Powered by Deep Web Technologies
Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Radiant Heating  

Energy.gov (U.S. Department of Energy (DOE))

Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat...

2

Radiant Solar | Open Energy Information  

Open Energy Info (EERE)

Radiant Solar Radiant Solar Jump to: navigation, search Name Radiant Solar Place Secunderabad, Andhra Pradesh, India Zip 500009 Sector Solar Product Solar products company focused on lanterns, lighting systems and water heaters. Coordinates 17.46071°, 78.49298° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":17.46071,"lon":78.49298,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

Solar pool heater  

SciTech Connect

A solar pool heater is defined by a submersible tubular ring attached to the perimeter of a transparent or translucent sheet. Floatation of the heater is obtained through an air bubble captured by the sheet and maintained by the ring. The ring is perforated to permit the entry of water within the ring to induce partial submersion and thereby establish a peripheral seal about the captured air bubble. The submersed ring also prevents overlapping of adjacent heaters and reduces the likelihood of the heaters being blown off the pool by wind. By developing the sheet from material transparent to at least a spectrum of the solar rays, the air space intermediate the sheet and the underlying water surface will provide a ''greenhouse'' effect to heat the water through direct impingement by the received radiant energy; additionally, radiation of heat from the water will be reduced by the sheet, whereby, the heater not only collects but retains the impinged radiant energy.

Acker, L.C.

1980-09-16T23:59:59.000Z

4

Small Space Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Space Heater Basics Small Space Heater Basics Small Space Heater Basics August 19, 2013 - 10:38am Addthis Small space heaters, also called portable heaters, are typically used when the main heating system is inadequate or when central heating is too costly to install or operate. Space heater capacities generally range between 10,000 Btu to 40,000 Btu per hour. Common fuels used for this purpose are electricity, propane, natural gas, and kerosene. Although most space heaters rely on convection (the circulation of air in a room), some rely on radiant heating; that is, they emit infrared radiation that directly heats up objects and people that are within their line of sight. Combustion Space Heaters Space heaters are classified as vented and unvented, or "vent free." Unvented combustion units are not recommended for inside use, as they

5

Energy Basics: Radiant Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

very low heat capacity and have the quickest response time of any heating technology. More Information Visit the Energy Saver website for more information about radiant heating...

6

Energy Basics: Radiant Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

low heat capacity and have the quickest response time of any heating technology. More Information Visit the Energy Saver website for more information about radiant heating in homes...

7

Radiant zone heated particulate filter  

DOE Patents (OSTI)

A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

Gonze, Eugene V [Pinckney, MI

2011-12-27T23:59:59.000Z

8

Tuning The Laser Heater Undulator  

Science Conference Proceedings (OSTI)

The laser heater undulator for the LCLS requires different tuning techniques than the main undulators. It is a pure permanent magnet (PPM) undulator, rather than the hybrid design of the main undulators. The PPM design allows analytic calculation of the undulator fields. The calculations let errors be introduced and correction techniques be derived. This note describes how the undulator was modelled, and the methods which were found to correct potential errors in the undulator. The laser heater undulator for the LCLS is a pure permanent magnet device requiring different tuning techniques than the main undulators. In this note, the laser heater undulator is modelled and tuning techniques to compensate various errors are derived.

Wolf, Zackary

2010-12-03T23:59:59.000Z

9

Radiant Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

10

Radiant Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

11

Radiant Barriers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Barriers Radiant Barriers Radiant Barriers May 30, 2012 - 2:07pm Addthis What does this mean for me? Properly installed radiant barriers can reduce your cooling costs. Radiant barriers are easiest to install in new construction, but can be installed in your existing house, especially if it has an open attic. How does it work? Radiant barriers work by reflecting radiant heat away from living spaces. Radiant barriers are installed in homes -- usually in attics -- primarily to reduce summer heat gain and reduce cooling costs. The barriers consist of a highly reflective material that reflects radiant heat rather than absorbing it. They don't, however, reduce heat conduction like thermal insulation materials. How They Work Heat travels from a warm area to a cool area by a combination of

12

Subterrene electrical heater design and morphology  

SciTech Connect

The design, construction, and testing of a variety of electrical heaters for small-diameter Subterrene penetrators has been pursued. The incompatibility of refractory materials at the required operating temperatures of ~2000 deg K and the large heat-flux requirements posed the most difflcult design problems. Heat fluxes of up to 2.0 MW/m/sup 2/ were obtained from pyrolytic-graphite radiant heattransfer elements and were as high as 2.5 MW/m/sup 2/ when this type of heater was combined with a lithium heat-pipe assembly. Penetrators using radiant heaters produced both vertical and horizontal holes of 50 mm dia up to lengths of 25 m, whereas holes of up to 64 mm dia and 0.5 m long were produced in basalt and other rock samples in the laboratory. (auth)

Armstrong, P.E.

1974-02-01T23:59:59.000Z

13

Where radiant barriers really shine  

Science Conference Proceedings (OSTI)

Manufactures of radiant barrier materials claim their products significantly cut cooling costs by reducing summertime radiant heat gain through attics and ceilings. A new study confirms that radiant barriers can indeed conserve cooling energy. However, the study`s authors found that radiant barriers are much more effective at reducing energy losses from attic air conditioner duct runs than at directly lowering heat transfer through the attic floor into conditioned living space. Furthermore the study demonstrated that radiant barrier savings can be significant even in a new well-weatherized house and that these saving may justify specifying smaller capacity cooling systems. This article discusses the findings of the study.

Engel, R.

1996-07-01T23:59:59.000Z

14

Radiant Barriers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Barriers Barriers Radiant Barriers May 30, 2012 - 2:07pm Addthis What does this mean for me? Properly installed radiant barriers can reduce your cooling costs. Radiant barriers are easiest to install in new construction, but can be installed in your existing house, especially if it has an open attic. How does it work? Radiant barriers work by reflecting radiant heat away from living spaces. Radiant barriers are installed in homes -- usually in attics -- primarily to reduce summer heat gain and reduce cooling costs. The barriers consist of a highly reflective material that reflects radiant heat rather than absorbing it. They don't, however, reduce heat conduction like thermal insulation materials. How They Work Heat travels from a warm area to a cool area by a combination of

15

Radiant Heating | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

heating because it eliminates duct losses. People with allergies often prefer radiant heat because it doesn't distribute allergens like forced air systems can. Hydronic...

16

Hydronic Radiant Cooling Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Hydronic Radiant Cooling Systems Cooling nonresidential buildings in the U.S. contributes significantly to electrical power consumption and peak power demand. Part of the electrical energy used to cool buildings is drawn by fans transporting cool air through the ducts. The typical thermal cooling peak load component for California office buildings can be divided as follows: 31% for lighting, 13% for people, 14% for air transport, and 6% for equipment (in the graph below, these account for 62.5% of the electrical peak load, labeled "chiller"). Approximately 37% of the electrical peak power is required for air transport, and the remainder is necessary to operate the compressor. DOE-2 simulations for different California climates using the California

17

Convective heater  

DOE Patents (OSTI)

A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.

Thorogood, R.M.

1983-12-27T23:59:59.000Z

18

Convective heater  

DOE Patents (OSTI)

A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

Thorogood, Robert M. (Macungie, PA)

1986-01-01T23:59:59.000Z

19

Convective heater  

DOE Patents (OSTI)

A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

Thorogood, Robert M. (Macungie, PA)

1983-01-01T23:59:59.000Z

20

Radiant Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Basics Radiant Heating Basics Radiant Heating Basics August 19, 2013 - 10:33am Addthis Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat directly from the hot surface to the people and objects in the room via the radiation of heat, which is also called infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Despite the name, radiant floor heating systems also depend heavily on convection, the natural circulation of heat within a room, caused by heat rising from the floor. Radiant floor

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Radiant Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Basics Radiant Heating Basics Radiant Heating Basics August 19, 2013 - 10:33am Addthis Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat directly from the hot surface to the people and objects in the room via the radiation of heat, which is also called infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Despite the name, radiant floor heating systems also depend heavily on convection, the natural circulation of heat within a room, caused by heat rising from the floor. Radiant floor

22

ORNL Radiant Barrier - ETSD Division  

NLE Websites -- All DOE Office Websites (Extended Search)

in Zone 2), radiant barriers could reduce your utility bills by as much as 150 per year using average residential electricity prices. If you're able to participate in one of...

23

Radiant energy collector. [Patent application  

DOE Patents (OSTI)

A cylindrical radiant energy collector is provided which includes a reflector spaced apart from an energy absorber. The reflector is of a particular shape which ideally eliminates gap losses.

McIntire, W.R.

1980-02-14T23:59:59.000Z

24

Small Space Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Small space heaters, also called portable heaters, are typically used when the main heating system is inadequate or when central heating is too costly to install or operate. Space heater capacities...

25

Solar heater  

SciTech Connect

The invention is a solar heater which may function as a humidifier and which has a reflector that is constructed to provide a window, and external thermal insulation. The window has a cover that is positioned to transmit solar radiation to the reflector. The top portion of the reflector has an opening, and a container is removably positioned in the opening. The reflector has a geometry that reflects a high percentage of solar energy to the container, which has a surface with high absorptance. The container has a removable lid for confining heat within the container for certain functions, such as boiling water or drying clothes. When used as a humidifier, the container is filled with water and the lid is removed.

Hill, C.W.

1981-06-23T23:59:59.000Z

26

Simulated Attic Radiant Barrier Performance  

Science Conference Proceedings (OSTI)

A recent EPRI evaluation determined that attic radiant barriers installed under roof decks are increasingly effective in reducing cooling energy use as insolation increases and ceiling insulation thickness decreases. A savings worksheet included in this report allows rapid estimation of these energy cost impacts.

1991-03-29T23:59:59.000Z

27

Water Heaters | Open Energy Information  

Open Energy Info (EERE)

Heaters Jump to: navigation, search TODO: Add description List of Water Heaters Incentives Retrieved from "http:en.openei.orgwindex.php?titleWaterHeaters&oldid267202...

28

Inverse optimal design of the radiant heating in materials processing and manufacturing  

Science Conference Proceedings (OSTI)

Combined convective, conductive, and radiative heat transfer is analyzed during heating of a continuously moving load in the industrial radiant oven. A transient, quasi-three-dimensional model of heat transfer between a continuous load of parts moving inside an oven on a conveyor belt at a constant speed and an array of radiant heaters/burners placed inside the furnace enclosure is developed. The model accounts for radiative exchange between the heaters and the load, the conduction in the load, and convective heat transfer between the moving load and oven environment. The thermal model developed has been used to construct a general framework for an inverse optimal design of an industrial oven as an example. In particular, the procedure based on the Levenberg-Marquardt nonlinear least squares optimization algorithm has been developed to obtain the optimal temperatures of the heaters/burners that need to be specified to achieve a prescribed temperature distribution of the surface of a load. The results of calculations for several sample cases are reported to illustrate the capabilities of the procedure developed for the optimal inverse design of an industrial radiant oven.

Fedorov, A.G.; Lee, K.H.; Viskanta, R. [Purdue Univ., West Lafayette, IN (United States)] [Purdue Univ., West Lafayette, IN (United States)

1998-12-01T23:59:59.000Z

29

Radiant Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Energy Jump to: navigation, search Name Radiant Energy Place Pleasanton, California Zip 94566 Sector Geothermal energy, Hydro, Solar Product Radiant is an independent energy producer which develops and owns solar, geothermal, and hydroelectric generating assets. Coordinates 28.967394°, -98.478862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.967394,"lon":-98.478862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Radiant Apparatus | Open Energy Information  

Open Energy Info (EERE)

Apparatus Apparatus Jump to: navigation, search Name Radiant Apparatus Place Fairfax, Virginia Zip 22038-3333 Sector Solar Product Radiant Apparatus develops multi-functional, portable solar energy-harnessing systems, as well as potable water systems and emergency shelters. Coordinates 38.841574°, -77.308132° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.841574,"lon":-77.308132,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

High Efficiency, Ultra-Low Emission, Integrated Process Heater System  

Science Conference Proceedings (OSTI)

The team of TIAX LLC, ExxonMobil Research and Engineering Company, and Callidus Technologies, LLC conducted a six-year program to develop an ultra-low emission process heater burner and an advanced high efficiency heater design. This project addresses the critical need of process heater operators for reliable, economical emission reduction technologies to comply with stringent emission regulations, and for heater design alternatives that reduce process heater energy requirements without significant cost increase. The key project targets were NOx emissions of 10 ppm (@ 3% O2), and a heater thermal efficiency of 95 percent. The ultra low NOx burner was developed through a series of pilot-scale and field tests combined with computational fluid dynamic modeling to arrive at simultaneous low emissions and suitable flame shape and stability. Pilot scale tests were run at TIAX, at the 2 MMBtu/hr scale, and at Callidus at 8 MMBtu/hr. The full scale burner was installed on a 14 burner atmospheric pipestill furnace at an ExxonMobil refinery. A variety of burner configurations, gas tips and flame stabilizers were tested to determine the lowest emissions with acceptable flame shape and stability. The resulting NOx emissions were 22 ppm on average. Starting in 2001, Callidus commercialized the original ultra low NOx burner and made subsequent design improvements in a series of commercial burners evolving from the original concept and/or development. Emissions in the field with the ultra low-NOx burner over a broad spectrum of heater applications have varied from 5 ppm to 30 ppm depending on heater geometry, heater service, fuel and firing capacity. To date, 1550 of the original burners, and 2500 of subsequent generation burners have been sold by Callidus. The advanced heater design was developed by parametric evaluations of a variety of furnace and combustion air preheater configurations and technologies for enhancing convective and radiative heat transfer. The design evolution relied heavily on computational fluid dynamic predictions of design alternatives. The final design features modular separate radiant cells, each with one and two-side fired vertical tubes. The convection section configuration is vertical tube banks enclosed in the radiant channels. Commercial modular plate air preheaters are used. The predicted performance for the integrated advanced heater and Callidus burner is 95 percent efficiency with 9 ppm NOx emissions firing natural gas, and 12 ppm firing refinery gas. The total erected cost is less than a conventional heater with combustion air preheat.

Mason, Howard; Boral, Anindya; Chhotray, San; Martin, Matthew

2006-06-19T23:59:59.000Z

32

Feedwater Heater Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides plant personnel with information on the operation, maintenance, and performance of feedwater heaters. The contents of this guide will assist plant personnel in improving feedwater heater reliability, performance, and maintenance practices.

2002-05-29T23:59:59.000Z

33

Conventional Storage Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Conventional storage water heaters remain the most popular type of water heating system for homes and buildings.

34

Selecting a new water heater  

SciTech Connect

This fact sheet describes the types of water heaters available (storage water heaters, demand water heaters, heat pump water heaters, tankless coil and indirect water heaters, and solar water heaters). The criteria for selection are discussed. These are capacity, efficiency rating, and cost. A resource list is provided for further information.

NONE

1995-03-01T23:59:59.000Z

35

Radiant barrier applications: Symposium and workshop proceedings  

Science Conference Proceedings (OSTI)

Electric utilities and their customers are continually looking for ways to improve the thermal integrity of buildings. Radiant barrier systems can reduce summer air conditioning loads by reducing radiant heat transfer in attics. EPRI conducted two programs to help utilities with radiant barriers. A Symposium and Workshop were conducted in April 1988. The Symposium reviewed the state of the art in radiant barriers. The Workshop brought industry experts together to identify research needs for radiant barriers. The Workshop found that research is needed in six major areas. Listed in order of importance these are: (1) Field and laboratory testing, (2) Materials research, (3) Modeling, (4) Materials standards, (5) Economic issues, and (6) Installation methods. The leading research topics within these six major areas in order of importance include:(1) Modeling to fill voids in existing field data and aid in the development of performance standards, (2) Calculation of energy savings for various configurations, (3) Analysis of existing data to better understand radiant barrier performance, (4) Assessment of the effect of dust accumulation on performance, (5) Development of standard testing procedures, (6) Development of systems standards, (7) Measurement of changes in the emissivity of radiant barrier materials with time, (8) Determination of the possibility of moisture accumulation under horizontal radiant barriers during heating season operation, (9) Ventilation effects, (10) Configuration testing, (11) Costs of new and retrofit applications, and (12) Characterization of side effects. 34 refs., 5 figs.

Isaksen, L.

1989-02-01T23:59:59.000Z

36

Managing Feedwater Heater Shell Thinning  

SciTech Connect

Thinning of feedwater heater (FWH) shells has become an important issue throughout the U.S. nuclear industry. The thinning occurs primarily in the vicinity of the extraction steam and drain inlet nozzles where two-phase steam/water mixtures enter the heater. The thinning can be general wall thinning over a large area or highly localized thinning in a limited area. Eventually, shell repairs become necessary to ensure integrity of the pressure boundary and personnel safety, and to restore compliance with the ASME pressure vessel code. Ideally, long-term monitoring of the thickness of FWH shells would allow for timely repairs before the wall thickness decreases below the ASME Code minimum wall thickness. However, since most plants did not start inspecting FWH shells until recently, the initial inspection may find shells that are thinned to near or below the ASME Code minimum wall thickness. Because the cost and manpower requirements for shell repairs can be significant, it is imperative that shell repairs provide a long-term solution and that they be implemented as a planned outage evolution. Accordingly, the approach to managing FWH shell thinning must provide sufficient advance warning of the need for repairs while ensuring safe operation until the permanent repair can be implemented. The approach outlined in this paper does both. Establish acceptance criteria to ensure safe, interim operation with thinned shells until a permanent repair can be implemented. Develop contingency plans for interim repairs should the inspections identify thinning below the interim acceptance criteria. Inspect FWH shells during a refueling outage or possibly during planned system outages or power reductions. If necessary, perform interim repairs to ensure safe operation until the next refueling outage. Develop and implement permanent repairs that will prevent shell thinning. (authors)

Simons, John W.; Keating, Robert B. [MPR Associates Inc., 140 Mustang Circle, Simpsonville, SC 29681 (United States)

2002-07-01T23:59:59.000Z

37

ELDON water heater  

SciTech Connect

Experience with the installation of an ELDON water heater in the TLC Services, Inc. laundry facility is reported. Piping diagram and pictures are included. (MHR)

Wood, H.E.

1980-07-18T23:59:59.000Z

38

Radiant vessel auxiliary cooling system  

DOE Patents (OSTI)

In a modular liquid-metal pool breeder reactor, a radiant vessel auxiliary cooling system is disclosed for removing the residual heat resulting from the shutdown of a reactor by a completely passive heat transfer system. A shell surrounds the reactor and containment vessel, separated from the containment vessel by an air passage. Natural circulation of air is provided by air vents at the lower and upper ends of the shell. Longitudinal, radial and inwardly extending fins extend from the shell into the air passage. The fins are heated by radiation from the containment vessel and convect the heat to the circulating air. Residual heat from the primary reactor vessel is transmitted from the reactor vessel through an inert gas plenum to a guard or containment vessel designed to contain any leaking coolant. The containment vessel is conventional and is surrounded by the shell.

Germer, John H. (San Jose, CA)

1987-01-01T23:59:59.000Z

39

Pre-heater for water heater  

SciTech Connect

This patent describes an apparatus for pre-heating water prior to the water entering a conventional water heater comprising: heat exchanger means located inside the attic of a residential dwelling for effecting a heat exchange between hot air; vent pipe means connected to the continuous pipe; drain pipe means connected to the continuous pipe; fourth pipe means connected to the drain pipe means; fifth pipe means connected to the junction of the fourth pipe means; and the water heater means connected to the outlet of the heat exchanger means.

Blount, E.R.

1987-06-09T23:59:59.000Z

40

Water heater heat reclaimer  

SciTech Connect

This invention relates to the conservation of energy in a domestic gas water heater by utilizing the hot exhaust gases in a gas water heater for the preheating of the incoming unheated water into the water heater. The exhaust gases from a domestic gas water heater carry wasted heat and the present invention provides a mean to reclaim part of the wasted heat for the preheating of the incoming unheated water during hot water usage periods. During non hot water usage periods the heat in the exhaust gases is not reclaimed to prevent overheating of the water and also to prevent the formation of water deposit in the preheating assembly or heat reclaimer. During the non hot water usage periods the heat produced in the water heater is normally needed only to maintain the desired water temperature of the stored water in the water tank of the water heater. Due to the rapid heating or recovery rate, the present invention enables the use of a smaller water heater. The use of a smaller water heater reduces the normal heat loss from the stored hot water thereby further reduces energy consumption.

Wie, C.T.

1983-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Gas Water Heater Energy Losses  

E-Print Network (OSTI)

analyses of storage-type water heaters. 2 TANK modelswater heater as part of the DOE rulemaking analysis. We used the most current version of this model--

Biermayer, Peter

2012-01-01T23:59:59.000Z

42

Energy Basics: Small Space Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

storage, allowing the heater to cycle less and to provide a more constant heat source. More Information Visit the Energy Saver website for more information about portable heaters...

43

Radiant Barrier Performance during the Heating Season  

E-Print Network (OSTI)

Results of winter experiments conducted in Central Texas are presented. The experiments were side-by-side tests using two identical 144 ft2 houses which responded similarly to weather variations prior to any retrofits. Two radiant barrier orientations were tested, horizontal barrier and barrier against the rafters, in vented and non-vented attics. The results compiled in this paper are for attics with R-19 fiberglass insulation. The data showed that radiant barriers were still effective during the winter season. During a typical day radiant barriers prevented approximately 9-17 percent of the indoor heat from escaping into the attic. No significant difference in moisture accumulation was detected in the attic with the radiant barrier.

Medina, M. A.; O'Neal, D. L.; Turner, W. D.

1992-05-01T23:59:59.000Z

44

Performance Testing of Radiant Barriers  

E-Print Network (OSTI)

TVA has conducted a study to determine the effects of radiant barriers (RBI (i.e., material with a low emissivity surface facing an air space), when used with fiberglass, on attic heat transfer during summer and winter. This study employed five small test cells exposed to ambient conditions and having attics with gable and soffit vents. Three different RB configurations were tested and compared to the non-RR configuration. Heat flux transducers determined the heat transfer between the attic and conditioned space. The results showed that all RB con figurations significantly reduced heat gain through the ceiling during the summer. Reductions in heat gain during daylight and peak electric load hours were especially attractive. Roof temperatures for the RB configurations were only slightly higher than for the non-RB case. Heat transfer reductions for the RB configurations in the winter were smaller than those for the summer but were still significant in many, but not all, situations. Savings during night and peak electric load hours were especially attractive.

Hall, J. A.

1986-01-01T23:59:59.000Z

45

Prismatic wall heater  

Science Conference Proceedings (OSTI)

A prismatic beam concentrator mounted at the top of two adjacent walls so as to receive a rectangular incipient beam of diffused sunlight and emit a vertical concentrated sheet beam through a cavity between the walls to a mirror which reflects the beam at right angles onto a radiant iron bar at the base of one wall, as a source of supplemental household heat.

Clegg, J. E.

1985-07-09T23:59:59.000Z

46

Tankless Demand Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as needed and without the use of a storage tank. They...

47

Water Heater Safety FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

from 30 gallons to 80 gallons in a variety of fuel sources (gas, electric, liquid propane). We also offer a wide selection of Rheem gas and electric tankless water heaters....

48

Feedwater Heater Technology Symposium  

Science Conference Proceedings (OSTI)

Feedwater heaters and associated systems cause significant loss of availability and heat rate degradation in both nuclear and fossil-fired power plants. One reason for this is that feedwater heater (FWH) deterioration tends to be exponential in nature. While the first plugged FWH tubes have very little impact on unit availability, an increase in the number of plugged tubes raises the velocity in the remaining tubes and results in a greater number of tube leaks. Eventually, retubing, replacement, or bypas...

2004-07-26T23:59:59.000Z

49

Reverberatory screen for a radiant burner  

DOE Patents (OSTI)

The present invention relates to porous mat gas fired radiant burner panels utilizing improved reverberatory screens. The purpose of these screens is to boost the overall radiant output of the burner relative to a burner using no screen and the same fuel-air flow rates. In one embodiment, the reverberatory screen is fabricated from ceramic composite material, which can withstand higher operating temperatures than its metallic equivalent. In another embodiment the reverberatory screen is corrugated. The corrugations add stiffness which helps to resist creep and thermally induced distortions due to temperature or thermal expansion coefficient differences. As an added benefit, it has been unexpectedly discovered that the corrugations further increase the radiant efficiency of the burner. In a preferred embodiment, the reverberatory screen is both corrugated and made from ceramic composite material.

Gray, Paul E. (North East, MD)

1999-01-01T23:59:59.000Z

50

IMPROVEMENTS TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION  

E-Print Network (OSTI)

IMPROVEMENTS TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION PROCEDURE By BEREKET TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION PROCEDURE Dissertation Approved: Dr. Jeffrey D- Original RTSM.......................................................153 4.4.1 RTSM Peak Design Cooling Load

51

Fuel heater thermostat  

Science Conference Proceedings (OSTI)

A thermostat is described for fuel heaters wherein the fuel is heated by engine coolant and the thermostat comprises: a temperature sensing means for sensing the temperature of fuel in the fuel heater, the temperature sensing means in contacting relation with the first end of a coolant flow restricting piston, the piston having a second end in contacting relation with a pressure means wherein the temperature sensing means and the pressure means assert opposing forces against the piston and the piston in response to an increase in force from the temperature sensing means will restrict the flow of coolant through the fuel heater, and the piston further having a bleed port therein to allow coolant to flow to the first and second ends of the piston.

Ray, D.A.

1989-05-09T23:59:59.000Z

52

Modeling of Residential Attics with Radiant Barriers  

E-Print Network (OSTI)

This paper gives a summary of the efforts at ORNL in modeling residential attics with radiant barriers. Analytical models based on a system of macroscopic heat balances have been developed. Separate models have been developed for horizontal radiant barriers laid on top of the insulation, and for radiant barriers attached to the bottom of the top chords of the attic trusses. The models include features such as a radiation interchange analysis within the attic space, convective coupling with the ventilation air, and sorption/desorption of moisture at surfaces facing the attic enclosure. The paper gives details of the models and the engineering assumptions that were made in their development. The paper also reports on the status of efforts that are underway to verify the models by comparing their predictions with the results of laboratory and field tests on residential attics and test cells, both with and without radiant barriers. Comparisons are given for a number of selected sets of experimental data. Suggestions are given for needed model refinements and additional experimental data. Plans for utilization of the models for extrapolation to seasonal and annual performance in a variety of climatic conditions are also described.

Wilkes, K. E.

1988-01-01T23:59:59.000Z

53

Portable Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portable Heaters Portable Heaters Portable Heaters November 26, 2013 - 2:41pm Addthis Portable heaters can be an efficient way to supplement inadequate heating. | Photo courtesy iStockphoto.com Portable heaters can be an efficient way to supplement inadequate heating. | Photo courtesy iStockphoto.com What does this mean for me? A portable heater is a good choice if you have a space that requires supplemental heating or is infrequently occupied. You should carefully follow all the manufacturer's installation and operation instructions. Small space heaters are typically used when the main heating system is inadequate or when central heating is too costly to install or operate. In some cases, small space heaters can be less expensive to use if you only want to heat one room or supplement inadequate heating in one room. They

54

Energy Basics: Small Space Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

allowing the heater to cycle less and to provide a more constant heat source. More Information Visit the Energy Saver website for more information about portable heaters in homes...

55

Absorption Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

56

Absorption Heat Pump Water Heater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pump Water Heater Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD gluesenkampk@ornl.gov 865-241-2952 April 3, 2013 CRADA - GE Development of High Performance Residential Gas Water Heater Image courtesy John Wilkes 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Absorption technology could greatly boost water heater efficiency, but faces barriers of high first cost and working fluid challenges. Impact of Project: Energy factor of gas storage water

57

Water Heaters and Hot Water Distribution Systems  

E-Print Network (OSTI)

gas water heaters; and pressure loss calculations for residentialgas water heaters; and pressure loss calculations for residential

Lutz, Jim

2012-01-01T23:59:59.000Z

58

Cooling energy measurements of houses with attics containing radiant barriers  

Science Conference Proceedings (OSTI)

Tests were conducted by Oak Ridge National Laboratory (ORNL) to determine the magnitude of the energy savings brought about by installing radiant barriers in the attics of single-family houses. The radiant barrier used for this test was a product with two reflective aluminum surfaces on a kraft paper base. The radiant barrier has the potential to reduce the radiant heat transfer component impinging on the fiberglass attic insulation. Working as a system in conjunction with an air space, the radiant barrier could theoretically block up to 95% of far-infrared radiation heat transfer. The results showed a savings in the cooling loads of 21% when the radiant barrier was laid on top of the attic fiberglass insulation and 13% with the radiant barrier attached to the underside of the roof trusses. The savings in electrical consumption was 17% and 9%, respectively.

Levins, W.P.; Karnitz, M.A.; Knight, D.K.

1986-01-01T23:59:59.000Z

59

Immersible solar heater for fluids  

DOE Patents (OSTI)

An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

Kronberg, James W. (Aiken, SC)

1995-01-01T23:59:59.000Z

60

Radiant Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Jump to: navigation, search Name Radiant Electric Coop, Inc Place Kansas Utility Id 15621 Utility Location Yes Ownership C NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1140/kWh Commercial: $0.1080/kWh Industrial: $0.0533/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Radiant_Electric_Coop,_Inc&oldid=411420" Categories: EIA Utility Companies and Aliases

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

$69 solar water heater  

SciTech Connect

The construction of a batch or breadbox solar water heater is described in which it is assumed that an old refrigerator and used galvanized air compressor tank are available (at no charge). Additional materials required (plumbing, hardware, lumber, and miscellaneous) cost approximately $69. The refrigerator serves as an insulated box as well as a built-in hinged adjustable reflector (the door). The door also provides tight-fitting nighttime insulation. Detailed directions are provided for the construction of the solar water heater; the principal operations involve modification of the refrigerator, plumbing the tank, constructing the glazing section, and tilting the collector properly. Ample illustrations are provided and a complete list of materials needed is included. The project can be completed in one day. (MJJ)

Morris, E.

1980-09-01T23:59:59.000Z

62

Cooling load differences between radiant and air systems  

E-Print Network (OSTI)

the effect of thermal mass on cooling loads, and thereforelift radiant cooling using building thermal mass, Departmentlevel thermal modelling are recommended for design cooling

Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

2013-01-01T23:59:59.000Z

63

Regenerative air heater  

DOE Patents (OSTI)

A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

Hasselquist, Paul B. (Maple Grove, MN); Baldner, Richard (Minnetonka, MN)

1982-01-01T23:59:59.000Z

64

Regenerative air heater  

DOE Patents (OSTI)

A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

Hasselquist, P.B.; Baldner, R.

1980-11-26T23:59:59.000Z

65

Water heater control module  

DOE Patents (OSTI)

An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.

Hammerstrom, Donald J

2013-11-26T23:59:59.000Z

66

Heater element design for electrically powered heater assemblies  

DOE Patents (OSTI)

This invention is comprised of an apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

Berta, V.T.

1992-12-31T23:59:59.000Z

67

Radiant Energy Power Source for Jet Aircraft  

DOE Green Energy (OSTI)

This report beings with a historical overview on the origin and early beginnings of Radiant Energy Power Source for Jet Aircraft. The report reviews the work done in Phase I (Grant DE-FG01-82CE-15144) and then gives a discussion of Phase II (Grant DE-FG01-86CE-15301). Included is a reasonably detailed discussion of photovoltaic cells and the research and development needed in this area. The report closes with a historical perspective and summary related to situations historically encountered on projects of this nature. 15 refs.

Doellner, O.L.

1992-02-01T23:59:59.000Z

68

Vented Cavity Radiant Barrier Assembly And Method  

DOE Patents (OSTI)

A vented cavity radiant barrier assembly (2) includes a barrier (12), typically a PV module, having inner and outer surfaces (18, 22). A support assembly (14) is secured to the barrier and extends inwardly from the inner surface of the barrier to a building surface (14) creating a vented cavity (24) between the building surface and the barrier inner surface. A low emissivity element (20) is mounted at or between the building surface and the barrier inner surface. At least part of the cavity exit (30) is higher than the cavity entrance (28) to promote cooling air flow through the cavity.

Dinwoodie, Thomas L. (Piedmont, CA); Jackaway, Adam D. (Berkeley, CA)

2000-05-16T23:59:59.000Z

69

Instantaneous gas water heater  

SciTech Connect

Hot water supply temperature is set by a temperature setting device in response to an instantaneous flow rate signal from a water flow rate sensor arranged in a water supply pipe and a feeding water temperature signal from a feeding water temperature sensor which are compared with a predetermined hot water supply temperature and calculated in a control unit. A proportional valve and other devices in a gas supply pipe are controlled in response to the result of the comparison and calculation to define a required volume of gas for ignition and heating. At the same time, a fan damper is controlled by a damper control device so as to adjust the volume of combustion air. A signal representing discharging hot water temperature from a discharging hot water temperature sensor arranged in a hot water feeding pipe is fed back to the control unit and calculated therein, and a valve in the hot water supply pipe is adjusted in response to the result of calculation to attain the desired hot water supply temperature. In order to prevent freezing in the system in winter season, a signal from a thermostat in the water feeding pipe is transmitted to a heater arranged in an air supply chamber so as to heat a heat exchanger pipe and, at the same time, heaters arranged in the water feeding pipe and the hot water supply pipe are also controlled to prevent freezing.

Tsutsui, O.; Kuwahara, H.; Murakami, Sh.; Yasunaga, Sh.

1985-02-26T23:59:59.000Z

70

THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS  

E-Print Network (OSTI)

The Performance of Solar Water Heater With Natural Ci rculperformance of solar thermos i phon water heaters with heatSolar Jubilee, Phoenix, AZ, June 2-6, 1980 THERMOSIPHON WATER HEATERS

Mertol, Atila

2012-01-01T23:59:59.000Z

71

MEAN MONTHLY PERFORMANCE OF PASSIVE SOLAR HEATERS  

E-Print Network (OSTI)

PERFORMANCE OF PASSIVE SOLAR WATER HEATERS W. Place, M.PERFORMANCE OF PASSIVE SOLAR WATER HEATERS* We Place, M.The Performance of Solar Water Heaters with Natu)""al

Place, W.

2011-01-01T23:59:59.000Z

72

Solar Water Heater Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat...

73

Do You Have a Solar Water Heater?  

Energy.gov (U.S. Department of Energy (DOE))

Earlier this week, Ernie wrote about theeconomics of getting a solar water heater. As Ernie explained, a solar water heater is more expensive than a normal water heater, but depending on your area...

