A. [Alexza Pharmaceuticals, Palo Alto, CA 94303 (United States); Troutman, William G. [University of New Mexico College of Pharmacy, Albuquerque, NM 87131 (United States); Watson, William A. [American Association of Poison Control Centers, Washington, DC 20016 (United States)]. E-mail: http://www.aapcc.org/

    2006-06-01

    Objective: The toxic and lethal doses of clonidine in children are unclear. This study was designed to determine whether data from the American Association of Poison Control Centers Toxic Exposure Surveillance System (TESS) could be utilized to determine a dose-response relationship for pediatric clonidine exposure. Methods: 3458 single-substance clonidine exposures in children <6 years of age reported to TESS from January 2000 through December 2003 were examined. Dose ingested, age, and medical outcome were available for 1550 cases. Respiratory arrest cases (n = 8) were classified as the most severe of the medical outcome categories (Arrest, Major, Moderate, Mild, and No effect). Exposures reported as a 'taste or lick' (n = 51) were included as a dose of 1/10 of the dosage form involved. Dose ranged from 0.4 to 1980 (median 13) {mu}g/kg. Weight was imputed based on a quadratic estimate of weight for age. Dose certainty was coded as exact (26% of cases) or not exact (74%). Medical outcome (response) was examined via logistic regression using SAS JMP (release 5.1). Results: The logistic model describing medical outcome (P < 0.0001) included Log dose/kg (P 0.0000) and Certainty (P = 0.045). Conclusion: TESS data can provide the basis for a statistically sound description of dose-response for pediatric clonidine poisoning exposures.

  7. RIS-M-2299 CALCULATION OF DOSE CONSEQUENCES OF A HYPOTHETICAL

    E-Print Network [OSTI]

    , but there is a failure to isolate the containment. This release is represented by the PWR-4 release. The third and cesium decrease by a decade from BWR-2 to PWR-4, and from PWR-4 to BEED, while the release fractions POPULATIONS; IODINE 131; MELTDOWN; PWR TYPE REAC- TORS; RADIATION DOSES; RADIATION HAZARDS; RARE GASES

  8. Light beam range finder

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-01-01

    A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.

  9. Light beam range finder

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-06-16

    A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.

  10. Discrete beta dose kernel matrices for nuclides applied in targeted radionuclide therapy (TRT) calculated with MCNP5

    SciTech Connect (OSTI)

    Reiner, Dora; Blaickner, Matthias; Rattay, Frank

    2009-11-15

    Purpose: Radiopharmaceuticals administered in targeted radionuclide therapy (TRT) rely to a great extent not only on beta-emitting nuclides but also on emitters of monoenergetic electrons. Recent advances like combined PET/CT devices, the consequential coregistration of both data, the concept of using beta couples for diagnosis and therapy, respectively, as well as the development of voxel models offer a great potential for developing TRT dose calculation systems similar to those available for external beam treatment planning. The deterministic algorithms in question for this task are based on the convolution of three-dimensional matrices, one representing the activity distribution and the other the dose point kernel. This study aims to report on three-dimensional kernel matrices for various nuclides used in TRT. Methods: The Monte Carlo code MCNP5 was used to calculate discrete dose kernels of beta particles including the contributions from their respective secondary radiation in soft tissue for the following nuclides: {sup 32}P, {sup 33}P, {sup 67}Cu, {sup 89}Sr, {sup 90}Y, {sup 103}Rh{sup m}, {sup 131}I, {sup 177}Lu, {sup 186}Re, and {sup 188}Re. For each nuclide a kernel cube of 10x10x10 mm{sup 3} was calculated, the dimensions of a voxel being 1 mm{sup 3}. Additional kernels with voxel sizes of 3x3x3 mm{sup 3} were simulated. Results: Comparison with the S-value data regarding {sup 32}P, {sup 89}Sr, {sup 90}Y, and {sup 131}I of the MIRD committee which were calculated with the EGS4 code showed a very good agreement, the secondary particle transport of {sup 90}Y being the only exception. Documented analytical kernels on the other side show deviations very close and very far to the source. Conclusions: The good accordance with the only discrete dose kernels published up to date justifies the method chosen. Together with the additional six nuclides, this report provides a considerable database for three-dimensional kernel matrices with regard to beta radionuclides applied in TRT. In contrast to analytical dose point kernels, the discrete kernels elude the problem of overestimation near the source and take energy depositions into account, which occur beyond the range of the continuous-slowing-down approximation (csda range). Recalculation of the 1x1x1 mm{sup 3} kernels to other dose kernels with varying voxel dimensions, cubic or noncubic, is shown to be easily manageable and thereby provides a resolution-independent system of dose calculation.

  11. Parameterization of solar flare dose 

    E-Print Network [OSTI]

    Lamarche, Anne Helene

    1995-01-01

    A critical aspect of missions to the Moon or Mars is the safety and health of the crew. Radiation in space is a hazard for astronauts, especially high-energy radiation following certain types of solar flares. A solar flare ...

  12. Health Impacts from Acute Radiation Exposure

    SciTech Connect (OSTI)

    Strom, Daniel J.

    2003-09-30

    Absorbed doses above1-2 Gy (100-200 rads) received over a period of a day or less lead to one or another of the acute radiation syndromes. These are the hematopoietic syndrome, the gastrointestinal (GI) syndrome, the cerebrovascular (CV) syndrome, the pulmonary syndrome, or the cutaneous syndrome. The dose that will kill about 50% of the exposed people within 60 days with minimal medical care, LD50-60, is around 4.5 Gy (450 rads) of low-LET radiation measured free in air. The GI syndrome may not be fatal with supportive medical care and growth factors below about 10 Gy (1000 rads), but above this is likely to be fatal. Pulmonary and cutaneous syndromes may or may not be fatal, depending on many factors. The CV syndrome is invariably fatal. Lower acute doses, or protracted doses delivered over days or weeks, may lead to many other health outcomes than death. These include loss of pregnancy, cataract, impaired fertility or temporary or permanent sterility, hair loss, skin ulceration, local tissue necrosis, developmental abnormalities including mental and growth retardation in persons irradiated as children or fetuses, radiation dermatitis, and other symptoms listed in Table 2 on page 12. Children of parents irradiated prior to conception may experience heritable ill-health, that is, genetic changes from their parents. These effects are less strongly expressed than previously thought. Populations irradiated to high doses at high dose rates have increased risk of cancer incidence and mortality, taken as about 10-20% incidence and perhaps 5-10% mortality per sievert of effective dose of any radiation or per gray of whole-body absorbed dose low-LET radiation. Cancer risks for non-uniform irradiation will be less.

  13. Radiation Dose Measurement for High-Intensity Laser Interactions...

    Office of Scientific and Technical Information (OSTI)

    Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: OPTICS, SAFETY...

