National Library of Energy BETA

Sample records for radial tire size

  1. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  2. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  3. Burning tires for fuel and tire pyrolysis: air implications

    SciTech Connect (OSTI)

    Clark, C.; Meardon, K.; Russell, D.

    1991-12-01

    The document was developed in response to increasing inquiries into the environmental impacts of burning waste tires in process equipment. The document provides information on the use of whole, scrap tires and tire-derived-fuel (TDF) as combustion fuel and on the pyrolysis of scrap tires. The use of whole tires and TDF as a primary fuel is discussed for dedicated tire-to-energy facilities. The use of whole tires and TDF as a supplemental fuel is discussed for cement manufacturing plants, electric utilities, pulp and paper mills, and other industrial processes. The focus of the document is on the impact of burning whole tires and TDF on air emissions. Test data are presented and, in most instances, compared with emissions under baseline conditions (no tires or TDF in the fuel). The control devices used in these industries are discussed and, where possible, their effectiveness in controlling emissions from the burning of whole tires or TDF is described. In addition, the report provides information on the processes themselves that use whole tires or TDF, the modifications to the processes that allowed the use of whole tires or TDF, and the operational experiences of several facilities using whole tires or TDF. The economic feasibility of using whole tires and TDF for the surveyed industries is discussed. Finally, contacts for State waste tire programs are presented.

  4. Study of radial growth rate and size control of silicon nanocrystals in square-wave-modulated silane plasmas

    SciTech Connect (OSTI)

    Nguyen-Tran, Th.; Roca i Cabarrocas, P.; Patriarche, G.

    2007-09-10

    The growth of silicon nanocrystals in high pressure and high dilution silane plasmas is investigated by using the temporal evolution of the self-bias on the radio frequency electrode and transmission electron microscopy. A square-wave-modulated plasma was used in order to control the growth of monodispersed nanoparticles with sizes smaller than 12 nm. To this end, the plasma on time was kept below 1 s. The radial growth rate of nanoparticles was varied in the range from 7.5 to 75 nm/s by changing silane partial pressure. Nanoparticles grown in silane-helium discharges have been found amorphous while they are crystalline in silane-hydrogen-argon discharges. Surprisingly, the crystallization in the gaseous phase does not depend on how slow or fast the particles grow but on the presence of atomic hydrogen.

  5. Tire deflation device

    DOE Patents [OSTI]

    Barker, Stacey G. (Idaho Falls, ID) [Idaho Falls, ID

    2010-01-05

    A tire deflation device includes (1) a component having a plurality of bores, (2) a plurality of spikes removably insertable into the plurality of bores and (3) a keeper within each among the plurality of bores, the keeper being configured to contact a sidewall surface of a spike among the plurality of spikes and to exert force upon the sidewall surface. In an embodiment, the tire deflation device includes (a) a component including a bore in a material, the bore including a receiving region, a sidewall surface and a base surface, (b) a channel extending from the sidewall surface into the material, (c) a keeper having a first section housed within the channel and a second section which extends past the sidewall surface into the receiving region, and (d) a spike removably insertable into the bore.

  6. Method for recycling tires and similarly compounded materials to recover usable constituents

    SciTech Connect (OSTI)

    Letsch, W.

    1980-12-23

    A processing plant and method are described for processing scrap tires and similar materials containing a mixture of technical rubber, scrap metal and tire cord in which the plant is essentially vehicular and thus eliminates the necessity of hauling accumulated tires long distances with the accompanying costs. The plant includes means for directing mixed tire sizes to a cyrogenic section where the technical rubber is reduced to a sufficient temperature making it brittle so that initial separation of reusable technical rubber is accomplished; the plant is operated essentially on the reusable by-products of pyrolytic reduction of the tires so that hydrocarbons and heated gas are utilized and additional commercial by-products such as commercial soots, metal and tire beads are obtained.

  7. Scrap tires: a resource and technology evaluation of tire pyrolysis and other selected alternate technologies

    SciTech Connect (OSTI)

    Dodds, J.; Domenico, W.F.; Evans, D.R.; Fish, L.W.; Lassahn, P.L.; Toth, W.J.

    1983-11-01

    The results of a technical and economic evaluation of scrap tire pyrolysis are presented and some other alternative uses for scrap tires are discussed. A scrap tire, by definition in this report, is one for which there is no economic end use. Information is presented on the scrap tire resource, pyrolysis processes, pyrolysis products (char, oil, and gas), markets for these products, and the economics of tire pyrolysis. A discussion is presented on alternative ideas for using scrap tires as an energy resource.

  8. Disposal techniques with energy recovery for scrapped vehicle tires

    SciTech Connect (OSTI)

    Sladek, T.A.; Demos, E.K.

    1987-06-01

    The scrap tire disposal problem is serious and widespread. However there are a number of promising management options, especially using the rubber as a supplemental fuel for existing combustors. The most cost-effective approach to dealing with Denver's tire stockpile appears to be shredding to a coarse size range, storing the shreds in a secure area, and marketing the rubber to nearby cement kilns, lime kilns, and boilers. This interim step would greatly reduce the volume of the pile, facilitate the Superfund evaluation, reduce fire and disease hazards, and simplify subsequent materials handling. Further processing to obtain rubber chips or crumbs may also be practical. However the industry and the markets would have to emerge over time. New power plants or pyrolysis facilities would be impeded by the low energy prices in Denver and the need for elaborate pollution controls. Landfilling could be considered as a last resort. Landfilling costs would be minimized if the tires are shredded. Chapter 2 discusses the tire disposal problem and the general options for tire management. Chapter 3 describes the methodology used to analyze Denver's situation and presents the results and conclusions obtained. This includes evaluation of strategies to implement the more promising resource recovery options in the Denver area. Chapter 4 summarizes the lessons learned and identifies impediments and uncertainties that need to be addressed in any future studies. The Appendix contains additional acknowledgments, a list of references, definitions for the acronyms and units used in the text, the agenda for the tire workshop, and a brief description of a stockpile fire near Denver in June 1987. 111 refs., 6 tabs.

  9. Combustion and inorganic emissions of ground waste tires

    SciTech Connect (OSTI)

    Levendis, Y.A.; Atal, A.; Steciak, J.

    1995-12-31

    An experimental study was undertaken to assess the combustion characteristics and emissions of SO{sub 2}, NO{sub x} and CO{sub 2} gases from ground waste tires. Results were contrasted with those obtained from burning pulverized coal. Laboratory bench-scale experiments were conducted in a drop-tube, laminar-flow furnace, in air at fuel-lean conditions, at gas temperatures ranging from 1300 K to 1600 K. Two particle size cuts were burned from both materials, 75-90 {mu}m and 180-212 {mu}m. Blends of coal and tire particles, at equal weight ratios, were also burned. Pyrometric and cinematographic observations revealed that the coal particles exhibited distinct volatile and char combustion phases, while tire particles exhibited a distinct primary volatile phase followed by a char combustion phase, which was accompanied by burning of secondary pyrolysis products. SO{sub 2} emissions of burning ground tires increased from 160 to 500 ppm as the temperature increased from 1300 K to 1600 K. Combustion of coal produced SO{sub 2} emissions in the neighborhood of 200-300 ppm (corresponding to 40 to 60 wt% of its sulfur content) independent of the gas temperature. The blend of coal and tire particles (equal mass ratios) exhibited SO{sub 2} values which fell in between the above. NO{sub x} emissions were constant at approximately 175 ppm for tire crumb (corresponding to approximately 45 wt% of its fuel nitrogen content) and 625 ppm for coal (corresponding to 55 wt% of its fuel nitrogen content) in the temperature range studied. CO{sub 2} emissions from tire were 8-9 molar %, while for coal particles they were 5-7 molar %; the upper limits corresponded to approximately 100% combustion efficiency. As a means to reduce the SO{sub 2} emissions, pulverized coal and tire crumb were fluidized together with particles of a calcium bearing sorbent - calcium magnesium acetate (CMA). CMA has been identified as an effective SO{sub 2} scrubbing agent in previous studies.

  10. New Tire Technologies Can Improve Fuel Efficiency by More Than...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by More Than 5% New Tire Technologies Can Improve Fuel Efficiency by More Than 5% Cooper Tire recently developed concept tires that can improve fuel efficiency by 5.5%,...

  11. Alternative Fuels Data Center: Low Rolling Resistance Tires

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Rolling Resistance Tires to someone by E-mail Share Alternative Fuels Data Center: Low Rolling Resistance Tires on Facebook Tweet about Alternative Fuels Data Center: Low Rolling Resistance Tires on Twitter Bookmark Alternative Fuels Data Center: Low Rolling Resistance Tires on Google Bookmark Alternative Fuels Data Center: Low Rolling Resistance Tires on Delicious Rank Alternative Fuels Data Center: Low Rolling Resistance Tires on Digg Find More places to share Alternative Fuels Data

  12. Tire with outer groove containing bonded tube

    DOE Patents [OSTI]

    Welter, Carolin Anna; Chandra, Dinesh; Benedict, Robert Leon

    2016-02-16

    The invention relates generally to a pneumatic rubber tire which contains an outer, annular, circular groove which contains a flexible tube bonded to the walls of the groove.

  13. Vacuum pyrolysis of used tires

    SciTech Connect (OSTI)

    Roy, C.; Darmstadt, H.; Benallal, B.; Chaala, A.; Schwerdtfeger, A.E.

    1995-11-01

    The vacuum pyrolysis of used tires enables the recovery of useful products, such as pyrolytic oil and pyrolytic carbon black (CB{sub P}). The light part of the pyrolytic oil contains dl-limonene which has a high price on the market. The naphtha fraction can be used as a high octane number component for gasoline. The middle distillate demonstrated mechanical and lubricating properties similar to those of the commercial aromatic oil Dutrex R 729. The heavy oil was tested as a feedstock for the production of needle coke. It was found that the surface morphology of CB{sub P} produced by vacuum pyrolysis resembles that of commercial carbon black. The CB{sub P} contains a higher concentration of inorganic compounds (especially ZnO and S) than commercial carbon black. The pyrolysis process feasibility looks promising. One old tire can generate upon vacuum pyrolysis, incomes of at least $2.25 US with a potential of up to $4.83 US/tire upon further product improvement. The process has been licensed to McDermott Marketing Servicing Inc. (Houston) for its exploitation in the US.

  14. Scrap tire utilization via surface modification

    SciTech Connect (OSTI)

    Bauman, B.D. )

    1990-01-01

    Air Products and Chemicals, Inc. is developing a novel approach to reusing scrap tire rubber, which will be described in this presentation. In addition to consuming scrap tires, this technology represents a new approach to material engineering. Furthermore, this method of rubber recycle is most efficient in terms of energy recovery. 4 figs.

  15. Scrap tire management in the mid south region

    SciTech Connect (OSTI)

    Blumenthal, M.

    1996-08-01

    The Scrap Tire Management Council (STMC) is a North American tire manufacturer-sponsored advocacy organization, created to identify and promote environmentally and economically sound markets for scrap tires. This presentation gives a national overview of the scrap tire situation, and focuses on the Tennessee and Mid-south region. National generation rates and markets for scrap tires are discussed, and markets for scrap tires are described. The major markets identified are fuel, rubber products, and civil engineering applications. Three technologies that may have an impact on scrap tire recycling are discussed: pyrolysis, gasification, and devulcanization.

  16. Radial-radial single rotor turbine

    DOE Patents [OSTI]

    Platts, David A.

    2006-05-16

    A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

  17. Scrap tire pyrolysis: Experiment and modelling

    SciTech Connect (OSTI)

    Napoli, A.; Soudais, Y.; Lecomte, D.; Castillo, S.

    1997-12-01

    Pyrolysis of waste, usually organic solids like tires, plastics or composite materials, is an alternative thermal waste treatment technology. Three main physical and chemical mechanisms - i.e.: chemical kinetics, internal heat transfer and external heat transfer - have to be considered when modelling the degradation of solid waste particles. Because of the lack of physical properties for wastes most of the models described in the literature use basic data obtained on the pyrolysis of coal, wood and biomass. In this work, the authors report basic information on the thermal degradation of tire samples at small scale: Thermogravimetric analyser (TGA) and differential scanning calorimeter (DSC), as well as direct and indirect measurements of thermal and physical properties (thermal conductivity of the tire and of the char, porosity, density, specific heat). Pyrolysis experiments on tire samples are performed in an imaging furnace. The experimental results are compared to theoretical values deduced from models that take into account physical property measurements.

  18. Improving Vehicle Fuel Efficiency Through Tire Design, Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To develop a new class of tires in the replacement market that improves fuel efficiency by a minimum of 3% and reduces overall tire weight by 20%. This presentation does...

  19. Tire gassification and combustion system

    SciTech Connect (OSTI)

    Nance, D.; Towne, G.A.

    1992-04-07

    This patent describes a system for disposing of a material such as vehicle tires and similar substantially organic matter and generating useful heat therefrom. It comprises gasification means for holding an amount of the material to be disposed while the material is allowed to partially combust and for containing combustible gas produced thereby, the gasification means comprising a substantially air tight gasification chamber having at least one access way for inserting the material therein; inlet means for receiving a controlled amount of oxygen containing gas into the gasification means, the inlet means comprising a tuyere disposed in the air tight gasification chamber and a blower connected to the tuyere; removal means for removing the combustible gas from the gasification means, the removal means comprising a gas outlet located above the tuyere in the gasification chamber such that substantially amounts of the combustible gases produced by the partially combusted material exits through the gas outlet; primary combustion means for receiving and mixing the combustible gas removed from the gasification means with an oxygen containing gas and burning the combustible gas; and means for directing the combustion products to a heat utilizing device.

  20. Materials Approach to Fuel Efficient Tires

    SciTech Connect (OSTI)

    Votruba-Drzal, Peter; Kornish, Brian

    2015-06-30

    The objective of this project was to design, develop, and demonstrate fuel efficient and safety regulation compliant tire filler and barrier coating technologies that will improve overall fuel efficiency by at least 2%. The program developed and validated two complementary approaches to improving fuel efficiency through tire improvements. The first technology was a modified silica-based product that is 15% lower in cost and/or enables a 10% improvement in tread wear while maintaining the already demonstrated minimum of 2% improvement in average fuel efficiency. The second technology was a barrier coating with reduced oxygen transmission rate compared to the state-of-the-art halobutyl rubber inner liners that will provide extended placarded tire pressure retention at significantly reduced material usage. A lower-permeance, thinner inner liner coating which retains tire pressure was expected to deliver the additional 2% reduction in fleet fuel consumption. From the 2006 Transportation Research Board Report1, a 10 percent reduction in rolling resistance can reduce consumer fuel expenditures by 1 to 2 percent for typical vehicles. This savings is equivalent to 6 to 12 gallons per year. A 1 psi drop in inflation pressure increases the tire's rolling resistance by about 1.4 percent.

  1. Tire Development for Effective Transportation and Utilization of Used Tires, CRADA 01-N044, Final Report

    SciTech Connect (OSTI)

    Susan M. Maley

    2004-03-31

    Scrap tires represent a significant disposal and recycling challenge for the United States. Over 280 million tires are generated on an annual basis, and several states have large stockpiles or abandoned tire piles that are slated for remediation. While most states have programs to address the accumulation and generation of scrap tires, most of these states struggle with creating and sustaining recycling or beneficial end use markets. One of the major issues with market development has been the costs associated with transporting and processing the tires into material for recycling or disposal. According to a report by the Rubber Manufactures Association tire-derived fuel (TDF) represents the largest market for scrap tires, and approximately 115 million tires were consumed in 2001 as TDF (U.S. Scrap Tire Markets, 2001, December 2002, www.rma.org/scraptires). This market is supported primarily by cement kilns, followed by various industries including companies that operate utility and industrial boilers. However the use of TDF has not increased and the amount of TDF used by boiler operators has declined. The work completed through this cooperative research and development agreement (CRADA) has shown the potential of a mobile tire shredding unit to economically produce TDF and to provide an alterative low cost fuel to suitable coal-fired power systems. This novel system addresses the economic barriers by processing the tires at the retailer, thereby eliminating the costs associated with hauling whole tires. The equipment incorporated into the design allow for small 1-inch chunks of TDF to be produced in a timely fashion. The TDF can then be co-fired with coal in suitable combustion systems, such as a fluidized bed. Proper use of TDF has been shown to boost efficiency and reduce emissions from power generation systems, which is beneficial to coal utilization in existing power plants. Since the original scope of work outlined in the CRADA could not be completed because

  2. Passive tire pressure sensor and method

    DOE Patents [OSTI]

    Pfeifer, Kent Bryant; Williams, Robert Leslie; Waldschmidt, Robert Lee; Morgan, Catherine Hook

    2007-09-04

    A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.

  3. Passive tire pressure sensor and method

    DOE Patents [OSTI]

    Pfeifer, Kent Bryant; Williams, Robert Leslie; Waldschmidt, Robert Lee; Morgan, Catherine Hook

    2006-08-29

    A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.

  4. Vacuum pyrolyzed tire oil as a coal solvent

    SciTech Connect (OSTI)

    Orr, E.C.; Shi, Yanlong; Ji, Qin; Anderson, L.L.; Eyring, E.M.

    1995-12-31

    Recent interest in coprocessing coal with hydrogen rich waste materials in order to produce liquid transportation fuels has given rise to interesting twists on standard coal liquefaction. In general, coprocessing coal with a waste material has been approached with the idea that the waste material would be mixed with the coal under liquefaction conditions with little or no preliminary processing of the waste material other than shredding into smaller size particles. Mixing the waste material with the coal would occur in the primary stage of liquefaction. The primary stage would accomplish the dissolution of the coal and breakdown of the waste material. The products would then be introduced into the secondary stage where upgrading of product would occur. This paper describes the usefulness of oil derived from pyrolysis of waste rubber tires as a reactant in coal coprocessing or coal liquefaction.

  5. Improving Vehicle Fuel Efficiency Through Tire Design, Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ... More Documents & Publications Improving Vehicle Fuel Efficiency Through Tire Design, ...

  6. Improving Vehicle Fuel Efficiency Through Tire Design, Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ... More Documents & Publications Improving Vehicle Fuel Efficiency Through Tire Design, ...

  7. Goodyear Tire Plant Gains Traction on Energy Savings After Completing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Goodyear operates more than 60 facilities in 26 countries, including the Union City, Tennessee, plant pictured above. Goodyear Tire Plant Gains Traction on Energy Savings After ...

  8. Passive tire pressure sensor and method (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Title: Passive tire pressure sensor and method A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured ...

  9. Radial arm strike rail

    DOE Patents [OSTI]

    McKeown, Mark H.; Beason, Steven C.

    1991-01-01

    The radial arm strike rail assembly is a system for measurement of bearings, directions, and stereophotography for geologic mapping, particularly where magnetic compasses are not appropriate. The radial arm, pivoting around a shaft axis, provides a reference direction determination for geologic mapping and bearing or direction determination. The centerable and levelable pedestal provide a base for the radial arm strike rail and the telescoping camera pedestal. The telescoping feature of the radial arm strike rail allows positioning the end of the rail for strike direction or bearing measurement with a goniometer.

  10. Triple acting radial seal

    SciTech Connect (OSTI)

    Ebert, Todd A; Carella, John A

    2012-03-13

    A triple acting radial seal used as an interstage seal assembly in a gas turbine engine, where the seal assembly includes an interstage seal support extending from a stationary inner shroud of a vane ring, the interstage seal support includes a larger annular radial inward facing groove in which an outer annular floating seal assembly is secured for radial displacement, and the outer annular floating seal assembly includes a smaller annular radial inward facing groove in which an inner annular floating seal assembly is secured also for radial displacement. A compliant seal is secured to the inner annular floating seal assembly. The outer annular floating seal assembly encapsulates the inner annular floating seal assembly which is made from a very low alpha material in order to reduce thermal stress.

  11. An unresolved riddle: Tire chips, two roadbeds, and spontaneous reactions

    SciTech Connect (OSTI)

    Nightingale, D.E.B.; Green, W.P.

    1997-12-31

    Experience with road fills in Washington State constructed with thick layers of tire chips spontaneously burning has led to a decrease in tire chip use nationally. The field measurements and samples taken indicate that a pyrolitic reaction occurred at two roadfill sites in Washington State based on a comparison to know pyrolytic reactions in controlled settings. Pyrolysis in roadbeds containing tire chips is a new phenomena previously only found in open piles of processed tire chips. Because water and nutrients were introduced, iron oxidation, microbial digestion, and chemical oxidation are possible factors contributing to the pyrolytic reactions at the two Washington State sites. A new heat ignition theory from Japanese experiments suggests a theoretical answer to practical design depth limits in roadbeds and tire chip piles may be climate (air temperature) and depth dependent.

  12. Reprocessing of used tires into activated carbon and other products

    SciTech Connect (OSTI)

    Teng, H.; Serio, M.A.; Wojtowicz, M.A.; Bassilakis, R.; Solomon, P.R.

    1995-09-01

    Landfilling used tires which are generated each year in the US is increasingly becoming an unacceptable solution. A better approach, from an environmental and economic standpoint, is to thermally reprocess the tires into valuable products such as activated carbon, other solid carbon forms (carbon black, graphite, and carbon fibers), and liquid fuels. In this study, high surface area activated carbons (> 800 m{sup 2}/g solid product) were produced in relatively high yields by pyrolysis of tires at up to 900 C, followed by activation in CO{sub 2} at the same temperature. The surface areas of these materials are comparable with those of commercial activated carbons. The efficiency of the activation process (gain in specific surface area/loss in mass) was greatest (up to 138 m{sup 2}/g original tire) when large pieces of tire material were used ({approximately} 170 mg). Oxygen pretreatment of tires was found to enhance both the yield and the surface area of the carbon product. High-pressure treatment of tires at low temperatures (< 400 C) is an alternative approach if the recovery of carbon black or fuel oils is the primary objective.

  13. Fluidized-bed combustion of scrap tires: Technical note

    SciTech Connect (OSTI)

    Shang, J.Y.; Mei, J.S.; Notestein, J.E.