74

Conventional Storage Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conventional Storage Water Heaters Conventional Storage Water Heaters July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On top of the...

75

Heat Pump Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heaters Heat Pump Water Heaters August 19, 2013 - 2:59pm Addthis Illustration of a heat pump water heater, which looks like a tall cylinder with a small chamber on top and a...

76

Solar Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heaters Solar Water Heaters August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat plate...

77

Tankless Demand Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Water Heaters Tankless Demand Water Heaters August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is...

78

Dampers for Natural Draft Heaters: Technical Report  

E-Print Network (OSTI)

vented natural-draft gas-fired storage water heater. Thevented natural?draft gas?fired storage water heater. Thevented natural?draft gas?fired storage water heater. The

Lutz, James D.

2009-01-01T23:59:59.000Z

79

Impact of Solar Heat Gain on Radiant Floor Cooling System Design  

E-Print Network (OSTI)

Bauman F. 2013. Impact of Solar Heat Gain on Radiant FloorBauman F. 2013. Impact of Solar Heat Gain on Radiant FloorBauman F. 2013. Impact of Solar Heat Gain on Radiant Floor

Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

2013-01-01T23:59:59.000Z

80

Subsurface heaters with low sulfidation rates  

SciTech Connect

A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

John, Randy Carl; Vinegar, Harold J

2013-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Immersible solar heater for fluids  

DOE Patents (OSTI)

An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

Kronberg, J.W.

1995-07-11T23:59:59.000Z

82

Immersible solar heater for fluids  

DOE Patents (OSTI)

An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

Hazen, T.C.; Fliermans, C.B.

1994-01-01T23:59:59.000Z

83

SC: Gas Heater | The Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Space Conditioning Install a gas heater that uses 10% less energy using the gas heater specification Activities Technology Solutions Teams Lighting & Electrical Space...

84

Energy Basics: Conventional Storage Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

heater can range from 20 to hundreds of gallons. Conventional storage water heater fuel sources include natural gas, propane, fuel oil, and electricity. Natural gas and...

85

Grid Friendly Water Heater Controller - Available ...  

Summary. The Grid Friendly Water Heater Controller is a device that provides smart grid services from existing, installed electric water heaters.

86

Solar hot water heater  

SciTech Connect

A solar hot water heater includes an insulated box having one or more hot water storage tanks contained inside and further having a lid which may be opened to permit solar radiation to heat a supply of water contained within the one or more hot water storage tanks. A heat-actuated control unit is mounted on an external portion of the box, such control unit having a single pole double throw thermostat which selectively activates an electric winch gear motor to either open or close the box lid. The control unit operates to open the lid to a predetermined position when exposed to the sun's rays, and further operates to immediately close the lid in response to any sudden drop in temperature, such as might occur during a rainstorm, clouds moving in front of the sun, or the like.

Melvin, H.A.

1982-12-28T23:59:59.000Z

87

Cooling Energy Measurements of Houses with Attics Containing Radiant Barriers  

E-Print Network (OSTI)

Tests were conducted by Oak Ridge National Laboratory (ORNL) to determine the magnitude of the energy savings brought about by installing radiant barriers in the attics of single-family houses. The radiant barrier used for this test was a product with two reflective aluminum surfaces on a kraft paper base. The radiant barrier has the potential to reduce the radiant heat transfer component impinging on the fiberglass attic insulation. Working as a system in conjunction with an air space, the radiant barrier could theoretically block up to 95% of far-infrared radiation heat transfer. The experiment was conducted in three unoccupied research houses that are operated by ORNL. One house was used as the control house (no barrier was installed), while the other two were used to test the two different methods for installing the radiant barriers. In one house, the barrier was laid on top of the attic fiberglass batt insulation, and in the other house, the barrier was attached to the underside of the roof trusses. The attics of all three houses were insulated with kraft paper faced nominal R-19 fiberglass batt insulation. The results showed a savings in the cooling loads of 21% when the radiant barrier was laid on top of the attic fiberglass insulation and 13% with the radiant barrier attached to the underside of the roof trusses. The savings in electrical consumption was 17% and 9%, respectively. The electrical consumption data and the cooling load data indicated that the most effective way of installing the foil was to lay it on top of the fiberglass batt insulation. The radiant barriers reduced the measured peak ceiling heat fluxes by 39% for the case where the barrier was laid on top of the attic fiberglass insulation. The radiant barrier reduced the integrated heat flows from the attic to house by approximately 30-35% over a 7-day time period.

Levins, W. P.; Karnitz, M. A.; Knight, D. K.

1986-01-01T23:59:59.000Z

88

Radiant Technology Corporation RTC | Open Energy Information  

Open Energy Info (EERE)

Technology Corporation RTC Technology Corporation RTC Jump to: navigation, search Name Radiant Technology Corporation (RTC) Place Fullerton, California Zip 92831 Product Provides infrared furnaces, primarily used in the photovoltaic manufacturing industry. Coordinates 46.16041°, -98.420506° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.16041,"lon":-98.420506,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

Oil and Gas Air Heaters  

E-Print Network (OSTI)

Most conventional air heaters adopt indirect heat transfer, which uses combustion gases to indirectly heat fresh air by heating surfaces to generate hot air used for material drying and dehumidification. We call them indirect air heaters. However, they have a higher manufacturing cost and lower thermal efficiency, especially when high temperature air is needed. For this reason, a direct air heater applicable for or feed and industrial raw products is put forward, which has advantages such as less production cost, smaller dimensions and higher thermal efficiency. Their design, working principles, characteristics, structure and applications are presented in this article, and brief comparisons are made between the indirect and direct air heater. Finally, the relation of hot-air temperature, oil or gas consumption and fresh airflow is determined based on energy equilibrium.

Kou, G.; Wang, H.; Zhou, J.

2006-01-01T23:59:59.000Z

90

Heater head for stirling engine  

DOE Patents (OSTI)

A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.

Corey, John A. (R.D. #2, Box 101 E, North Troy, NY 12182)

1985-07-09T23:59:59.000Z

91

Water heater secondary control device  

SciTech Connect

A secondary control device for gas water heaters is described having a tank, cold water inlet, hot water outlet and a heater thermostat, the control device comprising: valve means for controlling the flow of gas from a source thereof to the heater thermostat, the valve means connected between the gas source and the heater thermostat; means attached to the outside of the cold water inlet for sensing the temperature of water in the cold water inlet and providing an electrical signal representative thereof, the signal generated by the temperature sensing means being connected to the valve means; means for opening the valve means for transmitting the gas to the heater thermostat when the signal is representative of the temperature of the cold water being less than a predetermined temperature; and means for closing the valve means for preventing transmission of the energy to the heater thermostat when the signal is representative of the temperature of the cold water being equal to or greater than the predetermined temperature.

Subherwal, B.R.

1987-08-18T23:59:59.000Z

92

Moisture Measurements in Residential Attics Containing Radiant Barriers  

Science Conference Proceedings (OSTI)

Horizontal radiant barriers, rigorously tested during a typical Tennessee winter, allowed moisture to dissipate on a diurnal cycle and caused no structural, wet insulation, or stained-ceiling problems.

1989-08-21T23:59:59.000Z

93

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

market research on solar water heaters. National Renew- ablecom- bined space/water heaters, solar water heaters,combined solar space/water heater, electric water heaters

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

94

Influence of Dust on the Emissivity of Radiant Barriers  

E-Print Network (OSTI)

A model of the radiant heat transfer in attics containing dusty radiant barriers was developed. The geometrical model was a triangular enclosure in which the temperatures of the enclosing surfaces were known. The dust particles were simulated as areas of diameter equal to the mean diameter of the real dust to be analyzed and an emissivity substantially larger than the emissivity of the radiant barrier. Several shape factors were calculated using shape factor algebra, including a procedure to find the shape factor between a small rectangle and a triangular surface perpendicular to the rectangular plane. The thermal model was developed using the "Net Radiation Method" in which the net heat exchange between the surfaces surrounding the enclosure was found by solving a system of equations that has as many equations as the number of surfaces involved in the calculations. This led to the necessity of solving a very large system of equations in order to account for the dust particles in a representative amount. The solution of the system of equations provided the heat flux for each element of the enclosure. Finally, replacing the radiant barrier and the dust particles for an equivalent surface corresponding to the dusty radiant barrier provided the means to calculate the emissivity of this dusty radiant barrier. The theoretical model was tested to assess its validity. The experimentation was carried out using a reflection emissometer to measure the increase of the emissivity of aluminum radiant barrier when known quantities of dust were artificially applied to it. The experimental results showed good agreement with the theoretical model. A linear relationship between the emissivity and the area of dust coverage was found. The simple relation developed can be used in future research which still has to deal with the determination of the area of dust coverage by using the geometrical model of dust superposition or other statistical model to simulate the random location of random size dust particles over the radiant barrier.

Noboa, Homero L.

1991-12-01T23:59:59.000Z

95

Heat Pump Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heaters Water Heaters Heat Pump Water Heaters May 4, 2012 - 5:21pm Addthis A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for me? Heat pump water heaters can be two to three times more energy efficient than conventional electric storage water heaters. Heat pump water heaters work in locations that remain in the 40º-90ºF range year-round. Most homeowners who have heat pumps use them to heat and cool their homes. But a heat pump also can be used to heat water -- either as stand-alone water heating system, or as combination water heating and space conditioning system. How They Work Heat pump water heaters use electricity to move heat from one place to another instead of generating heat directly. Therefore, they can be two to

96

Conventional Storage Water Heater Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On...

97

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network (OSTI)

2001. Residential Heat Pump Water Heater (HPWH) DevelopmentKelso, J. 2003. Incorporating Water Heater Replacement into2005. Residential Heat Pump Water Heaters: Energy Efficiency

Franco, Victor

2011-01-01T23:59:59.000Z

98

Advanced Process Heater  

SciTech Connect

The Roadmap for Process Heating Technology (March 16, 2001), identified the following priority R&D needs: Improved performance of high temperature materials; Improved methods for stabilizing low emission flames; Heating technologies that simultaneously reduce emissions, increase efficiency, and increase heat transfer. This Category I award entitled ''Proof of Concept of an Advanced Process Heater (APH) for Steel, Aluminum, and Petroleum Industries of the Future'' met the technical feasibility goals of: (1) Doubling the heat transfer rates (2) Improving thermal efficiencies by 20%, (3) Improving temperature uniformity by 100 degrees F and (4) simultaneously reducing NOx and CO2 emissions. The APH address EERE's mission priority of increasing efficiency/reducing fuel usage in energy intensive industries. One component of the APH, the SpyroCorTM, was commercialized by STORM Development's partner, Spinworks LLC. Over 2000 SpyrCorsTM were sold in 2004 resulting in 480 million BTU's of energy savings, 20% reduction in NOx and CO2 levels, and 9 jobs in N.W. Pennsylvania. A second component, the HeatCorTM, a low-cost high-temperature heat exchanger will be demonstrated by Spinworks in 2005 in preparation for commercial sales in 2006. The project occurred in the 21st Congressional District of Pennsylvania. Once fully commercialized, the APH energy savings potential is 339 trillion BTUs annually in the U.S. and will process 1.5 million more tons annually without major capital equipment expenditures. Spinworks will commercialize the APH and add over 100 U.S. workers. To accomplish the objective, STORM Development LLC teamed with Penn State University, SyCore, Inc, Spinworks LLC, and Schunk-INEX, Inc. The project consisted of component engineering and integration of the APH followed by parametric testing. All components of the system were tested in a lab furnace that simulates a full scale industrial installation. The target areas for development include: (1) Scale up STORM's Finned Stabilized Combustion, (2) Optimization of SyCore's SiGr Inserts such that the heat transfer on the exhaust leg will match the high luminosity burner leg., (3) Evaluation of the heat transfer characteristics of Schunk-INEX's finned composite tubes as a heat exchanger, and (4) Design of a system to monitor all components of the APH and control its performance such that the objectives are met.

Tom Briselden, Chris Parrish

2005-03-07T23:59:59.000Z

99

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network (OSTI)

heater storage tank wastes energy to continuous heating.fired water heater Total Energy Total Waste Emissions (Air)fired water heater Total Energy Total Waste Emissions (Air)

Lu, Alison

2011-01-01T23:59:59.000Z

100

Heater head for Stirling engine  

SciTech Connect

This patent describes a heater head for a Stirling engine comprising: a housing for enclosing the heater head with gas at a substantial elevated pressure; insulator means attached to the housing for insulating the heater head; inlet means attached to a regenerator in the housing for admission of relatively high pressure working fluid from the regenerator of a Stirling engine; a first annular heating wall in the housing attached to the inlet means for heating the working fluid; and, a second annular heating wall in the housing concentric with the first heating wall but of lesser diameters so that an annular space is formed between the first heating wall and the second heating wall for heating working fluid; and a third heating wall in the housing concentric with and smaller in diameter than the second heating wall forming the condensing area of a heat pipe between the second heating wall and the third heating wall.

White, M.A.; Emigh, S.G.

1987-06-09T23:59:59.000Z

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Conservation in Process Heaters  

E-Print Network (OSTI)

Energy savings in refinery and petrochemical fired heaters can basically be achieved in two ways: Thru optimization on energy use which can be done with small or no investments, or with extensive energy recovery systems. Various alternatives for the first case are given while the second concept is examined in more detail. Upgrading of heater efficiency should primarily aim at transferring as much energy as feasible to the actual process. When this is not possible the secondary target should be energy recycling in the combustion process by air preheating systems. The third possibility to re-use waste energy is recovery by utility systems like waste heat boilers. This paper gives an overview of different approaches to energy conservation in process heaters. It also includes the concepts, design considerations, apparatus, profitability aspects and actual operating experience.

Bagge, R. W.

1982-01-01T23:59:59.000Z

102

Feedwater Heater Technology Seminar and Symposium  

Science Conference Proceedings (OSTI)

Feedwater heater and associated systems performance strongly affects availability and heat rate in fossil and nuclear power plants. Fifteen papers were presented at a 2001 symposium to discuss industrial experience and case histories of feedwater heater problems and solutions.

2001-09-17T23:59:59.000Z

103

Storage Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Water Heaters Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Conventional storage water heaters remain the most popular type of water heating system for the home. Here you'll find basic information about how storage water heaters work; what criteria to use when selecting the right model; and some installation, maintenance, and safety tips. How They Work A single-family storage water heater offers a ready reservoir -- from 20 to

104

Energy Basics: Tankless Demand Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

only as needed and without the use of a storage tank. They don't produce the standby energy losses associated with storage water heaters. How Demand Water Heaters Work Demand...

105

Gas Swimming Pool Heaters | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

can be a good choice for pools that aren't used on a regular basis. Unlike heat pump and solar pool heaters, gas pool heaters can maintain any desired temperature regardless of...

106

Tankless or Demand-Type Water Heaters | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

or Demand-Type Water Heaters May 2, 2012 - 6:47pm Addthis Diagram of a tankless water heater. Diagram of a tankless water heater. How does it work? Tankless water heaters deliver...

107

Selecting a New Water Heater | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Selecting a New Water Heater Selecting a New Water Heater August 29, 2012 - 7:30pm Addthis Water heater testing facility at Oak Ridge National Laboratory. Water heater testing...

108

Tankless Coil and Indirect Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tankless Coil and Indirect Water Heaters Tankless Coil and Indirect Water Heaters August 19, 2013 - 3:03pm Addthis Illustration of a tankless coil water heater. The heater is...

109

Effect of attic ventilation on the performance of radiant barriers  

Science Conference Proceedings (OSTI)

The objective of the experiments was to quantify how attic ventilation would affect the performance of a radiant barrier. Ceiling heat flux and space cooling load were both measured. Results of side-by-side radiant barrier experiments using two identical 13.38 m[sup 2] (nominal) test houses are presented in this paper. The test houses responded similarly to weather variations. Indoor temperatures of the test houses were controlled to within 0.2 [degrees] C. Ceiling heat fluxes and space cooling load were within a 2.5 percent difference between both test houses. The results showed that a critical attic ventilation flow rate of 1.3 (1/sec)/m[sup 2] of the attic floor existed after which the percentage reduction in ceiling heat fluxes produced by the radiant barriers did not change with increasing attic airflow rates. The ceiling heat flux reductions produced by the radiant barriers were between 25 and 35 percent, with 28 percent being the percent reduction observed most often in the presence of attic ventilation. The space-cooling load reductions observed were between two to four percent. All results compiled in this paper were for attics with unfaced fiberglass insulation with a resistance level of 3.35 m[sup 2]K/W (nominal) and for a perforated radiant barrier with low emissivities (less than 0.05) on both sides.

Medina, M.A.; O'Neal, D.L. (Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering); Turner, W.D. (Texas A and M Univ., College Station, TX (United States). Coll. of Engineering)

1992-11-01T23:59:59.000Z

110

Solar Swimming Pool Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Swimming Pool Heaters Swimming Pool Heaters Solar Swimming Pool Heaters May 29, 2012 - 6:03pm Addthis An example of a solar pool heater. An example of a solar pool heater. You can significantly reduce swimming pool heating costs by installing a solar pool heater. They're cost competitive with both gas and heat pump pool heaters, and they have very low annual operating costs. Actually, solar pool heating is the most cost-effective use of solar energy in many climates. How They Work Most solar pool heating systems include the following: A solar collector -- the device through which pool water is circulated to be heated by the sun A filter -- removes debris before water is pumped through the collector A pump -- circulates water through the filter and collector and back to the pool A flow control valve -- automatic or manual device that diverts pool

111

Solar Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Basics Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat plate collector is connected to a tank called a solar storage/backup water heater by two pipes. One of these pipes runs through a cylindrical pump into the bottom of the tank, where it becomes a coil called a double-wall heat exchanger. This coil runs up through the tank and out again to the flat plate collector. Antifreeze fluid runs only through this collector loop. Two pipes run out the top of the water heater tank; one is a cold water supply into the tank, and the other sends hot water to the house. Solar water heaters use the sun's heat to provide hot water for a home or

112

Solar Swimming Pool Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Swimming Pool Heaters Solar Swimming Pool Heaters Solar Swimming Pool Heaters May 29, 2012 - 6:03pm Addthis An example of a solar pool heater. An example of a solar pool heater. You can significantly reduce swimming pool heating costs by installing a solar pool heater. They're cost competitive with both gas and heat pump pool heaters, and they have very low annual operating costs. Actually, solar pool heating is the most cost-effective use of solar energy in many climates. How They Work Most solar pool heating systems include the following: A solar collector -- the device through which pool water is circulated to be heated by the sun A filter -- removes debris before water is pumped through the collector A pump -- circulates water through the filter and collector and back to the pool

113

The Influence of Dust on the Absorptivity of Radiant Barriers  

E-Print Network (OSTI)

The purpose of this project was to model and quantify the increase of the absorptivity of radiant barriers caused by the accumulation of dust on the surface of radiant barriers. This research was the continuation of a previous work by the author at Texas A&M University in which a radiation energy balance inside the attic enclosure was developed. The particles were considered as flat, circular planes, all having the same radii. That early model showed that there was a linear relationship between the fraction of area of the foil covered by dust and the mean absorptivity of the dusty radiant barrier. In the present work, it was found that the assumption of treating the dust particles as plane circles, underestimated the effective area of the particles by about 20%. Experimental measurements indicated that dust particles achieved the same temperature as the radiant barrier. The new model used the linear relationship just described, and simulated the dust particles as flat circular planes having random radii and laying in random locations within the radiant barrier surface. The new model calculated the fraction of radiant barrier area covered by particles using a digital array in which the clean barrier was represented as zeroes and the dust particles were represented as a set of ones appropriately dimensioned inside the array. The experimentation used natural dust and Arizona Road Test Dust. Using an infrared emissometer, the emissivities (absorptivities) of the clean and dusty barriers were measured and using an electronic scale, the dust loading was measured. An electron microscope was used to experimentally find the fraction of radiant barrier covered by the dust particles to correlate the experimentally found absorptivity with the experimentally found fraction of dust coverage. The limited experimental data available were also used to correlate the absorptivity of the dusty radiant barrier with the time of dust accumulation and the location of the barrier inside the attic. A linear relationship between the absorptivity and the time of dust accumulation was found that can be applied to predict future barrier effectiveness based upon the rate of dust accumulation for a given location.

Noboa, Homero L.

1993-08-01T23:59:59.000Z

114

Welding shield for coupling heaters  

DOE Patents (OSTI)

Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

Menotti, James Louis (Dickinson, TX)

2010-03-09T23:59:59.000Z

115

Dust and Ventilation Effects on Radiant Barriers: Cooling Season Energy Measurements  

Science Conference Proceedings (OSTI)

This study on the effects of attic ventilation area and type and dust buildup on horizontal and truss radiant barriers in insulated homes can help utilities reduce cooling season electric energy requirements. Increasing the ventilation area ratio and changing ventilation types had little effect on radiant barrier performance. Dust did degrade performance, but insulated homes with radiant barriers still had lower energy requirements than those without radiant barriers.

1990-05-15T23:59:59.000Z

116

Fact Sheet Radiant barriers and interior radiation control  

E-Print Network (OSTI)

the insulation, the radiant barrier will lose most of its effectiveness in reducing heating and cooling loads in central Florida. Subsequent monitoring and data analysis showed cooling energy savings of 9%, peak load with air-conditioning ductwork in the attic in the deep south (such as in Miami in Zone 1 or Austin in Zone

Oak Ridge National Laboratory

117

Analysis of annual energy savings due to radiant barriers  

Science Conference Proceedings (OSTI)

Radiant barriers are receiving increasing attention as an energy conservation measure for residential buildings, especially for warmer climates. They are being actively promoted for use in residential attics, sometimes with exaggerated claims about savings in utility bills that will results from their installation. In order to provide consumers with factual information that would assist them in deciding upon an investment in a radiant barrier, the Department of Energy, along with an industry advisory panel, has developed a Radiant Barrier Fact Sheet. A major part of this fact sheet is estimates of energy savings that might be expected from radiant barriers in various climates. This paper presents the details of the methodology underlying the energy savings estimates, and gives a summary of values listed in the Fact Sheet. The energy savings estimates were obtained from calculations using a detailed attic thermal model coupled with DOE-2.1C. A life cycle cost analysis was performed to estimate the present value savings on utility fuel costs. The results show that the fuel cost savings vary significantly with the level of conventional insulation already in the attic and from one climate to another.

Wilkes, K.E.

1990-01-01T23:59:59.000Z

118

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network (OSTI)

market research on solar water heaters. National Renewablespace heaters, and solar water heaters, as well as other

Lekov, Alex

2011-01-01T23:59:59.000Z

119

Lid heater for glass melter  

DOE Patents (OSTI)

This invention is comprised of a glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes.

Phillips, T.D.

1992-12-31T23:59:59.000Z

120

Lid heater for glass melter  

DOE Patents (OSTI)

A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes. 3 figures.

Phillips, T.D.

1993-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Joint used for coupling long heaters  

DOE Patents (OSTI)

Systems for coupling ends of elongated heaters and methods of using such systems to treat a subsurface formation are described herein. A system may include two elongated heaters with an end portion of one heater abutted or near to an end portion of the other heater and a core coupling material. The core coupling material may extend between the two elongated heaters. The elongated heaters may include cores and at least one conductor substantially concentrically surrounds the cores. The cores may have a lower melting point than the conductors. At least one end portion of the conductor may have a beveled edge. The gap formed by the beveled edge may be filled with a coupling material for coupling the one or more conductors. One end portion of at least one core may have a recessed opening and the core coupling material may be partially inside the recessed opening.

Menottie, James Louis

2013-02-26T23:59:59.000Z

122

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

market research on solar water heaters. National Renewabletankless combined space/water heaterds, solar water heaters,combined solar space/water heater, electric water heaters

Lekov, Alex B.

2010-01-01T23:59:59.000Z

123

Condensing Hybrid Water Heater Monitoring Field Evaluation  

Science Conference Proceedings (OSTI)

This paper summarizes the Mascot home, an abandoned property that was extensively renovated. Several efficiency upgrades were integrated into this home, of particular interest, a unique water heater (a Navien CR240-A). Field monitoring was performed to determine the in-use efficiency of the hybrid condensing water heater. The results were compared to the unit's rated efficiency. This unit is Energy Star qualified and one of the most efficient gas water heaters currently available on the market.

Maguire, J.; Earle, L.; Booten, C.; Hancock, C. E.

2011-10-01T23:59:59.000Z

124

Storage Water Heaters | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of iStockphoto...

125

The LBNL Water Heater Retail Price Database  

SciTech Connect

Lawrence Berkeley National Laboratory developed the LBNL Water Heater Price Database to compile and organize information used in the revision of U.S. energy efficiency standards for water heaters. The Database contains all major components that contribute to the consumer cost of water heaters, including basic retail prices, sales taxes, installation costs, and any associated fees. In addition, the Database provides manufacturing data on the features and design characteristics of more than 1100 different water heater models. Data contained in the Database was collected over a two-year period from 1997 to 1999.

Lekov, Alex; Glover, Julie; Lutz, Jim

2000-10-01T23:59:59.000Z

126

Parallel heater system for subsurface formations  

DOE Patents (OSTI)

A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

Harris, Christopher Kelvin (Houston, TX); Karanikas, John Michael (Houston, TX); Nguyen, Scott Vinh (Houston, TX)

2011-10-25T23:59:59.000Z

127

Field Monitoring Protocol: Heat Pump Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Monitoring Protocol: Heat Pump Water Heaters B. Sparn, L. Earle, D. Christensen, J. Maguire, and E. Wilson National Renewable Energy Laboratory C.E. Hancock Mountain Energy...

128

DOE_Water_Heater_Meeting_111612.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the request for information "... Energy Conservation Standards for Residential Water Heaters", the comments filed therein, and follow-up items from a previous meeting on...

129

Energy Saving Absorption Heat Pump Water Heater  

energy savings and can reduce the use of fossil fuels by buildings. While conventional heat pump water heater designs are limited to using toxic ammonia water ...

130

Heat Pump Water HeatersLaboratory Tests  

Science Conference Proceedings (OSTI)

EPRI conducted laboratory tests of several heat pump water heaters to assess their performance and energy efficiency. Among U.S. heat pump water heaters tested were new products from A. O. Smith, General Electric (GE), and Rheem. These units are designed to be integral, drop-in replacements for standard electric water heaters. Additionally, EPRI tested the Japanese-based Eco-cute heat pump water heater from Daikin, which is a split unit with an outdoor heat pump using CO2 as the refrigerant and an indoor...

2009-12-11T23:59:59.000Z

131

Innovative heat exchangers for solar water heaters.  

E-Print Network (OSTI)

??The performance of two innovative collector-loop heat exchangers used in pumped circulation solar water heaters was investigated experimentally and numerically, and TRNSYS simulation models were (more)

Soo Too, Yen Chean

2007-01-01T23:59:59.000Z

132

Combustion heater for oil shale  

DOE Patents (OSTI)

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

1983-09-21T23:59:59.000Z

133

Combustion heater for oil shale  

DOE Patents (OSTI)

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

1985-01-01T23:59:59.000Z

134

SINGLE HEATER TEST FINAL REPORT  

SciTech Connect

The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied not just to the hardware, but also to the teamwork and cooperation between multiple organizations performing their part in the test.

J.B. Cho

1999-05-01T23:59:59.000Z

135

Design of a 6- by 6-foot coal-fired heater for a CCGT air heater  

Science Conference Proceedings (OSTI)

Coal-fired heaters for closed-cycle gas turbine have been designed and tested. One of the heater concepts employs the atmospheric pressure fluidized bed coal combustion process. The paper describes a research-oriented bed for the research program. Details are described and discussed of such heaters for cogeneration applications. 2 refs.

Russell, L.H.; Campbell, J. Jr.

1982-01-01T23:59:59.000Z

136

Radiant barriers in houses: Energy, comfort, and moisture considerations in a northern climate  

Science Conference Proceedings (OSTI)

The purpose of this study was to determine the conditions under which radiant barrier utilization in attics is appropriate technology in building construction for a northern climate in Utah. A sample of 12 appropriate houses with radiant barriers were selected using predetermined criteria. Another 12 houses without radiant barriers were selected as a control sample and paired with the first 12 houses using predetermined criteria. The research involved three different types of data and analyses. First, a questionnaire survey was completed by the occupants of the 12 sample houses, with radiant barriers. The survey included such factors as: (1) comfort, (2) energy, and (3) potential increased moisture content as perceived by the occupants. Second, a t-test was used to calculate the statistical comparison of utility usage between the 12 sample houses with radiant barriers and the 12 control houses without radiant barriers. Third, the moisture content of the wood framing above and below the radiant barriers was measured over a three month period during the winter months. Data analysis indicated: (1) occupants did perceive that more comfort resulted from the installation of radiant barriers, (2) occupants did not observe additional moisture artifacts after the installation of radiant barriers, (3) occupants did perceive cost savings from utility benefits resulting from the use of radiant barriers, especially in cooling the houses in summer, (4) there was no significant difference between utility usage of houses with radiant barriers and houses without radiant barriers, (5) the moisture content in the ceiling joists of all 24 houses, except one, had a moisture content measurement less than eight percent, and (6) houses with radiant barriers have higher humidity levels within the living space than houses without radiant barrier installation.

Mendenhall, R.L.

1990-01-01T23:59:59.000Z

137

National solar water heater workshop  

Science Conference Proceedings (OSTI)

The National Solar Water Heater Workshop (NSWHW) program directly resolves the major problem inhibiting the widespread application of solar energy for domestic water heating - that of bridging the gap, by an educational program, between well-known solar technology and the application of that technology. This is accomplished by workshop sponsors throughout the nation, conducting workshops to educate homeowners on solar principles, and installation, operation, and maintenance of their solar system. During a workshop, students personally fabricate two or more collectors and complete a plumbing subsystem, all of which have been developed and specified by Arizona State University (ASU). The program appeals to do-it-yourselfers and handyman type persons who by their example become strong solar advocates to their neighbors and acquaintances. A market for the commercial solar industry is thus also generated as other homeowners acquire installed systems from the local solar industry. A central thrust of this program is the establishment of local solar hardware suppliers who can supply the demand of the students for solar hardware kits. This is a DOE program approved for 2 years and is funded at $600,000 for the first year with $400,000 to be funded for the second year. At the end of 2 years, it is envisioned that 50,000 domestic solar water heaters will have been installed throughout the nation and trust territories which will result in savings in the order of 131 million kWh, 447 billion Btu and 8 million dollars.

Mumma, S.A.; Ashland, M.

1981-01-01T23:59:59.000Z

138

Base load fuel comsumption with radiant boiler simulation  

Science Conference Proceedings (OSTI)

The operating point of an oil fired radiant boiler, 580 Megawatt capacity, is critical in maximizing the availability, performance, reliability, and maintainability of a power producing system. Operating the unit above the design operating point causes outages to occur sooner than scheduled. When the boiler is operated below the design operating point, fuel is wasted because the quantity of fuel required to operate a radiant boiler is the same, whether the design setpoint is maintained or not. This paper demonstrates by means of simulation software that the boiler design setpoints is critical to fuel consumption and optimum output megawatts. A boiler with this capacity is used to provide a portion of the base load of an electric utility in order to sustain revenues and maintain reliable generation.

Shwehdi, M.H. (Pennsylvania State Univ., Wilkes-Barre, Lehman, PA (United States)); Hughes, C.M. (Naval Aviation Depot, NAS Jacksonville, Jacksonville, FL (United States)); Quasem, M.A. (Howard Univ. School of Business, Washington, DC (United States))

1992-12-01T23:59:59.000Z

139

EPRI Feedwater Heater Technology Conference Proceedings  

Science Conference Proceedings (OSTI)

This report documents the proceedings of EPRI's 2013 Feedwater Heater Technology Conference.BackgroundFeedwater heaters and associated systems cause significant loss of availability and heat rate degradation in both nuclear and fossil-fired power plants. Improving design, materials, and operation and maintenance practices can correct most losses. EPRI, utility members, equipment manufacturers, and others have worked to improve system reliability, ...

2013-09-30T23:59:59.000Z

140

Subsurface connection methods for subsurface heaters  

DOE Patents (OSTI)

A system for heating a subsurface formation is described. The system includes a first elongated heater in a first opening in the formation. The first elongated heater includes an exposed metal section in a portion of the first opening. The portion is below a layer of the formation to be heated. The exposed metal section is exposed to the formation. A second elongated heater is in a second opening in the formation. The second opening connects to the first opening at or near the portion of the first opening below the layer to be heated. At least a portion of an exposed metal section of the second elongated heater is electrically coupled to at least a portion of the exposed metal section of the first elongated heater in the portion of the first opening below the layer to be heated.

Vinegar, Harold J. (Bellaire, TX); Bass, Ronald Marshall (Houston, TX); Kim, Dong Sub (Sugar Land, TX); Mason, Stanley Leroy (Allen, TX); Stegemeier, George Leo (Houston, TX); Keltner, Thomas Joseph (Spring, TX); Carl, Jr., Frederick Gordon (Houston, TX)

2010-12-28T23:59:59.000Z

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Rebate Program Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Rebate Program < Back Eligibility...

142

Salem Electric - Solar Water Heater Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Rebate Salem Electric - Solar Water Heater Rebate Eligibility Residential Savings For Heating & Cooling Solar Water Heating Program Information Oregon Program...

143

HVAC Water Heater Field Tests Research Project | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Water Heater Field Tests Research Project HVAC Water Heater Field Tests Research Project The U.S. Department of Energy is currently conducting research into heating,...

144

Ex Parte Memorandum on Grid-Enabled Water Heaters | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

met with DOE representatives regarding water heater standards and thermal storage and demand response programs. DOE exparte memo100213 Grid-EnabledWaterHeaterAmendment...

145

Payback Analysis of Design Options for Residential Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Payback Analysis of Design Options for Residential Water Heaters Title Payback Analysis of Design Options for Residential Water Heaters Publication Type Report LBNL Report Number...

146

TVA Partner Utilities - Energy Right Water Heater Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heater Program Eligibility InstallerContractor Residential Utility Savings For Appliances & Electronics Water Heating Maximum Rebate Member utility water heater rebate...

147

Solar Water Heater Roadmap Leads Path to Market Expansion (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative strategy to reduce installed cost of solar water heater systems can rival conventional natural gas water heaters in the marketplace. Researchers in the Residential...

148

Space Heaters, Computers, Cell Phone Chargers: How Plugged In...  

NLE Websites -- All DOE Office Websites (Extended Search)

Space Heaters, Computers, Cell Phone Chargers: How Plugged In Are Commercial Buildings? Title Space Heaters, Computers, Cell Phone Chargers: How Plugged In Are Commercial...