  14. Apparatus and method for high dose rate brachytherapy radiation treatment

    DOE Patents [OSTI]

    Macey, Daniel J.; Majewski, Stanislaw; Weisenberger, Andrew G.; Smith, Mark Frederick; Kross, Brian James

    2005-01-25

    A method and apparatus for the in vivo location and tracking of a radioactive seed source during and after brachytherapy treatment. The method comprises obtaining multiple views of the seed source in a living organism using: 1) a single PSPMT detector that is exposed through a multiplicity of pinholes thereby obtaining a plurality of images from a single angle; 2) a single PSPMT detector that may obtain an image through a single pinhole or a plurality of pinholes from a plurality of angles through movement of the detector; or 3) a plurality of PSPMT detectors that obtain a plurality of views from different angles simultaneously or virtually simultaneously. The plurality of images obtained from these various techniques, through angular displacement of the various acquired images, provide the information required to generate the three dimensional images needed to define the location of the radioactive seed source within the body of the living organism.

  15. RADIATION DOSE CALCULATION FOR FUEL HANDLING FACILITY CLOSURE CELL EQUIPMENT

    SciTech Connect (OSTI)

    D. Musat

    2005-03-07

    This calculation evaluates the energy deposition rates in silicon, gamma and neutron flux spectra at various locations of interest throughout FHF closure cell. The physical configuration features a complex geometry, with particle flux attenuation of many orders of magnitude that cannot be modeled by computer codes that use deterministic methods. Therefore, in this calculation the Monte Carlo method was used to solve the photon and neutron transport. In contrast with the deterministic methods, Monte Carlo does not solve an explicit transport equation, but rather obtain answers by simulating individual particles, recording the aspects of interest of their average behavior, and estimates the statistical precision of the results.

  16. Annual report shows potential INL radiation doses well below safe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneandAn319 125Annualregulatory limits

  17. RADIATION DOSE ESTIMATES TO ADULTS AND CHILDREN FROM VARIOUS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on Global Technology OUTSIDE FRONT7a.

  18. Monte Carlo simulations of solid walled proportional counters with different site size for HZE radiation 

    E-Print Network [OSTI]

    Wang, Xudong

    2009-05-15

    Characterizing high z high energy (HZE) particles in cosmic radiation is of importance for the study of the equivalent dose to astronauts. Low pressure, tissue equivalent proportional counters (TEPC) are routinely used to evaluate radiation...

  19. A Theoretical Approach for the Determination and Mechanistic Interpretation of Radiation D10-value 

    E-Print Network [OSTI]

    Ekpanyaskun, Nont

    2010-07-14

    In the design of the food irradiation process, the knowledge of the radiation resistance of the target organism in a specific food commodity is required. The D10-value, the radiation dose needed to inactivate 90% of the ...

  20. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  1. Long Range Development Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E CChinaC L S CLogin HelpLoisLong Range

  2. Dose reconstruction for real-time patient-specific dose estimation in CT

    SciTech Connect (OSTI)

    De Man, Bruno Yin, Zhye; Wu, Mingye; FitzGerald, Paul; Kalra, Mannudeep

    2015-05-15

    Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x-ray detectors, and optimized CT acquisition schemes with precise control over the x-ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real-time patient-specific protocol optimization. Methods: The authors present a new method for volumetrically reconstructing absorbed dose on a per-voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance-driven pencil-beam approach to model the first-order x-ray interactions with a set of Gaussian convolution kernels to model the higher-order x-ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth. Results: The authors’ results indicate that the proposed approach offers a good trade-off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low-resolution filtered-backprojection algorithm. Conclusions: The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x-ray photons, but the authors expect that it may prove useful in applications where real-time patient-specific dose estimation is required.

  3. Estimation of 1945 to 1957 food consumption. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    1993-07-01

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. The report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.

  4. Brachial Plexopathy in Apical Non-Small Cell Lung Cancer Treated With Definitive Radiation: Dosimetric Analysis and Clinical Implications

    SciTech Connect (OSTI)

    Eblan, Michael J.; Corradetti, Michael N.; Lukens, J. Nicholas; Xanthopoulos, Eric; Mitra, Nandita; Christodouleas, John P.; Grover, Surbhi; Fernandes, Annemarie T.; Langer, Corey J.; Evans, Tracey L.; Stevenson, James; Rengan, Ramesh; Apisarnthanarax, Smith

    2013-01-01

    Purpose: Data are limited on the clinical significance of brachial plexopathy in patients with apical non-small cell lung cancers (NSCLC) treated with definitive radiation therapy. We report the rates of radiation-induced brachial plexopathy (RIBP) and tumor-related brachial plexopathy (TRBP) and associated dosimetric parameters in apical NSCLC patients. Methods and Materials: Charts of NSCLC patients with primary upper lobe or superiorly located nodal disease who received {>=}50 Gy of definitive conventionally fractionated radiation or chemoradiation were retrospectively reviewed for evidence of brachial plexopathy and categorized as RIBP, TRBP, or trauma-related. Dosimetric data were gathered on ipsilateral brachial plexuses (IBP) contoured according to Radiation Therapy Oncology Group atlas guidelines. Results: Eighty patients were identified with a median follow-up and survival time of 17.2 and 17.7 months, respectively. The median prescribed dose was 66.6 Gy (range, 50.4-84.0), and 71% of patients received concurrent chemotherapy. RIBP occurred in 5 patients with an estimated 3-year rate of 12% when accounting for competing risk of death. Seven patients developed TRBP (estimated 3-year rate of 13%), comprising 24% of patients who developed locoregional failures. Grade 3 brachial plexopathy was more common in patients who experienced TRBP than RIBP (57% vs 20%). No patient who received {<=}78 Gy to the IBP developed RIBP. On multivariable competing risk analysis, IBP V76 receiving {>=}1 cc, and primary tumor failure had the highest hazard ratios for developing RIBP and TRBP, respectively. Conclusions: RIBP is a relatively uncommon complication in patients with apical NSCLC tumors receiving definitive doses of radiation, while patients who develop primary tumor failures are at high risk for developing morbid TRBP. These findings suggest that the importance of primary tumor control with adequate doses of radiation outweigh the risk of RIBP in this population of patients.

  5. Meeting Report--NASA Radiation Biomarker Workshop

    SciTech Connect (OSTI)

    Straume, Tore; Amundson, Sally A,; Blakely, William F.; Burns, Frederic J.; Chen, Allen; Dainiak, Nicholas; Franklin, Stephen; Leary, Julie A.; Loftus, David J.; Morgan, William F.; Pellmar, Terry C.; Stolc, Viktor; Turteltaub, Kenneth W.; Vaughan, Andrew T.; Vijayakumar, Srinivasan; Wyrobek, Andrew J.

    2008-05-01

    A summary is provided of presentations and discussions from the NASA Radiation Biomarker Workshop held September 27-28, 2007, at NASA Ames Research Center in Mountain View, California. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including for long-duration space travel. Topics discussed include the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triage following large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass-spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. Summary conclusions are provided at the end of the report.

