Powered by Deep Web Technologies
Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Radiation detection system  

DOE Patents (OSTI)

A radiation detection system which utilizes the generation of Cerenkov light in and the transmission of that light longitudinally through fiber optic wave guides in order to transmit intelligence relating to the radiation to a remote location. The wave guides are aligned with respect to charged particle radiation so that the Cerenkov light, which is generated at an angle to the radiation, is accepted by the fiber for transmission therethrough. The Cerenkov radiation is detected, recorded, and analyzed at the other end of the fiber.

Nelson, Melvin A. (Santa Barbara, CA); Davies, Terence J. (Santa Barbara, CA); Morton, III, John R. (Livermore, CA)

1976-01-01T23:59:59.000Z

2

Radiation detection system  

SciTech Connect

A radiation detection system including a radiation-to-light converter and fiber optic wave guides to transmit the light to a remote location for processing. The system utilizes fluors particularly developed for use with optical fibers emitting at wavelengths greater than about 500 nm and having decay times less than about 10 ns.

Franks, Larry A. (Santa Barbara, CA); Lutz, Stephen S. (Santa Barbara, CA); Lyons, Peter B. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

3

NIST: Testing of Radiation Detection Systems  

Science Conference Proceedings (OSTI)

Testing of Radiation Detection Systems. ... The GRaDER program will provide users with information about the performance of radiation instruments. ...

2012-12-12T23:59:59.000Z

4

RADIATION DETECTING AND TELEMETERING SYSTEM  

DOE Patents (OSTI)

A system is presented for measuring ionizing radiation at several remote stations and transmitting the measured information by radio to a central station. At each remote station a signal proportioned to the counting rate is applied across an electrical condenser made of ferroelectric material. The voltage across the condenser will vary as a function of the incident radiation and the capacitance of the condenser will vary accordingly. This change in capacitance is used to change the frequency of a crystalcontrolled oscillator. The output of the oscillator is coupled to an antenna for transmitting a signal proportional to the incident radiation.

Richards, H.K.

1959-12-15T23:59:59.000Z

5

Radiation Detection Materials and Systems | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Detection Materials and Systems SHARE Radiation Detection Materials and Systems ORNL's Nuclear Material Detection and Characterization programs are at the forefront of...

6

For Radiation Detection Systems – Specific Methods  

Science Conference Proceedings (OSTI)

... The test procedures outlined within this TTOP will cover radiation detection instruments used for gamma-ray and neutron detection as well as ...

2013-01-10T23:59:59.000Z

7

ANOLE Portable Radiation Detection System Field Test and Evaluation Campaign  

SciTech Connect

Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named “Anole,” it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign.

Chris A. Hodge

2007-07-12T23:59:59.000Z

8

Spreader-Bar Radiation Detection System Enhancements: A Modeling and Simulation Study  

SciTech Connect

This report provides the modeling and simulation results of the investigation of enhanced spreader bar radiation detection systems.

Ely, James H.; Ashbaker, Eric D.; Batdorf, Michael T.; Baciak, James E.; Hensley, Walter K.; Jarman, Kenneth D.; Robinson, Sean M.; Sandness, Gerald A.; Schweppe, John E.

2012-11-13T23:59:59.000Z

9

How to Detect Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Detect Radiation How to Survey Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Detection How...

10

Nuisance Source Population Modeling for Radiation Detection System Analysis  

SciTech Connect

A major challenge facing the prospective deployment of radiation detection systems for homeland security applications is the discrimination of radiological or nuclear 'threat sources' from radioactive, but benign, 'nuisance sources'. Common examples of such nuisance sources include naturally occurring radioactive material (NORM), medical patients who have received radioactive drugs for either diagnostics or treatment, and industrial sources. A sensitive detector that cannot distinguish between 'threat' and 'benign' classes will generate false positives which, if sufficiently frequent, will preclude it from being operationally deployed. In this report, we describe a first-principles physics-based modeling approach that is used to approximate the physical properties and corresponding gamma ray spectral signatures of real nuisance sources. Specific models are proposed for the three nuisance source classes - NORM, medical and industrial. The models can be validated against measured data - that is, energy spectra generated with the model can be compared to actual nuisance source data. We show by example how this is done for NORM and medical sources, using data sets obtained from spectroscopic detector deployments for cargo container screening and urban area traffic screening, respectively. In addition to capturing the range of radioactive signatures of individual nuisance sources, a nuisance source population model must generate sources with a frequency of occurrence consistent with that found in actual movement of goods and people. Measured radiation detection data can indicate these frequencies, but, at present, such data are available only for a very limited set of locations and time periods. In this report, we make more general estimates of frequencies for NORM and medical sources using a range of data sources such as shipping manifests and medical treatment statistics. We also identify potential data sources for industrial source frequencies, but leave the task of estimating these frequencies for future work. Modeling of nuisance source populations is only useful if it helps in understanding detector system performance in real operational environments. Examples of previous studies in which nuisance source models played a key role are briefly discussed. These include screening of in-bound urban traffic and monitoring of shipping containers in transit to U.S. ports.

Sokkappa, P; Lange, D; Nelson, K; Wheeler, R

2009-10-05T23:59:59.000Z

11

Technical specifications manual for the MARK-1 pulsed ionizing radiation detection system. Volume 1  

Science Conference Proceedings (OSTI)

The MARK-1 detection system was developed by the Idaho National Engineering Laboratory for the US Department of Energy Office of Arms Control and Nonproliferation. The completely portable system was designed for the detection and analysis of intense photon emissions from pulsed ionizing radiation sources. This manual presents the technical design specifications for the MARK-1 detection system and was written primarily to assist the support or service technician in the service, calibration, and repair of the system. The manual presents the general detection system theory, the MARK-1 component design specifications, the acquisition and control software, the data processing sequence, and the system calibration procedure. A second manual entitled: Volume 2: Operations Manual for the MARK-1 Pulsed Ionizing Radiation Detection System (USDOE Report WINCO-1108, September 1992) provides a general operational description of the MARK-1 detection system. The Operations Manual was written primarily to assist the field operator in system operations and analysis of the data.

Lawrence, R.S.; Harker, Y.D.; Jones, J.L.; Hoggan, J.M.

1993-03-01T23:59:59.000Z

12

RADIATION WAVE DETECTION  

DOE Patents (OSTI)

Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

Wouters, L.F.

1960-08-30T23:59:59.000Z

13

Radiation Detection Instruments  

Science Conference Proceedings (OSTI)

Directory of Accredited Laboratories. Radiation Detection Instruments. In 2005, the Department of Homeland Security requested ...

2013-09-06T23:59:59.000Z

14

Nanotechnology-Based Systems for Nuclear Radiation and Chemicl Detection  

SciTech Connect

This main objectives of this effort are the development and prototyping of a small. sensitive, and low-cost multi-channel nanoparticle scintillation microdevice with integrated waveguides for alpha, beta, gamma, and neutron detection. This research effort has integrated experiments and simulation to determine the combination of process-specific materials for the achievement optimum detection conditions.

Kody Varahramyan; Pedro Derosa; Chester Wilson

2006-10-11T23:59:59.000Z

15

Method and apparatus for providing pulse pile-up correction in charge quantizing radiation detection systems  

DOE Patents (OSTI)

This invention is comprised of a radiation detection method and system for continuously correcting the quantization of detected charge during pulse pile-up conditions. Charge pulses from a radiation detector responsive to the energy of detected radiation events are converted to voltage pulses of predetermined shape whose peak amplitudes are proportional to the quantity of charge of each corresponding detected event by means of a charge-sensitive preamplifier. These peak amplitudes are sampled and stored sequentially in accordance with their respective times of occurrence. Based on the stored peak amplitudes and times of occurrence, a correction factor is generated which represents the fraction of a previous pulses influence on a preceding pulse peak amplitude. This correction factor is subtracted from the following pulse amplitude in a summing amplifier whose output then represents the corrected charge quantity measurement.

Britton, C.L. Jr.; Wintenberg, A.L.

1992-12-31T23:59:59.000Z

16

Radiation detection system for portable gamma-ray spectroscopy  

DOE Patents (OSTI)

A portable gamma ray detection apparatus having a gamma ray detector encapsulated by a compact isolation structure having at least two volumetrically-nested enclosures where at least one is a thermal shield. The enclosures are suspension-mounted to each other to successively encapsulate the detector without structural penetrations through the thermal shields. A low power cooler is also provided capable of cooling the detector to cryogenic temperatures without consuming cryogens, due to the heat load reduction by the isolation structure and the reduction in the power requirements of the cooler. The apparatus also includes a lightweight portable power source for supplying power to the apparatus, including to the cooler and the processing means, and reducing the weight of the apparatus to enable handheld operation or toting on a user's person.

Rowland, Mark S. (Alamo, CA); Howard, Douglas E. (Livermore, CA); Wong, James L. (Dublin, CA); Jessup, James L. (Tracy, CA); Bianchini, Greg M. (Livermore, CA); Miller, Wayne O. (Livermore, CA)

2006-06-20T23:59:59.000Z

17

An Analysis of a Spreader Bar Crane Mounted Gamma-Ray Radiation Detection System  

E-Print Network (OSTI)

Over 95% of imports entering the United States from outside North America arrive via cargo containers by sea at 329 ports of entry. The current layered approach for the detection only scans 5% of cargo bound for the United States. This is inadequate to protect our country. This research involved the building of a gamma-ray radiation detection system used for cargo scanning. The system was mounted on a spreader bar crane (SBC) at the Port of Tacoma (PoT) and the applicability and capabilities of the system were analyzed. The detection system provided continuous count rate and spectroscopic data among three detectors while operating in an extreme environment. In a separate set of experiments, 60Co and 137Cs sources were positioned inside a cargo container and data were recorded for several count times. The Monte Carlo N-Particle (MCNP) code was used to simulate a radioactive source inside an empty cargo container and the results were compared to experimentally recorded data. The detection system demonstrated the ability to detect 60Co, 137Cs, 192Ir, highly-enriched uranium (HEU), and weapons-grade plutonium (WGPu) with minimum detectable activities (MDA) of 5.9 ± 0.4 microcuries (?Ci), 19.3 ± 1.1 ?Ci, 11.7 ± 0.6 ?Ci, 3.5 ± 0.3 kilograms (kg), and 30.6 ± 1.3 grams (g), respectively. This system proved strong gamma-ray detection capabilities, but was limited in the detection of fissile materials Additional details of this system are presented and advantages of this approach to cargo scanning over current approaches are discussed.

Grypp, Matthew D

2013-05-01T23:59:59.000Z

18

NVLAP Radiation Detection Instruments LAP  

Science Conference Proceedings (OSTI)

Radiation Detection Instruments LAP. Leticia Pibida uses a hand-held radiation detection device to check cargo. Photo: Copyright Robert Rathe. ...

2013-07-23T23:59:59.000Z

19

Indirect detection of radiation sources through direct detection of radiolysis products  

DOE Patents (OSTI)

A system for indirectly detecting a radiation source by directly detecting radiolytic products. The radiation source emits radiation and the radiation produces the radiolytic products. A fluid is positioned to receive the radiation from the radiation source. When the fluid is irradiated, radiolytic products are produced. By directly detecting the radiolytic products, the radiation source is detected.

Farmer, Joseph C. (Tracy, CA); Fischer, Larry E. (Los Gatos, CA); Felter, Thomas E. (Livermore, CA)

2010-04-20T23:59:59.000Z

20

Portable modular detection system  

Science Conference Proceedings (OSTI)

Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

Brennan, James S. (Rodeo, CA); Singh, Anup (Danville, CA); Throckmorton, Daniel J. (Tracy, CA); Stamps, James F. (Livermore, CA)

2009-10-13T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Cellular telephone-based radiation detection instrument  

DOE Patents (OSTI)

A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

2011-06-14T23:59:59.000Z

22

Hand-held, Fast-cooling Germanium-based Radiation Detection System  

Livermore Lab Report. News ... The integrated GeMini system has undergone extensive field testing and is at a ... Hand-held radiation detectors are ...

23

Radiation detection system using semiconductor detector with differential carrier trapping and mobility  

DOE Patents (OSTI)

A system for obtaining improved resolution in relatively thick semiconductor radiation detectors, such as HgI.sub.2, which exhibit significant hole trapping. Two amplifiers are used: the first measures the charge collected and the second the contribution of the electrons to the charge collected. The outputs of the two amplifiers are utilized to unfold the total charge generated within the detector in response to a radiation event.

Whited, Richard C. (Santa Barbara, CA)

1981-01-01T23:59:59.000Z

24

RADIATION DETECTOR SYSTEM  

DOE Patents (OSTI)

This patent relates to radiation detection devices and presents a unique detection system especialiy desirable for portable type instruments using a Geiger-Mueller for a high voltage battery, thereby reducing the size and weight of the instrument, by arranging a one-shot multivibrator to recharge a capacitance applying operating potential to tho Geiger-Mueller tube each time a nuclear particle is detected. When detection occurs, the multivibrator further delivers a pulse to an appropriate indicator doing away with the necessity for the pulse amplifier conventionally intermediate between the detector and indicator in pulse detection systems.

Gundlach, J.C.; Kelley, G.G.

1958-02-25T23:59:59.000Z

25

Radiation Inspection System Lab (RISL) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Inspection System Lab May 30, 2013 This team has the background and experience to test and optimize radiation detection systems from handheld background survey meters to...

26

Radiation Detection Computational Benchmark Scenarios  

SciTech Connect

Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for compilation. This is a report describing the details of the selected Benchmarks and results from various transport codes.

Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

2013-09-24T23:59:59.000Z

27

Radiation Detection from Fission  

SciTech Connect

This report briefly describes the neutrons and gamma rays emitted in fission, briefly discusses measurement methods, briefly discusses sources and detectors relevant to detection of shielded HEU in sealand containers, and lists the measurement possibilities for the various sources. The brief descriptions are supplemented by reference.

Mihalczo, J.

2004-11-17T23:59:59.000Z

28

DETECTION OR WARNING SYSTEM  

DOE Patents (OSTI)

This patent application describes a sensitive detection or protective system capable of giving an alarm or warning upon the entrance or intrusion of any body into a defined area or zone protected by a radiation field of suitable direction or extent.

Tillman, J.E.

1951-06-30T23:59:59.000Z

29

Detection of contraband using microwave radiation  

DOE Patents (OSTI)

The present invention relates to a method and system for using microwave radiation to detect contraband hidden inside of a non-metallic container, such as a pneumatic vehicle tire. The method relies on the attenuation, retardation, time delay, or phase shift of microwave radiation as it passes through the container plus the contraband. The method is non-invasive, non-destructive, low power, and does not require physical contact with the container.

Toth, Richard P. (Albuquerque, NM); Loubriel, Guillermo M. (Albuquerque, NM); Bacon, Larry D. (Albuquerque, NM); Watson, Robert D. (Tijeras, NM)

2002-01-01T23:59:59.000Z

30

Cellular telephone-based wide-area radiation detection network  

DOE Patents (OSTI)

A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

2009-06-09T23:59:59.000Z

31

Method of enhancing radiation response of radiation detection materials  

DOE Patents (OSTI)

The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

Miller, Steven D. (Richland, WA)

1997-01-01T23:59:59.000Z

32

Composite scintillators for detection of ionizing radiation ...  

Building Energy Efficiency; Electricity Transmission; Energy Analysis; Energy ... Fluorescent Nanoparticles for Radiation DetectionFluorescent Nanoparticles for ...

33

Fuel washout detection system  

DOE Patents (OSTI)

A system for detecting grossly failed reactor fuel by detection of particulate matter as accumulated on a filter.

Colburn, Richard P. (Pasco, WA)

1985-01-01T23:59:59.000Z

34

Transport Test Problems for Radiation Detection Scenarios  

Science Conference Proceedings (OSTI)

This is the final report and deliverable for the project. It is a list of the details of the test cases for radiation detection scenarios.

Shaver, Mark W.; Miller, Erin A.; Wittman, Richard S.; McDonald, Benjamin S.

2012-09-30T23:59:59.000Z

35

Simulated Performance of Algorithms for the Localization of Radioactive Sources from a Position Sensitive Radiation Detecting System (COCAE)  

Science Conference Proceedings (OSTI)

Simulation studies are presented regarding the performance of algorithms that localize point-like radioactive sources detected by a position sensitive portable radiation instrument (COCAE). The source direction is estimated by using the List Mode Maximum Likelihood Expectation Maximization (LM-ML-EM) imaging algorithm. Furthermore, the source-to-detector distance is evaluated by three different algorithms based on the photo-peak count information of each detecting layer, the quality of the reconstructed source image, and the triangulation method. These algorithms have been tested on a large number of simulated photons over a wide energy range (from 200 keV to 2 MeV) emitted by point-like radioactive sources located at different orientations and source-to-detector distances.

Karafasoulis, K. [Greek Atomic Energy Commission, Patriarxou Grigoriou and Neapoleos, 15310, Athens (Greece); Hellenic Army Academy, 16673 Vari (Greece); Zachariadou, K. [Greek Atomic Energy Commission, Patriarxou Grigoriou and Neapoleos, 15310, Athens (Greece); Technological Educational Institute of Piraeus, Thivon 250, 12244, Egaleo (Greece); Seferlis, S.; Kaissas, I.; Potiriadis, C. [Greek Atomic Energy Commission, Patriarxou Grigoriou and Neapoleos, 15310, Athens (Greece); Lambropoulos, C. [Technological Educational Institute of Chalkida, Psachna Evias, 34400 Greece (Greece); Loukas, D. [Institute of Nuclear Physics, National Center for Scientific Research Demokritos 15310, Athens (Greece)

2011-12-13T23:59:59.000Z

36

Adaptable radiation monitoring system and method  

DOE Patents (OSTI)

A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.

Archer, Daniel E. (Livermore, CA); Beauchamp, Brock R. (San Ramon, CA); Mauger, G. Joseph (Livermore, CA); Nelson, Karl E. (Livermore, CA); Mercer, Michael B. (Manteca, CA); Pletcher, David C. (Sacramento, CA); Riot, Vincent J. (Berkeley, CA); Schek, James L. (Tracy, CA); Knapp, David A. (Livermore, CA)

2006-06-20T23:59:59.000Z

37

Radiation Detection Laboratory The Detection for Nuclear Nonproliferation Lab is used to explore novel techniques for radiation  

E-Print Network (OSTI)

NERS Radiation Detection Laboratory The Detection for Nuclear Nonproliferation Lab is used to explore novel techniques for radiation detection and characterization for nuclear nonproliferation

Eustice, Ryan

38

Radiation Detection with Plastic Scintillators  

Environmental information. ... As well as help in detecting neutrons in major scientific projects. ... for the Department of Energy's National Nuclear ...

39

Fluorescent Nanoparticles for Radiation DetectionFluorescent Nanoparticles for Radiation Detection  

Researchers at ORNL invented a promising material for more efficient nanoscalescintillators, or radiation detectors. The new material, which can detect most kindsof radiation, consists of fluorescent nanoparticles embedded in a transparent matrix.The ...

40

Ionization detection system for aerosols  

DOE Patents (OSTI)

This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

Jacobs, Martin E. (Chillicothe, OH)

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Environmental radiation detection via thermoluminescence  

DOE Patents (OSTI)

The method and apparatus of the present invention relate to cryogenically cooling a thermoluminescent material, exposing it to a low level of radiation (less than about 1 R) while it is at the cooled temperature, warming the thermoluminescent material to room temperature'' and counting the photons emitted during heating. Sufficient sensitivity is achieved without exposing the thermoluminescent material to ultraviolet light thereby simplifying the measurements.

Miller, S.D.

1993-03-23T23:59:59.000Z

42

GaTe semiconductor for radiation detection  

SciTech Connect

GaTe semiconductor is used as a room-temperature radiation detector. GaTe has useful properties for radiation detectors: ideal bandgap, favorable mobilities, low melting point (no evaporation), non-hygroscopic nature, and availability of high-purity starting materials. The detector can be used, e.g., for detection of illicit nuclear weapons and radiological dispersed devices at ports of entry, in cities, and off shore and for determination of medical isotopes present in a patient.

Payne, Stephen A. (Castro Valley, CA); Burger, Arnold (Nashville, TN); Mandal, Krishna C. (Ashland, MA)

2009-06-23T23:59:59.000Z

43

Radiation delivery system and method  

DOE Patents (OSTI)

A radiation delivery system and method are described. The system includes a treatment configuration such as a stent, balloon catheter, wire, ribbon, or the like, a portion of which is covered with a gold layer. Chemisorbed to the gold layer is a radiation-emitting self-assembled monolayer or a radiation-emitting polymer. The radiation delivery system is compatible with medical catheter-based technologies to provide a therapeutic dose of radiation to a lesion following an angioplasty procedure.

Sorensen, Scott A. (Overland Park, KS); Robison, Thomas W. (Los Alamos, NM); Taylor, Craig M. V. (Jemez Springs, NM)

2002-01-01T23:59:59.000Z

44

Cellular telephone-based radiation sensor and wide-area detection network  

DOE Patents (OSTI)

A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

2006-12-12T23:59:59.000Z

45

Waveshifters and Scintillators for Ionizing Radiation Detection  

Science Conference Proceedings (OSTI)

Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments.

B.Baumgaugh; J.Bishop; D.Karmgard; J.Marchant; M.McKenna; R.Ruchti; M.Vigneault; L.Hernandez; C.Hurlbut

2007-12-11T23:59:59.000Z

46

Solar system fault detection  

SciTech Connect

A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

Farrington, Robert B. (Wheatridge, CO); Pruett, Jr., James C. (Lakewood, CO)

1986-01-01T23:59:59.000Z

47

Solar system fault detection  

DOE Patents (OSTI)

A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

Farrington, R.B.; Pruett, J.C. Jr.

1984-05-14T23:59:59.000Z

48

Radiation Detection for Active Interrogation of HEU  

SciTech Connect

This report briefly describes the neutrons and gamma rays emitted by active interrogation of HEU, briefly discusses measurement methods, briefly discusses sources and detectors relevant to detection of shielded HEU in Sealand containers, and lists the measurement possibilities for the various sources. All but one of the measurement methods detect radiation emitted by induced fission in the HEU; the exception utilizes nuclear resonance fluorescence. The brief descriptions are supplemented by references. This report presents some active interrogation possibilities but the status of understanding is not advanced enough to select particular methods. Additional research is needed to evaluate these possibilities.

Mihalczo, J.T.

2004-12-09T23:59:59.000Z

49

Composite scintillators for detection of ionizing radiation  

DOE Patents (OSTI)

Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

Dai, Sheng (Knoxville, TN); Stephan, Andrew Curtis (Knoxville, TN); Brown, Suree S. (Knoxville, TN); Wallace, Steven A. (Knoxville, TN); Rondinone, Adam J. (Knoxville, TN)

2010-12-28T23:59:59.000Z

50

Composition and apparatus for detecting gamma radiation  

DOE Patents (OSTI)

A gamma radiation detector and a radioluminiscent composition for use therein. The detector includes a radioluminscent composition that emits light in a characteristic wavelength region when exposed to gamma radiation, and means for detecting said radiation. The composition contains a scintillant such as anglesite (PbSO.sub.4) or cerussite (PbCO.sub.3) incorporated into an inert, porous glass matrix via a sol-gel process. Particles of radiation-sensitive scintillant are added to, a sol solution. The mixture is polymerized to form a gel, then dried under conditions that preserve the structural integrity and radiation sensitivity of the scintillant. The final product is a composition containing the uniformly-dispersed scintillant in an inert, optically transparent and highly porous matrix. The composition is chemically inert and substantially impervious to environmental conditions including changes in temperature, air pressure, and so forth. It can be fabricated in cylinders, blocks with holes therethrough for flow of fluid, sheets, surface coatings, pellets or other convenient shapes.

Hofstetter, Kenneth J. (Aiken, SC)

1994-01-01T23:59:59.000Z

51

Composition and apparatus for detecting gamma radiation  

DOE Patents (OSTI)

A gamma radiation detector and a radioluminescent composition for use therein. The detector includes a radioluminescent composition that emits light in a characteristic wavelength region when exposed to gamma radiation, and means for detecting said radiation. The composition contains a scintillant such as anglesite (PbSO[sub 4]) or cerussite (PbCO[sub 3]) incorporated into an inert, porous glass matrix via a sol-gel process. Particles of radiation-sensitive scintillant are added to, a sol solution. The mixture is polymerized to form a gel, then dried under conditions that preserve the structural integrity and radiation sensitivity of the scintillant. The final product is a composition containing the uniformly-dispersed scintillant in an inert, optically transparent and highly porous matrix. The composition is chemically inert and substantially impervious to environmental conditions including changes in temperature, air pressure, and so forth. It can be fabricated in cylinders, blocks with holes therethrough for flow of fluid, sheets, surface coatings, pellets or other convenient shapes. 3 figs.

Hofstetter, K.J.

1994-08-09T23:59:59.000Z

52

Current Trends in Gamma Radiation Detection for Radiological Emergency Response  

SciTech Connect

Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken place–techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation–the so-called second line of defense.

Mukhopadhyay, S., Guss, P., Maurer, R.

2011-09-01T23:59:59.000Z

53

Arc fault detection system  

DOE Patents (OSTI)

An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

Jha, Kamal N. (Bethel Park, PA)

1999-01-01T23:59:59.000Z

54

Arc fault detection system  

DOE Patents (OSTI)

An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

Jha, K.N.

1999-05-18T23:59:59.000Z

55

HRT LEAK DETECTION SYSTEM  

SciTech Connect

All HRT process piping and equipment is contained in a large tank and flanged connections with stainless steel ring gaskets are used where needed to permit the removal of values and items of equipment. Underwater remote maintenance is to be employed and special provisions are required for indicating and locating leaks at all mechanical joints in the process system. Each joint is monitored and a signal is given when a leak occurs. The valve operator stems are sealed with stainless steel bellows and a means of detecting a leak in the bellows has been included. (auth)

Kuster, J.E.

1956-04-20T23:59:59.000Z

56

Apparatus and method for detecting gamma radiation  

DOE Patents (OSTI)

A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

Sigg, Raymond A. (Martinez, GA)

1994-01-01T23:59:59.000Z

57

Method for radiation detection and measurement  

DOE Patents (OSTI)

Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength. 9 figures.

Miller, S.D.

1993-12-21T23:59:59.000Z

58

Method for radiation detection and measurement  

DOE Patents (OSTI)

Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength.

Miller, Steven D. (Richland, WA)

1993-01-01T23:59:59.000Z

59

Protein detection system  

DOE Patents (OSTI)

The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.

Fruetel, Julie A. (Livermore, CA); Fiechtner, Gregory J. (Bethesda, MD); Kliner, Dahv A. V. (San Ramon, CA); McIlroy, Andrew (Livermore, CA)

2009-05-05T23:59:59.000Z

60

Detection of alpha radiation in a beta radiation field  

DOE Patents (OSTI)

An apparatus and method for detecting alpha particles in the presence of high activities of beta particles utilizing an alpha spectrometer. The apparatus of the present invention utilizes a magnetic field applied around the sample in an alpha spectrometer to deflect the beta particles from the sample prior to reaching the detector, thus permitting detection of low concentrations of alpha particles. In the method of the invention, the strength of magnetic field required to adequately deflect the beta particles and permit alpha particle detection is given by an algorithm that controls the field strength as a function of sample beta energy and the distance of the sample to the detector.

Mohagheghi, Amir H. (Albuquerque, NM); Reese, Robert P. (Edgewood, NM)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Shielding and Build-up Considerations for Radiation Detection  

SciTech Connect

Abstract -- Shielding for gamma radiation has traditionally focused on the reduction of dose effects. For these applications, reducing the energy of the radiation is important along with reducing the actual number of photons, and therefore large masses of high Z material are typically used. However, for measurements requiring low backgrounds or for detecting low activity signals, such as in homeland security applications, the primary use of shielding is to decrease the total number of background photons (perhaps in a region of interest), and therefore the processes of buildup and down scattering become important. In these applications, where the important measure is count rate instead of dose and low background are important, improved reduction in counts from background radiation may be achieved with specially designed configurations of thin layers of different materials instead of a single thick layer. This paper briefly describes recent modeling and experimental investigations in layered-shielding methodology and provides results with comparison to single shielding material such as Pb. Application of these techniques to some real world problems, such as detector systems for homeland security, is discussed.

Ely, James H.; Kernan, Warnick J.; Kouzes, Richard T.; Siciliano, Edward R.

2008-10-19T23:59:59.000Z

62

An Integrated Surface Radiation Measurement System  

Science Conference Proceedings (OSTI)

An integrated surface radiation measurement system has been developed to measure the surface radiation exchange flux. The system employs upward- and downward-looking Eppley pyrgeometers and pyranometers to separately measure four components: ...

A. C. Delany; S. R. Semmer

1998-02-01T23:59:59.000Z

63

Thermal neutron detection system  

DOE Patents (OSTI)

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

64

APDS: Autonomous Pathogen Detection System  

SciTech Connect

An early warning system to counter bioterrorism, the Autonomous Pathogen Detection System (APDS) continuously monitors the environment for the presence of biological pathogens (e.g., anthrax) and once detected, it sounds an alarm much like a smoke detector warns of a fire. Long before September 11, 2001, this system was being developed to protect domestic venues and events including performing arts centers, mass transit systems, major sporting and entertainment events, and other high profile situations in which the public is at risk of becoming a target of bioterrorist attacks. Customizing off-the-shelf components and developing new components, a multidisciplinary team developed APDS, a stand-alone system for rapid, continuous monitoring of multiple airborne biological threat agents in the environment. The completely automated APDS samples the air, prepares fluid samples in-line, and performs two orthogonal tests: immunoassay and nucleic acid detection. When compared to competing technologies, APDS is unprecedented in terms of flexibility and system performance.

Langlois, R G; Brown, S; Burris, L; Colston, B; Jones, L; Makarewicz, T; Mariella, R; Masquelier, D; McBride, M; Milanovich, F; Masarabadi, S; Venkateswaran, K; Marshall, G; Olson, D; Wolcott, D

2002-02-14T23:59:59.000Z

65

Power line detection system  

DOE Patents (OSTI)

A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

Latorre, V.R.; Watwood, D.B.

1994-09-27T23:59:59.000Z

66

Power line detection system  

DOE Patents (OSTI)

A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

Latorre, Victor R. (Tracy, CA); Watwood, Donald B. (Tracy, CA)

1994-01-01T23:59:59.000Z

67

Advanced X-ray Systems for the Detection of Special Nuclear ...  

Science Conference Proceedings (OSTI)

... The Dosimetry Group provides support to the Domestic Nuclear Detection Office ... radiation dosimetry in and around these high-energy systems. ...

2013-03-13T23:59:59.000Z

68

Hybrid Radiator-Cooling System  

Technology Development & Commercialization Current Challenges Coolant radiators in highway trucks are designed to transfer maximum heat at a ...

69

Detection & Diagnostic Systems Multimedia - Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Multimedia Multimedia Nuclear Systems Analysis Engineering Analysis Nonproliferation and National Security Detection & Diagnostic Systems Engineering Development & Applications...

70

Rain-Induced Increase in Background Radiation Detected by Radiation Portal Monitors  

Science Conference Proceedings (OSTI)

A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to detect the illicit movement of nuclear material. In the present work, transient increases in gamma ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates from the atmospheric deposition of two radioactive daughters of radon-222, namely lead-214 and bismuth-214 (henceforth {sup 222}Rn, {sup 214}Pb and {sup 214}Bi). In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and High Purity Germanium spectra. The data verifies these radionuclides are responsible for the dominant transient natural background fluctuations in RPMs. Effects on system performance and potential mitigation strategies are discussed.

Hausladen, Paul [ORNL; Blessinger, Christopher S [ORNL; Guzzardo, Tyler [ORNL; Livesay, Jake [ORNL

2012-07-01T23:59:59.000Z

71

ORISE: DOE's Radiation Exposure Monitoring System (REMS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring System (REMS) Monitoring System (REMS) ORISE maintains large database of radition exposure records for the U.S. Department of Energy ORISE staff monitoring radiation data for DOE Rule 10 CFR 835 establishes the U.S. Department of Energy's (DOE) occupational protection rule and requires assessment and recording of radiation doses to individuals who are exposed to sources of radiation or contamination. The Radiation Exposure Monitoring System (REMS) database is the radiation exposure data repository for all monitored DOE employees, contractors, subcontractors and members of the public. REMS maintains dose records for all monitored individuals dating back to 1969. Aggregated, site-specific data are available on the Radiation Exposure Monitoring System website for all years since 1986. Currently,

72

Computer-controlled radiation monitoring system  

Science Conference Proceedings (OSTI)

A computer-controlled radiation monitoring system was designed and installed at the Lawrence Livermore National Laboratory`s Multiuser Tandem Laboratory (10 MV tandem accelerator from High Voltage Engineering Corporation). The system continuously monitors the photon and neutron radiation environment associated with the facility and automatically suspends accelerator operation if preset radiation levels are exceeded. The system has proved reliable real-time radiation monitoring over the past five years, and has been a valuable tool for maintaining personnel exposure as low as reasonably achievable.

Homann, S.G.

1994-09-27T23:59:59.000Z

73

Compensated intruder-detection systems  

DOE Patents (OSTI)

The invention is an improvement to an intruder-detection system of the kind where intruder-induced signals are transmitted through a medium whose conductance varies with certain climatic conditions. The improved system includes means coupled to the medium for converting the intruder-induced signals received therefrom to a first electrical signal. Means also are provided for generating a reference signal proportional to the climate-induced changes in the signal-conductance of the medium. Means are provided for generating, from the first electrical signal and the reference signal, an electrical output signal which is unaffected by the changes in signal-conductance. Means are provided to give warning when the output signal exceeds a selected value. In another aspect, the invention is a method for operating an intruder-detection system of the kind wherein an intrusion-generated signal transmitted through a detection medium is converted to a first electrical signal. The first electrical signal contains variations resulting from climate-induced changes in the medium. The method of the invention comprises generating an electrical reference signal proportional to the climate-induced changes in the medium; conditioning the first signal with the reference signal to produce an electrical output signal which is unaffected by the climate-induced changes in the medium; and impressing the resulting output signal across an alarm circuit to actuate the same when the output signal exceeds a selected value.

McNeilly, D.R.; Miller, W.R.

1982-01-20T23:59:59.000Z

74

Radiation Detection Scenario Analysis Toolbox (RADSAT) Test Case Implementation Final Report  

Science Conference Proceedings (OSTI)

Final report for the project. This project was designed to demonstrate the use of the Radiation Detection Scenario Analysis Toolbox (RADSAT) radiation detection transport modeling package (developed in a previous NA-22 project) for specific radiation detection scenarios important to proliferation detection.

Shaver, Mark W.

2010-09-27T23:59:59.000Z

75

Compensated intruder-detection systems  

DOE Patents (OSTI)

Intruder-detection systems in which intruder-induced signals are transmitted through a medium also receive spurious signals induced by changes in a climatic condition affecting the medium. To combat this, signals received from the detection medium are converted to a first signal. The system also provides a reference signal proportional to climate-induced changes in the medium. The first signal and the reference signal are combined for generating therefrom an output signal which is insensitive to the climatic changes in the medium. An alarm is energized if the output signal exceeds a preselected value. In one embodiment, an acoustic cable is coupled to a fence to generate a first electrical signal proportional to movements thereof. False alarms resulting from wind-induced movements of the fence (detection medium) are eliminated by providing an anemometer-driven voltage generator to provide a reference voltage proportional to the velocity of wind incident on the fence. An analog divider receives the first electrical signal and the reference signal as its numerator and denominator inputs, respectively, and generates therefrom an output signal which is insensitive to the wind-induced movements in the fence.

McNeilly, David R. (Maryville, TN); Miller, William R. (Andersonville, TN)

1984-01-01T23:59:59.000Z

76

System for determining the type of nuclear radiation from detector output pulse shape  

DOE Patents (OSTI)

A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation.

Miller, William H. (Columbia, MO); Berliner, Ronald R. (Columbia, MO)

1994-01-01T23:59:59.000Z

77

System for determining the type of nuclear radiation from detector output pulse shape  

DOE Patents (OSTI)

A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation. 2 figs.

Miller, W.H.; Berliner, R.R.

1994-09-13T23:59:59.000Z

78

An arc fault detection system  

DOE Patents (OSTI)

An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn, opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

Jha, Kamal N.

1997-12-01T23:59:59.000Z

79

Pulsed helium ionization detection system  

DOE Patents (OSTI)

A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

Ramsey, R.S.; Todd, R.A.

1985-04-09T23:59:59.000Z

80

KIDS: keyed intrusion detection system  

Science Conference Proceedings (OSTI)

Since most current network attacks happen at the application layer, analysis of packet payload is necessary for their detection. Unfortunately malicious packets may be crafted to mimic normal payload, and so avoid detection if the anomaly detection method ... Keywords: Kerckhoffs' principle, anomaly detection, keyed IDS, network intrusion detection, word model

Sasa Mrdovic; Branislava Drazenovic

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Explosives detection system and method  

DOE Patents (OSTI)

A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.

Reber, Edward L. (Idaho Falls, ID); Jewell, James K. (Idaho Falls, ID); Rohde, Kenneth W. (Idaho Falls, ID); Seabury, Edward H. (Idaho Falls, ID); Blackwood, Larry G. (Idaho Falls, ID); Edwards, Andrew J. (Idaho Falls, ID); Derr, Kurt W. (Idaho Falls, ID)

2007-12-11T23:59:59.000Z

82

Radiation detection and situation management by distributed sensor networks  

Science Conference Proceedings (OSTI)

Detection of radioactive materials in an urban environment usually requires large, portal-monitor-style radiation detectors. However, this may not be a practical solution in many transport scenarios. Alternatively, a distributed sensor network (DSN) could complement portal-style detection of radiological materials through the implementation of arrays of low cost, small heterogeneous sensors with the ability to detect the presence of radioactive materials in a moving vehicle over a specific region. In this paper, we report on the use of a heterogeneous, wireless, distributed sensor network for traffic monitoring in a field demonstration. Through wireless communications, the energy spectra from different radiation detectors are combined to improve the detection confidence. In addition, the DSN exploits other sensor technologies and algorithms to provide additional information about the vehicle, such as its speed, location, class (e.g. car, truck), and license plate number. The sensors are in-situ and data is processed in real-time at each node. Relevant information from each node is sent to a base station computer which is used to assess the movement of radioactive materials.