149

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network (OSTI)

Study on Eco-Design of Water Heaters, Van Holstein en Kemnaand Assessment in Water Heating Rulemaking TechnicalG. Smith, Tankless Gas Water Heaters: Oregon Market Status,

Lu, Alison

2011-01-01T23:59:59.000Z

150

Tankless or Demand-Type Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tankless or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters May 2, 2012 - 6:47pm Addthis Diagram of a tankless water heater. Diagram of a tankless water heater. How does it work? Tankless water heaters deliver hot water as it is needed, eliminating the need for storage tanks. Tankless water heaters, also known as demand-type or instantaneous water heaters, provide hot water only as it is needed. They don't produce the standby energy losses associated with storage water heaters, which can save you money. Here you'll find basic information about how they work, whether a tankless water heater might be right for your home, and what criteria to use when selecting the right model. Check out the Energy Saver 101: Water Heating infographic to learn if a tankless water heater is right for you.

151

Particulate matter sensor with a heater  

DOE Patents (OSTI)

An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

Hall, Matthew (Austin, TX)

2011-08-16T23:59:59.000Z

152

Comparison of Zone Cooling Load for Radiant and All-Air Conditioning Systems  

E-Print Network (OSTI)

Load for Radiant and Air Conditioning Systems. ProceedingsRefrigerating and Air Conditioning Engineers Inc. Babiak,of European Heating ahd Air-Conditioning Associations. CEN (

Feng, Jingjuan; Schiavon, Stefano; Bauman, Fred

2012-01-01T23:59:59.000Z

153

Radiant energy collection and conversion apparatus and method  

SciTech Connect

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

Hunt, Arlon J. (Oakland, CA)

1982-01-01T23:59:59.000Z

154

Solar Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heaters Solar Water Heaters Solar Water Heaters May 7, 2012 - 9:52am Addthis Solar water heaters -- also called solar domestic hot water systems -- can be a cost-effective way to generate hot water for your home. They can be used in any climate, and the fuel they use -- sunshine -- is free. How They Work Solar water heating systems include storage tanks and solar collectors. There are two types of solar water heating systems: active, which have circulating pumps and controls, and passive, which don't. Active Solar Water Heating Systems There are two types of active solar water heating systems: Direct circulation systems Pumps circulate household water through the collectors and into the home. They work well in climates where it rarely freezes. Indirect circulation systems

155

Solar water heaters | Open Energy Information  

Open Energy Info (EERE)

heaters heaters Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of Solar Water Heating technology.)[1] Solar Water Heater One of the most cost-effective ways to include renewable technologies into a building is by incorporating solar hot water. A typical residential solar water-heating system reduces the need for conventional water heating by about two-thirds. It minimizes the expense of electricity or fossil fuel to heat the water and reduces the associated environmental impacts. Solar Water Heating for Buildings Most solar water-heating systems for buildings have two main parts: (1) a solar collector and (2) a storage tank. The most common collector used in solar hot water systems is the flat-plate collector. Solar water heaters use the sun to heat either water

156

Tankless Water Heaters: Do They Really Work?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tankless Water Heaters: Do They Tankless Water Heaters: Do They Really Work? Center for Energy and Environment, NorthernSTAR, Ben Schoenbauer Context * Domestic Water Heating is the next big residential energy in efficiency. - Space heating loads are being reduced - Largest peak load in almost all homes is water heating - Annual water heating load is larger than annual space heating load in many homes - Most DHW equipment is inefficiency 50-60% Technical Approach * TWHs and condensing TWHs have significant energy savings potential - Do these ratings relate to real world performance? - How do TWHs compare to standard water heaters? - What performance/install issues do they have? * 10 home 26 water heater alternating mode field study was conducted Recommended Guidance * In situations where economics are

157

Gas Swimming Pool Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You'll probably need to tune up your pool heater annually. Also, scaling in the burner or heat exchanger may decrease efficiency over a period of time. With proper installation and...

158

Tankless Coil and Indirect Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Tankless coil and indirect water heaters use a home or building's space heating system to heat water as part of an integrated or combination water and space heating system.

159

Heater head for a Stirling engine  

Science Conference Proceedings (OSTI)

A heater head is described for a compound Stirling engine modules, each including a displacer cylinder coaxially aligned with the displacer cylinder of the other of the engine modules, a displacer piston mounted for reciprocation in the displacer cylinder.

Darooka, D.K.

1988-09-06T23:59:59.000Z

160

Heat Pump Water Heaters Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Water Heaters Heat Pump Water Heaters Demonstration Project Building America Stakeholder Meeting Ron Domitrovic Ammi Amarnath 3/1/2012 Austin, TX 2 © 2011 Electric Power Research Institute, Inc. All rights reserved. HPWH Field Demonstration: Research Objectives * Assess heat pump water heater technology by measuring efficiency. * Provide credible data on the performance and reliability of heat pump water heaters. * Assess user satisfaction in a residential setting. 3 © 2011 Electric Power Research Institute, Inc. All rights reserved. Demonstration Host Utilities Target: 40 Units per Utility Installed and Potential Sites by Climate Zone Source: Department of Energy (DOE), Building America climate regions 4 © 2011 Electric Power Research Institute, Inc. All rights reserved. Installation Locations-Southern Company Region

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Super-Radiant Mechanism, Doorway States, and Nuclear Reactions  

SciTech Connect

In 1954 the possibility of forming a 'super-radiant' (SR) state in a gas of atoms confined to a volume of a size smaller than the wave length of radiation was suggested by Dicke. The atoms, with two levels, are coupled through their common radiation field. This indirect coupling leads to a redistribution of decay widths among unstable intrinsic states. A strongly decaying SR state is created at the expense of the rest of the states of the system. The connection of this mechanism to the notion of doorway states in low-energy nuclear reactions is discussed and applications to well known nuclear physics phenomena are presented.

Auerbach, Naftali [School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 69978 (Israel)

2010-11-24T23:59:59.000Z

162

Radiant Energy Power Source for Jet Aircraft. Final performance report  

DOE Green Energy (OSTI)

This report beings with a historical overview on the origin and early beginnings of Radiant Energy Power Source for Jet Aircraft. The report reviews the work done in Phase I (Grant DE-FG01-82CE-15144) and then gives a discussion of Phase II (Grant DE-FG01-86CE-15301). Included is a reasonably detailed discussion of photovoltaic cells and the research and development needed in this area. The report closes with a historical perspective and summary related to situations historically encountered on projects of this nature. 15 refs.

Doellner, O.L.

1992-02-01T23:59:59.000Z

163

Sizing a New Water Heater | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sizing a New Water Heater Sizing a New Water Heater Sizing a New Water Heater May 29, 2012 - 7:16pm Addthis Is your water heater the right size for you house? | Photo credit ENERGY STAR® Is your water heater the right size for you house? | Photo credit ENERGY STAR® A properly sized water heater will meet your household's hot water needs while operating more efficiently. Therefore, before purchasing a water heater, make sure it's the correct size. Here you'll find information about how to size these systems: Tankless or demand-type water heaters Solar water heating system Storage and heat pump (with tank) water heaters. For sizing combination water and space heating systems -- including some heat pump systems, and tankless coil and indirect water heaters -- consult a qualified contractor.

164

Selecting a New Water Heater | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selecting a New Water Heater Selecting a New Water Heater Selecting a New Water Heater August 29, 2012 - 7:30pm Addthis Water heater testing facility at Oak Ridge National Laboratory. Water heater testing facility at Oak Ridge National Laboratory. When selecting a new water heater for your home, choose a water heating system that will not only provide enough hot water but also that will do so energy efficiently, saving you money. This includes considering the different types of water heaters available and determining the right size and fuel source for your home. Check out the Energy Saver 101: Water Heating infographic to learn more about the different types of water heaters and how to select the right model for your home. Types of Water Heaters It's a good idea to know the different types of water heaters available

165

Diesel particulate filter with zoned resistive heater  

Science Conference Proceedings (OSTI)

A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

Gonze, Eugene V [Pinckney, MI

2011-03-08T23:59:59.000Z

166

Strategy Guideline: Proper Water Heater Selection  

Science Conference Proceedings (OSTI)

This strategy guideline provides step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads. These procedures, developed both for individual water heater applications (both single and multi-family) and multifamily central systems, provide users with projections on operating cost savings over a 10-year time horizon for retrofit applications and on a cash flow basis for new construction.

Hoeschele, M.; Springer, D.; German, A.; Staller, J.; Zhang, Y.

2012-08-01T23:59:59.000Z

167

Heat Pump Water Heaters for Commercial Buildings  

Science Conference Proceedings (OSTI)

This technical update from the Electric Power Research Institute (EPRI) reviews the technology of heat pump water heaters (HPWHs) for commercial building applications. The report discusses the technical and conceptual background of heat pump water heaters, laboratory testing as performed at EPRI's laboratory, and implications of the test results. It provides analysis of the climactic applicability, financial scenarios, the air-cooling benefit or detriment of HPWH technology.

2011-12-22T23:59:59.000Z

168

Dampers for Natural Draft Heaters: Technical Report  

Science Conference Proceedings (OSTI)

Energy required for water heating accounts for approximately 40percent of national residential natural gas consumption in California. With water heating contributing such a substantial portion of natural gas consumption, it is important to pay attention to water heater efficiencies. This paper reports on an investigation of a patented, buoyancy-operated flue damper. It is an add-on design to a standard atmospherically vented natural-draft gas-fired storage water heater. The flue damper was expected to reduce off-cycle standby losses, which would lead to improvements in the efficiency of the water heater. The test results showed that the Energy Factor of the baseline water heater was 0.576. The recovery efficiency was 0.768. The standby heat loss coefficient was 10.619 (BTU/hr-oF). After the damper was installed, the test results show an Energy Factor for the baseline water heater of 0.605. The recovery efficiency was 0.786. The standby heat loss coefficient was 9.135 (BTU/hr-oF). The recovery efficiency increased 2.3percent and the standby heat loss coefficient decreased 14percent. When the burner was on, the baseline water heater caused 28.0 CFM of air to flow from the room. During standby, the flow was 12.4 CFM. The addition of the damper reduced the flow when the burner was on to 23.5 CFM. During standby, flow with the damper was reduced to 11.1 CFM. The flue damper reduced off-cycle standby losses, and improved the efficiency of the water heater. The flue damper also improved the recovery efficiency of the water heater by restricting on-cycle air flows through the flue.With or without the flue damper, off-cycle air flow upthe stack is nearly half the air flow rate as when the burner is firing.

Lutz, James D.; Biermayer, Peter; King, Derek

2008-10-27T23:59:59.000Z

169

Cooling-energy measurements of unoccupied single-family houses with attics containing radiant barriers  

Science Conference Proceedings (OSTI)

Tests were conducted by Oak Ridge National Laboratory (ORNL) to determine the magnitude of the energy savings brought about by installing radiant barriers in the attics of single-family houses. The radiant barrier used for this test is a product with two reflective aluminum surfaces on a kraft paper base. The purpose of the radiant barrier is to reduce the radiant heat transfer component impinging on the fiberglass attic insulation. The radiant barrier works as a system in conjunction with an air space and can theoretically block up to 95% of far-infrared radiation heat transfer. The experiment was conducted in three unoccupied research houses that are operated by ORNL. Two variations on the installation of radiant barriers were studied. One house was used as the control house (no barrier was installed), while the other two were used to test the two different methods for installing the radiant barriers. In one house the barrier was laid on top of the attic fiberglass batt insulation, and in the other house, the barrier was attached to the underside of the roof trusses. The attics of all three houses were insulated with kraft-paper-faced R-19 fiberglass batt insulation. The results showed a savings in the cooling loads of 21% when the radiant barrier was laid on top of the attic fiberglass insulation and 13% with the radiant barrier attached to the underside of the roof trusses. The savings in electrical consumption were 17% and 9%, respectively. The electrical consumption data and the cooling load data indicate that the most effective way of installing the foil is to lay it on top of the fiberglass insulation. The radiant barriers reduced the measured peak ceiling heat fluxes by 39% for the case where the barrier was laid on top of the fiberglass insulation. The radiant barrier reduced the integrated heat flows from the attic to the house by approximately 30 to 35% over a 7-day time period.

Levins, W.P.; Karnitz, M.A.

1986-07-01T23:59:59.000Z

170

Economic Analysis of Solar Water Heaters in GuangZhou  

E-Print Network (OSTI)

As a mature applied technology, the largest obstacle to the promotion of the solar water heater is the high initial investment that makes an impact on consumers' choices. The initial investment and maintenance cost of the solar water heater,gas water heater and electrical water heater in Guangzhou was compared and the Annual Cost Calculation Method (ACCM)was introduced to explain the remarkable economic benefits. The social benefits of the solar water heater were introduced from a scientific view.

Wang, Y.; Zhao, L.

2006-01-01T23:59:59.000Z

171

Thermal radiant exitance model performance: Soils and forests  

DOE Green Energy (OSTI)

Models of surface temperatures of two land surface types based on their energy budgets were developed to simulate the effects of environmental factors on thermal radiant exitance. The performance of these models is examined in detail. One model solves the non-linear differential equation for heat diffusion in solids using a set of submodels for surface energy budget components. The model performance is examined under three desert conditions thought to be a strong test of the submodels. The accuracy of the temperature predictions and submodels is described. The accuracy of the model is generally good but some discrepancies between some of the submodels and measurements are noted. The sensitivity of the submodels is examined and is seen to be strongly controlled by interaction and feedback among energy components that are a function of surface temperature. The second model simulates vegetation canopies with detailed effects of surface geometry on radiant transfer in the canopy. Foliage solar absorption coefficients are calculated using a radiosity approach for a three layer canopy and long wave fluxes are modeled using a view factor matrix. Sensible and latent heat transfer through the canopy are also simulated using, nearby meteorological data but heat storage in the canopy is not included. Simulations for a coniferous forest canopy are presented and the sensitivity of the model to environmental inputs is discussed.

Balick, L.K. [EG& G Energy Measurements Inc., Las Vegas, NV (United States); Smith, J.A. [NASA/Goddard Space Flight Center, Greenbelt, MD (United States). Lab. for Terrestrial Physics

1995-12-31T23:59:59.000Z

172

Radiant heat transfer from storage casks to the environment  

SciTech Connect

A spent fuel storage cask must efficiently transfer the heat released by the fuel assemblies through the cask walls to the environment. This heat must be transferred through passive means, limiting the energy transfer mechanisms from the cask to natural convection and radiation heat transfer.. Natural convection is essentially independent of the characteristics of the array of casks, provided there is space between casks to permit a convection loop. Radiation heat transfer, however, depends on the geometric arrangement of the array of casks because the peripheral casks will shadow the interior casks and restrict radiant heat transfer from all casks to the environment. The shadowing of one cask by its neighbors is determined by a view factor that represents the fraction of radiant energy that leaves the surface of a cask and reaches the environment. This paper addresses the evaluation of the view factor between a centrally located spent fuel storage cask and the environment. By combining analytic expressions for the view factor of (1) infinitely long cylinders and (2) finite cylinders with a length-to-diameter ratio of 2 to represent spent fuel storage casks, the view factor can be evaluated for any practical array of spent fuel storage casks.

Carlson, R W; Hovingh, J; Thomas, G R

1999-05-10T23:59:59.000Z

173

Cooling season energy measurements of dust and ventilation effects on radiant barriers  

Science Conference Proceedings (OSTI)

Cooling season tests were conducted in three unoccupied ranch-style houses in Karns, Tennessee, to determine the effects on attic radiant barrier performance incurred by changes in attic ventilation area ratio, attic ventilation type, and the buildup of dust on horizontal radiant barriers. All three houses had R-19 fiberglass batt insulation in their attics. Horizontal radiant barriers were artificially dusted and the dusted barriers showed measurable performance degradations, although the dusted barriers were still superior to no radiant barriers. Dust loadings of 0.34 and 0.74 mg/cm{sup 2} reduced a clean radiant barrier surface emissivity of 0.055 to 0.125 and 0.185, respectively. Total house cooling load increases amounted to 2.3 and 8.4% compared to house loads with clean horizontal barriers, respectively. When compared to R-19 with no horizontal radiant barrier conditions, the dusted horizontal radiant barriers reduced cooling loads by about 7%. Testing showed that increasing the attic ventilation area ratio from the minimum recommended of 1/300 (1 ft{sup 2} of effective ventilation area per 300 ft{sup 2} of attic area) to 1/150 had little if any effect on the house cooling load with either truss or horizontal barriers present in the attics. Radiant barriers, however, still reduced the house cooling load. 18 refs., 17 figs., 26 tabs.

Levins, W.P.; Karnitz, M.A. (Oak Ridge National Lab., TN (USA)); Hall, J.A. (Tennessee Valley Authority, Chattanooga, TN (USA))

1990-03-01T23:59:59.000Z

174

Heating energy measurements of unoccupied single-family houses with attics containing radiant barriers  

Science Conference Proceedings (OSTI)

Tests were conducted by Oak Ridge National Laboratory (ORNL) to determine the magnitude of the heating energy savings achieved by installing attic radiant barriers. The radiant barriers used for the test consist of a material with two reflective aluminum surfaces on a kraft paper base. The experiment was conducted in three unoccupied research houses operated by ORNL. Two variations in the installation of radiant barriers were studied. One house was used as the control house (no barrier was installed), while the other two were used to test the two methods for installing the radiant barriers. In one house, the radiant barrier was laid on top of the attic fiberglass batt insulation, and in the other house, the barrier was attached to the underside of the roof trusses. The attics of all three houses were insulated with a kraft-paper-faced R-19 fiberglass batt insulation. The winter test with the radiant barrier showed that the horizontal barrier was able to save space-heating electical energy in both the resistance and heat pump modes amounting to 10.1% and 8.5%, respectively. The roof truss radiant barrier increased consumption by 2.6% in the resistance mode and 4.0% in the heat pump mode. The horizontal orientation of the radiant barrier is the more energy-effective method of installation.

Levins, W.P.; Karnitz, M.A.

1987-01-01T23:59:59.000Z

175

Analysis of Annual Thermal and Moisture Performance of Radiant Barrier Systems  

Science Conference Proceedings (OSTI)

A detailed thermal energy analysis model helps identify locations where radiant barriers are cost-effective while analyzing moisture performance to predict potential problem areas. The model described in this report estimates annual energy savings and moisture accumulation rates from horizontal radiant barrier applications in a variety of climates.

1991-09-03T23:59:59.000Z

176

Analysis of annual thermal and moisture performance of radiant barrier systems  

Science Conference Proceedings (OSTI)

This report summarizes a project to model the annual thermal and moisture performance of radiant barrier systems installed in residential attics. A previously developed model for the thermal performance of attics with radiant barriers was modified to allow estimates of moisture condensation on the underside of radiant barriers that are laid directly on top of existing attic insulation. The model was partially validated by comparing its predictions of ceiling heat flows and moisture condensation with data and visual observations made during a field experiment with full-size houses near Knoxville, Tennessee. Since the model predictions were found to be in reasonable agreement with the experimental data, the models were used to estimate annual energy savings and moisture accumulation rates for a wide variety of climatic conditions. The models results have been used to identify locations where radiant barriers are cost effective and also where radiant barriers have potential for causing moisture problems. 58 refs., 20 figs., 32 tabs.

Wilkes, K.E.

1991-04-01T23:59:59.000Z

177

Thermal performance of clean horizontal radiant barriers under winter conditions: Laboratory measurements and mathematical modeling  

Science Conference Proceedings (OSTI)

Several field experiments have been performed on attic radiant barriers under winter conditions; however, most of them have been confined to the fairly mild climates of Florida, Oklahoma, and Tennessee. Only one field experiment in a very cold climate (Canada) has been performed. In addition, no previous laboratory experiments under winter conditions have been performed on an attic both with and without a radiant barrier. This paper presents the results of laboratory measurements of the thermal performance of clean horizontal radiant barriers in a simulated residential attic module under nighttime or low solar gain daytime winter conditions. Comparing tests under the same conditions with and without a radiant barrier shows that the addition of a clean horizontal radiant barrier to insulation at the R-22 to R-25 level decreases the ceiling heat flow by 6 to 8%. The experimental results were found to be in very good agreement with predictions made with a mathematical model for the thermal performance of attics.

Wilkes, K.E.; Childs, P.W.

1992-01-01T23:59:59.000Z

178

Analysis of annual thermal and moisture performance of radiant barrier systems  

Science Conference Proceedings (OSTI)

This report summarizes a project to model the annual thermal and moisture performance of radiant barrier systems installed in residential attics. A previously developed model for the thermal performance of attics with radiant barriers was modified to allow estimates of moisture condensation on the underside of radiant barriers that are laid directly on top of existing attic insulation. The model was partially validated by comparing its predictions of ceiling heat flows and moisture condensation with data and visual observations made during a field experiment with full-size houses near Knoxville, Tennessee. Since the model predictions were found to be in reasonable agreement with the experimental data, the models were used to estimate annual energy savings and moisture accumulation rates for a wide variety of climatic conditions. The model results have been used to identify locations where radiant barriers are cost effective and also where radiant barriers have potential for causing moisture problems. 58 refs., 20 figs., 32 tabs.

Wilkes, K.E. (Oak Ridge National Lab., TN (United States))

1991-08-01T23:59:59.000Z

179

Thermal performance of clean horizontal radiant barriers under winter conditions: Laboratory measurements and mathematical modeling  

Science Conference Proceedings (OSTI)

Several field experiments have been performed on attic radiant barriers under winter conditions; however, most of them have been confined to the fairly mild climates of Florida, Oklahoma, and Tennessee. Only one field experiment in a very cold climate (Canada) has been performed. In addition, no previous laboratory experiments under winter conditions have been performed on an attic both with and without a radiant barrier. This paper presents the results of laboratory measurements of the thermal performance of clean horizontal radiant barriers in a simulated residential attic module under nighttime or low solar gain daytime winter conditions. Comparing tests under the same conditions with and without a radiant barrier shows that the addition of a clean horizontal radiant barrier to insulation at the R-22 to R-25 level decreases the ceiling heat flow by 6 to 8%. The experimental results were found to be in very good agreement with predictions made with a mathematical model for the thermal performance of attics.

Wilkes, K.E.; Childs, P.W.

1992-08-01T23:59:59.000Z

180

Performance Study of Swimming Pool Heaters  

Science Conference Proceedings (OSTI)

The objective of this report is to perform a controlled laboratory study on the efficiency and emissions of swimming pool heaters based on a limited field investigation into the range of expected variations in operational parameters. Swimming pool heater sales trends have indicated a significant decline in the number of conventional natural gas-fired swimming pool heaters (NGPH). On Long Island the decline has been quite sharp, on the order of 50%, in new installations since 2001. The major portion of the decline has been offset by a significant increase in the sales of electric powered heat pump pool heaters (HPPH) that have been gaining market favor. National Grid contracted with Brookhaven National Laboratory (BNL) to measure performance factors in order to compare the relative energy, environmental and economic consequences of using one technology versus the other. A field study was deemed inappropriate because of the wide range of differences in actual load variations (pool size), geographic orientations, ground plantings and shading variations, number of hours of use, seasonal use variations, occupancy patterns, hour of the day use patterns, temperature selection, etc. A decision was made to perform a controlled laboratory study based on a limited field investigation into the range of expected operational variations in parameters. Critical to this are the frequency of use, temperature selection, and sizing of the heater to the associated pool heating loads. This would be accomplished by installing a limited amount of relatively simple compact field data acquisition units on selected pool installations. This data included gas usage when available and alternately heater power or gas consumption rates were inferred from the manufacturer's specifications when direct metering was not available in the field. Figure 1 illustrates a typical pool heater installation layout.

McDonald, R.J.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Tankless Coil and Indirect Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coil and Indirect Water Heater Basics Coil and Indirect Water Heater Basics Tankless Coil and Indirect Water Heater Basics August 19, 2013 - 3:03pm Addthis Illustration of a tankless coil water heater. The heater is box-shaped, and has two pipes sticking out one end: one a cold water inlet, and one a hot water outlet. These pipes lead into the heater to a cylindrical coil called a heat exchanger. Long tubes surrounding the heat exchanger are labeled the heated water jacket. At the bottom of the box is a row of small flames, called the boiler heat source. Tankless coil and indirect water heaters use a home or building's space heating system to heat water as part of an integrated or combination water and space heating system. How Tankless Coil and Indirect Water Heaters Work A tankless coil water heater uses a heating coil or heat exchanger

182

Tankless Coil and Indirect Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tankless Coil and Indirect Water Heaters Tankless Coil and Indirect Water Heaters Tankless Coil and Indirect Water Heaters May 16, 2013 - 7:21pm Addthis An indirect water heater. An indirect water heater. How does it work? Tankless coil and indirect water heaters use your home's heating system to heat water. Tankless coil and indirect water heaters use a home's space heating system to heat water. They're part of what's called integrated or combination water and space heating systems. How They Work A tankless coil water heater provides hot water on demand without a tank. When a hot water faucet is turned on, water is heated as it flows through a heating coil or heat exchanger installed in a main furnace or boiler. Tankless coil water heaters are most efficient during cold months when the heating system is used regularly but can be an inefficient choice for many

183

Dust and ventilation effects on radiant barriers: Cooling season energy measurements  

Science Conference Proceedings (OSTI)

Cooling season tests were conducted in three unoccupied ranch-style houses in Karns, Tennessee, to determine the effects on attic radiant barrier performance incurred by changes in attic ventilation area ratio, attic ventilation type, and the buildup of dust on horizontal radiant barriers. All three houses had R-19 fiberglass batt insulation in their attics. Horizontal radiant barriers were artificially dusted and the dusted barriers showed measurable performance degradations, although the dusted barriers were still superior to no radiant barriers. Dust loadings of 0.34 and 0.74 mg/cm{sup 2} reduced a clean radiant barrier surface emissivity of 0.055 to 0.125 and 0.185, respectively. Total house cooling load increases amounted to 2.3 and 8.4% compared to house loads with clean horizontal barriers, respectively. When compared to R-19 with no horizontal radiant barrier conditions, the dusted horizontal radiant barriers reduced cooling loads by about 7%. Testing showed that increasing the attic ventilation area ratio from the minimum recommended of 1/300 to 1/150 had little if any effect on the house cooling load with either truss or horizontal barriers present in the attics. Radiant barriers, however, still reduced the house cooling load. There was essentially no difference in house cooling load reduction between either ridge/soffit or gable/soffit vent type with a truss radiant barrier, as both reduced cooling loads by about 8% when compared to no radiant barrier conditions. The attic-ventilation-type testing was done with a ventilation area ratio of 1/150.

Levins, W.P.; Karnitz, M.A. (Oak Ridge National Lab., TN (USA)); Hall, J.A. (Tennessee Valley Authority, Knoxville, TN (USA))

1990-05-01T23:59:59.000Z

184

Permanent Markers Implementation Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP 04-3302 WIPP 04-3302 Permanent Markers Implementation Plan August 19, 2004 United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico DOE/WIPP 04-3302 ii Permanent Markers Implementation Plan Waste Isolation Pilot Plant Carlsbad, New Mexico August 19, 2004 Prepared for: Washington Regulatory and Environmental Services an affiliate of Washington TRU Solutions, LLC P.O. Box 2078 Carlsbad, New Mexico 88221 Prepared by: John Hart and Associates, P.A. 2815 Candelaria Road, N.W. Albuquerque, New Mexico 87107 (505) 344-7868 DOE/WIPP 04-3302 iii Table of Contents Table of Contents.................................................................................................

185

Experiment System Analysis of an Indirect Expansion Solar Assisted Water Source Heat Pump Radiant Floor Heating System  

Science Conference Proceedings (OSTI)

A solar assisted water source heat pump for Radiant Floor Heating (SWHP-RFH) experimental system with heat pipe vacuum tube solar collector as heating source and radiant floor as terminal device is proposed in the paper. The Mathematics Model of dynamic ... Keywords: solar energy, water source heat pump, radiant floor heating systems, system dynamic COP

Qu Shilin; Ma Fei; Liu Li; Yue Jie

2009-10-01T23:59:59.000Z

186

Performance characterization of a hydrogen catalytic heater.  

DOE Green Energy (OSTI)

This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

Johnson, Terry Alan; Kanouff, Michael P.

2010-04-01T23:59:59.000Z

187

Permanent Magnet Materials  

Science Conference Proceedings (OSTI)

Table 4   Applications of permanent magnet materials...material Primary reason for selection Alternative material Condition or reason favoring selection of alternative material Aircraft magnetos, military or civilian SmCo Maximum energy per unit volume Cast Alnico 5 Availability or cost restraint Alternators SmCo Compactness and reliability Ferrite...

188

Permanent Magnet Materials  

Science Conference Proceedings (OSTI)

Table 4 Applications of permanent magnet materials...material Primary reason for selection Alternative material Condition or reason favoring selection of alternative material Aircraft magnetos, military or civilian SmCo Maximum energy per unit volume Cast Alnico 5 Availability or cost restraint Alternators SmCo Compactness and reliability Ferrite...

189

Radiant energy receiver having improved coolant flow control means  

DOE Patents (OSTI)

An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.

Hinterberger, H.

1980-10-29T23:59:59.000Z

190

Solar water heaters | Open Energy Information  

Open Energy Info (EERE)

water heaters water heaters (Redirected from - Solar Hot Water) Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of Solar Water Heating technology.)[1] Solar Water Heater One of the most cost-effective ways to include renewable technologies into a building is by incorporating solar hot water. A typical residential solar water-heating system reduces the need for conventional water heating by about two-thirds. It minimizes the expense of electricity or fossil fuel to heat the water and reduces the associated environmental impacts. Solar Water Heating for Buildings Most solar water-heating systems for buildings have two main parts: (1) a solar collector and (2) a storage tank. The most common collector used in solar hot water systems is the

191

Combined Systems with Tankless Water Heaters  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Systems with Tankless Water Heaters Combined Systems with Tankless Water Heaters Armin Rudd Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas 2 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas More builder's wanting to use gas-fired tankless water heaters, and with solar pre-heat  Endless hot water  Helps HERS Index  Space saving 2 3 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas Problem with elevated TWH inlet temperature 60 70 80 90 100 110 120 130 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Maximum Inlet Temperature (F) DHW flow rate (gpm) Maximum TWH inlet temperature to stay below 125 F delivered temperature, with 15 kBtu/h minimum firing rate Typical shower temperature 4 Residential Energy Efficiency Stakeholder Meeting

192

Solar Water Heater Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Rebate Solar Water Heater Rebate Solar Water Heater Rebate < Back Eligibility Commercial Fed. Government Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Hawaii Program Type State Rebate Program Rebate Amount Residential Solar Water Heating: $1,000 upfront, or Residential Solar Water Heating Interest Loan Buy-Down: $1,000 Residential Solar Attic Fans: $50 Commercial: $250 per 12,000 Btu/hr derated capacity Provider Hawaii Energy Hawaii Energy, a third-party administered public benefits fund, provides incentives for energy efficiency and conservation to customers of the Hawaiian Electric Company (HECO) and its subsidiaries, Maui Electric Company (MECO) and Hawaii Electric Light Company (HELCO). This incentive is available for installations on the islands of Oahu, Hawaii, Maui, Lanai and

193

First Results of the LCLS Laser-Heater System  

SciTech Connect

The Linac Coherent Light Source (LCLS) is an x-ray Free-Electron Laser (FEL) project that has just achieved its first lasing at 1.5 {angstrom} radiation wavelength. The very bright electron beam required to drive this FEL is susceptible to a microbunching instability in the magnetic bunch compressors that may increase the slice energy spread beyond the FEL tolerance. To control the slice energy spread and to suppress the microbunching instability, a laser heater (LH) system is installed in the LCLS injector area at 135 MeV, right before the RF deflector that is used for the time-resolved electron diagnostics. This unique component is used to add a small level of intrinsic energy spread to the electron beam in order to Landau damp the microbunching instability before it potentially breaks up the high brightness electron beam. The system was fully installed and tested in the fall of 2008, and effects of heating on the electron beam and the x-ray FEL were studied during the 2009 commissioning period. The laser heater system is composed of a 4-dipole chicane; a 9-period, planar, permanent-magnet, adjustable-gap undulator at the center of the chicane; one OTR screen on each side of the undulator for electron/laser spatial alignment; and an IR laser (up to 15-MW power) which co-propagates with the electron beam inside the undulator generating a 758-nm energy modulation along the bunch. The final two dipoles of the 4-dipole chicane time-smear this modulation leaving only a thermal-like intrinsic energy spread within the bunch. Table 1 lists the main parameters for this system. The very bright electron beam required for an x-ray free-electron laser (FEL), such as the LCLS, is susceptible to a microbunching instability in the magnetic bunch compressors, prior to the FEL undulator. The uncorrelated electron energy spread in the LCLS can be increased by an order of magnitude to provide strong Landau damping against the instability without degrading the FEL performance. To this end, a 'laser-heater' system has been installed in the LCLS injector, which modulates the energy of a 135-MeV electron bunch with an IR laser beam in a short undulator, enclosed within a four-dipole chicane. The last half of the chicane time-smears the energy modulation leaving an effective thermal energy spread increase. We present the first commissioning results of this system, its operational issues, its impact on the microbunching instability, and finally its effect on the FEL performance.

Emma, P; Boyce, R.F.; Brachmann, A.; Carr, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Levashov, Y.; Loos, H.; Miahnahri, A.; Nuhn, H.-D.; Poling, B.; Ratner, D.; Spampinati, S.; /SLAC

2011-12-16T23:59:59.000Z

194

Heat pump water heaters. Final report  

SciTech Connect

A survey of the eleven manufacturers of heat pump water heaters (HPWHs) in the United States is presented. Product characteristics and application guidelines, including economic comparisons to other means of water heating, are summarized. A survey of forty-five utilities, identified as having conducted field tests of HPWHs, is also presented. Based on the experiences of these utilities, experimental designs, instrumentation schemes, and data reduction methods are recommended. A brief assessment of utility load profile impacts illustrates that HPWHs can provide peak load reductions compared to electric resistance water heaters. Specific recommendations are made for further research and development of HPWHs.

Dobyns, J.E.; Blatt, M.H.