    1981-10-01

    An introduction to fluidized-bed combustion (FBC) is presented in Section 2.0. Based on this discussion of its technical development, FBC is then presented as a means of scrap tire disposal. In Section 3.0, scrap tire disposal is reviewed in the categories of (1) physical applications, (2) chemical applications, (3) pyrolysis, and (4) incineration for thermal energy recovery. Scrap tire disposal is reviewed on the basis of (1) environmental acceptability, (2) conservation of resources, (3) impact on existing industries, (4) operational feasibility, and (5) special features. The focus of this report is the fluidized-bed incineration of scrap tires for thermal energy recovery. The factors that affect scrap tire combustion are discussed in Section 4.0. These factors are (1) agitation, (2) temperature, (3) excess air, (4) residence time, (5) feed uniformity, (6) solid waste handling, and (7) pollutants emission control. In reviewing these incineration processes, (1) fuel flexibility, (2) environmental acceptability, (3) combustion efficiency, and (4) operational reliability are discussed. The results from a tire incineration experiment conducted at the Morgantown Energy Technology Center are presented in Section 5.0, and a conceptual fluidized-bed combustor is discussed in Section 6.0. Future considerations in the FBC of scrap tires are discussed in Section 7.0. 8 refs., 6 figs., 6 tabs.

  14. Radial Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    search Name Radial Wind Farm Facility Radial Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Radial Wind Developer Radial Wind Location...

  15. Goodyear Tire Plant Gains Traction on Energy Savings After Completing...

    Broader source: Energy.gov (indexed) [DOE]

    describes how the Goodyear Tire Plant saved approximately 93,000 MMBtu and 875,000 annually after increasing steam system energy efficiency in their Union City, Tennessee, plant. ...

  16. Firm eyes savings from tires-to-fuel system

    SciTech Connect (OSTI)

    Barber, J.

    1983-01-31

    A $600,000 pyrolysis system to convert tire scraps into methane will eliminate a tire retreading company's landfill and boiler fuel costs and achieve a five-year payback. The process also yields steel belts, fibers, and carbon black byproducts that can be sold for additional revenue. Heat from the hot exhaust gases will be recycled to the combustion chamber. A 10% federal energy tax credit and a 10% investment tax credit lowered the capital costs for $480,000. (DCK)

  17. Recovery of commercially valuable products from scrap tires

    SciTech Connect (OSTI)

    Roy, C.

    1993-07-20

    A process is described for producing carbon black by vacuum pyrolysis of used rubber tires, which comprises pyrolysing used rubber tire material at a temperature in the range of about 490 C to about 510 C under an absolute pressure of less than about 5 kPa, and recovering a solid carbonaceous material containing carbon black having an iodine adsorption number of about 130 to about 150 mg/g.

  18. Radial wedge flange clamp

    DOE Patents [OSTI]

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  19. Waste tires as auxiliary fuel for cement kilns

    SciTech Connect (OSTI)

    Dodds, J.

    1987-01-01

    The subject I have been asked to speak about is the utilization of scrap tires as an auxiliary fuel for cement kilns. My experience with scrap tires began five years ago when we performed a technical and economic evaluation for tire pyrolysis. I work for the Idaho National Engineering Laboratory which is supported by the Department of Energy. My interest in scrap tires continued; in 1984 the Department of Energy and the Portland Cement Association jointly sponsored a conference on the utilization of scrap tires in cement kilns. Most of my remarks today are based upon that conference along with some current information in the US. Mr. Sladek requested that I speak on the combustion process, the progress to date, and the factors that impede or encourage implementation of using scrap tires in cement kilns. For discussion purposes it would help if we had a common understanding of the cement manufacturing process. Cement is made by heating a mixture of finely ground limestone and silica from clay or sand to about 1450/degree/C in a large rotating kiln. The heat causes the limestone to decarbonate and subsequently react with the silica to form calcium silicates. 5 figs.

  20. Radial Sandia Cooler Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets.

  1. Goodyear Testing Self-Inflating Tire Systems in U.S. Trucking Fleets

    Broader source: Energy.gov [DOE]

    The Goodyear Tire & Rubber Company is demonstrating its award-winning self-inflating tires by testing the Air Maintenance Technology (AMT) on U.S. trucking fleets. Goodyear has received...

  2. Fact #763: January 21, 2013 Eighty-four Percent of Scrapped Tires...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ground rubber, which is used for sports surfacing, asphalt, playgrounds, and other molded ... U.S. Scrap Tire Uses, 2009 Market Tons (Thousands) Tire-derived Fuel 2,084.8 Ground Rubber ...

  3. Radial Inflow Turboexpander Redesign

    SciTech Connect (OSTI)

    William G. Price

    2001-09-24

    Steamboat Envirosystems, LLC (SELC) was awarded a grant in accordance with the DOE Enhanced Geothermal Systems Project Development. Atlas-Copco Rotoflow (ACR), a radial expansion turbine manufacturer, was responsible for the manufacturing of the turbine and the creation of the new computer program. SB Geo, Inc. (SBG), the facility operator, monitored and assisted ACR's activities as well as provided installation and startup assistance. The primary scope of the project is the redesign of an axial flow turbine to a radial inflow turboexpander to provide increased efficiency and reliability at an existing facility. In addition to the increased efficiency and reliability, the redesign includes an improved reduction gear design, and improved shaft seal design, and upgraded control system and a greater flexibility of application

  4. Radial pressure flange seal

    DOE Patents [OSTI]

    Batzer, T.H.; Call, W.R.

    1989-01-24

    This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side. 5 figs.

  5. Radial pressure flange seal

    DOE Patents [OSTI]

    Batzer, Thomas H.; Call, Wayne R.

    1989-01-01

    This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side.

  6. 54.5 MPG and Beyond: New Tire Technology Pumps Up Fuel Savings | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy New Tire Technology Pumps Up Fuel Savings 54.5 MPG and Beyond: New Tire Technology Pumps Up Fuel Savings December 12, 2012 - 10:30am Addthis This graphic shows how Goodyear's new Air Maintenance Technology -- also called the self-regulating tire -- works. | Graphic courtesy of Goodyear. This graphic shows how Goodyear's new Air Maintenance Technology -- also called the self-regulating tire -- works. | Graphic courtesy of Goodyear. Rebecca Matulka Rebecca Matulka Former Digital

  7. EERE Success Story-Goodyear Testing Self-Inflating Tire Systems in U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trucking Fleets | Department of Energy Goodyear Testing Self-Inflating Tire Systems in U.S. Trucking Fleets EERE Success Story-Goodyear Testing Self-Inflating Tire Systems in U.S. Trucking Fleets April 7, 2015 - 4:52pm Addthis This graphic shows how Goodyear's new Air Maintenance Technology -- also called the self-regulating tire -- works. | Graphic courtesy of Goodyear. This graphic shows how Goodyear's new Air Maintenance Technology -- also called the self-regulating tire -- works. |

  8. EERE Energy Impacts: Self-Inflating Tires Could Save You Money on Gas, Improve Driving Safety

    Broader source: Energy.gov [DOE]

    The self-regulating tire system that the Goodyear Tire & Rubber Company has developed with funding from the Office of Energy Efficiency and Renewable Energy (EERE) uses a new technology called Air Maintenance Technology (AMT) that automatically manages air pressure in tires, so you don't have to.

  9. Radial reflection diffraction tomography

    DOE Patents [OSTI]

    Lehman, Sean K.

    2012-12-18

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  10. Radial Reflection diffraction tomorgraphy

    DOE Patents [OSTI]

    Lehman, Sean K

    2013-11-19

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  11. Vacuum pyrolyzed tire oil as a coal solvent

    SciTech Connect (OSTI)

    Orr, E.C.; Shi, Y.; Ji, Q.

    1995-12-31

    Coal liquefaction is highly dependent upon the type of coal liquefaction solvent used. The solvent must readily solubilize the coal and must act as an effective hydrogen donor or shuttler. Oil derived from the vacuum pyrolysis of used rubber tires has recently been used as a coal solvent with good conversion of coal to liquids in a hydrogen atmosphere. All experiments were completed in shaken tubing reactors at 450{degrees}C utilizing a bituminous coal. Results show the effectiveness of the pyrolyzed tire oil as a coal liquefaction solvent depends upon hydrogen pressure. Electron probe microanalysis data reveal good dispersion of the molybdenum catalyst in coal particles taken from liquefaction experiments.

  12. EERE Success Story-New Tire Technologies Can Improve Fuel Efficiency by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Than 5% | Department of Energy New Tire Technologies Can Improve Fuel Efficiency by More Than 5% EERE Success Story-New Tire Technologies Can Improve Fuel Efficiency by More Than 5% January 15, 2016 - 10:17am Addthis EERE Success Story—New Tire Technologies Can Improve Fuel Efficiency by More Than 5% EERE Success Story—New Tire Technologies Can Improve Fuel Efficiency by More Than 5% EERE Success Story-New Tire Technologies Can Improve Fuel Efficiency by More Than 5% EERE

  13. DETERMINATION OF RADIAL MOMENTS ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SIZE DISTRIBUTION FROM MEASUREMENTS OF LIGHT TRANSMITTANCE AND SCATTERING Ernie R. Lewis and Stephen E. Schwartz Brookhaven National Laboratory, Upton, NY 11933 ses@bnl.gov...

  14. Waste tire derived carbon-polymer composite paper as pseudocapacitive electrode with long cycle life

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boota, M.; Paranthaman, Mariappan Parans; Naskar, Amit K.; Gogotsi, Yury; Li, Yunchao; Akato, Kokouvi

    2015-09-25

    Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m2/g–1) is synthesized using waste tires as the precursor and used as supercapacitor electrode. The narrow pore size distribution (PSD) and high surface area led to a good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI/TC). The composite film was highly flexible, conductive and exhibited a capacitance of 480 F/g–1 at 1 mV/s–1 with excellent capacitance retention up to 98% after 10,000 charge/discharge cycles. The high capacitance and long cycle life weremore » ascribed to the short diffusional paths, uniform PANI coating and tight confinement of the PANI in the inner pores of the tire-derived carbon via - interactions, which minimized the degradation of the PANI upon cycling. Here, we anticipate that the same strategy can be applied to deposit other pseudocapacitive materials with low-cost TC to achieve even higher electrochemical performance and longer cycle life, a key challenge for redox active polymers.« less

  15. Waste tire derived carbon-polymer composite paper as pseudocapacitive electrode with long cycle life

    SciTech Connect (OSTI)

    Boota, M.; Paranthaman, Mariappan Parans; Naskar, Amit K.; Gogotsi, Yury; Li, Yunchao; Akato, Kokouvi

    2015-09-25

    Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m2/g–1) is synthesized using waste tires as the precursor and used as supercapacitor electrode. The narrow pore size distribution (PSD) and high surface area led to a good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI/TC). The composite film was highly flexible, conductive and exhibited a capacitance of 480 F/g–1 at 1 mV/s–1 with excellent capacitance retention up to 98% after 10,000 charge/discharge cycles. The high capacitance and long cycle life were ascribed to the short diffusional paths, uniform PANI coating and tight confinement of the PANI in the inner pores of the tire-derived carbon via - interactions, which minimized the degradation of the PANI upon cycling. Here, we anticipate that the same strategy can be applied to deposit other pseudocapacitive materials with low-cost TC to achieve even higher electrochemical performance and longer cycle life, a key challenge for redox active polymers.

  16. Radial cold trap

    DOE Patents [OSTI]

    Grundy, Brian R.

    1981-01-01

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume.

  17. Radial cold trap

    DOE Patents [OSTI]

    Grundy, B.R.

    1981-09-29

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume. 2 figs.

  18. The use of scrap tires in rotary cement kilns

    SciTech Connect (OSTI)

    Blumenthal, M.

    1996-12-31

    The use of scrap tires as a supplemental fuel in the United States Portland cement industry has increased significantly in the past six years. In 1990, there were two kilns using tire-derived fuel (TDF), today 30 kilns use TDF. The outlook for continued and expanded use of TDF in the U.S. cement industry should be considered favorable, with 15 kilns conducting tests to determine TDF`s applicability or in the permitting process. The Council`s estimates are that by the end of 1996, the cement industry could be consuming some 75-100 million of the 253 million annually generated scrap tires in the United States. This level of TDF usage will make the cement industry the largest market segments for scrap tires in the United States. While the long-term outlook is at present positive, there are a series of factors that have, and will likely continue to adversely impact the near-term usage of TDF. These issues, as well as the factors that are likely to positively impact the cement kiln TDF market are the subject of this presentation.

  19. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    SciTech Connect (OSTI)

    Donley, Tim

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  20. Radial flow heat exchanger

    DOE Patents [OSTI]

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  1. Numerical model for the vacuum pyrolysis of scrap tires in batch reactors

    SciTech Connect (OSTI)

    Yang, J.; Tanguy, P.A.; Roy, C.

    1995-06-01

    A quantitative model for scrap tire pyrolysis in a batch scale reactor developed comprises the following basic phenomena: conduction inside tire particles; conduction, convection, and radiation between the feedstock particles or between the fluids and the particles; tire pyrolysis reaction; exothermicity and endothermicity caused by tire decomposition and volatilization; and the variation of the composition and the thermal properties of tire particles. This model was used to predict the transient temperature and density distributions in the bed of particles, the volatile product evolution rate, the mass change, the energy consumption during the pyrolysis process, and the pressure history in a tire pyrolysis reactor with a load of 1 kg. The model predictions agree well with independent experimental data.

  2. Feasibility study for thermal treatment of solid tire wastes in Bangladesh by using pyrolysis technology

    SciTech Connect (OSTI)

    Islam, M.R.; Joardder, M.U.H.; Hasan, S.M.; Takai, K.; Haniu, H.

    2011-09-15

    In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants for the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.

  3. Scrap tire recycling: Promising high value applications. Final report

    SciTech Connect (OSTI)

    Bauman, B.D.; Leskovyansky, P.J.; Drela, H.

    1993-11-01

    Surface modification of scrap tire rubber (rubber particles treated with chlorine gas) show promise for ameliorating the scrap tire problem (the treated rubber can be used as a component in high- performance, expensive polymer systems). The process has been proven in Phase I. Phase II covers market/applications, process development (Forberg-design mixer reactor was chosen), plant design, capital cost estimate, economics environmental/safety/health, and energy impact. Almost of the small amount of chlorine is consumed. The capital costs for a rubber particle treatment facility are attractive, being at least two orders of magnitude less than that of facilities for making new polymer materials. Large volume markets using treated rubber are needed. The amount of scrap rubber available is small compared to the polymers available for replacement. 7 tabs, 16 figs.

  4. Evaluation of synergy in tire rubber-coal coprocessing

    SciTech Connect (OSTI)

    Mastral, A.M.; Mayoral, M.C.; Murillo, R.; Callen, M.; Garcia, T.; Tejero, M.P.; Torres, N.

    1998-09-01

    The tire rubber-coal synergy is evaluated through the different roles that rubber can have in coprocessing systems. For that, two different experimental designs were used: a swept fixed-bed reactor and tubing bomb minireactors. In this way, coal was coprocessed with rubber liquids from rubber pyrolysis and rubber hydrogenation, in a hydrogen atmosphere at 400 C. Coal was mixed as well with rubber in different proportions and hydrogenated at 375, 400, and 425 C, and oils obtained were characterized by thin-layer chromatography to obtain hydrocarbon type composition. Rubber behavior was compared to each of the main components of tires, and all the results indicated that the slight synergy found can be due to the small free radicals from vulcanized rubber decomposition, which are able to stabilize coal radicals to light products.

  5. General Davis kicks the tires on a Safeguards Transporter | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) General Davis kicks the tires on a Safeguards Transporter Tuesday, October 6, 2015 - 8:43am NNSA Blog Brigadier General Stephen L. Davis, NNSA's Acting Deputy Administrator for Defense Programs, gets a lesson on how to drive a Safeguards Transporter during a recent visit to the Office of Secure Transportation (OST) headquarters in Albuquerque, New Mexico. OST is responsible for transporting nuclear weapons, components and special nuclear materials to

  6. Fact #763: January 21, 2013 Eighty-four Percent of Scrapped Tires Are

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recycled | Department of Energy 3: January 21, 2013 Eighty-four Percent of Scrapped Tires Are Recycled Fact #763: January 21, 2013 Eighty-four Percent of Scrapped Tires Are Recycled There were 263 million tires scrapped in 2009 (latest available data) which amounts to more than 4.7 million tons of waste. Fortunately, 84% of that waste was recycled. Most of the recycled tires were used to make fuel for industries such as pulp and paper mills, cement kilns, and electric utilities. Ground

  7. EERE Success Story-Goodyear Testing Self-Inflating Tire Systems...

    Office of Environmental Management (EM)

    new Air Maintenance Technology -- also called the self-regulating tire -- works. | Graphic courtesy of Goodyear. This graphic shows how Goodyear's new Air Maintenance Technology ...

  8. Characterization of chars from coal-tire copyrolysis

    SciTech Connect (OSTI)

    Mastral, A.M.; Callen, M.S.; Murillo, R.; Alvarez, R.; Clemente, C.

    1999-07-01

    The objective of this work is the characterization of the solid conversion product from coal-tire copyrolysis because, nowadays, any new process should be faced without resolving the problem of the subproducts generated. A low-rank coal and a nonspecific mixture of scrap automotive tires, 50/50 w/w, have been coprocessed at 400 C for 30 min at different H{sub 2} pressures and atmospheres. Once the most valuable conversion products, the liquids, were recovered by tetrahydrofuran extraction, a complementary battery of analytical techniques was applied to characterize the solids or chars, looking for their possible use. {sup 13}C nuclear magnetic resonance, infrared, immediate and ultimate analyses, ASA, and scanning electron microscopy-energy-dispersive X-ray spectrometry were performed on them. By X-ray diffractometry the presence of sphalerite, pyrrhotite, and anhydrite was detected. Thermogravimetric studies demonstrated that the combustion induction temperature is 400 C. Char combustion tests at 900 C with discussion of NO{sub x}, SO{sub x}, and polycyclic aromatic hydrocarbon emissions are included. Mineral matter behaves as if only coal is processed with the Zn exception, from ZnO in the tire, which is converted into ZnS. It is shown that the char organic component has a higher aromaticity than the one from coal.

  9. Vehicle Technologies Office 2013 Merit Review: A System for Automatically Maintaining Pressure in a Commercial Truck Tire

    Broader source: Energy.gov [DOE]

    A presentation given by PPG during the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on a system for automatically maintaining tire pressure in commercial truck tires.

  10. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  11. Pyrolysis of scrap tires: Can it be profitable?

    SciTech Connect (OSTI)

    Wojtowicz, M.A.; Serio, M.A.

    1996-10-01

    Pyrolysis--the thermal degradation in the absence of oxygen--is one way to reprocess scrap tires. The products are fuel gas, oils, and a solid residue (char), which contains appreciable quantities of mineral matter and low-grade carbon black. The three products have comparable yields by weight. The two most important factors affecting process economics are the tipping fees charged for tire disposal and the selling prices of the products. Selling prices of the products yield low returns because of the low market value of the fuels and the low quality of the recovered char or carbon black. Therefore, to obtain a positive cash flow, it would be desirable to develop a process based on the recovery of value-added products such as high-grade carbon black, activated carbon, or valuable chemicals (e.g., benzene, toluene, and xylene). The authors believe that significant improvement in the economics can be accomplished by upgrading the primary pyrolysis products to secondary products of higher value.

  12. Chemi-microbial processing of waste tire rubber: A project overview

    SciTech Connect (OSTI)

    Romine, R.A.; Snowden-Swan, L.

    1993-12-01

    PNL is developing a method to use thiophillic microorganisms to devulcanize (biodesulfurize) the surface of ground rubber particles, which will improve the bonding and adhesion of the ground tire rubber into the virgin tire rubber matrix. The Chemi-microbial processing approach, introduced in this paper, is targeted at alleviating the waste tire problem in an environmentally conscious manner; it may also be applied to improve asphaltic materials and rubber and polymeric wastes to facilite their recycling. This paper outlines the logic and technical methods that will be used.

  13. Radial flow pulse jet mixer (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Radial flow pulse jet mixer Title: Radial flow pulse jet mixer The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing ...

  14. EERE Success Story-New Tire Technologies Can Improve Fuel Efficiency...

    Office of Environmental Management (EM)

    tires that can improve fuel efficiency by 5.5%, supported by a project from the EERE Vehicle Technologies Office (VTO). ... Licensed for Use in Fuel Cell Hybrid Advanced Vehicles ...

  15. Optimization of scrap tire pyrolysis using a continuous-feed steam environment

    SciTech Connect (OSTI)

    Burrell, T.W.; Frank, S.R.; Rich, M.L.

    1995-12-01

    Estimates of the generation of scrap tires produced in the United States are on the order of 2 million tons per year. Although these tires contain a high percentage of useful hydrocarbons, steel and carbon black, approximately 70% are not effectively recycled. Recently, pyrolytic recycling of scrap tire (thermal decomposition in the absence of O{sub 2}) is receiving renewed interest because of its ability to produce valuable hydrocarbon products. We have developed a process which permits a continuous feed processing of scrap tires in a non-combustible stream environment. This system utilizes a soft seal system that operates at atmospheric pressures while minimizing any fugitive emissions. This process increases the efficiency and control of present approaches by lowering the energy requirements while maximizing the collection of valuable products. Initial bench-scale results will be presented.

  16. Pyrolysis of scrap tires and conversion of chars to activated carbon

    SciTech Connect (OSTI)

    Merchant, A.A.; Petrich, M.A. . Dept. of Chemical Engineering)

    1993-08-01

    The primary objective of this work was to demonstrate the conversion of scrap tires to activated carbon. The authors have been successful in this endeavor, producing carbons with surface areas greater than 500 m[sup 2]/g and significant micropore volumes. Tire shreddings were pyrolyzed in batch reactors, and the pyrolysis chars activated by reaction with superheated steam. Solid products of pyrolysis and activation were studied with nitrogen adsorption techniques. They find that the porosity development during steam activation of tire pyrolysis char is similar to that reported for various other chars. A maximum in micropore volume is observed as a function of conversion, but the total surface area increases monotonically with conversion. They suggest that the activation process consists of micropore formation, followed by pore enlargement. The process conditions used in this study are a good starting point from which to optimize a process to convert tires to activated carbon.

  17. Formation of dl-limonene in used tire vacuum pyrolysis oils. [dipentene

    SciTech Connect (OSTI)

    Pakdel, H.; Roy, C.; Aubin, H.; Jean, G. ); Coulombe, S. )

    1991-09-01

    Tire recycling has become an important environmental issue recently due to the huge piles of tires that threaten the environment. Thermal decomposition of tire, a synthetic rubber material, enables the recovery of carbon black and liquid hydrocarbon oils. Both have potential economic values. Pyrolysis oils obtained under vacuum conditions contain a significant portion of a volatile, naptha-like fraction with an octane number similar to petroleum naphtha fraction, in addition, contains approximately 15% limonene. Potential applications of vacuum pyrolysis oil and carbon black have been investigated. However, the process economics is greatly influenced by the quality of the oil and carbon black products. This paper discusses limonene formation during used tire vacuum pyrolysis and its postulated reaction mechanism. The limonene separation method from pyrolysis oil, as well as its purification in laboratory scale, and structural characterization are discussed. Large-scale limonene separation and purification is under investigation.