Jan, Frigo [Los Alamos National Laboratory; Mielke, Angela [Los Alamos National Laboratory; Cai, D Michael [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

83

UTILIZATION OF PHOSWICH DETECTORS FOR SIMULTANEOUS, MULTIPLE RADIATION DETECTION  

Science Conference Proceedings (OSTI)

A phoswich radiation detector is comprised of a phosphor sandwich in which several different phosphors are viewed by a common photomultiplier. By selecting the appropriate phosphors, this system can be used to simultaneously measure multiple radiation types (alpha, beta, gamma and/or neutron) with a single detector. Differentiation between the signals from the different phosphors is accomplished using digital pulse shape discrimination techniques. This method has been shown to result in accurate discrimination with highly reliable and versatile digital systems. This system also requires minimal component count (i.e. only the detector and a computer for signal processing). A variety of detectors of this type have been built and tested including: (1) a triple phoswich system for alpha/beta/gamma swipe counting, (2) two well-type detectors for measuring low levels of low energy photons in the presence of a high energy background, (3) a large area detector for measuring beta contamination in the presence of a photon background, (4) another large area detector for measuring low energy photons from radioactive elements such as uranium in the presence of a photon background. An annular geometry, triple phoswich system optimized for measuring alpha/beta/gamma radiation in liquid waste processing streams is currently being designed.

William H. Miller; Manuel Diaz de Leon

2003-04-15T23:59:59.000Z

84

Detection of electromagnetic radiation using micromechanical multiple quantum wells structures  

DOE Patents (OSTI)

An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.

Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN

2007-07-17T23:59:59.000Z

85

Evaluation of probes used to detect alpha radiation  

E-Print Network (OSTI)

Portable survey instrumentation has always been an integral part of most operational health physics programs. The ability to detect and prevent the spread of contamination is one of the most significant roles of portable survey meters, and manufacturers are continually attempting to improve the sensitivity and usefulness of such equipment. A major concern of instrument makers deals with the sensitivity of probes to alpha emitting radionuclides, which, due to extremely short ranges, are very difficult to detect with survey meters. In response to these concerns several probes have been designed with an increased sensitivity to alpha radiation, combining larger sensitive surface areas with very thin windows to increase detector efficiency. Two such probes were evaluated in this study, the 350A Alpha Probe of Dosimeter Corporation and the AB100 Scintillator Probe produced by Harshaw Bicron. As an additional comparison, a Ludlum Model 44-9 (Pancake) GM Probe was also evaluated, since it has served as an industry standard for many years and continues to be used frequently. The evaluation consisted of several tests concerning response to radiation under various laboratory conditions and also under actual conditions, to determine overall probe performance.

Sackett, Gregory Duane

1995-01-01T23:59:59.000Z

86

Methods and systems for remote detection of gases  

SciTech Connect

Novel systems and methods for remotely detecting at least one constituent of a gas via infrared detection are provided. A system includes at least one extended source of broadband infrared radiation and a spectrally sensitive receiver positioned remotely from the source. The source and the receiver are oriented such that a surface of the source is in the field of view of the receiver. The source includes a heating component thermally coupled to the surface, and the heating component is configured to heat the surface to a temperature above ambient temperature. The receiver is operable to collect spectral infrared absorption data representative of a gas present between the source and the receiver. The invention advantageously overcomes significant difficulties associated with active infrared detection techniques known in the art, and provides an infrared detection technique with a much greater sensitivity than passive infrared detection techniques known in the art.

Johnson, Timothy J

2012-09-18T23:59:59.000Z

87

METHOD AND SYSTEM FOR TURBOMACHINERY SURGE DETECTION ...  

A method and system for surge detection within a gas turbine engine, comprises: measuring the compressor discharge pressure (CDP) of the gas turbine ...

88

An Intrusion Detection System Using Quantum-Mechanical Systems  

ORNL 2012-G00220/tcc UT-B ID 200701995 10.2012 An Intrusion Detection System Using Quantum-Mechanical Systems Technology Summary Securing property and ...

89

Establishment of the Radiation Detection Laboratory at Fisk University  

Science Conference Proceedings (OSTI)

Synthetic CdZnTe (CZT) semiconducting crystals are highly suitable for the room temperature-based detection of gamma radiation. The surface preparation of Au contacts on surfaces of CZT detectors is typically conducted after (1) polishing to remove artifacts from crystal sectioning and (2) chemical etching, which removes residual mechanical surface damage however etching results in a Te rich surface layer that is prone to oxidize. Our studies show that CZT surfaces that are only polished (as opposed to polished and etched) can be contacted with Au and will yield lower surface currents. Due to their decreased dark currents, these as-polished surfaces can be used in the fabrication of gamma detectors exhibiting a higher performance than polished and etched surfaces with relatively less peak tailing and greater energy resolution.032}

Arnold Burger, Ph.D.

2008-02-28T23:59:59.000Z

90

Discriminating ultrasonic proximity detection system  

DOE Patents (OSTI)

This invention uses an ultrasonic transmitter and receiver and a microprocessor to detect the presence of an object. In the reset mode the invention uses a plurality of echoes from each ultrasonic burst to create a reference table of the echo-burst-signature of the empty monitored environment. The invention then processes the reference table so that it only uses the most reliable data. In the detection mode the invention compares the echo-burst-signature of the present environment with the reference table, detecting an object if there is a consistent difference between the echo-burst-signature of the empty monitored environment recorded in the reference table and the echo-burst-signature of the present environment.

Annala, Wayne C. (Durango, CO)

1989-01-01T23:59:59.000Z

91

Discriminating ultrasonic proximity detection system  

DOE Patents (OSTI)

This invention uses an ultrasonic transmitter and receiver and a microprocessor to detect the presence of an object. In the reset mode the invention uses a plurality of echoes from each ultrasonic burst to create a reference table of the echo-burst-signature of the empty monitored environment. The invention then processes the reference table so that it only uses the most reliable data. In the detection mode the invention compares the echo-burst-signature of the present environment with the reference table, detecting an object if there is a consistent difference between the echo-burst-signature of the empty monitored environment recorded in the reference table and the echo-burst-signature of the present environment.

Annala, W.C.

1986-12-04T23:59:59.000Z

92

An Iterative Radiative Transfer Code For Ocean-Atmosphere Systems  

Science Conference Proceedings (OSTI)

We describe the details of an iterative radiative transfer code for computing the intensity and degree of polarization of diffuse radiation in models of the ocean-atmosphere system. The present code neglects the upwelling radiation from below the ...

Ziauddin Ahmad; Robert S. Fraser

1982-03-01T23:59:59.000Z

93

Device for calibrating a radiation detector system  

DOE Patents (OSTI)

A device for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a "shield plate" or shell, and an opposing "source plate" containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, heart, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects.

Mc Fee, Matthew C. (New Ellenton, SC); Kirkham, Tim J. (Beech Island, SC); Johnson, Tippi H. (Aiken, SC)

1994-01-01T23:59:59.000Z

94

Device for calibrating a radiation detector system  

DOE Patents (OSTI)

A device is disclosed for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a ''shield plate'' or shell, and an opposing ''source plate'' containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects. 3 figures.

McFee, M.C.; Kirkham, T.J.; Johnson, T.H.

1994-12-27T23:59:59.000Z

95

Radiation portal monitor system and method  

DOE Patents (OSTI)

A portal monitoring system has a cosmic ray charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray muons, whilst also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

Morris, Christopher (Los Alamos, NM); Borozdin, Konstantin N. (Los Alamos, NM); Green, J. Andrew (Los Alamos, NM); Hogan, Gary E. (Los Alamos, NM); Makela, Mark F. (Los Alamos, NM); Priedhorsky, William C. (Los Alamos, NM); Saunders, Alexander (Los Alamos, NM); Schultz, Larry J. (Los Alamos, NM); Sossong, Michael J. (Los Alamos, NM)

2009-12-15T23:59:59.000Z

96

Passive-solar directional-radiating cooling system  

DOE Patents (OSTI)

A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

Hull, J.R.; Schertz, W.W.

1985-06-27T23:59:59.000Z

97

Passive-solar directional-radiating cooling system  

DOE Patents (OSTI)

A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

Hull, John R. (Hinsdale, IL); Schertz, William W. (Batavia, IL)

1986-01-01T23:59:59.000Z

98

Optical Transition Radiation System for ATF2  

SciTech Connect

In this paper we present the first measurements performed during the fall 2010 and early 2011 runs. Software development, simulations and hardware improvements to the Multi-Optical Transition Radiation System installed in the beam diagnostic section of the Extraction line of ATF2 are described. 2D emittance measurements have been performed and the system is being routinely used for coupling correction. Realistic beam simulations have been made and compared with the measurements. A demagnifier lens system to improve the beam finding procedure has been designed and will be implemented in a future run. We also discuss further work planned for the subsequent run periods.

Alabau-Gonzalvo, J.; Gutierrez, C.Blanch; Faus-Golfe, A.; Garcia-Garrigos, J.J.; /Valencia U., IFIC; Cruz, J.; McCormick, D.; White, G.; Woodley, M.; /SLAC

2012-02-14T23:59:59.000Z

99

Lanthanum halide nanoparticle scintillators for nuclear radiation detection  

SciTech Connect

Nanoparticles with sizes <10 nm were fabricated and characterized for their nanocomposite radiation detector properties. This work investigated the properties of several nanostructured radiation scintillators, in order to determine the viability of using scintillators employing nanostructured lanthanum trifluoride. Preliminary results of this investigation are consistent with the idea that these materials have an intrinsic response to nuclear radiation that may be correlated to the energy of the incident radiation.

Guss, Paul; Guise, Ronald [Remote Sensing Laboratory, P.O. Box 98521, M/S RSL-48, Las Vegas, Nevada 89193 (United States); Yuan Ding [National Security Technologies, LLC, Los Alamos Operations, P.O. Box 809, M/S LAO/C320, Los Alamos, New Mexico 87544 (United States); Mukhopadhyay, Sanjoy [Remote Sensing Laboratory-Andrews, Building 1783, Arnold Avenue Andrews AFB, Maryland 20762 (United States); O'Brien, Robert; Lowe, Daniel [University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154 (United States); Kang Zhitao; Menkara, Hisham [Georgia Tech Research Institute, 925 Dalney St., Atlanta, Georgia 30332 (United States); Nagarkar, Vivek V. [RMD, Inc., 44 Hunt Street, Watertown, Massachusetts 02472 (United States)

2013-02-14T23:59:59.000Z

100

Detection of arcs in automotive electrical systems  

E-Print Network (OSTI)

At the present time, there is no established method for the detection of DC electric arcing. This is a concern for forthcoming advanced automotive electrical systems which consist of higher DC electric power bus voltages, ...

Mishrikey, Matthew David

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High Density Nano-Electrode Array for Radiation Detection  

Science Conference Proceedings (OSTI)

Bulk single crystals of Cd1-xZnxTe (x=0.04 to x=0.2) compound semiconductor is used for room temperature radiation detection. The production of large volume of Cd1-xZnxTe with low defect density is expensive. As a result there is a growing research interest in the production of nanostructured compound semiconductors such as Cd1-xZnxTe in an electrochemical route. In this investigation, Cd1-xZnxTe ternary compound semiconductor, referred as CZT, was electrodeposited in the form of nanowires onto a TiO2 nanotubular template from propylene carbonate as the non-aqueous electrolyte, using a pulse-reverse electrodeposition process at 130 ºC. The template acted as a support in growing ordered nanowire of CZT which acts as a one dimensional conductor. Cyclic Voltammogram (CV) studies were conducted in determining the potentials for the growth of nanowires of uniform stoichiometry. The morphologies and composition of CZT were characterized by using SEM, TEM and XRD. The STEM mapping carried out on the nanowires showed the uniform distribution of Cd, Zn and Te elements. TEM image showed that the nanowires were polycrystalline in nature. The Mott-Schottky analysis carried on the nanowires showed that the nanowires were a p-type semiconductor. The carrier density, band gap and resistivity of the Cd0.9Zn0.1Te nanowires were 4.29x1013 cm-3, 1.56 eV and 2.76x1011?-cm respectively. The high resistivity was attributed to the presence of deep defect states such as cadmium vacancies or Te antisites which were created by the anodic cycle of the pulse-reverse electrodeposition process. Stacks of series connected CZT nanowire arrays were tested with different bias potentials. The background current was in the order of tens of picoamperes. When exposed to radiation source Amerecium-241 (60 KeV, 4 ?Ci), the stacked CZT nanowires arrays showed sensing behavior. The sensitivity of the nanowire arrays increased as the number of stacks increased. The preliminary results indicate that the CZT nanowire arrays can be used as a potential X-ray and low energy gamma ray detector material at room temperature with a much low bias potential (0.7 – 4V) as against 300 – 500 V applied in the commercial bulk detector materials.

Mano Misra

2010-05-07T23:59:59.000Z

102

Method for increased sensitivity of radiation detection and measurement  

DOE Patents (OSTI)

Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength. Reduced background is accomplished by more thorough annealing and enhanced radiation induced luminescence is obtained by treating the crystalline material to coalesce primary damage centers into secondary damage centers.

Miller, Steven D. (Richland, WA)

1994-01-01T23:59:59.000Z

103

Fault detection and diagnosis of technical systems  

Science Conference Proceedings (OSTI)

Sensors, actuators and/or physical components in technical systems are often affected by unpermitted or un-expected deviations from normal operation behaviour. The fault diagnosis task consists of determination of the fault type with as many details ... Keywords: fault detection and diagnosis, residuals, symptoms, technical systems

Ioana Fagarasan; S. ST. Iliescu

2008-06-01T23:59:59.000Z

104

Radiation beam calorimetric power measurement system  

DOE Patents (OSTI)

A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

Baker, John (Livermore, CA); Collins, Leland F. (Pleasanton, CA); Kuklo, Thomas C. (Ripon, CA); Micali, James V. (Dublin, CA)

1992-01-01T23:59:59.000Z

105

Radiation in Systems with Near Zero Dielectric Constant  

E-Print Network (OSTI)

We discuss radiation effects in systems with near zero dielectric constant. An enhancement of intensity by example of transition and diffusive radiations is demonstrated. A sharp peak in the transition radiation spectral-angular intensity is predicted. Numerical estimates for specific systems are made and possible applications are discussed.

Arakelian, V H

2010-01-01T23:59:59.000Z

106

Radiation detector having a multiplicity of individual detecting elements  

DOE Patents (OSTI)

A radiation detector has a plurality of detector collection element arrays immersed in a radiation-to-electron conversion medium. Each array contains a multiplicity of coplanar detector elements radially disposed with respect to one of a plurality of positions which at least one radiation source can assume. Each detector collector array is utilized only when a source is operative at the associated source position, negating the necessity for a multi-element detector to be moved with respect to an object to be examined. A novel housing provides the required containment of a high-pressure gas conversion medium.

Whetten, Nathan R. (Burnt Hills, NY); Kelley, John E. (Albany, NY)

1985-01-01T23:59:59.000Z

107

System For Detection Of Hazardous Events  

DOE Patents (OSTI)

A system for detecting the occurrence of anomalies, includes a plurality of spaced apart nodes, with each node having adjacent nodes, each of the nodes having one or more sensors associated with the node and capable of detecting anomalies, and each of the nodes having a controller connected to the sensors associated with the node. The system also includes communication links between adjacent nodes, whereby the nodes form a network. Each controller is programmed to query its adjacent nodes to assess the status of the adjacent nodes and the communication links.

Kulesz, James J [Oak Ridge, TN; Worley, Brian A [Knoxville, TN

2005-08-16T23:59:59.000Z

108

Position Sensitive Detection System for Charged Particles  

Science Conference Proceedings (OSTI)

The position sensitive detection system presented in this work employs the Anger logic algorithm to determine the position of the light spark produced by the passage of charged particles on a 170 x 170 x 10 mm3 scintillator material (PILOT-U). The detection system consists of a matrix of nine photomultipliers, covering a fraction of the back area of the scintillators. Tests made with a non-collimated alpha particle source together with a Monte Carlo simulation that reproduces the data, suggest an intrinsic position resolution of up to 6 mm is achieved.

Coello, E. A. [Instituto de Fisica, Univ. Nacional Autonoma de Mexico; Favela, F. [Instituto de Fisica, Univ. Nacional Autonoma de Mexico; Curiel, Q. [Instituto de Fisica, Univ. Nacional Autonoma de Mexico; Chavez, E [Instituto de Fisica, Univ. Nacional Autonoma de Mexico; Huerta, A. [Instituto de Fisica, Univ. Nacional Autonoma de Mexico; Varela, A. [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Mexico; Shapira, Dan [ORNL

2012-01-01T23:59:59.000Z

109

Detection of coincident radiations in a single transducer by pulse shape analysis  

DOE Patents (OSTI)

Pulse shape analysis determines if two radiations are in coincidence. A transducer is provided that, when it absorbs the first radiation produces an output pulse that is characterized by a shorter time constant and whose area is nominally proportional to the energy of the absorbed first radiation and, when it absorbs the second radiation produces an output pulse that is characterized by a longer time constant and whose area is nominally proportional to the energy of the absorbed second radiation. When radiation is absorbed, the output pulse is detected and two integrals are formed, the first over a time period representative of the first time constant and the second over a time period representative of the second time constant. The values of the two integrals are examined to determine whether the first radiation, the second radiation, or both were absorbed in the transducer, the latter condition defining a coincident event.

Warburton, William K. (Menlo Park, CA); Tan, Hui (Newark, CA); Hennig, Wolfgang (Fremont, CA)

2008-03-11T23:59:59.000Z

110

Apparatus and method for detecting full-capture radiation events  

DOE Patents (OSTI)

An apparatus and method are disclosed for sampling the output signal of a radiation detector and distinguishing full-capture radiation events from Compton scattering events. The output signal of a radiation detector is continuously sampled. The samples are converted to digital values and input to a discriminator where samples that are representative of events are identified. The discriminator transfers only event samples, that is, samples representing full-capture events and Compton events, to a signal processor where the samples are saved in a three-dimensional count matrix with time (from the time of onset of the pulse) on the first axis, sample pulse current amplitude on the second axis, and number of samples on the third axis. The stored data are analyzed to separate the Compton events from full-capture events, and the energy of the full-capture events is determined without having determined the energies of any of the individual radiation detector events. 4 figs.

Odell, D.M.C.

1994-10-11T23:59:59.000Z

111

Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system  

Science Conference Proceedings (OSTI)

A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

2013-02-12T23:59:59.000Z

112

DCE Bio Detection System Final Report  

SciTech Connect

The DCE (DNA Capture Element) Bio-Detection System (Biohound) was conceived, designed, built and tested by PNNL under a MIPR for the US Air Force under the technical direction of Dr. Johnathan Kiel and his team at Brooks City Base in San Antonio Texas. The project was directed toward building a measurement device to take advantage of a unique aptamer based assay developed by the Air Force for detecting biological agents. The assay uses narrow band quantum dots fluorophores, high efficiency fluorescence quenchers, magnetic micro-beads beads and selected aptamers to perform high specificity, high sensitivity detection of targeted biological materials in minutes. This final report summarizes and documents the final configuration of the system delivered to the Air Force in December 2008

Lind, Michael A.; Batishko, Charles R.; Morgen, Gerald P.; Owsley, Stanley L.; Dunham, Glen C.; Warner, Marvin G.; Willett, Jesse A.

2007-12-01T23:59:59.000Z

113

Digital radiographic systems detect boiler tube cracks  

SciTech Connect

Boiler water wall leaks have been a major cause of steam plant forced outages. But conventional nondestructive evaluation techniques have a poor track record of detecting corrosion fatigue cracking on the inside surface of the cold side of waterwall tubing. EPRI is performing field trials of a prototype direct-digital radiographic system that promises to be a game changer. 8 figs.

Walker, S. [EPRI, Charlotte, NC (United States)

2008-06-15T23:59:59.000Z

114

Solving Inverse Detection Problems Using Passive Radiation Signatures  

SciTech Connect

The ability to reconstruct an unknown radioactive object based on its passive gamma-ray and neutron signatures is very important in homeland security applications. Often in the analysis of unknown radioactive objects, for simplicity or speed or because there is no other information, they are modeled as spherically symmetric regardless of their actual geometry. In these presentation we discuss the accuracy and implications of this approximation for decay gamma rays and for neutron-induced gamma rays. We discuss an extension of spherical raytracing (for uncollided fluxes) that allows it to be used when the exterior shielding is flat or cylindrical. We revisit some early results in boundary perturbation theory, showing that the Roussopolos estimate is the correct one to use when the quantity of interest is the flux or leakage on the boundary. We apply boundary perturbation theory to problems in which spherically symmetric systems are perturbed in asymmetric nonspherical ways. We apply mesh adaptive direct search (MADS) algorithms to object reconstructions. We present a benchmark test set that may be used to quantitatively evaluate inverse detection methods.

Favorite, Jeffrey A. [Los Alamos National Laboratory; Armstrong, Jerawan C. [Los Alamos National Laboratory; Vaquer, Pablo A. [Los Alamos National Laboratory

2012-08-15T23:59:59.000Z

115

The Multi Optical Transition Radiation System  

SciTech Connect

The determination and monitoring of the transverse phase space in ATF2 is crucial in order to meet their performances specifications. Since the beam sizes at the Interaction Point (IP) depend strongly on the aberrations in the Final Focus System (FFS), accurate measurement upstream of the FFS is required to tune the beam sizes at the IP. The beam sizes as well as the emittance are measured in several locations in the beam diagnostic section of the Extraction Line (EXT line) of ATF2. The vertical beam sizes in the diagnostic section are of the order of 10 {mu}m this means that the devices have to image spot sizes as small as 5 {mu}m, with 10% accuracy a 2 {mu}m resolution device is necessary. The ATF2 EXT line is a beam line with low power and low repetition rate that make usable devices using solid targets. In contrast to a ring machine, where an individual bunch can be measured many times as it passes around the ring, the beam size and the emittance measurement in the LC or in the beam lines have to be performed in a single pass. This requires that the wire scan device types (laser or solid) sample across successive bunches within a train, often with an over-estimation of the beam size due to beam position and intensity jitter, and can take up to half a minute to complete the measurement. Although some of these effects could be corrected, as the jitter effect could be subtracted by using the nearby BPMs signals, this can be avoided by using Optical Transition Radiation (OTR) Monitors. These monitors are based on the transition radiation effect, a light cone emitted when the charged particle crosses a metallic interface. This light is emitted in a specular fashion so it can be focused on to a CCD and produces an image of the beam. OTRs are able to take many fast measurements and therefore to measure the emittance with high statistics, giving a low error and a good understanding of the emittance jitter. In this article, simulations of the expected beam sizes and emittance, along with a technical description of the system, its hardware and software implementation are described. Additionally first measurement of the beam size and emittance of the Multi Optical Transition Radiation System located in the Extraction Line of ATF2 are presented.

Faus-Golfe, A.; Alabau-Gonzalvo, J.; Blanch Gutierrez, C.; /Valencia U., IFIC; McCormick, D.; Cruz, J.; Woodley, M.; White, G.; /SLAC

2012-04-19T23:59:59.000Z

116

Radiation monitoring system for the environment and safety project  

E-Print Network (OSTI)

The project RAMSES (Radiation Monitoring System for the Environment and Safety) will provide LHC with a state of the art radiation monitoring and alarm system. RAMSES will survey the LHC accelerator, the LHC experimental areas and the environment of the LHC. The TIS (Technical Inspection and Safety) division will exploit this system to assess radiation risks and to control the releases of radioactivity. In addition, it will be integrated into the control rooms of the LHC accelerator and the LHC experiments. Obviously, RAMSES will already take into account CERN wide needs to renew the radiation monitoring system around the other CERN facilities. The requirements of the system are derived from CERN's own safety standards (CERN's Radiation Protection Manual, SAPOCO), from those of the CERN's two host states and from European standards. The mandate of the project team covers the system specification, prototyping, tendering, installation and integration of radiation monitors and industrial control equipment for sa...

Forkel-Wirth, Doris; Scibile, L; Segura, G; Vojtyla, P; CERN. Geneva. ST Division

2002-01-01T23:59:59.000Z

117

Radiation Resistance of Biological Reagents for In Situ Life Detection  

E-Print Network (OSTI)

Life on Mars, if it exists, may share a common ancestry with life on Earth derived from meteoritic transfer of microbes between the planets. One means to test this hypothesis is to isolate, detect, and sequence nucleic ...

Carr, Christopher E.

118

Neutron Radiation Detection using solution-Grown Organic Scintillators  

The ability to detect gamma rays and/or neutrons is a vital tool for many areas of research. Gamma-ray/neutron detectors allow scientists to study celestial phenomena ...

119

Apparatus for detecting alpha radiation in difficult access areas  

DOE Patents (OSTI)

An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure.

Steadman, Peter (Santa Fe, NM); MacArthur, Duncan W. (Los Alamos, NM)

1997-09-02T23:59:59.000Z

120

System and method for detecting gas  

DOE Patents (OSTI)

A system to detect a presence of a specific gas in a mixture of gaseous byproducts comprising moisture vapor is disclosed. The system includes an electrochemical cell, a transport to deliver the mixture of gaseous byproducts from the electrochemical cell, a gas sensor in fluid communication with the transport, the sensor responsive to a presence of the specific gas to generate a signal corresponding to a concentration of the specific gas, and a membrane to prevent transmission of liquid moisture, the membrane disposed between the transport and the gas sensor.

Chow, Oscar Ken (Simsbury, CT); Moulthrop, Lawrence Clinton (Windsor, CT); Dreier, Ken Wayne (Madison, CT); Miller, Jacob Andrew (Dexter, MI)

2010-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

System level latchup mitigation for single event and transient radiation effects on electronics  

DOE Patents (OSTI)

A `blink` technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection means, power dump logic means, and energy limiting measures with autonomous recovery. The event detection means includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The current sensing means is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation. The power dump means includes power dump logic means having a first input terminal connected to the output terminal of the ionizing radiation pulse detection means and having a second input terminal connected to the output terminal of the current sensing means. The power dump logic means provides an output signal to the input terminal of the means for opening the power bus and the means for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting mean with autonomous recovery includes means for opening the power bus and means for shorting the power bus to a ground potential. The means for opening the power bus and means for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements.

Kimbrough, J.R.; Colella, N.J.

1994-12-31T23:59:59.000Z

122

System level latchup mitigation for single event and transient radiation effects on electronics  

DOE Patents (OSTI)

A ``blink`` technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements. 18 figs.

Kimbrough, J.R.; Colella, N.J.

1997-09-30T23:59:59.000Z

123

System level latchup mitigation for single event and transient radiation effects on electronics  

DOE Patents (OSTI)

A "blink" technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements.

Kimbrough, Joseph Robert (Pleasanton, CA); Colella, Nicholas John (Livermore, CA)

1997-01-01T23:59:59.000Z

124

Systems and methods for detecting and processing  

DOE Patents (OSTI)

Embodiments of the present invention provides systems and method for detecting. Sensing modules are provided in communication with one or more detectors. In some embodiments, detectors are provided that are sensitive to chemical, biological, or radiological agents. Embodiments of sensing modules include processing capabilities to analyze, perform computations on, and/or run models to predict or interpret data received from one or more detectors. Embodiments of sensing modules form various network configurations with one another and/or with one or more data aggregation devices. Some embodiments of sensing modules include power management functionalities.

Johnson, Michael M. (Livermore, CA); Yoshimura, Ann S. (Tracy, CA)

2006-03-28T23:59:59.000Z

125

Self-heterodyne detection of backscattered radiation in single-mode CO{sub 2} lasers  

SciTech Connect

Self-heterodyning in dc-discharge-pumped single-mode CO{sub 2} lasers is analysed theoretically and studied experimentally under strong and weak feedback conditions. Relations for the autodyne gain and modulation depth due to the effect of backscattered radiation with a Doppler-shifted frequency are obtained. Nonlinear distortions of the autodyne signal caused by a strong laser - target feedback are studied. It is shown that the autodyne detection of backscattered radiation in CO{sub 2} lasers can be considered linear even in the case of strong laser beam distortions (nonlinear distortions below 5%). (control of laser radiation parameters)

Gordienko, Vyacheslav M; Konovalov, Aleksei N; Ul'yanov, V A

2011-05-31T23:59:59.000Z

126

DOE Mobile Detection Assessment Response System (MDARS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Helps Pioneer "Robot" Patrol Technology: Deployment of the Helps Pioneer "Robot" Patrol Technology: Deployment of the DOE Mobile Detection Assessment Response System (MDARS) The use of patrol robots to cost effectively improve security while reducing health and safety risks at DOE and NNSA nuclear facilities is an HSS advanced technology deployment "first". Over the past 2 years, the HSS Office of Technology has played a key role in working with the Army, the National Nuclear Security Administration (NNSA), the Nevada National Security Site (NNSS) and General Dynamics Robotics Systems to purchase, prototype, test and deploy the first of three MDARS patrol robots at NNSS. In addition to the initial purchase, HSS successfully negotiated a mutually acceptable

127

Method and system for detecting explosives  

DOE Patents (OSTI)

A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.

Reber, Edward L. (Idaho Falls, ID); Jewell, James K. (Idaho Falls, ID); Rohde, Kenneth W. (Idaho Falls, ID); Seabury, Edward H. (Idaho Falls, ID); Blackwood, Larry G. (Idaho Falls, ID); Edwards, Andrew J. (Idaho Falls, ID); Derr, Kurt W. (Idaho Falls, ID)

2009-03-10T23:59:59.000Z

128

Detection & Diagnostic Systems - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Departments > Detection & Diagnostic Departments > Detection & Diagnostic Systems DEPARTMENTS Engineering Analysis Nuclear Systems Analysis Research & Test Reactor Nonproliferation and National Security Detection & Diagnostic Systems Engineering Development & Applications Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Detection & Diagnostic Systems Bookmark and Share The Detection & Diagnostic Systems Department conducts research and development related to instruments and non-destructive evaluation (NDE) techniques for characterization of materials and determination of system parameters related to different energy systems (including fossil,

129

Investigation into Nanostructured Lanthanum Halides and CeBr{sub 3} for Nuclear Radiation Detection  

Science Conference Proceedings (OSTI)

This slide-show presents work on radiation detection with nanostructured lanthanum halides and CeBr{sub 3}. The goal is to extend the gamma energy response on both low and high-energy regimes by demonstrating the ability to detect low-energy x-rays and relatively high-energy activation prompt gamma rays simultaneously using the nano-structured lanthanum bromide, lanthanum fluoride, cerium bromide, or other nanocrystal material. Homogeneous and nano structure cases are compared.

Guss, P., Guise, R., Mukhopadhyay, S., Yuan, D.

2011-06-22T23:59:59.000Z

130

The Radiation Monitoring System for the LHCb Inner Tracker  

E-Print Network (OSTI)

The performance of the LHCb Radiation Monitoring System (RMS) designed to monitor radiation load on the Inner Trackersilicon micro-strip detectors is presented. The RMS comprises Metal Foil Detectors read-out by sensitive Charge Integrators. MFD is a radiation hard detector operating at high charged particle ?uxes. RMS is used to monitor radiation load as well as relative luminosity of the LHCb experiment. The results obtained by the RMS during LHC operation in 2010–2011 are compared to the Monte-Carlo simulation.

Okhrimenko, O; Pugatch, V; Alessio, F; Corti, G

2011-01-01T23:59:59.000Z

131

Online fault detection and tolerance for photovoltaic energy harvesting systems  

Science Conference Proceedings (OSTI)

Photovoltaic energy harvesting systems (PV systems) are subject to PV cell faults, which decrease the efficiency of PV systems and even shorten the PV system lifespan. Manual PV cell fault detection and elimination are expensive and nearly impossible ... Keywords: fault detection, fault tolerance, photovoltaic panel reconfiguration, photovoltaic system

Xue Lin; Yanzhi Wang; Di Zhu; Naehyuck Chang; Massoud Pedram

2012-11-01T23:59:59.000Z

132

Detection of Ionizing Radiation by Plasma-Panel Sensors: Cosmic Muons, Ion Beams, and Cancer Therapy  

Science Conference Proceedings (OSTI)

The plasma panel sensor is an ionizing photon and particle radiation detector derived from PDP technology with high gain and nanosecond response. Experimental results in detecting cosmic ray muons and beta particles from radioactive sources are described along with applications including high energy and nuclear physics, homeland security and cancer therapeutics.

Friedman, Dr. Peter S. [Integrated Sensors, LLC; Ferretti, Claudio [University of Michigan; Ball, Robert [University of Michigan; Beene, James R [ORNL; Ben Moshe, M. [Tel Aviv University; Benhammou, Yan [Tel Aviv University; Chapman, J. Wehrley [University of Michigan; Levin, Daniel S. [University of Michigan; Silver, Yiftah [Tel Aviv University; Weaverdyck, Curtis [University of Michigan; Zhou, Bing [University of Michigan; Etzion, E [Tel Aviv University; Moshe, M. [Tel Aviv University; Bentefour, E [Ion Beam Applications

2012-01-01T23:59:59.000Z

133

Tesla-Report 2000-27 Radiation Detection by Cerenkov Emission in  

E-Print Network (OSTI)

Tesla-Report 2000-27 Radiation Detection by Cerenkov Emission in Optical Fibers at TTF by E. Janata and the intensity of the incident. In an optical fiber, the shower would be converted into Cerenkov emission [1 irradiation, two different kinds of light can be produced in glass. One is the Cerenkov emission and the other

134

The Autonomous Pathogen Detection System (APDS)  

SciTech Connect

Shaped like a mailbox on wheels, it's been called a bioterrorism ''smoke detector.'' It can be found in transportation hubs such as airports and subways, and it may be coming to a location near you. Formally known as the Autonomous Pathogen Detection System, or APDS, this latest tool in the war on bioterrorism was developed at Lawrence Livermore National Laboratory to continuously sniff the air for airborne pathogens and toxins such as anthrax or plague. The APDS is the modern day equivalent of the canaries miners took underground with them to test for deadly carbon dioxide gas. But this canary can test for numerous bacteria, viruses, and toxins simultaneously, report results every hour, and confirm positive samples and guard against false positive results by using two different tests. The fully automated system collects and prepares air samples around the clock, does the analysis, and interprets the results. It requires no servicing or human intervention for an entire week. Unlike its feathered counterpart, when an APDS unit encounters something deadly in the air, that's when it begins singing, quietly. The APDS unit transmits a silent alert and sends detailed data to public health authorities, who can order evacuation and begin treatment of anyone exposed to toxic or biological agents. It is the latest in a series of biodefense detectors developed at DOE/NNSA national laboratories. The manual predecessor to APDS, called BASIS (for Biological Aerosol Sentry and Information System), was developed jointly by Los Alamos and Lawrence Livermore national laboratories. That system was modified to become BioWatch, the Department of Homeland Security's biological urban monitoring program. A related laboratory instrument, the Handheld Advanced Nucleic Acid Analyzer (HANAA), was first tested successfully at LLNL in September 1997. Successful partnering with private industry has been a key factor in the rapid advancement and deployment of biodefense instruments such as these. The APDS technology has been licensed and is currently undergoing commercialization.

Morris, J; Dzenitis, J

2004-09-22T23:59:59.000Z

135

Detection of contamination of municipal water distribution systems  

DOE Patents (OSTI)

A system for the detection of contaminates of a fluid in a conduit. The conduit is part of a fluid distribution system. A chemical or biological sensor array is connected to the conduit. The sensor array produces an acoustic signal burst in the fluid upon detection of contaminates in the fluid. A supervisory control system connected to the fluid and operatively connected to the fluid distribution system signals the fluid distribution system upon detection of contaminates in the fluid.

Cooper, John F. (Oakland, CA)

2012-01-17T23:59:59.000Z

136

An in-cell alpha detection system for radioisotope component assembly operations  

DOE Green Energy (OSTI)

A remotely operated alpha detection system is being developed for use at the Radioisotope Power Systems Facility at the US Department of Energy's Hanford Site. It will be used in hot cells being constructed to assemble components of Radioisotope Thermoelectric Generators for space power applications. The in-cell detection equipment will survey radiological swipe samples to determine smearable surface contamination levels on radioisotope fuel, fueled components, and hot-cell work areas. This system is potentially adaptable to other hot cell and glovebox applications where radiation dose rates and contamination levels are expected to be low. 2 figs.

Carteret, B.A. (Westinghouse Hanford Co., Richland, WA (United States)); Goles, R.W. (Pacific Northwest Lab., Richland, WA (United States))

1991-09-01T23:59:59.000Z

137

Computer system performance problem detection using time series models  

Science Conference Proceedings (OSTI)

Computer systems require monitoring to detect performance anomalies such as runaway processes, but problem detection and diagnosis is a complex task requiring skilled attention. Although human attention was never ideal for this task, as networks of computers ...

Peter Hoogenboom; Jay Lepreau

1993-06-01T23:59:59.000Z

138

Research on energy consumption detection system based on OPC technology  

Science Conference Proceedings (OSTI)

For developing of energy consumption detection systems, the system integration becomes more and more difficult. The OPC Object Linking and Embedding OLE for process control technology is used to simplify the problem. The system integration can be improved ...

Changtao Wang; Zhonghua Han; Bin Ma

2013-06-01T23:59:59.000Z

139

System and method for detecting cells or components thereof  

DOE Patents (OSTI)

A system and method for detecting a detectably labeled cell or component thereof in a sample comprising one or more cells or components thereof, at least one cell or component thereof of which is detectably labeled with at least two detectable labels. In one embodiment, the method comprises: (i) introducing the sample into one or more flow cells of a flow cytometer, (ii) irradiating the sample with one or more light sources that are absorbed by the at least two detectable labels, the absorption of which is to be detected, and (iii) detecting simultaneously the absorption of light by the at least two detectable labels on the detectably labeled cell or component thereof with an array of photomultiplier tubes, which are operably linked to two or more filters that selectively transmit detectable emissions from the at least two detectable labels.

Porter, Marc D. (Ames, IA); Lipert, Robert J. (Ames, IA); Doyle, Robert T. (Ames, IA); Grubisha, Desiree S. (Corona, CA); Rahman, Salma (Ames, IA)

2009-01-06T23:59:59.000Z

140

Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe  

DOE Patents (OSTI)

An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

Majewski, Stanislaw (Grafton, VA); Kross, Brian J. (Yorktown, VA); Zorn, Carl J. (Yorktown, VA); Majewski, Lukasz A. (Grafton, VA)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe  

DOE Patents (OSTI)

An optimized examination system and method based on the Reverse Geometry X-Ray{trademark} (RGX{trademark}) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging. 5 figs.