  6. Clinical Response of Pelvic and Para-aortic Lymphadenopathy to a Radiation Boost in the Definitive Management of Locally Advanced Cervical Cancer

    SciTech Connect (OSTI)

    Rash, Dominique L. [Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, California (United States); Lee, Yongsook C. [Department of Radiation Oncology, University of Kansas School of Medicine, Kansas City, Kansas (United States); Kashefi, Amir [Division of Nuclear Medicine, Department of Radiology, University of California Davis Medical Center, Sacramento, California (United States); Durbin-Johnson, Blythe [Division of Biostatistics, Department of Public Health Sciences, University of California Davis School of Medicine, Sacramento, California (United States); Mathai, Mathew; Valicenti, Richard [Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, California (United States); Mayadev, Jyoti S., E-mail: jyoti.mayadev@ucdmc.ucdavis.edu [Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, California (United States)

    2013-10-01

    Purpose: Optimal treatment with radiation for metastatic lymphadenopathy in locally advanced cervical cancer remains controversial. We investigated the clinical dose response threshold for pelvic and para-aortic lymph node boost using radiographic imaging and clinical outcomes. Methods and Materials: Between 2007 and 2011, 68 patients were treated for locally advanced cervical cancer; 40 patients had clinically involved pelvic and/or para-aortic lymph nodes. Computed tomography (CT) or 18F-labeled fluorodeoxyglucose-positron emission tomography scans obtained pre- and postchemoradiation for 18 patients were reviewed to assess therapeutic radiographic response of individual lymph nodes. External beam boost doses to involved nodes were compared to treatment response, assessed by change in size of lymph nodes by short axis and change in standard uptake value (SUV). Patterns of failure, time to recurrence, overall survival (OS), and disease-free survival (DFS) were determined. Results: Sixty-four lymph nodes suspicious for metastatic involvement were identified. Radiation boost doses ranged from 0 to 15 Gy, with a mean total dose of 52.3 Gy. Pelvic lymph nodes were treated with a slightly higher dose than para-aortic lymph nodes: mean 55.3 Gy versus 51.7 Gy, respectively. There was no correlation between dose delivered and change in size of lymph nodes along the short axis. All lymph nodes underwent a decrease in SUV with a complete resolution of abnormal uptake observed in 68%. Decrease in SUV was significantly greater for lymph nodes treated with ?54 Gy compared to those treated with <54 Gy (P=.006). Median follow-up was 18.7 months. At 2 years, OS and DFS for the entire cohort were 78% and 50%, respectively. Locoregional control at 2 years was 84%. Conclusions: A biologic response, as measured by the change in SUV for metastatic lymph nodes, was observed at a dose threshold of 54 Gy. We recommend that involved lymph nodes be treated to this minimum dose.

  7. HOW MUCH MEMORY RADIATION PROTECTION DO ONBOARD MACHINE LEARNING ALGORITHMS REQUIRE?

    E-Print Network [OSTI]

    data sets in a low-Earth orbit radi- ation environment, commercial RAM would suffice; no radiation is an open area of research. Key words: radiation, onboard data analysis. 1. INTRODUCTION Space missions of computational power, available memory, storage space, and high doses of radiation. Radiation causes errors

  8. Population exposure dose reconstruction for the Urals Region

    SciTech Connect (OSTI)

    Degteva, M.O.; Kozheurov, V.P.; Vorobiova, M.I.; Burmistrov, D.S.; Khokhryakov, V.V.; Suslova, K.G.; Anspaugh, L.R.; Napier, B.A.; Bouville, A.

    1996-06-01

    This presentation describes the first preliminary results of an ongoing joint Russian-US pilot feasibility study. Many people participated in workshops to determine what Russian and United States scientists could do together in the area of dose reconstruction in the Urals population. Most of the results presented here came from a joint work shop in St. Petersburg, Russia (11-13 July 1995). The Russians at the workshop represented the Urals Research Center for Radiation Medicine (URCRM), the Mayak Industrial Association, and Branch One of the Moscow Biophysics Institute. The US Collaborators were Dr. Anspaugh of LLNL, Dr. Nippier of PNL, and Dr. Bouville of the National Cancer Institute. The objective of the first year of collaboration was to look at the source term and levels of radiation contamination, the historical data available, and the results of previous work carried out by Russian scientists, and to determine a conceptual model for dose reconstruction.

  9. Radiation calculations for the ILC cryomodule

    SciTech Connect (OSTI)

    Nakao, N.; Mokhov, N.V.; Klebaner, A.; /Fermilab

    2007-04-01

    The MARS15 radiation simulations were performed for the ILC cryomodule. The model assumes a uniform beam loss intensity of 1 W/m of 750-MeV and 250-GeV electron along the inner surface of the beam pipe and the cavity iris of the 12-m cryomodule. Two-dimensional distributions of radiation dose in the module were obtained. Absorbed dose rate and energy spectra of electrons, photons, neutrons and protons were also obtained at the three cryogenic thermometers locations by filling with silicon material in the appropriate locations, and radiation hardness of the thermometers was discussed. From the obtained results, maximum absorbed dose of thermometers at the cooling pipe is 0.85mGy/sec (85 mRad/sec), that is 0.31 MGy (31 MRad) for 20 years.

  10. Columbia River Pathway Dosimetry Report, 1944-1992. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Farris, W.T.; Napier, B.A.; Simpson, J.C.; Snyder, S.F.; Shipler, D.B.

    1994-04-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. One objective of the HEDR Project is to estimate doses to individuals who were exposed to the radionuclides released to the Columbia River (the river pathway). This report documents the last in a series of dose calculations conducted on the Columbia River pathway. The report summarizes the technical approach used to estimate radiation doses to three classes of representative individuals who may have used the Columbia River as a source of drinking water, food, or for recreational or occupational purposes. In addition, the report briefly explains the approaches used to estimate the radioactivity released to the river, the development of the parameters used to model the uptake and movement of radioactive materials in aquatic systems such as the Columbia River, and the method of calculating the Columbia River`s transport of radioactive materials. Potential Columbia River doses have been determined for representative individuals since the initiation of site activities in 1944. For this report, dose calculations were performed using conceptual models and computer codes developed for the purpose of estimating doses. All doses were estimated for representative individuals who share similar characteristics with segments of the general population.

  11. Chun Jiao, Dongming Wang, Hongbing Lu*, Member, IEEE, Zhu Zhang, Jerome Z. Liang, Fellow, IEEE AbstractLow-dose protocol for computed tomography (CT)

    E-Print Network [OSTI]

    higher risk of lung cancer, and that of children. To lower the radiation exposure, low-dose protocols Abstract­Low-dose protocol for computed tomography (CT) scans has been gradually used in clinics to lower-stationary Gaussian noise in low-dose CT sinograms by wavelet analysis. To explore the noise property in wavelet

  12. The Contribution of Tissue Level Organization to Genomic Stability Following Low Dose/Low Dose Rate Gamma and Proton Irradiation

    SciTech Connect (OSTI)

    Cheryl G. Burrell, Ph.D.