  18. Fact #826: June 23, 2014 The Effect of Tire Pressure on Fuel Economy

    Broader source: Energy.gov [DOE]

    Researchers at Oak Ridge National Laboratory recently conducted a study that measured the effect of tire pressure on fuel economy at speeds ranging from 40 to 80 miles per hour. The figure below...

  19. Goodyear Tire Plant Gains Traction on Energy Savings After Completing Save Energy Now Assessment

    Broader source: Energy.gov [DOE]

    is case study describes how the Goodyear Tire Plant saved approximately 93,000 MMBtu and $875,000 annually after increasing steam system energy efficiency in their Union City, Tennessee, plant.

  20. Goodyear Testing Self-Inflating Tire Systems in U.S. Trucking...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuel economy 2-3 percent, this innovative technology will help save nearly 1.2 billion gallons of petroleum that experts estimate are wasted each year due to underinflated tires. ...

  1. Vacuum pyrolysis of waste tires with basic additives

    SciTech Connect (OSTI)

    Zhang Xinghua; Wang Tiejun Ma Longlong; Chang Jie

    2008-11-15

    Granules of waste tires were pyrolyzed under vacuum (3.5-10 kPa) conditions, and the effects of temperature and basic additives (Na{sub 2}CO{sub 3}, NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 deg. C to 600 deg. C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48 wt% was achieved at 550 deg. C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50 wt% was achieved at 480 deg. C by adding 3 wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) {approx}205 deg. C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39 wt%, which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na{sub 2}CO{sub 3} addition. Pyrolysis gas was mainly composed of H{sub 2}, CO, CH{sub 4}, CO{sub 2}, C{sub 2}H{sub 4} and C{sub 2}H{sub 6}. Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5 wt%) was much higher.

  2. Microsoft Word - Final Scientific - Technical Report_DE-EE0005390_Cooper_Tire_Submitted

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Scientific/Technical Report Federal Agency: U.S. DOE/NETL Award No.: DE-EE0005390 Project Title: Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies PD/PI: Tim Donley, Lead Engineer Consortium/Teaming Members: NREL tmdonley@coopertire.com Phone: 419-429-7229 Submission Date: March 31, 2015 DUNS Number: 005037601 Recipient Organization: Cooper Tire & Rubber Company 701 Lima Ave. Findlay, OH 45840 Project/Grant

  3. Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight PI: Tim Donley Cooper Tire & Rubber Company June 19, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project ID: VSS083 Overview Timeline * Project start date: Oct. 1, 2011 * Project end date: Sept. 30, 2014 * Project complete: 85% Barriers 1) Cost / Premium Product 2) Manufacturability Budget * Total project funding: $3,679,309 - DOE share: $1,500,000 -

  4. PRECISION RADIAL VELOCITIES WITH CSHELL

    SciTech Connect (OSTI)

    Crockett, Christopher J.; Prato, L.; Mahmud, Naved I.; Johns-Krull, Christopher M.; Jaffe, Daniel T.; Beichman, Charles A. E-mail: lprato@lowell.edu E-mail: cmj@rice.edu

    2011-07-10

    Radial velocity (RV) identification of extrasolar planets has historically been dominated by optical surveys. Interest in expanding exoplanet searches to M dwarfs and young stars, however, has motivated a push to improve the precision of near-infrared RV techniques. We present our methodology for achieving 58 m s{sup -1} precision in the K band on the M0 dwarf GJ 281 using the CSHELL spectrograph at the 3 m NASA Infrared Telescope Facility. We also demonstrate our ability to recover the known 4 M{sub JUP} exoplanet Gl 86 b and discuss the implications for success in detecting planets around 1-3 Myr old T Tauri stars.

  5. Radial flow pulse jet mixer

    DOE Patents [OSTI]

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  6. Pyrolysis kinetics of scrap tire rubbers. 1: Using DTG and TGA

    SciTech Connect (OSTI)

    Kim, S.; Park, J.K.; Chun, H.D.

    1995-07-01

    Tire pyrolysis kinetics was investigated to explore an economically viable design for the pyrolysis process. Derivative thermogravimetry (DTG) and thermogravimetric analysis (TGA) were found to provide valuable information on pyrolysis kinetics and mechanisms of a heterogeneous compound like scrap tire rubbers. Kinetic parameters of each compositional compound were obtained by analyzing DTG and TGA results with a series of mathematical methods proposed in this study. The pyrolysis kinetics of the scrap tire rubbers tested was well accounted for by the first-order irreversible independent reactions of three compositional compounds. The sidewall and tread rubber exhibited different thermal degradation patterns, suggesting a compositional difference between them. Isothermal pyrolysis results showed that the sidewall rubber would hardly be degraded at low temperature regions (<600 K), whereas it would be more rapidly degraded than the tread rubber at higher temperatures ({>=}746 K). Because of the shorter pyrolysis time, the higher isothermal pyrolysis temperature appeared to be more economically favorable.

  7. Evaluation of products recovered from scrap tires for use as asphalt modifiers

    SciTech Connect (OSTI)

    McKay, J.

    1992-05-01

    Western Research Institute performed rheological tests and water sensitivity tests on asphalt cements that had been modified with carbonous residues obtained from the pyrolysis of scrap tires and waste motor oil. These tests are part of an ongoing program at the University of Wyoming Chemical Engineering Department to evaluate, as asphalt additives, solid carbonous products recovered from the scrap tire and waste motor oil pyrolysis experiments conducted at the University. The tests showed that carbonous residues increased the viscosity and decreased the elasticity of AC-10 and AC-20 asphalts. The tests also indicatedthat asphalt cements modified with carbonous residues were less sensitive to water damage and age embrittlement than unmodified asphalt cements.

  8. Extraction and identification of fillers and pigments from pyrolyzed rubber and tire samples

    SciTech Connect (OSTI)

    Sadhukhan, P.; Zimmerman, J.B.

    1996-12-31

    Rubber stocks, specially tires, are composed of natural rubber and synthetic polymers and also of several compounding ingredients, such as carbon black, silica, zinc oxide etc. These are generally mixed and vulcanized with additional curing agents, mainly organic in nature, to achieve certain {open_quotes}designing properties{close_quotes} including wear, traction, rolling resistance and handling of tires. Considerable importance is, therefore, attached both by the manufacturers and their competitors to be able to extract, identify and characterize various types of fillers and pigments. Several analytical procedures have been in use to extract, preferentially, these fillers and pigments and subsequently identify and characterize them under a transmission electron microscope.

  9. Tailored Recovery of Carbons from Waste Tires for Enhanced Performance as Anodes in Lithium-ion Batteries

    SciTech Connect (OSTI)

    Naskar, Amit K; Bi,; Saha, Dipendu; Chi, Miaofang; Bridges, Craig A; Paranthaman, Mariappan Parans

    2014-01-01

    Morphologically tailored pyrolysis-recovered carbon black is utilized in lithium-ion batteries as a potential solution for adding value to waste tire-rubber-derived materials. Micronized tire rubber was digested in a hot oleum bath to yield a sulfonated rubber slurry that was then filtered, washed, and compressed into a solid cake. Carbon was recovered from the modified rubber cake by pyrolysis in a nitrogen atmosphere. The chemical pretreatment of rubber produced a carbon monolith with higher yield than that from the control (a fluffy tire-rubber-derived carbon black). The carbon monolith showed a very small volume fraction of pores of widths 3 4 nm, reduced specific surface area, and an ordered assembly of graphitic domains. Electrochemical studies on the recovered-carbon-based anode revealed an improved Li-ion battery performance with higher reversible capacity than that of commercial carbon materials. Anodes made with a sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon, respectively, exhibited an initial coulombic efficiency of 80% and 45%, respectively. The reversible capacity of the cell with the sulfonated carbon as anode was 400 mAh/g after 100 cycles, with nearly 100% coulombic efficiency. Our success in producing higher performance carbon material from waste tire rubber for potential use in energy storage applications adds a new avenue to tire rubber recycling.

  10. Tire-derived carbon composite anodes for sodium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Yunchao; Paranthaman, M. Parans; Akato, Kokouvi; Naskar, Amit K.; Levine, Alan M.; Lee, Richard J.; Kim, Sang-Ok; Zhang, Jinshui; Dai, Sheng; Manthiram, Arumugam

    2016-04-04

    We report that hard-carbon materials are considered as one of the most promising anodes for the emerging sodium-ion batteries. Here, we report a low-cost, scalable waste tire-derived carbon as an anode for sodium-ion batteries (SIBs). The tire-derived carbons obtained by pyrolyzing the acid-treated tire at 1100 °C, 1400 °C and 1600 °C show capacities of 179, 185 and 203 mAh g-1, respectively, after 100 cycles at a current density of 20 mA g-1 in sodium-ion batteries with good electrochemical stability. The portion of the low-voltage plateau region in the charge-discharge curves increases as the heat-treatment temperature increases. The low-voltage plateaumore » is beneficial to enhance the energy density of the full cell. However, this plateau suffers rapid capacity fade at higher current densities. This study provides a new pathway for inexpensive, environmentally benign and value-added waste tire-derived products towards large-scale energy storage applications.« less

  11. Radial gate evaluation: Olympus Dam, Colorado

    SciTech Connect (OSTI)

    1997-06-01

    The report presents a structural analysis of the radial gates of Olympus Dam in eastern Colorado. Five 20-foot wide by 17-foot high radial gates are used to control flow through the spillway at Olympus Dam. The spillway gates were designed in 1947. The gate arm assemblies consist of two separate wide flange beams, with a single brace between the arms. The arms pivot about a 4.0-inch diameter pin and bronze graphite-insert bushing. The pin is cantilevered from the pier anchor girder. The radial gates are supported by a pin bearing on a pier anchor birder bolted to the end of the concrete pier. The gates are operated by two-part wire rope 15,000-pound capacity hoise. Stoplog slots upstream of the radial gates are provided in the concrete piers. Selected drawings of the gates and hoists are located in appendix A.

  12. Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel efficiency...

  13. Fast radial flows in transition disk holes

    SciTech Connect (OSTI)

    Rosenfeld, Katherine A.; Andrews, Sean M.; Chiang, Eugene

    2014-02-20

    Protoplanetary 'transition' disks have large, mass-depleted central cavities, yet also deliver gas onto their host stars at rates comparable to disks without holes. The paradox of simultaneous transparency and accretion can be explained if gas flows inward at much higher radial speeds inside the cavity than outside the cavity, since surface density (and by extension optical depth) varies inversely with inflow velocity at fixed accretion rate. Radial speeds within the cavity might even have to approach free-fall values to explain the huge surface density contrasts inferred for transition disks. We identify observational diagnostics of fast radial inflow in channel maps made in optically thick spectral lines. Signatures include (1) twisted isophotes in maps made at low systemic velocities and (2) rotation of structures observed between maps made in high-velocity line wings. As a test case, we apply our new diagnostic tools to archival Atacama Large Millimeter Array data on the transition disk HD 142527 and uncover evidence for free-fall radial velocities inside its cavity. Although the observed kinematics are also consistent with a disk warp, the radial inflow scenario is preferred because it predicts low surface densities that appear consistent with recent observations of optically thin CO isotopologues in this disk. How material in the disk cavity sheds its angular momentum wholesale to fall freely onto the star is an unsolved problem; gravitational torques exerted by giant planets or brown dwarfs are briefly discussed as a candidate mechanism.

  14. Radial flow nuclear thermal rocket (RFNTR)

    DOE Patents [OSTI]

    Leyse, Carl F.

    1995-01-01

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  15. Radial flow nuclear thermal rocket (RFNTR)

    DOE Patents [OSTI]

    Leyse, Carl F.

    1995-11-07

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  16. Dispersion-free radial transmission lines

    DOE Patents [OSTI]

    Caporaso, George J.; Nelson, Scott D.

    2011-04-12

    A dispersion-free radial transmission line ("DFRTL") preferably for linear accelerators, having two plane conductors each with a central hole, and an electromagnetically permeable material ("EPM") between the two conductors and surrounding a channel connecting the two holes. At least one of the material parameters of relative magnetic permeability, relative dielectric permittivity, and axial width of the EPM is varied as a function of radius, so that the characteristic impedance of the DFRTL is held substantially constant, and pulse transmission therethrough is substantially dispersion-free. Preferably, the EPM is divided into concentric radial sections, with the varied material parameters held constant in each respective section but stepwise varied between sections as a step function of the radius. The radial widths of the concentric sections are selected so that pulse traversal time across each section is the same, and the varied material parameters of the concentric sections are selected to minimize traversal error.

  17. Wave transmission and mooring-force characteristics of pipe-tire floating breakwaters

    SciTech Connect (OSTI)

    Harms, Volker W.; Westerink, Joannes J.

    1980-10-01

    The results are presented of a series of prototype scale tests of a floating breakwater that incorporates massive cylindrical members (steel or concrete pipes, telephone poles, etc.) in a matrix of scrap truck or automobile tires, referred to as the Pipe-Tire Breakwater (PT-Breakwater). Tests were conducted in the large wave tank at the US Army Coastal Engineering Research Center (CERC). Breakwater modules were preassembled at SUNY in Buffalo, New York, and then transported to CERC by truck, where final assembly on location was again performed by SUNY personnel. Wave-tank tests were conducted jointly by CERC and SUNY personnel. A series of wave-tank experiments and mooring system load-deflection tests were performed, and are described. Wave-transmission and mooring-load characteristics, based on 402 separate tests, were established and are reported. (LCL)

  18. Extended foil capacitor with radially spoked electrodes

    DOE Patents [OSTI]

    Foster, James C.

    1990-01-01

    An extended foil capacitor has a conductive disk electrically connected in oncrushing contact to the extended foil. A conductive paste is placed through spaces between radial spokes on the disk to electrically and mechanically connect the extended foil to the disk.

  19. Thermal plasma pyrolysis of used old tires for production of syngas

    SciTech Connect (OSTI)

    Chang, J.S.; Gu, B.W.; Looy, P.C.; Chu, F.Y.; Simpson, C.J.

    1996-08-01

    Thermal plasma pyrolysis of used tires for the production of syngaswas investigated experimentally and the following conclusions wereobtained: 1. A series of experiments have shown that tire waste can bepyrolyzed in a plasma reactor to produce combustible gas, such asC{sub 2}H{sub 2}, CH{sub 4}, C{sub 2}H{sub 4}, H{sub 2}, CO. The combustion heat value of the produced gas is about 4-7 MJ/m{sup 3}, which is higher than that of blast furnace gas and reforming gas from coals. 2. Zinc oxidecan be captured during pyrolysis by both high temperature filters andlow temperature filters in the quenching chamber. The pollution gases,such as SO{sub 2} and NO{sub x}, are at relatively low levels, about 100-300ppm. 3. Increasing the tire injection quantity will increase theconcentration of hydrocarbons, increase the combustion heat of thepyrolysis product, and decrease the concentration of metal oxide. Withsteam injection, it produced a large quantity of hydrogen and carbonmonoxide with lower concentrations of C{sub 2}H{sub 2}. The combustion heatis slightly lower with steam injection than that without it. 4. Neitherpolychlorinated biphenyls (PCBs) nor p-aminohippuric acid (PAH) weredetected in the ashes. 8 refs., 11 figs., 4 tabs.

  20. Development of a Radial Deconsolidation Method

    SciTech Connect (OSTI)

    Helmreich, Grant W.; Montgomery, Fred C.; Hunn, John D.

    2015-12-01

    A series of experiments have been initiated to determine the retention or mobility of fission products* in AGR fuel compacts [Petti, et al. 2010]. This information is needed to refine fission product transport models. The AGR-3/4 irradiation test involved half-inch-long compacts that each contained twenty designed-to-fail (DTF) particles, with 20-μm thick carbon-coated kernels whose coatings were deliberately fabricated such that they would crack under irradiation, providing a known source of post-irradiation isotopes. The DTF particles in these compacts were axially distributed along the compact centerline so that the diffusion of fission products released from the DTF kernels would be radially symmetric [Hunn, et al. 2012; Hunn et al. 2011; Kercher, et al. 2011; Hunn, et al. 2007]. Compacts containing DTF particles were irradiated at Idaho National Laboratory (INL) at the Advanced Test Reactor (ATR) [Collin, 2015]. Analysis of the diffusion of these various post-irradiation isotopes through the compact requires a method to radially deconsolidate the compacts so that nested-annular volumes may be analyzed for post-irradiation isotope inventory in the compact matrix, TRISO outer pyrolytic carbon (OPyC), and DTF kernels. An effective radial deconsolidation method and apparatus appropriate to this application has been developed and parametrically characterized.

  1. Radial Spreading of Drift-Wave-Zonal-Flow Turbulence via Soliton Formation

    SciTech Connect (OSTI)

    Guo Zehua; Chen Liu; Zonca, Fulvio

    2009-07-31

    The self-consistent spatiotemporal evolution of a drift-wave (DW) radial envelope and a zonal-flow (ZF) amplitude is investigated in a slab model. The stationary solution of the coupled partial differential equations in a simple limit yields the formation of DW-ZF soliton structures, which propagate radially with speed depending on the envelope peak amplitude. Additional interesting physics, e.g., the generation, destruction, collision, and reflection of solitons, as well as turbulence bursting can also be observed due to the effects of linear growth or damping, dissipation, equilibrium nonuniformities and soliton dynamics. The propagation of soliton causes significant radial spreading of DW turbulence and therefore can affect transport scaling with the system size by broadening of the turbulent region. The correspondence of the present analysis with the description of DW-ZF interactions in toroidal geometry is also discussed.

  2. Green Functions for the Radial Electric Component of the Monopole...

    Office of Scientific and Technical Information (OSTI)

    Green Functions for the Radial Electric Component of the Monopole Wake Field in a Round Resistive Chamber Citation Details In-Document Search Title: Green Functions for the Radial...

  3. Radial Flow Bearing Heat Exchanger | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radial Flow Bearing Heat Exchanger Radial Flow Bearing Heat Exchanger Sandia's Radial Flow Heat Exchanger Sandia's Radial Flow Heat Exchanger Lead Performer: Sandia National Laboratories - Albuquerque, NM Partners: -- Tribologix - Golden, CO -- United Technologies Research Center - East Hartford, CT -- University of Maryland - College Park, MD -- Oak Ridge National Laboratory - Oak Ridge, TN -- Whirlpool - Benton Harbor, MI -- Optimized Thermal Systems - College Park, MD DOE Funding: $5,472,285

  4. Methods and apparatus for radially compliant component mounting

    DOE Patents [OSTI]

    Bulman, David Edward (Cincinnati, OH); Darkins, Jr., Toby George (Loveland, OH); Stumpf, James Anthony (Columbus, IN); Schroder, Mark S. (Greenville, SC); Lipinski, John Joseph (Simpsonville, SC)

    2012-03-27

    Methods and apparatus for a mounting assembly for a liner of a gas turbine engine combustor are provided. The combustor includes a combustor liner and a radially outer annular flow sleeve. The mounting assembly includes an inner ring surrounding a radially outer surface of the liner and including a plurality of axially extending fingers. The mounting assembly also includes a radially outer ring coupled to the inner ring through a plurality of spacers that extend radially from a radially outer surface of the inner ring to the outer ring.

  5. A radial transmission line material measurement apparatus

    SciTech Connect (OSTI)

    Warne, L.K.; Moyer, R.D.; Koontz, T.E.; Morris, M.E.

    1993-05-01

    A radial transmission line material measurement sample apparatus (sample holder, offset short standards, measurement software, and instrumentation) is described which has been proposed, analyzed, designed, constructed, and tested. The purpose of the apparatus is to obtain accurate surface impedance measurements of lossy, possibly anisotropic, samples at low and intermediate frequencies (vhf and low uhf). The samples typically take the form of sections of the material coatings on conducting objects. Such measurements thus provide the key input data for predictive numerical scattering codes. Prediction of the sample surface impedance from the coaxial input impedance measurement is carried out by two techniques. The first is an analytical model for the coaxial-to-radial transmission line junction. The second is an empirical determination of the bilinear transformation model of the junction by the measurement of three full standards. The standards take the form of three offset shorts (and an additional lossy Salisbury load), which have also been constructed. The accuracy achievable with the device appears to be near one percent.

  6. Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment

    SciTech Connect (OSTI)

    Chen, C.C.; Lee, W.J.; Shih, S.I.; Mou, J.L.

    2009-07-01

    Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energy release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.

  7. Pyrolysis of tire rubber: Porosity and adsorption characteristics of the pyrolytic chars

    SciTech Connect (OSTI)

    Miguel, G.S.; Fowler, G.D.; Sollars, C.J.

    1998-06-01

    Tire rubber has been pyrolyzed at various temperatures under a nitrogen atmosphere. The resulting chars have been analyzed for their porosity using nitrogen gas adsorption and for their aqueous adsorption characteristics using phenol, methylene blue, and the reactive dyes Procion Turquoise H-A and Procion Red H-E3B. Nitrogen adsorption isotherms were modeled to the BET and Dubinin-Astakhov (DA) equations to determine effective surface areas, mesopore volumes, and micropore volumes. Results showed that pyrolysis of tire rubber was essentially complete at 500 C and resulted in a char yield of approximately 42 wt%. Pyrolytic chars exhibited BET surface areas up to 85 m{sup 2}/g and micropore volumes up to 0.04 mL/g. Owing to their poorly developed micropore structure, the pyrolytic chars exhibited limited aqueous adsorption capacity for compounds of small molecular weight, such as phenol. However, the chars possessed significantly greater adsorption capacity for species of large molecular weight which was attributed to the presence of large mesopore volumes (up to 0.19 mL/g).

  8. Worker exposure to chemical agents in the manufacture of rubber tires and tubes: particulates

    SciTech Connect (OSTI)

    Williams, T.M.; Harris, R.L.; Arp, E.W.; Symons, M.J.; Van Ert, M.D.

    1980-03-01

    The Occupational Health Studies Group industrial hygiene studies at a group of 14 tire and tube manufacturing plants chosen to represent a cross-section of the industry include numerous evaluations of potential exposure to airborne particulate matter. Results of these environmental particulate sampling studies are reported by plant and by occupational groups within plants. High volume, open face and cyclone samplers were employed to evaluate both personnel and area particulate concentrations. The concentrations of particulates yielded by high volume and open face total particulate samplers are compared with those of comparison samples of respirable material. Personnel samples of particulates are compared with general air samples taken in the same work area. An overall review and comparison is given of particulate exposures to workers in various occupational title groups where particulate materials are released to the air from processes or operations.