1984-05-01T23:59:59.000Z

195

Indoor Humidity Analysis of an Integrated Radiant Cooling and Desiccant Ventilation System  

E-Print Network (OSTI)

Radiant cooling is credited with improving energy efficiency and enhancing the comfort level as an alternative method of space cooling in mild and dry climates, according to recent research. Since radiant cooling panels lack the capability to remove latent heat, they normally are used in conjunction with an independent ventilation system, which is capable of decoupling the space sensible and latent loads. Condensation concerns limit the application of radiant cooling. This paper studies the dehumidification processes of solid desiccant systems and investigates the factors that affect the humidity levels of a radiantly cooled space. Hourly indoor humidity is simulated at eight different operating conditions in a radiantly cooled test-bed office. The simulation results show that infiltration and ventilation flow rates are the main factors affecting indoor humidity level and energy consumption in a radiantly cooled space with relatively constant occupancy. It is found that condensation is hard to control in a leaky office operated with the required ventilation rate. Slightly pressurizing the space is recommended for radiant cooling. The energy consumption simulation shows that a passive desiccant wheel can recover about 50% of the ventilation load.

Gong, X.; Claridge, D. E.

2006-01-01T23:59:59.000Z

196

Energy measurements of attic radiant barriers installed in single-family houses  

Science Conference Proceedings (OSTI)

Testing was conducted by the Oak Ridge National Laboratory to determine the energy savings attributable to radiant barriers installed in attics of unoccupied single-family houses. Three levels of fiberglass attic insulation (R-11 ,R-19, and R-30) were tested with two types of barrier installation (horizontal and truss). The results showed that horizontally installed radiant barriers were more effective than truss barriers in reducing heating and cooling loads. Measured cooling load reductions ranged form 0 to 22% (compared to same attic insulation insulation R-value with no radiant barrier) and heating load changes from /plus/4% to /minus/10% were measured (compared to same attic insulation R-value with no radiant barrier). Radiant barriers appeared to decrease the heating and cooling loads more when lesser amounts of insulation (R-11 and R-19) were present in an attic. Minimal changes were measured when R-30 was present in an attic. Long-term effects of dust on the performance of radiant barriers as well as the effects of moisture condensing on the surface of a radiant barrier during cold winter temperatures remain unanswered.

Levins, W.P.; Karnitz, M.A.

1988-07-01T23:59:59.000Z

197

Cooling season energy measurements of dust and ventilation effects on radiant barriers  

Science Conference Proceedings (OSTI)

Cooling season tests were conducted in three unoccupied ranch-style houses in Karns, Tennessee, to determine the effects on attic radiant barrier performance incurred by changes in attic ventilation area ratio, attic ventilation type, and the buildup of dust on horizontal radiant barriers. All three houses had R-19 fiberglass batt insulation in their attics. Horizontal radiant barriers were artificially dusted and the dusted barriers showed measurable performance degradations, although the dusted barriers were still superior to no radiant barriers. Dust loadings of 0.34 and 0.74 mg/cm{sup 2} reduced a clean radiant barrier surface emissivity of 0.055 to 0.125 and 0.185, respectively. Total house cooling load increases amounted to 2.3 and 8.4% compared to house loads with clean horizontal barriers, respectively. When compared to R-19 with no horizontal radiant barrier conditions, the dusted horizontal radiant barriers reduced cooling loads by about 7%. 18 refs., 18 figs., 30 tabs.

Levins, W.P.; Karnitz, M.A. (Oak Ridge National Lab., TN (USA)); Hall, J.A. (Tennessee Valley Authority, Knoxville, TN (USA))

1990-02-01T23:59:59.000Z

198

Building Technologies Office: HVAC and Water Heater Field Tests Research  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC and Water Heater HVAC and Water Heater Field Tests Research Project to someone by E-mail Share Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Facebook Tweet about Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Twitter Bookmark Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Google Bookmark Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Delicious Rank Building Technologies Office: HVAC and Water Heater Field Tests Research Project on Digg Find More places to share Building Technologies Office: HVAC and Water Heater Field Tests Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research

199

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network (OSTI)

heater analysis model (WHAM) and a hot water draw model,heaters is calculated using WHAM, which accounts for a rangeTo account for this factor, WHAM is expanded to include the

Franco, Victor

2011-01-01T23:59:59.000Z

200

ENERGY STAR Residential Water Heaters to Save Americans Up to...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENERGY STAR Residential Water Heaters to Save Americans Up to 823 Million in the Next Five Years ENERGY STAR Residential Water Heaters to Save Americans Up to 823 Million in the...

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

TVA Partner Utilities- Energy Right Water Heater Program  

Energy.gov (U.S. Department of Energy (DOE))

The TVA energy right Water Heater Plan promotes the installation of high efficiency water heaters in homes and small businesses. TVA provides a $50 incentive to local power companies for each...

202

Buildings Energy Data Book: 5.4 Water Heaters  

Buildings Energy Data Book (EERE)

3 Water Heater Manufacturer Market Shares 2006 2008 A.O. SmithState Industries 23% 46% Rheem Manufacturing 37% 37% Bradford-White 14% 13% American Water Heater 14% (1) Others 12%...

203

System design description for the HMT Rotation Motor Heater System  

SciTech Connect

This document is the design description for the Rotation Motor Heater System on waste tank 241-SY-101. The description includes the certified vendor (CV) file number, operators instructions, and heater sizing calculations.

Vargo, G.F. Jr.

1995-05-18T23:59:59.000Z

204

Effect of a Radiant Panel Cooling System on Indoor Air Quality of a Conditioned Space  

E-Print Network (OSTI)

This paper discusses the effect of a radiant cooling panel system on an indoor air quality (IAQ) of a conditioned space. In this study, ceiling radiant cooling panel, mechanical ventilation with fan coil unit (FCU) and 100% fresh air are used. Temperature sensors are located at different locations inside the conditioned space in order to sense dry bulb temperatures, relative humidity to compare it with standard ASHRAE comfort values. The present investigation indicates that the radiant cooling system not only improves the indoor air quality but also reduces the building energy consumption in the conditioned space.

Mohamed, E.; Abdalla, K. N.

2010-01-01T23:59:59.000Z

205

NREL Evaluates Performance of Heat Pump Water Heaters (Fact Sheet)  

SciTech Connect

NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.

Not Available

2012-02-01T23:59:59.000Z

206

Insulation refit kit for domestic water heaters  

SciTech Connect

The development, testing, and marketing of an insulation kit which homeowners could apply to gas or electric hot water heaters in order to conserve energy in water heating are described. The kit, being marketed at $20, should save 450 kWh or 3600 ft/sup 3/ of gas per year. (LCL)

1977-03-23T23:59:59.000Z

207

Fired heater for coal liquefaction process  

DOE Patents (OSTI)

A fired heater for a coal liquefaction process is constructed with a heat transfer tube having U-bends at regular intervals along the length thereof to increase the slug frequency of the multi-phase mixture flowing therethrough to thereby improve the heat transfer efficiency.

Ying, David H. S. (Macungie, PA)

1984-01-01T23:59:59.000Z

208

Tube skin temperature prediction of catalytic reforming unit (CRU) heaters  

Science Conference Proceedings (OSTI)

The maximum duty of reformer heaters is governed by the occurance of maximum tube skin temperature of the heaters. The value of maximum tube skin temperatures of the heaters must not exceed theirs' maximum allowable design temperature. The paper highlights ... Keywords: coke formation, finite element, simulations, tube furnance

Suzana Yusup; Nguyen Duy Vinh; Nurhayati Mellon; Abdullah Hassan

2006-10-01T23:59:59.000Z

209

Solar-hot-water-heater lease program  

SciTech Connect

Ten domestic hot-water solar systems were installed, leased to homeowners, and monitored for two years. All of the systems were installed as back-ups to electric water heaters. The systems consist of two to four collectors, a solar storage tank (as well as the existing non-solar heater), and a heat exchanger package. Eight are three-collector systems, one is a four-collector and one a two-collector system. The systems were sized according to family size and predicted hot water demand. The monitoring consists of a separate KW reading on the non-solar water heater, a reading of gallons of how water consumed, and hot and cold outlet temperatures. The purpose for the study was fourfold: (1) to determine the level of acceptance by the general public of solar water heaters if available on a lease rather than a purchase basis; (2) to measure the actual energy savings to the average homeowner in central Illinois with a solar water heater; (3) to measure the potential reduction of Cilco's energy production requirements, should there be widespread utilization of these systems; and (4) to determine the feasibility of an entrepreneur making these systems available on a rental basis and remaining a going concern. The results of this study indicate that the leasing of solar equipment to homeowners has a more widespread acceptance than the direct purchase of such systems. Homeowners, however, do not want to spend as much money on monthly lease payments as the supplier of the equipment would deem necessary. This seriously questions the feasibility of an entrepreneurial leasing program.

Rutherford, S.

1983-04-01T23:59:59.000Z

210

Analysis of a hybrid UFAD and radiant hydronic slab HVAC system  

E-Print Network (OSTI)

Air- Conditioning Engineers HVAC & R Research, vol. 50, Sep.andradianthydronicslabHVACsystem. Paul RAFTERY a,* ,of a novel integrated HVAC system. This system combines an

Raftery, Paul; Lee, Kwang Ho; Webster, Thomas; Bauman, Fred

2011-01-01T23:59:59.000Z

211

Determination of Unfiltered Radiances from the Clouds and the Earths Radiant Energy System Instrument  

Science Conference Proceedings (OSTI)

A new method for determining unfiltered shortwave (SW), longwave (LW), and window radiances from filtered radiances measured by the Clouds and the Earths Radiant Energy System (CERES) satellite instrument is presented. The method uses ...

Norman G. Loeb; Kory J. Priestley; David P. Kratz; Erika B. Geier; Richard N. Green; Bruce A. Wielicki; Patricia ORawe Hinton; Sandra K. Nolan

2001-04-01T23:59:59.000Z

212

Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment  

Science Conference Proceedings (OSTI)

Clouds and the Earth's Radiant Energy System (CERES) is an investigation to examine the role of cloud/radiation feedback in the Earth's climate system. The CERES broadband scanning radiometers are an improved version of the Earth Radiation Budget ...

Bruce A. Wielicki; Bruce R. Barkstrom; Edwin F. Harrison; Robert B. Lee III; G. Louis Smith; John E. Cooper

1996-05-01T23:59:59.000Z

213

Temporal Interpolation Methods for the Clouds and the Earths Radiant Energy System (CERES) Experiment  

Science Conference Proceedings (OSTI)

The Clouds and the Earths Radiant Energy System (CERES) is a NASA multisatellite measurement program for monitoring the radiation environment of the earthatmosphere system. The CERES instrument was flown on the Tropical Rainfall Measuring ...

D. F. Young; P. Minnis; D. R. Doelling; G. G. Gibson; T. Wong

1998-06-01T23:59:59.000Z

214

Analysis of a hybrid UFAD and radiant hydronic slab HVAC system  

E-Print Network (OSTI)

radiant ceiling slab. A cooling tower supplies water to pre-served by a free-cooling tower to pre-cool the buildingcoils. A two-speed cooling tower combined with a plate heat

Raftery, Paul; Lee, Kwang Ho; Webster, Thomas; Bauman, Fred

2011-01-01T23:59:59.000Z

215

Effects of Radiant Barrier Systems on Ventilated Attics in a Hot and Humid Climate  

E-Print Network (OSTI)

Results of side-by-side radiant barrier experiments using two identical 144 ft2 (nominal) test houses are presented. The test houses responded very similarly to weather variations prior to the retrofit. The temperatures of the test houses were controlled to within 0.3F. Ceiling heat fluxes were within 2 percent for each house. The results showed that a critical attic ventilation flow rate (0.25 CFM/ft2 ) existed after which the percentage reduction produced by the radiant barrier systems was not sensitive to increased airflows. The ceiling heat flux reductions produced by the radiant barrier systems were between 25 and 34 percent, with 28 percent being the reduction observed most often in the presence of attic ventilation. All results presented in this paper were for attics with R-19 unfaced fiberglass insulation and for a perforated radiant barrier with low emissivities on both sides.

Medina, M. A.; O'Neal, D. L.; Turner, W. D.

1992-05-01T23:59:59.000Z

216

Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System  

E-Print Network (OSTI)

The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more comfortable. First, the authors devised an experimental scheme and set up the laboratory. Second, we collected a great deal of data on the system in different situations. Finally, we conclude that such heating system is feasible and one of the best heating methods.

Wu, Z.; Li, D.

2006-01-01T23:59:59.000Z

217

Radiant cooling in US office buildings: Towards eliminating the perception of climate-imposed barriers  

Science Conference Proceedings (OSTI)

Much attention is being given to improving the efficiency of air-conditioning systems through the promotion of more efficient cooling technologies. One such alternative, radiant cooling, is the subject of this thesis. Performance information from Western European buildings equipped with radiant cooling systems indicates that these systems not only reduce the building energy consumption but also provide additional economic and comfort-related benefits. Their potential in other markets such as the US has been largely overlooked due to lack of practical demonstration, and to the absence of simulation tools capable of predicting system performance in different climates. This thesis describes the development of RADCOOL, a simulation tool that models thermal and moisture-related effects in spaces equipped with radiant cooling systems. The thesis then conducts the first in-depth investigation of the climate-related aspects of the performance of radiant cooling systems in office buildings. The results of the investigation show that a building equipped with a radiant cooling system can be operated in any US climate with small risk of condensation. For the office space examined in the thesis, employing a radiant cooling system instead of a traditional all-air system can save on average 30% of the energy consumption and 27% of the peak power demand due to space conditioning. The savings potential is climate-dependent, and is larger in retrofitted buildings than in new construction. This thesis demonstrates the high performance potential of radiant cooling systems across a broad range of US climates. It further discusses the economics governing the US air-conditioning market and identifies the type of policy interventions and other measures that could encourage the adoption of radiant cooling in this market.

Stetiu, C.

1998-01-01T23:59:59.000Z

218

Numerical heat transfer attic model using a radiant barrier system  

Science Conference Proceedings (OSTI)

A two-dimensional, steady-state finite-element model was developed to simulate the thermal effects of the application of an attic radiant barrier system (ARBS) inside a ventilated residential attic. The attic is ventilated using the exhaust air from an evaporative cooler. The study uses a {kappa}-{epsilon} turbulent model to describe the velocity and temperature distributions in the attic. The ambient temperature and solar isolation densities on the outside inclined attic surfaces are used as driving functions for the model. The model also included the appropriate heat exchange modes of convection and radiation on these outside surfaces. Several recirculation zones were visually observed in the attic flow pattern. Also, the use of the ARBS seems to lower the heat transfer through the ceiling by 25--30%, but this effect decreases significantly as the outside ventilation rates are increased through the attic space. The 2D model revealed some interesting temperature distributions along the attic surfaces that could not have been predicted by the one-dimensional models. The lower emissivity ARBS seems to raise the temperature of the inclined attic surfaces as well as the temperature of the exhausted ventilation air.

Moujaes, S.F.; Alsaiegh, N.T.

2000-04-01T23:59:59.000Z

219

Analysis of Attic Radiant Barrier Systems Using Mathematical Models  

E-Print Network (OSTI)

During the past six years, the Florida Solar Energy Center (FSEC) has conducted extensive experimental research on radiant barrier systems (RBS). This paper presents recent research on the development of mathematical attic models. Two levels of modeling capability have been developed. A very simplified model based on ASHRAE procedures in used to study the sensitivity of RBS performance parameters, and a very detailed finite element model is used to study highly complex phenomena, including moisture adsorption and desorption in attics. The speed of the simple model allows a large range of attic parameters to be studies quickly, and the finite element model provides a detailed understanding of combined heat and moisture transport in attics. This paper concentrates on a parametric analysis of attic RBS using the simplified model. The development of the model is described, and results of the parametric analyses are presented and discussed. Preliminary results from the finite element model are also compared with measurements from a test attic to illustrate the effects of moisture adsorption and desorption in common attics.

Fairey, P.; Swami, M.

1988-01-01T23:59:59.000Z

220

Burbank Water and Power - Solar Water Heater Rebate Program (California) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Burbank Water and Power - Solar Water Heater Rebate Program Burbank Water and Power - Solar Water Heater Rebate Program (California) Burbank Water and Power - Solar Water Heater Rebate Program (California) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State California Program Type Utility Rebate Program Rebate Amount $1,500 Provider Rebates Burbank Water and Power is providing incentives for the purchase of solar water heaters. Incentives are only available to residential customers with electric water heaters. There is a limit of one solar water heater per year per property. Applicants must provide access to their residence for a pre-inspection to verify the existing use of an electric water heater. Customers must comply with all code and permit requirements. More

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

An Overview of the New Residential Water Heater Efficiency Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

An Overview of the New Residential Water Heater Efficiency Standards An Overview of the New Residential Water Heater Efficiency Standards Speaker(s): Alex Lekov Date: April 26, 2010 - 12:00pm Location: 90-3122 DOE issued new standards for residential water heaters last month that will save an estimated 2.6 quads of energy over 30 years. For most product sizes sold, the new standards can be met with modest changes, such as adding more insulation to today's conventional tank-style water heaters. For the most common size electric water heater (50 gallons), the standards will save 4 percent, while for the most common size gas water heater (40 gallons), the new standards will save 3 percent. However, for the biggest products (those with over 55 gallons in storage capacity, which is about 9% and 4% of the electric and gas storage water heater markets, respectively), the new

222

TVA Partner Utilities - Energy Right' Water Heater Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Right' Water Heater Program Right&#039; Water Heater Program TVA Partner Utilities - Energy Right' Water Heater Program < Back Eligibility Installer/Contractor Residential Utility Savings Category Appliances & Electronics Water Heating Maximum Rebate Member utility water heater rebate programs can range from $25 to total cost. Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount Energy Efficient Water Heater: $50 from TVA Provider Tennessee Valley Authority The TVA energy right Water Heater Plan promotes the installation of high efficiency water heaters in homes and small businesses. TVA provides a $50 incentive to local power companies for each installation. Power Companies may pass these incentives on to customers. Customers should contact their local power company to see what programs are

223

Condensing Hybrid Water Heater Monitoring Field Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensing Hybrid Water Heater Condensing Hybrid Water Heater Monitoring Field Evaluation Jeff Maguire, Lieko Earle, and Chuck Booten National Renewable Energy Laboratory C.E. Hancock Mountain Energy Partnership Produced under direction of the Sacramento Municipal Utilities District by the National Renewable Energy Laboratory (NREL) under Interagency Agreement CRD-05-168 and Task No WR49.3000. Technical Report NREL/TP-5500-52234 October 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308

224

AWSWAH - the heat pipe solar water heater  

Science Conference Proceedings (OSTI)

An all weather heat pipe solar water heater (AWSWAH) comprising a collector of 4 m/sup 2/ (43 ft/sup 2/) and a low profile water tank of 160 liters (42 gal.) was developed. A single heat pipe consisting of 30 risers and two manifolds in the evaporator and a spiral condenser was incorporated into the AWSWAH. Condensate metering was done by synthetic fiber wicks. The AWSWAH was tested alongside two conventional solar water heaters of identical dimensions, an open loop system and a closed loop system. It was found that the AWSWAH was an average of 50% more effective than the open system in the temperature range 30-90 /sup 0/C (86-194 /sup 0/F). The closed loop system was the least efficient of the three systems.

Akyurt, M.

1986-01-01T23:59:59.000Z

225

Solar water heater lease program. Interim report  

SciTech Connect

The Solar Water Heater Lease Program consists of the installation and leasing of ten solar systems to central Illinois homeowners. The measured energy savings to the homeowners and the impact of such systems on energy production requirements are studied. Each homeowner collects data on the gallons of hot water used, electricity used to heat water, and the temperatures of the cold and hot water outlet temperatures at the sink. The data are presented and conclusions are drawn, including the optimum slope of the collector, comparison of the actual hot water consumption and the estimated consumption, evaluation of the effects of temperature settings of the non-solar water heater, and the percentage of the energy provided for hot water by the solar system. The monitoring procedures and results are evaluated. Recommendations for improving the solar hot water systems are presented. (LEW)

1982-01-01T23:59:59.000Z

226

Electric heater for nuclear fuel rod simulators  

DOE Patents (OSTI)

The present invention is directed to an electric cartridge-type heater for use as a simulator for a nuclear fuel pin in reactor studies. The heater comprises an elongated cylindrical housing containing a longitudinally extending helically wound heating element with the heating element radially inwardly separated from the housing. Crushed cold-pressed preforms of boron nitride electrically insulate the heating element from the housing while providing good thermal conductivity. Crushed cold-pressed preforms of magnesia or a magnesia-15 percent boron nitride mixture are disposed in the cavity of the helical heating element. The coefficient of thermal expansion of the magnesia or the magnesia-boron nitride mixture is higher than that of the boron nitride disposed about the heating element for urging the boron nitride radially outwardly against the housing during elevated temperatures to assure adequate thermal contact between the housing and the boron nitride.

McCulloch, Reginald W. (Knoxville, TN); Morgan, Jr., Chester S. (Oak Ridge, TN); Dial, Ralph E. (Concord, TN)

1982-01-01T23:59:59.000Z

227

Field Monitoring Protocol: Heat Pump Water Heaters  

SciTech Connect

This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

2013-02-01T23:59:59.000Z

228

Fired heater for coal liquefaction process  

DOE Patents (OSTI)

A fired heater for a coal liquefaction process is operated under conditions to maximize the slurry slug frequency and thereby improve the heat transfer efficiency. The operating conditions controlled are (1) the pipe diameter and pipe arrangement, (2) the minimum coal/solvent slurry velocity, (3) the maximum gas superficial velocity, and (4) the range of the volumetric flow velocity ratio of gas to coal/solvent slurry.

Ying, David H. S. (Macungie, PA); McDermott, Wayne T. (Allentown, PA); Givens, Edwin N. (Bethlehem, PA)

1985-01-01T23:59:59.000Z

229

Tubular electric heater with a thermocouple assembly  

DOE Patents (OSTI)

This patent relates to a thermocouple or other instrumentation which is installed within the walls of a tubular sheath surrounding a process device such as an electric heater. The sheath comprises two concentric tubes, one or both of which have a longitudinal, concave crease facing the other tube. The thermocouple is fixedly positioned within the crease and the outer tube is mechanically reduced to form an interference fit onto the inner tube. (auth)

House, R.K.; Williams, D.E.

1975-08-01T23:59:59.000Z

230

Cryostat including heater to heat a target  

DOE Patents (OSTI)

A cryostat is provided which comprises a vacuum vessel; a target disposed within the vacuum vessel; a heat sink disposed within the vacuum vesssel for absorbing heat from the detector; a cooling mechanism for cooling the heat sink; a cryoabsorption mechanism for cryoabsorbing residual gas within the vacuum vessel; and a heater for maintaining the target above a temperature at which the residual gas is cryoabsorbed in the course of cryoabsorption of the residual gas by the cryoabsorption mechanism.

Pehl, Richard H. (Berkeley, CA); Madden, Norman W. (Livermore, CA); Malone, Donald F. (Oakland, CA)

1990-01-01T23:59:59.000Z

231

Cryostat including heater to heat a target  

DOE Patents (OSTI)

A cryostat is provided which comprises a vacuum vessel; a target disposed within the vacuum vessel; a heat sink disposed within the vacuum vessel for absorbing heat from the detector; a cooling mechanism for cooling the heat sink; a cryoabsorption mechanism for cryoabsorbing residual gas within the vacuum vessel; and a heater for maintaining the target above a temperature at which the residual gas is cryoabsorbed in the course of cryoabsorption of the residual gas by the cryoabsorption mechanism. 2 figs.

Pehl, R.H.; Madden, N.W.; Malone, D.F.

1990-09-11T23:59:59.000Z

232

Analysisi Benchmark of the Single Heater Test  

SciTech Connect

The Single Heater Test (SHT) is the first of three in-situ thermal tests included in the site characterization program for the potential nuclear waste monitored geologic repository at Yucca Mountain. The heating phase of the SHT started in August 1996 and was concluded in May 1997 after 9 months of heating. Cooling continued until January 1998, at which time post-test characterization of the test block commenced. Numerous thermal, hydrological, mechanical, and chemical sensors monitored the coupled processes in the unsaturated fractured rock mass around the heater (CRWMS M&O 1999). The objective of this calculation is to benchmark a numerical simulation of the rock mass thermal behavior against the extensive data set that is available from the thermal test. The scope is limited to three-dimensional (3-D) numerical simulations of the computational domain of the Single Heater Test and surrounding rock mass. This calculation supports the waste package thermal design methodology, and is developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 0, ICN 3, BSCN 1, Calculations.

H.M. Wade; H. Marr; M.J. Anderson

2006-07-27T23:59:59.000Z

233

Textured Polycrystalline Permanent Magnet Nanoflakes  

Science Conference Proceedings (OSTI)

... high electrical resistivity, which will reduce eddy current losses and improve motor efficiency. ... Combinatorial Search of Rare-Earth-Free Permanent Magnets

234

Permanent Magnets for Energy Applications  

Science Conference Proceedings (OSTI)

Mar 13, 2012 ... Magnetic Materials for Energy Applications II: Permanent Magnets for ... to 500% in the last 12 months, the most unstable being the price of Dy.

235

Linn County Rural Electric Cooperative - Solar Water Heater Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Linn County Rural Electric Cooperative - Solar Water Heater Rebate Linn County Rural Electric Cooperative - Solar Water Heater Rebate Program Linn County Rural Electric Cooperative - Solar Water Heater Rebate Program < Back Eligibility Agricultural Commercial Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Iowa Program Type Utility Rebate Program Rebate Amount $500 Provider Linn County Rural Electric Cooperative Association Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of rebates to commercial, residential, and agricultural customers. Owners of both new construction and existing buildings are eligible for a $500 rebate for solar water heaters. The water heaters must have an auxiliary tank of at least 40 gallons and the solar water heater

236

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Water Heater: up to $275 Heat Pump Replacement: $400 Provider Rock Hill Utilities Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed above. If both the water heater and heat pump are purchased then the customer may qualify for the Great Rate program. The Great Rate program will add a 25% discount to a

237

Automated robotic equipment for ultrasonic inspection of pressurizer heater wells  

DOE Patents (OSTI)

A robotic device for remotely inspecting pressurizer heater wells is provided which has the advantages of quickly, precisely, and reliably acquiring data at reasonable cost while also reducing radiation exposure of an operator. The device comprises a prober assembly including a probe which enters a heater well, gathers data regarding the condition of the heater well and transmits a signal carrying that data; a mounting device for mounting the probe assembly at the opening of the heater well so that the probe can enter the heater well; a first motor mounted on the mounting device for providing movement of the probe assembly in an axial direction; and a second motor mounted on the mounting device for providing rotation of the probe assembly. This arrangement enables full inspection of the heater well to be carried out.

Nachbar, Henry D. (Ballston Lake, NY); DeRossi, Raymond S. (Amsterdam, NY); Mullins, Lawrence E. (Middle Grove, NY)

1993-01-01T23:59:59.000Z

238

Carbon Dioxide Heat Pump Water Heater Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Research Project Carbon Dioxide Heat Pump Water Heater Research Project The U.S. Department of Energy is currently conducting research into carbon dioxide (CO2) heat pump water heaters. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Carbon dioxide is a refrigerant with a global warming potential (GWP) of 1. The CO2 heat pump water heater research seeks to develop an improved life cycle climate performance compared to conventional refrigerants. For example, R134a, another type of refrigerant, has a GWP of 1,300. Project Description This project seeks to develop a CO2-based heat pump water heater (HPWH)

239

Aiken Electric Cooperative Inc - Residential Water Heater Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aiken Electric Cooperative Inc - Residential Water Heater Rebate Aiken Electric Cooperative Inc - Residential Water Heater Rebate Program Aiken Electric Cooperative Inc - Residential Water Heater Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Free high efficiency water Heater; $200 installation fee Water heater and timer with normal installation: $2.50 credit for 10 years Timer only: $200 cash payment and $2.50 credit for 10 years New construction contract home: $250 Provider Aiken Electric Cooperative Aiken Electric Cooperative offers residential members rebates for installing high-efficiency electric water heaters and/or timers in their homes. Customers have four rebate options:

240

Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program (Georgia) Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program (Georgia) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Existing Homes Solar Water Heater: $750 New Homes Solar Water Heater: $1,250 - $1,500 Provider Coweta-Fayette Electric Membership Corporation Coweta-Fayette Electric Membership Corporation (EMC) provides electric and natural gas service to 58,000 customers in Georgia's Coweta, Fayette, Meriwether, Heard, Troop and Fulton counties. Currently, Coweta-Fayette EMC offers rebates on solar water heaters from $750 up to $1,500 as part of the Touchstone Energy Home Program. Solar

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Trials and Tribulations of Testing Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

The Trials and Tribulations of Testing Water Heaters The Trials and Tribulations of Testing Water Heaters Speaker(s): James Lutz Date: August 14, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn During our work on efficiency standards for electric water heaters, we discovered significant discrepancies between the rated and tested efficiencies of the highest rated electric resistance water heaters. For high efficiency electric resistance water heaters with an Energy Factor above .92, the heat losses are so small that minor flaws in the tank or obscure problems in the test procedure become more apparent. This seminar reports on our investigation into the causes of inconsistent results obtained during testing of high efficiency electric resistance water heaters at different test labs. We discovered some reasons for the

242

Automated robotic equipment for ultrasonic inspection of pressurizer heater wells  

DOE Patents (OSTI)

A robotic device for remotely inspecting pressurizer heater wells is provided which has the advantages of quickly, precisely, and reliably acquiring data at reasonable cost while also reducing radiation exposure of an operator. The device comprises a probe assembly including a probe which enters a heater well, gathers data regarding the condition of the heater well and transmits a signal carrying that data; a mounting device for mounting the probe assembly at the opening of the heater well so that the probe can enter the heater well; a first motor mounted on the mounting device for providing movement of the probe assembly in an axial direction; and a second motor mounted on the mounting device for providing rotation of the probe assembly. This arrangement enables full inspection of the heater well to be carried out.

Nachbar, H.D.; DeRossi, R.S.; Mullins, L.E.

1991-12-31T23:59:59.000Z

243

Influence of Attic Radiant Barrier Systems on Air Conditioning Demand in an Utility Pilot Project  

E-Print Network (OSTI)

A utility monitoring project has evaluated radiant barrier systems (RBS) as a new potential demand site management (DSM) program. The study examined how the retrofit of attic radiant barriers can be expected to alter utility residential space conditioning loads. An RBS consists of a layer of aluminum foil fastened to roof decking or roof trusses to block radiant heat transfer between the hot roof surface and the attic below. The radiant barrier can significantly lower summer heat transfer to the attic insulation and to the cooling duct system. Both of these mechanisms have strong potential impacts on cooling energy use as illustrated in Figures 1 and 2. The pilot project involved installation of RBS in nine homes that had been extensively monitored over the preceding year. The houses varied in conditioned floor area from 939 to 2,440 square feet; attic insulation varied from R-9 to R-30. The homes had shingle roofs with varying degrees of attic ventilation. The radiant barriers were installed during the summer of 2000. Data analysis on the pre and post cooling and heating consumption was used to determine impacts on energy use and peak demand for the utility. The average cooling energy savings from the RBS retrofit was 3.6 kWh/day, or about 9%. The average reduction in summer afternoon peak demand was 420 watts (or about 16%).

Parker, D. S.; Sherwin, J. R.

2002-01-01T23:59:59.000Z

244

Thermal Performance Evaluation of Attic Radiant Barrier Systems Using the Large Scale Climate Simulator (LSCS)  

SciTech Connect

Application of radiant barriers and low-emittance surface coatings in residential building attics can significantly reduce conditioning loads from heat flow through attic floors. The roofing industry has been developing and using various radiant barrier systems and low-emittance surface coatings to increase energy efficiency in buildings; however, minimal data are available that quantifies the effectiveness of these technologies. This study evaluates performance of various attic radiant barrier systems under simulated summer daytime conditions and nighttime or low solar gain daytime winter conditions using the large scale climate simulator (LSCS). The four attic configurations that were evaluated are 1) no radiant barrier (control), 2) perforated low-e foil laminated oriented strand board (OSB) deck, 3) low-e foil stapled on rafters, and 4) liquid applied low-emittance coating on roof deck and rafters. All test attics used nominal RUS 13 h-ft2- F/Btu (RSI 2.29 m2-K/W) fiberglass batt insulation on attic floor. Results indicate that the three systems with radiant barriers had heat flows through the attic floor during summer daytime condition that were 33%, 50%, and 19% lower than the control, respectively.

Shrestha, Som S [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL

2013-01-01T23:59:59.000Z

245

Economic Evaluation of Insulation/Radiant Barrier Systems for the State of Texas  

E-Print Network (OSTI)

This paper presents simulated performance of insulation/radiant barrier systems under different Texas climates. A transient heat and mass transfer model which predicts thermal performance of residential attics (Medina, 1992) was coupled with an "economic" subroutine. Simple payback periods were estimated which were based on current insulation and radiant barrier (RB) prices (materials and installation), and current and forecast electric rates. It was found that when the analyses were based solely on reductions of ceiling heat loads during the summer time, a combination of R-11 with RB was more effective than upgrading the insulation level to R-19. Similarly, adding a radiant barrier to an existing insulation level of R-19 proved more effective than upgrading to R-30. When heat gains to the cold air traveling inside A/C ducts (\\which are usually installed in attic spaces) were considered, all insulation/radiant barrier combinations showed faster payback periods than insulation upgrades, During the winter time, insulation upgrades proved to be more effective than insulation/radiant barrier combinations. The simple payback analyses presented herein include both summer and winter simulations.

Medina, M. A.; Turner, W. D.; O'Neal, D. L.

1994-01-01T23:59:59.000Z

246

Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration  

Science Conference Proceedings (OSTI)

A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.

Vinegar, Harold J. (Bellaire, TX); Sandberg, Chester Ledlie (Palo Alto, CA)

2010-11-09T23:59:59.000Z

247

Advances in the Research of Heat Pump Water Heaters  

E-Print Network (OSTI)

This paper presents the progress of many recently correlative research works on the heat pump water heater (HPWH) and on solar-assisted heat pump water heaters. The advances in the research on compressor development, alternative refrigerant technology for a compressor HPWH are separately summarized. A new study on frosting/defrosting of an air source heat pump water heater (ASHPWH) is also discussed. The trends of some new technologies of HPWH are analyzed.

Shan, S.; Wang, D.; Wang, R.

2006-01-01T23:59:59.000Z

248

Multi-step heater deployment in a subsurface formation  

SciTech Connect

A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.

Mason, Stanley Leroy (Allen, TX)

2012-04-03T23:59:59.000Z

249

Gas Turbine Fired Heater Integration: Achieve Significant Energy Savings  

E-Print Network (OSTI)

Faster payout will result if gas turbine exhaust is used as combustion air for fired heaters. Here are economic examples and system design considerations.