Majewski, S.; Kross, B.J.; Zorn, C.J.; Majewski, L.A.

1996-10-22T23:59:59.000Z

142

Summary Report for the Radiation Detection for Nuclear Security Summer School 2012  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL) hosted students from across the United States at the inaugural Radiation Detection for Nuclear Security Summer School from June 11 – 22, 2012. The summer school provided students with a unique understanding of nuclear security challenges faced in the field and exposed them to the technical foundations, analyses, and insight that will be required by future leaders in technology development and implementation. The course heavily emphasized laboratory and field demonstrations including direct measurements of special nuclear material. The first week of the summer school focused on the foundational knowledge required by technology practitioners; the second week focused on contemporary applications. Student evaluations and feedback from student advisors indicates that the summer school achieved its objectives of 1) exposing students to the range of nuclear security applications for which radiation detection is necessary, 2) articulating the relevance of student research into the broader context, and 3) exciting students about the possibility of future careers in nuclear security.

Runkle, Robert C.; Baciak, James E.; Stave, Jean A.

2012-08-22T23:59:59.000Z

143

Scintillator assembly for alpha radiation detection and an associated method of making  

DOE Patents (OSTI)

A scintillator assembly for use in conjunction with a photomultiplier or the like in the detection of alpha radiation utilizes a substrate or transparent yttrium aluminum garnet and a relatively thin film of cerium-doped yttrium aluminum garnet coated upon the substrate. The film material is applied to the substrate in a sputtering process, and the applied film and substrate are annealed to effect crystallization of the film upon the substrate. The resultant assembly provides relatively high energy resolution during use in a detection instrument and is sufficiently rugged for use in field environments.

Lauf, Robert J. (Oak Ridge, TN); McElhaney, Stephanie A. (Oak Ridge, TN); Bates, John B. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

144

Scintillator assembly for alpha radiation detection and an associated method of making  

DOE Patents (OSTI)

A scintillator assembly for use in conjunction with a photomultiplier or the like in the detection of alpha radiation utilizes a substrate or transparent yttrium aluminum garnet and a relatively thin film of cerium-doped yttrium aluminum garnet coated upon the substrate. The film material is applied to the substrate in a sputtering process, and the applied film and substrate are annealed to effect crystallization of the film upon the substrate. The resultant assembly provides relatively high energy resolution during use in a detection instrument and is sufficiently rugged for use in field environments. 4 figs.

Lauf, R.J.; McElhaney, S.A.; Bates, J.B.

1994-07-26T23:59:59.000Z

145

Fault Detection and Diagnosis in Building HVAC Systems  

E-Print Network (OSTI)

Wright, “Condition monitoring in HVAC subsystems using firstmonitoring packaged HVAC equipment. ASHRAE Transactions”,Detection and Diagnosis of HVAC Systems Using Support Vector

Najafi, Massieh

2010-01-01T23:59:59.000Z

146

Millimeter-Wave Systems Track Biometrics; Detect Chemicals ...  

emergency responders. Scientists at Argonne National Laboratory have devised two unique mmW detection systems to meet these needs. One—a first-of-

147

Best Management Practice: Distribution System Audits, Leak Detection, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Management Practice: Distribution System Audits, Leak Best Management Practice: Distribution System Audits, Leak Detection, and Repair Best Management Practice: Distribution System Audits, Leak Detection, and Repair October 7, 2013 - 3:06pm Addthis A distribution system audit, leak detection, and repair programs help Federal facilities reduce water losses and make better use of limited water resources. Overview Federal facilities with large campus settings and expansive distribution systems can lose a significant amount of total water production and purchases to system leaks. Leaks in distribution systems are caused by a number of factors, including pipe corrosion, high system pressure, construction disturbances, frost damage, damaged joints, and ground shifting and settling. Regular distribution system leak detection surveys

148

Analysis of a direct radiation solar dehumidification system  

DOE Green Energy (OSTI)

SERI researchers investigated a desiccant dehumidifier that is regenerated by direct absorption of solar radiation using a simplified numerical model (DESSIM) of the adsorption and desorption processes. This paper presents estimates of the performance of a solar-fired air conditioning system (ventilation cycle) containing the dehumidifier/collector. The researchers also considered the effects of dehumidifier NTUs, heat exchanger performance, and insolation levels. The direct radiation system can operate effectively at low insolation levels and thus may have some advantages in some geographic areas.

Schultz, K.; Barlow, R.; Pesaran, A.; Kreith, F.

1985-06-01T23:59:59.000Z

149

Phase and amplitude detection system for the Stanford Linear Accelerator  

Science Conference Proceedings (OSTI)

A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system.

Fox, J.D.; Schwarz, H.D.

1983-01-01T23:59:59.000Z

150

Intrusion detection in sensor networks using clustering and immune systems  

Science Conference Proceedings (OSTI)

Security of sensor networks is a complicated task, mostly due to the limited resources of sensor units. Encryption and authentication are useless if an attacker has entered the system. Thus, a second line of defense known as Intrusion Detection must ... Keywords: genetic algorithms, immune systems, intrusion detection, self-organizing maps, wireless sensor networks

Zorana Bankovi?; José M. Moya; Álvaro Araujo; Juan-Mariano De Goyeneche

2009-09-01T23:59:59.000Z

151

Radiation collimator and systems incorporating same  

SciTech Connect

A collimator including a housing having disposed therein a shield element surrounding a converter core in which a photon beam is generated from electrons emanating from a linear accelerator. A beam channeler longitudinally adjacent the shield element has a beam aperture therethrough coaxially aligned with, and of the same diameter as, an exit bore of the converter core. A larger entry bore in the converter core is coaxial with, and longitudinally separated from, the exit bore thereof. Systems incorporating the collimator are also disclosed.

Norman, Daren R. (Idaho Falls, ID); Yoon, Woo Y. (Idaho Falls, ID); Jones, James L. (Idaho Falls, ID); Haskell, Kevin J. (Idaho Falls, ID); Bennett, Brion D. (Idaho Falls, ID); Tschaggeny, Charles W. (Woods Cross, UT); Jones, Warren F. (Idaho Falls, ID)

2011-09-13T23:59:59.000Z

152

Investigation into Nanostructured Lanthanum Halides and CeBr3 for Nuclear Radiation Detection  

SciTech Connect

Nanocomposites may enable the use of scintillator materials such as cerium-doped lanthanum fluoride (LaF3:Ce) and cerium bromide (CeBr3) without requiring the growth of large crystals [1]. Nanostructured detectors may allow us to engineer immensely sized detectors of flexible form factors that will have a broad energy range and an energy resolution sufficient to perform isotopic identification. Furthermore, nanocomposites are easy to prepare and very low in cost. It is much less costly to use nanocomposites rather than grow large whole crystals of scintillator materials; with nanocomposites fabricated on an industrial scale, costs are even less. Nanostructured radiation scintillator detectors may improve quantum efficiency and provide vastly improved detector form factors. Quantum efficiencies up to 60% have been seen in photoluminescence from silicon nanocrystals in a densely-packed ensemble [2]. We have fabricated nanoparticles with sizes <10 nm and characterized their nanocomposite radiation detector properties. This work investigates the properties of the nanostructured radiation scintillator in order to extend the gamma energy response on both low- and high-energy regimes by demonstrating the ability to detect low-energy x-rays and relatively high-energy activation prompt gamma rays simultaneously using nanostructured lanthanum bromide, lanthanum fluoride, or CeBr3. Preliminary results of this investigation are consistent with a significant response of these materials to nuclear radiation.

Guss, P. P., Guise, R., Mukhopadhyay, S., Yuan, D.

2011-07-06T23:59:59.000Z

153

Intrusion Detection System for Advanced Metering Infrastructure  

Science Conference Proceedings (OSTI)

The deployment of Advanced Metering Infrastructure (AMI) technology significantly increases the attack surface that utilities have to protect. As a result, there is a critical need for efficient monitoring solutions to supplement protective measures and keep the infrastructure secure. This document investigates current industrial and academic efforts to address the challenge of detecting security events across the range of AMI networks and devices. The goal of this study is to help utilities and ...

2012-12-31T23:59:59.000Z

154

Explosive simulants for testing explosive detection systems  

DOE Patents (OSTI)

Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

Kury, John W. (Danville, CA); Anderson, Brian L. (Lodi, CA)

1999-09-28T23:59:59.000Z

155

Online Fault Detection and Tolerance for Photovoltaic Energy Harvesting Systems  

E-Print Network (OSTI)

Online Fault Detection and Tolerance for Photovoltaic Energy Harvesting Systems Xue Lin 1 , Yanzhi, yanzhiwa, dizhu, pedram}@usc.edu, 2 naehyuck@elpl.snu.ac.kr ABSTRACT Photovoltaic energy harvesting systems (PV systems) are subject to PV cell faults, which decrease the efficiency of PV systems and even

Pedram, Massoud

156

Detection of THz radiation with devices made from wafers with HgTe and InSb quantum wells  

SciTech Connect

In this study we present measurements of the Terahertz (THz) photoconductivity of 2D electron system realized at HgTe/HgCdTe and AlInSb/InSb/AlInSb quantum wells (QWs) in Corbino geometry (inner and outer radius: 500 {mu}m and 1500 {mu}m) with different mobilities and electron densities. To characterize the devices, the Shubnikov-de Haas (SdH) effect up to magnetic fields B of 7T and current-voltage (I-V) characteristics at various magnetic fields were measured. The THz radiation is provided by a p-Ge laser which operates with a magnetic field and a high voltage for the electrical pumping. The stimulated emission is caused by transitions between Landau levels of light holes [1]. The laser is tunable in the range between 1.7 to 2.5 THz (corresponding to wavelengths between 120 to 180 {mu}m or energies of 7 to 12 meV). The laser is pulsed with a pulse rate of 1 Hz and pulse lengths of about 1 {mu}s with low switching times (about 20 ns). The monochromatic THz radiation is transferred to our samples via a 0.32m long brass waveguide immersed in liquid Helium. The detection of a change in the conductivity of the sample due to absorption of THz-radiation (photoresponse) requires a low-noise circuit. For the Corbino-shaped samples the photoresponse (PR) is measured via a resistor R{sub V} of 1 k{Omega}. The signal is transferred via in a high-frequency cable and detected with a digital oscilloscope.

Gouider, F.; Nachtwei, G. [Institut fuer Angewandte Physik, Technische Universitaet Braunschweig, D-38106 Braunschweig (Germany); Vasilyev, Yu. B.; Koenemann, J. [A. F. Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Buckle, P. D. [QinetiQ Ltd, Malvern WR14 3PS (United Kingdom); Bruene, C.; Buhmann, H. [Julius-Maximilians-University Wuerzburg, D-97074 (Germany)

2011-12-23T23:59:59.000Z

157

An Intrusion Detection System Using Quantum- mechanical Systems  

Technology Description A quantum mechanical-based device that detects an intrusion across a physical boundary or communication link. Because common

158

Systems for detecting charged particles in object inspection  

DOE Patents (OSTI)

Techniques, apparatus and systems for detecting particles such as muons. In one implementation, a monitoring system has a cosmic ray-produced charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray-produced muons, while also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

Morris, Christopher L.; Makela, Mark F.

2013-08-20T23:59:59.000Z

159

Development and Testing of an Air Fluorescence Imaging System for the Detection of Radiological Contamination  

SciTech Connect

Detection of radionuclides emitting short-range radiation, such as {alpha} and low-energy {beta} particles, has always presented a challenge, particularly when such radionuclides are dispersed over a wide area. In this situation, conventional detection methods require the area of interest to be surveyed using a fragile probe at very close range--a slow, error-prone, and potentially dangerous process that may take many hours for a single room. The instrument under development uses a novel approach by imaging radiation-induced fluorescence in the air surrounding a contaminated area, rather than detecting the radiation directly. A robust and portable system has been designed and built that will allow contaminated areas to be rapidly detected and delineated. The detector incorporates position-sensitive photo-multiplier tubes, UV filters, a fast electronic shutter and an aspherical phase mask that significantly increases the depth-of-field. Preliminary tests have been conducted using sealed {sup 241}Am sources of varying activities and surface areas. The details of the instrument design will be described and the results of recent testing will be presented.

Inrig, Elizabeth [Defence R and D Canada - Ottawa, 3701 Carling Avenue, Ottawa, Ontario (Canada); Koslowsky, Vern; Andrews, Bob; Dick, Michael; Forget, Patrick; Ing, Harry [Bubble Technology Industries, Box 100, Chalk River, Ontario (Canada); Hugron, Roger [Director General Nuclear Safety, 101 Colonel By Drive, Ottawa, Ontario (Canada); Wong, Larry [Canadian Nuclear Safety Commission, 3484 Limebank Road, Ottawa, Ontario (Canada)

2011-12-13T23:59:59.000Z

160

IONIZING RADIATION RISKS TO SATELLITE POWER SYSTEMS (SPS) WORKERS  

E-Print Network (OSTI)

and A. I. Sladkova, "Radiation Levels in InterplanetaryPrognoz Satellites," Cosmic Radiation, 12_, No. 5, 716-718 (0. ArchamDeau, Mammalian Radiation Lethargy, A Disturbance

Lyman, J.T.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Radiation Shielding Options for the Affordable Fission Surface Power System  

SciTech Connect

The Affordable Fission Surface Power System (AFSPS) is a proposed power source for an outpost capable of housing six humans for up to six weeks on the lunar surface and emphasizes the design principles of low risk and affordability over high performance. The radiation shield is the most massive component of the reactor system and its effect on launch mass greatly affects the affordability of the AFSPS. Potential shielding materials include lithium hydride, enriched boron-10 carbide, water, borated water, beryllium, boron-doped beryllium and zirconium hydride. Zirconium hydride is the most effective neutron attenuator and also significantly attenuates gamma radiation, but at a significant mass penalty. The other neutron attenuating materials all require the addition of a tungsten layer to provide significant gamma attenuation. Based on neutron radiation alone, lithium hydride is the lightest of the potential attenuators, followed by water and borated water. When gamma radiation is also considered, the lithium hydride/tungsten shield is shown to be the lightest composite shield with a combined mass of 3246 kg, followed by the borated water/tungsten shield (3479 kg). The boron carbide/tungsten shield has a total mass of 4129 kg, but represents significantly less development risk.

Craft, Aaron E.; King, Jeffrey C. [Mining and Nuclear Engineering Department Missouri University of Science and Technology 222 Fulton Hall, 301 W. 14th Street Rolla, MO 65401(United States)

2009-03-16T23:59:59.000Z

162

Network-wide deployment of intrusion detection and prevention systems  

Science Conference Proceedings (OSTI)

Traditional efforts for scaling network intrusion detection (NIDS) and intrusion prevention systems (NIPS) have largely focused on a single-vantage-point view. In this paper, we explore an alternative design that exploits spatial, network-wide opportunities ... Keywords: intrusion detection, network management

Vyas Sekar; Ravishankar Krishnaswamy; Anupam Gupta; Michael K. Reiter

2010-11-01T23:59:59.000Z

163

Design and Evaluation of Hybrid Fault-Detection Systems  

Science Conference Proceedings (OSTI)

As chip densities and clock rates increase, processors are becoming more susceptible to transient faults that can affect program correctness. Up to now, system designers have primarily considered hardware-only and software-only fault-detection mechanisms ...

George A. Reis; Jonathan Chang; Neil Vachharajani; Ram Rangan; David I. August; Shubhendu S. Mukherjee

2005-06-01T23:59:59.000Z

164

Occupancy change detection system and method  

DOE Patents (OSTI)

A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for producing an occupancy grid map of an environment around the robot, scanning the environment to generate a current obstacle map relative to a current robot position, and converting the current obstacle map to a current occupancy grid map. The instructions also include processing each grid cell in the occupancy grid map. Within the processing of each grid cell, the instructions include comparing each grid cell in the occupancy grid map to a corresponding grid cell in the current occupancy grid map. For grid cells with a difference, the instructions include defining a change vector for each changed grid cell, wherein the change vector includes a direction from the robot to the changed grid cell and a range from the robot to the changed grid cell.

Bruemmer, David J. (Idaho Falls, ID); Few, Douglas A. (Idaho Falls, ID)

2009-09-01T23:59:59.000Z

165

Next Generation Trusted Radiation Identification System (NG-TRIS).  

SciTech Connect

The original Trusted Radiation Identification System (TRIS) was developed from 1999-2001, featuring information barrier technology to collect gamma radiation template measurements useful for arms control regime operations. The first TRIS design relied upon a multichannel analyzer (MCA) that was external to the protected volume of the system enclosure, undesirable from a system security perspective. An internal complex programmable logic device (CPLD) contained data which was not subject to software authentication. Physical authentication of the TRIS instrument case was performed by a sensitive but slow eddy-current inspection method. This paper describes progress to date for the Next Generation TRIS (NG-TRIS), which improves the TRIS design. We have incorporated the MCA internal to the trusted system volume, achieved full authentication of CPLD data, and have devised rapid methods to authenticate the system enclosure and weld seals of the NG-TRIS enclosure. For a complete discussion of the TRIS system and components upon which NG-TRIS is based, the reader is directed to the comprehensive user's manual and system reference of Seager, et al.

Flynn, Adam J.; Amai, Wendy A.; Merkle, Peter Benedict; Anderson, Lawrence Frederick; Strother, Jerry D.; Weber, Thomas M.; Etzkin, Joshua L.

2010-05-01T23:59:59.000Z

166

Energy, cost, and CO 2 emission comparison between radiant wall panel systems and radiator systems  

E-Print Network (OSTI)

The main goal of this paper is to evaluate the possibility of application or replacement of radiators with low-temperature radiant panels. This paper shows the comparison results of operations of 4 space heating systems: the low-temperature radiant panel system without any additional thermal insulation of external walls (PH-WOI), the low-temperature radiant panel system with additional thermal insulation of external walls (PH-WI), the radiator system without any additional thermal insulation of external walls (the classical heating system) (RH-WOI), and the radiator system with additional thermal insulation of external walls (RH-WI). The operation of each system is simulated by software EnergyPlus. The investigation shows that the PH-WI gives the best results. The RH-WOI has the largest energy consumption, and the largest pollutant emission. However, the PH-WI requires the highest investment.

Milorad Boji?; Dragan Cvetkovi?; Marko Mileti?; Jovan Maleševi?; Harry Boyer

2012-12-18T23:59:59.000Z

167

Fault detection of multivariable system using its directional properties  

E-Print Network (OSTI)

A novel algorithm for making the combination of outputs in the output zero direction of the plant always equal to zero was formulated. Using this algorithm and the result of MacFarlane and Karcanias, a fault detection scheme was proposed which utilizes the directional property of the multivariable linear system. The fault detection scheme is applicable to linear multivariable systems. Results were obtained for both continuous and discrete linear multivariable systems. A quadruple tank system was used to illustrate the results. The results were further verified by the steady state analysis of the plant.

Pandey, Amit Nath

2004-12-01T23:59:59.000Z

168

Strategies To Detect Hidden Geothermal Systems Based On Monitoring and  

Open Energy Info (EERE)

To Detect Hidden Geothermal Systems Based On Monitoring and To Detect Hidden Geothermal Systems Based On Monitoring and Analysis Of CO2 In The Near-Surface Environment Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Strategies To Detect Hidden Geothermal Systems Based On Monitoring and Analysis Of CO2 In The Near-Surface Environment Details Activities (5) Areas (1) Regions (0) Abstract: We investigate the potential for CO2 monitoring in thenear-surface environment as an approach to exploration for hiddengeothermal systems. Numerical simulations of CO2 migration from a modelhidden geothermal system show that CO2 concentrations can reach highlevels in the shallow subsurface even for relatively low CO2 fluxes.Therefore, subsurface measurements offer an advantage over above-groundmeasurements which are affected by winds that rapidly disperse

169

Angle Instability Detection in Power Systems with High Wind Penetration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Angle Instability Detection in Power Angle Instability Detection in Power Systems with High Wind Penetration Using PMUs YC Zhang National Renewable Energy Laboratory Yingchen.zhang@nrel.gov 27/28 June 2013 Washington, DC DOE/OE Transmission Reliability Program Angle Instability Detection in Power Systems with High Wind Penetration Using Synchrophasor Measurements  Project Objective * Utilize synchrophasor measurements to estimate the equivalent inertia of a power source such as synchronous generators or wind turbine generators * Develop angle instability detection method for a system with high wind penetration using the synchrophasor measurements 2 3 Background Submitted to IEEE Journal of Emerging and Selected Topics in Power Electronics * In case of angular instability, some machines will have

170

Harrison Radiator Division's Energy Management, Reporting and Accounting System  

E-Print Network (OSTI)

Energy management is essential for obtaining the lowest possible product manufacturing cost. Many systems have been created over the years to manage the energy used in manufacturing. However, for a variety of reasons, most of them never reached their full potential. Harrison Radiator first installed an energy management system in 1973. Energy consumption was reduced 42% from 1973 through 1984. However, the gains the last couple of years have been small. In 1984, important changes were made to the system and energy reporting was added, resulting in 1985 energy consumption reduction of about 16%. This paper will briefly describe Harrison's successful energy management, reporting and accounting system. Examples of reports, available data, information flow and benefits will be covered, with special mention of all factors that lead to our system's success.

Goubeaux, R. J.

1986-06-01T23:59:59.000Z

171

SQLIA detection and prevention approach for RFID systems  

Science Conference Proceedings (OSTI)

While SQL injection attacks have been plaguing web application systems for years, the possibility of them affecting RFID systems was only identified very recently. However, very little work exists to mitigate this serious security threat to RFID-enabled ... Keywords: Detection and prevention, RFID, SQL injection attack, Security, Tag-born malware

Jemal Abawajy

2013-03-01T23:59:59.000Z

172

Structures, systems and methods for harvesting energy from electromagnetic radiation  

DOE Patents (OSTI)

Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

Novack, Steven D. (Idaho Falls, ID); Kotter, Dale K. (Shelley, ID); Pinhero, Patrick J. (Columbia, MO)

2011-12-06T23:59:59.000Z

173

Structures, systems and methods for harvesting energy from electromagnetic radiation  

Science Conference Proceedings (OSTI)

Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

Novack, Steven D. (Idaho Falls, ID); Kotter, Dale K. (Shelley, ID); Pinhero, Patrick J. (Columbia, MO)

2011-12-06T23:59:59.000Z

174

A Fault Detection and Diagnosis Method for HVAC Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

A Fault Detection and Diagnosis Method for HVAC Systems A Fault Detection and Diagnosis Method for HVAC Systems Speaker(s): Peng Xu Date: December 2, 2002 - 12:00pm Location: Bldg. 90 There is a growing consensus that most buildings do not perform as well as intended and that faults in HVAC systems are widespread in commercial buildings. An automated fault detection and diagnosis tool for HVAC systems is being developed, based on an integrated, life-cycle, approach to commissioning and performance monitoring. The tool uses component-level HVAC equipment models implemented in the SPARK equation-based simulation environment. The models are configured using design information and component manufacturers' data and then fine-tuned to match the actual performance of the equipment by using data measured during functional tests

175

Scintillator assembly for alpha radiation detection and method of making the assembly  

DOE Patents (OSTI)

A scintillator assembly for use in the detection of alpha radiation includes a body of optically-transparent epoxy and an amount of phosphor particles embedded within the body adjacent one surface thereof. When making the body, the phosphor particles are mixed with the epoxy when in an uncured condition and permitted to settle to the bottom surface of a mold within which the epoxy/phosphor mixture is contained. When the mixture subsequently cures to form a hardened body, the one surface of the body which cured against the bottom surface of the mold is coated with a thin layer of opaque material for preventing ambient light form entering the body through the one surface. The layer of opaque material is thereafter coated with a layer of protective material to provide the assembly with a damage-resistant entrance window. 6 figs.

McElhaney, S.A.; Bauer, M.L.; Chiles, M.M.

1992-09-22T23:59:59.000Z

176

Current State of Commercial Radiation Detection Equipment for Homeland Security Applications  

Science Conference Proceedings (OSTI)

Detectors / Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 1) / Radiation Measurements and Instrumentation

Raymond T. Klann; Jason Shergur; Gary Mattesich

177

Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?  

Science Conference Proceedings (OSTI)

Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

Wong, Sharon [National University of Singapore, Yong Loo Lin School of Medicine (Singapore); Back, Michael [Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales (Australia); Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun [National University, Cancer Institute, Department of Radiation Oncology, National University, Hospital, Tower Block (Singapore); Lu, Jaide Jay, E-mail: mdcljj@nus.edu.sg [National University of Singapore, Yong Loo Lin School of Medicine (Singapore); National University, Cancer Institute, Department of Radiation Oncology, National University, Hospital, Tower Block (Singapore)

2012-07-01T23:59:59.000Z

178

Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring  

E-Print Network (OSTI)

for Detection of Hidden Geothermal Systems Figure 7.4.for Detection of Hidden Geothermal Systems Figure 7.5.for Detection of Hidden Geothermal Systems Figure 7.6.

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2004-01-01T23:59:59.000Z

179

Radio frequency communication system utilizing radiating transmission lines  

DOE Patents (OSTI)

A radio communication system for use in tunnels, mines, buildings or other shielded locations in which a pair of radiating transmission lines (30), (31) extend through such location in spaced coextensive relation to each other. Each transmission line (30), (31) has at least one unidirectional amplifier (32), (33) interposed therein with the sense of the unidirectional amplifier (32) of one transmission line (30) being opposite to the sense of the unidirectional amplifier (33) of the other transmission line (31). Each of the amplifiers (32), (33) has a gain which is less than the coupling loss between the transmission lines (30), (31). Two or more mobile transceivers (35) in the location served by the system are coupled to the transmission lines (30), (31) by electromagnetic wave propagation in space in order to communicate directly with each other at a given radio frequency within the frequency range of the system.

Struven, Warren C. (San Carlos, CA)

1984-01-01T23:59:59.000Z

180

FY06 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)  

SciTech Connect

We describe progress in the development of new materials for portable, room-temperature, gamma-radiation detection at Pacific Northwest National Laboratory at the Hanford Site in Washington State. High Z, high resistivity, amorphous semiconductors are being designed for use as solid-state detectors at near ambient temperatures; principles of operation are analogous to single-crystal semiconducting detectors. Amorphous semiconductors have both advantages and disadvantages compared to single crystals, and this project is developing methods to mitigate technical problems and design optimized material for gamma detection. Several issues involved in the fabrication of amorphous semiconductors are described, including reaction thermodynamics and kinetics, the development of pyrolytic coating, and the synthesis of ingots. The characterization of amorphous semiconductors is described, including sectioning and polishing protocols, optical microscopy, X-ray diffraction, scanning electron microscopy, optical spectroscopy, particle-induced X-ram emission, Rutherford backscattering, and electrical testing. Then collaboration with the University of Illinois at Urbana-Champaign is discussed in the areas of Hall-effect measurements and current voltage data. Finally, we discuss the strategy for continuing the program.

Johnson, Bradley R.; Riley, Brian J.; Crum, Jarrod V.; Sundaram, S. K.; Henager, Charles H.; Zhang, Yanwen; Shutthanandan, V.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Definition of Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of...

182

Development and Field Testing of Laser Photodiode Array-Based Vehicle Detection Systems  

E-Print Network (OSTI)

A Real-Time Laser-Based Detection System for Measurement ofTime Laser-Based Prototype Detection System for Measurement

2004-01-01T23:59:59.000Z

183

Association Between Pulmonary Uptake of Fluorodeoxyglucose Detected by Positron Emission Tomography Scanning After Radiation Therapy for Non-Small-Cell Lung Cancer and Radiation Pneumonitis  

Science Conference Proceedings (OSTI)

Purpose: To study the relationship between fluorodeoxyglucose (FDG) uptake in pulmonary tissue after radical radiation therapy (RT) and the presence and severity of radiation pneumonitis. Methods and Materials: In 88 consecutive patients, {sup 18}F-FDG-positron emission tomography was performed at a median of 70 days after completion of RT. Patients received 60 Gy in 30 fractions, and all but 15 had concurrent platinum-based chemotherapy. RT-induced pulmonary inflammatory changes occurring within the radiation treatment volume were scored, using a visual (0 to 3) radiotoxicity grading scale, by an observer blinded to the presence or absence of clinical radiation pneumonitis. Radiation pneumonitis was retrospectively graded using the Radiation Therapy Oncology Group (RTOG) scale by an observer blinded to the PET radiotoxicity score. Results: There was a significant association between the worst RTOG pneumonitis grade occurring at any time after RT and the positron emission tomograph (PET) radiotoxicity grade (one-sided p = 0.033). The worst RTOG pneumonitis grade occurring after the PET scan was also associated with the PET radiotoxicity grade (one-sided p = 0.035). For every one-level increase in the PET toxicity scale, the risk of a higher RTOG radiation pneumonitis score increased by approximately 40%. The PET radiotoxicity score showed no significant correlation with the duration of radiation pneumonitis. Conclusions: The intensity of FDG uptake in pulmonary tissue after RT determined using a simple visual scoring system showed significant correlation with the presence and severity of radiation pneumonitis. {sup 18}F-FDG-PET may be useful in the prediction, diagnosis and therapeutic monitoring of radiation pneumonitis.

Mac Manus, Michael P., E-mail: michael.macmanus@petermac.org [Department of Radiation Oncology, Peter MacCallum Cancer Institute, Melbourne (Australia); Ding Zhe [Department of Radiation Oncology, Affiliated Hospital of NingXia Medical University, YinChuan, NingXia (China); Hogg, Annette [Department of Diagnostic Imaging, Peter MacCallum Cancer Institute, Melbourne (Australia); Herschtal, Alan [Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Institute, Melbourne (Australia); Binns, David [Department of Diagnostic Imaging, Peter MacCallum Cancer Institute, Melbourne (Australia); Ball, David L. [Department of Radiation Oncology, Peter MacCallum Cancer Institute, Melbourne (Australia); Hicks, Rodney J. [Department of Diagnostic Imaging, Peter MacCallum Cancer Institute, Melbourne (Australia)

2011-08-01T23:59:59.000Z

184

The Impact of the Ice Phase and Radiation on a Midlatitude Squall Line System  

Science Conference Proceedings (OSTI)

A two-dimensional cloud model is used to study the interrelationships among cloud microphysics, radiation, and dynamics in a midlatitude broken-line squall system. The impact of the ice phase, longwave and shortwave radiation on the dynamic and ...

Hung-Neng S. Chin

1994-11-01T23:59:59.000Z

185

A Variational Method for Computing Surface Heat Fluxes from ARM Surface Energy and Radiation Balance Systems  

Science Conference Proceedings (OSTI)

A variational method is developed to compute surface fluxes of sensible and latent heat from observed wind, temperature, humidity, and surface energy and radiation budget by the surface energy and radiation balance systems (SERBS). In comparison ...

Qin Xu; Chong-Jian Qiu

1997-01-01T23:59:59.000Z

186

The synchronous active neutron detection system for spent fuel assay  

SciTech Connect

The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed {open_quotes}lock-in{close_quotes} amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound.

Pickrell, M.M.; Kendall, P.K.

1994-10-01T23:59:59.000Z

187

Instrument Development Tethered Balloon Sounding System for Vertical Radiation Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

Tethered Balloon Sounding System Tethered Balloon Sounding System for Vertical Radiation Profiles C. D. Whiteman J. M. Alzheimer G. A. Anderson M. R. Garnich W. J. Shaw Pacific Northwest Laboratory Richland, WA 99352 platform is built on a triangular frame identical to the one on the Sky Platform, but the MSP carries no radiometric sensors, control loop, or leveling motors. Rather. the MSP is instrumented to measure the motions to which the Sky Platform will be subjected; the data provide engineering information to be used in the final design of the control loop and structural elements of the Sky Platform. An array of six miniature solid state accelerometers provides the raw data from which balloon motions are determined. Future plans call for the installation of a small attitude gyroscope on the

188

Rf system for the NSLS coherent infrared radiation source  

Science Conference Proceedings (OSTI)

The existing NSLS X-ray Lithography Source (XLS Phase I) is being considered for a coherent synchrotron radiation source. The existing 211 MHz warm cavity will be replaced with a 5-cell 2856 MHz superconducting RF cavity, driven by a series of 2 kW klystrons. The RF system will provide a total V{sub RF} of 1.5 MV to produce {sigma}{sub L} = 0.3 mm electron bunches at an energy of 150 MeV. Superconducting technology significantly reduces the required space and power needed to achieve the higher voltage. It is the purpose of this paper to describe the superconducting RF system and cavity, power requirements, and cavity design parameters such as input coupling, Quality Factor, and Higher Order Modes.

Broome, W.; Biscardi, R.; Keane, J.; Mortazavi, P.; Thomas, M.; Wang, J.M.

1995-05-01T23:59:59.000Z

189

A Smart Sensor System for Carbon Monoxide Detection  

Science Conference Proceedings (OSTI)

This paper illustrates a smart sensor system for carbon monoxide detection. An innovative technological approach has been pursued to fabricate gas sensors on silicon substrate, compatible with IC fabrication. A mixed analog-digital electronic interface processes ... Keywords: sensor interfaces, sensors, sigma-delta converters

G. C. Cardinali; L. Dori; M. Fiorini; I. Sayago; G. Faglia; C. Perego; G. Sberveglieri; V. Liberali; F. Maloberti; D. Tonietto

1997-11-01T23:59:59.000Z

190

Incipient Transient Detection in Reactor Systems: Experimental and Theoretical Investigation  

SciTech Connect

The main goal of this research was to develop a method for detecting reactor system transients at the earliest possible time through a comprehensive experimental, testing and benchmarking program. This approach holds strong promise for developing new diagnostic technologies that are non-intrusive, generic and highly portable across different systems. It will help in the design of new generation nuclear power reactors, which utilize passive safety systems with a reliable and non-intrusive multiphase flow diagnostic system to monitor the function of the passive safety systems. The main objective of this research was to develop an improved fuzzy logic based detection method based on a comprehensive experimental testing program to detect reactor transients at the earliest possible time, practically at their birth moment. A fuzzy logic and neural network based transient identification methodology and implemented in a computer code called PROTREN was considered in this research and was compared with SPRT (Sequentially Probability Ratio Testing) decision and Bayesian inference. The project involved experiment, theoretical modeling and a thermal-hydraulic code assessment. It involved graduate and undergraduate students participation providing them with exposure and training in advanced reactor concepts and safety systems. In this final report, main tasks performed during the project period are summarized and the selected results are presented. Detailed descriptions for the tasks and the results are presented in previous yearly reports (Revankar et al 2003 and Revankar et al 2004).

Lefteri H. Tsoukalas; S.T. Revankar; X Wang; R. Sattuluri

2005-09-27T23:59:59.000Z

191

Distribution System Audits, Leak Detection, and Repair: Kirtland Air Force Base Leak Detection and Repair Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Best Management Practice Best Management Practice Case Study #3 Distribution System Audits, Leak Detection, and Repair Kirtland Air Force Base - Leak Detection and Repair Program Overview Kirtland Air Force Base (AFB) performed an award winning leak detection and repair program in 2006. The results of the project are saving Kirtland AFB 179 million gallons each year, which is over 16% of the total water use at the base. Kirtland AFB is located on 52,000 acres, southeast and adjacent to Albuquerque, New Mexico. The area is a high altitude desert, only receiving about 8 inches of rain each year. Kirtland AFB draws water from an under- ground aquifer via seven production wells through- out the base. The base also has access to water from the City of Albuquerque. The underground water

192

Distribution System Audits, Leak Detection, and Repair: Kirtland Air Force Base Leak Detection and Repair Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Management Practice Best Management Practice Case Study #3 Distribution System Audits, Leak Detection, and Repair Kirtland Air Force Base - Leak Detection and Repair Program Overview Kirtland Air Force Base (AFB) performed an award winning leak detection and repair program in 2006. The results of the project are saving Kirtland AFB 179 million gallons each year, which is over 16% of the total water use at the base. Kirtland AFB is located on 52,000 acres, southeast and adjacent to Albuquerque, New Mexico. The area is a high altitude desert, only receiving about 8 inches of rain each year. Kirtland AFB draws water from an under- ground aquifer via seven production wells through- out the base. The base also has access to water from the City of Albuquerque. The underground water

193

TURAC—A New Instrument Package for Radiation Budget Measurements and Cloud Detection  

Science Conference Proceedings (OSTI)

Atmospheric radiation flux measurements and the resulting surface radiation budget are important quantities for greenhouse effect and climate change investigations. Accurate net shortwave and longwave fluxes, in conjunction with numerical ...

C. Ruckstuhl; R. Philipona

2005-10-01T23:59:59.000Z

194

Self-filling and self-purging apparatus for detecting spontaneous radiation from substances in fluids  

DOE Patents (OSTI)

Disclosed herein is a radiation detector providing for the in situ automatic sampling of fluids containing substances emitting radiation, especially Cerenkov radiation. The detector permits sampling within well casings and is self-purging such that no additional provisions must be established for the storage and disposal of contaminated fluids.

Larson, I. Lauren (Oak Ridge, TN); Chiles, Marion M. (Knoxville, TN); Miller, V. Clint (Concord, TN)

1993-01-01T23:59:59.000Z

195

Multi Optical Transition Radiation System for ATF2  

SciTech Connect

In this paper we describe the design, installation and first calibration tests of a Multi Optical Transition Radiation System in the beam diagnostic section of the Extraction (EXT) line of ATF2, close to the multi wire scanner system. This system will be a valuable tool for measuring beam sizes and emittances coming from the ATF Damping Ring. With an optical resolution of about 2 {micro}m an original OTR design (OTR1X) located after the septum at the entrance of the EXT line demonstrated the ability to measure a 5.5 {micro}m beam size in one beam pulse and to take many fast measurements. This gives the OTR the ability to measure the beam emittance with high statistics, giving a low error and a good understanding of emittance jitter. Furthermore the nearby wire scanners will be a definitive test of the OTR as a beam emittance diagnostic device. The multi-OTR system design proposed here is based on the existing OTR1X.