  9. Radial velocities of southern visual multiple stars

    SciTech Connect (OSTI)

    Tokovinin, Andrei; Pribulla, Theodor; Fischer, Debra E-mail: pribulla@ta3.sk

    2015-01-01

    High-resolution spectra of visual multiple stars were taken in 20082009 to detect or confirm spectroscopic subsystems and to determine their orbits. Radial velocities of 93 late-type stars belonging to visual multiple systems were measured by numerical cross-correlation. We provide the individual velocities, the width, and the amplitude of the Gaussians that approximate the correlations. The new information on the multiple systems resulting from these data is discussed. We discovered double-lined binaries in HD 41742B, HD 56593C, and HD 122613AB, confirmed several other known subsystems, and constrained the existence of subsystems in some visual binaries where both components turned out to have similar velocities. The orbits of double-lined subsystems with periods of 148 and 13 days are computed for HD 104471 Aa,Ab and HD 210349 Aa,Ab, respectively. We estimate individual magnitudes and masses of the components in these triple systems and update the outer orbit of HD 104471 AB.

  10. TEM study of PM2.5 emitted from coal and tire combustion in a thermal power station

    SciTech Connect (OSTI)

    Reto Giere; Mark Blackford; Katherine Smith

    2006-10-15

    The research presented here was conducted within the scope of an experiment investigating technical feasibility and environmental impacts of tire combustion in a coal-fired power station. Previous work has shown that combustion of a coal + tire blend rather than pure coal increased bulk emissions of various elements (e.g., Zn, As, Sb, Pb). The aim of this study is to characterize the chemical and structural properties of emitted single particles with dimensions <2.5 {mu}m (PM2.5). This transmission electron microscope (TEM)-based study revealed that, in addition to phases typical of coal fly ash (e.g., aluminum-silicate glass, mullite), the emitted PM2.5 contains amorphous selenium particles and three types of crystalline metal sulfates never reported before from stack emissions. Anglesite, PbSO{sub 4}, is ubiquitous in the PM2.5 derived from both fuels and contains nearly all Pb present in the PM. Gunningite, ZnSO{sub 4}H{sub 2}O, is the main host for Zn and only occurs in the PM derived from the coal + tire blend, whereas yavapaiite, KFe{sup 3+}(SO{sub 4}){sub 2}, is present only when pure coal was combusted. It is concluded that these metal sulfates precipitated from the flue gas may be globally abundant aerosols and have, through hydration or dissolution, a major environmental and health impact. 66 refs., 2 figs., 1 tab.

  11. Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber tyres blends

    SciTech Connect (OSTI)

    Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim; Rita Khanna; N. Saha-Chaudhury; Paul O'Kane; Jonathan Dicker; Catherine Skidmore; David Knights

    2009-05-15

    The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to that of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.

  12. A radial basis function Galerkin method for inhomogeneous nonlocal diffusion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lehoucq, Richard B.; Rowe, Stephen T.

    2016-02-01

    We introduce a discretization for a nonlocal diffusion problem using a localized basis of radial basis functions. The stiffness matrix entries are assembled by a special quadrature routine unique to the localized basis. Combining the quadrature method with the localized basis produces a well-conditioned, sparse, symmetric positive definite stiffness matrix. We demonstrate that both the continuum and discrete problems are well-posed and present numerical results for the convergence behavior of the radial basis function method. As a result, we explore approximating the solution to anisotropic differential equations by solving anisotropic nonlocal integral equations using the radial basis function method.

  13. Radial inflow gas turbine engine with advanced transition duct

    SciTech Connect (OSTI)

    Wiebe, David J

    2015-03-17

    A gas turbine engine (10), including: a turbine having radial inflow impellor blades (38); and an array of advanced transition combustor assemblies arranged circumferentially about the radial inflow impellor blades (38) and having inner surfaces (34) that are adjacent to combustion gases (40). The inner surfaces (34) of the array are configured to accelerate and orient, for delivery directly onto the radial inflow impellor blades (38), a plurality of discrete flows of the combustion gases (40). The array inner surfaces (34) define respective combustion gas flow axes (20). Each combustion gas flow axis (20) is straight from a point of ignition until no longer bound by the array inner surfaces (34), and each combustion gas flow axis (20) intersects a unique location on a circumference defined by a sweep of the radial inflow impellor blades (38).

  14. Radial Eigenmodes for a Toroidal Waveguide with Rectangular Cross Section

    SciTech Connect (OSTI)

    Rui Li

    2012-07-01

    In applying mode expansion to solve the CSR impedance for a section of toroidal vacuum chamber with rectangular cross section, we identify the eigenvalue problem for the radial eigenmodes which is different from that for cylindrical structures. In this paper, we present the general expressions of the radial eigenmodes, and discuss the properties of the eigenvalues on the basis of the Sturm-Liouville theory.

  15. Direct Observation of Localized Radial Oxygen Migration in Functioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tantalum Oxide Memristors Direct Observation of Localized Radial Oxygen Migration in Functioning Tantalum Oxide Memristors Direct Observation of Localized Radial Oxygen Migration in Functioning Tantalum Oxide Memristors Print Monday, 11 April 2016 14:29 As information bits of 0s and 1s are stored in crosspoint tantalum oxide memristors, or resistive random access memory (RRAM) cells, nanoscale-resolution in operando x-ray transmission spectromicroscopy is used to directly observe oxygen

  16. Radially Cooled Toroidal Field Centerpost --- Inventor Robert D. Woolley |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Radially Cooled Toroidal Field Centerpost --- Inventor Robert D. Woolley This invention describes an improvement to Toroidal Field Centerpost cooling in Spherical Torus (ST) devices by changing direction of coolant flow from axial to radial, and flowing between internal inner and outer supply and return manifolds, both fed separately at top and bottom. Thus, the upper half of the centerpost is cooled from the top while the lower half is cooled from the bottom,

  17. MODE CONVERSION BETWEEN DIFFERENT RADIAL ORDERS FOR SOLAR ACOUSTIC WAVES SCATTERED BY SUNSPOTS

    SciTech Connect (OSTI)

    Zhao, Hui; Chou, Dean-Yi

    2013-11-20

    We study the mode conversion between different radial orders for solar acoustic waves interacting with sunspots. Solar acoustic waves are modified in the presence of sunspots. The modification in the wave can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave inside and around the sunspot. The wavefunction of the acoustic wave on the solar surface is computed from the cross-correlation function. The wavefunction of the scattered wave is obtained by subtracting the wavefunction of the incident wave from that of the total wave. We use the incident waves of radial order n = 0-5 to measure the scattered wavefunctions from n to another radial order n' for NOAAs 11084 and 11092. The strength of scattered waves decreases rapidly with |?n|, where ?n ? n' n. The scattered waves of ?n = 1 are visible for n ? 1, and significant for n ? 2. For the scattered wave of ?n = 2, only few cases are visible. None of the scattered waves of ?n = 3 are visible. The properties of scattered waves for ?n = 0 and ?n ? 0 are different. The scattered wave amplitude relative to the incident wave amplitude decreases with n for ?n = 0, while it increases with n for ?n ? 0. The scattered wave amplitudes of ?n = 0 are greater for the larger sunspot, while those of ?n ? 0 are insensitive to the sunspot size.

  18. Superfund Record of Decision (EPA Region 3): Rhinehart Tire Fire Dump, Operable Unit 2, Winchester, VA. (Second remedial action), September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-09-29

    The Rhinehart Tire Fire Dump site is located in a 22-acre drainage area of a sparsely populated rural area in western Frederick County, Virginia. Surface water runoff flows into a north-south tributary that discharges to Hogue Creek, which is 4,000 feet downstream. Bedrock is noted to be highly fractured, and the ground water flow in the overburden aquifer is toward Massey Run. From 1972 to 1983, the site owner conducted a tire disposal operation, which consisted of transporting discarded tires from various locations and storing them on a 5-acre wooded slope behind his home. An estimated 5 to 7 million tires that had been accumulated caught on fire in October 1983 and burned until July 1984. As a result of the fire, a free-flowing oily-tar, which contained anthracene, benzene, cadmium, chromium, ethylbenzene, napthalene, nickel, pyrene, toluene, and zinc, began to seep out of the tire pile into Massey Run and on to Hogue Creek.

  19. Health assessment for Rhinehart (Aka Winchester) Tire Fire National Priorities List (NPL) Site, Frederick County, Virginia, Region 3. CERCLIS No. VAD980831796. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-04-17

    The Rhinehart (aka Winchester) Tire Fire Site is located near the town of Winchester in Frederick County, Virginia. In October 1983, a fire was started in the tires disposed of on the site. Hot oil was released from the melting and pyrolysis of the tires. This oil made its way to Massey Run, a nearby surface water body. The fire was brought under control within a few days, but continued to smolder for six months. The migration of the oil and the residue from the fire have contaminated the site. The site is of potential public health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse human health effects. Human exposure to heavy metals, polynuclear aromatic hydrocarbons and volatile organic compounds may occur via ingestion, inhalation and dermal absorption of contaminated groundwater, surface water, sediments and soils.

  20. The effect of radial migration on galactic disks

    SciTech Connect (OSTI)

    Vera-Ciro, Carlos; D'Onghia, Elena; Navarro, Julio; Abadi, Mario

    2014-10-20

    We study the radial migration of stars driven by recurring multi-arm spiral features in an exponential disk embedded in a dark matter halo. The spiral perturbations redistribute angular momentum within the disk and lead to substantial radial displacements of individual stars, in a manner that largely preserves the circularity of their orbits and that results, after 5 Gyr (?40 full rotations at the disk scale length), in little radial heating and no appreciable changes to the vertical or radial structure of the disk. Our results clarify a number of issues related to the spatial distribution and kinematics of migrators. In particular, we find that migrators are a heavily biased subset of stars with preferentially low vertical velocity dispersions. This 'provenance bias' for migrators is not surprising in hindsight, for stars with small vertical excursions spend more time near the disk plane, and thus respond more readily to non-axisymmetric perturbations. We also find that the vertical velocity dispersion of outward migrators always decreases, whereas the opposite holds for inward migrators. To first order, newly arrived migrators simply replace stars that have migrated off to other radii, thus inheriting the vertical bias of the latter. Extreme migrators might therefore be recognized, if present, by the unexpectedly small amplitude of their vertical excursions. Our results show that migration, understood as changes in angular momentum that preserve circularity, can strongly affect the thin disk, but cast doubts on models that envision the Galactic thick disk as a relic of radial migration.

  1. SU-F-18C-11: Diameter Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder

    SciTech Connect (OSTI)

    Bakalyar, D; McKenney, S; Feng, W

    2014-06-15

    Purpose: The radial dose distribution in the central plane of a long cylinder following a long CT scan depends upon the diameter and composition of the cylinder. An understanding of this behavior is required for determining the spatial average of the dose in the central plane. Polyethylene, the material for construction of the TG200/ICRU phantom (30 cm in diameter) was used for this study. Size effects are germane to the principles incorporated in size specific dose estimates (SSDE); thus diameter dependency was explored as well. Method: ssuming a uniform cylinder and cylindrically symmetric conditions of irradiation, the dose distribution can be described using a radial function. This function must be an even function of the radial distance due to the conditions of symmetry. Two effects are accounted for: The direct beam makes its weakest contribution at the center while the contribution due to scatter is strongest at the center and drops off abruptly at the outer radius. An analytic function incorporating these features was fit to Monte Carlo results determined for infinite polyethylene cylinders of various diameters. A further feature of this function is that it is integrable. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the larger sizes. The competing effects described above can Resultin an absolute maximum occurring between the center and outer edge of the cylinders. For the smallest cylinders, the maximum dose may occur at the center. Conclusion: An integrable, analytic function can be used to characterize the radial dependency of dose for cylindrical CT phantoms of various sizes. One use for this is to help determine average dose distribution over the central cylinder plane when equilibrium dose has been reached.

  2. Comparison of a radial fractional transport model with tokamak experiments

    SciTech Connect (OSTI)

    Kullberg, A. Morales, G. J.; Maggs, J. E.

    2014-03-15

    A radial fractional transport model [Kullberg et al., Phys. Rev. E 87, 052115 (2013)], that correctly incorporates the geometric effects of the domain near the origin and removes the singular behavior at the outer boundary, is compared to results of off-axis heating experiments performed in the Rijnhuizen Tokamak Project (RTP), ASDEX Upgrade, JET, and DIII-D tokamak devices. This comparative study provides an initial assessment of the presence of fractional transport phenomena in magnetic confinement experiments. It is found that the nonlocal radial model is robust in describing the steady-state temperature profiles from RTP, but for the propagation of heat waves in ASDEX Upgrade, JET, and DIII-D the model is not clearly superior to predictions based on Fick's law. However, this comparative study does indicate that the order of the fractional derivative, ?, is likely a function of radial position in the devices surveyed.

  3. Radial electron-beam-breakup transit-time oscillator

    DOE Patents [OSTI]

    Kwan, Thomas J. T.; Mostrom, Michael A.

    1998-01-01

    A radial electron-beam-breakup transit-time oscillator (RBTO) provides a compact high power microwave generator. The RBTO includes a coaxial vacuum transmission line having an outer conductor and an inner conductor. The inner conductor defines an annular cavity with dimensions effective to support an electromagnetic field in a TEM.sub.00m mode. A radial field emission cathode is formed on the outer conductor for providing an electron beam directed toward the annular cavity electrode. Microwave energy is then extracted from the annular cavity electrode.

  4. Inner shell radial pin geometry and mounting arrangement

    DOE Patents [OSTI]

    Leach, David; Bergendahl, Peter Allen

    2002-01-01

    Circumferentially spaced arrays of support pins are disposed through access openings in an outer turbine shell and have projections received in recesses in forward and aft sections of an inner turbine shell supported from the outer shell. The projections have arcuate sides in a circumferential direction affording line contacts with the side walls of the recesses and are spaced from end faces of the recesses, enabling radial and axial expansion and contraction of the inner shell relative to the outer shell. All loads are taken up in a tangential direction by the outer shell with the support pins taking no radial loadings.

  5. Fuel Economy and Emissions Effects of Low Tire Pressure, Open Windows, Roof Top and Hitch-Mounted Cargo, and Trailer

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2014-01-01

    To quantify the fuel economy (FE) effect of some common vehicle accessories or alterations, a compact passenger sedan and a sport utility vehicle (SUV) were subjected to SAE J2263 coastdown procedures. Coastdowns were conducted with low tire pressure, all windows open, with a roof top or hitch-mounted cargo carrier, and with the SUV pulling an enclosed cargo trailer. From these coastdowns, vehicle dynamometer coefficients were developed which enabled the execution of vehicle dynamometer experiments to determine the effect of these changes on vehicle FE and emissions over standard drive cycles and at steady highway speeds. The FE penalty associated with the rooftop cargo box mounted on the compact sedan was as high as 25-27% at higher speeds, where the aerodynamic drag is most pronounced. For both vehicles, use of a hitch mounted cargo tray carrying a similar load resulted in very small FE penalties, unlike the rooftop cargo box. The results for the SUV pulling a 3500 pound enclosed cargo trailer were rather dramatic, resulting in FE penalties ranging from 30%, for the city cycle, to 50% at 80 mph, at which point significant CO generation indicated protective enrichment due to high load. Low tire pressure cases resulted in negligible to 10% FE penalty depending on the specific case and test point. Driving with all four windows open decreased FE by 4-8.5% for the compact sedan, and 1-4% for the SUV.

  6. RIT rotor vibration testing. Test report. [Radial inflow turbines

    SciTech Connect (OSTI)

    Chartier, G L

    1982-09-27

    A radial inflow turbine (RIT) B rotor, including the impeller and shaft, was examined experimentally to determine vibratory characteristics. It was concluded that there are no specific speeds within the operating range with adequate resonance encroachment margins. It is recommended that performance tests be carried out with caution.

  7. Development of asphalts and pavements using recycled tire rubber. Phase 1, Technical feasibility. Technical progress report, September 1, 1994--August 31, 1995

    SciTech Connect (OSTI)

    Bullin, J.A.; Davison, R.R.; Glover, C.J.

    1996-06-01

    About 285 million tires are discarded every year; less than 100 million are currently being recycled, with the rest being placed in landfills and other waste sites. A solution to reduce the littering of the environment is to use ground tire rubber in road construction. Currently, about 27 million tons of asphalt are used each year in road construction and maintenance of the country`s 2 million miles of roads. If all of the waste tire rubber could be combined with asphalt in road construction, it would displace less than 6% of the total asphalt used each year, yet could save about 60 trillion Btus annually. Purpose of this project is to provide data needed to optimize the performance of rubber-asphalt concretes. The first phase is to develop asphalts and recycling agents tailored for compatibility with ground tire rubber. Chapter 2 presents results on Laboratory Testing and Evaluation: fractionate asphalt material, reblending for aromatic asphalts, verifying optimal curing parameters, aging of blends, and measuring ductilities of asphalt-rubber binders. Chapter 3 focuses on Evaluating Mixture Characteristics (modified binders). Chapter 4 covers Adhesion Test Development (water susceptibility is also covered). The final chapter focuses on the Performance/Economic Update and Commercialization Plan.

  8. THE RADIAL VELOCITY EXPERIMENT (RAVE): FOURTH DATA RELEASE

    SciTech Connect (OSTI)

    Kordopatis, G.; Gilmore, G.; Steinmetz, M.; Williams, M. E. K.; Piffl, T.; Enke, H.; Carrillo, I.; Boeche, C.; Roeser, S.; Seabroke, G. M.; Siebert, A.; Zwitter, T.; Binney, J.; De Laverny, P.; Recio-Blanco, A.; Bijaoui, A.; Wyse, R. F. G.; Freeman, K.; Munari, U.; Anguiano, B.; and others

    2013-11-01

    We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances, and distances determined for 425,561 stars, which constitute the fourth public data release of the RAdial Velocity Experiment (RAVE). The stellar atmospheric parameters are computed using a new pipeline, based on the algorithms of MATISSE and DEGAS. The spectral degeneracies and the Two Micron All Sky Survey photometric information are now better taken into consideration, improving the parameter determination compared to the previous RAVE data releases. The individual abundances for six elements (magnesium, aluminum, silicon, titanium, iron, and nickel) are also given, based on a special-purpose pipeline that is also improved compared to that available for the RAVE DR3 and Chemical DR1 data releases. Together with photometric information and proper motions, these data can be retrieved from the RAVE collaboration Web site and the Vizier database.

  9. Radial electron collection in dye-sensitized solar cells.

    SciTech Connect (OSTI)

    Martinson, A. B. B.; Elam, J. W.; Liu, J.; Pellin, M. J.; Marks, T. J.; Hupp, J. T.; Materials Science Division; Northwestern Univ.

    2008-01-01

    We introduce a new photoelectrode architecture consisting of concentric conducting and semiconducting nanotubes for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is employed to grow indium tin oxide (ITO) within a porous template and subsequently coat the high area photoelectrode with amorphous TiO2. Compared with control devices lacking a current collector within the pores, the new photoelectrode geometry exhibits dramatically higher current densities, an effect attributed to the radial collection of electrons.

  10. Radial quasiballistic transport in time-domain thermoreflectance studied using Monte Carlo simulations

    SciTech Connect (OSTI)

    Ding, D.; Chen, X.; Minnich, A. J.

    2014-04-07

    Recently, a pump beam size dependence of thermal conductivity was observed in Si at cryogenic temperatures using time-domain thermal reflectance (TDTR). These observations were attributed to quasiballistic phonon transport, but the interpretation of the measurements has been semi-empirical. Here, we present a numerical study of the heat conduction that occurs in the full 3D geometry of a TDTR experiment, including an interface, using the Boltzmann transport equation. We identify the radial suppression function that describes the suppression in heat flux, compared to Fourier's law, that occurs due to quasiballistic transport and demonstrate good agreement with experimental data. We also discuss unresolved discrepancies that are important topics for future study.

  11. Calibration of optical particle-size analyzer

    DOE Patents [OSTI]

    Pechin, William H.; Thacker, Louis H.; Turner, Lloyd J.

    1979-01-01

    This invention relates to a system for the calibration of an optical particle-size analyzer of the light-intercepting type for spherical particles, wherein a rotary wheel or disc is provided with radially-extending wires of differing diameters, each wire corresponding to a particular equivalent spherical particle diameter. These wires are passed at an appropriate frequency between the light source and the light detector of the analyzer. The reduction of light as received at the detector is a measure of the size of the wire, and the electronic signal may then be adjusted to provide the desired signal for corresponding spherical particles. This calibrator may be operated at any time without interrupting other processing.

  12. Hopper Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Size Charts Hopper Job Size Charts Fractional Jobs The following charts show the fraction of hours used on Hopper in each of five job-core-size bins: 2014 Usage by Job Size Chart 2013 2012 2011 Large Jobs The following charts show the fraction of hours used on Hopper by jobs using greater than 16,384 cores: 2014 2013 2012 Usage by Job Size Chart 2011 Last edited: 2016-05-02 09:20:42

  13. Gas turbine engine with radial diffuser and shortened mid section

    SciTech Connect (OSTI)

    Charron, Richard C.; Montgomery, Matthew D.

    2015-09-08

    An industrial gas turbine engine (10), including: a can annular combustion assembly (80), having a plurality of discrete flow ducts configured to receive combustion gas from respective combustors (82) and deliver the combustion gas along a straight flow path at a speed and orientation appropriate for delivery directly onto the first row (56) of turbine blades (62); and a compressor diffuser (32) having a redirecting surface (130, 140) configured to receive an axial flow of compressed air and redirect the axial flow of compressed air radially outward.

  14. Market Assessment and Commercialization Strategy for the Radial Sandia Cooler

    SciTech Connect (OSTI)

    Goetzler, William; Shandross, Richard; Weintraub, Daniel; Young, Jim

    2014-02-01

    This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets. Recommendations for commercialization were made based on assessments of the prototype RSC and the Sandia Cooler technology in general, as well as an in-depth analysis of the six most promising products for initial RSC commercialization.

  15. FUEL SUBASSEMBLY CONSTRUCTION FOR RADIAL FLOW IN A NUCLEAR REACTOR

    DOE Patents [OSTI]

    Treshow, M.