    2012-05-14

    The formation of functional tissue units is necessary in maintaining homeostasis within living systems, with individual cells contributing to these functional units through their three-dimensional organization with integrin and adhesion proteins to form a complex extra-cellular matrix (ECM). This is of particular importance in those tissues susceptible to radiation-induced tumor formation, such as epithelial glands. The assembly of epithelial cells of the thyroid is critical to their normal receipt of, and response to, incoming signals. Traditional tissue culture and live animals present significant challenges to radiation exposure and continuous sampling, however, the production of bioreactor-engineered tissues aims to bridge this gap by improve capabilities in continuous sampling from the same functional tissue, thereby increasing the ability to extrapolate changes induced by radiation to animals and humans in vivo. Our study proposes that the level of tissue organization will affect the induction and persistence of low dose radiation-induced genomic instability. Rat thyroid cells, grown in vitro as 3D tissue analogs in bioreactors and as 2D flask grown cultures were exposed to acute low dose (1, 5, 10 and 200 cGy) gamma rays. To assess immediate (6 hours) and delayed (up to 30 days) responses post-irradiation, various biological endpoints were studied including cytogenetic analyses, apoptosis analysis and cell viability/cytotoxicity analyses. Data assessing caspase 3/7 activity levels show that, this activity varies with time post radiation and that, overall, 3D cultures display more genomic instability (as shown by the lower levels of apoptosis over time) when compared to the 2D cultures. Variation in cell viability levels were only observed at the intermediate and late time points post radiation. Extensive analysis of chromosomal aberrations will give further insight on the whether the level of tissue organization influences genomic instability patterns after low dose radiation exposure. Cells viability/cytotoxicity analysis data are currently being analyzed to determine how these endpoints are affected under our experimental conditions. The results from this study will be translatable to risk assessment for assigning limits to radiation workers, pre-dosing for more effective radiotherapy and the consequences of long duration space flight. The data from this study has been presented a various scientific meetings/workshops and a manuscript, containing the findings, is currently being prepared for publication. Due to unforeseen challenges in collecting the data and standardizing experimental procedures, the second and third aims have not been completed. However, attempts will be made, based on the availability of funds, to continue this project so that these aims can be satisfied.

  13. Savannah River Site dose control

    SciTech Connect (OSTI)

    Smith, L.S.

    1992-06-01

    Health physicists from the Brookhaven National Laboratory (BNL) visited the Savannah River Site (SRS) as one of 12 facilities operated by the Department of Energy (DOE) contractors with annual collective dose equivalents greater than 100 person-rem (100 person-cSv). Their charter was to review, evaluate and summarize as low as reasonably achievable (ALARA) techniques, methods and practices as implemented. This presentation gives an overview of the two selected ALARA practices implemented at the SRS: Administrative Exposure Limits and Goal Setting. These dose control methods are used to assure that individual and collective occupational doses are ALARA and within regulatory limits.

  14. Estimation of food consumption. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Callaway, J.M. Jr.

    1992-04-01

    The research reported in this document was conducted as a part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The objective of the HEDR Project is to estimate the radiation doses that people could have received from operations at the Hanford Site. Information required to estimate these doses includes estimates of the amounts of potentially contaminated foods that individuals in the region consumed during the study period. In that general framework, the objective of the Food Consumption Task was to develop a capability to provide information about the parameters of the distribution(s) of daily food consumption for representative groups in the population for selected years during the study period. This report describes the methods and data used to estimate food consumption and presents the results developed for Phase I of the HEDR Project.

  15. Dental dose and image quality surveys using optically stimulated luminescence 

    E-Print Network [OSTI]

    Handley, Stephen Michael

    2006-04-12

    these results and mailing back a report of the findings. 42 SUMMARY AND CONCLUSIONS HVL calculations were performed to establish a means to help further characterize the x-ray beam energy spectrum emerging from a dental x-ray machine. Many older... properties of direct exposure and screen-film imaging systems. Dentomaxillofac. Radiology 18:12-14; 1989 Martin, JE. Physics for radiation protection. New York: John Wiley & Sons; 2000 Napier ID. Reference doses for dental radiography. British Dental...

  16. Influence of polarization and a source model for dose calculation in MRT

    SciTech Connect (OSTI)

    Bartzsch, Stefan Oelfke, Uwe; Lerch, Michael; Petasecca, Marco; Bräuer-Krisch, Elke

    2014-04-15

    Purpose: Microbeam Radiation Therapy (MRT), an alternative preclinical treatment strategy using spatially modulated synchrotron radiation on a micrometer scale, has the great potential to cure malignant tumors (e.g., brain tumors) while having low side effects on normal tissue. Dose measurement and calculation in MRT is challenging because of the spatial accuracy required and the arising high dose differences. Dose calculation with Monte Carlo simulations is time consuming and their accuracy is still a matter of debate. In particular, the influence of photon polarization has been discussed in the literature. Moreover, it is controversial whether a complete knowledge of phase space trajectories, i.e., the simulation of the machine from the wiggler to the collimator, is necessary in order to accurately calculate the dose. Methods: With Monte Carlo simulations in the Geant4 toolkit, the authors investigate the influence of polarization on the dose distribution and the therapeutically important peak to valley dose ratios (PVDRs). Furthermore, the authors analyze in detail phase space information provided byMartínez-Rovira et al. [“Development and commissioning of a Monte Carlo photon model for the forthcoming clinical trials in microbeam radiation therapy,” Med. Phys. 39(1), 119–131 (2012)] and examine its influence on peak and valley doses. A simple source model is developed using parallel beams and its applicability is shown in a semiadjoint Monte Carlo simulation. Results are compared to measurements and previously published data. Results: Polarization has a significant influence on the scattered dose outside the microbeam field. In the radiation field, however, dose and PVDRs deduced from calculations without polarization and with polarization differ by less than 3%. The authors show that the key consequences from the phase space information for dose calculations are inhomogeneous primary photon flux, partial absorption due to inclined beam incidence outside the field center, increased beam width and center to center distance due to the beam propagation from the collimator to the phantom surface and imperfect absorption in the absorber material of the Multislit Collimator. These corrections have an effect of approximately 10% on the valley dose and suffice to describe doses in MRT within the measurement uncertainties of currently available dosimetry techniques. Conclusions: The source for the first clinical pet trials in MRT is characterized with respect to its phase space and the photon polarization. The results suggest the use of a presented simplified phase space model in dose calculations and hence pave the way for alternative and fast dose calculation algorithms. They also show that the polarization is of minor importance for the clinical important peak and valley doses inside the microbeam field.

  17. RADIATION MONITORING

    E-Print Network [OSTI]

    Thomas, R.H.

    2010-01-01

    Radiation Exposure due to a Boiling Water Reactor Plume fromIN THE VICINITY OF A BOILING WATER REACTOR EXPOSURE RATE

  18. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, Stephen H. (East Syracuse, NY)

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  19. Impact of the Radiation Boost on Outcomes After Breast-Conserving Surgery and Radiation

    SciTech Connect (OSTI)

    Murphy, Colin; Anderson, Penny R.; Li Tianyu; Bleicher, Richard J.; Sigurdson, Elin R.; Goldstein, Lori J.; Swaby, Ramona; Denlinger, Crystal; Dushkin, Holly; Nicolaou, Nicos; Freedman, Gary M.

    2011-09-01

    Purpose: We examined the impact of radiation tumor bed boost parameters in early-stage breast cancer on local control and cosmetic outcomes. Methods and Materials: A total of 3,186 women underwent postlumpectomy whole-breast radiation with a tumor bed boost for Tis to T2 breast cancer from 1970 to 2008. Boost parameters analyzed included size, energy, dose, and technique. Endpoints were local control, cosmesis, and fibrosis. The Kaplan-Meier method was used to estimate actuarial incidence, and a Cox proportional hazard model was used to determine independent predictors of outcomes on multivariate analysis (MVA). The median follow-up was 78 months (range, 1-305 months). Results: The crude cosmetic results were excellent in 54%, good in 41%, and fair/poor in 5% of patients. The 10-year estimate of an excellent cosmesis was 66%. On MVA, independent predictors for excellent cosmesis were use of electron boost, lower electron energy, adjuvant systemic therapy, and whole-breast IMRT. Fibrosis was reported in 8.4% of patients. The actuarial incidence of fibrosis was 11% at 5 years and 17% at 10 years. On MVA, independent predictors of fibrosis were larger cup size and higher boost energy. The 10-year actuarial local failure was 6.3%. There was no significant difference in local control by boost method, cut-out size, dose, or energy. Conclusions: Likelihood of excellent cosmesis or fibrosis are associated with boost technique, electron energy, and cup size. However, because of high local control and rare incidence of fair/poor cosmesis with a boost, the anatomy of the patient and tumor cavity should ultimately determine the necessary boost parameters.