Alabau-Gonzalvo, Javier; /Valencia U., IFIC; Blanch Gutierrez, Cesar; /Valencia U., IFIC; Civera, Jose Vicente; /Valencia U., IFIC; Faus-Golfe, Angeles; /Valencia U., IFIC; Garcia-Garrigos, Juan; /Valencia U., IFIC; Cruz, Juan; /SLAC; McCormick, Douglas; /SLAC; White, Glen; /SLAC

2012-07-13T23:59:59.000Z

196

Environmental assessment of the thermal neutron activation explosive detection system for concourse use at US airports  

SciTech Connect

This document is an environmental assessment of a system designed to detect the presence of explosives in checked airline baggage or cargo. The system is meant to be installed at the concourse or lobby ticketing areas of US commercial airports and uses a sealed radioactive source of californium-252 to irradiate baggage items. The major impact of the use of this system arises from direct exposure of the public to scattered or leakage radiation from the source and to induced radioactivity in baggage items. Under normal operation and the most likely accident scenarios, the environmental impacts that would be created by the proposed licensing action would not be significant. 44 refs., 19 figs., 18 tabs.

Jones, C.G.

1990-08-01T23:59:59.000Z

197

A Reduced Radiation Grid for the ECMWF Integrated Forecasting System  

Science Conference Proceedings (OSTI)

A specific interface between the radiation transfer calculations and the rest of the ECMWF model was introduced in 2003, potentially providing substantial economy in computer time by reducing the spatial resolution at which radiation transfer is ...

Jean-Jacques Morcrette; George Mozdzynski; Martin Leutbecher

2008-12-01T23:59:59.000Z

198

Engineering Design of a Continuous Duty $\\gamma$ -Production Proton Target for the Contraband Detection System  

E-Print Network (OSTI)

Engineering Design of a Continuous Duty $\\gamma$ -Production Proton Target for the Contraband Detection System

Rathke, J; Klein, J

1999-01-01T23:59:59.000Z

199

Computer vision aided target linked radiation imaging  

Science Conference Proceedings (OSTI)

In this paper, we demonstrated an application of video tracking to radiation detection, where a vision-based tracking system enables a traditional CZT (cadmium zinc telluride)-based radiation imaging device to detect radioactive targets that are in motion. ... Keywords: Vehicles,Target tracking,Detectors,Radiation imaging,Cameras,Streaming media

Yi Yao

2012-06-01T23:59:59.000Z

200

Miniature Integrated Nuclear Detection System (MINDS) | Princeton Plasma  

NLE Websites -- All DOE Office Websites (Extended Search)

News Room News Archive American Fusion News Press Releases Publications Weekly Highlights White Papers Fact Sheets Newsletters PPPL News Princeton Journal Watch Blog Events Research Education Organization Contact Us News Room News Archive American Fusion News Press Releases Publications Weekly Highlights White Papers Fact Sheets Newsletters PPPL News Princeton Journal Watch Blog Miniature Integrated Nuclear Detection System (MINDS) Anti-terrorism efforts are getting a boost from the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). A team led by PPPL engineer Charles Gentile has developed a Miniature Integrated Nuclear Detection System, called MINDS, which can be used to scan moving vehicles, luggage, cargo vessels, and the like for specific nuclear signatures

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Iterated Function System Models in Data Analysis: Detection and Separation  

E-Print Network (OSTI)

We investigate the use of iterated function system (IFS) models for data analysis. An IFS is a discrete dynamical system in which each time step corresponds to the application of one of a finite collection of maps. The maps, which represent distinct dynamical regimes, may act in some pre-determined sequence or may be applied in random order. An algorithm is developed to detect the sequence of regime switches under the assumption of continuity. This method is tested on a simple IFS and applied to an experimental computer performance data set. This methodology has a wide range of potential uses: from change-point detection in time-series data to the field of digital communications.

Zachary Alexander; Elizabeth Bradley; Joshua Garland; James D. Meiss

2011-08-15T23:59:59.000Z

202

In situ measurement of lattice strain using synchrotron radiation and a conical slit system.  

E-Print Network (OSTI)

??An experiment utilizing synchrotron radiation to measure lattice strain components from an aluminum-lithium sample during tensile loading is presented in detail. The conical slit system… (more)

Obstalecki, Mark

2011-01-01T23:59:59.000Z

203

Neutron Interrogation System For Underwater Threat Detection And Identification  

Science Conference Proceedings (OSTI)

Wartime and terrorist activities, training and munitions testing, dumping and accidents have generated significant munitions contamination in the coastal and inland waters in the United States and abroad. Although current methods provide information about the existence of the anomaly (for instance, metal objects) in the sea bottom, they fail to identify the nature of the found objects. Field experience indicates that often in excess of 90% of objects excavated during the course of munitions clean up are found to be non-hazardous items (false alarm). The technology to detect and identify waterborne or underwater threats is also vital for protection of critical infrastructures (ports, dams, locks, refineries, and LNG/LPG). We are proposing a compact neutron interrogation system, which will be used to confirm possible threats by determining the chemical composition of the suspicious underwater object. The system consists of an electronic d-T 14-MeV neutron generator, a gamma detector to detect the gamma signal from the irradiated object and a data acquisition system. The detected signal then is analyzed to quantify the chemical elements of interest and to identify explosives or chemical warfare agents.

Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C. [Department of Physics and Astronomy, Western Kentucky University, 1906 College Heights Blvd, 11077 Bowling Green, KY 42101 (United States)

2009-03-10T23:59:59.000Z

204

Radiators  

SciTech Connect

A heat-exchange radiator is connected to a fluid flow circuit by a connector which provides one member of an interengageable spigot and socket pair for push-fit, fluid-tight, engagement between the connector and the radiator, with latching formations at least one of which is resilient. Preferably the connector carries the spigot which tapers and engages with a socket of corresponding shape, the spigot carrying an O-ring seal and either latching fingers or a resilient latching circlip.

Webster, D. M.

1985-07-30T23:59:59.000Z

205

Environmental radiation real-time monitoring system permanently installed near Qinshan Nuclear Power Plant  

SciTech Connect

An environmental radiation real-time monitoring system with high pressure ionization chamber was developed. It has been installed permanently in the vicinity of Qinshan Nuclear Power Plant, the first built in mainland China. The system consists of four basic components: environmental radiation monitors; data communication network; a data processing center; and a remote terminal computer situated in Hangzhou. It has provided five million readings of environmental radiation levels as of January 1993. 8 refs., 1 fig., 3 tabs.

Minde Ding; Peiru Sheng; Zhangji Zhi [Suzhou Nuclear Research Institute, Jiangsu (China)

1996-03-01T23:59:59.000Z

206

FY08 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)  

SciTech Connect

This is the annual report for an old project funded by NA22. The purpose of the project was to develop amorphous semiconductors for use as radiation detectors. The annual report contains information about the progress made in synthesizing, characterizing, and radiation response testing of these new materials.

Johnson, Bradley R.; Riley, Brian J.; Crum, Jarrod V.; Ryan, Joseph V.; Sundaram, S. K.; McCloy, John S.; Rockett, Angus

2009-02-01T23:59:59.000Z

207

Log Summarization and Anomaly Detection for TroubleshootingDistributed Systems  

SciTech Connect

Today's system monitoring tools are capable of detectingsystem failures such as host failures, OS errors, and network partitionsin near-real time. Unfortunately, the same cannot yet be said of theend-to-end distributed softwarestack. Any given action, for example,reliably transferring a directory of files, can involve a wide range ofcomplex and interrelated actions across multiple pieces of software:checking user certificates and permissions, getting details for allfiles, performing third-party transfers, understanding re-try policydecisions, etc. We present an infrastructure for troubleshooting complexmiddleware, a general purpose technique for configurable logsummarization, and an anomaly detection technique that works in near-realtime on running Grid middleware. We present results gathered using thisinfrastructure from instrumented Grid middleware and applications runningon the Emulab testbed. From these results, we analyze the effectivenessof several algorithms at accurately detecting a variety of performanceanomalies.

Gunter, Dan; Tierney, Brian L.; Brown, Aaron; Swany, Martin; Bresnahan, John; Schopf, Jennifer M.

2007-08-01T23:59:59.000Z

208

Alpha and gamma radiation effects on air-water systems at high gas/liquid ratios  

SciTech Connect

Radiolysis tests were conducted on air-water systems to examine the effects of radiation on liquid phase chemistry under high gas/liquid volume (G/L) ratios that are characteristic of an unsaturated nuclear waste repository setting. Test parameters included temperatures of 25, 90, and 200{degrees}C; gamma vs. alpha radiation; dose rates of {approximately}3500 and 50,000 rad/h; and G/L ratios of 10 and 100. Formate, oxalate, and total organic carbon contents increased during irradiation of the air-water systems in gamma and alpha tests at low-dose rate ({approximately}3500 rad/h). Increases in organic components were not observed for tests run at 200{degrees}C or high-dose rates (50,000 rad/h). In the tests where increases in organics occurred, the formate and oxalate were preferentially enriched in solutions that were rinsed from the test vessel walls. Nitrate (NO{sub 3}{sup {minus}}) is the dominant anion produced during the radiolysis reactions. Significant nitrite (NO{sub 2}{sup {minus}}) also occurs in some high-dose rate tests, with the reduced form of nitrogen possibly resulting from reactions with the test vessels. These results indicate that nitrogen acids are being produced and concentrated in the limited quantities of solution present in the tests. Nitrate + nitrite production varied inversely with temperature, with the lowest quantities being detected for the higher temperature tests. The G(NO{sub 3}{sup {minus}} + NO{sub 2}{sup {minus}}) values for the 25, 90, and 200{degrees}C experiments with gamma radiation are 3.2 {+-} 0.7, 1.3 {+-} 1.0, and 0.4 {+-} 0.3, respectively. Thus, the elevated temperatures expected early in the life of a repository may counteract pH decreases resulting from nitrogen acid production. Little variation was observed in G values as a function of dose rate or gas/liquid ratio.

Wronkiewicz, D.J.; Bates, J.K.

1993-08-01T23:59:59.000Z

209

Alpha Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics of Radiation Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments have been designed to measure alpha radiation. Special training in use of these instruments is essential for making accurate measurements. 4. A civil defense instrument (CD V-700) cannot detect the presence of radioactive materials that produce alpha radiation unless the radioactive materials also produce beta and/or gamma radiation.

210

Evaluating the Design of an Earth Radiation Budget Instrument with System Simulations. Part I: Instantaneous Estimates  

Science Conference Proceedings (OSTI)

A set of system simulations has been performed to evaluate candidate scanner designs for an Earth Radiation Budget Instrument (ERBI) for the Earth Observing System (EOS) of the late 1990s. Five different instruments are considered: 1) the Active ...

Larry Stowe; Philip Ardanuy; Richard Hucek; Peter Abel; Herbert Jacobowitz

1993-12-01T23:59:59.000Z

211

Methods and systems for detecting abnormal digital traffic  

DOE Patents (OSTI)

Aspects of the present invention encompass methods and systems for detecting abnormal digital traffic by assigning characterizations of network behaviors according to knowledge nodes and calculating a confidence value based on the characterizations from at least one knowledge node and on weighting factors associated with the knowledge nodes. The knowledge nodes include a characterization model based on prior network information. At least one of the knowledge nodes should not be based on fixed thresholds or signatures. The confidence value includes a quantification of the degree of confidence that the network behaviors constitute abnormal network traffic.

Goranson, Craig A [Kennewick, WA; Burnette, John R [Kennewick, WA

2011-03-22T23:59:59.000Z

212

Image change detection systems, methods, and articles of manufacture  

DOE Patents (OSTI)

Aspects of the invention relate to image change detection systems, methods, and articles of manufacture. According to one aspect, a method of identifying differences between a plurality of images is described. The method includes loading a source image and a target image into memory of a computer, constructing source and target edge images from the source and target images to enable processing of multiband images, displaying the source and target images on a display device of the computer, aligning the source and target edge images, switching displaying of the source image and the target image on the display device, to enable identification of differences between the source image and the target image.

Jones, James L. (Idaho Falls, ID); Lassahn, Gordon D. (Idaho Falls, ID); Lancaster, Gregory D. (Idaho Falls, ID)

2010-01-05T23:59:59.000Z

213

An active system for the detection of special fissile material in small watercraft  

E-Print Network (OSTI)

Due to increasing terrorist threats and illegal proliferation of nuclear material and technology, there is a need for increased research in the area of detection of smuggled fissile material, some of which is designated by the International Atomic Energy Agency as special fissile material. This thesis focuses on a hypothetical scenario in which a terrorist organization has managed to smuggle an amount of special fissile material onto a personal recreational watercraft and sail it into a marina. If the boat could be forced to go through a detector system, then the contents could be interrogated and a determination made of whether any special fissile material was aboard. This thesis examines the hypothesis that active interrogation may be used successfully in the detection of special fissile material in such an environment. It shows that it is feasible to use an active neutron system to detect a significant quantity of special fissile material onboard a small boat via the differential dieaway technique. The MCNP Monte Carlo transport code was used to simulate the use of a pulsed neutron generator to induce fission in the fissile material and then estimate the detector response. The detector modeled was based on elastic scattering-induced recoil protons using pure hydrogen gas. There was a significant difference between the system with and without the presence of fissile material, and the estimated detector response for the system with fissile material present was shown to be sufficiently greater than the response due to background radiation only. Additionally, dose was estimated and found to be small enough that the system would not likely pose a significant radiological health risk to passengers on the boat.

Johansen, Norman Alfan, III

2006-08-01T23:59:59.000Z

214

Distributed sensor system for fault detection and isolation in multistage manufacturing systems  

Science Conference Proceedings (OSTI)

With rapid innovations in sensing technology and the rising complexity in manufacturing processes, increasingly less expensive and smart devices with multiple heterogeneous on-board sensors, networked through wired or wireless links and deployable ... Keywords: DSS, MMS, data management, decision making, distributed control, distributed sensor systems, fault detection, fault isolation, industrial automation, information processing, multistage manufacturing systems, optimal design, sensor networks

Du Shi-Chang; Xi Li-Feng; Shi Jian-Jun

2006-03-01T23:59:59.000Z

215

Detection optimization using linear systems analysis of a coded aperture laser sensor system  

SciTech Connect

Minimum detectable irradiance levels for a diffraction grating based laser sensor were calculated to be governed by clutter noise resulting from reflected earth albedo. Features on the earth surface caused pseudo-imaging effects on the sensor`s detector arras that resulted in the limiting noise in the detection domain. It was theorized that a custom aperture transmission function existed that would optimize the detection of laser sources against this clutter background. Amplitude and phase aperture functions were investigated. Compared to the diffraction grating technique, a classical Young`s double-slit aperture technique was investigated as a possible optimized solution but was not shown to produce a system that had better clutter-noise limited minimum detectable irradiance. Even though the double-slit concept was not found to have a detection advantage over the slit-grating concept, one interesting concept grew out of the double-slit design that deserved mention in this report, namely the Barker-coded double-slit. This diffractive aperture design possessed properties that significantly improved the wavelength accuracy of the double-slit design. While a concept was not found to beat the slit-grating concept, the methodology used for the analysis and optimization is an example of the application of optoelectronic system-level linear analysis. The techniques outlined here can be used as a template for analysis of a wide range of optoelectronic systems where the entire system, both optical and electronic, contribute to the detection of complex spatial and temporal signals.

Gentry, S.M. [Sandia National Labs., Albuquerque, NM (United States). Optoelectronic Design Dept.

1994-09-01T23:59:59.000Z

216

High Altitude Aerial Natural Gas Leak Detection System  

SciTech Connect

The objective of this program was to develop and demonstrate a cost-effective and power-efficient advanced standoff sensing technology able to detect and quantify, from a high-altitude (> 10,000 ft) aircraft, natural gas leaking from a high-pressure pipeline. The advanced technology is based on an enhanced version of the Remote Methane Leak Detector (RMLD) platform developed previously by Physical Sciences Inc. (PSI). The RMLD combines a telecommunications-style diode laser, fiber-optic components, and low-cost DSP electronics with the well-understood principles of Wavelength Modulation Spectroscopy (WMS), to indicate the presence of natural gas located between the operator and a topographic target. The transceiver transmits a laser beam onto a topographic target and receives some of the laser light reflected by the target. The controller processes the received light signal to deduce the amount of methane in the laser's path. For use in the airborne platform, we modified three aspects of the RMLD, by: (1) inserting an Erbium-doped optical fiber laser amplifier to increase the transmitted laser power from 10 mW to 5W; (2) increasing the optical receiver diameter from 10 cm to 25 cm; and (3) altering the laser wavelength from 1653 nm to 1618 nm. The modified RMLD system provides a path-integrated methane concentration sensitivity {approx}5000 ppm-m, sufficient to detect the presence of a leak from a high capacity transmission line while discriminating against attenuation by ambient methane. In ground-based simulations of the aerial leak detection scenario, we demonstrated the ability to measure methane leaks within the laser beam path when it illuminates a topographic target 2000 m away. We also demonstrated simulated leak detection from ranges of 200 m using the 25 cm optical receiver without the fiber amplifier.

Richard T. Wainner; Mickey B. Frish; B. David Green; Matthew C. Laderer; Mark G. Allen; Joseph R. Morency

2006-12-31T23:59:59.000Z

217

System and method for detection of dispersed broadband signals  

DOE Patents (OSTI)

A system and method for detecting the presence of dispersed broadband signals in real time are disclosed. The present invention utilizes a bank of matched filters for detecting the received dispersed broadband signals. Each matched filter uses a respective robust time template that has been designed to approximate the dispersed broadband signals of interest, and each time template varies across a spectrum of possible dispersed broadband signal time templates. The received dispersed broadband signal x(t) is received by each of the matched filters, and if one or more matches occurs, then the received data is determined to have signal data of interest. This signal data can then be analyzed and/or transmitted to Earth for analysis, as desired. The system and method of the present invention will prove extremely useful in many fields, including satellite communications, plasma physics, and interstellar research. The varying time templates used in the bank of matched filters are determined as follows. The robust time domain template is assumed to take the form w(t)=A(t)cos[l brace]2[phi](t)[r brace]. Since the instantaneous frequency f(t) is known to be equal to the derivative of the phase [phi](t), the trajectory of a joint time-frequency representation of x(t) is used as an approximation of [phi][prime](t). 10 figs.

Qian, S.; Dunham, M.E.

1999-06-08T23:59:59.000Z

218

Surface Energy and Radiation Balance Systems: General Description and Improvements  

Science Conference Proceedings (OSTI)

Surface evaluation of sensible and latent heat flux densities and the components of the radiation balance were desired for various vegetative surfaces during the ASCOT84 experiment to compare with modeled results and to relate these values to ...

Leo J. Fritschen; James R. Simpson

1989-07-01T23:59:59.000Z

219

An integrated genetics approach to systemic low-dose radiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

mammary tumor formation by combining our genetic diverse mouse model with the mammary gland radiation chimera model pioneered in the Barcellos-Hoff laboratory (3,4). As it takes...

220

High-Fidelity Multi-Phase Radiation Module for Modern Coal Combustion Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Task Task Description Sample calculations LBL-PMC Future Work High-Fidelity Multi-Phase Radiation Module for Modern Coal Combustion Systems Jian Cai 1 Ricardo Marquez 1 Michael F. Modest 2 1 Postdoctoral Research Associate 2 Shaffer and George Professor of Engineering University of California Merced Merced, CA 95343, USA DE-FG26-10FE0003801 May 2012 - Pittsburgh 2/17 Introduction Task Description Sample calculations LBL-PMC Future Work Radiation Challenges in Multi-Phase Reacting Flows Radiative heat transfer in high temperature combustion systems Thermal radiation becomes very important at elevated temperatures Coal and hydrocarbon fuels C n H m → H 2 O, CO 2 , CO, NO x , soot, char, ash CO 2 , H 2 O, soot, char and ash strongly emit and absorb radiative energy (lower temperature levels) Radiative effects are conveniently ignored or treated with very crude models Neglecting

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ROBOTIC SYSTEMS for DEPLOYING SENSORS to DETECT CONTRABAND in CARGO  

E-Print Network (OSTI)

in this respect from sniffing explosives on the persons of terrorists passing through airports: explosives solvent detection, quadrupole mass spectrometry chemical taggant detection tandem/hybrid techniques

Siegel, Mel

222

ROBOTIC SYSTEMS for DEPLOYING SENSORS to DETECT CONTRABAND in CARGO  

E-Print Network (OSTI)

in this respect from sniffing explosives on the persons of terrorists passing through airports: explosives detection, quadrupole mass spectrometry chemical taggant detection tandem/hybrid techniques biosensors eddy

Siegel, Mel

223

Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring  

E-Print Network (OSTI)

Propulsion Laboratory, National Rev. 1.2 Strategies for Detection of Hidden Geothermal Systems Aeronautics and Space

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2004-01-01T23:59:59.000Z

224

A Multi-Layer Phoswich Radioxenon Detection System  

SciTech Connect

Laboratory radioactive sources were used to characterize the phoswich detector. The CaF{sub 2} scintillator has a low light-yield and slow decay time, thus produces very small signals due to low-energy gamma rays or X-rays. Therefore, detection of 30 keV X-rays (from the xenon radioisotopes) using this layer and discriminating its very small signals from electronic noise was a challenging task. Several solutions were considered and experimentally evaluated. We found that the best solution would be extending the fast triangular filter from 10 taps to 30 taps. This will extend the peaking time of this filter from 25 nsec to 75 nsec. The digital filter is implemented in FPGA on our DPP2.0 and is used to trigger the detection system. Functionality of the new filter in capturing and discriminating 30 keV X-rays was confirmed by using a {sup 133}Ba gamma-ray source. Development of the DPP GUI software has continued with the addition of two new panels to display histograms of beta/gamma and beta/x-ray coincidence events. This includes coincidence events from a single channel, as well as two-channel, coincidence event. A pileup rejection algorithm has been implemented in the FPGA code, and controls to adjust its sensitivity have been added to the GUI. Work has begun on a new prototype system to develop a USB host interface between the PC and the FPGA to end reliance on Opal Kelly prototyping boards; the hardware for this system has been completely assembled, and the PC-side software is currently in development.

David M. Hamby

2008-07-14T23:59:59.000Z

225

'Known Secure Sensor Measurements' for Critical Infrastructure Systems: Detecting Falsification of System State  

Science Conference Proceedings (OSTI)

This paper describes a first investigation on a low cost and low false alarm, reliable mechanism for detecting manipulation of critical physical processes and falsification of system state. We call this novel mechanism Known Secure Sensor Measurements (KSSM). The method moves beyond analysis of network traffic and host based state information, in fact it uses physical measurements of the process being controlled to detect falsification of state. KSSM is intended to be incorporated into the design of new, resilient, cost effective critical infrastructure control systems. It can also be included in incremental upgrades of already in- stalled systems for enhanced resilience. KSSM is based on known secure physical measurements for assessing the likelihood of an attack and will demonstrate a practical approach to creating, transmitting, and using the known secure measurements for detection.

Miles McQueen; Annarita Giani

2011-09-01T23:59:59.000Z

226

Nanostructured Lanthanum Halides and CeBr3 for Nuclear Radiation and Detection  

Science Conference Proceedings (OSTI)

Scintillator materials are used to detect, and in some cases identify, gamma rays. Higher performance scintillators are expensive, hard to manufacture, fragile, and sometimes require liquid nitrogen or cooling engines. But whereas lower-quality scintillators are cheap, easy to manufacture, and more rugged, their performance is lower. At issue: can the desirable qualities of high-and low-performance scintillators be combined to achieve better performance at lower cost? Preliminary experiments show that a LaF{sub 3}:Ce oleic acid-based nanocomposite exhibits a photopeak when exposed to {sup 137}Cs source gamma-radiation. The chemical synthesis of the cerium-doped lanthanum halide nanoparticles are scalable and large quantities of material can be produced at a time, unlike typical crystal growth processes such as the Bridgeman process. Using a polymer composite (Figure 1), produced by LANL, initial measurements of the unloaded and 8% LaF{sub 3}:Ce-loaded sample have been made using {sup 137}Cs sources. Figure 2 shows an energy spectrum acquired for CeF{sub 3}. The lighter plot is the measured polymer-only spectrum and the black plot is the spectrum from the nanocomposite scintillator. As the development of this material continues, the energy resolution is expected to improve and the photopeak-to-Compton ratio will become greater at higher loadings. These measurements show the expected Compton edge in the polymer-only sample, and the Compton edge and photo-peak expected in the nanophosphor composites that LANL has produced. Using a porous VYCORR with CdSe/ZnS core shell quantum dots, Letant has demonstrated that he has obtained signatures of the 241Am photopeak with energy resolution as good at NaI (Figure 3). We begin with the fact that CeBr{sub 3} crystals do not have a self-activity component as strong as the lanthanum halides. The radioactive 0.090% {sup 138}La component of lanthanum leads to significant self-activity, which will be a problem for very large detector volumes. Yet a significant strength of the nanostructure detector concept is the ability to create extremely large detector volumes by mixing nanoparticles into a transparent matrix. This would argue for use of nanoparticles other than lanthanum halides. Nanocomposites are easy to prepare; it is much less costly to use nanocomposites than to grow large whole crystals of these materials. The material can be fabricated at an industrial scale, further reducing cost. This material potentially offers the performance of $300/cc material (e.g., lanthanum bromide) at a cost of $1/cc. Because the material acts as a plastic, it is rugged and flexible, and can be made in large sheets, increasing the sensitivity of a detector using it. It would operate at ambient temperatures. Very large volumes of detector may be produced at greatly reduced cost, enhancing the non-proliferation posture of the nation for the same dollar value.

Paul Guss, Sanjoy Mukhopadhyay, Ron Guise, Ding Yuan

2010-06-09T23:59:59.000Z

227

DimaSense™: A Novel Nucleic Acid Detection System  

SciTech Connect

Recently, we developed a suite of methods for the rational design and fabrication of well-defined nanoparticle architectures, including clusters using bio-encoded nanoscale building blocks and layer-by-layer stepwise assembly on a solid support. In particular, the Nano-Assembly platform using Encoded Solid Supports (NAESS) allows for controlled interactions, purification of side products, modularity of design, and the construction of complex nanoparticle architectures. This approach offers several advantages over the current art of designing nanoparticle clusters, which include the high-yield synthesis of desired architectures, a 'plug-and-play' design allowing for the introduction of a variety of sensing modalities, and ease of scalability in high-throughput and synthesis yield. As a utility proof of concept, we implemented our unique cluster fabrication platform to design gold nanoparticle dimers which are linked via a single-stranded DNA oligonucleotide recognition motif. The design of this motif is such that binding of complementary nucleic acids results in specific, selective and rapid dimer dissociation, which can be monitored by dynamic light scattering (DLS). We demonstrated single level mismatch selectivity using this approach. The limit of detection was determined to be 1011 molecules of synthetic target RNA or DNA within 30 minutes of incubation at 33 C. This detection limit is determined by the dimer's concentration which can be probed by currently used standard DLS instruments. We also demonstrated a specific detection of target RNA in a solution containing competing 1,000-fold excess of non-complementary DNA fragments, 10% BSA, and endonucleases. Molecular diagnostic companies, RNA-based technology developers, and personalized medicine companies have applications that could benefit from using DimaSense{trademark}. The technology represents a platform which enables the simple and reasonably inexpensive design and fabrication of highly selective genetic sensors. These sensors operate with very low concentrations of target, can utilize standard instrumentation, produce detection results rapidly, and are robust enough to function in the presence of many competing genetic targets. Many current genetic target detection products/approaches/technologies rely upon methods (such as qPCR) which are more complicated, cumbersome, and costly to perform, and are not well suited to point-of-care diagnostic applications. Several clinical diagnostic applications, particularly point-of-care (POC) diagnostics for infectious diseases, are possible and appear to be a good fit for the technology. In addition, the advent of personalized medicine will create opportunities for molecular diagnostic companies with the capabilities of rapidly and quantitatively detecting nucleic acid sequences. The global POC market was {approx}$7.7B in 2010, with a recent annual growth rate of {approx}7%. A specific disease or disease-class diagnostic would need to be identified before a more meaningful sub-market value could be stated. Additional validation of the technology to show that it displays appropriate performance parameters for a commercial application on 'real world' samples is required for true commercial readiness. In addition, optimization of sensor design parameters, to effect a 10-fold increase in sensitivity, may be required to produce a commercially ready sensor system. These validation and sensor design optimization are estimated to require 3-4 months and {approx}$75k. For an unregulated product to give this sensor system a distinct competitive advantage, 2-3 years of product development and $1.5-3M are likely required. For regulated markets, time to market (through clinic) and cost would depend upon the product.

Stadler, A.

2011-05-18T23:59:59.000Z

228

Rydberg atom detection of the temporal coherence of cosmic microwave background radiation  

E-Print Network (OSTI)

Rydberg atoms immersed in cold blackbody radiation are shown to display long-lived quantum coherence effects on timescales of tens of picoseconds. By solving non-Markovian equations of motion with no free parameters we obtain the time evolution of the density matrix, and demonstrate that the blackbody-induced temporal coherences manifest as quantum beats in time-resolved fluorescence intensities of the Rydberg atoms. A measurable fluorescence signal can be obtained with a cold trapped ensemble of 1e8 Rydberg atoms subject to 2.7 K cosmic microwave background radiation (CMB), allowing for novel insights into previously unexamined quantum coherence properties of CMB.

Tscherbul, Timur V

2013-01-01T23:59:59.000Z

229

Rydberg atom detection of the temporal coherence of cosmic microwave background radiation  

E-Print Network (OSTI)

Rydberg atoms immersed in cold blackbody radiation are shown to display long-lived quantum coherence effects on timescales of tens of picoseconds. By solving non-Markovian equations of motion with no free parameters we obtain the time evolution of the density matrix, and demonstrate that the blackbody-induced temporal coherences manifest as decaying quantum beats in time-resolved fluorescence intensities of the Rydberg atoms. A measurable fluorescence signal can be obtained with a cold trapped ensemble of 10^8 Rydberg atoms subject to suitably amplified cosmic microwave background radiation (CMB) at 2.7 K, allowing for novel insights into previously unexamined quantum coherence properties of CMB.

Timur V. Tscherbul; Paul Brumer

2013-05-23T23:59:59.000Z

230

FERMI LAT PULSED DETECTION OF PSR J0737-3039A IN THE DOUBLE PULSAR SYSTEM  

SciTech Connect

We report the Fermi Large Area Telescope discovery of {gamma}-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in {gamma} rays. PSR J0737-3039A is a faint {gamma}-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the {gamma}-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the {gamma}-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination {alpha} and the viewing angle {zeta} to be close to 90 Degree-Sign , which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.

Guillemot, L.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Johnson, T. J. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Craig, H. A.; Romani, R. W.; Kerr, M. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Venter, C. [Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, 2520 Potchefstroom (South Africa); Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ferdman, R. D. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, M13 9PL (United Kingdom); Stairs, I. H., E-mail: guillemo@mpifr-bonn.mpg.de [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)

2013-05-10T23:59:59.000Z

231

Low cost fault detection system for railcars and tracks  

E-Print Network (OSTI)

A "low cost fault detection system" that identifies wheel flats and defective tracks is explored here. This is achieved with the conjunction of sensors, microcontrollers and Radio Frequency (RF) transceivers. The objective of the proposed research is to identify faults plaguing railcars and to be able to clearly distinguish the faults of a railcar from the inherent faults in the track. The focus of the research though, is mainly to identify wheel flats and defective tracks. The thesis has been written with the premise that the results from the simulation software GENSYS are close to the real time data that would have been obtained from an actual railcar. Based on the results of GENSYS, a suitable algorithm is written that helps segregate a fault in a railcar from a defect in a track. The above code is implemented using hardware including microcontrollers, accelerometers, RF transceivers and a real time monitor. An enclosure houses the system completely, so that it is ready for application in a real environment. This also involves selection of suitable hardware so that there is a uniform source of power supply that reduces the cost and assists in building a robust system.

Vengalathur, Sriram T.

2003-08-01T23:59:59.000Z

232

Millimeter Wave Sensor Technologies Track Biometrics; Detect Chemicals, Gases, and Radiation  

Security threats come in many forms—airborne, radiative, gaseous, human, or infiltrative—and it can be costly and impractical to deploy a broad suite of detector technologies to identify all potential hazards in public places. Argonne’s millimeter ...

233

Selected papers on solar radiation and solar thermal systems  

SciTech Connect

This volume contains a collection of reprints that represent the milestone papers in the fields of optical science and engineering. After a section containing historical papers in solar thermal research, the following sections are included: solar radiation; solar thermal power; solar thermal materials; and solar ponds. A total of 57 papers were indexed separately for the data base.

Osborn, D.E. (ed.) (Sacramento Municipal Utility District, CA (United States))

1993-01-01T23:59:59.000Z

234

DOE Radiation Exposure Monitoring System (REMS) Data Update  

SciTech Connect

This slide show presents the 2011 draft data for DOE occupational radiation exposure.Clarification is given on Reporting Data regarding: reporting Total Organ Dose (TOD); reporting Total Skin Dose (TSD), and Total Extremity Dose (TExD) ; and Special individuals reporting.

Rao, Nimi; Hagemeyer, Derek

2012-05-05T23:59:59.000Z

235

SOLAR RADIATION DURABILITY OF MATERIALS, COMPONENTS AND SYSTEMS FOR PHOTOVOLTAICS  

E-Print Network (OSTI)

. Discussions at the NREL PV reliability workshop in 2011 came to the conclusion that while initial performance as a function of total absorbed solar radiation dose. In a reliability engineering framework, these quantitative and published data, comparisons have been made showing the reduction of solar irradiance incident on the PV

Rollins, Andrew M.

236

Radiation Detection: Resistivity Responses in Functional Poly(Olefin Sulfone)/Carbon Nanotube Composites  

E-Print Network (OSTI)

Detection of gamma rays is shown using a non-scintillating organic-based sensor composed of poly(olefin sulfone)/carbon nanotube blends. Functionalization of the polymers can be performed after polymerization to tailor ...

Swager, Timothy Manning

237

Study on development of education model and its evaluation system for radiation safety  

E-Print Network (OSTI)

As one of the detailed action strategy of multi object preparedness for strengthening of radiation safety management by MOST, this project was performed, in order to promote the safety culture for user and radiation worker through effective education program. For the prevention of radiological accident and effective implementation of radiation safety education and training, this project has been carried out the development of education model and its evaluation system on radiation safety. In the development of new education model, education course was classified; new and old radiation worker, temporary worker, lecturer and manager. The education model includes the contents of expanding the education opportunity and workplace training. In the development of evaluation system, the recognition criteria for commission-education institute and inside-education institute which should establish by law were suggested for evaluation program. The recognition criteria contains classification, student, method, facilities, ...

Seo, K W; Nam, Y M

2002-01-01T23:59:59.000Z

238

Ionizing radiation risks to satellite power systems (SPS) workers  

DOE Green Energy (OSTI)

The radiation risks to the health of workers who will construct and maintain solar power satellites in the space environment were examined. For ionizing radiation, the major concern will be late or delayed health effects, particularly the increased risk of radiation-induced cancer. The estimated lifetime risk for cancer is 0.8 to 5.0 excess deaths per 10,000 workers per rad of exposure. Thus, for example, in 10,000 workers who completed ten missions with an exposure of 40 rem per mission, 320 to 2000 additional deaths in excess of the 1640 deaths from normally occurring cancer, would be expected. These estimates would indicate a 20 to 120% increase in cancer deaths in the worker-population. The wide range in these estimates stems from the choice of the risk-projection model and the dose-response relationsip. The choice between a linear and a linear-quadratic dose-response model may alter the risk estimate by a factor of about two. The method of analysis (e.g., relative vs absolute risk model) can alter the risk estimate by an additional factor of three. Choosing different age and sex distributions can further change the estimate by another factor of up to three. The potential genetic consequences could be of significance, but at the present time, sufficient information on the age and sex distribution of the worker population is lacking for precise estimation of risk. The potential teratogenic consequences resulting from radiation are considered significant. Radiation exposure of a pregnant worker could result in developmental abnormalities.

Lyman, J.T.; Ainsworth, E.J.; Alpen, E.L.; Bond, V.; Curtis, S.B.; Fry, R.J.M.; Jackson, K.L.; Nachtwey, S.; Sondhaus, C.; Tobias, C.A.; Fabrikant, J.I.

1980-11-01T23:59:59.000Z

239

Evaluation of solar radiation measurement systems: EPRI/NREL final test report. Volume 1  

DOE Green Energy (OSTI)

Measured solar radiation resource data are needed by electric utilities to evaluate the potential of renewable energy options like photovoltaics in their service territory. In this final test report, we document a cooperative project of the Electric Power Research Institute (EPRI) and the National Renewable Energy Laboratory (NREL) to compare available measurement system options for performing solar radiation resource assessments. We present the detailed results of a 6-month field comparison of thermopile-based pyranometer and pyrheliometer solar irradiance measurement systems with two different implementations of the rotating shadowband radiometer (RSR) concept installed at NREL`s Solar Radiation Research Laboratory (SRRL) in Golden, Colorado.

Stoffel, T.; Riordan, C.; Bigger, J.

1992-11-01T23:59:59.000Z

240

Evaluation of solar radiation measurement systems: EPRI/NREL final test report  

DOE Green Energy (OSTI)

Measured solar radiation resource data are needed by electric utilities to evaluate the potential of renewable energy options like photovoltaics in their service territory. In this final test report, we document a cooperative project of the Electric Power Research Institute (EPRI) and the National Renewable Energy Laboratory (NREL) to compare available measurement system options for performing solar radiation resource assessments. We present the detailed results of a 6-month field comparison of thermopile-based pyranometer and pyrheliometer solar irradiance measurement systems with two different implementations of the rotating shadowband radiometer (RSR) concept installed at NREL's Solar Radiation Research Laboratory (SRRL) in Golden, Colorado.

Stoffel, T.; Riordan, C.; Bigger, J.

1992-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

INVENTORY OF SOLAR RADIATION/SOLAR ENERGY SYSTEMS ESTIMATORS, MODELS, SITE-SPECIFIC DATA, AND PUBLICATIONS  

E-Print Network (OSTI)

INVENTORY OF SOLAR RADIATION/SOLAR ENERGY SYSTEMS ESTIMATORS, MODELS, SITE-SPECIFIC DATA, and Buildings Systems Integration Center National Renewable Energy Laboratory 8 July 2009 SOLAR SYSTEM POTENTIAL/calculators/PVWATTS/version1/ http://rredc.nrel.gov/solar/calculators/PVWATTS/version2/ Estimates the electrical energy

242

Long-range detection of VLF radiation produced by heating the auroral electrojet  

SciTech Connect

This paper presents the first evidence of long-range detection (greater than 1000 km) of calibrated VLF signals resulting from the HF heating of the auroral electrojet, that is, signal detection at a point of direct 'line of sight' of the heated patch of ionosphere. The 'radial' as well as the'azimuthal' magnetic component of the signals are recorded; from their ratio, the waveguide mode polarization is obtained. Observed absolute magnetic field strengths and waveguide polarizations are found to be in line with the predictions of simple waveguide models. 17 refs.