    1962-12-25

    An assembly of fuel elements for a boiling water reactor arranged for radial flow of the coolant is described. The ingress for the coolant is through a central header tube, perforated with parallel circumferertial rows of openings each having a lip to direct the coolant flow downward. Around the central tube there are a number of equally spaced concentric trays, closely fitiing the central header tube. Cylindrical fuel elements are placed in a regular pattern around the central tube, piercing the trays. A larger tube encloses the arrangement, with space provided for upward flow of coolart beyond the edge of the trays. (AEC)

  16. Exact Convex Relaxation of Optimal Power Flow in Radial Networks

    SciTech Connect (OSTI)

    Gan, LW; Li, N; Topcu, U; Low, SH

    2015-01-01

    The optimal power flow (OPF) problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. It is nonconvex. We prove that a global optimum of OPF can be obtained by solving a second-order cone program, under a mild condition after shrinking the OPF feasible set slightly, for radial power networks. The condition can be checked a priori, and holds for the IEEE 13, 34, 37, 123-bus networks and two real-world networks.

  17. Acetylene from the co-pyrolysis of biomass and waste tires or coal in the H{sub 2}/Ar plasma

    SciTech Connect (OSTI)

    Bao, W.; Cao, Q.; Lv, Y.; Chang, L.

    2008-07-01

    Acetylene from carbon-containing materials via plasma pyrolysis is not only simple but also environmentally friendly. In this article, the acetylene produced from co-pyrolyzing biomass with waste tire or coal under the conditions of H{sub 2}/Ar DC arc plasma jet was investigated. The experimental results showed that the co-pyrolysis of mixture with biomass and waste tire or coal can improve largely the acetylene relative volume fraction (RVF) in gaseous products and the corresponding yield of acetylene. The change trends for the acetylene yield of plasma pyrolysis from mixture with raw sample properties were the same as relevant RVF. But the yield change trend with feeding rate is different from its RVF. The effects of the feeding rate of raw materials and the electric current of plasmatron on acetylene formation are also discussed.

  18. Edison Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reports » Edison Job Size Charts Edison Job Size Charts Fraction of Hours Used per Job Size Note: Interactive charts with current and past Cori and Edison data are now available on MyNERSC This chart shows the fraction of hours used on Edison in each of 5 job-core-size bins. 2015 Usage by Job Size Chart 2014 Fraction of Hours Used by Big Jobs This chart shows the fraction of hours used on Edison by jobs using 16,384 or more cores. 2015 Usage by Job Size Chart 2014 Last edited: 2016-04-21

  19. Onset of radial flow in p+p collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jiang, Kun; Zhu, Yinying; Liu, Weitao; Chen, Hongfang; Li, Cheng; Ruan, Lijuan; Tang, Zebo; Xu, Zhangbu

    2015-02-23

    It has been debated for decades whether hadrons emerging from p+p collisions exhibit collective expansion. The signal of the collective motion in p+p collisions is not as clear as in heavy-ion collisions because of the low multiplicity and large fluctuation in p+p collisions. Tsallis Blast-Wave (TBW) model is a thermodynamic approach, introduced to handle the overwhelming correlation and fluctuation in the hadronic processes. We have systematically studied the identified particle spectra in p+p collisions from RHIC to LHC using TBW and found no appreciable radial flow in p+p collisions below ?s = 900 GeV. At LHC higher energy of 7moreTeV in p+p collisions, the radial flow velocity achieves an average of (?) = 0.320 0.005. This flow velocity is comparable to that in peripheral (40-60%) Au+Au collisions at RHIC. In addition, breaking of the identified particle spectra mT scaling was also observed at LHC from a model independent test.less

  20. Onset of radial flow in p+p collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jiang, Kun; Zhu, Yinying; Liu, Weitao; Chen, Hongfang; Li, Cheng; Ruan, Lijuan; Tang, Zebo; Xu, Zhangbu

    2015-02-23

    It has been debated for decades whether hadrons emerging from p+p collisions exhibit collective expansion. The signal of the collective motion in p+p collisions is not as clear as in heavy-ion collisions because of the low multiplicity and large fluctuation in p+p collisions. Tsallis Blast-Wave (TBW) model is a thermodynamic approach, introduced to handle the overwhelming correlation and fluctuation in the hadronic processes. We have systematically studied the identified particle spectra in p+p collisions from RHIC to LHC using TBW and found no appreciable radial flow in p+p collisions below √s = 900 GeV. At LHC higher energy of 7more » TeV in p+p collisions, the radial flow velocity achieves an average of (β) = 0.320 ± 0.005. This flow velocity is comparable to that in peripheral (40-60%) Au+Au collisions at RHIC. In addition, breaking of the identified particle spectra mT scaling was also observed at LHC from a model independent test.« less

  1. Radial transmission line analysis of multi-layer structures

    SciTech Connect (OSTI)

    Hahn, H.; Hammons, L.

    2011-03-28

    The analysis of multi-layer beam tubes is a standard problem and involves axially propagating waves. This treatment is ill suited to a short multi-layer structure such as the present example of a ferrite covered ceramic break in the beam tube at the ERL photo-cathode electron gun. This paper demonstrates that such structure can better be treated by radial wave propagation. The theoretical method is presented and numerical results are compared with measured network analyser data and Microwave Studio generated simulations. The results confirm the concept of radial transmission lines as a valid analytical method. An Energy Recovery Linac (ERL) is being constructed at this laboratory for the purpose of research towards an envisioned Electron Ion Collider. One of the pertinent topics is damping of Higher Order Modes (HOM). In this ERL, the damping is provided by ferrite absorbers in the beam tube. A modified version thereof, a ceramic break surrounded by ferrite, is planed for the superconducting electron gun. The damper here is located at room temperature just outside of the gun. If used in a cavity chain, the ceramic break is in the vacuum tube at helium temperature whereas the ferrite is moved into the cryostat insulating vacuum allowing higher temperatures. The general properties of the ferrite HOM dampers have been published but are more detailed in this paper.

  2. Combustion measurements of an array of radial jet reattachment flames

    SciTech Connect (OSTI)

    Wu, J.; Seyed-Yagoobi, J.

    1999-07-01

    Radial Jet Reattachment Combustion (RJRC) nozzle provides improved fuel/air mixing for use in impingement flame heating. The RJRC nozzle produces a very stable flame with a circumferentially symmetric surface temperature profile and low coefficients of pressure on the impingement surface. The RJRC also produces very little soot. To characterize the performance of an array of RJRC nozzles from combustion point of view, exhaust gas analyses are presented through CO, CO{sub 2}, O{sub 2}, and NO{sub x} measurements. The results are also compared to the single RJRC nozzle combustion characteristics. In the array configuration, the highly, moderately, and weakly interactive RJRC nozzles are considered. The interaction among nozzles is highly dependent upon the between-nozzle spacing.

  3. Non-linear radial spinwave modes in thin magnetic disks

    SciTech Connect (OSTI)

    Helsen, M. De Clercq, J.; Vansteenkiste, A.; Van Waeyenberge, B.; Weigand, M.

    2015-01-19

    We present an experimental investigation of radial spin-wave modes in magnetic nano-disks with a vortex ground state. The spin-wave amplitude was measured using a frequency-resolved magneto-optical spectrum analyzer, allowing for high-resolution resonance curves to be recorded. It was found that with increasing excitation amplitude up to about 10 mT, the lowest-order mode behaves strongly non-linearly as the mode frequency redshifts and the resonance peak strongly deforms. This behavior was quantitatively reproduced by micromagnetic simulations. Micromagnetic simulations showed that at higher excitation amplitudes, the spinwaves are transformed into a soliton by self-focusing, and collapse onto the vortex core, dispersing the energy in short-wavelength spinwaves. Additionally, this process can lead to switching of the vortex polarization through the injection of a Bloch point.

  4. Phase and Radial Motion in Ion Linear Accelerators

    Energy Science and Technology Software Center (OSTI)

    2007-03-29

    Parmila is an ion-linac particle-dynamics code. The name comes from the phrase, "Phase and Radial Motion in Ion Linear Accelerators." The code generates DTL, CCDTL, and CCL accelerating cells and, using a "drift-kick" method, transforms the beam, represented by a collection of particles, through the linac. The code includes a 2-D and 3-D space-charge calculations. Parmila uses data generated by the Poisson Superfish postprocessor SEC. This version of Parmila was written by Harunori Takeda andmore » was supported through Feb. 2006 by James H. Billen. Setup installs executable programs Parmila.EXE, Lingraf.EXE, and ReadPMI.EXE in the LANL directory. The directory LANL\\Examples\\Parmila contains several subdirectories with sample files for Parmila.« less

  5. Principle of radial transport in low temperature annular plasmas

    SciTech Connect (OSTI)

    Zhang, Yunchao Charles, Christine; Boswell, Rod

    2015-07-15

    Radial transport in low temperature annular plasmas is investigated theoretically in this paper. The electrons are assumed to be in quasi-equilibrium due to their high temperature and light inertial mass. The ions are not in equilibrium and their transport is analyzed in three different situations: a low electric field (LEF) model, an intermediate electric field (IEF) model, and a high electric field (HEF) model. The universal IEF model smoothly connects the LEF and HEF models at their respective electric field strength limits and gives more accurate results of the ion mobility coefficient and effective ion temperature over the entire electric field strength range. Annular modelling is applied to an argon plasma and numerical results of the density peak position, the annular boundary loss coefficient and the electron temperature are given as functions of the annular geometry ratio and Paschen number.

  6. Pulmonary function and symptoms of Nigerian workers exposed to carbon black in dry cell battery and tire factories

    SciTech Connect (OSTI)

    Oleru, U.G.; Elegbeleye, O.O.; Enu, C.C.; Olumide, Y.M.

    1983-02-01

    The pulmonary function and symptoms of 125 workers exposed to carbon black in dry cell battery and tire manufacturing plants were investigated. There was no significant difference in the pulmonary function of the subjects in the two plants. There was good agreement in the symptoms reported in the two different factories: cough with phlegm production, tiredness, chest pain, catarrh, headache, and skin irritation. The symptoms also corroborate those reported in the few studies on the pulmonary effects of carbon black. The suspended particulate levels in the dry cell battery plant ranged from 25 to 34 mg/m/sup 3/ and the subjects with the highest probable exposure level had the most impaired pulmonary function. The pulmonary function of the exposed subjects was significantly lower than that of a control, nonindustrially exposed population. The drop in the lung function from the expected value per year of age was relatively constant for all the study subgroups but the drop per year of duration of employment was more severe in the earlier years of employment. This study has underscored the need for occupational health regulations in the industries of developing countries.

  7. ARM - Measurement - Hydrometeor size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor size The size of a hydrometeor, measured directly or derived from other measurements. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  8. Droplet sizes, dynamics and deposition in vertical annular flow

    SciTech Connect (OSTI)

    Lopes, J C.B.; Dukler, A E

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data.

  9. Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs

    SciTech Connect (OSTI)

    Bollig, Evan F.; Flyer, Natasha; Erlebacher, Gordon

    2012-08-30

    This paper presents parallelization strategies for the radial basis function-finite difference (RBF-FD) method. As a generalized finite differencing scheme, the RBF-FD method functions without the need for underlying meshes to structure nodes. It offers high-order accuracy approximation and scales as O(N) per time step, with N being with the total number of nodes. To our knowledge, this is the first implementation of the RBF-FD method to leverage GPU accelerators for the solution of PDEs. Additionally, this implementation is the first to span both multiple CPUs and multiple GPUs. OpenCL kernels target the GPUs and inter-processor communication and synchronization is managed by the Message Passing Interface (MPI). We verify our implementation of the RBF-FD method with two hyperbolic PDEs on the sphere, and demonstrate up to 9x speedup on a commodity GPU with unoptimized kernel implementations. On a high performance cluster, the method achieves up to 7x speedup for the maximum problem size of 27,556 nodes.

  10. Does size matter?

    SciTech Connect (OSTI)

    Carreras, B. A.; Physics Department, College of Natural Science and Mathematics and Geophysical Institute, University of Alaska, Fairbanks, Alaska 99775; Physics Department, Universidad Carlos III de Madrid, Madrid ; Newman, D. E.; Dobson, Ian

    2014-06-15

    Failures of the complex infrastructures society depends on having enormous human and economic cost that poses the question: Are there ways to optimize these systems to reduce the risks of failure? A dynamic model of one such system, the power transmission grid, is used to investigate the risk from failure as a function of the system size. It is found that there appears to be optimal sizes for such networks where the risk of failure is balanced by the benefit given by the size.

  11. A Spitzer search for transits of radial velocity detected super-Earths

    SciTech Connect (OSTI)

    Kammer, J. A.; Knutson, H. A.; Desert, J.-M.; Howard, A. W.; Laughlin, G. P.; Fortney, J. J.; Deming, D.; Todorov, K. O.; Agol, E.; Burrows, A.; Showman, A. P.; Lewis, N. K.

    2014-02-01

    Unlike hot Jupiters or other gas giants, super-Earths are expected to have a wide variety of compositions, ranging from terrestrial bodies like our own to more gaseous planets like Neptune. Observations of transiting systems, which allow us to directly measure planet masses and radii and constrain atmospheric properties, are key to understanding the compositional diversity of the planets in this mass range. Although Kepler has discovered hundreds of transiting super-Earth candidates over the past 4 yr, the majority of these planets orbit stars that are too far away and too faint to allow for detailed atmospheric characterization and reliable mass estimates. Ground-based transit surveys focus on much brighter stars, but most lack the sensitivity to detect planets in this size range. One way to get around the difficulty of finding these smaller planets in transit is to start by choosing targets that are already known to host super-Earth sized bodies detected using the radial velocity (RV) technique. Here we present results from a Spitzer program to observe six of the most favorable RV-detected super-Earth systems, including HD 1461, HD 7924, HD 156668, HIP 57274, and GJ 876. We find no evidence for transits in any of their 4.5 ?m flux light curves, and place limits on the allowed transit depths and corresponding planet radii that rule out even the most dense and iron-rich compositions for these objects. We also observed HD 97658, but the observation window was based on a possible ground-based transit detection that was later ruled out; thus the window did not include the predicted time for the transit detection recently made by the Microvariability and Oscillations of Stars space telescope.

  12. A radial collimator for a time-of-flight neutron spectrometer

    SciTech Connect (OSTI)

    Stone, M. B.; Abernathy, D. L. [Quantum Condensed Matter Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Niedziela, J. L.; Loguillo, M. J.; Overbay, M. A. [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-08-15

    We have engineered and installed a radial collimator for use in the scattered beam of a neutron time-of-flight spectrometer at a spallation neutron source. The radial collimator may be used with both thermal and epithermal neutrons, reducing the detected scattering intensity due to material outside of the sample region substantially. The collimator is located inside of the sample chamber of the instrument, which routinely cycles between atmospheric conditions and cryogenic vacuum. The oscillation and support mechanism of the collimator allow it to be removed from use without breaking vacuum. We describe here the design and characterization of this radial collimator.

  13. Vehicle Technologies Office Merit Review 2015: Advanced Bus and Truck Radial Materials for Fuel Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by PPG at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced bus and truck radial materials...

  14. STARSPOT-INDUCED OPTICAL AND INFRARED RADIAL VELOCITY VARIABILITY IN T TAURI STAR HUBBLE I 4

    SciTech Connect (OSTI)

    Mahmud, Naved I.; Johns-Krull, Christopher M.; Hartigan, Patrick M.; Crockett, Christopher J.; Prato, L.; Jaffe, Daniel T.; Beichman, Charles A. E-mail: cmj@rice.edu E-mail: crockett@lowell.edu E-mail: dtj@astro.as.utexas.edu

    2011-08-01

    We report optical ({approx}6150 A) and K-band (2.3 {mu}m) radial velocities obtained over two years for the pre-main-sequence weak-lined T Tauri star Hubble I 4. We detect periodic and near-sinusoidal radial velocity variations at both wavelengths, with a semi-amplitude of 1395 {+-} 94 m s{sup -1} in the optical and 365 {+-} 80 m s{sup -1} in the infrared. The lower velocity amplitude at the longer wavelength, combined with bisector analysis and spot modeling, indicates that there are large, cool spots on the stellar surface that are causing the radial velocity modulation. The radial velocities maintain phase coherence over hundreds of days suggesting that the starspots are long-lived. This is one of the first active stars where the spot-induced velocity modulation has been resolved in the infrared.

  15. Application Of A Spherical-Radial Heat Transfer Model To Calculate...

    Open Energy Info (EERE)

    A Spherical-Radial Heat Transfer Model To Calculate Geothermal Gradients From Measurements In Deep Boreholes Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  16. Aerosol mobility size spectrometer

    DOE Patents [OSTI]

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  17. Performance of tornado-type wind turbines with radial inflow supply

    SciTech Connect (OSTI)

    Hsu, C.T.; Ide, H.

    1982-09-01

    Wind tunnel tests were conducted for the performance of tornado-type wind turbines with radial inflow supply from the incoming wind. It was shown that the radial inflow supply was necessary for intensifying a vortex in the wind collecting tower and, consequently, for enhancing the power efficiencies. A maximum power efficiency of 3.8 was obtained for a circular-shaped tower as compared to the value of 0.4 for the conventional windmills.

  18. Fundamental studies of radial wave thermoacoustic engines. Final report, 1 October 1993-14 September 1996

    SciTech Connect (OSTI)

    Arnott, W.P.

    1996-09-01

    Our goal was to evaluate the influence of resonator geometry on thermoacoustic engine performance. Resonator geometry affects thermoacoustic heat transport and acoustic power generation, energy dissipation, and stack volume. Thermoacoustic engines placed in the first radial mode of a cylindrical resonator were studied in detail, and were compared with the more-developed plane wave resonator counterparts. A radial wave prime mover was constructed from use of our numerical model. Experimental results are that nonlinear generation of harmonics is considerably suppressed by the anharmonic radial wave resonator in comparison with a similar plane wave prime mover, and that the observed onset temperature for oscillation was in substantial agreement with model results. Short-stack-approximation results for radial and plane wave acoustic refrigerators indicate the plane wave geometry produces slightly better overall refrigerators when maximizing the coefficient of performance and cooling capacity together, though one radial geometry produces greater cooling capacity when coefficient of performance is not of central importance. The numerical model was used to evaluate a plane wave heat-driven sound source on a radial wave acoustic refrigerator. The optimized hybrid had an overall efficiency of 20%, and the refrigerator coefficient of performance was 25% Carnot.

  19. Novel high-power subterahertz-range radial surface wave oscillator

    SciTech Connect (OSTI)

    Chen, Zaigao; Wang, Jianguo; Wang, Yue; Wang, Guangqiang; Li, Shuang; Cheng, Guoxin

    2015-06-15

    A novel high-power subterahertz-range radial surface wave oscillator (SWO), in which the electron beam is emitted radially and interacts with the slow wave structure (SWS) machined on a planar plate, is presented in this paper. Compared to the axial SWO where the electron beam is emitted axially and interacts with the SWS machined on the inner wall of a cylindrical waveguide, the radial SWO has two advantages. One is that fabrication of the radial SWS is much easier than that of the axial SWO. The other is that the radial SWO is a low-impedance device, it can produce much higher current than the axial SWO when they are driven by the same driven voltage, and hence, it may generate much higher output power. Particle-in-cell simulation results demonstrate that the proposed radial SWO driven by the voltage of 312 kV can produce the terahertz wave with the mean output power of 680 MW at the frequency of 0.142 THz, it has a very pure TM{sub 01} mode and the higher modes can be effectively suppressed.

  20. Investigating radial wire array Z pinches as a compact x-ray source on the Saturn generator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ampleford, David J.; Bland, S. N.; Jennings, Christopher A.; Lebedev, S. V.; Chittenden, J. P.; Cuneo, Michael E.; McBride, Ryan D.; Jones, Brent Manley; Hall, G. N.; Suzuki-Vidal, F.; et al

    2015-08-27

    Radial wire array z pinches, where wires are positioned radially outward from a central cathode to a concentric anode, can act as a compact bright x-ray source that could potentially be used to drive a hohlraum. Experiments were performed on the 7-MA Saturn generator using radial wire arrays. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1-MA level, where they have been shown to be a promising compact X-ray source. Data indicates that at 7 MA, radial wire arrays can radiate ~9 TW with 10-ns full-width at half-maximum from a compact pinch.

  1. Investigation of radial wire arrays for inertial confinement fusion and radiation effects science.

    SciTech Connect (OSTI)

    Serrano, Jason Dimitri; Bland, Simon Nicholas; McBride, Ryan D.; Chittenden, Jeremy Paul; Suzuki-Vidal, Francisco Andres; Jennings, Christopher A.; Hall, Gareth Neville; Ampleford, David J.; Peyton, Bradley Philip; Lebedev, Sergey V.; Cleveland, Monica; Rogers, Thomas John; Cuneo, Michael Edward; Coverdale, Christine Anne; Jones, Brent Manley; Jones, Michael C.

    2010-02-01

    Radial wire arrays provide an alternative x-ray source for Z-pinch driven Inertial Confinement Fusion. These arrays, where wires are positioned radially outwards from a central cathode to a concentric anode, have the potential to drive a more compact ICF hohlraum. A number of experiments were performed on the 7MA Saturn Generator. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1MA level, where they have been shown to provide similar x-ray outputs to larger diameter cylindrical arrays, to the higher current levels required for ICF. Data indicates that at 7MA radial arrays can obtain higher power densities than cylindrical wire arrays, so may be of use for x-ray driven ICF on future facilities. Even at the 7MA level, data using Saturn's short pulse mode indicates that a radial array should be able to drive a compact hohlraum to temperatures {approx}92eV, which may be of interest for opacity experiments. These arrays are also shown to have applications to jet production for laboratory astrophysics. MHD simulations require additional physics to match the observed behavior.

  2. Radial velocity curves of ellipsoidal red giant binaries in the Large Magellanic Cloud

    SciTech Connect (OSTI)

    Nie, J. D.; Wood, P. R. E-mail: peter.wood@anu.edu.au

    2014-12-01

    Ellipsoidal red giant binaries are close binary systems where an unseen, relatively close companion distorts the red giant, leading to light variations as the red giant moves around its orbit. These binaries are likely to be the immediate evolutionary precursors of close binary planetary nebula and post-asymptotic giant branch and post-red giant branch stars. Due to the MACHO and OGLE photometric monitoring projects, the light variability nature of these ellipsoidal variables has been well studied. However, due to the lack of radial velocity curves, the nature of their masses, separations, and other orbital details has so far remained largely unknown. In order to improve this situation, we have carried out spectral monitoring observations of a large sample of 80 ellipsoidal variables in the Large Magellanic Cloud and we have derived radial velocity curves. At least 12 radial velocity points with good quality were obtained for most of the ellipsoidal variables. The radial velocity data are provided with this paper. Combining the photometric and radial velocity data, we present some statistical results related to the binary properties of these ellipsoidal variables.