  20. Low Dose Gamma Irradiation Potentiates Secondary Exposure to Gamma Rays or Protons in Thyroid Tissue Analogs

    SciTech Connect (OSTI)

    Green, Lora M

    2006-05-25

    We have utilized our unique bioreactor model to produce three-dimensional thyroid tissue analogs that we believe better represent the effects of radiation in vivo than two-dimensional cultures. Our thyroid model has been characterized at multiple levels, including: cell-cell exchanges (bystander), signal transduction, functional changes and modulation of gene expression. We have significant preliminary data on structural, functional, signal transduction and gene expression responses from acute exposures at high doses (50-1000 rads) of gamma, protons and iron (Green et al., 2001a; 2001b; 2002a; 2002b; 2005). More recently, we used our DOE funding (ending Feb 06) to characterize the pattern of radiation modulated gene expression in rat thyroid tissue analogs using low-dose/low-dose rate radiation, plus/minus acute challenge exposures. Findings from these studies show that the low-dose/low-dose rate “priming” exposures to radiation invoked changes in gene expression profiles that varied with dose and time. The thyrocytes transitioned to a “primed” state, so that when the tissue analogs were challenged with an acute exposure to radiation they had a muted response (or an increased resistance) to cytopathological changes relative to “un-primed” cells. We measured dramatic differences in the primed tissue analogs, showing that our original hypothesis was correct: that low dose gamma irradiation will potentiate the repair/adaptation response to a secondary exposure. Implications from these findings are that risk assessments based on classical in vitro tissue culture assays will overestimate risk, and that low dose rate priming results in a reduced response in gene expression to a secondary challenge exposure, which implies that a priming dose provides enhanced protection to thyroid cells grown as tissue analogs. If we can determine that the effects of radiation on our tissue analogs more closely resemble the effects of radiation in vivo, then we can better estimate the risks and modify assign limits to radiation worker and astronauts. Additionally, confirmation that tissue analogs represent a realistic in vivo response to radiation will allow scientists to perform tissue relevant experiments without the expense of using animals. Confirmation of the in vivo approximation of our model will strengthen our findings from the recent completion of our DOE funding which is the subject of the current proposal.

  1. INTEGRATED CODES FOR ESTIMATING ENVIRONMENTAL ACCUMULATION ANd INDIVIDUAL DOSE FROM PAST HANFORD ATMOSPHERIC RELEASES Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Ikenberry, T. A.; Burnett, R. A.; Napier, B. A.; Reitz, N. A.; Shipler, D. B.

    1992-02-01

    Preliminary radiation doses were estimated and reported during Phase I of the Hanford Environmental Dose Reconstruction (HEDR) Project. As the project has progressed, additional information regarding the magnitude and timing of past radioactive releases has been developed, and the general scope of the required calculations has been enhanced. The overall HEDR computational model for computing doses attributable to atmospheric releases from Hanford Site operations is called HEDRIC (Hanford Environmental Dose Reconstruction Integrated Codes). It consists of four interrelated models: source term, atmospheric transport, environmental accumulation, and individual dose. The source term and atmospheric transport models are documented elsewhere. This report describes the initial implementation of the design specifications for the environmental accumulation model and computer code, called DESCARTES (Dynamic EStimates of Concentrations and Accumulated Radionuclides in Terrestrial Environments), and the individual dose model and computer code, called CIDER (Calculation of Individual Doses from Environmental Radionuclides). The computations required of these models and the design specifications for their codes were documented in Napier et al. (1992). Revisions to the original specifications and the basis for modeling decisions are explained. This report is not the final code documentation but gives the status of the model and code development to date. Final code documentation is scheduled to be completed in FY 1994 following additional code upgrades and refinements. The user's guide included in this report describes the operation of the environmental accumulation and individual dose codes and associated pre- and post-processor programs. A programmer's guide describes the logical structure of the programs and their input and output files.

  2. Radiation detector

    DOE Patents [OSTI]

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  3. A real-time regional adaptive exposure method for saving dose-area product in x-ray fluoroscopy

    SciTech Connect (OSTI)

    Burion, Steve; Funk, Tobias; Speidel, Michael A.

    2013-05-15

    Purpose: Reduction of radiation dose in x-ray imaging has been recognized as a high priority in the medical community. Here the authors show that a regional adaptive exposure method can reduce dose-area product (DAP) in x-ray fluoroscopy. The authors' method is particularly geared toward providing dose savings for the pediatric population. Methods: The scanning beam digital x-ray system uses a large-area x-ray source with 8000 focal spots in combination with a small photon-counting detector. An imaging frame is obtained by acquiring and reconstructing up to 8000 detector images, each viewing only a small portion of the patient. Regional adaptive exposure was implemented by varying the exposure of the detector images depending on the local opacity of the object. A family of phantoms ranging in size from infant to obese adult was imaged in anteroposterior view with and without adaptive exposure. The DAP delivered to each phantom was measured in each case, and noise performance was compared by generating noise arrays to represent regional noise in the images. These noise arrays were generated by dividing the image into regions of about 6 mm{sup 2}, calculating the relative noise in each region, and placing the relative noise value of each region in a one-dimensional array (noise array) sorted from highest to lowest. Dose-area product savings were calculated as the difference between the ratio of DAP with adaptive exposure to DAP without adaptive exposure. The authors modified this value by a correction factor that matches the noise arrays where relative noise is the highest to report a final dose-area product savings. Results: The average dose-area product saving across the phantom family was (42 {+-} 8)% with the highest dose-area product saving in the child-sized phantom (50%) and the lowest in the phantom mimicking an obese adult (23%). Conclusions: Phantom measurements indicate that a regional adaptive exposure method can produce large DAP savings without compromising the noise performance in the image regions with highest noise.