Barr, R.; Stubbe, P.; Kopka, H. (Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Federal Republic of Germany))

1991-08-01T23:59:59.000Z

243

JOINT EPA/DOE STATEMENT: Radiation Monitors Confirm That No Radiation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA/DOE STATEMENT: Radiation Monitors Confirm That No EPA/DOE STATEMENT: Radiation Monitors Confirm That No Radiation Levels of Concern Have Reached the United States JOINT EPA/DOE STATEMENT: Radiation Monitors Confirm That No Radiation Levels of Concern Have Reached the United States March 18, 2011 - 12:00am Addthis WASHINGTON - The United States Government has an extensive network of radiation monitors around the country and no radiation levels of concern have been detected. The U.S. Environmental Protection Agency RadNet system is designed to protect the public by notifying scientists, in near real time, of elevated levels of radiation so they can determine whether protective action is required. The EPA's system has not detected any radiation levels of concern. In addition to EPA's RadNet system, the U.S. Department of Energy has

244

Theory of a laser-plasma method for detecting terahertz radiation  

SciTech Connect

A theory is developed for calculating the spectrum and the shape of a terahertz wave packet from the temporal profile of the energy of the second harmonic of the laser field generated during nonlinear interaction of laser and terahertz pulses in an optical-breakdown plasma. The spectral and temporal characteristics of the second-harmonic envelope and a terahertz pulse are shown to coincide only for short laser pulses. For long laser pulses, the second-harmonic spectral line shifts to the red and its temporal profile is determined by the time integral of the electric field of terahertz radiation.

Frolov, A. A., E-mail: frolov@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Borodin, A. V.; Esaulkov, M. N.; Kuritsyn, I. I.; Shkurinov, A. P. [Moscow State University (Russian Federation)

2012-06-15T23:59:59.000Z

245

A Theoretical Structural Impairment Detection System for Timber Railway Bridges  

E-Print Network (OSTI)

The objective of this research is to develop a theoretical Structural Impairment Detection System (SIDS) for timber railway bridges. Due to fatigue, the timber stringers in timber railway bridges develop shear cracks. These shear cracks lead to higher bridge deflections, higher stresses in the stringers and rail, and shorter fatigue life of the system. A SIDS is proposed which links wheel path accelerations obtained from traversing freight cars to the condition of the bridge. In order to develop the SIDS, two models of timber railway bridges with various levels of structural impairment were developed. The first model was a quasi-static model developed from classical beam theory and implemented in MATLAB. The second model was a dynamic, finite element model created in LS-DYNA. Traversing axle loads were imposed on the models. The results obtained from the model were the wheel paths the axles take as they traverse the bridge. The paths were expressed as vertical displacements as a function of position on the bridge. Wheel path accelerations were obtained by numerically differentiating the vertical displacements. The accelerations were then used to train neural networks to have an input of an acceleration vector and an output of a bridge condition vector. The neural networks were trained on results from both models under three train speeds: 40 mph, 30 mph, and 20 mph. The networks were able to determine the correct bridge condition 90% of the time when the train speed was 40 mph and 70% of the time when the train speed was 30 mph. The networks were not successful in determining bridge condition when the train speed was 20 mph.

Orsak, John

2012-05-01T23:59:59.000Z

246

Detecting illicit leakage of information in operating systems  

Science Conference Proceedings (OSTI)

Keywords: analysis, audit collection, data transmission, information flow, multi-level secure systems, operating system security

Shiuh-Pyng Shieh; Virgil D. Gligor

1996-01-01T23:59:59.000Z

247

Strategy to detect the gravitational radiation counterpart of gamma-ray bursts  

E-Print Network (OSTI)

Both observational and theoretical rates of binary neutron star coalescence give low prospects for detection of a single event by the initial LIGO/VIRGO interferometers. However, by utilizing at the best all the a priori information on the expected signal, a positive detection can be achieved. This relies on the hypothesis that $\\gamma$-ray bursts are the electromagnetic signature of neutron star coalescences. The information about the direction of the source can then be used to add in phase the signals from different detectors in order (i) to increase the signal-to-noise ratio and (ii) to make the noise more Gaussian. Besides, the information about the time of arrival can be used to drastically decrease the observation time and thereby the false alarm rate. Moreover the fluence of the $\\gamma$-ray emission gives some information about the amplitude of the gravitational signal. One can then add the signals from $\\sim 10^4$ observation boxes ($\\sim$ number of $\\gamma$-ray bursts during 10 years) to yield a positive detection. Such a detection, based on the Maximum a Posteriori Probability Criterium, is a minimal one, in the sense that no information on the position and time of the events, nor on any parameter of the model, is collected. The advantage is that this detection requires an improvement of the detector sensitivity by a factor of only $\\sim 1.5$ with respect to the initial LIGO/VIRGO interferometers, and that, if positive, it will confirm the $\\gamma$-ray burst model.

S. Bonazzola; E. Gourgoulhon

1998-01-16T23:59:59.000Z

248

DETECTORS FOR RADIATION DOSIMETRY  

E-Print Network (OSTI)

2) W. J. Price, "Nuclear Radiation Detection" (2nd ed. , Newand R. J. Berry, "Manual on Radiation Dosimetry" (New York:4) G. F. Knoll, "Radiation Detection and Measurement" (New

Perez-Mendez, V.

2010-01-01T23:59:59.000Z

249

Strategies For Detecting Hidden Geothermal Systems By Near-Surface...  

Open Energy Info (EERE)

stress resulting from elevated CO2 concentrations, and (5) light detection and ranging (LIDAR) that can measure CO2 concentrations over an integrated path. Technologies currently...

250

Performance Analysis of Potassium Heat Pipes Radiator for HP-STMCs Space Reactor Power System  

SciTech Connect

A detailed design and performance results of C-C finned, and armored potassium heat pipes radiator for a 110 kWe Heat Pipes-Segmented Thermoelectric Module Converters (HP-STMCs) Space Reactor Power system (SRPS) are presented. The radiator consists of two sections; each serves an equal number of STMCs and has 162 longitudinal potassium heat pipes with 0.508 mm thick C-C fins. The width of the C-C fins at the minor diameter of the radiator is almost zero, but increases with distance along the radiator to reach 3.7 cm at the radiator's major diameter. The radiator's heat pipes (OD = 2.42 cm in front and 3.03 cm in rear) have thin titanium (0.0762 mm thick) liners and wicks (0.20 mm thick with an effective pore radius of 12-16 {mu}m) and a 1.016 mm thick C-C wall. The wick is separated from the titanium liner by a 0.4 mm annulus filled with liquid potassium to increase the capillary limit. The outer surfaces of the heat pipes in the front and rear sections of the radiator are protected with a C-C armor that is 2.17 mm and 1.70 mm thick, respectively. The inside surface of the heat pipes in the front radiator is thermally insulated while the C-C finned condensers of the rear heat pipes are exposed, radiating into space through the rear opening of the radiator cavity. The heat pipes in both the front and the rear radiators have a 1.5 m long evaporator section and each dissipates 4.47 kW while operating at 43.6% of the prevailing sonic limit. The front and rear radiator sections are 5.29 m and 2.61 m long with outer surface area and mass of 47.1 m2 and 314.3 kg, and 39.9 m2 and 243.2 kg, respectively. The total radiator is 7.63 m long and has minor and major diameters of 1.48 m and 5.57 m, respectively, and a total surface area of 87 m2; however, the effective radiator area, after accounting for heat rejection through the rear of the radiator cavity, is 98.8 m2. The radiator's total mass including the C-C armor is 557.5 kg and the specific area and specific mass are 6.41 kg/m2 and 5.07 kg/kWe, respectively.

El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM, 87131 (United States); Chemical and Nuclear Engineering Dept., University of New Mexico, Albuquerque, NM, 87131 (United States)

2004-02-04T23:59:59.000Z

251

Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System  

E-Print Network (OSTI)

An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron and gamma radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. The induced activity was determined by analyzing the gamma spectra. Based on the calculated radioactive inventory in the container, the dose levels due to the induced gamma radiation were calculated at several distances from the container and in relevant time windows after the irradiation, in order to evaluate the radiation exposure of the cargo handling staff, air crew and passengers during flight. The possibility of remanent long-lived radioactive inventory after cargo is delivered to the client is also of concern and was evaluated.

B. Bromberger; D. Bar; M. Brandis; V. Dangendorf; M. B. Goldberg; F. Kaufmann; I. Mor; R. Nolte; M. Schmiedel; K. Tittelmeier; D. Vartsky; H. Wershofen

2012-01-04T23:59:59.000Z

252

Time-based intrusion detection in cyber-physical systems  

Science Conference Proceedings (OSTI)

Embedded systems, particularly real-time systems with temporal constraints, are increasingly deployed in every day life. Such systems that interact with the physical world are also referred to as cyber-physical systems (CPS). These systems commonly find ... Keywords: cyber-physical systems, real-time systems, security, timing analysis

Christopher Zimmer; Balasubramanya Bhat; Frank Mueller; Sibin Mohan

2010-04-01T23:59:59.000Z

253

Fault Detection and Diagnosis in Building HVAC Systems  

E-Print Network (OSTI)

in AHU of VAV system”, Energy Conversion & Management, 30.energy efficient building management system”, Energy Conversionenergy efficient building management system”, Energy Conversion

Najafi, Massieh

2010-01-01T23:59:59.000Z

254

Recurrent neuro-fuzzy system for fault detection and isolation in nuclear reactors  

Science Conference Proceedings (OSTI)

This paper presents an application of recurrent neuro-fuzzy systems to fault detection and isolation in nuclear reactors. A general framework is adopted, in which a fuzzification module is linked to an inference module that is actually a neural network ... Keywords: Diagnostic system, Fault detection and isolation, Human-machine integration, Neuro-fuzzy systems, Nuclear power plants, Recurrent neural networks

Alexandre Evsukoff; Sylviane Gentil

2005-01-01T23:59:59.000Z

255

State-based network intrusion detection systems for SCADA protocols: a proof of concept  

Science Conference Proceedings (OSTI)

We present a novel Intrusion Detection System able to detect complex attacks to SCADA systems. By complex attack, we mean a set of commands (carried in Modbus packets) that, while licit when considered in isolation on a single-packet basis, interfere ... Keywords: IDS, SCADA systems, critical infrastructures, security

Andrea Carcano; Igor Nai Fovino; Marcelo Masera; Alberto Trombetta

2009-09-01T23:59:59.000Z

256

A CONTROLLER FOR HVAC SYSTEMS WITH FAULT DETECTION CAPABILITIES BASED ON SIMULATION MODELS  

E-Print Network (OSTI)

1 A CONTROLLER FOR HVAC SYSTEMS WITH FAULT DETECTION CAPABILITIES BASED ON SIMULATION MODELS T. I describes a control scheme with fault detection capabilities suitable for application to HVAC systems as a reference of correct operation. Faults that occur in the HVAC system under control cause the PI

257

Review: The use of computational intelligence in intrusion detection systems: A review  

Science Conference Proceedings (OSTI)

Intrusion detection based upon computational intelligence is currently attracting considerable interest from the research community. Characteristics of computational intelligence (CI) systems, such as adaptation, fault tolerance, high computational speed ... Keywords: Artificial immune systems, Artificial neural networks, Computational intelligence, Evolutionary computation, Fuzzy systems, Intrusion detection, Soft computing, Survey, Swarm intelligence

Shelly Xiaonan Wu; Wolfgang Banzhaf

2010-01-01T23:59:59.000Z

258

DADICC: Intelligent system for anomaly detection in a combined cycle gas turbine plant  

Science Conference Proceedings (OSTI)

DADICC is the abbreviated name for an intelligent system able to detect on-line and diagnose anomalies as soon as possible in the dynamic evolution of the behaviour of a power plant based on a combined cycle gas turbine. In order to reach this objective, ... Keywords: Anomaly detection, Diagnosis, Expert system, Multi-agent system, Neural network, Normal behaviour

Antonio Arranz; Alberto Cruz; Miguel A. Sanz-Bobi; Pablo Ruíz; Josué Coutiño

2008-05-01T23:59:59.000Z

259

Automatic expert system based on images for accuracy crop row detection in maize fields  

Science Conference Proceedings (OSTI)

This paper proposes an automatic expert system for accuracy crop row detection in maize fields based on images acquired from a vision system. Different applications in maize, particularly those based on site specific treatments, require the identification ... Keywords: Crop row detection in maize fields, Expert system, Image segmentation, Image thresholding, Linear regression, Machine vision, Theil-Sen estimator

J. M. Guerrero; M. Guijarro; M. Montalvo; J. Romeo; L. Emmi; A. Ribeiro; G. Pajares

2013-02-01T23:59:59.000Z

260

Opportunities for Decay Counting of Environmental Radioisotopes Using Ultra-low-background Detection Systems  

SciTech Connect

Executive Summary We present results from a scoping study whose intent was to define challenge measurements to be pursued on the Ultra-Sensitive Nuclear Measurements Initiative. Potential challenge measurements using new radiation detection technology in the shallow underground laboratory that would have substantial impact in environmental science were the focus of this study.

Runkle, Robert C.; Aalseth, Craig E.; Bailey, Vanessa L.; Bonicalzi, Ricco; Moran, James J.; Seifert, Allen; Warren, Glen A.

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Determining the Impact of Concrete Roadways on Gamma Ray Background Readings for Radiation Portal Monitoring Systems  

E-Print Network (OSTI)

The dissolution of the Soviet Union coupled with the growing sophistication of international terror organizations has brought about a desire to ensure that a sound infrastructure exists to interdict smuggled nuclear material prior to leaving its country of origin. To combat the threat of nuclear trafficking, radiation portal monitors (RPMs) are deployed around the world to intercept illicit material while in transit by passively detecting gamma and neutron radiation. Portal monitors in some locations have reported abnormally high gamma background count rates. The higher background data has been attributed, in part, to the concrete surrounding the portal monitors. Higher background can ultimately lead to more material passing through the RPMs undetected. This work is focused on understanding the influence of the concrete surrounding the monitors on the total gamma ray background for the system. This research employed a combination of destructive and nondestructive analytical techniques with computer simulations to form a model that may be adapted to any RPM configuration. Six samples were taken from three different composition concrete slabs. The natural radiologcal background of these samples was determined using a high-purity germanium (HPGe) detector in conjunction with the Canberra In-Situ Object Counting System (ISOCS™) and Genie™ 2000 software packages. The composition of each sample was determined using thermal and fast neutron activation analysis (NAA) techniques. The results from these experiments were incorporated into a Monte Carlo N-Particle (MNCP) photon transport simulation to determine the expected gamma ray count rate in the RPM due to the concrete. The results indicate that a quantitative estimate may be possible if the experimental conditions are optimized to eliminate sources of uncertainty. Comparisons of actual and simulated count rate data for 137Cs check sources showed that the model was accurate to within 15%. A comparison of estimated and simulated count rates in one concrete slab showed that the model was accurate to within 4%. Subsequent sensitivity analysis showed that if the elemental concentrations are well known, the carbon and hydrogen content could be easily estimated. Another sensitivity analysis revealed that the small fluctuations in density have a minimal impact on the gamma count rate. The research described by this thesis provides a method by which RPM end users may quantitatively estimate the expected gamma background from concrete foundations beneath the systems. This allows customers to adjust alarm thresholds to compensate for the elevated background due to the concrete, thereby increasing the probability of intercepting illicit radiological and nuclear material.

Ryan, Christopher Michael

2011-05-01T23:59:59.000Z

262

SNM Movement Detection/Radiation Sensors and Advanced Materials Portfolio Review  

Science Conference Proceedings (OSTI)

The project objectives are: (1) determine for the first time the properties limiting the performance of CZT detectors; (2) develop efficient, non-destructive techniques to measure the quality of detector materials; and (3) provide rapid feedback to crystal growers and, in conjunction with suppliers, improve CZT detector performance as measured by device energy resolution, efficiency, stability and cost. The goal is a stable commercial supply of low-cost, high energy resolution (0.5% FWHM at 662 keV) CZT crystals for detecting, characterizing and imaging nuclear and radiological materials in a wide variety of field conditions.

James,R.

2008-06-19T23:59:59.000Z

263

ARRANGEMENT FOR DETECTING RADIATION CONTAMINATION OF THE COOLANT IN AN ATOMIC REACTOR  

SciTech Connect

An arrangement is designed for detecting damage in fuel rod sheaths in gss-cooled reactors. In this arrangement, the ducts are connected in a gas circuit in sets and the sets in turn are connected in groups, and a detector and a supervisory detector are provided for each group. Valve means, automatic switch means, and a timer are provided so thai when an anomaly is found in a set by the detector, the set is connected to the supervisory detector while the other sets continue to be monitored by the first detector. (D.L.C.)

Cochinal, R.; Roguin, A.; Donguy, R.

1963-10-15T23:59:59.000Z

264

Multiple cell radiation detector system, and method, and submersible sonde  

DOE Patents (OSTI)

A multiple cell radiation detector includes a central cell having a first cylindrical wall providing a stopping power less than an upper threshold; an anode wire suspended along a cylindrical axis of the central cell; a second cell having a second cylindrical wall providing a stopping power greater than a lower threshold, the second cylindrical wall being mounted coaxially outside of the first cylindrical wall; a first end cap forming a gas-tight seal at first ends of the first and second cylindrical walls; a second end cap forming a gas-tight seal at second ends of the first and second cylindrical walls; and a first group of anode wires suspended between the first and second cylindrical walls.

Johnson, Larry O. (Island Park, ID); McIsaac, Charles V. (Idaho Falls, ID); Lawrence, Robert S. (Shelley, ID); Grafwallner, Ervin G. (Arco, ID)

2002-01-01T23:59:59.000Z

265

Fault detection of fault ride through for doubly-fed induction generator based wind energy systems.  

E-Print Network (OSTI)

??Fault detection and mitigation is of high importance for existing DFIG based wind energy conversion systems. Keeping the doubly-fed induction generator (DFIG) online during faults… (more)

Ramroop, Shoba AD

2008-01-01T23:59:59.000Z

266

Distributed Intrusion Detection System in A Multi-Layer Network Architecture of Smart Grids.  

E-Print Network (OSTI)

??This thesis proposes a Distributed Intrusion Detection System for Smart Grids by developing and deploying intelligent modules in multiple layers of the smart grid in… (more)

Zhang, Yichi

2011-01-01T23:59:59.000Z

267

Cloud and Radiative Characteristics of Tropical Deep Convective Systems in Extended Cloud Objects from CERES Observations  

Science Conference Proceedings (OSTI)

The physical and radiative properties of tropical deep convective systems for the period from January to August 1998 are examined with the use of Clouds and the Earth’s Radiant Energy System Single-Scanner Footprint (SSF) data from the Tropical ...

Zachary A. Eitzen; Kuan-Man Xu; Takmeng Wong

2009-11-01T23:59:59.000Z

268

Net Solar radiation: passive systems with moveable insulation  

Science Conference Proceedings (OSTI)

Heat loss from uninsulated glazings of passive solar collectors can be checked by use of movable insulation. Five passivehybrid solar energy systems are studied in this paper. The buildings are monitored by the National Solar Data Network (NSDN) whose system is shown schematically. Tests show that no high cost direct gain solar systems were economically viable without movable insulation. Monitored seasonal performance of the five sites showed three good, and two poor performances. Each case is specified in detail.

Howard, B.D.

1982-06-01T23:59:59.000Z

269

Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas  

Open Energy Info (EERE)

Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Monitoring Details Activities (6) Areas (1) Regions (0) Abstract: Hidden geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the

270

Lightning Direction-Finding Systems for Forest Fire Detection  

Science Conference Proceedings (OSTI)

Extensive networks of magnetic direction-finding (DF) stations have been installed throughout the western United States and Alaska to facilitate early detection of lightning-caused fires. Each station contains a new wideband direction-finder that ...

E. P. Krider; R. C. Noggle; A. E. Pifer; D. L. Vance

1980-09-01T23:59:59.000Z

271

Scripting in Radiation Therapy: An Automatic 3D Beam-Naming System  

Science Conference Proceedings (OSTI)

Scripts can be executed within the radiation treatment planning software framework to reduce human error, increase treatment planning efficiency, reduce confusion, and promote consistency within an institution or even among institutions. Scripting is versatile, and one application is an automatic 3D beam-naming system that describes the position of the beam relative to the patient in 3D space. The naming system meets the need for nomenclature that is conducive for clear and accurate communication of beam entry relative to patient anatomy. In radiation oncology in particular, where miscommunication can cause significant harm to patients, a system that minimizes error is essential. Frequent sharing of radiation treatment information occurs not only among members within a department but also between different treatment centers. Descriptions of treatment beams are perhaps the most commonly shared information about a patient's course of treatment in radiation oncology. Automating the naming system by the use of a script reduces the potential for human error, improves efficiency, enforces consistency, and would allow an institution to convert to a new naming system with greater ease. This script has been implemented in the Department of Radiation Oncology at the University of Washington Medical Center since December 2009. It is currently part of the dosimetry protocol and is accessible by medical dosimetrists, radiation oncologists, and medical physicists. This paper highlights the advantages of using an automatic 3D beam-naming script to flawlessly and quickly identify treatment beams with unique names. Scripting in radiation treatment planning software has many uses and great potential for improving clinical care.

Holdsworth, Clay, E-mail: clayhholdsworth@yahoo.com [Department of Radiation Oncology, University of Washington Cancer Center, Seattle, WA (United States); Hummel-Kramer, Sharon M.; Phillips, Mark [Department of Radiation Oncology, University of Washington Cancer Center, Seattle, WA (United States)

2011-10-01T23:59:59.000Z

272

Alert correlation in collaborative intelligent intrusion detection systems-A survey  

Science Conference Proceedings (OSTI)

As complete prevention of computer attacks is not possible, intrusion detection systems (IDSs) play a very important role in minimizing the damage caused by different computer attacks. There are two intrusion detection methods: namely misuse- and anomaly-based. ... Keywords: Alert correlation, Collaborative intrusion detection, Computational intelligence approaches, False positive analysis

Huwaida Tagelsir Elshoush; Izzeldin Mohamed Osman

2011-10-01T23:59:59.000Z

273

Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture  

SciTech Connect

The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

Scott Wilde, Raymond Keegan

2008-07-01T23:59:59.000Z

274

Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System  

E-Print Network (OSTI)

An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron and gamma radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. T...

Bromberger, B; Brandis, M; Dangendorf, V; Goldberg, M B; Kaufmann, F; Mor, I; Nolte, R; Schmiedel, M; Tittelmeier, K; Vartsky, D; Wershofen, H

2012-01-01T23:59:59.000Z

275

Method and device for predicting wavelength dependent radiation influences in thermal systems  

DOE Patents (OSTI)

A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.

Kee, Robert J. (864 Lucille St., Livermore, CA 94550); Ting, Aili (7329 Stonedale Dr., Pleasanton, CA 94558)

1996-01-01T23:59:59.000Z

276

Abstract--Design aspects of a minimally invasive high-throughput automation system for radiation biodosimetry are  

E-Print Network (OSTI)

for radiation exposure. Only those showing both internal and external contamination were examined usingAbstract--Design aspects of a minimally invasive high- throughput automation system for radiation was supported by grant number U19 AI067773, the Center for High-Throughput Minimally Invasive Radiation

277

Isocurvature perturbations in extra radiation  

E-Print Network (OSTI)

Recent cosmological observations, including measurements of the CMB anisotropy and the primordial helium abundance, indicate the existence of an extra radiation component in the Universe beyond the standard three neutrino species. In this paper we explore the possibility that the extra radiation has isocurvatrue fluctuations. A general formalism to evaluate isocurvature perturbations in the extra radiation is provided in the mixed inflaton-curvaton system, where the extra radiation is produced by the decay of both scalar fields. We also derive constraints on the abundance of the extra radiation and the amount of its isocurvature perturbation. Current observational data favors the existence of an extra radiation component, but does not indicate its having isocurvature perturbation. These constraints are applied to some particle physics motivated models. If future observations detect isocurvature perturbations in the extra radiation, it will give us a hint to the origin of the extra radiation.

Kawasaki, Masahiro; Nakayama, Kazunori; Sekiguchi, Toyokazu

2011-01-01T23:59:59.000Z

278

An integrated genetics approach to systemic low-dose radiation responses  

NLE Websites -- All DOE Office Websites (Extended Search)

integrated genetics approach to systemic low-dose radiation responses integrated genetics approach to systemic low-dose radiation responses G. Huang 1 , Y. Huang 1 , D.H. Nguyen 1 , K. Bjornstad 1 , C. Rosen 1 , P. Chang 2 , R. DelRosario 3 , Do Yup Lee 1 , B. Bowen 1 , W. Reindl 1 , J. Mott 1 , A. Balmain 3 , M.H. Barcellos-Hoff 4 , Joe W Gray 1,5 , Mina Bissell 1 , Gary Karpen 1 , T. Northen 1 , E. A. Blakely 1 , J. H. Mao 1 1 Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 2 SRI International, Menlo Park, CA

279

Developing a Methodology for Characterizing the Effects of Building Materials’ Natural Radiation Background on a Radiation Portal Monitoring System  

E-Print Network (OSTI)

Trafficking of radioactive material, particularly special nuclear material (SNM), has long been a worldwide concern. To interdict this material the US government has installed radiation portal monitors (RPMs) around the globe. Building materials surrounding an RPM can greatly effect the detector’s background radiation levels due to Naturally Occurring Radioactive Material (NORM). In some cases this effect is so great that the initial RPM setup had to be rebuilt. This thesis develops a methodology for quick and efficient determination of the specific activity and composition of building materials surrounding a RPM to predict background levels, therefore determining the minimum detectable quantity (MDQ) of material. This methodology builds on previous work by Ryan et al by generating material and source cards for a detailed Monte Carlo N-Particle (MCNP) deck, based on an experimental RPM setup to predict the overall gamma background at a site. Gamma spectra were acquired from samples of building materials and analyzed to determine the specific activity of the samples. A code was developed to estimate the elemental composition of building materials using the gamma transmission of the samples. These results were compared to previous Neutron Activation Analysis (NAA) on the same samples. It was determined that densitometry provided an elemental approximation within 5% of that found through NAA. Using the specific activity and material composition, an MCNP deck was used to predict the gamma background levels in the detectors of a typical RPM. These results were compared against actual measurements at the RPM site, and shown to be within 10% of each other.

Fitzmaurice, Matthew Blake 1988-

2012-12-01T23:59:59.000Z

280

Anomaly detection in extremist web forums using a dynamical systems approach  

Science Conference Proceedings (OSTI)

In this paper, we present preliminary results of analyzing data from the Dark Web collection using a dynamical systems approach for unsupervised anomaly detection. The goal is to provide a robust, focus-of-attention mechanism to identify emerging threats ... Keywords: data mining, dynamical systems, finite-time Lyapunov exponents, unsupervised anomaly detection

Steve Kramer

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy Balancing Intrusion Detection System in Wireless Sensor Network  

Science Conference Proceedings (OSTI)

wireless sensor network (WSN) is vulnerable to a wide range of attacks due to deployment in the hostile ervironment and having limited resources. The security of WSN becomes a very important issue with the rapid development of WSN. Instrusion detection ... Keywords: WSN, Energy-effiency, Clustering, IDS

Chunyan Peng; Bing Liu

2012-10-01T23:59:59.000Z

282

System Assurance: Beyond Detecting Vulnerabilities, 1st edition  

Science Conference Proceedings (OSTI)

In this day of frequent acquisitions and perpetual application integrations, systems are often an amalgamation of multiple programming languages and runtime platforms using new and legacy content. Systems of such mixed origins are increasingly vulnerable ...

Nikolai Mansourov; Djenana Campara

2010-12-01T23:59:59.000Z

283

Reliability testing of active SDHW components. Part III. Development of a fault detection system  

SciTech Connect

This report describes a fault detection system developed for solar domestic hot water systems that will assist the homeowner and repairman in detecting major operational faults with the system. A study by the Florida Solar Energy Center showed that most homeowners were unaware of how well their systems were operating. With this need in mind, we developed a system that will detect and display circulation failures, nighttime circulation, freeze protection failure, and overheating protection failure. Cost of the unit using retail prices for components is less than $55.00 (1985 $), excluding the sensors. Fault detection systems are necessary, since it is difficult for homeowners to know the status of their system. Our device is sufficiently developed for industry to use, although further development of some of the sensors and some cost reduction is necessary.

Farrington, R.B.

1986-01-01T23:59:59.000Z

284

Attacks against process control systems: risk assessment, detection, and response  

Science Conference Proceedings (OSTI)

In the last years there has been an increasing interest in the security of process control and SCADA systems. Furthermore, recent computer attacks such as the Stuxnet worm, have shown there are parties with the motivation and resources to effectively ... Keywords: IDS, SCADA, control systems, critical infrastructure protection, cyber-physical systems, security

Alvaro A. Cárdenas; Saurabh Amin; Zong-Syun Lin; Yu-Lun Huang; Chi-Yen Huang; Shankar Sastry

2011-03-01T23:59:59.000Z

285

Systems and methods for imaging using radiation from laser produced plasmas  

DOE Patents (OSTI)

In particular embodiments, the present disclosure provides systems and methods for imaging a subject using radiation emitted from a laser produced plasma generating by irradiating a target with a laser. In particular examples, the target includes at least one radiation enhancing component, such as a fluor, cap, or wire. In further examples, the target has a metal layer and an internal surface defining an internal apex, the internal apex of less than about 15 .mu.m, such as less than about 1 .mu.m. The targets may take a variety of shapes, including cones, pyramids, and hemispheres. Certain aspects of the present disclosure provide improved imaging of a subject, such as improved medical images of a radiation dose than typical conventional methods and systems.

Renard-Le Galloudec, Nathalie (Reno, NV); Cowan, Thomas E. (Reno, NV); Sentoku, Yasuhiko (Reno, NV); Rassuchine, Jennifer (Reno, NV)

2009-06-30T23:59:59.000Z

286

Degassing a vacuum system with in-situ UV radiation  

SciTech Connect

Photon-stimulated desorption (PSD) from a high-powered ultraviolet source was investigated as a technique to degas a vacuum system. A stainless steel vacuum system was pumped down from atmosphere with different time doses of 185 nm light, and the resulting outgassing rates were compared to that of a control pumpdown without UV assistance. PSD was found to provide a factor of 2 advantage in pumpdown pressure after only 30 min of UV exposure, with no additional advantage observed for longer irradiation times. Specifically, an outgassing rate of 3 Multiplication-Sign 10{sup -10} Torr L s{sup -1} cm{sup -2} was reached 3 h sooner in pumpdowns with UV assistance compared to those without UV, while a rate of 1.2 Multiplication-Sign 10{sup -10} Torr L s{sup -1} cm{sup -2} was reached 16 h sooner in UV runs. The authors calculated that about 22 monolayers of water were desorbed after 30 min of UV exposure. The results indicate that PSD by a 40 W 185 nm UV source can serve as a nonthermal technique to significantly speed the pumpdown of a vacuum system from atmosphere after only 30 min.

Koebley, Sean R.; Outlaw, Ronald A.; Dellwo, Randy R. [College of William and Mary, Department of Applied Science, 325 McGlothlin Street Hall, Williamsburg, Virginia 23187 (United States); RBD Instruments, 2437 Northeast Twin Knolls Drive, Bend, Oregon 97701 (United States)

2012-11-15T23:59:59.000Z

287

Flight Testing of an Advanced Airborne Natural Gas Leak Detection System  

SciTech Connect

ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of between 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.

Dawn Lenz; Raymond T. Lines; Darryl Murdock; Jeffrey Owen; Steven Stearns; Michael Stoogenke

2005-10-01T23:59:59.000Z

288

Circuitry, systems and methods for detecting magnetic fields  

SciTech Connect

Circuitry for detecting magnetic fields includes a first magnetoresistive sensor and a second magnetoresistive sensor configured to form a gradiometer. The circuitry includes a digital signal processor and a first feedback loop coupled between the first magnetoresistive sensor and the digital signal processor. A second feedback loop which is discrete from the first feedback loop is coupled between the second magnetoresistive sensor and the digital signal processor.

Kotter, Dale K. (Shelley, ID); Spencer, David F. (Idaho Falls, ID); Roybal, Lyle G. (Idaho Falls, ID); Rohrbaugh, David T. (Idaho Falls, ID)

2010-09-14T23:59:59.000Z

289

METHOD FOR MEASURING RADIATION  

DOE Patents (OSTI)

A method for measuring an unknown integrated quantity of radiation with a condenser ionization chamber is described. The chamber is initially charged to a predetermined voltage by a voltage source. The chamber is then removed from the source and exposed to an unknown quantity of radiation for a period of time. The quantity of radiation to which the chamber was exposed is then measured by detecting the magnitude of the pulse of current necessary to recharge the chamber of its initial value through a suitable impedance. The current pulse is amplified and measured directly by a suitable pulse height analyzing system. (AEC)

Roesch, W.C.; McCall, R.C.

1961-11-21T23:59:59.000Z

290

Hybrid Radiator-Cooling System (ANL-IN-11-096)  

fully-loaded truck climbing up Baker Grade on the hottest summer day. The coolant system, including radiator, is sized to remove 100% of the required heat from the engine at the design condition without boiling the coolant, which results in a large ...

291

Impact of a New Radiation Package, McRad, in the ECMWF Integrated Forecasting System  

Science Conference Proceedings (OSTI)

A new radiation package, “McRad,” has become operational with cycle 32R2 of the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). McRad includes an improved description of the land surface ...

J-J. Morcrette; H. W. Barker; J. N. S. Cole; M. J. Iacono; R. Pincus

2008-12-01T23:59:59.000Z

292

Strategies To Detect Hidden Geothermal Systems Based On Monitoring...  

Open Energy Info (EERE)

Geothermal Systems Based On Monitoring and Analysis Of CO2 In The Near-Surface Environment Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article:...

293

Fault Detection and Diagnosis in Building HVAC Systems.  

E-Print Network (OSTI)

??Building HVAC systems account for more than 30% of annual energy consumption in United States. However, it has become apparent that only in a small… (more)

Najafi, Massieh

2010-01-01T23:59:59.000Z

294

Systems and methods for detecting a flame in a fuel nozzle of a gas turbine  

SciTech Connect

A system may detect a flame about a fuel nozzle of a gas turbine. The gas turbine may have a compressor and a combustor. The system may include a first pressure sensor, a second pressure sensor, and a transducer. The first pressure sensor may detect a first pressure upstream of the fuel nozzle. The second pressure sensor may detect a second pressure downstream of the fuel nozzle. The transducer may be operable to detect a pressure difference between the first pressure sensor and the second pressure sensor.

Kraemer, Gilbert Otto; Storey, James Michael; Lipinski, John; Mestroni, Julio Enrique; Williamson, David Lee; Marshall, Jason Randolph; Krull, Anthony

2013-05-07T23:59:59.000Z

295

A New Natural Gamma Radiation Measurement System for Marine Sediment and Rock Analysis  

E-Print Network (OSTI)

A new high-efficiency and low-background system for the measurement of natural gamma radioactivity in marine sediment and rock cores retrieved from beneath the seabed was designed, built, and installed on the JOIDES Resolution research vessel. The system includes eight large NaI(Tl) detectors that measure adjacent intervals of the core simultaneously, maximizing counting times and minimizing statistical error for the limited measurement times available during drilling expeditions. Effect to background ratio is maximized with passive lead shielding, including both ordinary and low-activity lead. Large-area plastic scintillator active shielding filters background associated with the high-energy part of cosmic radiation. The new system has at least an order of magnitude higher statistical reliability and significantly enhances data quality compared to other offshore natural gamma radiation (NGR) systems designed to measure geological core samples. Reliable correlations and interpretations of cored intervals are ...

Vasiliev, M A; Chubarian, G; Olsen, R; Bennight, C; Cobine, T; Fackler, D; Hastedt, M; Houpt, D; Mateo, Z; Vasilieva, Y B

2010-01-01T23:59:59.000Z

296

Human detection with a multi-sensors stereovision system  

E-Print Network (OSTI)

is a part of the Integrated Energy Systems - Productivity and Buildings Science program, a Public Interest Energy Research (PIER) program. It is funded by California ratepayers through California's System Benefit collection, the Daylight Code classification, and review of the work. Review and Advisory Committee: Dr. Jed

297

Detection system based on a novel large area hybrid detector  

Science Conference Proceedings (OSTI)

A system level implementation of a large area hybrid detector is presented. The detector used in this system consists of an array of hydrogenated amorphous silicon photodiodes directly connected to a CMOS readout chip, which is vertically integrated ... Keywords: Amorphous silicon, Hybrid detectors, Large area photodetectors

A. Nascetti; P. Valerio; D. Caputo; G. de Cesare

2010-11-01T23:59:59.000Z

298

Optically Detected Magnetic Resonance Studies on ?-conjugated semiconductor systems  

Science Conference Proceedings (OSTI)

Optically Detected Magnetic Resonance (ODMR) techniques were used to investigate the dynamics of excitons and charge carriers in ?-conjugated organic semiconductors. Degradation behavior of the negative spin-1/2 electroluminescence-detected magnetic resonance (ELDMR) was observed in Alq3 devices. The increase in the resonance amplitude implies an increasing bipolaron formation during degradation, which might be the result of growth of charge traps in the device. The same behavior of the negative spin-1/2 ELDMR was observed in 2wt% Rubrene doped Tris(8-hydroxyquinolinato)aluminium (Alq3) devices. However, with increasing injection current, a positive spin-1/2 ELDMR, together with positive spin 1 triplet powder patterns at {delta}m{sub S}={+-}1 and {delta}m{sub S}={+-}2, emerges. Due to the similarities in the frequency dependences of single and double modulated ELDMR and the photoluminescence-detected magnetic resonance (PLDMR) results in poly[2-methoxy-5-(2 -ethyl-hexyloxy)-1,4-phenyl ene vinylene] (MEH-PPV) films, the mechanism for this positive spin-1/2 ELDMR was assigned to enhanced triplet-polaron quenching under resonance conditions. The ELDMR in rubrene doped Alq3 devices provides a path to investigate charge distribution in the device under operational conditions. Combining the results of several devices with different carrier blocking properties and the results from transient EL, it was concluded trions not only exist near buffer layer but also exist in the electron transport layer. This TPQ model can also be used to explain the positive spin-1/2 PLDMR in poly(3-hexylthiophene) (P3HT) films at low temperature and in MEH-PPV films at various temperatures up to room temperature. Through quantitative analysis, TE-polaron quenching (TPQ) model is shown having the ability to explain most behaviors of the positive spin-1/2 resonance. Photocurrent detected magnetic resonance (PCDMR) studies on MEH-PPV devices revealed a novel transient resonance signal. The signal may originate from the higher concentration of deep traps near cathode. A quantitative analysis based on this assumption was carried out and found to be consistent with the experimental results.