Iaquaniello, G.; Pietrogrande, P.

1985-05-01T23:59:59.000Z

250

GeoSprings Hybrid Water Heater - Energy Innovation Portal  

The GeoSpring Hybrid Water Heater creates the same amount of hot water as a traditional electric ... Hydrogen and Fuel Cell; Hydropower, Wave and ...

251

Economics of Residential Gas Furnaces and Water Heaters in United...  

NLE Websites -- All DOE Office Websites (Extended Search)

driven by first cost considerations and the availability of power vent and condensing water heaters. Little analysis has been performed to assess the economic impacts of the...

252

Economics of Residential Gas Furnaces and Water Heaters in United...  

NLE Websites -- All DOE Office Websites (Extended Search)

single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this...

253

Cost of Increased Energy Efficiency for Residential Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

distributor, and installer costs are used to calculate the costs of different water heater designs. Consumer operating expenses are calculated based on the modeled energy...

254

NREL Develops Heat Pump Water Heater Simulation Model (Fact Sheet)  

SciTech Connect

A new simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes.

Hudon, K.

2012-05-01T23:59:59.000Z

255

Measure Guideline: Transitioning to a Tankless Water Heater  

Science Conference Proceedings (OSTI)

This Measure Guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters. The report compares the differences between tankless and tank-type water heaters, highlighting the energy savings that can be realized by adopting tankless water heaters over tank-type water heaters. Selection criteria and risks discussed include unit sizing and location, water distribution system, plumbing line length and diameter, water quality, electrical backup, and code issues. Cost and performance data are provided for various types of tankless and tank-type water heaters, both natural gas fired and electric. Also considered are interactions between the tankless water heater and other functional elements of a house, such as cold water supply and low-flow devices. Operating costs and energy use of water distribution systems for single- and two-story houses are provided, along with discussion of the various types of distribution systems that can be used with tankless water heaters. Finally, details to prepare for proper installation of a tankless water heater are described.

Brozyna, K.; Rapport, A.

2012-09-01T23:59:59.000Z

256

Energy Saving Absorption Heat Pump Water Heater - Energy ...  

ORNLs new absorption heat pump and water heater technology offers substantial energy savings and can reduce the use of fossil fuels by buildings. While ...

257

Condensing Side-Arm Water Heater - Energy Innovation Portal  

The condensing side-arm element recirculates exhaust gases into heating the cooler part of a water heater tank by the ... Building Energy ... Solar Thermal;

258

Feasibility of Using Measurements of Internal Components of Tankless Water Heaters for Field Monitoring of Energy and Water Use  

E-Print Network (OSTI)

Products: Test Procedures for Water Heaters; Final Rule,"Testing of Tankless Gas Water Heater Performance," DavisInc. , "T-K2 Instantaneous Water Heater Installation Manual

Lutz, Jim

2008-01-01T23:59:59.000Z

259

Forecast of thermal-hydrological conditions and air injection test results of the single heater test at Yucca Mountain  

E-Print Network (OSTI)

ESF Single Heater Test, Sandia National Laboratories Letterthe Single Heater Test by Sandia (Sobolik et al. , 1996).the Single Heater Test by Sandia (Sobolik etal. , 1996). cap

Birkholzer, J.T.

2010-01-01T23:59:59.000Z

260

LOW COST HEAT PUMP WATER HEATER (HPWH)  

Science Conference Proceedings (OSTI)

Water heating accounts for the second largest portion of residential building energy consumption, after space conditioning. Existing HPWH products are a technical success, with demonstrated energy savings of 50% or more compared with standard electric resistance water heaters. However, current HPWHs available on the market cost an average of $1000 or more, which is too expensive for significant market penetration. What is needed is a method to reduce the first cost of HPWHs, so that the payback period will be reduced from 8 years to a period short enough for the market to accept this technology. A second problem with most existing HPWH products is the reliability issue associated with the pump and water loop needed to circulate cool water from the storage tank to the HPWH condenser. Existing integral HPWHs have the condenser wrapped around the water tank and thus avoid the pump and circulation issues but require a relatively complex and expensive manufacturing process. A more straightforward potentially less costly approach to the integral, single package HPWH design is to insert the condenser directly into the storage tank, or immersed direct heat exchanger (IDX). Initial development of an IDX HPWH met technical performance goals, achieving measured efficiencies or energy factors (EF) in excess of 1.79. In comparison conventional electric water heaters (EWH) have EFs of about 0.9. However, the initial approach required a 2.5" hole on top of the tank for insertion of the condenser - much larger than the standard openings typically provided. Interactions with water heater manufacturers indicated that the non standard hole size would likely lead to increased manufacturing costs (at least initially) and largely eliminate any cost advantage of the IDX approach. Recently we have been evaluating an approach to allow use of a standard tank hole size for insertion of the IDX condenser. Laboratory tests of a prototype have yielded an EF of 2.02.

Mei, Vince C [ORNL; Baxter, Van D [ORNL

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy, cost, and CO 2 emission comparison between radiant wall panel systems and radiator systems  

E-Print Network (OSTI)

The main goal of this paper is to evaluate the possibility of application or replacement of radiators with low-temperature radiant panels. This paper shows the comparison results of operations of 4 space heating systems: the low-temperature radiant panel system without any additional thermal insulation of external walls (PH-WOI), the low-temperature radiant panel system with additional thermal insulation of external walls (PH-WI), the radiator system without any additional thermal insulation of external walls (the classical heating system) (RH-WOI), and the radiator system with additional thermal insulation of external walls (RH-WI). The operation of each system is simulated by software EnergyPlus. The investigation shows that the PH-WI gives the best results. The RH-WOI has the largest energy consumption, and the largest pollutant emission. However, the PH-WI requires the highest investment.

Milorad Boji?; Dragan Cvetkovi?; Marko Mileti?; Jovan Maleevi?; Harry Boyer

2012-12-18T23:59:59.000Z

262

Analysis in Support of the Radiant Barrier Fact Sheet 2010 Update  

Science Conference Proceedings (OSTI)

Quantifying the benefits of radiant barriers is complex because the benefits depend upon the climate, attic geometry, duct arrangements, and other building parameters. Homeowners, however, require simplified guidance regarding building envelope options, even those options that seem to have no simple answers. An extensive parametric evaluation of radiant barrier installation alternatives was made using a newly expanded and benchmarked version of an attic simulation program. To complement this anal- ysis, a detailed numerical analysis of radiation heat transfer within the attic and within the small space bounded by the rafters and the sheathing was completed. The results provide guidance for homeowners and builders.

Stovall, Therese K [ORNL; Shrestha, Som S [ORNL; Arimilli, Rao V [ORNL; Yarbrough, David W [ORNL; Pearson, Thomas [ASHRAE, Student Member

2010-01-01T23:59:59.000Z

263

Probe with integrated heater and thermocouple pack  

DOE Patents (OSTI)

A probe for measuring heat includes an elongate rod fitted within a sheath, and a plurality of annular recesses are formed on the surface of the rod in a spaced-apart relationship to form annular chambers that are resistant to heat flow. A longitudinal bore extends axially into the rod and within the cylinders defined by the annular chambers, and an integrated heater and thermocouple pack is dimensioned to fit within the bore. In construction, the integrated pack includes a plurality of wires disposed in electrical insulation within a sheath and a heater cable. These wires include one common wire and a plurality of thermocuple wires. The common wire is constructed of one type of conductive material while the thermocouple wires are each constructed of two types of materials so that at least one thermocouple junction is formed therein. All of the wires extend the length of the integrated pack and are connected together at their ends. The thermocouple wires are constructed to form thermocouple junctions proximate to each annular chamber for producing electromotive forces corresponding to the temperature of the rod within the annular chambers relative to outside the chambers. In the preferred embodiment, each thermocouple wire forms two thermocouple junctions, one junction being disposed within an annular chamber and the second junction being disposed outside of, but proximate to, the same annular chamber. In one embodiment two thermocouple wires are configured to double the sensitivity of the probe in one region.

McCulloch, Reg W. (Oak Ridge, TN); Dial, Ralph E. (Concord, TN); Finnell, Wilber K. R. (Kingston, TN)

1990-01-01T23:59:59.000Z

264

Probe with integrated heater and thermocouple pack  

DOE Patents (OSTI)

A probe for measuring heat includes an elongate rod fitted within a sheath, and a plurality of annular recesses are formed on the surface of the rod in a spaced-apart relationship to form annular chambers that are resistant to heat flow. A longitudinal bore extends axially into the rod and within the cylinders defined by the annular chambers, and an integrated heater and thermocouple pack is dimensioned to fit within the bore. In construction, the integrated pack includes a plurality of wires disposed in electrical insulation within a sheath and a heater cable. These wires include one common wire and a plurality of thermocouple wires. The common wire is constructed of one type of conductive material while the thermocouple wires are each constructed of two types of materials so that at least one thermocouple junction is formed therein. All of the wires extend the length of the integrated pack and are connected together at their ends. The thermocouple wires are constructed to form thermocouple junctions proximate to each annular chamber for producing electromotive forces corresponding to the temperature of the rod within the annular chambers relative to outside the chambers. In the preferred embodiment, each thermocouple wire forms two thermocouple junctions, one junction being disposed within an annular chamber and the second junction being disposed outside of, but proximate to, the same annular chamber. In one embodiment two thermocouple wires are configured to double the sensitivity of the probe in one region.

McCulloch, Reginald W. (Oak Ridge, TN); Dial, Ralph E. (Concord, TN); Finnell, Wilber K. R. (Kingston, TN)

1988-01-01T23:59:59.000Z

265

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network (OSTI)

test procedures for solar water heaters characterizes systemWasted water Solar Heat pump water heater Australia/Newwater_heaters/Annex_IV_8July08 International Organization for Standardization, "Draft International Standard ISO/DIS 9459-4 Solar

Lutz, Jim

2012-01-01T23:59:59.000Z

266

Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)  

Energy.gov (U.S. Department of Energy (DOE))

Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

267

How Do You Use a Space Heater Efficiently? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Use a Space Heater Efficiently? How Do You Use a Space Heater Efficiently? January 13, 2011 - 6:30am Addthis On Monday, Andrea explored the question of space heaters and found that...

268

Design and Application of Solar Water Heater Intelligent Control System  

Science Conference Proceedings (OSTI)

Solar water heater intelligent control system is made up of four modules which are data acquisition module, single-chip control module, the implementation and regulation module and human- machine interaction module. The problems of automatic detection ... Keywords: Solar Water Heater, Hardware Design, Detection and Control

Yu Gui Yin

2009-10-01T23:59:59.000Z

269

Research and Application of the Natural Gas Heater  

Science Conference Proceedings (OSTI)

The natural gas heater is an indispensable piece of equipment in natural gas production, transmission, and application systems and is widely used in gas wellhead, metering station, transfer station and gas power plant etc. As a special type of furnace, ... Keywords: energy science and technology, natural gas heater, flow field organization, large cylinder, heat-transfer medium

Guo Yun; Cao Wei-wu

2009-10-01T23:59:59.000Z

270

Fired heater versus CCGT/cogeneration cycle parameters  

Science Conference Proceedings (OSTI)

Initial results are given of a newly designed coal-fired, closed-cycle gas turbine (CCGT) for a cogeneration plant. The coal burning heater is the most costly unit of such a system. The interrelationship between the technical and economic feasibility of the heater and turbine parameters are discussed. 7 refs.

Campbell, J. Jr.; Lee, J.C.

1982-01-01T23:59:59.000Z

271

Unifluxor: a permanent memory element  

Science Conference Proceedings (OSTI)

The Unifluxor is a new binary permanent memory element which appears to have the advantages of high-speed operation, easy fabrication, and low cost. Unlike cores, twistors, capacitors, and other commonly used memory devices, the Unifluxor does not depend ...

A. M. Renard; W. J. Neumann

1960-05-01T23:59:59.000Z

272

Permanent Load Shift Control Strategies  

NLE Websites -- All DOE Office Websites (Extended Search)

of Permanent Load Shifting for HVAC and other storage assets as it relates to summer on-peak demand, how it can be dynamically and autonomously controlled, and its relationship...

273

Tankless Demand Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Water Heater Basics Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold water line. Both pipes lead to the heating unit, which is installed in close proximity to the area of hot water use, and is connected to a power source (110 or 220 volts). Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as

274

Tankless Demand Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold water line. Both pipes lead to the heating unit, which is installed in close proximity to the area of hot water use, and is connected to a power source (110 or 220 volts). Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as

275

Clark Public Utilities - Solar Water Heater Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark Public Utilities - Solar Water Heater Rebate Clark Public Utilities - Solar Water Heater Rebate Clark Public Utilities - Solar Water Heater Rebate < Back Eligibility Commercial Residential Savings Category Heating & Cooling Solar Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount $500 Provider Clark PUD Clark Public Utilities offers a rebate of $500 to customers who install a solar water heating system. Customers must own the residence or business where the solar water heating system is installed and must have an electric water heater. In addition, Clark Public Utilities offers a [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WA29F&re=1&ee=1 loan program] for eligible solar water heater equipment. For additional information, call Energy Services at (360) 992-3355.

276

Tri-County Electric Cooperative - Energy Efficient Water Heater Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tri-County Electric Cooperative - Energy Efficient Water Heater Tri-County Electric Cooperative - Energy Efficient Water Heater Rebate Program Tri-County Electric Cooperative - Energy Efficient Water Heater Rebate Program < Back Eligibility Commercial Residential Savings Category Appliances & Electronics Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount $75 Provider Tri-County Electric Cooperative Tri-County Electric Cooperative offers a $75 rebate on the purchase of energy-efficient electric water heaters. The rebate is valid for new or replacement units which have an Energy Factor Rating of 0.90 or higher. The minimum tank size is 40 gallons, with a minimum 4,500 watt heating element. For validation purposes, a copy of the sales or installation receipt must accompany the [http://www.tcectexas.com/Forms/water%20heater%20rebate%20form.pdf

277

Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Rebate Program Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $600 Program Info State Florida Program Type Utility Rebate Program Rebate Amount 0.01 per BTU output Provider Clay Electric Co-op Clay Electric Cooperative (CEC) provides a rebate of $0.01 per BTU output to its residential members when they purchase qualified solar water heaters. This rebate is capped at 60,000 BTUs per system, or $600. Eligible solar water heaters can be either passive or active systems. The proposed solar system must meet Florida Solar Energy Center (FSEC) specifications and be installed by a contractor certified to install solar water heating

278

Heat Pump Swimming Pool Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Swimming Pool Heaters Swimming Pool Heaters Heat Pump Swimming Pool Heaters May 29, 2012 - 1:49pm Addthis How a heat pump works. How a heat pump works. How They Work Heat pumps use electricity to capture heat and move it from one place to another. They don't generate heat. As the pool pump circulates the swimming pool's water, the water drawn from the pool passes through a filter and the heat pump heater. The heat pump heater has a fan that draws in the outside air and directs it over the evaporator coil. Liquid refrigerant within the evaporator coil absorbs the heat from the outside air and becomes a gas. The warm gas in the coil then passes through the compressor. The compressor increases the heat, creating a very hot gas that then passes through the condenser. The condenser transfers the heat from the hot gas to the cooler pool water circulating

279

Cost of Increased Energy Efficiency for Residential Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost of Increased Energy Efficiency for Residential Water Heaters Cost of Increased Energy Efficiency for Residential Water Heaters Speaker(s): Alex Lekov Date: March 22, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn This presentation describes the analysis of the costs of increased energy efficiency for residential water heaters. Here, we focus on the cost and efficiency data for electric and gas-fired water heaters. This data formed the basis of the Technical Support Document for the Department of Energy's (DOE) Final Rule on Water Heaters. The engineering analysis uses computer simulation models to investigate the efficiency improvements due to design options and combinations thereof. The analysis covers four polyurethane foam insulation types based on non-ozone-depleting substances as blowing

280

Performance test plan for a space station toluene heater tube  

DOE Green Energy (OSTI)

Sundstrand Energy Systems was awarded a contract to investigate the performance capabilities of a toluene heater tube integral to a heat pipe as applied to the Organic Rankine Cycle (ORC) solar dynamic power system for the Space Station. This heat pipe is a subassembly of the heat receiver. The heat receiver, the heat absorption component of the ORC solar dynamic power system, consists of forty liquid metal heat pipes located circumferentially around the heat receiver`s outside diameter. Each heat pipe contains a toluene heater, two thermal energy storage (TES) canisters and potassium. The function of the heater tube is to heat the supercritical toluene to the required turbine inlet temperature. During the orbit of the space station, the heat receiver and thereby the heat pipe and heater tube will be subjected to variable heat input. The design of the heater must be such that it can accommodate the thermal and hydraulic variations that will be imposed upon it.

Parekh, M.B. [Sundstrand Energy Systems, Rockford, IL (United States)

1987-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot Water Heaters and Photovoltaic Systems Permit Requirements City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements Eligibility Commercial...

282

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers  

E-Print Network (OSTI)

G. Rosenquist. 1998. WHAM: A Simplified Energy ConsumptionWater Heater Analysis Model (WHAM) calculation method, whichcharacteristics of water heaters, WHAM uses parameters from

Lekov, Alex

2011-01-01T23:59:59.000Z

283

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

284

Solar Water Heater Roadmap Leads Path to Market Expansion (Fact Sheet)  

Science Conference Proceedings (OSTI)

Innovative strategy to reduce installed cost of solar water heater systems can rival conventional natural gas water heaters in the marketplace.

Not Available

2012-09-01T23:59:59.000Z

285

Solar Water Heater Rebate Program (U.S. Virgin Islands) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Rebate Program (U.S. Virgin Islands) Solar Water Heater Rebate Program (U.S. Virgin Islands) Eligibility Residential Savings For Heating & Cooling Solar Water...

286

Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation  

E-Print Network (OSTI)

As a comfortable and energy-efficient air conditioning system, the application of floor radiant heating system is used increasingly greatly in the north of China. As a result, the feasibility of floor radiant cooling has gained more attention. To examine the thermodynamic performance of the floor radiant cooling system, we measured the operational conditions including the minimum floor surface temperature, the cooling capacity, and the indoor temperature field distribution under different outdoor temperatures in Beijing. Because the ground temperature changes with the mean temperature of the supplied and returned water and room temperature, the mean temperature of the supplied and retuned water was obtained. Finally, we analyzed the phenomenon of dewing and developed measures for preventing it. The dry air layer near the floor formed by a displacement ventilation system can effectively prevent dews on the surface of the floor in the wet and hot days in summer. In addition, for the sake of the displacement ventilation system, the heat transfer effect between floor and space is enhanced. Our analysis pointed out that floor radiant cooling system combined with displacement ventilation ensures good comfort and energy efficiency.

Ren, Y.; Li, D.; Zhang, Y.

2006-01-01T23:59:59.000Z

287

Appendix D Eligibility Criteria for Radiant Barriers Page D-1 2013 Residential Compliance Manual January 2014  

E-Print Network (OSTI)

shall meet specific eligibility and installation criteria to be modeled by any ACM and receive energy (stapled) to the bottom surface of the truss/rafter (top chord). A minimum air space shall be maintained of the radiant barrier and the top of the ceiling insulation to allow ventilation air to flow between the roof

288

The Clouds and the Earth's Radiant Energy System (CERES) Sensors and Preflight Calibration Plans  

Science Conference Proceedings (OSTI)

The Clouds and the Earth's Radiant Energy System (CERES) spacecraft sensors are designed to measure broadband earth-reflected solar shortwave (0.35 m) and earth-emitted longwave (5 > 100 m) radiances at the top of the atmosphere as part of ...

Robert B. Lee III; Bruce R. Barkstrom; G. Louis Smith; John E. Cooper; Leonard P. Kopia; R. Wes Lawrence; Susan Thomas; Dhirendra K. Pandey; Dominique A. H. Crommelynck

1996-04-01T23:59:59.000Z

289

Heat Pump Water Heater Performance in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

searc searc e er tra A Research Institute of the University of Central Florida FLORIDA SOLAR ENERGY CENTER - A Re h Institut of the Univ sity of Cen l Florida searc e er tra Heat Pump Water Heater Performance in Laboratory House Building America Technical Update 2013 ACI National Home Performance Conference April 29- 30 , 2013 Carlos J. Colon carlos@fsec.ucf.edu A Research Institute of the University of Central Florida FLORIDA SOLAR ENERGY CENTER - A Re h Institut of the Univ sity of Cen l Florida FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida Hot Water Systems (HWS) Laboratory FSEC Grounds, Florida (east coast) 2009 -Present (Currently fourth testing rotation) FLORIDA SOLAR ENERGY CENTER - A Research Institute of the University of Central Florida

290

Technical evaluation of a solar heating system having conventional hydronic solar collectors and a radiant panel slab. Final report  

DOE Green Energy (OSTI)

A simple innovative solar heating design (Solar Option One) using conventional hydronic solar collectors and a radiant panel slab was constructed. An objective of hybrid solar design is to combine the relative advantages of active and passive design approaches while minimizing their respective disadvantages. A test house using the Solar Option One heating system was experimentally monitored to determine its energy based performance during the 1982-83 heating season. The test residence is located in Lyndonville, Vermont, an area which has a characteristically cold and cloudy climate. The two story residence has a floor area of about 1400 square feet and is constructed on a 720 square foot 5.5 inch thick floor slab. A 24 inch packed gravel bed is located beneath the slab and the slab-gravel bed is insulated by two inches of polystyrene insulation. The test building is of frame construction and uses insulation levels which have become commonplace throughout the country. The structure would not fall into the superinsulated category but was tightly constructed so as to have a low infiltration level. The building is sun-tempered in that windows were concentrated somewhat on the South side and all but avoided on the North. A solar greenhouse on the South side of the building was closed off from the structure permanently throughout the testing so as to better observe the solar heating invention without confounding variables. The monitoring equipment generated an internal gain of about 17,000 BTUs per day, roughly the equivalent of occupancy by two persons. A full description of the experimental testing program is given. System efficiency and performance are reported.

Starr, R.J.

1984-04-01T23:59:59.000Z

291

The Impact of Blowing Agents on Residential Water Heater Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

The Impact of Blowing Agents on Residential Water Heater Performance The Impact of Blowing Agents on Residential Water Heater Performance Title The Impact of Blowing Agents on Residential Water Heater Performance Publication Type Report LBNL Report Number LBNL-47352 Year of Publication 2001 Authors Lekov, Alexander B., James D. Lutz, Camilla Dunham Whitehead, and James E. McMahon Document Number LBNL-47352 Date Published January 12 Abstract The National Appliance Energy Conservation Act of 1987 (NAECA) requires the U.S. Department of Energy (DOE) to consider amendments to the energy conservation standards to increase energy efficiency in residential water heaters. A driving force affecting efficiency is the ozone-depletion regulation regarding blowing agents for insulation in all water heater fuel types. This paper presents results of cost and efficiency impacts of three potential blowing agents. Residential water heaters are typically insulated with polyurethane foam in the space between the tank and the jacket. Currently, water heater manufacturers use HCFC-141b, an ozone-depleting substance, as a blowing agent. After 2003, as a result of the Montreal Protocol (1993), manufacturers must use blowing agents that do not deplete the ozone layer. The analysis presented in this paper considers three replacement candidates, HFC-245fa, HFC-134a, and cyclopentane by comparing their efficiency and cost effectiveness when applied to water heater insulation. This analysis used computer simulation models and other analytical methods to investigate the efficiency improvements due to different design options, when alternative blowing agents are applied. The calculations were based on the DOE test procedure for residential water heaters. The analysis used average manufacturer, retailer, and installer costs to calculate the total consumer costs. Consumer operating expenses were calculated based on modeled energy consumption under test procedure conditions and U.S. average energy prices. With this information, a cost-efficiency relationship was developed to show the average manufacturer and consumer cost to achieve increased efficiency.

292

Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate Program Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Ventilation Manufacturing Heat Pumps Appliances & Electronics Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount In-Home Energy Evaluation Program Windows: $500 Duct Repair: $500 Rehabilitation Work: $250 HVAC Replacement: $250/unit HVAC Tune-up: $150/unit Insulation: $500 Water Heater and Pipe Insulation: $50 Air Sealing: $500 Energy Right Program

293

Commercial Gas Water Heaters, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

Science Conference Proceedings (OSTI)

Performance and purchasing specifications for commercial gas water heaters under the FEMP-designated product program.

Not Available

2010-09-01T23:59:59.000Z

294

High Performance Diesel Fueled Cabin Heater  

DOE Green Energy (OSTI)

Recent DOE-OHVT studies show that diesel emissions and fuel consumption can be greatly reduced at truck stops by switching from engine idle to auxiliary-fired heaters. Brookhaven National Laboratory (BNL) has studied high performance diesel burner designs that address the shortcomings of current low fire-rate burners. Initial test results suggest a real opportunity for the development of a truly advanced truck heating system. The BNL approach is to use a low pressure, air-atomized burner derived form burner designs used commonly in gas turbine combustors. This paper reviews the design and test results of the BNL diesel fueled cabin heater. The burner design is covered by U.S. Patent 6,102,687 and was issued to U.S. DOE on August 15, 2000.The development of several novel oil burner applications based on low-pressure air atomization is described. The atomizer used is a pre-filming, air blast nozzle of the type commonly used in gas turbine combustion. The air pressure used can b e as low as 1300 Pa and such pressure can be easily achieved with a fan. Advantages over conventional, pressure-atomized nozzles include ability to operate at low input rates without very small passages and much lower fuel pressure requirements. At very low firing rates the small passage sizes in pressure swirl nozzles lead to poor reliability and this factor has practically constrained these burners to firing rates over 14 kW. Air atomization can be used very effectively at low firing rates to overcome this concern. However, many air atomizer designs require pressures that can be achieved only with a compressor, greatly complicating the burner package and increasing cost. The work described in this paper has been aimed at the practical adaptation of low-pressure air atomization to low input oil burners. The objective of this work is the development of burners that can achieve the benefits of air atomization with air pressures practically achievable with a simple burner fan.

Butcher, Tom

2001-08-05T23:59:59.000Z

295

Covered Product Category: Gas Storage Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Storage Water Heaters Gas Storage Water Heaters Covered Product Category: Gas Storage Water Heaters October 7, 2013 - 10:43am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

296

Solar Water Heaters and the Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heaters and the Economy Solar Water Heaters and the Economy Solar Water Heaters and the Economy July 11, 2012 - 11:59am Addthis Ernie Tucker Editor, National Renewable Energy Laboratory These are the days of hot sun and mortgage refinance frenzy. Somehow, they've both combined in my mind to make me ponder the economics of a solar water heater. Because the sun's been beating down on our garden hose, the initial flush of water can be very hot. The warm spray reminded me of the times on camping trips when we'd bring along a portable solar shower -- essentially a black plastic bag with a tube and shower nozzle -- for bathing. While not an endless supply (perhaps 10 gallons), it was a very enjoyable luxury. Of course, it assumes that there's plenty of sunshine, but if so -- voila -- a

297

Grays Harbor PUD - Solar Water Heater Loan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Loan Solar Water Heater Loan Grays Harbor PUD - Solar Water Heater Loan < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate not specified Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount not specified Provider Grays Harbor PUD Since October 2001, Grays Harbor PUD has offered a low-interest loan program (currently 4.0%) for the installation of solar water heaters. Loans are available for the installation of solar collectors of 40 square feet or more. The loans are provided through local lenders, with interest subsidized by the PUD. Only customers who currently use electricity for hot water are eligible. Pre-approval is required for this loan and loan amounts are determined on a case-by-case basis.

298

New Braunfels Utilities - Residential Solar Water Heater Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Braunfels Utilities - Residential Solar Water Heater Rebate New Braunfels Utilities - Residential Solar Water Heater Rebate Program New Braunfels Utilities - Residential Solar Water Heater Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount $0.265/kWh Provider New Braunfels Utilities New Braunfels Utilities offers a rebate for residential customers who purchase and install solar water heating systems on eligible homes. A rebate of the equivalent of $0.265 per kWh is available to these customers. The maximum rebate amount is $900 for participating customers. Applicants must have an active residential electric service account with NBU in order to be eligible. Solar water heaters must preheat water for an electric

299

FS: heat pump water heaters | The Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Food Service » Install a heat pump Food Service » Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specificat Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Install a heat pump water heaterand reduce water heating energy up to 70% using the commercial heat pump water heater specification The Food Service team developed a Commercial Heat Pump Water Heater Specification that can be used to reduce water heating energy by 70%. An older, electric resistance water heater (operated in a building with a hot water demand of 500 gallons a day) can cost more than $3,500 each year

300

Heat Pump Swimming Pool Heaters | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

from the hot gas to the cooler pool water circulating through the heater. The heated water then returns to the pool. The hot gas, as it flows through the condenser coil, returns...

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Solar Water Heaters and the Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heaters and the Economy Water Heaters and the Economy Solar Water Heaters and the Economy July 11, 2012 - 11:59am Addthis Ernie Tucker Editor, National Renewable Energy Laboratory These are the days of hot sun and mortgage refinance frenzy. Somehow, they've both combined in my mind to make me ponder the economics of a solar water heater. Because the sun's been beating down on our garden hose, the initial flush of water can be very hot. The warm spray reminded me of the times on camping trips when we'd bring along a portable solar shower -- essentially a black plastic bag with a tube and shower nozzle -- for bathing. While not an endless supply (perhaps 10 gallons), it was a very enjoyable luxury. Of course, it assumes that there's plenty of sunshine, but if so -- voila -- a warm and sudsy campsite clean-up is possible.

302

Grays Harbor PUD - Solar Water Heater Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grays Harbor PUD - Solar Water Heater Rebate Grays Harbor PUD - Solar Water Heater Rebate Grays Harbor PUD - Solar Water Heater Rebate < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Solar Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount $600 Provider Grays Harbor PUD Since October 2001, Grays Harbor PUD has offered a rebate program for the installation of solar water heaters. Rebates of $600 are available for the installation of solar collectors of 40 square feet or more. Only customers who currently use electricity for hot water are eligible. This rebate is available on a case-by-case basis, so you must contact the utility in order to take advantage of it. Customers may choose a [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WA09F&re=1&ee=1

303

List of Water Heaters Incentives | Open Energy Information  

Open Energy Info (EERE)

Heaters Incentives Heaters Incentives Jump to: navigation, search The following contains the list of 973 Water Heaters Incentives. CSV (rows 1-500) CSV (rows 501-973) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Industrial Local Government Municipal Utility Nonprofit Schools State Government Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Room Air Conditioners Yes AEP Public Service Company of Oklahoma - Residential Efficiency Rebate Program (Oklahoma) Utility Rebate Program Oklahoma Residential Building Insulation

304

Savings Project: Insulate Your Water Heater Tank | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Your Water Heater Tank Addthis Project Level medium Energy Savings 20-45 annually Time to Complete 1.5 hours Overall Cost 30 Insulate your hot water tank to save energy and...

305

Energy test method development for electric heat pump water heaters  

SciTech Connect

Modifications are proposed for the current US Department of Energy test procedures for water heaters in order to make them applicable to electric heat pump water heaters. The modifications are in the areas of definitions and technical procedures. The latter include the test conditions, test procedures and measurements, and calculations. Reasons for making these modifications and laboratory test data are provided to support the modifications in the technical procedures. The main modifications include: (1) lowering the water supply temperature from 70/sup 0/F to 55/sup 0/F, (2) lowering the tank thermostat setting from 160/sup 0/F to 145/sup 0/F to maintain the same 90/sup 0/F temperature rise, (3) measuring the power input instead of using the nameplate rating as in the case for an electric water heater, and (4) measuring the recovery efficiency instead of calculating it by using the standby losses in the case for an electric water heater.

Wan, C.A.

1980-01-01T23:59:59.000Z

306

New Home Buyer Solar Water Heater Trade-Off Study  

DOE Green Energy (OSTI)

This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

Symmetrics Marketing Corporation

1999-08-18T23:59:59.000Z

307

An Overview of the New Residential Water Heater Efficiency Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

An Overview of the New Residential Water Heater Efficiency Standards Speaker(s): Alex Lekov Date: April 26, 2010 - 12:00pm Location: 90-3122 DOE issued new standards for...

308

Heat Pump Water Heaters and American Homes: A Good Fit?  

NLE Websites -- All DOE Office Websites (Extended Search)

can be cost effective in all regionsfor most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most...

309

Tankless Coil and Indirect Water Heaters | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

as it flows through a heating coil or heat exchanger installed in a main furnace or boiler. Tankless coil water heaters are most efficient during cold months when the heating...

310

Buildings Energy Data Book: 5.4 Water Heaters  

Buildings Energy Data Book (EERE)

4 Water Heater Stock for Commercial Buildings, By Fuel Type Fuel Type Electric 41% Natural Gas 31% Fuel Oil 2% PropaneLPG 3% District Heat 1% No Water Heating 25% Note(s):...

311

Buildings Energy Data Book: 5.4 Water Heaters  

Buildings Energy Data Book (EERE)

1 Water Heater Stock for Residential Buildings, By Fuel Type Electric Natural Gas Fuel Oil PropaneLPG Other 0.2 0.2% Total (1) Note(s): Souce(s): According to RECS, 1.1 million...

312

Carbon Dioxide-Based Heat Pump Water Heater Research Project  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy is currently conducting research into carbon dioxide (CO2) heat pump water heaters. This project will employ innovative techniques to adapt water heating technology to...

313

Burbank Water and Power - Solar Water Heater Rebate Program ...  

Open Energy Info (EERE)

Burbank Water and Power - Solar Water Heater Rebate Program (California) No revision has been approved for this page. It is currently under review by our subject matter experts. No...

314

Marshall Municipal Utilities- Solar Thermal Water Heater Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Marshall Municipal Utilities (MMU) offers residential customers rebates for installing a ENERGY STAR Solar Thermal Water Heater. Rebates are based on the size of the system; MMU offers $20 per...

315

Estimating the Cost and Energy Efficiency of a Solar Water Heater |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater May 30, 2012 - 3:09pm Addthis Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR What does this mean for me? Solar water heaters cost more to purchase and install but may save you money in the long run. Estimate the annual operating costs and compare several solar water heaters to determine whether it is worth investing in a more efficient system. Solar water heating systems usually cost more to purchase and install than conventional water heating systems. However, a solar water heater can

316

Estimating the Cost and Energy Efficiency of a Solar Water Heater |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater May 30, 2012 - 3:09pm Addthis Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR What does this mean for me? Solar water heaters cost more to purchase and install but may save you money in the long run. Estimate the annual operating costs and compare several solar water heaters to determine whether it is worth investing in a more efficient system. Solar water heating systems usually cost more to purchase and install than conventional water heating systems. However, a solar water heater can

317

Temperature limited heater utilizing non-ferromagnetic conductor  

SciTech Connect

A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

Vinegar; Harold J. (Bellaire, TX), Harris; Christopher Kelvin (Houston, TX)

2012-07-17T23:59:59.000Z

318

Energy conservation for household refrigerators and water heaters  

Science Conference Proceedings (OSTI)

An energy conservation arrangement for household refrigerators and water heaters, in which the source of cold water to the hot water heater is divided and part is caused to flow through and be warmed in the condenser of the refrigerator. The warmed water is then further heated in the oil cooling loop of the refrigerator compressor, and proceeds then to the top of the hot water tank.