  4. AN ACCELERATOR-BASED NEUTRON MICROBEAM SYSTEM FOR STUDIES OF RADIATION EFFECTS

    E-Print Network [OSTI]

    Brenner, David Jonathan

    radiation risk to very low doses. Because the primary energy damage patterns are so different radi- ation effects due to low-energy neutron radiation, a primary reason is because a significant number of individuals are occupationally exposed to low doses of neutrons, mostly low-energy neutrons

  5. The Balance Between Initiation and Promotion in Radiation-Induced Murine Carcinogenesis

    E-Print Network [OSTI]

    Brenner, David Jonathan

    becomes important at older ages. g 2010 by Radiation Research Society INTRODUCTION Most mathematical of the shape and magnitude of the initial dose response over the long period after radiation exposure before). Some of the model parameters were obtained from fitting radiogenic risks at compar- atively low doses

  6. Radiation risk to low fluences of particles may be greater than we thought

    E-Print Network [OSTI]

    on Radiation Protection and Measurements (NCRP) have recommended that estimates of cancer risk for low doseRadiation risk to low fluences of particles may be greater than we thought Hongning Zhou*, Masao to reconsider the validity of the linear extrapolation in making risk estimates for low dose, high linear

  7. Primary Radiation Therapy for Head-and-Neck Cancer in the Setting of Human Immunodeficiency Virus

    SciTech Connect (OSTI)

    Klein, Emily A.; Guiou, Michael; Farwell, D. Gregory; Luu, Quang; Lau, Derick H.; Stuart, Kerri; Vaughan, Andrew; Vijayakumar, Srinivasan; Chen, Allen M.

    2011-01-01

    Purpose: To analyze outcomes after radiation therapy for head-and-neck cancer among a cohort of patients with human immunodeficiency virus (HIV). Methods and Materials: The medical records of 12 patients with serologic evidence of HIV who subsequently underwent radiation therapy to a median dose of 68 Gy (range, 64-72 Gy) for newly diagnosed squamous cell carcinoma of the head and neck were reviewed. Six patients (50%) received concurrent chemotherapy. Intensity-modulated radiotherapy was used in 6 cases (50%). All patients had a Karnofsky performance status of 80 or 90. Nine patients (75%) were receiving antiretroviral therapies at the time of treatment, and the median CD4 count was 460 (range, 266-800). Toxicity was graded according to the Radiation Therapy Oncology Group / European Organization for the Treatment of Cancer toxicity criteria. Results: The 3-year estimates of overall survival and local-regional control were 78% and 92%, respectively. Acute Grade 3+ toxicity occurred in 7 patients (58%), the most common being confluent mucositis (5 patients) and moist skin desquamation (4 patients). Two patients experienced greater than 10% weight loss, and none experienced more than 15% weight loss from baseline. Five patients (42%) experienced treatment breaks in excess of 10 cumulative days, although none required hospitalization. There were no treatment-related fatalities. Conclusions: Radiation therapy for head-and-neck cancer seems to be relatively well tolerated among appropriately selected patients with HIV. The observed rates of toxicity were comparable to historical controls without HIV.

  8. MO-PIS-Exhibit Hall-01: Imaging: CT Dose Optimization Technologies I

    SciTech Connect (OSTI)

    Denison, K; Smith, S

    2014-06-15

    Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The imaging topic this year is CT scanner dose optimization capabilities. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Dose Optimization Capabilities of GE Computed Tomography Scanners Presentation Time: 11:15 – 11:45 AM GE Healthcare is dedicated to the delivery of high quality clinical images through the development of technologies, which optimize the application of ionizing radiation. In computed tomography, dose management solutions fall into four categories: employs projection data and statistical modeling to decrease noise in the reconstructed image - creating an opportunity for mA reduction in the acquisition of diagnostic images. Veo represents true Model Based Iterative Reconstruction (MBiR). Using high-level algorithms in tandem with advanced computing power, Veo enables lower pixel noise standard deviation and improved spatial resolution within a single image. Advanced Adaptive Image Filters allow for maintenance of spatial resolution while reducing image noise. Examples of adaptive image space filters include Neuro 3-D filters and Cardiac Noise Reduction Filters. AutomA adjusts mA along the z-axis and is the CT equivalent of auto exposure control in conventional x-ray systems. Dynamic Z-axis Tracking offers an additional opportunity for dose reduction in helical acquisitions while SmartTrack Z-axis Tracking serves to ensure beam, collimator and detector alignment during tube rotation. SmartmA provides angular mA modulation. ECG Helical Modulation reduces mA during the systolic phase of the heart cycle. SmartBeam optimization uses bowtie beam-shaping hardware and software to filter off-axis x-rays - minimizing dose and reducing x-ray scatter. The DICOM Radiation Dose Structured Report (RDSR) generates a dose report at the conclusion of every examination. Dose Check preemptively notifies CT operators when scan parameters exceed user-defined dose thresholds. DoseWatch is an information technology application providing vendor-agnostic dose tracking and analysis for CT (and all other diagnostic x-ray modalities) SnapShot Pulse improves coronary CTA dose management. VolumeShuttle uses two acquisitions to increase coverage, decrease dose, and conserve on contrast administration. Color-Coding for Kids applies the Broselow-Luten Pediatric System to facilitate pediatric emergency care and reduce medical errors. FeatherLight achieves dose optimization through pediatric procedure-based protocols. Adventure Series scanners provide a child-friendly imaging environment promoting patient cooperation with resultant reduction in retakes and patient motion. Philips CT Dose Optimization Tools and Advanced Reconstruction Presentation Time: 11:45 ‘ 12:15 PM The first part of the talk will cover “Dose Reduction and Dose Optimization Technologies” present in Philips CT Scanners. The main Technologies to be presented include: DoseRight and tube current modulation (DoseRight, Z-DOM, 3D-DOM, DoseRight Cardiac) Special acquisition modes Beam filtration and beam shapers Eclipse collimator and ClearRay collimator NanoPanel detector DoseRight will cover automatic tube current selection that automatically adjusts the dose for the individual patient. The presentation will explore the modulation techniques currently employed in Philips CT scanners and will include the algorithmic concepts as well as illustrative examples. Modulation and current selection technologies to be covered include the Automatic Current Selection component of DoseRight, ZDOM longitudinal dose modulation, 3D-DOM (combination of longitudinal and rotational dose modulation), Cardiac Dose right (an ECG based dose modulation scheme), and the DoseRight Index (DRI) IQ index. The special acquisition modes covers acquisition techniques such as prospective gating that

  9. Peak Dose Assessment for Proposed DOE-PPPO Authorized Limits

    SciTech Connect (OSTI)