Chen, Ying

2011-12-06T23:59:59.000Z

299

Detecting Radiation-Induced Injury Using Rapid 3D Variogram Analysis of CT Images of Rat Lungs  

SciTech Connect

A new heterogeneity analysis approach to discern radiation-induced lung damage was tested on CT images of irradiated rats. The method, combining octree decomposition with variogram analysis, demonstrated a significant correlation with radiation exposure levels, whereas conventional measurements and pulmonary function tests did not. The results suggest the new approach may be highly sensitive for assessing even subtle radiation-induced changes

Jacob, Rick E.; Murphy, Mark K.; Creim, Jeffrey A.; Carson, James P.

2013-10-01T23:59:59.000Z

300

Fault Detection and Diagnosis in Building HVAC Systems  

E-Print Network (OSTI)

techniques for model-based FDD methods applied to vapordetection and diagnosis (FDD) has been an active area for6-17]. In building HVAC systems, FDD has received increasing

Najafi, Massieh

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

HONEY: A Multimodality Fall Detection and Telecare System  

E-Print Network (OSTI)

to provide home-based telecare instead of institutionalized healthcare. Falling is one of the most common. To facilitate a reliable, safe and real-time home-based healthcare environment, we propose the HONEY system

Shi, Weisong

302

Reliability analysis of solar photovoltaic system using hourly mean solar radiation data  

Science Conference Proceedings (OSTI)

This paper presents the hourly mean solar radiation and standard deviation as inputs to simulate the solar radiation over a year. Monte Carlo simulation (MCS) technique is applied and MATLAB program is developed for reliability analysis of small isolated power system using solar photovoltaic (SPV). This paper is distributed in two parts. Firstly various solar radiation prediction methods along with hourly mean solar radiation (HMSR) method are compared. The comparison is carried on the basis of predicted electrical power generation with actual power generated by SPV system. Estimation of solar photovoltaic power using HMSR method is close to the actual power generated by SPV system. The deviation in monsoon months is due to the cloud cover. In later part of the paper various reliability indices are obtained by HMSR method using MCS technique. Load model used is IEEE-RTS. Reliability indices, additional load hours (ALH) and additional power (AP) reduces exponentially with increase in load indicates that a SPV source will offset maximum fuel when all of its generated energy is utilized. Fuel saving calculation is also investigated. Case studies are presented for Sagardeep Island in West Bengal state of India. (author)

Moharil, Ravindra M. [Department of Electrical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, Maharashtra (India); Kulkarni, Prakash S. [Department of Electrical Engineering, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440011, Maharashtra (India)

2010-04-15T23:59:59.000Z

303

Systems and methods of detecting force and stress using tetrapod nanocrystal  

DOE Patents (OSTI)

Systems and methods of detecting force on the nanoscale including methods for detecting force using a tetrapod nanocrystal by exposing the tetrapod nanocrystal to light, which produces a luminescent response by the tetrapod nanocrystal. The method continues with detecting a difference in the luminescent response by the tetrapod nanocrystal relative to a base luminescent response that indicates a force between a first and second medium or stresses or strains experienced within a material. Such systems and methods find use with biological systems to measure forces in biological events or interactions.

Choi, Charina L.; Koski, Kristie J.; Sivasankar, Sanjeevi; Alivisatos, A. Paul

2013-08-20T23:59:59.000Z

304

Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter  

SciTech Connect

Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the difficulty of diagnostics. For most cases, intercepting measurements are no longer acceptable, and nonintercepting method like synchrotron radiation monitor can not be applied to linear accelerators. The development of accelerator technology asks for simutanous diagnostics innovations, to expand the performance of diagnostic tools to meet the requirements of the next generation accelerators. Diffraction radiation and inverse Compton scattering are two of the most promising techniques, their nonintercepting nature avoids perturbance to the beam and damage to the instrumentation. This thesis is divided into two parts, beam size measurement by optical diffraction radiation and Laser system for Compton polarimeter. Diffraction radiation, produced by the interaction between the electric field of charged particles and the target, is related to transition radiation. Even though the theory of diffraction radiation has been discussed since 1960s, there are only a few experimental studies in recent years. The successful beam size measurement by optical diffraction radiation at CEBAF machine is a milestone: First of all, we have successfully demonstrated diffraction radiation as an effective nonintercepting diagnostics; Secondly, the simple linear relationship between the diffraction radiation image size and the actual beam size improves the reliability of ODR measurements; And, we measured the polarized components of diffraction radiation for the first time and I analyzed the contribution from edge radiation to diffraction radiation.

Chuyu Liu

2012-12-31T23:59:59.000Z

305

Collision-induced amplification of radiation in inversionless two-level systems  

SciTech Connect

Amplification of probe radiation by an inversionless two-level system in the 'red' wing of its spectral line is studied theoretically during the resonance absorption of intense cw laser radiation. The effect is caused by the inequality of the spectral densities of the Einstein coefficients for absorption and stimulated emission outside the absorption line under conditions when homogeneous broadening, due to the interaction of particles with the buffer gas, significantly exceeds the natural broadening (at high pressures of the buffer gas). It is found that the larger the inversionless gain, the higher the buffer gas pressure and the pump radiation intensity. It is established that at high enough pump intensity, the probe field is amplified along the entire region of the 'red' wing of the line (at any negative detunings of the probe field frequency). (nonlinear optical phenomena)

Parkhomenko, A I; Shalagin, Anatolii M [Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

2009-12-31T23:59:59.000Z

306

Feasibility of an image planning system for kilovoltage image-guided radiation therapy  

SciTech Connect

Purpose: Image guidance has become a standard of care for many treatment scenarios in radiation therapy. This is most typically accomplished by use of kV x-ray devices mounted onto the linear accelerator (Linac) gantry that yield planar, fluoroscopic, and cone-beam computed tomography (CBCT) images. Image acquisition parameters are chosen via preset techniques that rely on broad categorizations in patient anatomy and imaging goal. However, the optimal imaging technique results in detectability of the features of interest while exposing the patient to minimum dose. Herein, the authors present an investigation into the feasibility of developing an image planning system (IPS) for radiotherapy.Methods: In this first phase, the authors focused on developing an algorithm to predict tissue contrast produced by a common radiotherapy planar imaging chain. Input parameters include a CT dataset and simulated planar imaging technique settings that include kV and mAs. Energy-specific attenuation through each voxel of the CT dataset was calculated in the algorithm to derive a net transmitted intensity. The response of the flat panel detector was integrated into the image simulation algorithm. Verification was conducted by comparing simulated and measured images using four phantoms. Comparisons were made in both high and low contrast settings, as well as changes in the geometric appearance due to image saturation. Results: The authors studied a lung nodule test object to assess the planning system's ability to predict object contrast and detectability. Verification demonstrated that the slope of the pixel intensities is similar, the presence of the nodule is evident, and image saturation at high mAs values is evident in both images. The appearance of the lung nodule is a function of the image detector saturation. The authors assessed the dimensions of the lung nodule in measured and simulated images. Good quantitative agreement affirmed the algorithm's predictive capabilities. The invariance of contrast with kVp and mAs prior to saturation was predicted, as well as the gradual loss of object detectability as saturation was approached. Small changes in soft tissue density were studied using a mammography step wedge phantom. Data were acquired at beam qualities of 80 and 120 kVp and over exposure values ranging from 0.04 to 500 mAs. The data showed good agreement in terms of the absolute value of pixel intensities predicted, as well as small variations across the step wedge pattern. The saturation pixel intensity was consistent between the two beam qualities studied. Boney tissue contrast was assessed using two abdominal phantoms. Measured and calculated values agree in terms of predicting the mAs value at which detector saturation, and subsequent loss of contrast occurs. The lack of variation in contrast over mAs values lower than 10 suggests that there is wide latitude for minimizing patient dose. Conclusions: The authors developed and tested an algorithm that can be used to assist in kV imaging technique selection during localization for radiotherapy. Phantom testing demonstrated the algorithm's predictive accuracy for both low and high contrast imaging scenarios. Detector saturation with subsequent loss of imaging detail, both in terms of object size and contrast were accurately predicted by the algorithm.

Thapa, Bishnu B.; Molloy, Janelle A. [Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky 40536-0293 (United States)

2013-06-15T23:59:59.000Z

307

Automated system for detection of epileptiform patterns in EEG by using a modified RBFN classifier  

Science Conference Proceedings (OSTI)

In this paper, we present a two-stage system based on a modified radial basis function network (RBFN) classifier for an automated detection of epileptiform pattern (EP) in an electroencephalographic signal. In the first stage, a discrete perceptron fed ... Keywords: Automatic spike detection, EEG, Neural networks, Pattern recognition, Radial basis function networks

Nurettin Ac?r

2005-08-01T23:59:59.000Z

308

Image replica detection system utilizing R-trees and linear discriminant analysis  

Science Conference Proceedings (OSTI)

This manuscript introduces a novel system for content-based identification of image replicas. The proposed approach utilizes image resemblance for deciding whether a test image has been replicated from a certain original or not. We formulate replica ... Keywords: Content-based monitoring, Copy image detection, Copyright protection, Fingerprinting, Linear discriminant analysis (LDA), Perceptual hashing, R-tree indexing, Replica detection, Robust hashing

Spiros Nikolopoulos; Stafanos Zafeiriou; Nikos Nikolaidis; Ioannis Pitas

2010-03-01T23:59:59.000Z

309

On a Graphics Hardware-Based Vortex Detection and Visualization System  

Science Conference Proceedings (OSTI)

We present a graphics hardware-based system for interactive denoising, vortex detection, and visualization of vector data. No intermediate results need to be read back by the application once the vector field has been loaded onto the graphics adapter. ... Keywords: Flow visualization, Graphics hardware, Vortex detection

S. Stegmaier; T. Ertl

2005-04-01T23:59:59.000Z

310

RADIATION DETECTION INSTRUMENTS  

E-Print Network (OSTI)

marks of the Federal Government, which retains exclusive rights to control the use thereof. Permission to use the term and symbol (NVLAP logo with approved caption) is granted to NVLAP-accredited laboratories for the limited purpose of announcing their accredited status, and for use on reports that describe only testing and calibration within the scope of accreditation. NVLAP reserves the right to control the quality of the use of the NVLAP term, logo, and symbol. Contents

Betty Ann Sandoval; Charlie Brannon; Leticia Pibida; Gordon Gillerman; Michael Unterweger

2010-01-01T23:59:59.000Z

311

A Hierarchical Rule-Based Fault Detection and Diagnostic Method for HVAC Systems  

E-Print Network (OSTI)

A rule-based, system-level fault detection and diagnostic (FDD) method for HVAC systems was developed. It functions as an interface between multiple, equipment-specific FDD tools and a human operator. The method resolves and prioritizes conflicting fault reports from equipment-specific FDD tools, performs FDD at the system level, and presents an integrated view of an HVAC system’s fault status to an operator. A simulation study to test and evaluate the method was conducted.

Jeffrey Schein; Steven T. Bushby

2005-01-01T23:59:59.000Z

312

Ionizing radiation risks to Satellite Power Systems (SPS) workers in space  

DOE Green Energy (OSTI)

A reference Satellite Power System (SPS) has been designed by NASA and its contractors for the purposes of evaluating the concept and carrying out assessments of the various consequences of development, including those on the health of the space workers. The Department of Energy has responsibility for directing various assessments. Present planning calls for the SPS workers to move from Earth to a low earth orbit (LEO) at an altitude of 500 kilometers; to travel by a transfer ellipse (TE) trajectory to a geosynchronous orbit (GEO) at an altitude of 36,000 kilometers; and to remain in GEO orbit for about 90 percent of the total time aloft. The radiation risks to the health of workers who will construct and maintain solar power satellites in the space environment are studied. The charge to the committee was: (a) to evaluate the radiation environment estimated for the Reference System which could represent a hazard; (b) to assess the possible somatic and genetic radiation hazards; and (c) to estimate the risks to the health of SPS workers due to space radiation exposure, and to make recommendations based on these conclusions. Details are presented. (WHK)

Not Available

1980-12-01T23:59:59.000Z

313

Design and evaluation of the ReKon : an integrated detection and assessment perimeter system.  

Science Conference Proceedings (OSTI)

Kontek Industries (Kannapolis, NC) and their subsidiary, Stonewater Control Systems (Kannapolis, NC), have entered into a cooperative research and development agreement with Sandia to jointly develop and evaluate an integrated perimeter security system solution, one that couples access delay with detection and assessment. This novel perimeter solution was designed to be configurable for use at facilities ranging from high-security military sites to commercial power plants, to petro/chemical facilities of various kinds. A prototype section of the perimeter has been produced and installed at the Sandia Test and Evaluation Center in Albuquerque, NM. This prototype system integrated fiber optic break sensors, active infrared sensors, fence disturbance sensors, video motion detection, and ground sensors. This report documents the design, testing, and performance evaluation of the developed ReKon system. The ability of the system to properly detect pedestrian or vehicle attempts to bypass, breach, or otherwise defeat the system is characterized, as well as the Nuisance Alarm Rate.

Dabling, Jeffrey Glenn; Andersen, Jason Jann; McLaughlin, James O. [Stonewater Control Systems, Inc., Kannapolis, NC

2013-02-01T23:59:59.000Z

314

TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems  

E-Print Network (OSTI)

Light detection systems in Liquid Argon Time Projection Chambers (LArTPCs) require the detection of the 128 nm light produced during argon scintillation. Most detectors use Tetraphenyl Butadiene (TPB) to shift the wavelength of the light into a range visible to Photomultiplier Tubes (PMTs). These proceedings summarize characterizations of light-guides coated with a matrix of TPB in UV transmitting acrylic which are more compact than existing LArTPC light collection systems.

Ignarra, C M

2013-01-01T23:59:59.000Z

315

Toward gravitational wave detection  

E-Print Network (OSTI)

An overview of some tools and techniques being developed for data conditioning (regression of instrumental and environmental artifacts from the data channel), detector design evaluation (modeling the science ``reach'' of alternative detector designs and configurations), noise simulations for mock data challenges and analysis system validation, and analyses for the detection of gravitational radiation from gamma-ray burst sources.

L. S. Finn; G. Gonzalez; J. Hough; M. F. Huq; S. Mohanty; J. Romano; S. Rowan; P. R. Saulson; K. A. Strain

1999-11-02T23:59:59.000Z

316

Statistically qualified neuro-analytic failure detection method and system  

DOE Patents (OSTI)

An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.

Vilim, Richard B. (Aurora, IL); Garcia, Humberto E. (Idaho Falls, ID); Chen, Frederick W. (Naperville, IL)

2002-03-02T23:59:59.000Z

317

Development of a Simple Radioactive marker System to Reduce Positioning Errors in Radiation Treatment  

SciTech Connect

The objective of this research is to implement an inexpensive, quick and simple monitor that provides an accurate indication of proper patient position during the treatment of cancer by external beam X-ray radiation and also checks for any significant changes in patient anatomy. It is believed that this system will significantly reduce the treatment margin, provide an additional, independent quality assurance check of positioning accuracy prior to all treatments and reduce the probability of misadministration of therapeutic dose.

William H. Miller; Dr. Jatinder Palta

2007-03-19T23:59:59.000Z

318

Ultrasonic imaging system for in-process fabric defect detection  

DOE Patents (OSTI)

An ultrasonic method and system are provided for monitoring a fabric to identify a defect. A plurality of ultrasonic transmitters generate ultrasonic waves relative to the fabric. An ultrasonic receiver means responsive to the generated ultrasonic waves from the transmitters receives ultrasonic waves coupled through the fabric and generates a signal. An integrated peak value of the generated signal is applied to a digital signal processor and is digitized. The digitized signal is processed to identify a defect in the fabric. The digitized signal processing includes a median value filtering step to filter out high frequency noise. Then a mean value and standard deviation of the median value filtered signal is calculated. The calculated mean value and standard deviation are compared with predetermined threshold values to identify a defect in the fabric.

Sheen, Shuh-Haw (Naperville, IL); Chien, Hual-Te (Naperville, IL); Lawrence, William P. (Downers Grove, IL); Raptis, Apostolos C. (Downers Grove, IL)

1997-01-01T23:59:59.000Z

319

Design and analysis of a radiatively-cooled, inertially-driven nuclear generator system for space-based applications  

Science Conference Proceedings (OSTI)

The RING (Radiatively-Cooled, Inertially-Driven Nuclear Generator) radiator is proposed as a novel heat rejection system for advanced space reactor power applications in the 1 to 25 MW(t) range. The RING radiator system employs four counter-rotating, hollow, cylindrical, ring-shaped tubes filled with liquid lithium. The rings pass through a cavity heat exchanger, absorb heat, and then re-radiate that absorbed heat to space. Each ring is made of thin-walled, corrugated Nb-1%Zr tubing with external fins, segmented to minimize the consequence of coolant loss. To examine both the system transient and steady-state thermal hydraulic response, a set of detailed, analytical computer codes was developed (RINGSYS-System Thermal Hydraulics and Power Rating/RINGDYN-System Dynamics/RINGRAD-Radiation Damage and Void Gas Formation/RINGDATG-Data Handling). An additional code (TEMPEST) was obtained to examine the impact of augmented, internal ring convective heat transfer on overall system performance. Performance results and a cumulative uncertainty analysis including analytical, computational, property, and environmental condition errors are presented. The optimized radiator configuration at a cavity temperature of 1500 K results in a 3.3 MW(t) heat removal capacity at a minimum radiator weight ratio of 2.1 kg/kW(t); or a radiator weight ratio of 4.0 kg/kW(t) at a maximum achievable capacity of 5.6 MW(t). Despite a higher kg/kW(t) ratio than reported for other comparable temperature radiator designs, the concept is an attractive option for use with high-temperature reactors in high or geosynchronous earth orbit, specifically where the essential design criteria emphasize reliability, safety, and repairability. This dissertation also describes the confirmatory research, especially related to the material and thermal characteristics of key components, necessary to ensure successful RING radiator system deployment.

Apley, W.J.

1989-01-01T23:59:59.000Z

320

Stragegies to Detect Hidden Geothermal Systems Based on Monitoring and Analysis of CO2 in the Near-Surface Environment  

E-Print Network (OSTI)

in volcanic and geothermal areas. Appl. Geochem. , 13, 543–1977. Chemistry and Geothermal Systems. Academic Press, Newfor detecting hidden geothermal systems by near-surface gas

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Stabilizability and Detectability of Singularly Perturbed Linear Time-Invariant Systems with Delays in State and Control  

Science Conference Proceedings (OSTI)

A singularly perturbed linear time-invariant system with delays in state and control variables is considered. Connection between properties of open-loop stabilizability (detectability) of the reduced-order and boundary-layer systems, associated with ... Keywords: System with delays in state and control variables, open-loop stabilizability and detectability, reduced-order and boundary-layer systems, singularly perturbed system

V. Y. Glizer

1999-04-01T23:59:59.000Z

322

Prototype Radiation Detector Positioning System For The Automated Nondestructive Assay Of Uf6 Cylinders  

Science Conference Proceedings (OSTI)

International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility’s entire cylinder inventory. These measurements are time-consuming, expensive, and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of efficiency and assay accuracy. This paper describes an approach denoted the Integrated Cylinder Verification Station (ICVS) that supports 100% cylinder verification, provides volume-averaged cylinder enrichment assay, and reduces inspector manpower needs. To allow field measurements to be collected to validate data collection algorithms, a prototype radiation detector positioning system was constructed. The system was designed to accurately position an array of radiation detectors along the length of a cylinder to measure UF6 enrichment. A number of alternative radiation shields for the detectors were included with the system. A collimated gamma-ray spectrometer module that allows translation of the detectors in the surrounding shielding to adjust the field of view, and a collimating plug in the end to further reduce the low-energy field of view, were also developed. Proof-of-principle measurements of neutron and high-energy gamma-ray signatures, using moderated neutron detectors and large-volume spectrometers in a fixed-geometry, portal-like configuration, supported an early assessment of the viability of the concept. The system has been used successfully on two testing campaigns at an AREVA fuel fabrication plant to scan over 30 product cylinders. This paper will describe the overall design of the detector positioning system and provide an overview of the Integrated Cylinder Verification Station (ICVS) approach.

Hatchell, Brian K.; Valdez, Patrick LJ; Orton, Christopher R.; Mace, Emily K.

2011-08-07T23:59:59.000Z

323

Modular Systems Biology applied to TGFbeta and DNA Damage Response Signaling following Low Dose Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Modular Systems Biology applied to TGFbeta and DNA Damage Response Signaling following Modular Systems Biology applied to TGFbeta and DNA Damage Response Signaling following Low Dose Radiation Francis A. Cucinotta 1 , Yongfeng Li 2 , Minli Wang 2 , Claudio Carra 2 , Janice Pluth 3 , and Peter O'Neill 4 1 NASA Johnson Space Center, Houston, TX 2 U.S.R.A. Division of Life Sciences, Houston TX 3 Lawrence Berkeley National Laboratory, Berkeley CA 4 Oxford University, Oxford UK Abstract: Modular systems biology (MSB) describes the complexity of biological systems using well defined modules that represent distinct biological response pathways or sub-systems within pathways. We review mathematical concepts from control theory that can be used to identify and construct well defined modules for describing complex biological processes. The DNA damage response and TGFbeta/Smad signaling are two important response pathways following

324

Parameter Sweep Experiments on Spontaneous Gravity Wave Radiation from Unsteady Rotational Flow in an f-Plane Shallow Water System  

Science Conference Proceedings (OSTI)

Inertial gravity wave radiation from an unsteady rotational flow (spontaneous radiation) is investigated numerically in an f-plane shallow water system for a wide range of Rossby numbers, 1 ? Ro ? 1000, and Froude numbers, 0.1 ? Fr ? 0.8. A ...

Norihiko Sugimoto; Keiichi Ishioka; Katsuya Ishii

2008-01-01T23:59:59.000Z

325

Improving Cyber-Security of Smart Grid Systems via Anomaly Detection and Linguistic Domain Knowledge  

Science Conference Proceedings (OSTI)

The planned large scale deployment of smart grid network devices will generate a large amount of information exchanged over various types of communication networks. The implementation of these critical systems will require appropriate cyber-security measures. A network anomaly detection solution is considered in this work. In common network architectures multiple communications streams are simultaneously present, making it difficult to build an anomaly detection solution for the entire system. In addition, common anomaly detection algorithms require specification of a sensitivity threshold, which inevitably leads to a tradeoff between false positives and false negatives rates. In order to alleviate these issues, this paper proposes a novel anomaly detection architecture. The designed system applies the previously developed network security cyber-sensor method to individual selected communication streams allowing for learning accurate normal network behavior models. Furthermore, the developed system dynamically adjusts the sensitivity threshold of each anomaly detection algorithm based on domain knowledge about the specific network system. It is proposed to model this domain knowledge using Interval Type-2 Fuzzy Logic rules, which linguistically describe the relationship between various features of the network communication and the possibility of a cyber attack. The proposed method was tested on experimental smart grid system demonstrating enhanced cyber-security.

Ondrej Linda; Todd Vollmer; Milos Manic

2012-08-01T23:59:59.000Z

326

Detecting Triangle Inequality Violations in Internet Coordinate Systems by Supervised Learning  

Science Conference Proceedings (OSTI)

Internet Coordinates Systems (ICS) are used to predict Internet distances with limited measurements. However the precision of an ICS is degraded by the presence of Triangle Inequality Violations (TIVs). Simple methods have been proposed to detect TIVs, ... Keywords: Decision Trees, Internet Coordinate System, Supervised Learning, Triangle Inequality Violation

Yongjun Liao; Mohamed Ali Kaafar; Bamba Gueye; François Cantin; Pierre Geurts; Guy Leduc

2009-05-01T23:59:59.000Z

327

Data flow analysis for anomaly detection and identification toward resiliency in extreme scale systems  

Science Conference Proceedings (OSTI)

The increased complexity and scale of high performance computing and future extreme-scale systems have made resilience a key issue, since it is expected that future systems will have various faults during critical operations. It is also expected that ... Keywords: Anomaly, Data analysis, Fault detection and identification, Resilience

Byoung Uk Kim

2012-07-01T23:59:59.000Z

328

A knowledge-based system approach for sensor fault modeling, detection and mitigation  

Science Conference Proceedings (OSTI)

Sensors are vital components for control and advanced health management techniques. However, sensors continue to be considered the weak link in many engineering applications since often they are less reliable than the system they are observing. This ... Keywords: Detection, Expert system, Neural Network, Sensor failure

Jonny Carlos da Silva; Abhinav Saxena; Edward Balaban; Kai Goebel

2012-09-01T23:59:59.000Z

329

Context and profile based cascade classifier for efficient people detection and safety care system  

Science Conference Proceedings (OSTI)

This study propose a system of extracting and tracking objects for a multimedia system and addresses how to extract the head feature from an object area. It is observed in images taken from real-time records like a video, there is always a variance in ... Keywords: Context-awareness, Feature selection, Human detection, Tracking

Kang-Dae Lee; Mi Young Nam; Kyung-Yong Chung; Young-Ho Lee; Un-Gu Kang

2013-03-01T23:59:59.000Z

330

Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems  

SciTech Connect

Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. (Los Alamos National Lab., NM (United States)); Silverstein, C.C. (CCS Associates, Bethel Park, PA (United States))

1992-01-01T23:59:59.000Z

331

Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems  

SciTech Connect

Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. [Los Alamos National Lab., NM (United States); Silverstein, C.C. [CCS Associates, Bethel Park, PA (United States)

1992-06-01T23:59:59.000Z

332

Development of a scintillation flow-cell detection system for environmental restoration and waste management applications  

Science Conference Proceedings (OSTI)

A flow-cell detection system was developed utilizing a coincidence circuit and tested with BaF{sub 2}, CaF{sub 2}:Eu and scintillating glass. The coincidence detection system reduced the background from {approximately}200 cps to {approximately}0.5 cps. The detection efficiencies for these cells ranged from 0.38 to 0.66 for {sup 45}Ca beta particles (E{sub max} = 0.257 MeV) and from 0.45 to 0.52 for {sup 233}U alpha particles (E{sub {alpha}} = 4.8 MeV). The minimum detectable activity was calculated for a 30 s count time and determined to be in the range of 1-2 Bq.

DeVol, T.A.; Branton, S.D.; Fjeld, R.A.

1996-05-01T23:59:59.000Z

333

Development of an Automated Microfluidic System for DNA Collection, Amplification, and Detection of Pathogens  

Science Conference Proceedings (OSTI)

This project was focused on developing and testing automated routines for a microfluidic Pathogen Detection System. The basic pathogen detection routine has three primary components; cell concentration, DNA amplification, and detection. In cell concentration, magnetic beads are held in a flow cell by an electromagnet. Sample liquid is passed through the flow cell and bacterial cells attach to the beads. These beads are then released into a small volume of fluid and delivered to the peltier device for cell lysis and DNA amplification. The cells are lysed during initial heating in the peltier device, and the released DNA is amplified using polymerase chain reaction (PCR) or strand displacement amplification (SDA). Once amplified, the DNA is then delivered to a laser induced fluorescence detection unit in which the sample is detected. These three components create a flexible platform that can be used for pathogen detection in liquid and sediment samples. Future developments of the system will include on-line DNA detection during DNA amplification and improved capture and release methods for the magnetic beads during cell concentration.

Hagan, Bethany S.; Bruckner-Lea, Cynthia J.

2002-12-01T23:59:59.000Z

334

Idaho National Laboratory Supervisory Control and Data Acquisition Intrusion Detection System (SCADA IDS)  

SciTech Connect

Current Intrusion Detection System (IDS) technology is not suited to be widely deployed inside a Supervisory, Control and Data Acquisition (SCADA) environment. Anomaly- and signature-based IDS technologies have developed methods to cover information technology-based networks activity and protocols effectively. However, these IDS technologies do not include the fine protocol granularity required to ensure network security inside an environment with weak protocols lacking authentication and encryption. By implementing a more specific and more intelligent packet inspection mechanism, tailored traffic flow analysis, and unique packet tampering detection, IDS technology developed specifically for SCADA environments can be deployed with confidence in detecting malicious activity.

Jared Verba; Michael Milvich

2008-05-01T23:59:59.000Z

335

Redshifted emission lines and radiative recombination continuum from the Wolf-Rayet binary theta Muscae: evidence for a triplet system?  

E-Print Network (OSTI)

We present XMM-Newton observations of the WC binary Theta Muscae (WR 48), the second brightest Wolf-Rayet binary in optical wavelengths. The system consists of a short-period (19.1375 days) WC5/WC6 + O6/O7V binary and possibly has an additional O supergiant companion (O9.5/B0Iab) which is optically identified at a separation of ~46 mas. Strong emission lines from highly ionized ions of C, O, Ne, Mg, Si, S, Ar, Ca and Fe are detected. The spectra are fitted by a multi-temperature thin-thermal plasma model with an interstellar absorption N_H = 2--3*10**21 cm**-2. Lack of nitrogen line indicates that the abundance of carbon is at least an order of magnitude larger than that of nitrogen. A Doppler shift of ~630 km/s is detected for the OVIII line, while similar shifts are obtained from the other lines. The reddening strongly suggests that the emission lines originated from the wind-wind shock zone, where the average velocity is ~600 km/s. The red-shift motion is inconsistent with a scenario in which the X-rays originate from the wind-wind collision zone in the short-period binary, and would be evidence supporting the widely separated O supergiant as a companion. This may make up the collision zone be lying behind the short-period binary. In addition to the emission lines, we also detected the RRC (radiative recombination continuum) structure from carbon around 0.49 keV. This implies the existence of additional cooler plasma.

Yasuharu Sugawara; Yohko Tsuboi; Yoshitomo Maeda

2008-10-07T23:59:59.000Z

336

Method and apparatus for detecting timing errors in a system oscillator  

DOE Patents (OSTI)

This invention is comprised of a method of detecting timing errors in a system oscillator for an electronic device, such as a power supply, includes the step of comparing a system oscillator signal with a delayed generated signal and generating a signal representative of the timing error when the system oscillator signal is not identical to the delayed signal. An LED indicates to an operator that a timing error has occurred. A hardware circuit implements the above-identified method.

Gliebe, R.J.; Kramer, W.R.

1991-12-31T23:59:59.000Z

337

Method and apparatus for detecting timing errors in a system oscillator  

DOE Patents (OSTI)

A method of detecting timing errors in a system oscillator for an electronic device, such as a power supply, includes the step of comparing a system oscillator signal with a delayed generated signal and generating a signal representative of the timing error when the system oscillator signal is not identical to the delayed signal. An LED indicates to an operator that a timing error has occurred. A hardware circuit implements the above-identified method.

Gliebe, Ronald J. (Library, PA); Kramer, William R. (Bethel Park, PA)

1993-01-01T23:59:59.000Z

338

Effective Personnel Exposure Control in Shortened Refueling Outages: Final Report: Review of Remote Monitoring Systems in Radiation Protection Applications  

Science Conference Proceedings (OSTI)

Remote monitoring technology (RMT) significantly enhances worker protection and reduces worker radiation exposure, particularly during shortened refueling outages. This report provides a brief description of the hardware and features of remote monitoring systems, then focuses on nuclear plant experiences in applying such systems for enhanced radiation protection. It also discusses EPRI's RMT research program and formation of the RMT Working Group to support research in this area. Such information will gr...

2003-12-02T23:59:59.000Z

339

A Field-Deployable Real-Time Laser-Based Non-Intrusive Detection System for Measurement of True Travel Time on the Highway  

E-Print Network (OSTI)

A Real- Time Laser-Based Detection System for Measurement ofTime Laser- Based Prototype Detection System for MeasurementLaser-Based Non-Intrusive Detection System for Measurement

Cheng, Harry H.; Shaw, Ben; Palen, Joe; Wang, Zhaoqing; Chen, Bo

2002-01-01T23:59:59.000Z

340

Adapting Bro into SCADA: building a specification-based intrusion detection system for the DNP3 protocol  

Science Conference Proceedings (OSTI)

When SCADA systems are exposed to public networks, attackers can more easily penetrate the control systems that operate electrical power grids, water plants, and other critical infrastructures. To detect such attacks, SCADA systems require an intrusion ... Keywords: Bro, DNP3, SCADA, specification-based intrusion detection system

Hui Lin; Adam Slagell; Catello Di Martino; Zbigniew Kalbarczyk; Ravishankar K. Iyer

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Efficient model-based leak detection in boiler steam-water systems Xi Sun, Tongwen Chen *, Horacio J. Marquez  

E-Print Network (OSTI)

Efficient model-based leak detection in boiler steam-water systems Xi Sun, Tongwen Chen *, Horacio detection in boiler steam-water systems. The algorithm has been tested using real industrial data from Syncrude Canada, and has proven to be effective in detection of boiler tube or steam leaks; proper

Marquez, Horacio J.

342

PROJECT SPECIFIC CATEGORICAL EXCLUSION FOR A WAVE GLIDER-BASED PASSIVE ACOUSTIC DETECTION SYSTEM,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SPECIFIC CATEGORICAL EXCLUSION FOR A WAVE SPECIFIC CATEGORICAL EXCLUSION FOR A WAVE GLIDER-BASED PASSIVE ACOUSTIC DETECTION SYSTEM, Attachment PACIFIC NORTHWEST NATIONAL LABORATORY, RICHLAND, WASHINGTON Proposed Action Pacific Northwest National Laboratory (PNNL) proposes to conduct a proof-of-principle study to develop a wave glider-based passive acoustic detection system for monitoring whale populations (e.g., presence, distribution, relative abundance). Long-term goals of the project include better understanding whale populations to facilitate environmentally responsible development of offshore energy and improving the capability to monitor the world's oceans. Location of Action The proposed action would occur at PNNL facilities in Richland, Washington; at the Marine Science Laboratory

343

Radiation Effects of n-type, Low Resistivity, Spiral Silicon Drift Detector Hybrid Systems  

Science Conference Proceedings (OSTI)

We have developed a new thin-window, n-type, low-resistivity, spiral silicon drift detector (SDD) array - to be used as an extraterrestrial X-ray spectrometer (in varying environments) for NASA. To achieve low-energy response, a thin SDD entrance window was produced using a previously developed method. These thin-window devices were also produced on lower resistivity, thinner, n-type, silicon material, effectively ensuring their radiation hardness in anticipation of operation in potentially harsh radiation environments (such as found around the Jupiter system). Using the Indiana University Cyclotron Facility beam line RERS1, we irradiated a set of suitable diodes up to 5 Mrad and the latest iteration of our ASICs up to 12 Mrad. Then we irradiated two hybrid detectors consisting of newly, such-produced in-house (BNL) SDD chips bonded with ASICs with doses of 0.25 Mrad and 1 Mrad. Also we irradiated another hybrid detector consisting of previously produced (by KETEK) on n-type, high-resistivity SDD chip bonded with BNL's ASICs with a dose of 1 Mrad. The measurement results of radiated diodes (up to 5 Mrad), ASICs (up to 12 Mrad) and hybrid detectors (up to 1 Mrad) are presented here.

Chen W.; De Geronimo G.; Carini, G.A.; Gaskin, J.A.; Keister, J.W.; Li, S.; Li, Z.; Ramsey, B.D.; Siddons, D.P.; Smith, G.C.; Verbitskaya, E.

2011-11-15T23:59:59.000Z

344

OiNC: A Comprehensive CAD Import and Tracking System for Monte Carlo Radiation Transport Calculations  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection

Keith Searson; Fabrice Fleurot; Andrew Cooper; Pat Cowan

345

Pathogen Detection Lab-On-A-Chip (PADLOC) System for Plant Pathogen Diagnosis  

E-Print Network (OSTI)

Polymerase Chain Reaction (PCR) detection paves the way to reliable and rapid diagnosis of diseases and has been used extensively since its introduction. Many miniaturized PCR systems were presented by microfluidics and lab-on-a-chip community. However, most of the developed systems did not employ real-time detection and thus required post-PCR processes to obtain results. Among the few real-time PCR systems, almost all of them aimed for medical applications and those for plant pathogen diagnosis systems are almost non-existent in the literature. In this work, we are presenting a portable system that employs microfluidics PCR system with integrated optical systems to accomplish real-time quantitative PCR for plant pathogen diagnosis. The system is comprised of a PCR chip that has a chamber for PCR sample with integrated metal heaters fabricated by standard microfabrication procedures, an optical system that includes lenses, filters, a dichroic mirror and a photomultiplier tube (PMT) to achieve sensitive fluorescence measurement capability and a computer control system for Proportional Integral Derivative (PID) control and data acquisition. The optical detection system employs portable components and has a size of 3.9 x 5.9 x 11.9 cm which makes it possible to be used in field settings. On the device side, two different designs are used. The first design includes a single chamber in a 25.4 x 25.4 mm device and the capacity of the chamber is 9 micro-liters which is sufficient to do gel electrophoresis verification. The second design has three 2.2 micro-liter chambers squeezed in the same size device while having smaller volume to increase high throughput of the system. The operation of the system was demonstrated using Fusarium oxysporum spf. lycopersici which is a fungal plant pathogen that affects crops in the USA. In the presence of the plant pathogen, noticeable increases in the photomultiplier tube output were observed which means successful amplifications and detections occurred. The results were confirmed using gel electrophoresis which is a conventional post-PCR process to determine the existence and length of the amplified DNA. Clear bands located in the expected position were observed following the gel electrophoresis. Overall, we have presented a portable PCR system that has the capability of detecting plant pathogens.