Speicher, T. L.

1984-12-11T23:59:59.000Z

319

A comprehensive review of market research on solar water heaters  

DOE Green Energy (OSTI)

This is the second report of a four-task project to develop a marketing plan designed for businesses interested in marketing solar water heaters in the new home industry. The objective of this task is to identify key elements in previous studies on the marketing of solar water heaters in the new home industry. This review includes studies performed by FOCUS Marketing Services, the National Association of Home Builders Research Center, Symmetrics Marketing Corporation, and the California Energy Commission.

Ghent, P.; Keller, C.

1999-11-01T23:59:59.000Z

320

Mounting assembly for heater thermostat control  

Science Conference Proceedings (OSTI)

This patent describes an assembly for mounting a thermostat control on the outer wall of a heater tank including an external spud in which a heating element is mounted. The mounting assembly comprises: a first bracket made from a spring material and including a body having an opening adapted to lockingly fit over the tank spud. The first bracket further includes a pair of laterally-spaced legs extending from the body and having a bent upper end portion adapted to apply spring pressure toward the tank outer wall when the first bracket is locked on the tank spud. Each of the legs includes in the upper end portion an elongated slot having an upper end; a second bracket carrying the thermostat control and having a pair of laterally -spaced, upstanding ears adapted to fit beneath the upper end portions of the legs. Each of the ears includes a nib received in a slot for interlocking the first and the second brackets and having an upper edge adapted to engage the upper end of the slot and cooperate therewith to urge the thermostat control into firmer contact with the tank outer wall in response to upward vertical movement of the second bracket relative to the first bracket; and the assembly further characterized by a retaining lip on the first bracket, the lip located between the legs and positioned to bear against the end wall of the thermostat control when the parts are in assembled position and an outward horizontal load is applied.

Murphy, M.A.

1987-04-14T23:59:59.000Z

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Light-weight radioisotope heater impact tests  

SciTech Connect

The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

Reimus, M.A.H.; Rinehart, G.H.; Herrera, A. [and others

1998-12-31T23:59:59.000Z

322

Solar heater and roof attachment means  

Science Conference Proceedings (OSTI)

A solar heater includes an elongated solar collector having two fixedly connected solar panels of highly heat conductive material supported by a roof clamp on a shingled roof. The bottom edges of each of the solar panels include upturned gutter portions. One form of roof clamp for shingled roofs includes a J-shape shingle clamp member having a clamp bolt extending therethrough, and a solar collector clamp member assembled on the bolt and clamped to the bottom gutter portions of the solar panels. A bottom plate of the J-shape clamp member is slid under a shingle of a first shingle course and under a shingle of a second upper shingle course to carry the bolt into the top of the gap between adjacent shingle portions of the first course and to position a top plate of the shingle clamp member over parts of the shank portions of the first course and over a part of the one shingle of the second course. A clamp nut clamps the collector clamp member and the shingle clamp member firmly to the contacted shingles.

Howe, G.L.; Koutavas, S.G.

1984-02-21T23:59:59.000Z

323

Water heater with an improved thermostat mounting and a method of making such water heaters  

Science Conference Proceedings (OSTI)

An improvement in an electric water heater is described comprising: a non-metallic tank, a cold water inlet, a hot water outlet, an electrical heating means adapted to heat a body of water contained in the tank and a thermostat having a sensing face with a given area controlling the flow of electric current to the heating means, the improvement comprising a thermally conductive thermostat mounting plate having a surface area substantially larger than the sensing face given area in direct contact with the tank and a thermostat retention means releasably holding the thermostat in contact with the thermostat mounting plate.

Moore, H.J.; Deneau, M.E.

1993-06-15T23:59:59.000Z

324

Twilight Irradiance Reflected by the Earth Estimated from Clouds and the Earth's Radiant Energy System (CERES) Measurements  

Science Conference Proceedings (OSTI)

The upward shortwave irradiance at the top of the atmosphere when the solar zenith angle is greater than 90 (twilight irradiance) is estimated from radiance measurements by the Clouds and the Earth's Radiant Energy System (CERES) instrument on ...

Seiji Kato; Norman G. Loeb

2003-08-01T23:59:59.000Z

325

Estimation of Surface Energy Balance from Radiant Surface Temperature and NOAA AVHRR Sensor Reflectances over Agricultural and Native Vegetation  

Science Conference Proceedings (OSTI)

A model is developed to evaluate surface heat flux densities using the radiant surface temperature and red and near-infrared reflectances from the NOAA Advanced Very High Resolution Radiometer sensor. Net radiation is calculated from an empirical ...

Huang Xinmei; T. J. Lyons; R. C. G. Smith; J. M. Hacker; P. Schwerdtfeger

1993-08-01T23:59:59.000Z

326

Clouds and the Earth''s Radiant Energy System (CERES) Algorithm Theoretical Basis Document. Volume I-Overviews (Subsystem 0)  

Science Conference Proceedings (OSTI)

The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and the Earth''s Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies ...

Team CERES Science

1995-12-01T23:59:59.000Z

327

Determining Benefits and Costs of Improved Water Heater Efficiencies  

NLE Websites -- All DOE Office Websites (Extended Search)

Determining Benefits and Costs of Improved Water Heater Efficiencies Determining Benefits and Costs of Improved Water Heater Efficiencies Title Determining Benefits and Costs of Improved Water Heater Efficiencies Publication Type Report LBNL Report Number LBNL-45618 Year of Publication 2000 Authors Lekov, Alexander B., James D. Lutz, Xiaomin Liu, Camilla Dunham Whitehead, and James E. McMahon Document Number LBNL-45618 Date Published May 4 Abstract Economic impacts on individual consumers from possible revisions to U.S. residential water heater energy-efficiency standards are examined using a life-cycle cost (LCC) analysis. LCC is the consumer's cost of purchasing and installing a water heater and operating it over its lifetime. This approach makes it possible to evaluate the economic impacts on individual consumers from the revised standards. The methodology allows an examination of groups of the population which benefit or lose from suggested efficiency standards. The results show that the economic benefits to consumers are significant. At the efficiency level examined in this paper, 35% of households with electric water heaters experience LCC savings, with an average savings of $106, while 4% show LCC losses, with an average loss of $40 compared to a pre-standard LCC average of $2,565. The remainder of the population (61%) are largely unaffected.

328

Vaporization, dispersion, and radiant fluxes from LPG spills. Final technical report  

SciTech Connect

Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools and a Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes. Tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.

1982-05-01T23:59:59.000Z

329

Numerical Simulation of Thermal Performance of Floor Radiant Heating System with Enclosed Phase Change Material  

E-Print Network (OSTI)

In the present paper, a kind of enclosed phase change material (PCM) used in solar and low-temperature hot water radiant floor heating is investigated. On the basis of obtaining the best performance of PCM properties, a new radiant heating structure of the energy storage floor is designed,which places heat pipes in the enclosed phase change material (PCM) layer, without concrete in it. The PCM thermal storage time is studied in relation to the floor surface temperature under different low-temperature hot water temperatures. With the method of enthalpy , the PCM thermal storage time is studied under different supply water temperatures, supply water flows, distances between water wipe in the floor construction, floor covers and insulation conditions.

Qiu, L.; Wu, X.

2006-01-01T23:59:59.000Z

330

Study of thermosiphon and radiant panel passive heating systems for metal buildings  

DOE Green Energy (OSTI)

A study of passive-heating systems appropriate for use on metal buildings is being conducted at Los Alamos National Laboratory for the Naval Civil Engineering Laboratory, Port Hueneme, California. The systems selected for study were chosen on the basis of their appropriateness for retrofit applications, although they are also suitable for new construction: simple radiant panels that communicate directly with the building interior and a backflow thermosiphon that provides heat indirectly.

Biehl, F.A.; Schnurr, N.M.; Wray, W.O.

1983-01-01T23:59:59.000Z

331

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network (OSTI)

Today energy sources are decreasing and saving energy conservation becomes more important. Therefore, it becomes an important investigative direction how to use reproducible energy sources in the HVAC field. The feasibility and necessity of using solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter.

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

332

Energy measurements of single-family houses with attics containing radiant barriers  

Science Conference Proceedings (OSTI)

Radiant barriers were tested in attics of three unoccupied research houses which are located near Knoxville, Tennessee. The prime purpose of the testing was to determine the interaction, if any, between two types of radiant barriers, horizontal (barrier laid on top of attic insulation) and truss (barrier attached to underside of roof trusses), and three levels of fiberglass-batt attic insulation, R-11, R-19, and R-30. Testing of radiant barriers with R-19 fiberglass-batt attic insulation was done at the houses in the summer of 1985 and in the winter of 1985-86. The R-11 and R-30 testing was done in the summer of 1986. These results showed that horizontal barriers were more effective than truss barriers in reducing house cooling and heating loads. The summer of 1986 testing showed that increasing the attic insulation from R-11 to R-30 reduced the house cooling load (Btu) by approximately 16%. Adding a horizontal barrier to R-11 also reduced the cooling load compared to R-11 with no barrier by about 16%, while a truss barrier reduced it by 11%. A horizontal barrier with R-30 only reduced the cooling load by 2% compared to R-30 with no barrier, while an increase in the cooling load of 0.7% was measured with a truss barrier and R-30. Radiant barriers were not effective in reducing house cooling loads when R-30 attic insulation was present. The results from the summer of 1985 were integrated into the latest work through the use of a modeling effort using the building load simulation program, DOE-2.1B. This showed that R-19 insulation in conjunction with a horizontal barrier was (for Knoxville) the most effective barrier/insulation combination and could reduce the house cooling load by 25.1% compared to R-11 with no barrier.

Levins, W.P.; Karnitz, M.A.

1987-01-01T23:59:59.000Z

333

Effect of Radiant Barrier Technology on Summer Attic Heat Load in South Texas  

E-Print Network (OSTI)

The objective of the study was to experimentally evaluate the performance of radiant barriers in single-family occupied housing units in South Texas. Ceiling heat fluxes, attic air temperatures, indoor air temperatures, ambient air temperatures. roof temperatures, and solar radiation were measured. Results of the radiant barrier experiment using two side-by-side 600 ft2 units are presented. Attic fiberglass insulation of nominal R-11 was installed in the two apartments when the units were last remodeled in 1974. The test houses responded similarly to weather variations, that is, attic temperature and heat flux profiles were similar in magnitude prior to the retrofit. Residents of the housing units were asked to set the thermostats at 76F. Data were analyzed for periods of time which had the greatest attic temperatures (11 a.m. - 11 p.m.) and for which the indoor temperature differences were less than 1 percent. The results showed that radiant barriers reduced ceiling heat loads (on daily basis) by an average of 60 percent.

Ashley, R.; Garcia, O.; Medina, M. A.; Turner, W. D.

1994-01-01T23:59:59.000Z

334

Multifamily Heat Pump Water Heater Evaluation  

SciTech Connect

Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

Hoeschele, M.; Weitzel, E.

2013-11-01T23:59:59.000Z

335

Heat Pump Water Heaters and American Homes: A Good Fit?  

SciTech Connect

Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

2010-05-14T23:59:59.000Z

336

Heat Pump Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heater Basics Water Heater Basics Heat Pump Water Heater Basics August 19, 2013 - 2:59pm Addthis Illustration of a heat pump water heater, which looks like a tall cylinder with a small chamber on top and a larger one on the bottom. In the top chamber are a fan, a cylindrical compressor, and an evaporator that runs along the inside of the chamber. Jutting out from the exterior of the bottom chamber is a temperature and pressure relief valve. This valve has a tube called a hot water outlet attached to the top. Below the valve is the upper thermostat, a small square outside the cylinder that is attached to a curved tube inside the heater. Resistance elements run from the upper thermostat to the similarly shaped lower thermostat. Below the lower thermostat is a drain valve with a cold water inlet attached to the top. Inside the cylinder is an anode, a series of thin tubes running through the bottom chamber to a coiled tube called a condenser. Insulation runs along the inside of the cylinder.

337

Electric Tankless Water Heater (TWH) Performance Evaluation and System Compatibility Report  

Science Conference Proceedings (OSTI)

The Instantaneous Water Heater or Tankless Water Heater (TWH) or Demand Water Heater is designed to provide hot water on demand without a storage tank. Tank water heaters require energy to maintain the water temperature in the tank when not in demand. In tank water heaters, due to the specific heat of the water, the thermal time constant of the water heater will not allow it to supply hot water at the same rate as it is used, hence the use of the tank, storing hot water for instant availability. In the e...

2005-12-22T23:59:59.000Z

338

Efficient Low-Lift cooling with Radiant Distribution, Thermal Storage and Variable-Speed Chiller Controls Part II: Annual Energy Use and Savings  

DOE Green Energy (OSTI)

This paper evaluates the potential cooling efficiency improvements to be gained by integrating radiant cooling, cool storage, and variable-speed compressor and transport motor controls.

Armstrong, Peter; Jiang, Wei; Winiarski, David W.; Katipamula, Srinivas; Norford, L. K.

2009-03-31T23:59:59.000Z

339

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMP Designated Product Assessment for Commercial Gas Water Heaters FEMP Designated Product Assessment for Commercial Gas Water Heaters Title FEMP Designated Product Assessment for Commercial Gas Water Heaters Publication Type Report LBNL Report Number LBNL-5514E Year of Publication 2010 Authors Lutz, James D. Subsidiary Authors Energy Analysis Department Document Number LBNL-5514E Pagination 8 Date Published April 1 Publisher Lawrence Berkeley National Laboratory City Berkeley ISBN Number LBNL-5514E Abstract None Notes This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Attachment Size PDF 240.22 KB Google Scholar BibTex RIS RTF XML Alternate URL: http://eetd.lbl.gov/node/50317

340

Savings Project: Insulate Your Water Heater Tank | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Addthis Project Level medium Energy Savings $20-$45 annually Time to Complete 1.5 hours Overall Cost $30 Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Just like insulating your walls or roof, insulating your hot water tank is an easy and inexpensive way to improve energy efficiency and save you money each month. If your water tank is new, it is likely already insulated. If you have an older hot water tank, check to see if it has insulation with an R-value of at least 24. If not, consider insulating your water tank, which

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SMUD - Solar Water Heater Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Rebate Program Solar Water Heater Rebate Program SMUD - Solar Water Heater Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State California Program Type Utility Rebate Program Rebate Amount 500 - 1,500 per system, depending on energy savings Provider Sacramento Municipal Utility District The Sacramento Municipal Utility District's (SMUD) Solar Domestic Hot Water Program provides rebates and/or loan financing to customers who install solar water heating systems. The amount of the rebate depends on how much electricity the system will offset annually: * 800 - 1,399 kWh: $500 * 1,400 - 2,199 kWh: $1,000 * 2,200 kWh or greater: $1,500 . All solar water-heating units must meet standards set by the Solar Rating

342

Outdoor Outfitter Gets Greener With Solar Water Heater | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Outdoor Outfitter Gets Greener With Solar Water Heater Outdoor Outfitter Gets Greener With Solar Water Heater Outdoor Outfitter Gets Greener With Solar Water Heater October 8, 2010 - 12:51pm Addthis L.L. Bean’s flagship store sees nearly 3 million visitors each year. The store now uses solar-heated water for showers, restrooms and two cafes. | Photo courtesy of L.L. Bean | L.L. Bean's flagship store sees nearly 3 million visitors each year. The store now uses solar-heated water for showers, restrooms and two cafes. | Photo courtesy of L.L. Bean | Lindsay Gsell L.L. Bean is known for its outdoor apparel- jackets, backpacks and cozy winter sweaters. However, the company does more than just dress for the outdoors, it also works to protect and preserve it. For nearly 100 years, L.L. Bean has been committed to environmental conservation and

343

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

SciTech Connect

Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union?s Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory?s Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

2008-08-13T23:59:59.000Z

344

Apparatus and method for controlling a heat pump water heater  

Science Conference Proceedings (OSTI)

A method and apparatus for controlling the operation of an add-on heat pump water heater unit is disclosed. A combination of a thermally conductive tube having a flattened portion and a thermostat mounted thereto is utilized to sense the temperature level of water in a tank to which the heater unit is connected. The tube and thermostat are additionally insulated from the ambient. A circulating pump is provided and connected to the water thermostat such that the pump is energized only when it is necessary to operate the heat energy adding unit.

Whitwell, R. J.; Schafer, J. P.

1984-01-08T23:59:59.000Z

345

An Evaluation of the Placement of the Placement of Radiant Barriers on their Effectiveness in Reducing Heat Transfer in Attics  

E-Print Network (OSTI)

Experimental tests were conducted to measure the influence of radiant barriers and the effect of the radiant barrier location on attic heat transfer. All the tests were conducted in an attic simulator at a steady state. The heat flux through the attic floor was measured at two different roof deck temperatures (120F and 140F). The temperature distribution within the base fibrous insulation was also measured. Three different solid kraft laminates with aluminum foil backing were tested. There was a 34 percent reduction (sample A) in heat flux through the ceiling for the case where the radiant barrier was placed 6 inches below the roof deck in addition to the base fibrous insulation (R-11), with the roof deck at 140 F. The reduction for the same sample with the radiant barrier placed on the studs of the attic floor was 46 percent. For all the three samples, the heat flux through the attic floor was reduced when the radiant barrier was placed on the attic floor studs.

Katipamula, S.; O'Neal, D.

1986-01-01T23:59:59.000Z

346

Estimating the Cost and Energy Efficiency of a Solar Water Heater...  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater May 30, 2012 - 3:09pm Addthis Solar water...

347

Numerical analysis of thermal-hydrological conditions in the single heater test at Yucca Mountain  

E-Print Network (OSTI)

Single Heater Test at Yucca Mountain, LBNL-39789, E.O. LawSingle Heater Test at Yucca Mountain Jens T. Birkholzer andwaste repository at Yucca Mountain. The heating phase of the

Birkholzer, Jens T.; Tsang, Yvonne W.

1998-01-01T23:59:59.000Z

348

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

D. Winiarski. (1999). WHAM: Simplified tool for calculatingDepartment of Energy 2009b). WHAM yields total water heaterWater Heater Analysis Model (WHAM) method (Lutz et al. 1999)

Lekov, Alex B.

2010-01-01T23:59:59.000Z

349

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

Winiarski, D. (1999). WHAM: Simplified tool for calculatingDepartment of Energy 2009b). WHAM yields total water-heaterWater Heater Analysis Model (WHAM) method (Lutz et al. 1999)

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

350

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network (OSTI)

is ?open. ? An open air intake water heater is assigned theof air intake, physical size and load profile of the waterwater heater does not consume a fossil fuel, the air-intake

Lutz, Jim

2012-01-01T23:59:59.000Z

351

Modeling and Test-and-Rate Methods for Innovative Thermosiphon Solar Water Heaters: Preprint  

SciTech Connect

Conference paper regarding research in modeling and test-and-rate methods for thermosiphon solar domestic water heaters.

Burch, J.; Shoukas, G.; Brandemuhl, M.; Krarti, M.

2006-05-01T23:59:59.000Z

352

Whole-Home Gas Tankless Water Heaters, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

SciTech Connect

Performance and purchasing specifications for whole-home gas water heaters under the FEMP-designated product program.

2010-06-01T23:59:59.000Z

353

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

Refrigeration Institute 2008a). The efficiency of water heaters, depending on the rated volume and other design

Lekov, Alex B.

2010-01-01T23:59:59.000Z

354

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

Refrigeration Institute 2008a). The efficiency of water heaters, depending on the rated volume and other design

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

355

Work plan for the Hydrogen Mitigation Test (HMT) rotation motor heater system  

DOE Green Energy (OSTI)

Workplan to design, fabricate, and install a heater system and cover hood for the HMT rotation motor and gearbox.

Vargo, G.F. Jr.

1995-02-16T23:59:59.000Z

356

Diagnosis of Solar Water Heaters Using Solar Storage Tank Surface Temperature Data: Preprint  

DOE Green Energy (OSTI)

Study of solar water heaters by using surface temperature data of solar storage tanks to diagnose proper operations.

Burch, J.; Magnuson, L.; Barker, G.; Bullwinkel, M.

2009-04-01T23:59:59.000Z

357

Conventional Storage Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On top of the tank are two thin pipes; one pipe is the hot water outlet, and the other is the cold water inlet. A large pipe in the middle is called a vent pipe. A pressure/temperature relief valve is also on top of the tank and is connected to an open pipe that runs down the side of the tank. Another valve near the bottom of the outside of the tank is the thermostat and gas valve. A cutout shows the parts inside the tank, which include a large tube called a flue tube/heat exchanger. Inside this tube is a jagged insert called a flue baffle. Beside the flue tube/heat exchanger is a thin tube called the anode rod. At the bottom of the tank is a gas burner, and beneath the burner are combustion air openings.

358

Design and performance of low-wattage electrical heater probe  

Science Conference Proceedings (OSTI)

A mound electrical calibration heater (MECH) has been used in several EG and G Mound developed calorimeters as a calibration tool. They are very useful over the wattage range of a few to 500 W. At the lower end of the range, a bias develops between the MECH probe and calibrated heat standards. A low-wattage electrical calibration heater (L WECH) probe is being developed by the Safeguards Science and Technology group (NIS-5) of Los Alamos National Laboratory based upon a concept proposed by EG and G Mound personnel. The probe combines electrical resistive heating and laser-light powered heating. The LWECH probe is being developed for use with power settings up to 2W. The electrical heater will be used at the high end of the range, and laser-light power will be used low end of the wattage range. The system consists of two components: the heater probe and a control unit. The probe is inserted into the measuring cavity through an opening in the insulating baffle, and a sleeve is required to adapt to the measuring chamber. The probe is powered and controlled using electronics modules located separately. This paper will report on the design of the LWECH probe, initial tests, and expected performance.

Biddle, R.; Wetzel, J.R. [Los Alamos National Lab., NM (United States); Cech, R. [Global Manufacturing Solutions, Inc., Miamisburg, OH (United States)

1997-11-01T23:59:59.000Z

359

An Analysis of Steam Process Heater Condensate Drainage Options  

E-Print Network (OSTI)

The production and reliability performance of Steam Process Heaters can be significantly affected by the condensate drainage design that is employed. There are currently a variety of drainage options which can be confusing to a system designer who is unaware of the reasons for each specific design. An understanding of the various types and why they may be used follows.

Risko, J. R.

1999-05-01T23:59:59.000Z

360

Marketing and promoting solar water heaters to home builders  

DOE Green Energy (OSTI)

This is the final report of a four-task project to develop a marketing plan designed for businesses interested in marketing solar water heaters in the new home industry. This report outlines suggested marketing communication materials and other promotional tools focused on selling products to the new home builder. Information relevant to promoting products to the new home buyer is also included.

Keller, C.; Ghent, P.

1999-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Life Cycle Management Sourcebooks Volume 10: Feedwater Heaters  

Science Conference Proceedings (OSTI)

EPRI is producing a series of Life Cycle Management Planning Sourcebooks, each containing a compilation of industry experience and data on aging degradation and historical performance for a specific type of system, structure, or component (SSC). This sourcebook provides information and guidance for implementing cost-effective life cycle management (LCM) planning for feedwater heaters.

2003-12-08T23:59:59.000Z

362

Buildings Energy Data Book: 5.4 Water Heaters  

Buildings Energy Data Book (EERE)

2 Water Heater Stock for Residential Buildings, By Storage Type Small (30 gallons or less) 17.1 17% 1.4 14% 18.5 17% Medium (31 to 49 gallons) 52.4 53% 2.4 24% 54.8 50% Large (50...

363

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

SciTech Connect

This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

Sparn, B.; Hudon, K.; Christensen, D.

2011-09-01T23:59:59.000Z

364

Demand Response Performance of GE Hybrid Heat Pump Water Heater  

SciTech Connect

This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation Brillion-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in Standard electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in Heat Pump mode to provide the comparison to heat pump-only demand response. It is expected that Hybrid DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

2013-07-01T23:59:59.000Z

365

Fault diagnosis of regenerative water heater based-on multi-class support vector machines  

Science Conference Proceedings (OSTI)

The main idea of multi-class support vector machines (SVMs) is described. a multi-class model for regenerative water heater fault diagnosis is presented combining the fuzzy logic and SVMs. The typical faults set of regenerative water heater is built ... Keywords: fault diagnosis, fuzzy rules, regenerative water heater, steam turbine, support vector machines

Lei Wang; Rui-Qing Zhang

2009-08-01T23:59:59.000Z

366

Fault Diagnosis of Regenerative Water Heater Based-On Multi-class Support Vector Machines  

Science Conference Proceedings (OSTI)

The main idea of multi-class support vector machines (SVMs) is described. a multi-class model for regenerative water heater fault diagnosis is presented combining the fuzzy logic and SVMs. The typical faults set of regenerative water heater is built ... Keywords: steam turbine, regenerative water heater, fuzzy rules, support vector machines, fault diagnosis

Lei Wang; Rui-qing Zhang

2009-08-01T23:59:59.000Z

367

Experimental Study on Operating Characteristic of the System of Ground Source Heat Pump Combined with Floor Radiant Heating of Capillary Tube  

Science Conference Proceedings (OSTI)

At first, the article presented particularly the working theory of the system of ground source heat pump combined with floor radiant heating of capillary tube, the characteristic of soil layers and the arrangement form of capillary tube mat and the floor ... Keywords: Ground source heat pump, Capillary tube, Radiant heating, Characteristic, Experiment

Yunzhun Fu; Cai Yingling; Jing Li; Yeyu Wang

2009-10-01T23:59:59.000Z

368

Magnetic Microstructures of Novel High Performance Permanent ...  

Science Conference Proceedings (OSTI)

... Nd-Fe-B Permanent Magnets Unique Exchange Bias Induced by Antiferromagnetic Cr-oxide ZnO-graphene Hybrid Quantum Dots Light Emitting Diode...

369

A transient heat and mass transfer model of residential attics used to simulate radiant barrier retrofits. Part 2: Validation and simulations  

Science Conference Proceedings (OSTI)

A computer program was developed and used to implement the model described on Part 1 of this paper. The program used an iterative process to predict temperatures and heat fluxes using linear algebra principles. The results from the program were compared to experimental data collected during a three-year period. The model simulated different conditions such as variations in attic ventilation, variations in attic ceiling insulation, and different radiant barrier orientations for summer and winter seasons. It was observed that the model predicted with an error of less than 10% for most cases. This paper presents model results for nonradiant barrier cases as well as cases for radiant barriers installed horizontally on top of the attic floor (HRB) and for radiant barriers stapled to the attic rafters (TRB). Savings produced by radiant barriers and sensitivity analyses are also presented. The model results supported the experimental trend that emissivity was the single most significant parameter that affected the performance of radiant barriers.

Medina, M.A. [Texas A and M Univ., Kingsville, TX (United States). Dept. of Mechanical and Industrial Engineering

1998-02-01T23:59:59.000Z

370

Three-phase heaters with common overburden sections for heating subsurface formations  

SciTech Connect

A heating system for a subsurface formation is described. The heating system includes three substantially u-shaped heaters with first end portions of the heaters being electrically coupled to a single, three-phase wye transformer and second end portions of the heaters being electrically coupled to each other and/or to ground. The three heaters may enter the formation through a first common wellbore and exit the formation through a second common wellbore so that the magnetic fields of the three heaters at least partially cancel out in the common wellbores.

Vinegar, Harold J. (Bellaire, TX)

2012-02-14T23:59:59.000Z

371

Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide-Based Carbon Dioxide-Based Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Carbon Dioxide-Based Heat Pump Water Heater Research Project on AddThis.com...

372

Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Fired Absorption Gas-Fired Absorption Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on AddThis.com...

373

Ocean Mixed Layer Radiant Heating and Solar Penetration: A Global Analysis  

Science Conference Proceedings (OSTI)

A hybrid parameterization for the determination of in-water solar fluxes is developed and applied to compute the flux of solar radiation that penetrates beyond the upper-ocean mixed layer into permanent pycnocline waters on global space and ...

J. Carter Ohlmann; David A. Siegel; Catherine Gautier

1996-10-01T23:59:59.000Z

374

Green Scheduling for Radiant Systems in Buildings Truong X. Nghiem, Madhur Behl, George J. Pappas and Rahul Mangharam  

E-Print Network (OSTI)

to energy efficient control for commercial buildings and data centers is model predictive control (MPC) ([8]). Predictive control methods were shown in [11], [12] to improve the comfort of radiant systems. A two as an alternative to the conventional forced-air heating, ventilation and air conditioning (HVAC) systems

Pappas, George J.

375

Comparative Testing of the Combined Radiant Barrier and Duct Models in the ESL's Code-Compliant Simulation Model  

E-Print Network (OSTI)

This report presents a study of the application of the radiant barrier / duct models to the DOE-2.1e simulation program based on the previous methods (eQuest version 3.55 and EnergyGauge version 2.42) and the comparison of the results of the ESLs model and the EnergyGauge program by the Florida Solar Energy Center (FSEC). Sensitivity analyses were performed by varying duct insulation level, supply duct area, return duct area, supply duct leakage, return duct leakage, and ceiling insulation levels. The results of sensitivity analyses show acceptable agreement versus the EnergyGauge program for duct insulation level, supply duct area, return duct area, supply duct leakage, and ceiling insulation level. Significant differences in the return duct leakage calculations were observed. These comparisons show the ESL model is more sensitive to return duct leakage than the EnergyGauge model Comparison of the results of the duct model for two cases (with radiant barrier and without radiant barrier) show acceptable agreements for the parameters of duct insulation, supply duct surface area, return duct surface area, supply duct leakage and ceiling insulation. The results of savings (with and without radiant barriers) indicate that the ESL model shows slightly more savings for all parameters. In terms of the sensitivity of the results, the ESL model also shows more sensitivity for all parameters except supply duct leakage.

Kim, S.; Haberl, J. S.

2007-07-10T23:59:59.000Z

376

The Annual Cycle of Earth Radiation Budget from Clouds and the Earths Radiant Energy System (CERES) Data  

Science Conference Proceedings (OSTI)

The seasonal cycle of the Earth radiation budget is investigated by use of data from the Clouds and the Earths Radiant Energy System (CERES). Monthly mean maps of reflected solar flux and Earth-emitted flux on a 1 equal-angle grid are used for ...

Pamela E. Mlynczak; G. Louis Smith; David R. Doelling

2011-12-01T23:59:59.000Z

377

Doubly Salient Permanent Magnet Motor Development Review  

Science Conference Proceedings (OSTI)

The research of doubly salient permanent magnet motor (DSPM), arises as the emergence of a novel type mechatronic control of AC drive system. Currently, on the international realm, the studies regarding on this kind of motor mainly focus on calculation ... Keywords: Doubly Salient, Permanent Magnet Motor, AC Variable Speed, Magnetic Materials, Switched Reluctance Motor

Lina Yi, Meng Zhao

2013-09-01T23:59:59.000Z

378

Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Performance Evaluation of Residential Integrated Heat Pump Water Heaters B. Sparn, K. Hudon, and D. Christensen Technical Report NREL/TP-5500-52635 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters B. Sparn, K. Hudon, and D. Christensen Prepared under Task Nos. WTN9.1000, ARRB.2204 Technical Report NREL/TP-5500-52635 September 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

379

Model for Aggregated Water Heater Load Using Dynamic Bayesian Networks  

Science Conference Proceedings (OSTI)

The transition to the new generation power grid, or smart grid, requires novel ways of using and analyzing data collected from the grid infrastructure. Fundamental functionalities like demand response (DR), that the smart grid needs, rely heavily on the ability of the energy providers and distributors to forecast the load behavior of appliances under different DR strategies. This paper presents a new model of aggregated water heater load, based on dynamic Bayesian networks (DBNs). The model has been validated against simulated data from an open source distribution simulation software (GridLAB-D). The results presented in this paper demonstrate that the DBN model accurately tracks the load profile curves of aggregated water heaters under different testing scenarios.

Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai; Kalsi, Karanjit

2012-07-19T23:59:59.000Z

380

Finite-volume model for chemical vapor infiltration incorporating radiant heat transfer. Interim report  

SciTech Connect

Most finite-volume thermal models account for the diffusion and convection of heat and may include volume heating. However, for certain simulation geometries, a large percentage of heat flux is due to thermal radiation. In this paper a finite-volume computational procedure for the simulation of heat transfer by conduction, convection and radiation in three dimensional complex enclosures is developed. The radiant heat transfer is included as a source term in each volume element which is derived by Monte Carlo ray tracing from all possible radiating and absorbing faces. The importance of radiative heat transfer is illustrated in the modeling of chemical vapor infiltration (CVI) of tubes. The temperature profile through the tube preform matches experimental measurements only when radiation is included. An alternative, empirical approach using an {open_quotes}effective{close_quotes} thermal conductivity for the gas space can match the initial temperature profile but does not match temperature changes that occur during preform densification.

Smith, A.W.; Starr, T.L. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Radiant Barrier Insulation Performance in Full Scale Attics with Soffit and Ridge Venting  

E-Print Network (OSTI)

There is a limited data base on the full scale performance of radiant barrier insulation in attics. The performance of RBS have been shown to be dependent on attic ventilation characteristics. Tests have been conducted on a duplex located in Florida with soffit and ridge venting to measure attic performance. The unique features of these experiments are accurate and extensive instrumentation with heat flow meters, field verification of HFM calibration, extensive characterization of the installed ceiling insulation, ventilation rate measurements and extensive temperature instrumentation. The attics are designed to facilitate experimental changes without damaging the installed insulation. RBS performance has been measured for two natural ventilation levels for soffit and ridge venting. Previously, no full scale data have been developed for these test configurations. Test data for each of the test configurations was acquired for a minimum of two weeks with some acquired over a five week period. The Rl9 insulation performed as expected.

Ober, D. G.; Volckhausen, T. W.

1988-01-01T23:59:59.000Z

382

Field Performance of Heat Pump Water Heaters in the Northeast  

SciTech Connect

Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(tm), A.O. Smith Voltex(r), and Stiebel Eltron Accelera(r)300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

Shapiro, C.; Puttagunta, S.