  3. RADIAL DEPENDENCE OF THE FREQUENCY BREAK BETWEEN FLUID AND KINETIC SCALES IN THE SOLAR WIND FLUCTUATIONS

    SciTech Connect (OSTI)

    Bruno, R.; Trenchi, L.

    2014-06-01

    We investigate the radial dependence of the spectral break separating the inertial from the dissipation range in power density spectra of interplanetary magnetic field fluctuations, between 0.42 and 5.3 AU, during radial alignments between MESSENGER and WIND for the inner heliosphere and between WIND and ULYSSES for the outer heliosphere. We found that the spectral break moves to higher and higher frequencies as the heliocentric distance decreases. The radial dependence of the corresponding wavenumber is of the kind κ {sub b} ∼ R {sup –1.08}, in good agreement with that of the wavenumber derived from the linear resonance condition for proton cyclotron damping. These results support conclusions from previous studies which suggest that a cyclotron-resonant dissipation mechanism must participate in the spectral cascade together with other possible kinetic noncyclotron-resonant mechanisms.

  4. Performance of tornado-type wind turbines with radial inflow supply

    SciTech Connect (OSTI)

    Hsu, C.T.; Ide, H.

    1983-11-01

    Wind tunnel tests were conducted for the performance of tornado-type wind turbines (TTWT) with radial inflow supply from incoming wind. It was shown that the radial inflow supply was necessary for intensifying a vortex in the wind collecting tower and, consequently, for enhancing the power efficiencies, C /SUB p/, of the wind turbines. Maximum C /SUB p/ (based on turbine disk area) of 3.8 and 9 was obtained for circular- and spiral-shaped towers, respectively, as compared to 0.4 for conventional windmills. With the radial inflow supply, the maximum C /SUB p/ was increased about 100% for the circular model but only 15-30% for the spiral model since the spiral model provides the inflow effect by itself.

  5. Transport of radial heat flux and second sound in fusion plasmas

    SciTech Connect (OSTI)

    Guercan, Oe. D.; Berionni, V.; Hennequin, P.; Morel, P.; Vermare, L.; Diamond, P. H.; Garbet, X.; Dif-Pradalier, G.; Kosuga, Y.

    2013-02-15

    Simple flux-gradient relations that involve time delay and radial coupling are discussed. Such a formulation leads to a rather simple description of avalanches and may explain breaking of gyroBohm transport scaling. The generalization of the flux-gradient relation (i.e., constitutive relation), which involve both time delay and spatial coupling, is derived from drift-kinetic equation, leading to kinetic definitions of constitutive elements such as the flux of radial heat flux. This allows numerical simulations to compute these cubic quantities directly. The formulation introduced here can be viewed as an extension of turbulence spreading to include the effect of spreading of cross-phase as well as turbulence intensity, combined in such a way to give the flux. The link between turbulence spreading and entropy production is highlighted. An extension of this formulation to general quasi-linear theory for the distribution function in the phase space of radial position and parallel velocity is also discussed.

  6. Geodesic acoustic modes in tokamak plasmas with a radial equilibrium electric field

    SciTech Connect (OSTI)

    Zhou, Deng

    2015-09-15

    The dispersion relation of geodesic acoustic modes in the tokamak plasma with an equilibrium radial electric field is derived and analyzed. Multiple branches of eigenmodes have been found, similar to the result given by the fluid model with a poloidal mass flow. Frequencies and damping rates of both the geodesic acoustic mode and the sound wave increase with respect to the strength of radial electric field, while the frequency and the damping rate of the lower frequency branch slightly decrease. Possible connection to the experimental observation is discussed.

  7. RADIAL VELOCITIES FROM VLT-KMOS SPECTRA OF GIANT STARS IN THE GLOBULAR CLUSTER NGC6388

    SciTech Connect (OSTI)

    Lapenna, E.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E. [Dipartimento di Fisica e Astronomia, Universit degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Origlia, L. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani, 1, I-40127 Bologna (Italy); Valenti, E. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Mnchen (Germany); Cirasuolo, M. [Institute for Astronomy, University of Edinburgh and STFC, UK Astronomy Technology Center Royal Observatory, Blackford Hill, EH9 3HJ, Edinburgh (United Kingdom)

    2015-01-01

    We present new radial velocity measurements for 82 stars, members of the Galactic globular cluster (GC) NGC6388, obtained from ESO-VLT K-band Multi Object Spectrograph (KMOS) spectra acquired during the instrument Science Verification. The accuracy of the wavelength calibration is discussed and a number of tests of the KMOS response are presented. The cluster systemic velocity obtained (81.3 1.5 km s{sup 1}) is in very good agreement with previous determinations. While a hint of ordered rotation is found between 9'' and 20'' from the cluster center, where the distribution of radial velocities is clearly bimodal, more data are needed before drawing any firm conclusions. The acquired sample of radial velocities has also been used to determine the cluster velocity dispersion (VD) profile between ?9'' and 70'', supplementing previous measurements at r < 2'' and r > 60'' obtained with ESO-SINFONI and ESO-FLAMES spectroscopy, respectively. The new portion of the VD profile nicely matches the previous ones, better defining the knee of the distribution. The present work clearly shows the effectiveness of a deployable integral field unit in measuring the radial velocities of individual stars for determining the VD profile of Galactic GCs. It represents the pilot project for an ongoing large program with KMOS and FLAMES at the ESO-VLT, aimed at determining the next generation of VD and rotation profiles for a representative sample of GCs.

  8. Pore size distribution and accessible pore size distribution...

    Office of Scientific and Technical Information (OSTI)

    both rank and type (expressed as either hydrogen or vitrinite content) in the size range ... Subject: 01 COAL, LIGNITE, AND PEAT; 03 NATURAL GAS; 08 HYDROGEN; AMBIENT TEMPERATURE; ...

  9. ARM - Measurement - Particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Particle size distribution The number of particles present in any given volume of air within a specified size range. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  10. Glitter-Sized Solar Photovoltaics

    Broader source: Energy.gov [DOE]

    Featured in this photograph are tiny glitter-sized photovoltaic cells, developed by Sandia National Laboratories scientists, that could revolutionize the way solar energy is collected and used....

  11. ARM - Measurement - Hydrometeor Size Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of hydrometeors observed in a given size range. Categories Atmospheric State, Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  12. DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect (OSTI)

    K. Payette; D. Tillman

    2004-06-01

    During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiring in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.

  13. Transient, radial temperature distribution in a porous medium during fluid injection

    SciTech Connect (OSTI)

    Dunn, J.C.; Nilson, R.H.

    1982-01-01

    Analytical and numerical solutions are presented for the transient, radial temperature distribution in a porous medium which is subjected to a constant-rate injection of an incompressible fluid from a wellbore. The formulation includes energy transfer by conduction and convection, and the Danckwerts boundary condition is applied at the finite-radius wellbore. At late times, the numerical solutions approach a self-similar form which can be described in terms of the incomplete Gamma function. In typical petroleum and geothermal applications, convergence to the asymptotic similarity solutions occurs on a time scale of roughly one hour. The results are generally applicable to a broad range of convection-diffusion phenomena which are best described in radial coordinates.

  14. Method and radial gap machine for high strength undiffused brushless operation

    DOE Patents [OSTI]

    Hsu, John S.

    2006-10-31

    A radial gap brushless electric machine (30) having a stator (31) and a rotor (32) and a main air gap (34) also has at least one stationary excitation coil (35a, 36a) separated from the rotor (32) by a secondary air gap (35e, 35f, 36e, 36f) so as to induce a secondary flux in the rotor (32) which controls a resultant flux in the main air gap (34). Permanent magnetic (PM) material (38) is disposed in spaces between the rotor pole portions (39) to inhibit the second flux from leaking from the pole portions (39) prior to reaching the main air gap (34). By selecting the direction of current in the stationary excitation coil (35a, 36a) both flux enhancement and flux weakening are provided for the main air gap (34). A method of non-diffused flux enhancement and flux weakening for a radial gap machine is also disclosed.

  15. In situ laser heating and radial synchrotron x-ray diffraction in a diamond anvil cell

    SciTech Connect (OSTI)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk, Hans-Rudolf

    2007-06-15

    We report a first combination of diamond anvil cell radial x-ray diffraction with in situ laser heating. The laser-heating setup of ALS beamline 12.2.2 was modified to allow one-sided heating of a sample in a diamond anvil cell with an 80 W yttrium lithium fluoride laser while probing the sample with radial x-ray diffraction. The diamond anvil cell is placed with its compressional axis vertical, and perpendicular to the beam. The laser beam is focused onto the sample from the top while the sample is probed with hard x-rays through an x-ray transparent boron-epoxy gasket. The temperature response of preferred orientation of (Fe,Mg)O is probed as a test experiment. Recrystallization was observed above 1500 K, accompanied by a decrease in stress.

  16. Radial midframe baffle for can-annular combustor arrangement having tangentially oriented combustor cans

    DOE Patents [OSTI]

    Rodriguez, Jose L.

    2015-09-15

    A can-annular gas turbine engine combustion arrangement (10), including: a combustor can (12) comprising a combustor inlet (38) and a combustor outlet circumferentially and axially offset from the combustor inlet; an outer casing (24) defining a plenum (22) in which the combustor can is disposed; and baffles (70) configured to divide the plenum into radial sectors (72) and configured to inhibit circumferential motion of compressed air (16) within the plenum.

  17. Radial force on the vacuum chamber wall during thermal quench in tokamaks

    SciTech Connect (OSTI)

    Pustovitov, V. D.

    2015-12-15

    The radial force balance during a thermal quench in tokamaks is analyzed. As a rule, the duration τ{sub tp} of such events is much shorter than the resistive time τ{sub w} of the vacuum chamber wall. Therefore, the perturbations of the magnetic field B produced by the evolving plasma cannot penetrate the wall, which makes different the magnetic pressures on its inner and outer sides. The goal of this work is the analytical estimation of the resulting integral radial force on the wall. The plasma is considered axially symmetric; for the description of radial forces on the wall, the results of V.D. Shafranov’s classical work [J. Nucl. Energy C 5, 251 (1963)] are used. Developed for tokamaks, the standard equilibrium theory considers three interacting systems: plasma, poloidal field coils, and toroidal field coils. Here, the wall is additionally incorporated with currents driven by ∂B/∂t≠0 accompanying the fast loss of the plasma thermal energy. It is shown that they essentially affect the force redistribution, thereby leading to large loads on the wall. The estimates prove that these loads have to be accounted for in the disruptive scenarios in large tokamaks.

  18. Inertia driven radial breathing and nonlinear relaxation in cylindrically confined pure electron plasma

    SciTech Connect (OSTI)

    Sengupta, M.; Ganesh, R.

    2014-02-15

    The dynamics of cylindrically trapped electron plasma has been investigated using a newly developed 2D Electrostatic PIC code that uses unapproximated, mass-included equations of motion for simulation. Exhaustive simulations, covering the entire range of Brillouin ratio, were performed for uniformly filled circular profiles in rigid rotor equilibrium. The same profiles were then loaded away from equilibrium with an initial value of rigid rotation frequency different from that required for radial force balance. Both these sets of simulations were performed for an initial zero-temperature or cold load of the plasma with no spread in either angular velocity or radial velocity. The evolution of the off-equilibrium initial conditions to a steady state involve radial breathing of the profile that scales in amplitude and algebraic growth with Brillouin fraction. For higher Brillouin fractions, the growth of the breathing mode is followed by complex dynamics of spontaneous hollow density structures, excitation of poloidal modes, leading to a monotonically falling density profile.

  19. Radial behavior of the pulsed dielectric-barrier discharge in atmospheric helium

    SciTech Connect (OSTI)

    Zhang Dingzong; Wang Yanhui; Wang Dezhen [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2012-12-15

    The radial behavior of the pulsed dielectric-barrier discharge in atmospheric helium is studied by a two-dimensional, self-consistent fluid model. It is found that the two discharges ignited during one voltage pulse can possess different radial behaviors, and the discharge behavior is determined by the electron density distribution right before this discharge is ignited. The electron density distributions before the two discharges start depend on the time intervals between two discharges and their previous discharge processes. If the electron density distribution is radially uniform at the end of the previous discharge, the shorter the time interval between two discharges is, the more uniform the electron density distribution before the next discharge is, and thus the more homogenous the subsequent discharge becomes. In pulsed discharge, the time intervals between two discharges are mainly determined by the duration and repetition frequency of applied voltage pulse. These results are further supported by the investigation of the discharge behaviors under different pulse durations and repetition frequencies.

  20. ANALYSIS OF THE SIMULTANEOUS ROTATION AND NON-RADIAL PROPAGATION OF AN ERUPTIVE FILAMENT

    SciTech Connect (OSTI)

    Bi Yi; Jiang Yunchun; Yang Jiayan; Zheng Ruisheng; Hong Junchao; Li Haidong; Yang Dan; Yang Bo

    2013-08-20

    The rotation of eruptive filaments is not only related to the kink instability occurring in the solar corona but also may result from the interaction between the large-scale magnetic field and the eruptions themselves. This interaction could likewise make the filament deflect in the radial direction. By means of data obtained by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and observations from the Solar Terrestrial Relations Observatory, we study an eruptive filament showing both rotation and non-radial motion. The consequence of the three-dimensional reconstruction of the filament axis indicates that a significant rotation was simultaneous with the severe deflection in the latitude during the eruption. In combination with the results of a derived coronal magnetic configuration, our observations suggested that the non-radial motion resulted from the interaction between the eruption and an overlying pseudostreamer. Moreover, we find that the deflection of the eruption is asymmetric, with its eastern segment being dragged more significantly than its western one. Therefore, we suggested that the action of the asymmetric deflection is possibly an alternative mechanism for the rotation of the eruptive filament.

  1. Effect of cerium ions in an arc peripheral plasma on the growth of radial single-walled carbon nanotubes

    SciTech Connect (OSTI)

    Sato, Y.; Motomiya, K.; Jeyadevan, B.; Tohji, K.; Sato, G.; Ishida, H.; Hirata, T.; Hatakeyama, R.

    2005-11-01

    Radial single-walled carbon nanotubes (radial SWCNTs) are formed by using a direct current (dc) arc discharge when carbon and metal atoms are mixed in a gas phase after the vaporization and cooled together in a liquid droplet. Since SWCNTs sprout through the precipitation of saturated carbon atoms from liquid droplets during cooling, a mass synthesis of radial SWCNTs can be achieved when a large number of liquid droplets are generated. In order to understand the effects of arc peripheral plasma parameters (electrons, ions, radical atoms, and molecules) on the growth of radial SWCNTs, the optimum production efficiency of radial SWCNTs is investigated by superimposing a radio-frequency (rf) plasma on the thermal arc plasma and controlling the arc peripheral plasma density. Two parameters--the rf power and the dc potential--of the rf electrode, which is equipped above 20 mm from the center of an arc-discharge point, are changed with the constant He pressure (200 Torr), dc arc current (75 A), and power (2000 W). The production yield of radial SWCNTs is found to be enhanced under the condition of the rf power of 100 W and the dc component of the rf electrode voltage of -22 V, revealing that the optimum ion flux and ion bombardment energy are important key parameters for the formation of radial SWCNTs.

  2. Method for sizing hollow microspheres

    DOE Patents [OSTI]

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  3. Method of sustaining a radial electric field and poloidal plasma rotation over most of the cross-section of a tokamak

    DOE Patents [OSTI]

    Darrow, Douglass S.; Ono, Masayuki

    1990-01-01

    A radial electric field of a desired magnitude and configuration is created hroughout a substantial portion of the cross-section of the plasma of a tokamak. The radial electric field is created by injection of a unidirectional electron beam. The magnitude and configuration of the radial electric field may be controlled by the strength of the toroidal magnetic field of the tokamak.

  4. Method of sustaining a radial electric field and poloidal plasma rotation over most of the cross-section of a tokamak

    DOE Patents [OSTI]

    Darrow, Douglass S.; Ono, Masayuki

    1990-03-06

    A radial electric field of a desired magnitude and configuration is created throughout a substantial portion of the cross-section of the plasma of a tokamak. The radial electric field is created by injection of a unidirectional electron beam. The magnitude and configuration of the radial electric field may be controlled by the strength of the toroidal magnetic field of the tokamak.

  5. Edge radial electric field structure and its connections to H-mode confinement in Alcator C-Mod plasmas

    SciTech Connect (OSTI)

    McDermott, R. M.; Lipschultz, B.; Hughes, J. W.; Catto, P. J.; Hubbard, A. E.; Hutchinson, I. H.; Granetz, R. S.; Greenwald, M.; LaBombard, B.; Marr, K.; Reinke, M. L.; Rice, J. E.; Whyte, D.

    2009-05-15

    High-resolution charge-exchange recombination spectroscopic measurements of B{sup 5+} ions have enabled the first spatially resolved calculations of the radial electric field (E{sub r}) in the Alcator C-Mod pedestal region [E. S. Marmar, Fusion Sci. Technol. 51, 261 (2006)]. These observations offer new challenges for theory and simulation and provide for important comparisons with other devices. Qualitatively, the field structure observed on C-Mod is similar to that on other tokamaks. However, the narrow high-confinement mode (H-mode) E{sub r} well widths (5 mm) observed on C-Mod suggest a scaling with machine size, while the observed depths (up to 300 kV/m) are unprecedented. Due to the strong ion-electron thermal coupling in the C-Mod pedestal, it is possible to infer information about the main ion population in this region. The results indicate that in H-mode the main ion pressure gradient is the dominant contributor to the E{sub r} well and that the main ions have significant edge flow. C-Mod H-mode data show a clear correlation between deeper E{sub r} wells, higher confinement plasmas, and higher electron temperature pedestal heights. However, improved L-mode (I-mode) plasmas exhibit energy confinement equivalent to that observed in similar H-mode discharges, but with significantly shallower E{sub r} wells. I-mode plasmas are characterized by H-mode-like energy barriers, but with L-mode-like particle barriers. The decoupling of energy and particle barrier formation makes the I-mode an interesting regime for fusion research and provides for a low collisionality pedestal without edge localized modes.

  6. Code System for Calculating the Radial and Axial Neutron Diffusion Coefficients in One-Group and Multigroup Theory.

    Energy Science and Technology Software Center (OSTI)

    1985-10-10

    MARCOPOLO calculates the radial and axial diffusion coefficients in one-group and multi-group theory for a cylinderized cell (Wigner-Seitz theory) with several concentric zones according to the isotropic shock or linear anisotropic shock hypotheses.

  7. Microgamma Scan System for analyzing radial isotopic profiles of irradiated transmutation fuels

    SciTech Connect (OSTI)

    Bruce A. Hilton; Christopher A. McGrath

    2008-05-01

    The U. S. Global Nuclear Energy Partnership / Advanced Fuel Cycle Initiative (GNEP/AFCI) is developing metallic transmutation alloys as a fuel form to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. The AFCI program has irradiated and examined eleven metallic alloy transmutation fuel specimens to evaluate the feasibility of actinide transmutation in advanced sodium-cooled fast reactors and thermal reactor implementation. Initial results of postirradiation examinations indicated the irradiation performance of the actinide-bearing compositions is similar to uranium-plutonium-zirconium ternary metallic alloy fuels (U-xPu-10Zr). Further studies to characterize radial burnup profile, constituent migration, and fuel cladding chemical interaction (FCCI) are in progress. A microgamma scan system is being developed to analyze the radial distribution of fission products, such as Cs-137, Cs-134, Ru-106, and Zr-95, in irradiated fuel cross-sections. The microgamma scan system consists of a set of indexed sample collimator blocks and a sample holder, which interfaces with the INL Analytical Laboratory Hot Cell (ALHC) Gamma Scan System high purity germanium detector, multichannel analyzer, and removable collimators. The microgamma scan results will be used to evaluate radial burnup profile, cesium migration to the sodium bond and constituent migration within the fuel. These data will further clarify the comparative irradiation performance of actinide-bearing metallic transmutation fuel forms and uranium-plutonium-zirconium alloys. Preliminary measurements of the microgamma scan system will be discussed. A simplified model of the microgamma scan system was developed in MCNP and used to investigate the system performance and to interpret data from the scoping studies. Recommendations for improving the MCGS analyses are discussed.

  8. Influence of finite radial geometry on the growth rate of ion-channel free electron laser

    SciTech Connect (OSTI)

    Bahmani, Mohammad; Hamzehpour, Hossein; Hasanbeigi, Ali

    2013-11-15

    The influence of finite radial geometry on the instability of a tenuous relativistic electron beam propagating in an ion-channel in a waveguide is investigated. The instability analysis is based on the linearized Vlasov-Maxwell equations for the perturbation about a self-consistent beam equilibrium. With the help of characteristic method the dispersion relation for the TE-mode is derived and analyzed through the numerical solutions. It is found that the positioning of the beam radius R{sub b} relative to the waveguide radius R{sub c}, and the ion-channel frequency can have a large influence on the maximum growth rate and corresponding wave number.

  9. Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine

    DOE Patents [OSTI]

    Qu, Ronghai; Lipo, Thomas A.

    2005-08-02

    The present invention provides a novel dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine. The present invention improves electrical machine torque density and efficiency. At least one concentric surface-mounted permanent magnet dual-rotor is located inside and outside of a torus-shaped stator with back-to-back windings, respectively. The machine substantially improves machine efficiency by reducing the end windings and boosts the torque density by at least doubling the air gap and optimizing the machine aspect ratio.

  10. Optimization and control of two-component radially self-accelerating beams

    SciTech Connect (OSTI)

    Vetter, Christian; Eichelkraut, Toni; Ornigotti, Marco; Szameit, Alexander

    2015-11-23

    We report on the properties of radially self-accelerating intensity distributions consisting of two components in the angular frequency domain. We show how this subset of solutions, in literature also known as helicon beams, possesses peculiar characteristics that enable a better control over its properties. In this work, we present a step-by-step optimization procedure to achieve the best possible intensity contrast, a distinct rotation rate and long propagation lengths. All points are discussed on a theoretical basis and are experimentally verified.

  11. Strong radial electric field shear and reduced fluctuations in a reversed-field pinch

    SciTech Connect (OSTI)

    Chapman, B.E.; Chiang, C.S.; Prager, S.C.; Sarff, J.S.