    Maldonado, Delis

    2012-06-01

    The Oak Ridge Institute for Science and Education (ORISE), a U.S. Department of Energy (DOE) prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct a peak dose assessment in support of the Authorized Limits Request for Solid Waste Disposal at Landfill C-746-U at the Paducah Gaseous Diffusion Plant (DOE-PPPO 2011a). The peak doses were calculated based on the DOE-PPPO Proposed Single Radionuclides Soil Guidelines and the DOE-PPPO Proposed Authorized Limits (AL) Volumetric Concentrations available in DOE-PPPO 2011a. This work is provided as an appendix to the Dose Modeling Evaluations and Technical Support Document for the Authorized Limits Request for the C-746-U Landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (ORISE 2012). The receptors evaluated in ORISE 2012 were selected by the DOE-PPPO for the additional peak dose evaluations. These receptors included a Landfill Worker, Trespasser, Resident Farmer (onsite), Resident Gardener, Recreational User, Outdoor Worker and an Offsite Resident Farmer. The RESRAD (Version 6.5) and RESRAD-OFFSITE (Version 2.5) computer codes were used for the peak dose assessments. Deterministic peak dose assessments were performed for all the receptors and a probabilistic dose assessment was performed only for the Offsite Resident Farmer at the request of the DOE-PPPO. In a deterministic analysis, a single input value results in a single output value. In other words, a deterministic analysis uses single parameter values for every variable in the code. By contrast, a probabilistic approach assigns parameter ranges to certain variables, and the code randomly selects the values for each variable from the parameter range each time it calculates the dose (NRC 2006). The receptor scenarios, computer codes and parameter input files were previously used in ORISE 2012. A few modifications were made to the parameter input files as appropriate for this effort. Some of these changes included increasing the time horizon beyond 1,050 years (yr), and using the radionuclide concentrations provided by the DOE-PPPO as inputs into the codes. The deterministic peak doses were evaluated within time horizons of 70 yr (for the Landfill Worker and Trespasser), 1,050 yr, 10,000 yr and 100,000 yr (for the Resident Farmer [onsite], Resident Gardener, Recreational User, Outdoor Worker and Offsite Resident Farmer) at the request of the DOE-PPPO. The time horizons of 10,000 yr and 100,000 yr were used at the request of the DOE-PPPO for informational purposes only. The probabilistic peak of the mean dose assessment was performed for the Offsite Resident Farmer using Technetium-99 (Tc-99) and a time horizon of 1,050 yr. The results of the deterministic analyses indicate that among all receptors and time horizons evaluated, the highest projected dose, 2,700 mrem/yr, occurred for the Resident Farmer (onsite) at 12,773 yr. The exposure pathways contributing to the peak dose are ingestion of plants, external gamma, and ingestion of milk, meat and soil. However, this receptor is considered an implausible receptor. The only receptors considered plausible are the Landfill Worker, Recreational User, Outdoor Worker and the Offsite Resident Farmer. The maximum projected dose among the plausible receptors is 220 mrem/yr for the Outdoor Worker and it occurs at 19,045 yr. The exposure pathways contributing to the dose for this receptor are external gamma and soil ingestion. The results of the probabilistic peak of the mean dose analysis for the Offsite Resident Farmer indicate that the average (arithmetic mean) of the peak of the mean doses for this receptor is 0.98 mrem/yr and it occurs at 1,050 yr. This dose corresponds to Tc-99 within the time horizon of 1,050 yr.

  10. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    SciTech Connect (OSTI)

    Alva-Sánchez, Héctor

    2014-11-07

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  11. Critical Dose of Internal Organs Internal Exposure - 13471

    SciTech Connect (OSTI)

    Grigoryan, G.; Amirjanyan, A. [Nuclear and Radiation Safety Centre (Armenia)] [Nuclear and Radiation Safety Centre (Armenia); Grigoryan, N. [Yerevan State Medical University 4Tigran Mets,375010 Yerevan (Armenia)] [Yerevan State Medical University 4Tigran Mets,375010 Yerevan (Armenia)

    2013-07-01

    The health threat posed by radionuclides has stimulated increased efforts to developed characterization on the biological behavior of radionuclides in humans in all ages. In an effort motivated largely by the Chernobyl nuclear accident, the International Commission on Radiological Protection (ICRP) is assembling a set of age specific biokinetic models for environmentally important radioelements. Radioactive substances in the air, mainly through the respiratory system and digestive tract, is inside the body. Radioactive substances are unevenly distributed in various organs and tissues. Therefore, the degree of damage will depend not only on the dose of radiation have but also on the critical organ, which is the most accumulation of radioactive substances, which leads to the defeat of the entire human body. The main objective of radiation protection, to avoid exceeding the maximum permissible doses of external and internal exposure of a person to prevent the physical and genetic damage people. The maximum tolerated dose (MTD) of radiation is called a dose of radiation a person in uniform getting her for 50 years does not cause changes in the health of the exposed individual and his progeny. The following classification of critical organs, depending on the category of exposure on their degree of sensitivity to radiation: First group: the whole body, gonads and red bone marrow; Second group: muscle, fat, liver, kidney, spleen, gastrointestinal tract, lungs and lens of the eye; The third group: bone, thyroid and skin; Fourth group: the hands, forearms, feet. MTD exposure whole body, gonads and bone marrow represent the maximum exposures (5 rem per year) experienced by people in their normal activities. The purpose of this article is intended dose received from various internal organs of the radionuclides that may enter the body by inhalation, and gastrointestinal tract. The biokinetic model describes the time dependent distribution and excretion of different radionuclides that have intake into the organism or absorbed into blood. Transport of different radionuclides between compartments is assumed to follow first order kinetics provided the concentration in red blood cells (RBCs) stays below a nonlinear threshold concentration. When the concentration in RBCs exceeds that threshold, the transfer rate from diffusible plasma to RBCs is assumed to decrease as the concentration in RBCs increases. For the calculations used capabilities AMBER by using the traces of radionuclides in the body. Model for the transfer of radionuclides in the body has been built on the basis of existing models at AMBER for lead. (authors)

  12. PRECEDENTS FOR AUTHORIZATION OF CONTENTS USING DOSE RATE MEASUREMENTS

    SciTech Connect (OSTI)

    Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.

    2012-06-05

    For the transportation of Radioactive Material (RAM) packages, the requirements for the maximum allowed dose rate at the package surface and in its vicinity are given in Title 10 of the Code of Federal Regulations, Section 71.47. The regulations are based on the acceptable dose rates to which the public, workers, and the environment may be exposed. As such, the regulations specify dose rates, rather than quantity of radioactive isotopes and require monitoring to confirm the requirements are met. 10CFR71.47 requires that each package of radioactive materials offered for transportation must be designed and prepared for shipment so that under conditions normally incident to transportation the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external Surface of the package, and the transport index does not exceed 10. Before shipment, the dose rate of the package is determined by measurement, ensuring that it conforms to the regulatory limits, regardless of any analyses. This is the requirement for all certified packagings. This paper discusses the requirements for establishing the dose rates when shipping RAM packages and the precedents for meeting these requirements by measurement.

  13. Fan-less long range alpha detector

    DOE Patents [OSTI]

    MacArthur, D.W.; Bounds, J.A.

    1994-05-10

    A fan-less long range alpha detector is disclosed which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces. 2 figures.

  14. Database-Assisted Low-Dose CT Image Restoration Wei Xu, Sungsoo Ha and Klaus Mueller, Senior Member, IEEE

    E-Print Network [OSTI]

    Database-Assisted Low-Dose CT Image Restoration Wei Xu, Sungsoo Ha and Klaus Mueller, Senior Member, IEEE Abstract­ The image quality of low-dose CT scans typically suffers greatly from the limited utilization of X-ray radiation. Although the harmful effects to patient health are reduced, the low quality

  15. Mechanism of radiation-induced bystander effect: Role of the cyclooxygenase-2 signaling pathway

    E-Print Network [OSTI]

    Brenner, David Jonathan

    and carcinogenesis. At doses above 50 millisievert, the radiation- induced cancer risk can be estimated based, these irradiated cells. There is evidence that very low doses of -particles induced clastogenic responses by a particle (3, 5, 9). In CHO cells irradiated with low doses of particles where 1% of the nuclei were

  16. Integrated Molecular Analysis Indicates Undetectable Change in DNA Damage in Mice after Continuous Irradiation at ~ 400-fold Natural Background Radiation

    E-Print Network [OSTI]

    Olipitz, Werner

    Background: In the event of a nuclear accident, people are exposed to elevated levels of continuous low dose-rate radiation. Nevertheless, most of the literature describes the biological effects of acute radiation.