Cifci, Osman

2012-08-01T23:59:59.000Z

346

Detection of a concealed object  

SciTech Connect

Disclosed are systems, methods, devices, and apparatus to determine if a clothed individual is carrying a suspicious, concealed object. This determination includes establishing data corresponding to an image of the individual through interrogation with electromagnetic radiation in the 200 MHz to 1 THz range. In one form, image data corresponding to intensity of reflected radiation and differential depth of the reflecting surface is received and processed to detect the suspicious, concealed object.

Keller, Paul E. (Richland, WA); Hall, Thomas E. (Kennewick, WA); McMakin, Douglas L. (Richland, WA)

2008-04-29T23:59:59.000Z

347

Data systems for science integration within the Atmospheric Radiation Measurement Program  

SciTech Connect

The Atmospheric Radiation Measurement (ARM) Program was developed by the US Department of Energy to support the goals and mission of the US Global Change Research Program. The purpose of the ARM program is to improve the predictive capabilities of General Circulation Models (GCMs) in their treatment of clouds and radiative transfer effects. Three experimental testbeds were designed for the deployment of instruments to collect atmospheric data used to drive the GCMs. Each site, known as a Cloud and Radiation Testbed (CART), consists of a highly available, redundant data system for the collection of data from a variety of instrumentation. The first CART site was deployed in April 1992 in the Southern Great Plains (SGP), Lamont, Oklahoma, with the other two sites to follow in early 1996 in the Tropical Western Pacific (TWP) and in 1997 on the North Slope of Alaska (NSA). Approximately 1.5 GB of data are transferred per day via the Internet from the CART sites, and external data sources to the ARM Experiment Center (EC) at Pacific Northwest Laboratory in Richland, Washington. The Experimental Center is central to the ARM data path and provides for the collection, processing, analysis and delivery of ARM data. Data from the CART sites from a variety of instrumentation, observational systems and from external data sources are transferred to the Experiment Center. The EC processes these data streams on a continuous basis to provide derived data products to the ARM Science Team in near real-time while maintaining a three-month running archive of data.

Gracio, D.K.; Hatfield, L.D.; Yates, K.R.; Voyles, J.W. [Pacific Northwest Lab., Richland, WA (United States); Tichler, J.L. [Brookhaven National Lab., Upton, NY (United States); Cederwall, R.T.; Laufersweiler, M.J.; Leach, M.J. [Lawrence Livermore National Lab., CA (United States); Singley, P. [Oak Ridge National Lab., TN (United States)

1995-12-31T23:59:59.000Z

348

Joint symbol detection and channel parameter estimation in asynchronous DS-CDMA systems  

Science Conference Proceedings (OSTI)

A method for jointly estimating the time delay and complex gain parameters, as well as detecting the transmitted symbols in an asynchronous multipath DS-CDMA system, is presented. A short training sequence is used to obtain a coarse estimate of the channel ...

A. Ranheim; P. Pelin

2000-02-01T23:59:59.000Z

349

Methods, systems and devices for detecting threatening objects and for classifying magnetic data  

Science Conference Proceedings (OSTI)

A method for detecting threatening objects in a security screening system. The method includes a step of classifying unique features of magnetic data as representing a threatening object. Another step includes acquiring magnetic data. Another step includes determining if the acquired magnetic data comprises a unique feature.

Kotter, Dale K. (Shelley, ID); Roybal, Lyle G. (Idaho Falls, ID); Rohrbaugh, David T. (Idaho Falls, ID); Spencer, David F. (Idaho Falls, ID)

2012-01-24T23:59:59.000Z

350

Detecting Free Carriers in Organic Photovoltaic Systems: Time-Resolved Microwave Conductivity  

DOE Green Energy (OSTI)

In here we report on using flash photolysis, time-resolved microwave conductivity (fp-TRMC) as a tool for detecting the fate of mobile charge carriers. This spectroscopy does not require electrodes and can therefore focus attention on the active components of the donor- acceptor system and provide insight into the heart of OPV device functionality.

Rumbles, G.; Kopidakis, N.; Coffey, D.; Ferguson, A.; Dayal, S.; Reid, O.

2011-01-01T23:59:59.000Z

351

Laser system for natural gas detection. Phase I. Laboratory feasibility studies  

SciTech Connect

Laboratory and field tests successfully proved the feasibility of laser remote sensing as a leak-survey tool in gas distribution systems. Using a pair of helium neon lasers to measure methane, the device exhibited at a 43-ft range a methane detection limit of 3 ppm in a gas plume with a 3.3-ft path length.

Grant, W.B.; Hinkley, E.D.

1981-12-01T23:59:59.000Z

352

Neutron interrogation system using high gamma ray signature to detect contraband special nuclear materials in cargo  

DOE Patents (OSTI)

A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.

Slaughter, Dennis R. (Oakland, CA); Pohl, Bertram A. (Berkeley, CA); Dougan, Arden D. (San Ramon, CA); Bernstein, Adam (Palo Alto, CA); Prussin, Stanley G. (Kensington, CA); Norman, Eric B. (Oakland, CA)

2008-04-15T23:59:59.000Z

353

Fast Detection and Mitigation of Cascading Outages in the Power System  

E-Print Network (OSTI)

This dissertation studies the causes and mechanism of power system cascading outages and proposes the improved interactive scheme between system-wide and local levels of monitoring and control to quickly detect, classify and mitigate the cascading outages in power system. A novel method for evaluating the vulnerability of individual components as well as the whole power system, which is named as weighted vulnerability analysis, is developed. Betweenness centrality is used to measure the importance of each bus and transmission line in the modeled power system network, which is in turn used to determine the weights for the weighted vulnerability index. It features fast reaction time and achieves higher accuracy when dealing with the cascading outage detection, classification and mitigation over the traditional methods. The overload problem due to power flow redistribution after one line tripped is a critical factor contributing to the cascading outages. A parallel corridor searching method is proposed to quickly identify the most vulnerable components after tripping a transmission line. The power system topology model can be simplified into state graph after searching the domains for each generator, the commons for each bus, and links between the commons. The parallel corridor will be determined by searching the links and commons in system topology graph for the given state of power system operation. During stressed operating state, either stable or unstable power swing may have impacts on distance relay judgment and lead to relay misoperation, which will result in the power system lines being tripped and as a consequence power system operating state becoming even more stressful. At the local level, an enhanced fault detection tool during power system swing is developed to reduce the chance of relay misoperation. Comprehensive simulation studies have been implemented by using the IEEE 39-bus and 118-bus test systems. The results are promising because: The results from weighted vulnerability analysis could provide better system situational awareness and accurate information about the disturbance; The results form parallel corridor search method could identify the most vulnerable lines after power re-distribution, which will give operator time to take remedial actions; The results from new travelling wave and wavelet transform based fault detection could reduce the impact of relay misoperation.

Pang, Chengzong

2011-12-01T23:59:59.000Z

354

Development of an impedance-based sensor for the detection of catalyst coking in fuel-reforming systems.  

E-Print Network (OSTI)

??A novel sensor for detecting the early stages of catalyst coking in fuel reforming systems has been developed. The sensor was manufactured by inkjet printing… (more)

Wheeler, Jeffrey L.

2013-01-01T23:59:59.000Z

355

Towards an intrusion detection system for battery exhaustion attacks on mobile computing devices  

E-Print Network (OSTI)

Mobile computers are subject to a unique form of denial of service attack known as a battery exhaustion attack, in which an attacker attempts to rapidly drain the battery of the device. In this paper we present our first steps in the design of an intrusion detection system for these attacks, a system that takes into account the performance, energy, and memory constraints of mobile computing devices. This intrusion detection system uses several parameters, such as CPU load and disk accesses, to estimate the power consumption using a linear regression model, allowing us to find the energy used on a per process basis, and thus identifying processes that are potentially battery exhaustion attacks. 1.

Daniel C. Nash; Thomas L. Martin; Dong S. Ha; Michael S. Hsiao

2005-01-01T23:59:59.000Z

356

Addressing the Challenges of Anomaly Detection for Cyber Physical Energy Grid Systems  

Science Conference Proceedings (OSTI)

The consolidation of cyber communications networks and physical control systems within the energy smart grid introduces a number of new risks. Unfortunately, these risks are largely unknown and poorly understood, yet include very high impact losses from attack and component failures. One important aspect of risk management is the detection of anomalies and changes. However, anomaly detection within cyber security remains a difficult, open problem, with special challenges in dealing with false alert rates and heterogeneous data. Furthermore, the integration of cyber and physical dynamics is often intractable. And, because of their broad scope, energy grid cyber-physical systems must be analyzed at multiple scales, from individual components, up to network level dynamics. We describe an improved approach to anomaly detection that combines three important aspects. First, system dynamics are modeled using a reduced order model for greater computational tractability. Second, a probabilistic and principled approach to anomaly detection is adopted that allows for regulation of false alerts and comparison of anomalies across heterogeneous data sources. Third, a hierarchy of aggregations are constructed to support interactive and automated analyses of anomalies at multiple scales.

Ferragut, Erik M [ORNL; Laska, Jason A [ORNL; Melin, Alexander M [ORNL; Czejdo, Bogdan [ORNL

2013-01-01T23:59:59.000Z

357

RadTrac: A System for Detecting, Localizing, and Tracking Radioactive Sources in Real Time  

Science Conference Proceedings (OSTI)

Detectors / Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 1) / Radiation Measurements and Instrumentation

R. Vilim; R. Klann

358

Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. IV. Radiation reaction for binary systems with spin-spin coupling  

E-Print Network (OSTI)

Using post-Newtonian equations of motion for fluid bodies that include radiation-reaction terms at 2.5 and 3.5 post-Newtonian (PN) order O[(v/c)^5] and O[(v/c)^7] beyond Newtonian order), we derive the equations of motion for binary systems with spinning bodies, including spin-spin effects. In particular we determine the effects of radiation-reaction coupled to spin-spin effects on the two-body equations of motion, and on the evolution of the spins. We find that radiation damping causes a 3.5PN order, spin-spin induced precession of the individual spins. This contrasts with the case of spin-orbit coupling, where there is no effect on the spins at 3.5PN order. Employing the equations of motion and of spin precession, we verify that the loss of total energy and total angular momentum induced by spin-spin effects precisely balances the radiative flux of those quantities calculated by Kidder et al.

Han Wang; Clifford M. Will

2007-01-08T23:59:59.000Z

359

Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. III. Radiation reaction for binary systems with spinning bodies  

E-Print Network (OSTI)

Using post-Newtonian equations of motion for fluid bodies that include radiation-reaction terms at 2.5 and 3.5 post-Newtonian (PN) order (O[(v/c)^5] and O[(v/c)^7] beyond Newtonian order), we derive the equations of motion for binary systems with spinning bodies. In particular we determine the effects of radiation-reaction coupled to spin-orbit effects on the two-body equations of motion, and on the evolution of the spins. For a suitable definition of spin, we reproduce the standard equations of motion and spin-precession at the first post-Newtonian order. At 3.5PN order, we determine the spin-orbit induced reaction effects on the orbital motion, but we find that radiation damping has no effect on either the magnitude or the direction of the spins. Using the equations of motion, we find that the loss of total energy and total angular momentum induced by spin-orbit effects precisely balances the radiative flux of those quantities calculated by Kidder et al. The equations of motion may be useful for evolving inspiraling orbits of compact spinning binaries.

Clifford M. Will

2005-02-09T23:59:59.000Z

360

The detection, prevention and mitigation of cascading outages in the power system  

E-Print Network (OSTI)

This dissertation studies the causes and mechanism of power system cascading outages and develops new methods and new tools to help detect, prevent and mitigate the outages. Three effective solutions: a steady state control scheme, a transient stability control scheme, and an interactive system-wide and local scheme have been proposed using those new methods and tools. A steady state control scheme can help detect and prevent the possible cascading outage at its initial slow steady state progress stage. It uses new methods and new tools to solve the line overload, congestion or bus high/low voltage problems. New methods, such as vulnerability index (VI), margin index (MI), network contribution factor (NCF), topology processing and selected minimum load shedding (SMLS), and new tools, such as transmission network control based on a network contribution factor (NCF) method, generator control based on a generator distribution factor (GDF) method, and load control based on a load distribution factor (LDF) method have been proposed and developed. A transient stability control scheme can help prevent and mitigate the possible cascading outage at its transient progress stage if there is enough time to take action. It uses one Lyapunov direct method, potential energy boundary surface (PEBS) method, and sensitivity analysis of transient energy margin for fast stabilizing control. The results are verified by the accurate time-domain transient stability analysis method. The interactive scheme takes advantage of accurate system-wide and local information and analysis results, uses some techniques from both steady state control and transient stability control, works at both the system-wide level and local substation level, monitors the system all the time, and takes actions when needed to help detect, prevent and mitigate the possible cascading outage. Comprehensive simulation studies have been implemented using the IEEE 14- bus, 24-bus, 39-bus and 118-bus systems and promising results show the ability of the proposed solutions to help detect, prevent and mitigate cascading outages.

Song, Hongbiao

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Image Quality and Radiation Dose Assessment of a Digital Mammography System  

Science Conference Proceedings (OSTI)

Image quality and radiation dose of a direct amorphous selenium digital mammography system were considered in terms of contrast to noise ratio (CNR) and average glandular dose (AGD). They were measured for various qualities and breast phantom thicknesses with different types of breast tissue composition to determine optimal radiation quality and dose. Three sets of breast tissue equivalent slabs (30%:70%, 50%:50% and 70%:30% glandular-adipose) with thickness of 2 cm to 7 cm and 0.2 mm aluminum foil were used to provide certain CNR. Two different combinations of anode/ilter material and a wide range of tube voltages were employed for each phantom thickness. Phantom images with grid were acquired using automatic exposure control (AEC) mode for each thickness. Phantom images without grid were also obtained in manual exposure mode by selecting the same anode/filter combination and kVp as the image obtained with grid at the same thickness, but varying mAs of 10 to 200 mAs. Optimization indicated that relatively high energy beam qualities should be used with a greater dose to compensate for lower energy x-rays. The results also indicate that current AEC setting for a fixed detector is not optimal.

Isa, N. M.; Hassan, W. M. S. W. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Abdullah, W. A. K. W. [Department of Radiology, Hospital USM, 16150 Kubang Kerian, Kelantan (Malaysia); Othman, F. [Department of Diagnostic Imaging, Hospital Putrajaya, Pres, 62250 Putrajaya, Walayah Persekutuan (Malaysia); Ramli, A. A. M. [Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia)

2010-07-07T23:59:59.000Z

362

Visualizing microbial pollution in Santa Monica Bay with Geographic Information Systems (GIS) and through field-testing a rapid, robust, field-portable water detection sensing system  

E-Print Network (OSTI)

hic Information Systems (GIS) and Through Field - testing aEngineering, UCLA Introduction: GIS and rapid detection:water quality characterizi ng GIS is a powerful mapping tool

2009-01-01T23:59:59.000Z

363

Mil-hdbk-817, system development radiation hardness assurance. Technical report, 23 September 1988-29 June 1993  

Science Conference Proceedings (OSTI)

The development program for a system with a radiation survivability program is very complex. Careful planning and execution of all phases of the development are necessary from the beginning. When there is a nuclear radiation requirement, Hardness Assurance (HA) must be part of the planning. While this document focuses primarily on activities related to the effects of nuclear radiation on electronic components and materials, a hardness assurance program must include all hostile environments employ balanced hardening concepts at all levels. It is the intent of this document to point out the agencies and aids available to help in constructing the most effective HA program for a given system and its mission. It is intended to provide guidance to both the system development Project Manager at the sponsoring agency and the Project Manager for the prime contractor.

Coppage, F.N.

1996-09-01T23:59:59.000Z

364

Interannual Variability of the Tropical Radiation Balance and the Role of Extended Cloud Systems  

Science Conference Proceedings (OSTI)

The tropical radiation balance is investigated on an interannual time scale using a five-year(1979–83) dataset obtained from the Nimbus-7 Earth Radiation Budget (ERB) experiment. The study emphasizes the separate contributions to interannual ...

Eric A. Smith; Matthew R. Smith

1987-11-01T23:59:59.000Z

365

A Coupled Atmosphere–Ocean Radiative Transfer System Using the Analytic Four-Stream Approximation  

Science Conference Proceedings (OSTI)

A coupled atmosphere–ocean radiative transfer model based on the analytic four-stream approximation has been developed. It is shown that this radiation model is computationally efficient and at the same time can achieve acceptable accuracy for ...

Wei-Liang Lee; K. N. Liou

2007-10-01T23:59:59.000Z

366

3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations  

SciTech Connect

Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

Howard Barker; Jason Cole

2012-05-17T23:59:59.000Z

367

Hot spot detection system for vanes or blades of a combustion turbine  

DOE Patents (OSTI)

This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature.

Twerdochlib, Michael (Oviedo, FL)

1999-01-01T23:59:59.000Z

368

Hot spot detection system for vanes or blades of a combustion turbine  

DOE Patents (OSTI)

This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature. 5 figs.

Twerdochlib, M.

1999-02-02T23:59:59.000Z

369

A Tutorial on Detection and Characterization of Special Behavior in Large Electric Power Systems  

SciTech Connect

The objective of this document is to report results in the detection and characterization of special behavior in large electric power systems. Such behavior is usually dynamic in nature, but not always. This is also true for the underlying sources of special behavior. At the device level, a source of special behavior might be an automatic control system, a dynamic load, or even a manual control system that is operated according to some sharply defined policy. Other possible sources include passive system conditions, such as the state of a switched device or the amount of power carried on some critical line. Detection and characterization are based upon “signature information” that is extracted from the behavior observed. Characterization elements include the signature information itself, the nature of the behavior and its likely causes, and the associated implications for the system or for the public at large. With sufficient data and processing, this characterization may directly identify a particular condition or device at a specific location. Such conclusive results cannot always be done from just one observation, however. Information environments that are very sparse may require multiple observations, comparative model studies, and even direct testing of the system.

Hauer, John F.; DeSteese, John G.

2004-08-20T23:59:59.000Z

370

Gravitational radiation from compact binary systems in the massive Brans-Dicke theory of gravity  

E-Print Network (OSTI)

We derive the equations of motion, the periastron shift, and the gravitational radiation damping for quasicircular compact binaries in a massive variant of the Brans-Dicke theory of gravity. We also study the Shapiro time delay and the Nordtvedt effect in this theory. By comparing with recent observational data, we put bounds on the two parameters of the theory: the Brans-Dicke coupling parameter \\omega_{BD} and the scalar mass m_s. We find that the most stringent bounds come from Cassini measurements of the Shapiro time delay in the Solar System, that yield a lower bound \\omega_{BD}>40000 for scalar masses m_s1000 for m_s1250 for m_sradiation damping in the eccentric white dwarf-neutron star binary PSR J1141-6545, but a quantitative prediction requires the extension of our work to eccentric orbits.

Justin Alsing; Emanuele Berti; Clifford M. Will; Helmut Zaglauer

2011-12-21T23:59:59.000Z

371

System and method for bearing fault detection using stator current noise cancellation  

Science Conference Proceedings (OSTI)

A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

Zhou, Wei (Los Angeles, CA); Lu, Bin (Kenosha, WI); Habetler, Thomas G. (Snellville, GA); Harley, Ronald G. (Lawrenceville, GA); Theisen, Peter J. (West Bend, WI)

2010-08-17T23:59:59.000Z

372

System and method for motor fault detection using stator current noise cancellation  

Science Conference Proceedings (OSTI)

A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

Zhou, Wei (Los Angeles, CA); Lu, Bin (Kenosha, WI); Nowak, Michael P. (Menomonee Falls, WI); Dimino, Steven A. (Wauwatosa, WI)

2010-12-07T23:59:59.000Z

373

Design report on the SSCL prototype 80 K Synchrotron Radiation Liner System  

SciTech Connect

This report documents the effort to develop a viable design for an SSC prototype 80 K Synchrotron Radiation Liner System. This liner is designed to be tested in the Superconducting Super Collider Accelerator Systems String Test (ASST) facility. The liner is one method under consideration to minimize the presence of photodesorbed gases in the particle beam line vacuum environment. Secondly, the liner is aimed at improving the Collider cryogenic thermal efficiency which would allow a potential luminosity upgrade. The SSC Collider is the first proton superconducting accelerator designed to operate at an energy of 20 TeV (each beam) and a beam current of 72 mA. The Collider will produce a synchrotron power of 0.14 W/m and a total of 18 kW into 4.2 K for the two rings. This radiated power may trigger a serious impact of photodesorbed gases on the operational availability of the Collider. The interaction between beam particle and photodesorbed gases may greatly reduce the beam lifetime and the scattered beam power may lead to quenching of the superconducting magnets. Collider availability may be unacceptable if this concern is not properly addressed. The liner is one method under consideration to minimize the presence of photodesorbed gases in the particle beam line vacuum. Secondly, the liner is aimed improving the Collider`s cryogenic thermal efficiency which would allow a potential luminosity upgrade. The ultimate goal is to require no more than one machine warm up per year for vacuum maintenance during operation of the SSC Collider.

Shu, Q.S.; Barts, T.; Chou, W. [and others

1993-09-01T23:59:59.000Z

374

Radiation dosimeter  

DOE Patents (OSTI)

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, Richard J. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

375

Radiation dosimeter  

DOE Patents (OSTI)

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, R.J.

1981-09-01T23:59:59.000Z

376

Method of remote powering and detecting multiple UWB passive tags in an RFID system  

DOE Patents (OSTI)

A new Radio Frequency Identification (RFID), tracking, powering apparatus/system and method using coded Ultra-wideband (UWB) signaling is introduced. The proposed hardware and techniques disclosed herein utilize a plurality of passive UWB transponders in a field of an RFID-radar system. The radar system itself enables multiple passive tags to be remotely powered (activated) at about the same time frame via predetermined frequency UWB pulsed formats. Once such tags are in an activated state, an UWB radar transmits specific "interrogating codes" to put predetermined tags in an awakened status. Such predetermined tags can then communicate by a unique "response code" so as to be detected by an UWB system using radar methods.

Dowla, Farid U. (Castro Valley, CA); Nekoogar, Faranak (San Ramon, CA); Benzel, David M. (Livermore, CA); Dallum, Gregory E. (Livermore, CA); Spiridon, Alex (Palo Alto, CA)

2012-05-29T23:59:59.000Z

377

Feasibility of detecting artificial magnetic anomalies in hydrofractured rock by superconducting gradiometer-SQUID systems  

DOE Green Energy (OSTI)

A study of the signal physics of magnetic anomaly detection by superconducting gradiometer-SQUID systems to determine the feasibility of possible applications to the geothermal energy program is described. The system would make full use of the incredible sensitivity of the superconducting quantum interference device (SQUID) which can be in the range of 10/sup -11/ Oe. In addition to magnetic anomalies in the earth's field produced by spherical distributions of magnetic matter, anomalies that would be artificially produced by flooding magnetic material into cracks produced by hydrofracturing in deep boreholes drilled into dry rock geothermal sources are considered. The study indicates that surface detection by horizontal and vertical gradiometers of crack anomalies will not be feasible if the magnetic material flooding the crack is a paramagnetic solution. However, one can concoct a slurry to carry prepolarized ferromagnetic particles of a size sufficiently large to permit domain formation but small enough to permit rotation and alignment in the earth's field. In this case, the anomaly signal is large enough to permit extraction of anomaly orientation information out of the background of magnetic noise and earth's field gradients. The superconducting gradiometer-SQUID system is shown to be exceptional in its capability of removing undesirable magnetic noise and gradients. The greatest promise was found in systems that would be comprised of a magnetometer or gradiometer that could be lowered into the borehole to positions opposite the formations cracked by hydrofracturing. The use of a paramagnetic material to produce the artificial anomaly will not provide signals of sufficient amplitude to overcome the magnetic noise. However, the slurry containing only one percent by volume of ferromagnetic particles will produce a crack anomaly that is easily detectable by magnetometer or by the superconducting gradiometer-SQUID system.

Overton, W.C. Jr.

1976-12-01T23:59:59.000Z

378

Real-time self-networking radiation detector apparatus  

DOE Patents (OSTI)

The present invention is for a radiation detector apparatus for detecting radiation sources present in cargo shipments. The invention includes the features of integrating a bubble detector sensitive to neutrons and a GPS system into a miniaturized package that can wirelessly signal the presence of radioactive material in shipping containers. The bubble density would be read out if such indicated a harmful source.

Kaplan, Edward (Stony Brook, NY); Lemley, James (Miller Place, NY); Tsang, Thomas Y. (Holbrook, NY); Milian, Laurence W. (East Patchogue, NY)

2007-06-12T23:59:59.000Z

379

Neutronic analysis of the 1D and 1E banks reflux detection system  

Science Conference Proceedings (OSTI)

Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely, the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal {sup 235}U concentration levels to reflux levels remain satisfactory detectable.

Blanchard, A.

1999-12-21T23:59:59.000Z

380

Near-Surface CO2 Monitoring And Analysis To Detect Hidden Geothermal Systems  

DOE Green Energy (OSTI)

''Hidden'' geothermal systems are systems devoid of obvious surface hydrothermal manifestations. Emissions of moderate-to-low solubility gases may be one of the primary near-surface signals from these systems. We investigate the potential for CO2 detection and monitoring below and above ground in the near-surface environment as an approach to exploration targeting hidden geothermal systems. We focus on CO2 because it is the dominant noncondensible gas species in most geothermal systems and has moderate solubility in water. We carried out numerical simulations of a CO2 migration scenario to calculate the magnitude of expected fluxes and concentrations. Our results show that CO2 concentrations can reach high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are predominantly controlled by CO2 uptake by photosynthesis, production by root respiration, microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in the near-surface environment include the infrared gas analyzer, the accumulation chamber method, the eddy covariance method, hyperspectral imaging, and light detection and ranging. To meet the challenge of detecting potentially small-magnitude geothermal CO2 emissions within the natural background variability of CO2, we propose an approach that integrates available detection and monitoring techniques with statistical analysis and modeling strategies. The proposed monitoring plan initially focuses on rapid, economical, reliable measurements of CO2 subsurface concentrations and surface fluxes and statistical analysis of the collected data. Based on this analysis, are as with a high probability of containing geothermal CO2 anomalies can be further sampled and analyzed using more expensive chemical and isotopic methods. Integrated analysis of all measurements will determine definitively if CO2 derived from a deep geothermal source is present, and if so, the spatial extent of the anomaly. The suitability of further geophysical measurements, installation of deep wells, and geochemical analyses of deep fluids can then be determined based on the results of the near surface CO2 monitoring program.

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2005-01-19T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Annual Cycle of Earth Radiation Budget from Clouds and the Earth’s Radiant Energy System (CERES) Data  

Science Conference Proceedings (OSTI)

The seasonal cycle of the Earth radiation budget is investigated by use of data from the Clouds and the Earth’s Radiant Energy System (CERES). Monthly mean maps of reflected solar flux and Earth-emitted flux on a 1° equal-angle grid are used for ...

Pamela E. Mlynczak; G. Louis Smith; David R. Doelling

2011-12-01T23:59:59.000Z

382

Optical methods and systems for detecting a constituent in a gas containing oxygen in harsh environments  

DOE Patents (OSTI)

A method for detecting a gas phase constituent such as carbon monoxide, nitrogen dioxide, hydrogen, or hydrocarbons in a gas comprising oxygen such as air, includes providing a sensing material or film having a metal embedded in a catalytically active matrix such as gold embedded in a yttria stabilized zirconia (YSZ) matrix. The method may include annealing the sensing material at about 900.degree. C., exposing the sensing material and gas to a temperature above 400.degree. C., projecting light onto the sensing material, and detecting a change in the absorption spectrum of the sensing material due to the exposure of the sensing material to the gas in air at the temperature which causes a chemical reaction in the sensing material compared to the absorption spectrum of the sensing material in the absence of the gas. Systems employing such a method are also disclosed.

Carpenter, Michael A. (Scotia, NY); Sirinakis, George (Bronx, NY)

2011-01-04T23:59:59.000Z

383

A Qualitive Modeling Approach for Fault Detection and Diagnosis on HVAC Systems  

E-Print Network (OSTI)

This paper describes the basics and first test results of a model based approach using qualitative modeling to perform Fault Detection and Diagnostics (FDD) on HVAC and R systems. A quantized system describing the qualitative behavior of a dynamical system is established by transforming numerical inputs into qualitative values or states. Then, the qualitative model is used to determine system-states or outputs that may occur in the future. The qualitative model determines the probability that a subsequent condition might occur. The model can then be used for FDD purposes by comparing the expected states of the faultless system with the occurring states of the real process. The paper presents the first results of the model, trained with measurement data of an air handling unit (AHU) heating coil. The authors plan to extend the model to further AHU components and to test them against real data to assess their performance for FDD and their economic viability in terms of engineering efforts and costs by comparing them with a rule-based FDD system. It is then planned to implement and test the models on several large HVAC and R systems operating at two major European airports in the framework of the FP7 European project CASCADE ICT for Energy Efficient Airports.

Muller, T.; Rehault, N.; Rist, T.

2013-01-01T23:59:59.000Z

384

DEVELOPMENT OF DEPOSIT DETECTION SYSTEM IN PIPELINES OF THE STEELWORKS USING CS-137 GAMMA-RAY  

SciTech Connect

The deposit is built up in the pipeline of the steelworks by the chemical reaction among COG (coke oven gas), BFG (blast furnace gas), moisture, and steel in the high temperature environment and obstructs the smooth gas flow. In this study a gamma-ray system is developed to detect the deposit accumulated in pipelines and calculate the accumulation rate with respect to the cross section area of pipes. Cs-137 is used as the gamma-ray source and the system is designed to apply to pipes of various diameters. This system also includes the DB for storage and display of the measurement results so that it can be used for the efficient management of the pipelines.

Song, Won-Joon; Lee, Seung-Hee; Jeong, Hee-Dong [Research Institute of Industrial Science and Technology, 32 Hyoja-Dong, Nam-Ku, Pohang, 790-330 (Korea, Republic of)

2008-02-28T23:59:59.000Z

385

RADIATION DETECTOR  

DOE Patents (OSTI)

A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

Wilson, H.N.; Glass, F.M.

1960-05-10T23:59:59.000Z

386

Enhancing VHTR Passive Safety and Economy with Thermal Radiation Based Direct Reactor Auxiliary Cooling System  

Science Conference Proceedings (OSTI)

One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The decay heat first is transferred to the core barrel by conduction and radiation, and then to the reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface area). When the relative decay heat removal capability decreases, the peak fuel temperature increases, even close to the design limit. Annular core designs with inner graphite reflector can mitigate this effect; therefore can further increase the reactor power. Another way to increase the reactor power is to increase power density. However, the reactor power is also limited by the decay heat removal capability. Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environment side. For the reactor side, cooling pipes will be inserted into holes made in the outer or inner graphite reflector blocks. There will be gaps between these cooling pipes and their corresponding surrounding graphite surfaces. Graphite has an excellent heat conduction property. By taking advantage of this feature, we can have a volume-based method to remove decay heat. The scalability can be achieved, if needed, by employing more rows of cooling pipes to accommodate higher decay heat rates. Since heat can easily conduct through the graphite regions between the holes made for the cooling pipes, those cooling pipes located further away from the active core region can still be very effective in removing decay heat. By removing the limit on the decay heat removal capability due to the limited available surface area as in a RVACS, the reactor power and power density can be significantly increased, without losing the passive heat removal feature. This paper will introduce the concept of using DRACS to enhance VHTR passive safety and economics. Three design options will be discussed, depending on the cooling pipe locations. Analysis results from a lumped volume based model and CFD simulations will be presented.

Haihua Zhao; Hongbin Zhang; Ling Zou; Xiaodong Sun

2012-06-01T23:59:59.000Z

387

Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring  

DOE Green Energy (OSTI)

''Hidden'' geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the subsurface and above ground in the near-surface environment to serve as a tool to discover hidden geothermal systems. We focus the investigation on CO2 due to (1) its abundance in geothermal systems, (2) its moderate solubility in water, and (3) the wide range of technologies available to monitor CO2 in the near-surface environment. However, monitoring in the near-surface environment for CO2 derived from hidden geothermal reservoirs is complicated by the large variation in CO2 fluxes and concentrations arising from natural biological and hydrologic processes. In the near-surface environment, the flow and transport of CO2 at high concentrations will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of CO2 migration show that CO2 concentrations can reach very high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are primarily controlled by CO2 uptake by photosynthesis, production by root respiration, and microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in the near-surface environment include (1) the infrared gas analyzer (IRGA) for measurement of concentrations at point locations, (2) the accumulation chamber (AC) method for measuring soil CO2 fluxes at point locations, (3) the eddy covariance (EC) method for measuring net CO2 flux over a given area, (4) hyperspectral imaging of vegetative stress resulting from elevated CO2 concentrations, and (5) light detection and ranging (LIDAR) that can measure CO2 concentrations over an integrated path. Technologies currently in developmental stages that have the potential to be used for CO2 monitoring include tunable lasers for long distance integrated concentration measurements and micro-electronic mechanical systems (MEMS) that can make widespread point measurements. To address the challenge of detecting potentially small-magnitude geothermal CO2 emissions within the natural background variability of CO2, we propose an approach that integrates available detection and monitoring methodologies with statistical analysis and modeling strategies. Within the area targeted for geothermal exploration, point measurements of soil CO2 fluxes and concentrations using the AC method and a portable IRGA, respectively, and measurements of net surface flux using EC should be made. Also, the natural spatial and temporal variability of surface CO2 fluxes and subsurface CO2 concentrations should be quantified within a background area with similar geologic, climatic, and ecosystem characteristics to the area targeted for geothermal exploration. Statistical analyses of data collected from both areas should be used to guide sampling strategy, discern spatial patterns that may be indicative of geothermal CO2 emissions, and assess the presence (or absence) of geothermal CO2 within the natural background variability with a desired confidence level. Once measured CO2 concentrations and fluxes have been determined to be of anomalous geothermal origin with high confidence, more expensive vertical subsurface gas sampling and chemical and isotopic analyses can be undertaken. Integrated analysis of all measurements will d

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2004-12-15T23:59:59.000Z

388

Integrated optical systems for excitation delivery and broadband detection in micro-fluidic electrochromatography  

SciTech Connect

The authors have designed and assembled two generations of integrated micro-optical systems that deliver pump light and detect broadband laser-induced fluorescence in micro-fluidic chemical separation systems employing electrochromatography. The goal is to maintain the sensitivity attainable with larger, tabletop machines while decreasing package size and increasing throughput (by decreasing the required chemical volume). One type of micro-optical system uses vertical-cavity surface-emitting lasers (VCSELs) as the excitation source. Light from the VCSELs is relayed with four-level surface relief diffractive optical elements (DOEs) and delivered to the chemical volume through substrate-mode propagation. Indirect fluorescence from dye-quenched chemical species is collected and collimated with a high numerical aperture DOE. A filter blocks the excitation wavelength, and the resulting signal is detected as the chemical separation proceeds. Variations of this original design include changing the combination of reflective and transmissive DOEs and optimizing the high numerical aperture DOE with a rotationally symmetric iterative discrete on-axis algorithm. The authors will discuss the results of these implemented optimizations.

KEMME,SHANALYN A.; WARREN,MIAL E.; SWEATT,WILLIAM C.; WENDT,JOEL R.; BAILEY,CHRISTOPHER G.; MATZKE,CAROLYN M.; ALLERMAN,ANDREW A.; ARNOLD,DON W.; CARTER,TONY RAY; ASBILL,RANDOLPH E.; SAMORA,SALLY

2000-03-15T23:59:59.000Z

389

A prototype system for detecting the radio-frequency pulse associated with cosmic ray air showers  

E-Print Network (OSTI)

The development of a system to detect the radio-frequency (RF) pulse associated with extensive air showers of cosmic rays is described. This work was performed at the CASA/MIA array in Utah, with the intention of designing equipment that can be used in conjunction with the Auger Giant Array. A small subset of data (less than 40 out of a total of 600 hours of running time), taken under low-noise conditions, permitted upper limits to be placed on the rate for pulses accompanying showers of energies around $10^{17}$ eV.

Kevin Green; Jonathan L. Rosner; Denis A. Suprun; J. F. Wilkerson

2002-05-03T23:59:59.000Z

390

Radioactive Flow Characterization for Real-Time Detection Systems in UREX+ Nuclear Fuel Reprocessing  

E-Print Network (OSTI)

The reprocessing of used nuclear fuel requires the dissolution and separation of numerous radioisotopes that are present as fission products in the fuel. The leading technology option in the U.S. for reprocessing is a sequence of processing methods known as UREX+ (Uranium Extraction ). However, an industrial scale facility implementing this separation procedure will require the establishment of safeguards and security systems to ensure the protection of the separated materials. A number of technologies have been developed for meeting the measurement demands for such a facility. This project focuses on the design of a gamma detection system for taking measurements of the flow streams of such a reprocessing facility. An experimental apparatus was constructed capable of pumping water spiked with soluble radioisotopes under various flow conditions through a stainless steel coil around a sodium iodide (NaI) detector system. Experiments were conducted to characterize the impact of flow rate, pipe air voids, geometry, and radioactivity dilution level on activity measurements and gamma energy spectra. Two coil geometries were used for these experiments, using 0.5 in stainless steel pipe wound into a coil with a 6 inch diameter; the first coil was 5.5 revolutions tall and the second coil was 9.5 revolutions tall. The isotopes dissolved in the flowing water were produced at the Texas A&M Nuclear Science Center via neutron activation of chromium, gold, cerium, and ytterbium nitrate salts. After activation, the salts were dissolved in distilled water and inserted into the radioactive flow assembly for quantitative measurements. Flow rate variations from 100 to 2000 ml/min were used and activity dilution levels for the experiments conducted were between 0.02 and 1.6 ?Ci/liter. Detection of system transients was observed to improve with decreasing flow rate. The detection limits observed for this system were 0.02 ?Ci/liter over background, 0.5% total activity change in a pre-spiked system, and a dilution change of 2% of the coil volume. MCNP (Monte Carlo N-Particle Transport) models were constructed to simulate the results and were used to extend the results to other geometries and piping materials as well as simulate actual UREX stream material in the system. The stainless steel piping for the flow around the detector was found to attenuate key identifying gamma peaks on the low end of the energy spectrum. For the proposed schedule 40 stainless steel pipe for an actual reprocessing facility, gamma rays below 100 keV in energy would be reduced to less than half their initial intensities. The exact ideal detection set up is largely activity and flow stream dependant. However, the characteristics best suited for flow stream detection are: 1) minimize volume around detector, 2) low flow rate for long count times, and 3) low attenuation piping material such as glass.