    1997-05-01

    A strongly sheared radial electric field is observed in enhanced confinement discharges in the MST reversed-field pinch. The strong shear develops in a narrow region in the plasma edge. Electrostatic fluctuations are reduced over the entire plasma edge with an extra reduction in the shear region. Magnetic fluctuations, resonant in the plasma core but global in extent, are also reduced. The reduction of fluctuations in the shear region is presumably due to the strong shear, but the causes of the reductions outside this region have not been established.

  12. Model of the radial distribution of gas in the blast furnace

    SciTech Connect (OSTI)

    Nikus, M.; Saxen, H.

    1996-12-31

    This paper describes an on-line model for estimating the radial gas distribution in blast furnaces. The model is based on molar and energy flow balances for the blast furnace throat region, and utilizes the top gas temperature and gas temperature measurements from a fixed above-burden probe. The distribution of the gas flux is estimated by a Kalman filter. The method is illustrated to capture short-term dynamics and to detect sudden major changes in the gas distribution in Finnish blast furnace.

  13. Radial transport of energetic ions in the presence of trapped electron mode turbulence

    SciTech Connect (OSTI)

    Chowdhury, J.; Wang, W.; Ethier, S.; Manickam, J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2011-11-15

    The nature of transport of hot ions is studied in the presence of microturbulence generated by the trapped electron mode in a Tokamak using massively parallel, first principle based global nonlinear gyrokinetic simulation, and with the help of a passive tracer method. Passing and trapped hot ions are observed to exhibit inverse and inverse square scaling with energy, while those with isotropic pitch distribution are found to exhibit inverse dependence on energy. For all types of hot ions, namely, isotropic, passing, and trapped, the radial transport appears to be subdiffusive for the parameters considered.

  14. Computing single step operators of logic programming in radial basis function neural networks

    SciTech Connect (OSTI)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-07-10

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  15. Preliminary experimental investigation of a Ku-band radial line oscillator based on transition radiation effect

    SciTech Connect (OSTI)

    Dang, Fangchao Zhang, Xiaoping; Zhong, Huihuang; Li, Yangmei

    2015-09-15

    A Ku-band radial line oscillator (RLO) with low guiding magnetic field was proposed in our previous work. In order to weaken the impedance mismatch between the oscillator and an intense electron accelerator with higher impedance, a transverse electromagnetic reflector is added to improve the RLO, which is favorable to increase the Q-factor and accelerate the device saturation. A preliminary experiment is carried out to investigate the performance of the improved RLO. The radial-radiated electron beam is restrained well under the designed guiding magnetic field of 0.52 T. The preliminary experimental results indicates that high power microwaves with a power of 120 MW and a frequency of 14.12 GHz are generated when the diode voltage is 420 kV and the beam current 14.2 kA. The experimental results suggest the feasibility of the presented RLO generating high power microwaves at a high frequency band. Additionally, more work is needed regarding promotion of the electron beam quality and the impedance match between the electron beam accelerator and the oscillator.

  16. Nuclear reactor removable radial shielding assembly having a self-bowing feature

    DOE Patents [OSTI]

    Pennell, William E.; Kalinowski, Joseph E.; Waldby, Robert N.; Rylatt, John A.; Swenson, Daniel V.

    1978-01-01

    A removable radial shielding assembly for use in the periphery of the core of a liquid-metal-cooled fast-breeder reactor, for closing interassembly gaps in the reactor core assembly load plane prior to reactor criticality and power operation to prevent positive reactivity insertion. The assembly has a lower nozzle portion for inserting into the core support and a flexible heat-sensitive bimetallic central spine surrounded by blocks of shielding material. At refueling temperature and below the spine is relaxed and in a vertical position so that the tolerances permitted by the interassembly gaps allow removal and replacement of the various reactor core assemblies. During an increase in reactor temperature from refueling to hot standby, the bimetallic spine expands, bowing the assembly toward the core center line, exerting a radially inward gap-closing-force on the above core load plane of the reactor core assembly, closing load plane interassembly gaps throughout the core prior to startup and preventing positive reactivity insertion.

  17. Strategy Guideline: HVAC Equipment Sizing

    SciTech Connect (OSTI)

    Burdick, A.

    2012-02-01

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  18. THE RADIAL METALLICITY GRADIENTS IN THE MILKY WAY THICK DISK AS FOSSIL SIGNATURES OF A PRIMORDIAL CHEMICAL DISTRIBUTION

    SciTech Connect (OSTI)

    Curir, A.; Serra, A. L.; Spagna, A.; Lattanzi, M. G.; Re Fiorentin, P.; Diaferio, A.

    2014-04-01

    In this Letter we examine the evolution of the radial metallicity gradient induced by secular processes, in the disk of an N-body Milky Way-like galaxy. We assign a [Fe/H] value to each particle of the simulation according to an initial, cosmologically motivated, radial chemical distribution and let the disk dynamically evolve for ∼6 Gyr. This direct approach allows us to take into account only the effects of dynamical evolution and to gauge how and to what extent they affect the initial chemical conditions. The initial [Fe/H] distribution increases with R in the inner disk up to R ≈ 10 kpc and decreases for larger R. We find that the initial chemical profile does not undergo major transformations after ∼6 Gyr of dynamical evolution. The final radial chemical gradients predicted by the model in the solar neighborhood are positive and of the same order as those recently observed in the Milky Way thick disk. We conclude that (1) the spatial chemical imprint at the time of disk formation is not washed out by secular dynamical processes and (2) the observed radial gradient may be the dynamical relic of a thick disk originated from a stellar population showing a positive chemical radial gradient in the inner regions.

  19. WIYN open cluster study. LIX. Radial velocity membership of the evolved population of the old open cluster NGC 6791

    SciTech Connect (OSTI)

    Tofflemire, Benjamin M.; Gosnell, Natalie M.; Mathieu, Robert D.; Platais, Imants E-mail: imants@pha.jhu.edu

    2014-10-01

    The open cluster NGC 6791 has been the focus of much recent study due to its intriguing combination of old age and high metallicity (?8 Gyr, [Fe/H] = +0.30), as well as its location within the Kepler field. As part of the WIYN Open Cluster Study, we present precise (? = 0.38 km s{sup 1}) radial velocities for proper motion candidate members of NGC 6791 from Platais et al. Our survey, extending down to g' ? 16.8, is comprised of the evolved cluster population, including blue stragglers, giants, and horizontal branch stars. Of the 280 proper-motion-selected stars above our magnitude limit, 93% have at least one radial velocity measurement and 79% have three measurements over the course of at least 200 days, sufficient for secure radial-velocity-determined membership of non-velocity-variable stars. The Platais et al. proper motion catalog includes 12 anomalous horizontal branch candidates blueward of the red clump, of which we find only 4 to be cluster members. Three fall slightly blueward of the red clump and the fourth is consistent with being a blue straggler. The cleaned color-magnitude diagram shows a richly populated red giant branch and a blue straggler population. Half of the blue stragglers are in binaries. From our radial velocity measurement distribution, we find the cluster's radial velocity dispersion to be ? {sub c} = 0.62 0.10 km s{sup 1}. This corresponds to a dynamical mass of ?4600 M {sub ?}.

  20. Radial-Gap Permanent Magnet Motor and Drive Research FY 2004

    SciTech Connect (OSTI)

    McKeever, J.W.

    2005-02-11

    The objective of this task was to study permanent magnet (PM) radial-gap traction drive systems that could meet the U.S. Department of Energy FreedomCAR Program's 2010 goals to expose weaknesses or identify strengths. Initially, the approach was to compare attributes such as physical deformations during operation, performance (torque, power, efficiency versus speed), material requirements (strength), material costs, manufacturability, weight, power density, specific power, reliability, and drivability for specific motors. Three motors selected were the commercially available 60-kW radial-gap surface-mounted PM motor manufactured by UQM Technologies, Inc.; a hypothetical PM motor with rotor-supported magnets similar to the Honda MCF-21; and Delphi's automotive electric machine drive motor, whose rotor is a ferromagnetic cylinder, held at one end by a shaft that supports the magnets on its inner surface. Potential problems have appeared related to PM motors, such as (1) high no-load spin losses and high operational power losses, probably from eddy current losses in the rotor; (2) the undemonstrated dual mode inverter control (DMIC) for driving a brushless dc motor (BDCM) (UQM and Delphi motors); (3) uncertainty about the potential for reducing current with DMIC; and (4) uncertainty about the relation between material requirements and maximum rotor speed. Therefore, the approach was changed to study in detail three of the comparison attributes: drivability, performance, and material requirements. Drivability and related problems were examined by demonstrating that DMIC may be used to drive an 18-pole 30-kW PM motor to 6000 rpm, where the maximum electrical frequency is 900 Hz. An available axial-gap test motor with 18 poles was used because its control is identical to that of a radial gap PM motor. Performance was analytically examined, which led to a derivation showing that DMIC controls a PM motor so that the motor uses minimum current to produce any power

  1. Evidence for Radial Flow of Thermal Dileptons in High-Energy Nuclear Collisions

    SciTech Connect (OSTI)

    Arnaldi, R.; Colla, A.; Cortese, P.; Ferretti, A.; Oppedisano, C.; Scomparin, E.; Banicz, K.; Damjanovic, S.; Castor, J.; Devaux, A.; Fargeix, J.; Force, P.; Manso, F.; Chaurand, B.; Cicalo, C.; Falco, A. de; Floris, M.; Masoni, A.; Puddu, G.; Serci, S.

    2008-01-18

    The NA60 experiment at the CERN SPS has studied low-mass dimuon production in 158A GeV In-In collisions. An excess of pairs above the known meson decays has been reported before. We now present precision results on the associated transverse momentum spectra. The slope parameter T{sub eff} extracted from the spectra rises with dimuon mass up to the {rho}, followed by a sudden decline above. While the initial rise is consistent with the expectations for radial flow of a hadronic decay source, the decline signals a transition to an emission source with much smaller flow. This may well represent the first direct evidence for thermal radiation of partonic origin in nuclear collisions.

  2. Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.

    SciTech Connect (OSTI)

    Mock, Raymond Cecil

    2007-06-01

    The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.

  3. System to quantify gamma-ray radial energy deposition in semiconductor detectors

    DOE Patents [OSTI]

    Kammeraad, Judith E.; Blair, Jerome J.

    2001-01-01

    A system for measuring gamma-ray radial energy deposition is provided for use in conjunction with a semiconductor detector. The detector comprises two electrodes and a detector material, and defines a plurality of zones within the detecting material in parallel with the two electrodes. The detector produces a charge signal E(t) when a gamma-ray interacts with the detector. Digitizing means are provided for converting the charge signal E(t) into a digitized signal. A computational means receives the digitized signal and calculates in which of the plurality of zones the gamma-ray deposited energy when interacting with the detector. The computational means produces an output indicating the amount of energy deposited by the gamma-ray in each of the plurality of zones.

  4. Radial arrays of nano-electrospray ionization emitters and methods of forming electrosprays

    DOE Patents [OSTI]

    Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2010-10-19

    Electrospray ionization emitter arrays, as well as methods for forming electrosprays, are described. The arrays are characterized by a radial configuration of three or more nano-electrospray ionization emitters without an extractor electrode. The methods are characterized by distributing fluid flow of the liquid sample among three or more nano-electrospray ionization emitters, forming an electrospray at outlets of the emitters without utilizing an extractor electrode, and directing the electrosprays into an entrance to a mass spectrometry device. Each of the nano-electrospray ionization emitters can have a discrete channel for fluid flow. The nano-electrospray ionization emitters are circularly arranged such that each is shielded substantially equally from an electrospray-inducing electric field.

  5. Characterization of radial turbulent fluxes in the Santander linear plasma machine

    SciTech Connect (OSTI)

    Mier, J. A. Anabitarte, E.; Sentes, J. M.; Snchez, R.; Newman, D. E.; Castellanos, O. F.; Milligen, B. Ph. van

    2014-05-15

    It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which long-term correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasmas.

  6. Angular Averaged Profiling of the Radial Electric Field in Compensated FTICR Cells

    SciTech Connect (OSTI)

    Tolmachev, Aleksey V.; Robinson, Errol W.; Wu, Si; Smith, Richard D.; Futrell, Jean H.; Pasa-Tolic, Ljiljana

    2012-05-08

    A recent publication from this laboratory (1) reported a theoretical analysis comparing approaches for creating harmonic ICR cells. We considered two examples of static segmented cells - namely, a seven segment cell developed in this laboratory (2) and one described by Rempel et al (3), along with a recently described dynamically harmonized cell (4). This conceptual design for a dynamically harmonized cell has now been reduced to practice and first experimental results obtained with this cell were recently reported in this journal (5). This publication reports details of cell construction and describes its performance in a 7 Tesla Fourier Transform mass spectrometer. Herein, we describe the extension of theoretical analysis presented in (1) to include angular-averaged radial electric field calculations and a discussion of the influence of trapping plates.

  7. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    SciTech Connect (OSTI)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  8. Development and validation of a radial inflow turbine model for simulation of the SNL S-CO2 split-flow loop.

    SciTech Connect (OSTI)

    Vilim, R. B.

    2012-07-31

    A one-dimensional model for a radial inflow turbine has been developed for super-critical carbon dioxide (S-CO{sub 2}) Brayton cycle applications. The model accounts for the main phenomena present in the volute, nozzle, and impeller of a single-stage turbine. These phenomena include internal losses due to friction, blade loading, and angle of incidence and parasitic losses due to windage and blade-housing leakage. The model has been added as a component to the G-PASS plant systems code. The model was developed to support the analysis of S-CO{sub 2} cycles in conjunction with small-scale loop experiments. Such loops operate at less than a MWt thermal input. Their size permits components to be reconfigured in new arrangements relatively easily and economically. However, the small thermal input combined with the properties of carbon dioxide lead to turbomachines with impeller diameters of only one to two inches. At these sizes the dominant phenomena differ from those in larger more typical machines. There is almost no treatment in the literature of turbomachines at these sizes. The present work therefore is aimed at developing turbomachine models that support the task of S-CO{sub 2} cycle analysis using small-scale tests. Model predictions were compared against data from an experiment performed for Sandia National Laboratories in the split-flow Brayton cycle loop currently located at Barber-Nichols Inc. The split-flow loop incorporates two turbo-alternator-compressor (TAC) units each incorporating a radial inflow turbine and a radial flow compressor on a common shaft. The predicted thermodynamic conditions at the outlet of the turbine on the main compressor shaft were compared with measured values at different shaft speeds. Two modifications to the original model were needed to better match the experiment data. First, a representation of the heat loss from the volute downstream of the sensed inlet temperature was added. Second, an empirical multiplicative factor was

  9. Experimental determination of the radial dose function of {sup 90}Sr/{sup 90}Y IVBT sources

    SciTech Connect (OSTI)

    Holmes, Shannon M.; DeWerd, Larry A.; Micka, John A.

    2006-09-15

    A series of measurements were undertaken using both high sensitivity radiochromic film and new lithium fluoride thermoluminescent dosimeters in a liquid water medium to define the radial dose function of {sup 90}Sr/{sup 90}Y beta emitting intravascular brachytherapy sources more accurately. These measurements of a single 5 French source pellet served to verify current Monte Carlo transport models and extrapolation chamber measurements of the radial dose function, thus providing the recommended independent published measurements for g(r) of these sources. A slight deviation in the published radial dose function at depth leads the authors to recommend that treatment planning be performed using updated g(r) values from current Monte Carlo transport models verified by measurements such as those shown in this investigation.

  10. THE MASS OF HD 38529c FROM HUBBLE SPACE TELESCOPE ASTROMETRY AND HIGH-PRECISION RADIAL VELOCITIES

    SciTech Connect (OSTI)

    Benedict, G. Fritz; McArthur, Barbara E.; Bean, Jacob L.; Barnes, Rory; Harrison, Thomas E.; Hatzes, Artie; Martioli, Eder; Nelan, Edmund P.

    2010-05-15

    Hubble Space Telescope Fine Guidance Sensor astrometric observations of the G4 IV star HD 38529 are combined with the results of the analysis of extensive ground-based radial velocity (RV) data to determine the mass of the outermost of two previously known companions. Our new RVs obtained with the Hobby-Eberly Telescope and velocities from the Carnegie-California group now span over 11 yr. With these data we obtain improved RV orbital elements for both the inner companion, HD 38529b, and the outer companion, HD 38529c. We identify a rotational period of HD 38529 (P {sub rot} = 31.65 {+-} 0fd17) with Fine Guidance Sensor photometry. The inferred star spot fraction is consistent with the remaining scatter in velocities being caused by spot-related stellar activity. We then model the combined astrometric and RV measurements to obtain the parallax, proper motion, perturbation period, perturbation inclination, and perturbation size due to HD 38529c. For HD 38529c we find P = 2136.1 {+-} 0.3 d, perturbation semimajor axis {alpha} = 1.05 {+-} 0.06 mas, and inclination i = 48.{sup 0}3 {+-} 3.{sup 0}7. Assuming a primary mass M {sub *} = 1.48 M {sub sun}, we obtain a companion mass M{sub c} = 17.6{sup +1.5} {sub -1.2} M {sub Jup}, 3{sigma} above a 13 M {sub Jup} deuterium burning, brown dwarf lower limit. Dynamical simulations incorporating this accurate mass for HD 38529c indicate that a near-Saturn mass planet could exist between the two known companions. We find weak evidence of an additional low amplitude signal that can be modeled as a planetary-mass ({approx}0.17 M {sub Jup}) companion at P {approx}194 days. Including this component in our modeling lowers the error of the mass determined for HD 38529c. Additional observations (RVs and/or Gaia astrometry) are required to validate an interpretation of HD 38529d as a planetary-mass companion. If confirmed, the resulting HD 38529 planetary system may be an example of a 'Packed Planetary System'.

  11. Kicking the Tires | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    been doing and would like to do on superconducting radiofrequency cavities, on electron guns and on cryogenic engineering for the ILC. The team also provided a tour, which was...

  12. The SDSS-III APOGEE radial velocity survey of M dwarfs. I. Description of the survey and science goals

    SciTech Connect (OSTI)

    Deshpande, R.; Bender, C. F.; Mahadevan, S.; Terrien, R. C.; Schneider, D. P.; Fleming, S. W.; Blake, C. H.; Carlberg, J. K.; Zasowski, G.; Hearty, F.; Crepp, J.; Rajpurohit, A. S.; Reyl, C.; Nidever, D. L.; Prieto, C. Allende; Hernndez, J.; Bizyaev, D.; Ebelke, G.; Frinchaboy, P. M.; Ge, J.; and others

    2013-12-01

    We are carrying out a large ancillary program with the Sloan Digital Sky Survey, SDSS-III, using the fiber-fed multi-object near-infrared APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations will be used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey, as well as results from the first year of scientific observations based on spectra that will be publicly available in the SDSS-III DR10 data release. As part of this paper we present radial velocities and rotational velocities of over 200 M dwarfs, with a vsin i precision of ?2 km s{sup 1} and a measurement floor at vsin i = 4 km s{sup 1}. This survey significantly increases the number of M dwarfs studied for rotational velocities and radial velocity variability (at ?100-200 m s{sup 1}), and will inform and advance the target selection for planned radial velocity and photometric searches for low-mass exoplanets around M dwarfs, such as the Habitable Zone Planet Finder, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and adaptive optics imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution APOGEE spectra, covering the entire H band, provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and radial velocities for over 1400 stars spanning the spectral range M0-L0, providing the largest set of near-infrared M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsin i values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to

  13. Radial evolution of the intermittency of density fluctuations in the fast solar wind

    SciTech Connect (OSTI)

    Bruno, R.; D'Amicis, R.; Telloni, D.; Primavera, L.; Sorriso-Valvo, L.; Carbone, V.; Malara, F.; Veltri, P.

    2014-05-01

    We study the radial evolution of the intermittency of density fluctuations in the fast solar wind. The study is performed by analyzing the plasma density measurements provided by Helios 2 in the inner heliosphere between 0.3 and 0.9 AU. The analysis is carried out by means of a complete set of diagnostic tools, including the flatness factor at different timescales to estimate intermittency, the Kolmogorov-Smirnov test to estimate the degree of intermittency, and the Fourier transform to estimate the power spectral densities of these fluctuations. Density fluctuations within the fast wind are rather intermittent and their level of intermittency, together with the amplitude of intermittent events, decreases with the distance from the Sun, at odds with the intermittency of both magnetic field and all other plasma parameters. Furthermore, the intermittent events are strongly correlated, exhibiting temporal clustering. This indicates that the mechanism underlying their generation departs from a time-varying Poisson process. A remarkable, qualitative similarity with the behavior of plasma density fluctuations obtained from a numerical study of the nonlinear evolution of parametric instability in the solar wind supports the idea that this mechanism has an important role in governing density fluctuations in the inner heliosphere.

  14. Radial-directed fluid-pressure-loaded all-metal-sealed gate valve

    DOE Patents [OSTI]

    Batzer, Thomas H.

    1992-01-01

    A large diameter gate valve uses a radially directed fluid pressure loaded all metal seal formed by engaging and disengaging a fixed and a moveable seal element. The fixed element is formed of a circular flange which contains a pressure chamber with a deformable wall, and is mounted to the valve body. The moving seal element contains an annular recess which mates with the circular flange, and is carried on a moveable sub-frame which moves on a frame fixed in the valve body. The valve opening defines an axis in a first direction, and the sub-frame moves through the valve body in a second direction which is substantially perpendicular to the first direction. The sub-frame and moveable seal element move in the second direction until the moveable element reaches a stop mounted in the valve body at which position the moveable element is aligned with but spaced apart from the fixed element. As the sub-frame continues to move in the second direction, the moveable element is forced to move toward and engage the fixed element. The pressure chamber in the flange is then pressurized to complete the seal.

  15. The VMC survey. XI. Radial stellar population gradients in the galactic globular cluster 47 Tucanae

    SciTech Connect (OSTI)

    Li, Chengyuan; De Grijs, Richard; Deng, Licai; Rubele, Stefano; Girardi, Leo; Gullieuszik, Marco; Wang, Chuchu; Bekki, Kenji; For, Bi-Qing; Cioni, Maria-Rosa L.; Clementini, Gisella; Emerson, Jim; Groenewegen, Martin A. T.; Guandalini, Roald; Marconi, Marcella; Ripepi, Vincenzo; Piatti, Andrs E.; Van Loon, Jacco Th. E-mail: grijs@pku.edu.cn

    2014-07-20

    We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, K{sub s} survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ?0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.

  16. Radial dependence of silicon KVV and L{sub 23}VV Auger matrix elements

    SciTech Connect (OSTI)

    Jennison, D.R.; Weightman, P.