2013-08-01T23:59:59.000Z

383

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1982-01-01T23:59:59.000Z

384

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1984-01-01T23:59:59.000Z

385

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1985-05-01T23:59:59.000Z

386

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size and unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1986-06-01T23:59:59.000Z

387

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters, regenerative air preheaters and economizers. Relative advantages and applicability of the three methods are discussed. Analytical methods and correlations are presented which enable determination of size of unit, capital cost and operating cost for each of the three methods of heat recovery.

Kumar, A.

1983-01-01T23:59:59.000Z

388

Chiller-heater unit nets building 2-yr payback  

SciTech Connect

A 500-ton double-absorption Hitachi Paraflow chiller-heater that switches from purchased steam to natural gas will reduce a Manhattan office building's energy costs by 55% and achieve a two-year payback. The new system replaces a steam-powered, single-stage absorption chiller. By reusing heat in a second-stage generator, the Hitachi unit uses only half as many Btus per ton as a conventional chiller. (DCK)

Duffy, J.

1983-05-09T23:59:59.000Z

389

A Gas-Fired Heat Pipe Zone Heater  

E-Print Network (OSTI)

A gas-fired vented zone heater has recently been developed by the Altar Corporation for Colorado State University (CSU) under a Gas Research Institute (GRI) contract. The unit war developed for auxiliary heating applications in passive solar buildings. An early prototype was tested at Altas and operated as expected. The final model was shipped to CSU in December 1983 for testing in the REPEAT Facility at CSU. A heat pipe extends through the wall to the outside of the building. It has a modest water charge which can freeze repeatedly with no damage, since the heat pips is only partially filled. Firing efficiency at 4,000 Btu/b (1.17 kW thermal) is approximately 80%. The unit features a 3 foot by 3 foot radiator mounted inside the room to be heated, and is thermostatically controlled. Ignition is accomplished with an electronic sparker (pilot). The radiator typically operates at 150-180F (65-82C), and has been operated at between 2,000 and 5,000 Btu/h (0.6-1.47 kW). Results of testing the vented heat pipe zone heater at CSU arm presented. Also, a method for determining the optimal combination of zone heater, passive solar heating and energy conservation measures has been developed. Nomographs have been developed that may be used by a building designer to determine the optimal combination of zone heater size, passive solar system size, and energy conservation measures for given types of passive solar heating systems in selected locations. A representative nomograph is presented along with a design example.

Winn, C. B.; Burns, P.; Guire, J.

1984-01-01T23:59:59.000Z

390

Electric Water Heater Modeling and Control Strategies for Demand Response  

Science Conference Proceedings (OSTI)

Abstract Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms Centralized control, decentralized control, demand response, electrical water heater, smart grid

Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

2012-07-22T23:59:59.000Z

391

Applications Tests of Commercial Heat Pump Water Heaters  

E-Print Network (OSTI)

Field application tests have been conducted on three 4 to 6-ton commercial heat pump water heater systems in a restaurant, a coin-operated laundry, and an office building cafeteria in Atlanta. The units provide space cooling while rejecting heat to a water heating load. The tests, conducted for Georgia Power Company, examined both quantitative and qualitative aspects of the heat pumps and the overall water heating systems. The results provide valuable insight into the actual operating characteristics of heat pump water heaters and useful guidelines for system design and operation. The capacity and efficiency of the units agreed with manufacturers' specifications. COP values ranged from 2 .6 to 3.0 for water heating only, and from 4.1 to 5.0 when space cooling benefit was included. It was concluded that heat pump water heaters can provide economical water heating and space conditioning. However, application sites must be selected within certain constraints and a minimum level of operating control and maintenance must be observed.

Oshinski, J. N..; Abrams, D. W.

1987-01-01T23:59:59.000Z

392

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers  

SciTech Connect

The U.S. Department of Energy (DOE) recently completed a rulemaking process in which it amended the existing energy efficiency standards for residential water heaters. A key factor in DOE?s consideration of new standards is the economic impacts on consumers. Determining such impacts requires a comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This paper describes the method used to conduct the life-cycle cost (LCC) and payback period analysis for gas and electric storage water heaters. It presents the estimated change in LCC associated with more energy-efficient equipment, including heat pump electric water heaters and condensing gas water heaters, for a representative sample of U.S. homes. The study included a detailed accounting of installation costs for the considered design options, with a focus on approaches for accommodating the larger dimensions of more efficient water heaters. For heat pump water heaters, the study also considered airflow requirements, venting issues, and the impact of these products on the indoor environment. The results indicate that efficiency improvement relative to the baseline design reduces the LCC in the majority of homes for both gas and electric storage water heaters, and heat pump electric water heaters and condensing gas water heaters provide a lower LCC for homes with large rated volume water heaters.

Lekov, Alex; Franco, Victor; Meyers, Steve; Thompson, Lisa; Letschert, Virginie

2010-11-24T23:59:59.000Z

393

Comparing Heat Pump Water Heaters (HPWHs) to Traditional Resistive Water Heaters: Assessing HPWH Performance for Southern Company  

Science Conference Proceedings (OSTI)

In 2009, Southern Company partnered with the Electric Power Research Institute (EPRI) to investigate the use of heat pump water heaters (HPWH) technology. The investigation was part of EPRI's Energy Efficiency Demonstration, which was a field-performance assessment of six emerging, efficient end-use technologies, deployed with extensive measurement instrumentation at multiple sites throughout the U.S. The goals of the multiyear project were to test, evaluate, demonstrate, andif ...

2013-09-04T23:59:59.000Z

394

Transient Peak Currents in Permanent Magnet Synchronous Motors  

E-Print Network (OSTI)

Transient Peak Currents in Permanent Magnet Synchronous Motors for Symmetrical Short Circuits Terms-- Permanent magnet synchronous motor, short circuit, protection measure, transient behavior I 33095 Paderborn, Germany Abstract--To enable constant-power areas with permanent magnet synchronous

Noé, Reinhold

395

Restoration of Refinery Heaters Using the Technique of Prefabricated Ceramic Fiber Lined Panels  

E-Print Network (OSTI)

Refinery heater fuel requirements often represent 50% of a units operating cost. A one percent change in the efficiency of a heater firing 100 MBtu/hr amounts to more than $25,000 per year. Heater efficiency is influenced by casing hot spots, air leakage, corbel damage, flue gas obstruction and dirty tubes. Efficiency impact is greatest in the convection section since conventional repairs only permit accessing from the outside, thus only hot spots and some air leakage are repaired. Exxon USA's Baton Rouge refinery has adopted a restoration procedure, using the technique of ceramic fiber lined panels, which corrects all the problem areas and returns the heater to new condition. Restorations have been successfully completed on convection sections as well as total heaters. All restorations have been within a normal turnaround period. Efficiency increases greater than 3% have been realized, as well as improvements in the heater's operation.

Sento, H. D.

1981-01-01T23:59:59.000Z

396

Permanent magnet hydrogen oxygen generating cells  

SciTech Connect

A generating cell for hydrogen and oxygen utilizes permanent magnets and electromagnets. Means are provided for removing gases from the electrodes. Mixing chambers are provided for water and the electrolyte used in the cell.

Harris, M.

1976-07-13T23:59:59.000Z

397

Modeling and optimization of permanent magnetic motors  

E-Print Network (OSTI)

This thesis develops analytic models for the prediction and optimization of radial-flux permanent magnet motor torque and efficiency. It also facilitates the design optimization of electromagnetically-powered rotorcraft ...

Pinkham, Andrew P

2008-01-01T23:59:59.000Z

398

The rope memory: a permanent storage device  

Science Conference Proceedings (OSTI)

A powerful way of increasing the capability and flexibility of digital computing systems is through the use of permanent storage memories. Such memories are also known as readonly memories or NDRO electrically unalterable memories. As an example of the ...

P. Kuttner

1963-11-01T23:59:59.000Z

399

Permanent magnet edge-field quadrupole  

DOE Patents (OSTI)

Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

Tatchyn, Roman O. (Mountain View, CA)

1997-01-01T23:59:59.000Z

400

In-service monitoring of degradation of a feedwater heater in a BWR plant  

Science Conference Proceedings (OSTI)

This paper describes the operating history of a low pressure feedwater heater located in the condenser neck at Pilgrim Nuclear Power Station. The unit had a succession of operating problems which led to replacement of the heater during Refueling Outage No. 6 in January-February 1984. This paper outlines the testing performed on the heater correlated with operating requirements in order to restore the system performance.

Morio, S.M.

1984-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing  

Science Conference Proceedings (OSTI)

This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida. The housing units had their gas-fired tank type water heaters replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

Ries, R.; Walters, R.; Dwiantoro, D.

2013-01-01T23:59:59.000Z

402

Hybrid-secondary uncluttered permanent magnet machine and ...  

An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a ...

403

An Evaluation of the Water Heater Load Potential for Providing Regulation Service  

Science Conference Proceedings (OSTI)

This paper investigates the possibility of providing aggregated regulation services with small loads, such as water heaters or air conditioners. A direct-load control algorithm is presented to aggregate the water heater load for the purpose of regulation. A dual-element electric water heater model is developed, which accounts for both thermal dynamics and users water consumptions. A realistic regulation signal was used to evaluate the number of water heaters needed and the operational characteristics of a water heater when providing 2-MW regulation service. Modeling results suggest that approximately 33,333 water heaters are needed to provide a 2-MW regulation service 24 hours a day. However, if water heaters only provide regulation from 6:00 to 24:00, approximately 20,000 will be needed. Because the control algorithm has considered the thermal setting of the water heater, the customer comfort is obstructed little. Therefore, the aggregated regulation service provided by water heater loads can become a major source of revenue for load-service entities when the smart grid enables the direct load control.

Kondoh, Junji; Lu, Ning; Hammerstrom, Donald J.

2011-08-31T23:59:59.000Z

404

HEATER TEST PLANNING FOR THE NEAR SURFACE TEST FACILITY AT THE HANFORD RESERVATION  

E-Print Network (OSTI)

Heater Experiment at Hanford. Berkeley, Lawre ;e BerkeleyTest Facility, Hole DC-11, Hanford Reservation. Prepared forof Gable Mountain Basalt Cores, Hanford Nuclear Reservation.

DuBois, A.

2010-01-01T23:59:59.000Z

405

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.

2010-01-01T23:59:59.000Z

406

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network (OSTI)

seds.html. USDOE. 2009. Residential Energy ConsumptionUSEPA) 2008. Energy Star Residential Water Heaters: FinalExperiences of residential consumers and utilities. Oak

Lekov, Alex

2011-01-01T23:59:59.000Z

407

A model for improvement of water heating heat exchanger designs for residential heat pump water heaters.  

E-Print Network (OSTI)

??Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger. (more)

Weerawoot, Arunwattana

2010-01-01T23:59:59.000Z

408

Clouds and the Earth''s Radiant Energy System (CERES) Algorithm Theoretical Basis Document. Volume II-Geolocation, Calibration, and ERBE-Like Analyses (Subsystems 1-3)  

Science Conference Proceedings (OSTI)

The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth''s Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies ...

Team CERES Science

1995-12-01T23:59:59.000Z

409

Top-of-Atmosphere Direct Radiative Effect of Aerosols over the Tropical Oceans from the Clouds and the Earth's Radiant Energy System (CERES) Satellite Instrument  

Science Conference Proceedings (OSTI)

Nine months of the Clouds and the Earth's Radiant Energy System (CERES)/Tropical Rainfall Measuring Mission (TRMM) broadband fluxes combined with the TRMM visible infrared scanner (VIRS) high-resolution imager measurements are used to estimate ...

Norman G. Loeb; Seiji Kato

2002-06-01T23:59:59.000Z

410

Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System  

E-Print Network (OSTI)

A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different outdoor temperatures are obtained, and the heating load of the manufactured space is analyzed. The relationship between the envelope internal surface temperature and the workspace temperature is also analyzed in this paper. CFD simulation software is used to simulate the temperature field and the envelope's internal surface temperature of the manufacture space with hot-air heating system. Comparison and analysis of heating loads are done between the manufactured spaces with convection heating and radiant heating systems.

Zheng, X.; Dong, Z.

2006-01-01T23:59:59.000Z

411

High Efficiency R-744 Commercial Heat Pump Water Heaters  

SciTech Connect

The project investigated the development and improvement process of a R744 (CO2) commercial heat pump water heater (HPWH) package of approximately 35 kW. The improvement process covered all main components of the system. More specific the heat exchangers (Internal heat exchanger, Evaporator, Gas cooler) as well as the expansion device and the compressor were investigated. In addition, a comparison to a commercially available baseline R134a unit of the same capacity and footprint was made in order to compare performance as well as package size reduction potential.

Elbel, Dr. Stefan W.; Petersen, Michael

2013-04-25T23:59:59.000Z

412

Zoned electrical heater arranged in spaced relationship from particulate filter  

DOE Patents (OSTI)

A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

Gonze, Eugene V [Pinckney, MI

2011-11-15T23:59:59.000Z

413

The fluidized bed combustor-heater equipped gas fired CCGT  

Science Conference Proceedings (OSTI)

The combustion of natural gas in an atmospheric fluidized bed combined with heat transfer from the bed to the working fluid is shown to be an attractive means for supplying heat to closed cycle gas turbines. It is demonstrated how this concept can yield high thermal efficiencies without the use of high temperature resistant materials and yield low levels of pollutant emissions. The features of the combustor-heater are established for a 9000 kW closed cycle gas turbine generator and comparisons are made with a conventional open cycle machine.

Fejer, A.

1984-06-01T23:59:59.000Z

414

Fluidized bed combustor-heater equipped gas fired CCGT  

Science Conference Proceedings (OSTI)

The combustion of natural gas in an atmospheric fluidized bed combined with heat transfer from the bed to the working fluid is shown to be an attractive means for supplying heat to closed cycle gas turbines. It is demonstrated how this concept can yield high thermal efficiencies without the use of high temperature resistant materials and yield low levels of pollutant emissions. The features of the combustor-heater are established for a 9000 kW closed cycle gas turbine generator and comparisons are made with a conventional open cycle machine.

Fejer, A.A.

1984-01-01T23:59:59.000Z

415

Integral finned heater and cooler for stirling engines  

DOE Patents (OSTI)

A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.

Corey, John A. (North Troy, NY)

1984-01-01T23:59:59.000Z

416

CFD Simulation and Analysis of the Combined Evaporative Cooling and Radiant Ceiling Air-conditioning System  

E-Print Network (OSTI)

Due to such disadvantages as large air duct and high energy consumption of the current all- outdoor air evaporative cooling systems used in the dry region of Northwest China, as well as the superiority of the ceiling cooling system in improving thermal comfort and saving energy, a combined system is presented in this paper. It combines an evaporative cooling system with ceiling cooling, in which the evaporative cooling system handles the entire latent load and one part of the sensible loads, and the ceiling cooling system deals with the other part of sensible loads in the air-conditioned zone, so that the condensation on radiant panels and the insufficiency of cooling capacity can be avoided. The cooling water at 18? used in the cooling coils of ceiling cooling system can be ground water, tap water or the cooled water from cooling towers in the summer. This new air-conditioning system and existing all- outdoor air evaporative cooling system are applied to a project in the city of Lanzhou. Energy consumption analysis of the building is carried out using the energy consumption code. Velocity and temperature distribution in the air-conditioned zone is computed using CFD. According to the results, the energy consumption and indoor human thermal comfort of both systems are then compared. It is concluded that the new system occupies less building space, reduces energy consumption, improves indoor human thermal comfort and saves initial investment.

Xiang, H.; Yinming, L.; Junmei, W.

2006-01-01T23:59:59.000Z

417

Efficient Low-Lift cooling with Radiant Distribution, Thermal Storage and Variable-Speed Chiller Controls  

DOE Green Energy (OSTI)

The U.S. Department of Energys Building Technologies Program goal is to develop cost-effective technologies and building practices that will enable the design and construction of net-zero energy buildings by 2025. To support this goal, Pacific Northwest National Laboratory evaluated an integrated technology that through utilization of synergies between emerging heating, ventilation and air conditioning systems can significantly reduce energy consumption in buildings. This set consists of thermal storage, dedicated outdoor air system, radiant heating/cooling with a variable speed low-lift-optimized vapor compression system. The results show that the low-lift cooling system provides significant energy savings in many building types and climates locations. This market represents well over half of the entire U.S. commercial building sector. This analysis shows that significant cooling system efficiency gains can be achieved by integrating low-lift cooling technologies. The cooling energy savings for a standard-performance building range from 37% to 84% and, for a high-performance building, from -9% to 70%.

Katipamula, Srinivas; Armstrong, Peter; Wang, Weimin; Fernandez, Nicholas

2010-05-31T23:59:59.000Z

418

Development of periodic response factors for use with the radiant time series method  

SciTech Connect

Harris and McQuiston (1988) developed conduction transfer function (CTF) coefficients corresponding to 41 representative wall assemblies and 42 representative roof assemblies for use with the transfer function method (TFM). They also developed a grouping procedure that allows design engineers to determine the correct representative wall or roof assembly that most closely matches a specific wall or roof assembly. The CTF coefficients and the grouping procedure have been summarized in the ASHRAE Handbook--Fundamentals (1989, 1993, 1997) and the ASHRAE Cooling and Heating Load Calculation Manual, second edition. More recently, a new, simplified design cooling load calculation procedure, the radiant time series method (RTSM), has been developed. The RTSM uses periodic response factors to model transient conductive heat transfer. While not a true manual load calculation procedure, it is quite feasible to implement the RTSM in a spreadsheet. To be useful in such an environment, it would be desirable to have a pre-calculated set of periodic response factors. Accordingly, a set of periodic response factors has been calculated and is presented in this paper.

Spitler, J.D.; Fisher, D.E.

1999-07-01T23:59:59.000Z

419

Inexpensive solar water heater you can build. Publication C-188  

SciTech Connect

Directions are given for constructing a home-made solar water heater that is expected to supply over 50% of the hot water for a family of 3 or 4. System cost is estimated at $250.00. The system utilizes three 2 x 8-foot solar panels. Hot water from the panels is pumped through a preheat-storage tank where it heats domestic water. The preheated water is then drawn into the cold water inlet of the regular home water heater. The pump which circulates the fluid is controlled by a differential thermostat which turns it on when the solar panels become hotter than the water in the preheat-storage tank. The collector panel design, construction, assembly, and installation are described in detail, as are the heat exchanger and storage tank. A thermosiphon system design is also briefly outlined. Sources of necessary materials are given as well as a list of needed materials, miscellaneous supplies, and major tools. Finally, the research and experimental work leading to the design is described, including the testing of models. (LEW)

Herndon, L.P.; Hill, G.C.

1982-01-01T23:59:59.000Z

420

Energy Cost Calculator for Electric and Gas Water Heaters | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric and Gas Water Heaters Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters October 8, 2013 - 2:26pm Addthis Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Water Heater Electric Gas Electric Average Daily Usage (gallons per day)* gallons 64* Energy Factor† 0.92 (electric) 0.61 (gas) Energy Cost $ / kWh $0.06 per kWh $.60 per therm Quantity of Water Heaters to be Purchased unit(s) 1 unit * See assumptions for various daily water use totals. † The comparison assumes a storage tank water heater as the input type. To allow demand water heaters as the comparison type, users can specify an input EF of up to 0.85; however, 0.66 is currently the best available EF for storage water heaters.

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

High voltage bus and auxiliary heater control system for an electric or hybrid vehicle  

DOE Green Energy (OSTI)

A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

Murty, Balarama Vempaty (West Bloomfield, MI)

2000-01-01T23:59:59.000Z

422

THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER  

E-Print Network (OSTI)

of houses with a high perfor- mance heat pump as well as resistance, gas, and oil heated houses with a high#12;THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER Laboratory testing and field testing have shown that a heat pump water heater (HPWH) uses about half the electrical

Oak Ridge National Laboratory

423

MHD air heater development technology. Quarterly report, January-March 1979  

DOE Green Energy (OSTI)

Progress on the ceramic heater development program is reported. The statement of work divides the effort into three tasks. Task 1 (design studies). The objectives of this task are to: (1) evaluate full-scale, directly- and indirectly-fired regenerative air heater systems for use in MHD power plants; (2) support testing of refractory materials, hot gas valves, and design concepts; (3) support design of a 5 MW test heater. Task 2 (design support tests). The objectives of this task are to: (1) support design of a 5 MW test heater; (2) identify and evaluate life of promising refractory materials for use in MHD heaters; (3) determine operating conditions and bed geometry (hole size, web thickness) which permit operation without clogging of heater passages due to accumulations of seed/slag or slag alone, (4) test valves for use in hot gas steams which are laden with seed/slag or slag alone. Task 3 (vertical slice test bed). The objective of this task is to provide a preliminary design of a test heater which is a vertical slice of a full-scale heater. It will be sized for a thermal input of approximately 5 MW. Testing with hot gas steams containing seed/slag or slag alone will be accommodated in order to simulate both direct- and indirect-firing. (WHK)

None

1979-07-01T23:59:59.000Z

424

Demonstration of a heat pump water heater. Volume 3. Design report  

SciTech Connect

Work performed during the pilot run manufacturing and laboratory testing stages of a heat pump water heater for residential installations is described. A general description of the heat pump water heater is provided, as are detailed discussions of individual components. Also included is a description of the pilot run manufacturing facility and experience, laboratory operations, and laboratory test data.

Sloane, B.D.; Krise, R.C.; Kent, D.D.

1979-12-01T23:59:59.000Z

425

Estimation of feedwater heater parameters based on a grey-box approach  

Science Conference Proceedings (OSTI)

The first-principle modeling of a feedwater heater operating in a coal-fired power unit is presented, along with a theoretical discussion concerning its structural simplifications, parameter estimation, and dynamical validation. The model is a part of ... Keywords: First-Principle Model, Grey-Box, Heat Exchanger, Heater, System Identification

Tomasz Barszcz; Piotr Czop

2011-12-01T23:59:59.000Z

426

Replication of high density optical disc using injection mold with MEMS heater  

Science Conference Proceedings (OSTI)

In this study, an injection mold equipped with a MEMS heater was designed and constructed to raise the stamper surface temperature over the glass transition temperature during the filling stage of the injection molding. First, high density optical disc ... Keywords: High density optical disc, Injection mold, MEMS RTD sensor, MEMS heater, Solidified layer, Stamper surface temperature

Youngmin Kim; Yong Choi; Shinill Kang

2005-07-01T23:59:59.000Z

427

economic means to permanently store CO  

NLE Websites -- All DOE Office Websites (Extended Search)

economic means to permanently store CO economic means to permanently store CO 2 in unmineable coal seams. Prior to the injection, horizontal coalbed methane (CBM) wells were drilled approximately 1,200 to 1,800 feet underground in a five-spot pattern over a 200-acre area in the unmineable Upper Freeport coal seam. As part of this $13 million field trial, which is being conducted under the collaboration of the National Energy Technology Laboratory (NETL), West Virginia University, and CONSOL Energy, Inc., CO 2 will be injected at a pressure of up to 700 pounds per square inch (psi)

428

PRELIMINARY THERMAL AND THERMOMECH-ANICAL MODELING FOR THE NEAR SURFACE TEST FACILITY HEATER EXPERIMANTS AT HANFORD: Appendix D  

E-Print Network (OSTI)

Heater Experiments at Hanford V O L U M E II (Appendix D) TENG-48 and for Rockwell Hanford Operations a Department ofFACILITY HEATER EXPERIMENTS AT HANFORD Volume 2 (Appendix D)

Chan, T.

2011-01-01T23:59:59.000Z

429

Building America Top Innovations Hall of Fame Profile … Tankless Gas Water Heater Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incorporating tankless water heaters was one Incorporating tankless water heaters was one of many energy-efficiency recommendations Building America's research team IBACOS had for San Antonio builder Imagine Homes. Although tankless gas water heaters should save approximately 33% on hot water heating compared to a conventional storage water heater, actual energy savings vary significantly based on individual draw volume. Above 10 gallons per draw, the efficiency approaches the rated energy factor. The greatest savings occur at a daily use quantity of about 50 gallons. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.2 Energy Efficient Components Tankless Gas Water Heater Performance As improved thermal enclosures dramatically reduce heating and cooling loads,

430

HVAC vs. Space Heaters: Which is More Efficient? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC vs. Space Heaters: Which is More Efficient? HVAC vs. Space Heaters: Which is More Efficient? HVAC vs. Space Heaters: Which is More Efficient? January 10, 2011 - 4:27pm Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory I live in Colorado, and when it's cold it is very, very cold. Since I hate paying high heating bills, I typically have my thermostat set to a chilly 62°F. My husband and I have gotten used to this, and really like being able to use a warm comforter while the air stays cooler. There are some nights, however, that even this setting seems too high and the heater is running a lot more than I'd like it to. When it's below 0° overnight, or even sometimes during the day, we occasionally break out our oil-filled space heater when we're only using one room. That has me

431

HVAC vs. Space Heaters: Which is More Efficient? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC vs. Space Heaters: Which is More Efficient? HVAC vs. Space Heaters: Which is More Efficient? HVAC vs. Space Heaters: Which is More Efficient? January 10, 2011 - 4:27pm Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory I live in Colorado, and when it's cold it is very, very cold. Since I hate paying high heating bills, I typically have my thermostat set to a chilly 62°F. My husband and I have gotten used to this, and really like being able to use a warm comforter while the air stays cooler. There are some nights, however, that even this setting seems too high and the heater is running a lot more than I'd like it to. When it's below 0° overnight, or even sometimes during the day, we occasionally break out our oil-filled space heater when we're only using one room. That has me

432

Gas-Fired Absorption Heat Pump Water Heater Research Project | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Gas-Fired Absorption Heat Pump Water Emerging Technologies » Gas-Fired Absorption Heat Pump Water Heater Research Project Gas-Fired Absorption Heat Pump Water Heater Research Project The U.S. Department of Energy (DOE) is currently conducting research into carbon gas-fired absorption heat pump water heaters. This project will employ innovative techniques to increase water heating energy efficiency over conventional gas storage water heaters by 40%. Project Description This project seeks to develop a natural gas-fired water heater using an absorption heat. The development effort is targeting lithium bromide aqueous solutions as a working fluid in order to avoid the negative implications of using more toxic ammonia. Project Partners Research is being undertaken through a Cooperative Research and Development

433

Dovetail spoke internal permanent magnet machine  

Science Conference Proceedings (OSTI)

An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple pair of permanent magnets for generating a magnetic field, which magnetic field interacts with the stator magnetic field to produce a torque. The multiple pair of permanent magnets are disposed between the stacks. The rotor assembly also includes multiple middle wedges mounted between each pair of the multiple permanent magnets.

Alexander, James Pellegrino (Ballston Lake, NY); EL-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Lokhandwalla, Murtuza (Clifton Park, NY); Shah, Manoj Ramprasad (Latham, NY); VanDam, Jeremy Daniel (West Coxsackie, NY)

2011-08-23T23:59:59.000Z

434

When Do Commercial Reactors Permanently Shut Down?  

Reports and Publications (EIA)

For those wishing to obtain current data, the following resources are available: U.S. reactors, go to EIA's nuclear reactor shutdown list. (Note: As of April 30, 2010, the last U.S. reactor to permanently shut down was Big Rock Point in 1997.) Foreign Reactors, go to the Power Reactor Information System (PRIS) on the International Atomic Energy Agency's website.

Information Center

2011-05-10T23:59:59.000Z

435

Permanent isolation surface barrier development plan  

Science Conference Proceedings (OSTI)

The exhumation and treatment of wastes may not always be the preferred alternative in the remediation of a waste site. In-place disposal alternatives, under certain circumstances, may be the most desirable alternatives to use in the protection of human health and the environment. The implementation of an in-place disposal alternative will likely require some type of protective covering that will provide long-term isolation of the wastes from the accessible environment. Even if the wastes are exhumed and treated, a long-term barrier may still be needed to adequately dispose of the treated wastes or any remaining waste residuals. Currently, no {open_quotes}proven{close_quotes} long-term barrier is available. The Hanford Site Permanent Isolation Surface Barrier Development Program (BDP) was organized to develop the technology needed to provide a long-term surface barrier capability for the Hanford Site. The permanent isolation barrier technology also could be used at other sites. Permanent isolation barriers use engineered layers of natural materials to create an integrated structure with redundant protective features. Drawings of conceptual permanent isolation surface barriers are shown. The natural construction materials (e.g., fine soil, sand, gravel, riprap, asphalt) have been selected to optimize barrier performance and longevity. The objective of current designs is to use natural materials to develop a maintenance-free permanent isolation surface barrier that isolates wastes for a minimum of 1,000 years by limiting water drainage to near-zero amounts; reducing the likelihood of plant, animal, and human intrusion; controlling the exhalation of noxious gases; and minimizing erosion-related problems.

Wing, N.R.

1994-01-01T23:59:59.000Z

436

MHD air heater development technology. Report for the period April 1978-June 1978  

DOE Green Energy (OSTI)

This research program is divided into three tasks. Task 1 (design studies): the objectives of this task are to: (1) evaluate full-scale, direct- and indirect-fired regenerative air heater systems for use in MHD power plants; (2) support testing of refractory materials, hot gas valves, and design concepts; (3) support design of a 5 MW test heater. Task 2 (design support tests): the objectives of this task are to: (1) support design of a 5 MW test heater; (2) identify and evaluate life of promising refractory materials for use in MHD heaters; (3) determine operating conditions and bed geometry (hole size, web thickness) which permit operation without clogging of heater passages due to accumulations of seed/slag or slag alone, (4) test valves for use in hot gas streams which are laden with seed/slag or slag alone. Task 3 (vertical slice test bed): the objective of this task is to provide a preliminary design of a test heater which is a vertical slice of a full-scale heater. It will be sized for a thermal input of 5 MW. Testing with hot gas streams containing seed/slag or slag alone will be accommodated in order to simulate both direct- and indirect-firing. Progress on each of these tasks is described. (WHK)

None

1978-12-01T23:59:59.000Z

437

Small scale heater tests in argillite of the Eleana Formation at the Nevada Test Site  

SciTech Connect

Near-surface heater tests were run in the Eleana Formation at the Nevada Test Site, in an effort to evaluate argillaceous rock for nuclear waste storage. The main test, which employed a full-scale heater with a thermal output approximating commercial borosilicate waste, was designed to operate for several months. Two smaller, scaled tests were run prior to the full-scale test. This report develops the thermal scaling laws, describes the pretest thermal and thermomechanical analysis conducted for these two tests, and discusses the material properties data used in the analyses. In the first test, scaled to a large heater of 3.5 kW power, computed heater temperatures were within 7% of measured values for the entire 96-hour test run. The second test, scaled to a large heater having 5.0 kW power, experienced periodic water in-flow onto the heater, which tended to damp the temperature. For the second test, the computed temperatures were within 7% of measured for the first 20 hours. After this time, the water effect became significant and the measured temperatures were 15 to 20% below those predicted. On the second test, rock surface spallation was noted in the bore hole above the heater, as predicted. The scaled tests indicated that in-situ argillite would not undergo major thermostructural failure during the follow-on, 3.5 kW, full-scale test. 24 figures, 6 tables.

McVey, D.F.; Thomas, R.K.; Lappin, A.R.

1979-11-01T23:59:59.000Z

438

MHD air heater development technology. Report for the period July, 1978-September, 1978  

DOE Green Energy (OSTI)

The statement of work divides the effort into three tasks: Task 1 (design studies): The objectives of this task are to: (1) evaluate full-scale, direct- and indirect-fired regenerative air heater systems from use in MHD power plants; (2) support testing of refractory materials, hot gas valves, and design concepts; (3) support design of a 5 MW test heater. Task 2 (design support tests): The objectives of this task are to: (1) support design of a 5 MW test heater; (2) identify and evaluate life of promising refractory materials for use in MHD heaters; (3) determine operating conditions and bed geometry (hole size, web thickness which permit operation without clogging of heater passages due to accumulations of seed/slag or slag alone, (4) test valves for use in hot gas streams which are laden with seed/slag or slag alone. Task 3 (vertical slice test bed): The ojbective of this task is to provide a preliminary design of a test heater which is a vertical slice of a full-sclae heater. It will be sized for a thermal input of approx. 5 MW. Testing with hot gas streams containing seed/slag or slag alone will be accommodated in order to simulate both direct-and indirect-diring. Progress is reported in detail on these tasks.

Not Available

1979-01-01T23:59:59.000Z

439

DOE Guidance - Permanent and Nonpermanent Positions, Appointments, &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance - Permanent and Nonpermanent Positions, Guidance - Permanent and Nonpermanent Positions, Appointments, & CHRIS Codes DOE Guidance - Permanent and Nonpermanent Positions, Appointments, & CHRIS Codes Guidance Memorandum #23 DOE Guidance - Permanent and Nonpermanent Positions, Appointments, & CHRIS Codes This document provides assistance in determining whether a new position should be designated as permanent or nonpermanent (temporary), to provide examples of the various types of appointments and personnel actions that can be used with position determinations, and to define the associated Corporate Human Resource Information System (CHRIS) position codes. Permanent and Nonpermanent Positions, Appointments, & CHRIS Codes Responsible Contacts Bruce Murray HR Policy Advisor E-mail bruce.murray@hq.doe.gov

440

DOE Guidance - Permanent and Nonpermanent Positions, Appointments, &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance - Permanent and Nonpermanent Positions, Guidance - Permanent and Nonpermanent Positions, Appointments, & CHRIS Codes DOE Guidance - Permanent and Nonpermanent Positions, Appointments, & CHRIS Codes Guidance Memorandum #23 DOE Guidance - Permanent and Nonpermanent Positions, Appointments, & CHRIS Codes This document provides assistance in determining whether a new position should be designated as permanent or nonpermanent (temporary), to provide examples of the various types of appointments and personnel actions that can be used with position determinations, and to define the associated Corporate Human Resource Information System (CHRIS) position codes. Permanent and Nonpermanent Positions, Appointments, & CHRIS Codes Responsible Contacts Bruce Murray HR Policy Advisor E-mail bruce.murray@hq.doe.gov

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Performance improvement of permanent magnet ac motors  

E-Print Network (OSTI)

Multi-phase motors have several advantages over the traditional three-phase motors. In this study, the additional degrees of freedom available in five-phase permanent magnet motors have been used for three purposes: 1) enhancing the torque producing capability of the motor, 2) improving the reliability of the system, and 3) better adjusting of the torque and flux linkages of the five-phase direct torque controlled system. 1) Due to the fact that space and time harmonics of the same orders will contribute positively to output torque, a five-phase permanent magnet motor with quasi-rectangular back-EMF waveform is supplied with combined fundamental and third harmonic of currents. For modeling and analysis of the motor a 0 3 3 1 1 q d q d frame of reference is defined where 1 1q d rotates at the synchronous speed and 3 3q d rotates at the three times synchronous speed. Based on the mathematical model in the 0 3 3 1 1 q d q d frame of reference, it is shown that this system while having a higher torque density with respect to a conventional permanent magnet synchronous machine, is also compatible with vector control algorithm. 2) A resilient current control of the five-phase permanent motor with both sinusoidal and trapezoidal back-EMF waveforms under asymmetrical fault condition is proposed. In this scheme, the stator MMF is kept unchanged during healthy and faulty condition. Therefore, the five-phase permanent magnet motor operates continuously and steadily without additional hardware and just by modifying the control algorithm in case of loss of up to two phases. The feature is of major importance in some specific applications where high reliability is required. 3) High torque and flux ripple are the major drawbacks of a three-phase direct torque controlled system. The number of space voltage vectors directly influences the performance of DTC system. A five-phase drive, while benefiting from other advantages of high order phase drives, has inherently 32 space voltage vectors which permits better flexibility in selecting the switching states and finer adjustment of flux and torque. A sensorless direct torque control of five-phase permanent magnet motor is implemented. Speed information is obtained based on the position of stator flux linkages and load angle. Experiments have been conducted on a 5kW five-phase surface mount permanent magnet motor and a 3kW five-phase interior permanent magnet motor by using TMS320C32 DSP. The results obtained are consistent with theoretical studies and simulation analysis, which further demonstrate the feasibility and practical significance of the five-phase permanent magnet motor drives.