Hogelin, Thomas Russell

2010-12-01T23:59:59.000Z

391

System for detecting and limiting electrical ground faults within electrical devices  

DOE Patents (OSTI)

An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

Gaubatz, Donald C. (Cupertino, CA)

1990-01-01T23:59:59.000Z

392

Evaluation of a Thermoplastic Immobilization System for Breast and Chest Wall Radiation Therapy  

SciTech Connect

We report on the impact of a thermoplastic immobilization system on intra- and interfraction motion for patients undergoing breast or chest wall radiation therapy. Patients for this study were treated using helical tomotherapy. All patients were immobilized using a thermoplastic shell extending from the shoulders to the ribcage. Intrafraction motion was assessed by measuring maximum displacement of the skin, heart, and chest wall on a pretreatment 4D computed tomography, while inter-fraction motion was inferred from patient shift data arising from daily image guidance procedures on tomotherapy. Using thermoplastic immobilization, the average maximum motion of the external contour was 1.3 {+-} 1.6 mm, whereas the chest wall was found to be 1.6 {+-} 1.9 mm. The day-to-day setup variation was found to be large, with random errors of 4.0, 12.0, and 4.5 mm in the left-right, superior-inferior, and anterior-posterior directions, respectively, and the standard deviations of the systematic errors were found to be 2.7, 9.8, and 4.1 mm. These errors would be expected to dominate any respiratory motion but can be mitigated by daily online image guidance. Using thermoplastic immobilization can effectively reduce respiratory motion of the chest wall and external contour, but these gains can only be realized if daily image guidance is used.

Strydhorst, Jared H. [Ottawa Hospital Cancer Centre, Ottawa (Canada); Department of Physics, Carleton University, Ottawa (Canada); Caudrelier, Jean-Michel [Ottawa Hospital Cancer Centre, Ottawa (Canada); Department of Radiology, University of Ottawa, Ottawa (Canada); Clark, Brenda G. [Ottawa Hospital Cancer Centre, Ottawa (Canada); Department of Physics, Carleton University, Ottawa (Canada); Department of Radiology, University of Ottawa, Ottawa (Canada); Montgomery, Lynn A.; Fox, Greg [Ottawa Hospital Cancer Centre, Ottawa (Canada); MacPherson, Miller S., E-mail: mmacpherson@cvh.on.c [Ottawa Hospital Cancer Centre, Ottawa (Canada); Department of Radiology, University of Ottawa, Ottawa (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto (Canada)

2011-04-01T23:59:59.000Z

393

Resistively-Detected NMR Studies of Quantum Hall Systems Katsuyoshi Kodera, Hisashi Takado, Akira Endo, Yoshiaki Hashimoto, Shingo  

E-Print Network (OSTI)

Resistively-Detected NMR Studies of Quantum Hall Systems Katsuyoshi Kodera, Hisashi Takado, Akira, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 Abstract. The resistively-detected NMR. The NMR lineshape in this region exhibits a dip-peak structure (dispersive lineshape). The anomalous

Katsumoto, Shingo

394

System and method for radiation dose calculation within sub-volumes of a monte carlo based particle transport grid  

DOE Patents (OSTI)

A system and method is disclosed for radiation dose calculation within sub-volumes of a particle transport grid. In a first step of the method voxel volumes enclosing a first portion of the target mass are received. A second step in the method defines dosel volumes which enclose a second portion of the target mass and overlap the first portion. A third step in the method calculates common volumes between the dosel volumes and the voxel volumes. A fourth step in the method identifies locations in the target mass of energy deposits. And, a fifth step in the method calculates radiation doses received by the target mass within the dosel volumes. A common volume calculation module inputs voxel volumes enclosing a first portion of the target mass, inputs voxel mass densities corresponding to a density of the target mass within each of the voxel volumes, defines dosel volumes which enclose a second portion of the target mass and overlap the first portion, and calculates common volumes between the dosel volumes and the voxel volumes. A dosel mass module, multiplies the common volumes by corresponding voxel mass densities to obtain incremental dosel masses, and adds the incremental dosel masses corresponding to the dosel volumes to obtain dosel masses. A radiation transport module identifies locations in the target mass of energy deposits. And, a dose calculation module, coupled to the common volume calculation module and the radiation transport module, for calculating radiation doses received by the target mass within the dosel volumes.

Bergstrom, Paul M. (Livermore, CA); Daly, Thomas P. (Livermore, CA); Moses, Edward I. (Livermore, CA); Patterson, Jr., Ralph W. (Livermore, CA); Schach von Wittenau, Alexis E. (Livermore, CA); Garrett, Dewey N. (Livermore, CA); House, Ronald K. (Tracy, CA); Hartmann-Siantar, Christine L. (Livermore, CA); Cox, Lawrence J. (Los Alamos, NM); Fujino, Donald H. (San Leandro, CA)

2000-01-01T23:59:59.000Z

395

Towards automatic power line detection for a UAV surveillance system using pulse coupled neural filter and an improved Hough transform  

Science Conference Proceedings (OSTI)

Spatial information captured from optical remote sensors on board unmanned aerial vehicles (UAVs) has great potential in automatic surveillance of electrical infrastructure. For an automatic vision-based power line inspection system, detecting power ... Keywords: Hough transform, Knowledge-based system, Power line inspection system, Pulse coupled neural filter, Unmanned aerial vehicles (UAVs)

Zhengrong Li; Yuee Liu; Rodney Walker; Ross Hayward; Jinglan Zhang

2010-08-01T23:59:59.000Z

396

Detecting and Attributing External Influences on the Climate System: A Review of Recent Advances  

SciTech Connect

We review recent research that assesses evidence for the detection of anthropogenic and natural external influences on the climate. Externally driven climate change has been detected by a number of investigators in independent data covering many parts of the climate system, including surface temperature on global and large regional scales, ocean-heat content, atmospheric circulation, and variables of the free atmosphere, such as atmospheric temperature and tropopause height. The influence of external forcing is also clearly discernible in reconstructions of hemispheric scale temperature of the last millennium. These observed climate changes are very unlikely to be due only to natural internal climate variability, and they are consistent with the responses to anthropogenic and natural external forcing of the climate system that are simulated with climate models. The evidence indicates that natural drivers such as solar variability and volcanic activity are at most partially responsible for the large-scale temperature changes observed over the past century, and that a large fraction of the warming over the last 50 years can be attributed to greenhouse gas increases. Thus the recent research supports and strengthens the IPCC Third Assessment Report conclusion that ''most of the global warming over the past 50 years is likely due to the anthropogenic increase in greenhouse gases''.

Barnett, T; Zwiers, F; Hegerl, G; Allen, M; Crowley, T; Gillett, N; Hasselmann, K; Jones, P; Santer, B; Schnur, R; Stott, P; Taylor, K; Tett, S

2005-01-26T23:59:59.000Z

397

Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers  

DOE Patents (OSTI)

A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions of about 4 or 8.7 microns and directly producing images of the interior of the boiler, or producing feeding signals to a data processing system for information to enable a distributed control system by which the boilers are operated to operate said boilers more efficiently. The data processing system includes an image pre-processing circuit in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. It also includes an image compensation system for array compensation to correct for pixel variation and dead cells, etc., and for correcting geometric distortion. An image segmentation module receives a cleaned image from the image pre-processing circuit for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. It also accomplishes thresholding/clustering on gray scale/texture and makes morphological transforms to smooth regions, and identifies regions by connected components. An image-understanding unit receives a segmented image sent from the image segmentation module and matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system for more efficient operation of the plant pendant tube cleaning and operating systems.

Kychakoff, George (Maple Valley, WA); Afromowitz, Martin A. (Mercer Island, WA); Hogle, Richard E. (Olympia, WA)

2008-10-14T23:59:59.000Z

398

PHOTOMULTIPLIER CHARACTERISTICS CONSIDERATIONS FOR THE DEEP UNDERWATER MUON AND NEUTRINO DETECTION SYSTEM  

E-Print Network (OSTI)

Presented at the Deep Underwater Huon and Neutrino DetectionCONSIDERATIONS FOR THE DEEP UNDERWATER HUON AND NEUTRINOPresented at the Deep Underwater Huon and Neutrino Detection

Leskovar, B.

2010-01-01T23:59:59.000Z

399

Development and Testing of Field-Deployable Real-Time Laser-Based Non-Intrusive Detection System for Measurement of True Travel Time on the Highway  

E-Print Network (OSTI)

Laser-Based Non-Intrusive Detection System for MeasurementLaser-Based Non-Intrusive Detection System for Measurementsystems are entirely dependent on time-of-?ight laser measurements

2001-01-01T23:59:59.000Z

400

Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system  

Science Conference Proceedings (OSTI)

This paper presented an experimental investigation on the estimation of radiative properties and temperature distributions in a 670 t/h coal-fired boiler furnace by a portable imaging processing system. The portable system has been calibrated by a blackbody furnace. Flame temperatures and emissivities were measured by the portable system and equivalent blackbody temperatures were deduced. Comparing the equivalent blackbody temperatures measured by the portable system and the infrared pyrometer, the relative difference is less than 4%. The reconstructed pseudo-instantaneous 2-D temperature distributions in two cross-sections can disclose the combustion status inside the furnace. The measured radiative properties of particles in the furnace proved there is significant scattering in coal-fired boiler furnaces and it can provide useful information for the calculation of radiative heat transfer and numerical simulation of combustion in coal-fired boiler furnaces. The preliminary experimental results show this technology will be helpful for the combustion diagnosis in coal-fired boiler furnaces. (author)

Li, Wenhao; Lou, Chun; Sun, Yipeng; Zhou, Huaichun [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074 Hubei (China)

2011-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Abstract--This paper presents an overview of power system islanding and islanding detection techniques. Islanding detection  

E-Print Network (OSTI)

central generating stations, that is placed close to load being served, usually at customer site profile of the system, etc [1]. In fact, many utilities around the world already have a significant

Mahat, Pukar

402

On adaptive transmission, signal detection and channel estimation for multiple antenna systems  

E-Print Network (OSTI)

This research concerns analysis of system capacity, development of adaptive transmission schemes with known channel state information at the transmitter (CSIT) and design of new signal detection and channel estimation schemes with low complexity in some multiple antenna systems. We first analyze the sum-rate capacity of the downlink of a cellular system with multiple transmit antennas and multiple receive antennas assuming perfect CSIT. We evaluate the ergodic sum-rate capacity and show how the sum-rate capacity increases as the number of users and the number of receive antennas increases. We develop upper and lower bounds on the sum-rate capacity and study various adaptive MIMO schemes to achieve, or approach, the sum-rate capacity. Next, we study the minimum outage probability transmission schemes in a multiple-input-single-output (MISO) flat fading channel assuming partial CSIT. Considering two special cases: the mean feedback and the covariance feedback, we derive the optimum spatial transmission directions and show that the associated optimum power allocation scheme, which minimizes the outage probability, is closely related to the target rate and the accuracy of the CSIT. Since CSIT is obtained at the cost of feedback bandwidth, we also consider optimal allocation of bandwidth between the data channel and the feedback channel in order to maximize the average throughput of the data channel in MISO, flat fading, frequency division duplex (FDD) systems. We show that beamforming based on feedback CSI can achieve an average rate larger than the capacity without CSIT under a wide range of mobility conditions. We next study a SAGE-aided List-BLAST detection scheme for MIMO systems which can achieve performance close to that of the maximum-likelihood detector with low complexity. Finally, we apply the EM and SAGE algorithms in channel estimation for OFDM systems with multiple transmit antennas and compare them with a recently proposed least-squares based estimation algorithm. The EM and SAGE algorithms partition the problem of estimating a multi-input channel into independent channel estimation for each transmit-receive antenna pair, therefore avoiding the matrix inversion encountered in the joint least-squares estimation.

Xie, Yongzhe

2004-08-01T23:59:59.000Z

403

Tracking Accuracy of a Real-Time Fiducial Tracking System for Patient Positioning and Monitoring in Radiation Therapy  

SciTech Connect

Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive tracking system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.

Shchory, Tal [Navotek Medical, Ltd., Yokneam (Israel); Schifter, Dan; Lichtman, Rinat [Tel Aviv Medical Center (Israel); Neustadter, David, E-mail: david.n@navotek.co [Navotek Medical, Ltd., Yokneam (Israel); Corn, Benjamin W. [Tel Aviv Medical Center (Israel)

2010-11-15T23:59:59.000Z

404

Little Goose Dam Full Flow PIT-Tag Detection System Project Summary.  

DOE Green Energy (OSTI)

In 2006, the design phase of this project was kicked off and was for the most part modeled after the Full Flow PIT installation installed at Lower Monumental Dam during winter and spring of 2006 and 2007. As the Goose Full Flow design progressed and the project started to move towards construction, issues within contracting occurred and the project was put on delay for 1 year. Starting in mid December of 2008, Harcon Inc. was awarded the contract and construction of the new Goose Full Flow PIT-tag detection system began. The purpose of this document is to summarize the installation of the Little Goose Full Flow project from start to finish and to highlight the notable successes and challenges that the installation presented along with the final results and current status.

Warf, Don; Livingston, Scott [Pacific States Marine Fisheries Commission

2009-04-16T23:59:59.000Z

405

BASIC METHODS FOR AUTOMATED FAULT DETECTION AND ENERGY DATA VALIDATION IN EXISTING DISTRICT HEATING SYSTEMS  

E-Print Network (OSTI)

behaviour over time, as expected for any kind of instrumentation. For example, incorrect information can be generated if there is a bias change or high level of noise in the signal from a sensor, or if there is a malfunctioning flow meter or temperature sensor. Defect or incorrectly dimensioned valves can degrade the energy efficiency of the system and also need to be detected through the effects on the measurements. Fault detection and diagnostics (FDD) of district heating substations (DHS) are important activities because malfunctioning components can lead to incorrect billing and waste of energy. Although FDD has been an activate research area for nearly two decades, only a few simple tools are commonly deployed in the district energy industry. Some of the methods proposed in the literature are promising, but their complexity may prevent broader application. Other methods require sensor data that are not commonly available, or cannot be expected to function well in practice due to oversimplification. Here we present two basic methods for improved FDD and data validation that are compatible with the data acquisition systems that are commonly used today. We propose that correlation analysis can be used to identify substations with similar supply temperatures and that the corresponding temperature difference is a useful quantity for FDD. The second method is a limitchecking approach for the validation of thermal power usage, which is sensitive to faults affecting both the primary flow and temperature sensors in a DHS. These methods are suitable for automated FDD and are demonstrated with hourly data provided by a Swedish district energy company.

Fredrik S; Jonas Gustafsson; Robert Eklund; Jerker Delsing

2012-01-01T23:59:59.000Z

406

SYSTEM FOR DETECTION AND CONTROL OF DEPOSITION IN KRAFT CHEMICAL RECOVERY BOILERS AND MONITORING GLASS FURNACES  

SciTech Connect

Combustion Specialists, Inc. has just completed a project designed to develop the capability to monitor and control the formation of deposits on the outside of boiler tubes inside an operating kraft recovery furnace. This project, which was carried out in the period from April 1, 2001 to January 31, 2003, was funded by the Department of Energy's Inventions and Innovations program. The primary objectives of the project included the development and demonstration of the ability to produce clear images of deposits throughout the convective sections of operating recovery boilers using newly developed infrared imaging technology, to demonstrate the automated detection and quantification of these deposits using custom designed image processing software developed as part of the project, and to demonstrate the feasibility of all technical elements required for a commercial ''smart'' sootblowing control system based on direct feedback from automated imaging of deposits in real-time. All of the individual tasks have been completed and all objectives have been substantially achieved. Imaging of deposits throughout the convective sections of several recovery boilers has been demonstrated, a design for a combined sootblower/deposit inspection probe has been developed and a detailed heat transfer analysis carried out to demonstrate the feasibility of this design, an improved infrared imager which can be sufficiently miniaturized for this application has been identified, automated deposit detection software has been developed and demonstrated, a detailed design for all the necessary communications and control interfaces has been developed, and a test has been carried out in a glass furnace to demonstrate the applicability of the infrared imaging sensor in that environment. The project was completed on time and within the initial budget. A commercial partner has been identified and further federal funding will be sought to support a project to develop a commercial prototype sootblowing control system employing automated deposit imaging.

Dr. Peter Ariessohn

2003-04-15T23:59:59.000Z

407

Broken Bar Detection in Synchronous Machines Based Wind Energy Conversion System  

E-Print Network (OSTI)

Electrical machines are subject to different types of failures. Early detection of the incipient faults and fast maintenance may prevent costly consequences. Fault diagnosis of wind turbine is especially important because they are situated at extremely high towers and therefore inaccessible. For offshore plants, bad weather can prevent any repair actions for several weeks. In some of the new wind turbines synchronous generators are used and directly connected to the grid without the need of power converters. Despite intensive research efforts directed at rotor fault diagnosis in induction machines, the research work pertinent to damper winding failure of synchronous machines is very limited. This dissertation is concerned with the in-depth study of damper winding failure and its traceable symptoms in different machine signals and parameters. First, a model of a synchronous machine with damper winding based on the winding function approach is presented. Next, simulation and experimental results are presented and discussed. A specially designed inside-out synchronous machine with a damper winding is employed for the experimental setup. Finally, a novel analytical method is developed to predict the behavior of the left sideband amplitude for different numbers and locations of the broken bars. This analysis is based on the magnetic field theory and the unbalanced multiphase circuits. It is found that due to the asymmetrical structure of damper winding, the left sideband component in the stator current spectrum of the synchronous machine during steady state asynchronous operation is not similar to that of the induction machine with broken bars. As a result, the motor current signature analysis (MCSA) for detection rotor failures in the induction machine is usable to detect broken damper bars in synchronous machines. However, a novel intelligent-systems based approach is developed that can identify the severity of the damper winding failure. This approach potentially can be used in a non-invasive condition monitoring system to monitor the deterioration of a synchronous motor damper winding as the number of broken bars increase over time. Some other informative features such as speed spectrum, transient time, torque-speed curve and rotor slip are also found for damper winding diagnosis.

Rahimian, Mina Mashhadi

2011-08-01T23:59:59.000Z

408

Fissile and Non-Fissile Material Detection Using Nuclear Acoustic Resonance Signatures  

Science Conference Proceedings (OSTI)

The objective of this project is to develop anovel technique for remote, non-destructive, non-radiation-based detection of materials of interest to Nonproliferation Programs. We propse the development of a detection system based on magnetic resonance principles (NAR), which would work where radiation detection is not possible. The approach would be non-intrusive, penetrating, applicable to many materials of interest for Nonproliferation, and be able to identify the nuclear samples under investigation.

Bernhard R. Tittmann; P.M. Lenahan; David Spears; Rhys Williams

2008-11-25T23:59:59.000Z

409

Detecting and Attributing External Influences on the Climate System: A Review of Recent Advances  

Science Conference Proceedings (OSTI)

This paper reviews recent research that assesses evidence for the detection of anthropogenic and natural external influences on the climate. Externally driven climate change has been detected by a number of investigators in independent data ...

2005-05-01T23:59:59.000Z

410

Measuring Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement Activity SI Units and Prefixes Conversions Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration...

411

Radiation Hydrodynamics  

DOE Green Energy (OSTI)

The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to distinguish hydrogen atoms from helium atoms, for instance. There are all just components of a mixed fluid in this case. So why do we have a special subject called ''radiation hydrodynamics'', when photons are just one of the many kinds of particles that comprise our fluid? The reason is that photons couple rather weakly to the atoms, ions and electrons, much more weakly than those particles couple with each other. Nor is the matter-radiation coupling negligible in many problems, since the star or nebula may be millions of mean free paths in extent. Radiation hydrodynamics exists as a discipline to treat those problems for which the energy and momentum coupling terms between matter and radiation are important, and for which, since the photon mean free path is neither extremely large nor extremely small compared with the size of the system, the radiation field is not very easy to calculate. In the theoretical development of this subject, many of the relations are presented in a form that is described as approximate, and perhaps accurate only to order of {nu}/c. This makes the discussion cumbersome. Why are we required to do this? It is because we are using Newtonian mechanics to treat our fluid, yet its photon component is intrinsically relativistic; the particles travel at the speed of light. There is a perfectly consistent relativistic kinetic theory, and a corresponding relativistic theory of fluid mechanics, which is perfectly suited to describing the photon gas. But it is cumbersome to use this for the fluid in general, and we prefer to avoid it for cases in which the flow velocity satisfies {nu} << c. The price we pay is to spend extra effort making sure that the source-sink terms relating to our relativistic gas component are included in the equations of motion in a form that preserves overall conservation of energy and momentum, something that would be automatic if the relativistic equations were used throughout.

Castor, J I

2003-10-16T23:59:59.000Z

412

SNARE: a link analytic system for graph labeling and risk detection  

Science Conference Proceedings (OSTI)

Classifying nodes in networks is a task with a wide range of applications. It can be particularly useful in anomaly and fraud detection. Many resources are invested in the task of fraud detection due to the high cost of fraud, and being able to automatically ... Keywords: anomaly detection, belief propagation, social networks

Mary McGlohon; Stephen Bay; Markus G. Anderle; David M. Steier; Christos Faloutsos

2009-06-01T23:59:59.000Z

413

Design and Construction of a First Prototype Muon Tomography System with GEM Detectors for the Detection of Nuclear Contraband  

E-Print Network (OSTI)

Current radiation portal monitors at sea ports and international borders that employ standard radiation detection techniques are not very sensitive to nuclear contraband that is well shielded to absorb emanating radiation. Muon Tomography (MT) based on the measurement of multiple scattering of atmospheric cosmic ray muons traversing cargo or vehicles that contain high-Z material is a promising passive interrogation technique for solving this problem. We report on the design and construction of compact Micro-Pattern Gas Detectors for a small prototype MT station. This station will employ 10 tracking stations based on 30cm x 30cm low-mass triple-GEM detectors with 2D readout. Due to the excellent spatial resolution of GEMs it is sufficient to use a gap of only a few cm between tracking stations. Together with the compact size of the GEM detectors this allows the GEM MT station to be an order of magnitude more compact than MT stations using traditional drift tubes. We present details of the production and assemb...

Hohlmann, M; Grasso, L; Locke, J B; Quintero, A; Mitra, D

2009-01-01T23:59:59.000Z

414

New Hardware and Software Design of a Field-Deployable Real-Time Laser-Based Non-Intrusive Detection System for Measurement of True Travel Time on the Highway  

E-Print Network (OSTI)

Time Laser-Based Prototype Detection System for MeasurementLaser-Based Non-Intrusive Detection System for MeasurementLaser-Based Non-Intrusive Detection System for Measurement

2001-01-01T23:59:59.000Z

415

EA-507; Environmental Assessment and FONSI For The FAA Explosive Detection System Independent Validation And Verification Program INEL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

07; Environmental Assessment and FONSI For The FAA Explosive 07; Environmental Assessment and FONSI For The FAA Explosive Detection System Independent Validation And Verification Program INEL Table of Contents 1. NEED FOR PROPOSED ACTION 2. DESCRIPTION OF THE PROPOSED ACTION 3. ALTERNATIVES TO PROPOSED ACTION 4. ENVIRONMENTAL IMPACTS OF PROPOSED ACTION 5. CONCLUSIONS/SUMMARY 6. LIST OF PREPARERS 7. REFERENCES APPENDIX I Map of WRRTF APPENDIX II Accident Safety Analysis FINDING OF NO SIGNIFICANT IMPACT FEDERAL AVIATION ADMINISTRATION EXPLOSIVE DETECTION SYSTEM - INDEPENDENT VALIDATION AND VERIFICATION PROGRAM LIST OF FIGURES Page XXX WATER REACTOR RESEARCH TEST FACT 1. NEED FOR PROPOSED ACTION The urgent development, fabrication, and operation of advanced explosive detection systems are needed by the Federal Aviation Agency (FAA) to

416

A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation  

Science Conference Proceedings (OSTI)

In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.

Zhang Yumin; Lum, Kai-Yew [Temasek Laboratories, National University of Singapore, Singapore 117508 (Singapore); Wang Qingguo [Depa. Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

2009-03-05T23:59:59.000Z

417

High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device  

DOE Patents (OSTI)

An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD.

Atac, Muzaffer (Wheaton, IL); McKay, Timothy A. (Ann Arbor, MI)

1998-01-01T23:59:59.000Z

418

Bridgman Growth of Large SrI2:Eu2+ Single Crystals: A High-performance Scintillator for Radiation Detection Applications  

SciTech Connect

Single-crystal strontium iodide (SrI2) doped with relatively high levels (e.g., 3 - 6 %) of Eu2+ exhibits characteristics that make this material superior, in a number of respects, to other scintillators that are currently used for radiation detection. Specifically, SrI2:Eu2+ has a light yield that is significantly higher than LaBr3:Ce3+ -a currently employed commercial high-performance scintillator. Additionally, SrI2:Eu2+ is characterized by an energy resolution as high as 2.6% at the 137Cs gamma-ray energy of 662 keV, and there is no radioactive component in SrI2:Eu2+ - unlike LaBr3:Ce3+ that contains 138La. The Ce3+-doped LaBr3 decay time is, however, faster (30 nsec) than the 1.2 sec decay time of SrI2:Eu2+. Due to the relatively low melting point of strontium iodide (~515 oC), crystal growth can be carried out in quartz crucibles by the vertical Bridgman technique. Materials-processing and crystal-growth techniques that are specific to the Bridgman growth of europium-doped strontium iodide scintillators are described here. These techniques include the use of a porous quartz frit to physically filter the molten salt from a quartz antechamber into the Bridgman growth crucible and the use of a bent or bulb grain selector design to suppress multiple grain growth. Single crystals of SrI2:Eu2+ scintillators with good optical quality and scintillation characteristics have been grown in sizes up to 5.0 cm in diameter by applying these techniques. Other aspects of the SrI2:Eu2+ crystal-growth methods and of the still unresolved crystal-growth issues are described here.

Boatner, Lynn A [ORNL; Ramey, Joanne Oxendine [ORNL; Kolopus, James A [ORNL; Hawrami, Rastgo [Radiation Monitoring Devices, Watertown, MA; Higgins, William [Radiation Monitoring Devices, Watertown, MA; Van Loef, Edgar [Radiation Monitoring Devices, Watertown, MA; Glodo, J. [Radiation Monitoring Devices, Watertown, MA; Shah, Kanai [Radiation Monitoring Devices, Watertown, MA; Bhattacharya, P. [Fisk University, Nashville, TN; Tupitsyn, E [Fisk University, Nashville, TN; Groza, Michael [Fisk University, Nashville, TN; Burger, Arnold [Fisk University, Nashville, TN

2013-01-01T23:59:59.000Z

419

System and method for constructing filters for detecting signals whose frequency content varies with time  

DOE Patents (OSTI)

A system and method are disclosed for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos(2{pi}{phi}(t)) and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {phi}{prime}(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series. The joint time-frequency transformation represents the analyzed signal energy at time t and frequency f, P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function {phi}{prime}(t) which best fits the multivalued function f(t). Integrating {phi}{prime}(t) along t yields {phi}{prime}(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template. 7 figs.

Qian, S.; Dunham, M.E.

1996-11-12T23:59:59.000Z

420

System and method for constructing filters for detecting signals whose frequency content varies with time  

DOE Patents (OSTI)

A system and method for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos{2.pi..phi.(t)} and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {.phi.'(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series (also known as the Gabor spectrogram). The joint time-frequency transformation represents the analyzed signal energy at time t and frequency .function., P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function .phi.'(t) which best fits the multivalued function f(t), a trajectory of the joint time-frequency domain representation of x(t). Integrating .phi.'(t) along t yields .phi.(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template.

Qian, Shie (Austin, TX); Dunham, Mark E. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiation detection system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Coherent Radiation in an Undulator  

E-Print Network (OSTI)

solving the particle-radiation system in a self-consistentto clarify the coherent radiation mechanism. References 1.the Proceedings Coherent Radiation in an Undulator Y,H. Chin

Chin, Y.H.

2011-01-01T23:59:59.000Z

422

BSA 10-21: A Better Radiation Detector - Brookhaven National ...  

Medical, imaging, nuclear nonproliferation, non-destructive detection, radiation imaging, and homeland security applications. Journal Publication.

423

A Radiation tolerant acquisition system and signal processing for LVDT sensors.  

E-Print Network (OSTI)

This thesis work aims at designing a new electronic board which wants to be a generic acquisition card with numerical processor capabilities for reading LVDT or other position sensors. The board is based on commercial parts and is designed to be radiation tolerant . That means that the electronics works properly up a given limit of radiation levels. A flash based FPGA, known to be latch-up free, is selected to perform the Sine Fit algorithm in fixed point precision to retrieve the sensor position. The Sine Fit algorithm is deeply analyzed and 3 different implementations in fixed point representation are investigated in order to achieve a numerical precision that can assure the target requirements. The third algorithm makes use of the CORDIC functions. The tests are done on a proof demonstrator board with ADC and FPGA.

Danzeca, Salvatore

424

Apparatus for detecting a magnetic anomaly contiguous to remote location by squid gradiometer and magnetometer systems  

DOE Patents (OSTI)

A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.

Overton, Jr., William C. (Los Alamos, NM); Steyert, Jr., William A. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

425

RELIABILITY CONSIDERATIONS OF ELECTRONICS COMPONENTS FOR THE DEEP UNDERWATER MUON AND NEUTRINO DETECTION SYSTEM  

E-Print Network (OSTI)

Considerations for the Dtep Underwater Muon and NeutrinoPresented at the Deep Underwater Huon and Neutrino DetectionCOMPONENTS FOR THE DEEP UNDERWATER MUON AND NEUTRINO

Leskovar, B.

2010-01-01T23:59:59.000Z

426

Nuclear materials control technology in the post-cold war world: Radiation-based methods and information management systems  

SciTech Connect

The end of the cold war is providing both opportunities and requirements for improving the control of nuclear materials around the world. The dismantlement of nuclear weapons and the growth of nuclear power, including the use of plutonium in light water reactors and breeder reactor programs, coupled with enhanced proliferation concerns, drive the need for improved nuclear materials control. We describe nuclear materials control and the role of technology in making controls more effective and efficient. The current use and anticipated development in selected radiation-based methods and related information management systems am described briefly.

Tape, J.W.; Eccleston, G.W.; Ensslin, N.; Markin, J.T.

1993-06-01T23:59:59.000Z

427

Evaluation of Location Tracking Systems for Remote Monitoring of Radiation Protection Applications  

Science Conference Proceedings (OSTI)

This report describes the commercially available location and tracking systems that are applicable to nuclear power plant use. These systems were investigated for applicability and functional use within the power plant environment for tracking and locating personnel and assets. The actual location and tracking system chosen for use in a nuclear power facility depends on the specific application and the system characteristics required.

2010-09-28T23:59:59.000Z

428

Oil and gas exploration system and method for detecting trace amounts of hydrocarbon gases in the atmosphere  

DOE Patents (OSTI)

An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.

Wamsley, Paula R. (Littleton, CO); Weimer, Carl S. (Littleton, CO); Nelson, Loren D. (Evergreen, CO); O' Brien, Martin J. (Pine, CO)

2003-01-01T23:59:59.000Z

429

Panorama: capturing system-wide information flow for malware detection and analysis  

Science Conference Proceedings (OSTI)

Malicious programs spy on users' behavior and compromise their privacy. Even software from reputable vendors, such as Google Desktop and Sony DRM media player, may perform undesirable actions. Unfortunately, existing techniques for detecting malware ... Keywords: dynamic taint analysis, malware analysis, malware detection, spyware

Heng Yin; Dawn Song; Manuel Egele; Christopher Kruegel; Engin Kirda

2007-10-01T23:59:59.000Z

430

Does an accelerated electron radiate Unruh radiation?  

E-Print Network (OSTI)

An accelerated particle sees the Minkowski vacuum as thermally excited, and the particle moves stochastically due to an interaction with the thermal bath. This interaction fluctuates the particle's transverse momenta like the Brownian motion in a heat bath. Because of this fluctuating motion, it has been discussed that the accelerated charged particle emits extra radiation (the Unruh radiation) in addition to the classical Larmor radiation, and experiments are under planning to detect such radiation by using ultrahigh intensity lasers constructed in near future. There are, however, counterarguments that the radiation is canceled by an interference effect between the vacuum fluctuation and the fluctuating motion. In fact, in the case of an internal detector where the Heisenberg equation of motion can be solved exactly, there is no additional radiation after the thermalization is completed. In this paper, we revisit the issue in the case of an accelerated charged particle in the scalar QED. We first prove the e...

Iso, Satoshi; Zhang, Sen

2010-01-01T23:59:59.000Z

431

Implementation of a Dual Containment/Surveillance System utilizing scene-change detection and radio frequency technology  

SciTech Connect

This paper will examine the implementation of scene-change detection and radio frequency technology within a Dual Containment/Surveillance (C/S) System. Additionally, this paper will examine the human performance factors in the operation of these systems. Currently, Westinghouse Savannah River Company utilizes the Continuous Item Monitoring and Surveillance System (CIMS) in the performance of Dual C/S to monitor special nuclear materials within International Atomic Energy Agency (IAEA) Safeguards and Domestic Safeguards. CIMS is comprised of the Material Monitoring System (MMS) (R), a multi-media electronic surveillance system developed by Sandia National Laboratory which incorporates the use of active seals commonly called Radio Frequency Tamper Indicating Devices (RFTIDs), NT Vision (R) as developed by Los Alamos National Laboratory, a Microsoft Windows NT (R) based operating system providing for domestic scene-change detection and the Digital Multi-Camera Optical Surveillance System (DMOS) (R) which provides scene-change detection for IAEA. Although this paper will focus on the implementation of Dual C/S utilizing the Continuous Item Monitoring and Surveillance System, the necessity for a thorough review of Safeguards and Security requirements with organizations and personnel having minimal to no prior MPC&A training will also be covered. Successful Dual C/S implementation plans must consider not only system design and failure modes, but must also be accompanied with the appropriate ''mind shift'' within operations and technical personnel. This is required to ensure completion of both physical and electronic activities, and system design changes are performed conscientiously and with full awareness of MPC&A requirements.

FITZGERALD, ERIC; KOENIG, RICHARD

2005-06-27T23:59:59.000Z

432

Radiation Detector R&D | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Detector and Nonproliferation R&D Group Radiation Detector and Nonproliferation R&D Group A major element in nonproliferation, arms control verification, nuclear materials safeguards and homeland security is the ability to detect, identify and measure nuclear, radioactive and chemical materials. BNL has a significant and world-class capability in radiation detection including the design and fabrication of advanced detector systems for scientific R&D and nonproliferation applications that has evolved over more than six decades. To support nonproliferation, arms control, safeguards and homeland security, BNL has focused on advanced radiation detector systems that offer room temperature operation with high energy resolution for gamma-ray detectors, imaging and direction indicating capabilities for both gamma-ray

433

System Compatibility Test Data Radiated EMI Between Electronic Ballasts and Sensitive Electronic Medical Equipment  

Science Conference Proceedings (OSTI)

This system compatibility test data describes how one model of electronic ballast interacted with a hearing aid. Also included in this set of system compatibility test data is an example of how ballast manufacturers can solve the system compatibility problem of radio frequency electromagnetic interference with other equipment by ballast design modifications.

2003-12-31T23:59:59.000Z

434

Application of Precision Mechanical Engineering Techniques to the Design of a Moderate Energy Beam Transport for the FAA Explosive Detection System  

E-Print Network (OSTI)

Application of Precision Mechanical Engineering Techniques to the Design of a Moderate Energy Beam Transport for the FAA Explosive Detection System

Lujan, R

1993-01-01T23:59:59.000Z

435

Field testing of component-level model-based fault detection methods for mixing boxes and VAV fan systems  

SciTech Connect

An automated fault detection and diagnosis tool for HVAC systems is being developed, based on an integrated, life-cycle, approach to commissioning and performance monitoring. The tool uses component-level HVAC equipment models implemented in the SPARK equation-based simulation environment. The models are configured using design information and component manufacturers' data and then fine-tuned to match the actual performance of the equipment by using data measured during functional tests of the sort using in commissioning. This paper presents the results of field tests of mixing box and VAV fan system models in an experimental facility and a commercial office building. The models were found to be capable of representing the performance of correctly operating mixing box and VAV fan systems and detecting several types of incorrect operation.

Xu, Peng; Haves, Philip

2002-05-16T23:59:59.000Z

436

Piezoelectric-based in-situ damage detection of composite materials for structural health monitoring systems  

E-Print Network (OSTI)

Cost-effective and reliable damage detection is critical for the utilization of composite materials. This thesis presents the conclusions of an analytical and experimental survey of candidate methods for in-situ damage ...

Kessler, Seth Stovack, 1977-

2002-01-01T23:59:59.000Z

437

A system for the detection of concealed nuclear weapons and fissile material aboard cargo cotainerships  

E-Print Network (OSTI)

A new approach to the detection of concealed nuclear weapons and fissile material aboard cargo containerships is proposed. The ship-based approach removes the constraints of current thinking by addressing the threat of ...

Gallagher, Shawn P., S.M. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

438

Tornado Detection Using a Neuro–Fuzzy System to Integrate Shear and Spectral Signatures  

Science Conference Proceedings (OSTI)

Tornado vortices observed from Doppler radars are often associated with strong azimuthal shear and Doppler spectra that are wide and flattened. The current operational tornado detection algorithm (TDA) primarily searches for shear signatures that ...

Yadong Wang; Tian-You Yu; Mark Yeary; Alan Shapiro; Shamim Nemati; Michael Foster; David L. Andra Jr.; Michael Jain

2008-07-01T23:59:59.000Z

439

An automated system to detect flash floods and alert at-risk communities  

E-Print Network (OSTI)

This thesis describes an automated monitoring station designed to detect flash floods occurring in the Rio Aguan river basin, Honduras. An Atmel microcontroller polls a series of sensors in the river, logging all data for ...

Weaver, Joshua A., 1978-

2005-01-01T23:59:59.000Z

440

Towards the development of an explosives detection system using Neutron Resonance Radiography  

E-Print Network (OSTI)

Detection of conventional explosives remains a challenge to air security, as indicated by recent reports detailing lapses in security screening and new requirements that mandate screening 100% of checked luggage. Neutron ...

Raas, Whitney

2007-01-01T23:59:59.000Z

First Page Previous Page 1 2 3 4 5 6 7 8