  17. Radiation therapy of pediatric brain tumors : comparison of long-term health effects and costs between proton therapy and IMRT

    E-Print Network [OSTI]

    Vu, An T. (An Thien)

    2011-01-01

    Radiation therapy is an important component of pediatric brain tumor treatment. However, radiation-induced damage can lead to adverse long-term health effects. Proton therapy has the ability to reduce the dose delivered ...

  18. Intrinsic radiation resistance in human chondrosarcoma cells

    SciTech Connect (OSTI)

    Moussavi-Harami, Farid [Departments of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA 52242 (United States); Mollano, Anthony [Departments of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA 52242 (United States); Martin, James A. [Departments of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA 52242 (United States); Ayoob, Andrew [Departments of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA 52242 (United States); Domann, Frederick E. [Department of Radiation Oncology, Iowa City, IA 52245 (United States); Gitelis, Steven [Department of Internal Medicine, Section of Medical Oncology, Chicago, IL 60612 (United States); Department of Orthopaedics Rush-Presbyterian St. Luke's Medical Center, Chicago, IL 60612 (United States); Buckwalter, Joseph A. [Departments of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA 52242 (United States)]. E-mail: joseph-buckwalter@uiowa.edu

    2006-07-28

    Human chondrosarcomas rarely respond to radiation treatment, limiting the options for eradication of these tumors. The basis of radiation resistance in chondrosarcomas remains obscure. In normal cells radiation induces DNA damage that leads to growth arrest or death. However, cells that lack cell cycle control mechanisms needed for these responses show intrinsic radiation resistance. In previous work, we identified immortalized human chondrosarcoma cell lines that lacked p16{sup ink4a}, one of the major tumor suppressor proteins that regulate the cell cycle. We hypothesized that the absence of p16{sup ink4a} contributes to the intrinsic radiation resistance of chondrosarcomas and that restoring p16{sup ink4a} expression would increase their radiation sensitivity. To test this we determined the effects of ectopic p16{sup ink4a} expression on chondrosarcoma cell resistance to low-dose {gamma}-irradiation (1-5 Gy). p16{sup ink4a} expression significantly increased radiation sensitivity in clonogenic assays. Apoptosis did not increase significantly with radiation and was unaffected by p16{sup ink4a} transduction of chondrosarcoma cells, indicating that mitotic catastrophe, rather than programmed cell death, was the predominant radiation effect. These results support the hypothesis that p16{sup ink4a} plays a role in the radiation resistance of chondrosarcoma cell lines and suggests that restoring p16 expression will improve the radiation sensitivity of human chondrosarcomas.

  19. Does administering iodine in radiological procedures increase patient doses?

    SciTech Connect (OSTI)

    He, Wenjun; Yao, Hai, E-mail: haiyao@clemson.edu [Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, Charleston, South Carolina 29425 (United States); Huda, Walter; Mah, Eugene [Department of Radiology and Radiological Science, Medical University of South Carolina (MUSC), Charleston, South Carolina 29425 (United States)

    2014-11-01

    Purpose: The authors investigated the changes in the pattern of energy deposition in tissue equivalent phantoms following the introduction of iodinated contrast media. Methods: The phantom consisted of a small “contrast sphere,” filled with water or iodinated contrast, located at the center of a 28 cm diameter water sphere. Monte Carlo simulations were performed using MCNP5 codes, validated by simulating irradiations with analytical solutions. Monoenergetic x-rays ranging from 35 to 150 keV were used to simulate exposures to spheres containing contrast agent with iodine concentrations ranging from 1 to 100 mg/ml. Relative values of energy imparted to the contrast sphere, as well as to the whole phantom, were calculated. Changes in patterns of energy deposition around the contrast sphere were also investigated. Results: Small contrast spheres can increase local absorbed dose by a factor of 13, but the corresponding increase in total energy absorbed was negligible (<1%). The highest localized dose increases were found to occur at incident photon energies of about 60 keV. For a concentration of about 10 mg/ml, typical of clinical practice, localized absorbed doses were generally increased by about a factor of two. At this concentration of 10 mg/ml, the maximum increase in total energy deposition in the phantom was only 6%. These simulations demonstrated that increases in contrast sphere doses were offset by corresponding dose reductions at distal and posterior locations. Conclusions: Adding iodine can result in values of localized absorbed dose increasing by more than an order of magnitude, but the total energy deposition is generally very modest (i.e., <10%). Their data show that adding iodine primarily changes the pattern of energy deposition in the irradiated region, rather than increasing patient doses per se.

  20. The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75

    SciTech Connect (OSTI)

    Murphy, Martin J.; Balter, James; Balter, Stephen; BenComo, Jose A. Jr.; Das, Indra J.; Jiang, Steve B.; Ma, C.-M.; Olivera, Gustavo H.; Rodebaugh, Raymond F.; Ruchala, Kenneth J.; Shirato, Hiroki; Yin, Fang-Fang [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States) and Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109 (United States); Departments of Medicine and Radiology, Columbia University Medical Center, New York, New York 10021 (United States) and Department of Radiation Physics, M.D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 (United States); Department of Radiation Oncology, University of California, San Diego, La Jolla, California 92093 (United States); Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States); Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); St. Joseph's Hospital, Phoenix, Arizona 85013 (United States); TomoTherapy, Inc., Madison, Wisconsin 53717 (United States); Department of Radiology, Hokkaido University Hospital, Hokkaido (Japan); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2007-10-15

    Radiographic image guidance has emerged as the new paradigm for patient positioning, target localization, and external beam alignment in radiotherapy. Although widely varied in modality and method, all radiographic guidance techniques have one thing in common--they can give a significant radiation dose to the patient. As with all medical uses of ionizing radiation, the general view is that this exposure should be carefully managed. The philosophy for dose management adopted by the diagnostic imaging community is summarized by the acronym ALARA, i.e., as low as reasonably achievable. But unlike the general situation with diagnostic imaging and image-guided surgery, image-guided radiotherapy (IGRT) adds the imaging dose to an already high level of therapeutic radiation. There is furthermore an interplay between increased imaging and improved therapeutic dose conformity that suggests the possibility of optimizing rather than simply minimizing the imaging dose. For this reason, the management of imaging dose during radiotherapy is a different problem than its management during routine diagnostic or image-guided surgical procedures. The imaging dose received as part of a radiotherapy treatment has long been regarded as negligible and thus has been quantified in a fairly loose manner. On the other hand, radiation oncologists examine the therapy dose distribution in minute detail. The introduction of more intensive imaging procedures for IGRT now obligates the clinician to evaluate therapeutic and imaging doses in a more balanced manner. This task group is charged with addressing the issue of radiation dose delivered via image guidance techniques during radiotherapy. The group has developed this charge into three objectives: (1) Compile an overview of image-guidance techniques and their associated radiation dose levels, to provide the clinician using a particular set of image guidance techniques with enough data to estimate the total diagnostic dose for a specific treatment scenario (2) identify ways to reduce the total imaging dose without sacrificing essential imaging information, and (3) recommend optimization strategies to trade off imaging dose with improvements in therapeutic dose delivery. The end goal is to enable the design of image guidance regimens that are as effective and efficient as possible.