Parsa, Leila

2005-05-01T23:59:59.000Z

442

Evaluation of a Stirling engine heater bypass with the NASA Lewis nodal-analysis performance code  

SciTech Connect

In support of the US Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Research Center investigated whether bypassing the P-40 Stirling engine heater during regenerative cooling would improve the engine thermal efficiency. The investigation was accomplished by using the Lewis nodal-analysis Stirling engine computer model. Bypassing the P-40 Stirling engine heater at full power resulted in a rise in the indicated thermal efficiency from 40.6 to 41.0 percent. For the idealized (some losses not included) heater bypass that was analyzed, this benefit is not considered significant.

Sullivan, T.J.

1986-05-01T23:59:59.000Z

443

Electro-mechanical energy conversion system having a permanent ...  

Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

444

A transient heat and mass transfer model of residential attics used to simulate radiant barrier retrofits. Part 1: Development  

SciTech Connect

This paper describes a transient heat and mass transfer model of residential attics. The model is used to predict hourly ceiling heat gain/loss in residences with the purpose of estimating reductions in cooling and heating loads produced by radiant barriers. The model accounts for transient conduction, convection, and radiation and incorporates moisture and air transport across the attic. Environmental variables, such as solar loads on outer attic surfaces and sky temperatures, are also estimated. The model is driven by hourly weather data which include: outdoor dry bulb air temperature, horizontal solar and sky radiation, wind speed and direction, relative humidity (or dew point), and cloud cover data. The output of the model includes ceiling heat fluxes, inner and outer heat fluxes from all surfaces, inner and outer surface temperatures, and attic dry bulb air temperatures. The calculated fluxes have been compared to experimental data of side-by-side testing of attics retrofit with radiant barriers. The model predicts ceiling heat flows with an error of less than 10% for most cases.

Medina, M.A. [Texas A and M Univ., Kingsville, TX (United States). Dept. of Mechanical and Industrial Engineering; O`Neal, D.L. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering; Turner, W.D. [Texas Engineering Experiment Station, College Station, TX (United States). Energy Systems Lab.

1998-02-01T23:59:59.000Z

445

The influence of a variable volume water heater on the domestic load profile  

SciTech Connect

In this paper a variable volume water heater and a load impact model is presented. The variable volume water heater is a unique system that can be implemented as a residential demand-side management tool. The variable volume water heater can shift the electrical energy consumption, used to heat water, to off-peak time periods. The electrical energy is shifted without influencing the hot water usage of the customer. The load impact model simulates the effect of controlling the volume of stored hot water on a domestic load. The model mathematics as well as the model verification are discussed. The paper ends with a comparative case study on two residential areas. The case study indicates that the variable volume water heater can reduce the system peak as well as increase the off-peak energy consumption.

Lemmer, E.F.; Delport, G.J.

1999-12-01T23:59:59.000Z

446

Economics of Residential Gas Furnaces and Water Heaters in United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Economics of Residential Gas Furnaces and Water Heaters in United States Economics of Residential Gas Furnaces and Water Heaters in United States New Construction Market Speaker(s): Alex Lekov Gabrielle Wong-Parodi James McMahon Victor Franco Date: May 8, 2009 - 12:00pm Location: 90-3122 In the new single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this study, the authors use a life-cycle cost analysis approach that accounts for uncertainty and variability of inputs to assess the economic benefits of installing different gas furnace and water heater combinations. Among other factors, it assesses the economic feasibility of eliminating the traditional metal vents and replacing them with vents made of plastic materials used in condensing and power vent

447

Critical Question #8: When are Heat Pump Water Heaters the Best Solution? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: When are Heat Pump Water Heaters the Best 8: When are Heat Pump Water Heaters the Best Solution? Critical Question #8: When are Heat Pump Water Heaters the Best Solution? What do we know about actual performance compared to promised performance? What is the best way to manage the space conditioning impacts on a home? Is there an easy decision tree for deciding if this is the best solution for a particular home (Climate? Utility prices? Accessibility? Physical space constraints? Workforce?)? cq8_residential_hpwh_costs_maguire.pdf cq8_hpwh_performance_colon.pdf cq8_hpwhs_multifamily_weitzel.pdf More Documents & Publications Track A - Energy Systems Innovations Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Standing Technical Committee Working Sessions

448

Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces  

SciTech Connect

This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

Not Available

1993-11-01T23:59:59.000Z

449

Integrated microfluidics, heaters, and electronic sensors for Lab-on-a-Chip applications  

E-Print Network (OSTI)

Microfluidics, microfabricated suspended heaters and electronic field effect sensors have been successfully integrated on a single device chip. This integration enables spatial cycling of as little as 11nL of reagents over ...

Loh, Tzu Liang

2005-01-01T23:59:59.000Z

450

ENERGY STAR Residential Water Heaters to Save Americans Up to $823 Million  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STAR Residential Water Heaters to Save Americans Up to $823 STAR Residential Water Heaters to Save Americans Up to $823 Million in the Next Five Years ENERGY STAR Residential Water Heaters to Save Americans Up to $823 Million in the Next Five Years December 31, 2008 - 9:18am Addthis WASHINGTON - The U.S. Department of Energy (DOE) today announced the availability of ENERGY STAR® residential water heaters. With today's announcement, the ENERGY STAR® program now addresses every major residential appliance found in most American homes. Introduction of this product provides significant potential savings to consumers. Water heating represents up to 15.5 percent of national residential energy consumption, the second largest end use of energy in homes, following heating and cooling. Using one of five specified water heating technologies, ENERGY

451

Passive preheating of water-heater feed water (using attic heat)  

DOE Green Energy (OSTI)

Baseboard convectors were installed in a house attic to preheat water prior to entering the home water heater. The system was monitored and not found to be cost effective. (LEW)

Knudsen, E.T. Jr.

1982-01-01T23:59:59.000Z

452

High voltage bus and auxiliary heater control system for an electric or hybrid vehicle  

DOE Patents (OSTI)

A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

Murty, Balarama Vempaty (West Bloomfield, MI)

2000-01-01T23:59:59.000Z

453

Tennessee Valley Authority/Bristol Tennessee Essential Services Smart Water Heater Pilot  

Science Conference Proceedings (OSTI)

This report describes the results and analysis of electric consumption (demand), demographic, and customer satisfaction data collected from Smart Water Heater Pilot participants in summer 2009. The demand response control and data collection are implemented using Carina Technology Inc.'s Water Heater Information Solution for Energy (WISE) units installed at 117 residential sites within Bristol Tennessee Essential Services operating territory. The results from this study provide insight into the data col...

2010-02-03T23:59:59.000Z

454

Buildings Energy Data Book: 5.4 Water Heaters  

Buildings Energy Data Book (EERE)

5 5 Water Heater Efficiencies 2005 2010 Efficiency Stock Minimum Best-Available Residential Type Parameter (1) Efficiency New Efficiency New Efficiency Electric Storage EF 0.90 0.90 (2) 0.95 (2) Electric Instantaneous EF 0.82 0.82 0.98 Electric Heat Pump EF 2.00 2.00 2.35 Gas-Fired Storage EF 0.60 0.59 (3) 0.85 (3) Gas-Fired Instantaneous EF 0.82 0.82 0.98 Oil-Fired Storage EF 0.50 0.53 (4) 0.68 (4) Solar SEF 2.50 N.A. 2.50 2007 2010 Efficiency Stock Minimum Best-Available Commercial Type Parameter (1) Efficiency New Efficiency New Efficiency Electric Storage Thermal Efficiency 0.98 0.98 (5) 0.98 (5) Electric Instantaneous Thermal Efficiency 0.98 0.98 0.98 Gas-Fired Storage Thermal Efficiency 0.78 0.80 (6) 0.96 (6) Gas-Fired Instantaneous Thermal Efficiency 0.77 0.80 0.85 Oil-Fired Storage Thermal Efficiency 0.79 0.78 (7) 0.85 (7) Note(s):

455

Light-Weight Radioisotope Heater Unit (LWRHU) sequential impact tests  

SciTech Connect

The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. A series of sequential impacts tests using simulant-fueled LWRHU capsules was recently conducted to determine a failure threshold. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Although the tests were conducted until the aeroshells were sufficiently distorted to be out of dimensional specification, the simulant-fueled capsules used in these tests were not severely deformed. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s. Postimpact examination revealed that the sequentially impacted capsules were slightly more deformed and were outside of dimensional specifications.

Reimus, M.A.H.; Rinehart, G.H.

1997-08-01T23:59:59.000Z

456

Light-weight radioisotope heater unit (LWRHU) impact tests  

SciTech Connect

The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s. {copyright} {ital 1998 American Institute of Physics.}

Reimus, M.A.; Rinehart, G.H.; Herrera, A.; Lopez, B.; Lynch, C.; Moniz, P. [Nuclear Materials Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

1998-01-01T23:59:59.000Z

457

Light-weight radioisotope heater unit (LWRHU) impact tests  

SciTech Connect

The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

Reimus, M. A. H.; Rinehart, G. H.; Herrera, A.; Lopez, B.; Lynch, C.; Moniz, P. [Nuclear Materials Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

1998-01-15T23:59:59.000Z

458

Solair heater program: solair applications study. Final report  

SciTech Connect

General Electric has designed and tested a low-cost solar system using a vacuum tube solar air heater under ERDA Contract E(11-1)-2705. This contract extension has been provided to evaluate various applications of this solar collector. The evaluation identified attractive applications, evaluated corresponding control procedures, estimated system performance, compared economically insolation and insulation, and evaluated the repackaging of off-the-shelf equipment for improved cost effectiveness. The results of this study prompted General Electric's marketing group to do a detailed commercialization study of a residential domestic water heating system using the Solair concept which has been selected as the most attractive application. Other attractive applications are space/domestic water heating and a heat pump assisted solar system/domestic water heating where the heat pump and the solar system function in parallel. A prime advantage of heated air solar systems over liquid systems is cost and longer life which results in higher BTU's/dollar. Other air system advantages are no liquid leakage problems, no toxicity of freezing problems, and less complicated equipment. A hybrid solar system has been identified that can improve the market penetration of solar energy. This system would use the existing mass of the house for energy storage thereby reducing solar cost and complexity. Adequate performance can be obtained with house temperature swings comparable to those used in nighttime setback of the thermostat. Details of this system are provided.

1977-12-01T23:59:59.000Z

459

Heat pump water heater and method of making the same  

DOE Patents (OSTI)

An improved heat pump water heater wherein the condenser assembly of the heat pump is inserted into the water tank through an existing opening in the top of the tank, the assembly comprising a tube-in-a-tube construction with an elongated cylindrical outer body heat exchanger having a closed bottom with the superheated refrigerant that exits the compressor of the heat pump entering the top of the outer body. As the refrigerant condenses along the interior surface of the outer body, the heat from the refrigerant is transferred to the water through the outer body. The refrigerant then enters the bottom of an inner body coaxially disposed within the outer body and exits the top of the inner body into the refrigerant conduit leading into the expansion device of the heat pump. The outer body, in a second embodiment of the invention, acts not only as a heat exchanger but also as the sacrificial anode in the water tank by being constructed of a metal which is more likely to corrode than the metal of the tank.

Mei, Viung C. (Oak Ridge, TN); Tomlinson, John J. (Knoxville, TN); Chen, Fang C. (Knoxville, TN)

2001-01-01T23:59:59.000Z

460

Heat pump water heater and storage tank assembly  

DOE Patents (OSTI)

A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

Dieckmann, John T. (Belmont, MA); Nowicki, Brian J. (Watertown, MA); Teagan, W. Peter (Acton, MA); Zogg, Robert (Belmont, MA)

1999-09-07T23:59:59.000Z

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Inverse Free Electron Laser Heater for the LCLS  

Science Conference Proceedings (OSTI)

The Linac Coherent Light Source (LCLS) free electron laser employs an RF photocathode gun that yields a 1nC bunch a few picoseconds long, which must be further compressed to yield the high current required for Self Amplified Spontaneous Emission (SASE) gain. The electron beam from the RF photocathode gun is quite sensitive to microbunching instabilities such as coherent synchrotron radiation (CSR) in the compressor chicanes and longitudinal space charge (LSC) in the linac. These effects can be Landau damped by adding energy spread to the electron bunch prior to compression. They propose to do this by co-propagating an infrared laser beam with the electron bunch in an undulator in the LCLS injector beamline. The undulator is placed in a four bend magnet chicane to allow the Ir laser beam to propagate colinearly with the e-beam while it oscillates in the undulator. The IR laser beam is derived from the photocathode gun drive laser, so the two beams are synchronized. Simulations presented elsewhere in these proceedings show that the laser interaction damps the microbunching instabilities to a very great extent. This paper is a description of the design of the laser heater.

Bentson, L.D.; Bolton, P.; Carr, R.; Dowell, D.; Emma, P.; Gilevich, S.; Huang, Z.; Welch, J.J.; Wu, J.; /SLAC

2005-05-11T23:59:59.000Z

462

Solair heater program: solair applications study. Final report  

DOE Green Energy (OSTI)

General Electric has designed and tested a low-cost solar system using a vacuum tube solar air heater under ERDA Contract E(11-1)-2705. This contract extension has been provided to evaluate various applications of this solar collector. The evaluation identified attractive applications, evaluated corresponding control procedures, estimated system performance, compared economically insolation and insulation, and evaluated the repackaging of off-the-shelf equipment for improved cost effectiveness. The results of this study prompted General Electric's marketing group to do a detailed commercialization study of a residential domestic water heating system using the Solair concept which has been selected as the most attractive application. Other attractive applications are space/domestic water heating and a heat pump assisted solar system/domestic water heating where the heat pump and the solar system function in parallel. A prime advantage of heated air solar systems over liquid systems is cost and longer life which results in higher BTU's/dollar. Other air system advantages are no liquid leakage problems, no toxicity of freezing problems, and less complicated equipment. A hybrid solar system has been identified that can improve the market penetration of solar energy. This system would use the existing mass of the house for energy storage thereby reducing solar cost and complexity. Adequate performance can be obtained with house temperature swings comparable to those used in nighttime setback of the thermostat. Details of this system are provided.

Not Available

1977-12-01T23:59:59.000Z

463

Preliminary Modeling, Testing and Analysis of a Gas Tankless Water Heater  

SciTech Connect

Tankless water heaters offer significant energy savings over conventional storage-tank water heaters, because thermal losses to the environment are much less. Although standard test results are available to compare tankless heaters with storage tank heaters, actual savings depend on the draw details because energy to heat up the internal mass depends on the time since the last draw. To allow accurate efficiency estimates under any assumed draw pattern, a one-node model with heat exchanger mass is posed here. Key model parameters were determined from test data. Burner efficiency showed inconsistency between the two data sets analyzed. Model calculations show that efficiency with a realistic draw pattern is {approx}8% lower than that resulting from using only large {approx}40 liter draws, as specified in standard water-heater tests. The model is also used to indicate that adding a small tank controlled by the tankless heater ameliorates unacceptable oscillations that tankless with feedback control can experience with pre-heated water too hot for the minimum burner setting. The added tank also eliminates problematic low-flow cut-out and hot-water-delay, but it will slightly decrease efficiency. Future work includes model refinements and developing optimal protocols for parameter extraction.

Burch, J.; Thornton, J.; Hoeschele, M.; Springer, D.; Rudd, A.

2008-01-01T23:59:59.000Z

464

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

465

Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States  

SciTech Connect

Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

2013-07-01T23:59:59.000Z

466

Jiangxi Jinli Permanent Magnet Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Jinli Permanent Magnet Technology Co Ltd Jinli Permanent Magnet Technology Co Ltd Jump to: navigation, search Name Jiangxi Jinli Permanent Magnet Technology Co Ltd Place Ganzhou, Jiangxi Province, China Sector Wind energy Product A China-based mining company for rare earth metals used in wind power generators. References Jiangxi Jinli Permanent Magnet Technology Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Jiangxi Jinli Permanent Magnet Technology Co Ltd is a company located in Ganzhou, Jiangxi Province, China . References ↑ "Jiangxi Jinli Permanent Magnet Technology Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Jiangxi_Jinli_Permanent_Magnet_Technology_Co_Ltd&oldid=347439

467

Effect of Side Permanent Magnets for Reluctance Interior Permanent Magnet Reluctance Machines  

Science Conference Proceedings (OSTI)

A traditional electric machine uses two dimensional magnetic flux paths in its rotor. This paper presents the development work on the utilization of the third dimension of a rotor. As an example, the air gap flux of a radial gap interior permanent magnet motor can be significantly enhanced by additional permanent magnets (PM) mounted at the sides of the rotor. A prototype motor built with this concept provided higher efficiency and required a shorter stator core length for the same power output as the Toyota/Prius traction drive motor.

Hsu, John S [ORNL; Lee, Seong T [ORNL; Wiles, Randy H [ORNL; Coomer, Chester [ORNL; Lowe, Kirk T [ORNL

2007-01-01T23:59:59.000Z

468

Batch fabrication of precision miniature permanent magnets  

DOE Patents (OSTI)

A new class of processes for fabrication of precision miniature rare earth permanent magnets is disclosed. Such magnets typically have sizes in the range 0.1 to 10 millimeters, and dimensional tolerances as small as one micron. Very large magnetic fields can be produced by such magnets, lending to their potential application in MEMS and related electromechanical applications, and in miniature millimeter-wave vacuum tubes. This abstract contains simplifications, and is supplied only for purposes of searching, not to limit or alter the scope or meaning of any claims herein.

Christenson, Todd R. (Albuquerque, NM); Garino, Terry J. (Albuquerque, NM); Venturini, Eugene L. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

469

Permanent-magnet-less synchronous reluctance system  

DOE Patents (OSTI)

A permanent magnet-less synchronous system includes a stator that generates a magnetic revolving field when sourced by an alternating current. An uncluttered rotor is disposed within the magnetic revolving field and spaced apart from the stator to form an air gap relative to an axis of rotation. The rotor includes a plurality of rotor pole stacks having an inner periphery biased by single polarity of a north-pole field and a south-pole field, respectively. The outer periphery of each of the rotor pole stacks are biased by an alternating polarity.

Hsu, John S

2012-09-11T23:59:59.000Z

470

HVAC Equipment Design Options for Near-Zero-Energy Homes - Scoping Assessment of Radiant Panel Distribution System Options  

Science Conference Proceedings (OSTI)

Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Conventional unitary equipment and system designs have matured to a point where cost-effective, dramatic efficiency improvements that meet near-zero-energy housing (NZEH) goals require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05, ORNL conducted a scoping-level assessment of HVAC system options for NZEH homes (Baxter 2005). That report examined some twenty HVAC and water heating (HVAC/WH) systems in two 1800 ft2 houses--one constructed to Building America Research Benchmark standards and one a prototype NZEH. Both centrally ducted and two-zone systems were examined in that study. The highest scoring options using the ranking criteria described in that report were air-source and ground-source integrated heat pumps (IHP), and these were selected by DOE for further development. Among the feedback received to the FY05 report was a comment that systems using radiant panel (floor or ceiling) distribution options were not included among the system examined. This present report describes an assessment of a few such radiant panel systems under the same analysis and ranking criteria used in Baxter (2005). The rankings of the radiant system options reported herein are based on scoring by the team of building equipment researchers at ORNL. It is DOE's prerogative to revisit the criteria and obtain scoring from additional perspectives as part of its decision making process. If the criteria change, the ORNL team will be happy to re-score.

Baxter, Van David [ORNL

2007-06-01T23:59:59.000Z

471

Validation of Geolocation of Measurements of the Clouds and the Earths Radiant Energy System (CERES) Scanning Radiometers aboard Three Spacecraft  

Science Conference Proceedings (OSTI)

The Clouds and the Earths Radiant Energy System (CERES) instrument is a scanning radiometer for measuring Earth-emitted and -reflected solar radiation to understand Earths energy balance. One CERES instrument was placed into orbit aboard the ...

G. Louis Smith; Kory J. Priestley; Phillip C. Hess; Chris Currey; Peter Spence

2009-11-01T23:59:59.000Z

472

Cloud Effects on the Meridional Atmospheric Energy Budget Estimated from Clouds and the Earths Radiant Energy System (CERES) Data  

Science Conference Proceedings (OSTI)

The zonal mean atmospheric cloud radiative effect, defined as the difference between the top-of-the-atmosphere (TOA) and surface cloud radiative effects, is estimated from 3 yr of Clouds and the Earths Radiant Energy System (CERES) data. The ...

Seiji Kato; Fred G. Rose; David A. Rutan; Thomas P. Charlock

2008-09-01T23:59:59.000Z

473

Heating energy measurements of single-family houses with attics containing radiant barriers in combustion with R-11 and R-30 ceiling insulation  

Science Conference Proceedings (OSTI)

Tests were conducted by Oak Ridge National Laboratory to determine the heating energy performance of two levels of fiberglass-batt attic insulation (R-11 and R-30) in combination with truss and horizontally installed radiant barriers. The tests, a continuation of work started in the summer of 1985, were conducted in three unoccupied ranch-style houses in Karns, Tennessee, during the winter of 1986-87. The measured results of the heating tests showed that a horizontal radiant barrier used with R-11 attic insulation reduced the house heating load by 9.3% compared with R-11 with no radiant barrier, while a truss barrier showed essentially no change in the heating load. Horizontal and truss barriers each reduced the heating load by 3.5% when added to R-30 attic insulation. Moisture condensed on the bottom of the horizontal barrier during cold early morning weather but usually dissipated in the warmer afternoon hours at Karns and left no accumulation in the insulation. Depending on the level of attic insulation, an annual heating and cooling HVAC savings ranging from $5 to $65 is estimated to be attainable when a radiant barrier is installed in the attic at Karns. 8 refs., 64 figs., 18 tabs.

Levins, W.P.; Karnitz, M.A.

1988-08-01T23:59:59.000Z

474

Sacramento area, solar domestic water heater installers survey report  

SciTech Connect

Information regarding generic type, make, and costs of solar domestic water heater (SDWH) systems in the Sacramento, Roseville, and Davis area is reported. Sixteen SDWH installers/do-it-yourself kit dealers were identified and surveyed by phone. The survey participants were divided into three categories: (1) installers in business for one year or longer, (eight firms); (2) installers in business less than one year, (five firms); and (3) SDWH do-it-yourself kit dealers, (three firms). The survey report establishes an average cost for SDWH pump systems for new single family unit production housing (1350 square feet), with hot water demand typical of an average family of four, and roof mounted collectors. For the first two categories, the SDWH system average cost is $2469 (this includes both open loop and heat exchanger systems with circulating pumps). The average cost of the open loop pump system is $2321; whereas, the heat exchanger pump system average cost is $2592. The participants were questioned concerning discounts they would offer to builders purchasing SDWH's in volume. From their responses, an 11% discount for a purchase of ten systems was derived for the first two installers categories. The average cost of an installed SDWH pump system purchased in a volume of ten units is $2201. The average cost of an installed SDWH open loop system is $2066, and a heat exchanger system is $2307. For the third category, the do-it-yourself kit dealers, a 12% discount was derived for a purchase of ten systems. The average cost of a do-it-yourself pump kit when purchased in a volume of ten units is $1481. The average cost of an open loop pump kit is $1386, and a heat exchanger pump kit is $1672.

Hutchcraft, T.

1979-11-01T23:59:59.000Z

475

Counterrotating brushless dc permanent magnet motor  

DOE Patents (OSTI)

An brushless DC permanent magnet motor is provided for driving an autonomous underwater vehicle. In one embodiment, the motor comprises four substantially flat stators disposed in stacked relationship, with pairs of the stators being axially spaced and each of the stators comprising a tape-wound stator coil; and a first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore therein in which the first shaft is disposed. Two different sets of bearings support the first and second shAfts. In another embodiment, the motor comprises two ironless stators and pairs and rotors mounted no opposite sides of the stators and driven by counterrotating shafts.

Hawsey, R.A.; Bailey, J.M.

1990-12-31T23:59:59.000Z

476

Counterrotating brushless dc permanent magnet motor  

DOE Patents (OSTI)

An brushless DC permanent magnet motor is provided for driving an autonomous underwater vehicle. In one embodiment, the motor comprises four substantially flat stators disposed in stacked relationship, with pairs of the stators being axially spaced and each of the stators comprising a tape-wound stator coil; and a first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore therein in which the first shaft is disposed. Two different sets of bearings support the first and second shAfts. In another embodiment, the motor comprises two ironless stators and pairs and rotors mounted no opposite sides of the stators and driven by counterrotating shafts.

Hawsey, R.A.; Bailey, J.M.

1990-01-01T23:59:59.000Z

477

MHD air heater development technology. Report for the period October 1978-December 1978  

DOE Green Energy (OSTI)

During the period covered by this report, work was done on all three tasks and is summarized as follows: Under Task 1 (design studies) the influence of heater system layout, duct dimensions, and heater sequencing on flow distribution was studied further. One result was that localizing the bulk of the pressure drop in the heaters tends to minimize heater-to-heater flow differences. The task of integrating the temperature and pressure solvers was pursued further. An analysis of current flow back up the air duct from the combustor was done. Results showed that the voltage gradient and power loss back up the air duct depend on the ratio of electrical conductivities of air and duct wall insulation. Under Task 2 (design support tests) Heat 201 was completed and much of the construction on the valve test rig was completed. Heat 201 was run with a Corhart X-317 (fusion cast magnesia-35% alumina, hereafter referred to as Corhart X-317 as this trade name designates not only composition, but microstructure, impurity level and manufacturer's process) matrix in the rig. Matrix Test 7 (Heat 201) ran for over four hundred hours but was terminated early because of a restriction in the bed. This was caused by failure of the insulating lining in the hot gas duct between the burner and the matrix. This liner of magnesia-chrome bricks (RFG) had been used in earlier tests. Reactions with seed/slag occurred and the resulting high viscosity slag partially plugged the bed. Under Task 3 (preliminary design of 5 MW heater) a topical report describing the design of the 5 MW test heater system was prepared. At the end of this reporting period it was being reviewed.

None

1979-04-01T23:59:59.000Z

478

Effect of radiant barriers and attic ventilation on residential attics and attic duct systems: New tools for measuring and modeling  

Science Conference Proceedings (OSTI)

A simple duct system was installed in an attic test module for a large scale climate simulator at a US national laboratory. The goal of the tests and subsequent modeling was to develop an accurate method of assessing duct system performance in the laboratory, enabling limiting conditions to be imposed at will and results to be applied to residential attics with attic duct systems. Steady-state tests were done at a severe summer and a mild winter condition. In all tests the roof surface was heated above ambient air temperatures by infrared lights. The attic test module first included then did not include the duct system. Attic ventilation from eave vents to a ridge vent was varied from none to values achievable by a high level of power ventilation. A radiant barrier was attached to the underside of the roof deck, both with and without the duct system in place. Tests were also done without the radiant barrier, both with and without the duct system. When installed, the insulated ducts ran along the floor of the attic, just above the attic insulation and along the edge of the attic near the eaves and one gable. These tests in a climate simulator achieved careful control and reproducibility of conditions. This elucidated dependencies that would otherwise be hidden by variations in uncontrolled variables. Based on the comparisons with the results of the tests at the mild winter condition and the severe summer condition, model predictions for attic air and insulation temperatures should be accurate within {+-} 10 F ({+-} 6 C). This is judged adequate for design purposes and could be better when exploring the effect of changes in attic and duct parameters at fixed climatic conditions.

Petrie, T.W.; Childs, P.W.; Christian, J.E.; Wilkes, K.E.

1998-07-01T23:59:59.000Z

479

Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater  

SciTech Connect

The following document is the final report for DE-FC26-05NT42327: Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater. This work was carried out under a cooperative agreement from the Department of Energy's National Energy Technology Laboratory, with additional funding from Keltech, Inc. The objective of the project was to improve the temperature control performance of an electric tankless water heater (TWH). The reason for doing this is to minimize or eliminate one of the barriers to wider adoption of the TWH. TWH use less energy than typical (storage) water heaters because of the elimination of standby losses, so wider adoption will lead to reduced energy consumption. The project was carried out by Building Solutions, Inc. (BSI), a small business based in Omaha, Nebraska. BSI partnered with Keltech, Inc., a manufacturer of electric tankless water heaters based in Delton, Michigan. Additional work was carried out by the University of Nebraska and Mike Coward. A background study revealed several advantages and disadvantages to TWH. Besides using less energy than storage heaters, TWH provide an endless supply of hot water, have a longer life, use less floor space, can be used at point-of-use, and are suitable as boosters to enable alternative water heating technologies, such as solar or heat-pump water heaters. Their disadvantages are their higher cost, large instantaneous power requirement, and poor temperature control. A test method was developed to quantify performance under a representative range of disturbances to flow rate and inlet temperature. A device capable of conducting this test was designed and built. Some heaters currently on the market were tested, and were found to perform quite poorly. A new controller was designed using model predictive control (MPC). This control method required an accurate dynamic model to be created and required significant tuning to the controller before good control was achieved. The MPC design was then implemented on a prototype heater that was being developed simultaneously with the controller development. (The prototype's geometry and components are based on a currently marketed heater, but several improvements have been made.) The MPC's temperature control performance was a vast improvement over the existing controller. With a benchmark for superior control performance established, five additional control methods were tested. One problem with MPC control is that it was found to be extremely difficult to implement in a TWH, so that it is unlikely to be widely adopted by manufacturers. Therefore the five additional control methods were selected based on their simplicity; each could be implemented by a typical manufacturer. It was found that one of these methods performed as well as MPC, or even better under many circumstances. This method uses a Feedback-Compensated Feed-Forward algorithm that was developed for this project. Due to its simplicity and excellent performance this method was selected as the controller of choice. A final higher-capacity prototype heater that uses Feedback-Compensated Feed-Forward control was constructed. This prototype has many improvements over the currently marketed heaters: (1) excellent control; (2) a modular design that allows for different capacity heaters to be built easily; (3) built-in fault detection and diagnosis; (4) a secondary remote user-interface; and (5) a TRIAC switching algorithm that will minimize 'flicker factor'. The design and engineering of this prototype unit will allow it to be built without an increase in cost, compared with the currently marketed heater. A design rendering of the new product is shown below. It will be launched with a new marketing campaign by Keltech in early 2009.

David Yuill

2008-06-30T23:59:59.000Z

480

Gas-fired chiller-heaters as a central plant alternative for small office buildings  

SciTech Connect

Gas absorption chillers-heaters have been applied successfully in large projects where use of multiple chillers is feasible. Large facilities typically have a substantial base cooling load. If the base load is greater than 30% of the minimum capacity of the smallest chiller, chiller-heaters alone can be used as the building central plant. However, this study shows that a small office building presents part-load design difficulties that tend to favor the use of other technologies. The engineer can overcome these application problems by a variety of means, as has been illustrated. Manufacturers, too, are addressing the problems associated with low-load operation of direct-fired chiller heaters. A new generation of chiller-heaters that can unload down to 10% of design load will soon be available. If these new machines are capital-cost-competitive and perform up to expectations, the routine application of chiller-heaters in small commercial buildings may be just around the corner.

Thies, R.M. [JDB Engineering, Inc., York, PA (United States); Bahnfleth, W. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Architectural Engineering

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "radiant heater permanent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Activities of key metabolic enzymes in the heater organs of scombroid fishes  

E-Print Network (OSTI)

Maximal in vitro activities of key metabolic enzymes were measured in brain and eye heaters of five species of scombroid fishes. Istiophorid billfishes (blue marlin, striped marlin and Mediterranean spearfish), xiphiid billfishes (Pacific and Mediterranean stocks) and a scombrid fish (butterfly mackerel) were included in the analysis. Our main objectives were (1) to assess the maximum possible substrate flux in heater tissue, and (2) to determine what metabolic substrates could fuel heat production. Heater tissue of all scombroids examined showed extremely high oxidative capacity. Activities of citrate synthase, a commonly measured index of oxidative metabolism, included the highest value ever reported for vertebrate tissue. In most billfishes, citrate synthase activities were similar to or higher than those found for mammalian cardiac and avian flight muscle. Marker enzymes for aerobic carbohydrate metabolism (hexokinase) and fatty acid metabolism (carnitine palmitoyltransferase and 3-hydroxyacyl-CoA dehydrogenase) also displayed extraordinarily high activities. Activities of carnitine palmitoyltransferase measured in heater organs were among the highest reported for vertebrates. These results indicate that heat production could be fueled aerobically by either lipid or carbohydrate metabolism. Inter- and intraspecifically, heater organs of fishes from the colder Mediterranean waters had a higher aerobic capacity and, hence, a greater heat-generating potential, than fishes from the warmer waters of the Pacific. This difference may be attributed to different thermal environments or it may result from allometry, since fishes caught in the Mediterranean were considerably smaller than those caught in the Pacific.

Alexa Tullis; Barbara A. Block; Bruce; D. Sidell

1991-01-01T23:59:59.000Z

482