    1991-12-31

    We present calculations which show the radial dependence of the KVV and L{sub 23}VV Auger matrix elements of silicon. We find greatly differing dependences, converging within {approximately}1 a.u. of the nucleus in the case of the KVV, but not until {approximately}4 a.u. in the case of the L{sub 23}VV, well beyond the bond midpoint of {approximately}2.2 a.u. We also find quite different dependences for the various elements within a particular CVV transition. Because the local density of states (LDOS) is dependent on the radius of the sphere of integration, our results suggest that different CVV Auger processes on the same atom in fact probe different LDOS`s, as do even different contributions within the same transition. (This effect is separate from the well-known matrix element property which weights angular-momentum components differently.) These results call into question both the single-site LDOS approximation when used in the interpretation of low-energy (< 100 eV) Auger spectra, and the application to high-energy spectra of local densities of states obtained by integration over muffin-tin or Wigner-Seitz spheres which have a large radius compared to the region probed by the Auger process.

  17. Radial dependence of silicon KVV and L sub 23 VV Auger matrix elements

    SciTech Connect (OSTI)

    Jennison, D.R. ); Weightman, P. . IRC Surface Science)

    1991-01-01

    We present calculations which show the radial dependence of the KVV and L{sub 23}VV Auger matrix elements of silicon. We find greatly differing dependences, converging within {approximately}1 a.u. of the nucleus in the case of the KVV, but not until {approximately}4 a.u. in the case of the L{sub 23}VV, well beyond the bond midpoint of {approximately}2.2 a.u. We also find quite different dependences for the various elements within a particular CVV transition. Because the local density of states (LDOS) is dependent on the radius of the sphere of integration, our results suggest that different CVV Auger processes on the same atom in fact probe different LDOS's, as do even different contributions within the same transition. (This effect is separate from the well-known matrix element property which weights angular-momentum components differently.) These results call into question both the single-site LDOS approximation when used in the interpretation of low-energy (< 100 eV) Auger spectra, and the application to high-energy spectra of local densities of states obtained by integration over muffin-tin or Wigner-Seitz spheres which have a large radius compared to the region probed by the Auger process.

  18. Radial dependence of silicon KVV and L sub 23 VV Auger matrix elements

    SciTech Connect (OSTI)

    Jennison, D.R. ); Weightman, P. )

    1992-07-01

    We present calculations which show the radial dependence of the {ital KVV} and {ital L}{sub 23}{ital VV} Auger matrix elements of silicon. We find greatly differing dependences, converging within {similar to}1 a.u. of the nucleus in the case of the {ital KVV}, but not until {similar to}4 a.u. in the case of the {ital L}{sub 23}{ital VV}, well beyond the bond midpoint of {similar to}2.2 a.u. We also find quite different dependences for the various elements within a particular {ital CVV} transition. Because the local density of states (LDOS) is dependent on the radius of the sphere of integration, our results suggest that different {ital CVV} Auger processes on the same atom in fact probe different LDOSs, as do even different contributions within the same transition. (This effect is separate from the well-known matrix element property which weights angular-momentum components differently.) These results call into question both the single-site LDOS approximation when used in the interpretation of low-energy ({lt}100 eV) Auger spectra, and the application to high-energy spectra of local densities of states obtained by integration over muffin-tin or Wigner--Seitz spheres which have a large radius compared to the region probed by the Auger process. elements

  19. Radial distribution of compressive waves in the solar corona revealed by Akatsuki radio occultation observations

    SciTech Connect (OSTI)

    Miyamoto, Mayu; Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki; Nakamura, Masato; Tokumaru, Munetoshi; Shiota, Daikou; Isobe, Hiroaki; Asai, Ayumi; Husler, Bernd; Ptzold, Martin; Nabatov, Alexander

    2014-12-10

    Radial variations of the amplitude and the energy flux of compressive waves in the solar corona were explored for the first time using a spacecraft radio occultation technique. By applying wavelet analysis to the frequency time series taken at heliocentric distances of 1.5-20.5 R{sub S} (solar radii), quasi-periodic density disturbances were detected at almost all distances. The period ranges from 100 to 2000 s. The amplitude of the fractional density fluctuation increases with distance and reaches ?30% around 5 R{sub S} , implying that nonlinearity of the wave field is potentially important. We further estimate the wave energy flux on the assumption that the observed periodical fluctuations are manifestations of acoustic waves. The energy flux increases with distance below ?6 R{sub S} and seems to saturate above this height, suggesting that the acoustic waves do not propagate from the low corona but are generated in the extended corona, probably through nonlinear dissipation of Alfvn waves. The compressive waves should eventually dissipate through shock generation to heat the corona.

  20. Application of Radial Basis Functional Link Networks to Exploration for Proterozoic Mineral Deposits in Central Iran

    SciTech Connect (OSTI)

    Behnia, Pouran [Geological Survey of Iran, Geomatics Department (Iran, Islamic Republic of)], E-mail: pouranb@yahoo.com

    2007-06-15

    The metallogeny of Central Iran is characterized mainly by the presence of several iron, apatite, and uranium deposits of Proterozoic age. Radial Basis Function Link Networks (RBFLN) were used as a data-driven method for GIS-based predictive mapping of Proterozoic mineralization in this area. To generate the input data for RBFLN, the evidential maps comprising stratigraphic, structural, geophysical, and geochemical data were used. Fifty-eight deposits and 58 'nondeposits' were used to train the network. The operations for the application of neural networks employed in this study involve both multiclass and binary representation of evidential maps. Running RBFLN on different input data showed that an increase in the number of evidential maps and classes leads to a larger classification sum of squared error (SSE). As a whole, an increase in the number of iterations resulted in the improvement of training SSE. The results of applying RBFLN showed that a successful classification depends on the existence of spatially well distributed deposits and nondeposits throughout the study area.

  1. TOWARD UNDERSTANDING STELLAR RADIAL VELOCITY JITTER AS A FUNCTION OF WAVELENGTH: THE SUN AS A PROXY

    SciTech Connect (OSTI)

    Marchwinski, Robert C.; Mahadevan, Suvrath; Robertson, Paul; Ramsey, Lawrence; Harder, Jerald E-mail: suvrath@astro.psu.edu E-mail: lwr@psu.edu

    2015-01-01

    Using solar spectral irradiance measurements from the SORCE spacecraft and the F/F' technique, we have estimated the radial velocity (RV) scatter induced on the Sun by stellar activity as a function of wavelength. Our goal was to evaluate the potential advantages of using new near-infrared (NIR) spectrographs to search for low-mass planets around bright F, G, and K stars by beating down activity effects. Unlike M dwarfs, which have higher fluxes and therefore greater RV information content in the NIR, solar-type stars are brightest at visible wavelengths, and, based solely on information content, are better suited to traditional optical RV surveys. However, we find that the F/F' estimated RV noise induced by stellar activity is diminished by up to a factor of four in the NIR versus the visible. Observations with the upcoming future generation of NIR instruments can be a valuable addition to the search for low-mass planets around bright FGK stars in reducing the amount of stellar noise affecting RV measurements.

  2. Trapping two types of particles using a double-ring-shaped radially polarized beam

    SciTech Connect (OSTI)

    Zhang Yaoju; Ding Biaofeng; Suyama, Taikei

    2010-02-15

    An optical-trap method based on the illumination of a double-ring-shaped radially polarized beam (R-TEM{sub 11}*) is proposed. The numerical results based on the vector diffraction theory show that a highly focused R-TEM{sub 11}* beam not only can produce a bright spot but also can form an optical cage in the focal region by changing the truncation parameter {beta}, defined as the ratio of the radius of the aperture to the waist of the beam. The radiation forces acting on Rayleigh particles are calculated by using the Rayleigh scattering theory. The bright spot generated by the R-TEM{sub 11}* beam with a {beta} value close to 2 can three-dimensionally trap a particle with a refractive index larger than that of the ambient. An optical cage or three-dimensional dark spot generated by the R-TEM{sub 11}* beam with a {beta} value close to 1.3 can three-dimensionally trap a particle with refractive index smaller than that of the ambient. Because the adjustment of the truncation parameter can be actualized by simply changing the radius of a circular aperture inserted in the front of the lens, only one optical-trap system in the present method can be used to three-dimensionally trap two types of particles with different refractive indices.

  3. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources

    SciTech Connect (OSTI)

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence; Venditti, Nick

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibers leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.

  4. Insights on dramatic radial fluctuations in track formation by energetic ions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sachan, Ritesh; Lang, Maik; Trautmann, Christina; Zhang, Yanwen; Chisholm, Matthew F.; Weber, William J.; Zarkadoula, Eva

    2016-06-02

    We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd2TiZrO7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd2TixZr(1-x)O7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study shows the diameter variations to be asmore » large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.« less

  5. Size and spacial distribution of micropores in SBA-15 using CM-SANS

    SciTech Connect (OSTI)

    Pollock, Rachel A; Walsh, Brenna R; Fry, Jason A; Ghampson, Tyrone; Centikol, Ozgul; Melnichenko, Yuri B; Kaiser, Helmut; Pynn, Roger; Frederick, Brian G

    2011-01-01

    Diffraction intensity analysis of small-angle neutron scattering measurements of dry SBA-15 have been combined with nonlocal density functional theory (NLDFT) analysis of nitrogen desorption isotherms to characterize the micropore, secondary mesopore, and primary mesopore structure. The radial dependence of the scattering length density, which is sensitive to isolated surface hydroxyls, can only be modeled if the NLDFT pore size distribution is distributed relatively uniformly throughout the silica framework, not localized in a 'corona' around the primary mesopores. Contrast matching-small angle neutron scattering (CM-SANS) measurements, using water, decane, tributylamine, cyclohexane, and isooctane as direct probes of the size of micropores indicate that the smallest pores in SBA-15 have diameter between 5.7 and 6.2 {angstrom}. Correlation of the minimum pore size with the onset of the micropore size distribution provides direct evidence that the shape of the smallest micropores is cylinderlike, which is consistent with their being due to unraveling of the polymer template.

  6. Prediction of the effects of size and morphology on the structure of water around hematite nanoparticles

    SciTech Connect (OSTI)

    Spagnoli, D.; Gilbert, B.; Waychunas, G.A.; Banfield, J. F.

    2009-05-15

    Compared with macroscopic surfaces, the structure of water around nanoparticles is difficult to probe directly. We used molecular dynamics simulations to investigate the effects of particle size and morphology on the time-averaged structure and the dynamics of water molecules around two sizes of hematite ({alpha}-Fe{sub 2}O{sub 3}) nanoparticles. Interrogation of the simulations via atomic density maps, radial distribution functions and bound water residence times provide insight into the relationships between particle size and morphology and the behavior of interfacial water. Both 1.6 and 2.7 nm particles are predicted to cause the formation of ordered water regions close to the nanoparticle surface, but the extent of localization and ordering, the connectivity between regions of bound water, and the rates of molecular exchange between inner and outer regions are all affected by particle size and morphology. These findings are anticipated to be relevant to understanding the rates of interfacial processes involving water exchange and the transport of aqueous ions to surface sites.

  7. WIND-DRIVEN ACCRETION IN PROTOPLANETARY DISKS. II. RADIAL DEPENDENCE AND GLOBAL PICTURE

    SciTech Connect (OSTI)

    Bai Xuening, E-mail: xbai@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States)

    2013-08-01

    Non-ideal magnetohydrodynamical effects play a crucial role in determining the mechanism and efficiency of angular momentum transport as well as the level of turbulence in protoplanetary disks (PPDs), which are the key to understanding PPD evolution and planet formation. It was shown in our previous work that at 1 AU, the magnetorotational instability (MRI) is completely suppressed when both ohmic resistivity and ambipolar diffusion (AD) are taken into account, resulting in a laminar flow with accretion driven by magnetocentrifugal wind. In this work, we study the radial dependence of the laminar wind solution using local shearing-box simulations. The scaling relation on the angular momentum transport for the laminar wind is obtained, and we find that the wind-driven accretion rate can be approximated as M-dot approx. 0.91 x 10{sup -8}R{sub AU}{sup 1.21}(B{sub p}/10 mG){sup 0.93} M{sub Sun} yr{sup -1}, where B{sub p} is the strength of the large-scale poloidal magnetic field threading the disk. The result is independent of disk surface density. Four criteria are outlined for the existence of the laminar wind solution: (1) ohmic resistivity dominated the midplane region, (2) the AD-dominated disk upper layer, (3) the presence of a (not too weak) net vertical magnetic flux, and (4) sufficiently well-ionized gas beyond the disk surface. All these criteria are likely to be met in the inner region of the disk from {approx}0.3 AU to about 5-10 AU for typical PPD accretion rates. Beyond this radius, the angular momentum transport is likely to proceed due to a combination of the MRI and disk wind, and eventually completely dominated by the MRI (in the presence of strong AD) in the outer disk. Our simulation results provide key ingredients for a new paradigm on the accretion processes in PPDs.

  8. Hazards of explosives dusts: Particle size effects

    SciTech Connect (OSTI)

    Cashdollar, K L; Hertzberg, M; Green, G M

    1992-02-01

    At the request of the Department of Energy, the Bureau of Mines has investigated the hazards of military explosives dispersed as dust clouds in a 20-L test chamber. In this report, the effect of particle size for HMX, HNS, RDX, TATB, and TNT explosives dusts is studied in detail. The explosibility data for these dusts are also compared to those for pure fuel dusts. The data show that all of the sizes of the explosives dusts that were studied were capable of sustaining explosions as dust clouds dispersed in air. The finest sizes (<10 [mu]m) of explosives dusts were less reactive than the intermediate sizes (20 to 60 [mu]m); this is opposite to the particle size effect observed previously for the pure fuel dusts. At the largest sizes studied, the explosives dusts become somewhat less reactive as dispersed dust clouds. The six sizes of the HMX dust were also studied as dust clouds dispersed in nitrogen.

  9. Effect of a detailed radial core expansion reactivity feedback model on ATWS calculations using SASSYS/SAS4A

    SciTech Connect (OSTI)

    Wigeland, R.A.

    1986-01-01

    The present emphasis on inherent safety and inherently safe designs for liquid-metal reactors has resulted in a need to represent the various reactivity feedback mechanisms as accurately as possible. In particular, the reactivity feedback from radial core expansion has been found to provide the dominant negative feedback contribution in postulated anticipated transient without scram (ATWS) events. Review of the existing modeling in the SASSYS/SAS4A computer code system revealed that while the modeling may be adequate for the early phases of various unprotected transients, the accuracy would be less than desirable for the extended transients which typically occur for inherently safe designs. The existing model for calculating the reactivity feedback from radial core expansion uses a feedback from radial core expansion uses a feedback coefficient in conjunction with changes in the temperatures of the grid support plate and the above-core load pad. The accuracy of this approach is determined partly by the conditions used in deriving the feedback coefficient, and their relevance to the transient being investigated. Accuracy is also affected by the need to include effects other than those that could be directly related to changes in the grid plate and above-core load pad temperatures, such as subassembly bowing and the potential for clearances to occur between subassemblies in the above-core load pad region. As a result, a detailed model was developed in an attempt to account for these and other effects in a more mechanistic form.

  10. Extending the radial diffusion model of Falthammar to non-dipole background field

    SciTech Connect (OSTI)

    Cunningham, Gregory Scott

    2015-05-26

    A model for radial diffusion caused by electromagnetic disturbances was published by Falthammar (1965) using a two-parameter model of the disturbance perturbing a background dipole magnetic field. Schulz and Lanzerotti (1974) extended this model by recognizing the two parameter perturbation as the leading (non--dipole) terms of the Mead Williams magnetic field model. They emphasized that the magnetic perturbation in such a model induces an electric ield that can be calculated from the motion of field lines on which the particles are ‘frozen’. Roederer and Zhang (2014) describe how the field lines on which the particles are frozen can be calculated by tracing the unperturbed field lines from the minimum-B location to the ionospheric footpoint, and then tracing the perturbed field (which shares the same ionospheric footpoint due to the frozen -in condition) from the ionospheric footpoint back to a perturbed minimum B location. The instantaneous change n Roederer L*, dL*/dt, can then be computed as the product (dL*/dphi)*(dphi/dt). dL*/Dphi is linearly dependent on the perturbation parameters (to first order) and is obtained by computing the drift across L*-labeled perturbed field lines, while dphi/dt is related to the bounce-averaged gradient-curvature drift velocity. The advantage of assuming a dipole background magnetic field, as in these previous studies, is that the instantaneous dL*/dt can be computed analytically (with some approximations), as can the DLL that results from integrating dL*/dt over time and computing the expected value of (dL*)^2. The approach can also be applied to complex background magnetic field models like T89 or TS04, on top of which the small perturbations are added, but an analytical solution is not possible and so a numerical solution must be implemented. In this talk, I discuss our progress in implementing a numerical solution to the calculation of DL*L* using arbitrary background field models with simple electromagnetic

  11. The Radial Loss of Ions Trapped in the Thermal Barrier Potential and the Design of Divertor Magnetic Field in GAMMA10

    SciTech Connect (OSTI)

    Katanuma, I. [Plasma Research Center, University of Tsukuba (Japan); Ito, T. [Plasma Research Center, University of Tsukuba (Japan); Saimaru, H. [Plasma Research Center, University of Tsukuba (Japan); Sasagawa, Y. [Plasma Research Center, University of Tsukuba (Japan); Pastukhov, V.P. [I.V.Kuruchatov Atomic Energy Institute (Russian Federation); Ishii, K. [Plasma Research Center, University of Tsukuba (Japan); Tatematsu, Y. [Plasma Research Center, University of Tsukuba (Japan); Saito, T. [Plasma Research Center, University of Tsukuba (Japan); Islam, Md.K. [Plasma Research Center, University of Tsukuba (Japan); Nakashima, Y. [Plasma Research Center, University of Tsukuba (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)

    2005-01-15

    The ion radial loss exists in the presence of a non-axisymmetric electrostatic potential in the end-mirror cells of GAMMA10, which leads to a formation of the thermal barrier potential. The non-axisymmetric electrostatic potential can also exist in the central cell. A design for divertor magnetic field of GAMMA10 is performed, the purpose of which is first to reduce an ion radial transport in the central cell by making electrostatic potential circular and second to assure the macroscopic plasma stability of GAMMA10 without help of non-axisymmetric anchor cells which enhances a neoclassical radial transport.

  12. Particle size distribution instrument. Topical report 13

    SciTech Connect (OSTI)

    Okhuysen, W.; Gassaway, J.D.

    1995-04-01

    The development of an instrument to measure the concentration of particles in gas is described in this report. An in situ instrument was designed and constructed which sizes individual particles and counts the number of occurrences for several size classes. Although this instrument was designed to detect the size distribution of slag and seed particles generated at an experimental coal-fired magnetohydrodynamic power facility, it can be used as a nonintrusive diagnostic tool for other hostile industrial processes involving the formation and growth of particulates. Two of the techniques developed are extensions of the widely used crossed beam velocimeter, providing simultaneous measurement of the size distribution and velocity of articles.

  13. Investigation of thermochemical biorefinery sizing and environmental...

    Office of Scientific and Technical Information (OSTI)

    Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs...

  14. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Mikkelson, Kenneth A.; Ginn, W. C.; Ottinger, P. F.; Schumer, J. W.

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometrymore » that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. Furthermore, a new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. Additionally, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.« less

  15. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    SciTech Connect (OSTI)

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Mikkelson, Kenneth A.; Ginn, W. C.; Ottinger, P. F.; Schumer, J. W.

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. Furthermore, a new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. Additionally, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.

  16. Status of ionization by radial electron neat adaptation ion source research and development for SPIRAL2 and EURISOL-DS

    SciTech Connect (OSTI)

    Lau, C.; Cheikh Mhamed, M.; Essabaa, S.

    2008-02-15

    To take up the challenging issue of supplying a plasma ion source able to produce radioactive beams under extreme SPIRAL2 and EURISOL irradiation conditions, a research and development program has been initiated to work out ionization by radial electron neat adaptation (IRENA) ion source. Based on the electron beam generated plasma concept, the ion source is specifically adapted for thick target exploitation under intense irradiation. A validation prototype has been designed, constructed, and tested. First results obtained will be presented and commented. IRENA potential will be discussed, particularly in the framework of multimegawatt EURISOL.

  17. ARM - Measurement - Cloud particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle size distribution The number of cloud particles present in any given volume of air...

  18. Sizing of DNA fragments by flow cytometry

    SciTech Connect (OSTI)

    Johnson, M.E.; Goodwin, P.M.; Ambrose, W.P.; Martin, J.C.; Marrone, B.L.; Jett, J.H.; Keller, R.A.

    1993-02-01

    Individual, stained DNA fragments were sized using a modified flow cytometer with high sensitivity fluorescence detection. The fluorescent intercalating dye ethidium homodimer was used to stain stoichiometrically lambda phage DNA and a Kpn I digest of lambda DNA. Stained, individual fragments of DNA were passed through a low average power, focused, mode-locked laser beam, and the fluorescence from each fragment was collected and quantified. Time-gated detection was used to discriminate against Raman scattering from the water solvent. The fluorescence burst from each fragment was related directly to its length, thus providing a means to size small quantities of kilobase lengths of DNA quickly. Improvements of several orders of magnitude in analysis time and sample size over current gel electrophoresis techniques were realized. Fragments of 17.1,29.9, and 48.5 thousand base pairs were well resolved, and were sized in 164 seconds. Less than one pg of DNA was required for analysis. We have demonstrated sizing of individual, stained DNA fragments with resolution approaching that of gel electrophoresis for moderately large fragments, but with significant reductions in the analysis time and the amount of sample required. Furthermore, system response is linear with DNA fragment length, in contrast to the logarithmic response in gel electrophoresis. There exists the potential to perform this sizing using relatively simple instrumentation, i.e. a continuous wave laser of low power and current mode detection.

  19. Sizing of DNA fragments by flow cytometry

    SciTech Connect (OSTI)

    Johnson, M.E.; Goodwin, P.M.; Ambrose, W.P.; Martin, J.C.; Marrone, B.L.; Jett, J.H.; Keller, R.A.

    1993-01-01

    Individual, stained DNA fragments were sized using a modified flow cytometer with high sensitivity fluorescence detection. The fluorescent intercalating dye ethidium homodimer was used to stain stoichiometrically lambda phage DNA and a Kpn I digest of lambda DNA. Stained, individual fragments of DNA were passed through a low average power, focused, mode-locked laser beam, and the fluorescence from each fragment was collected and quantified. Time-gated detection was used to discriminate against Raman scattering from the water solvent. The fluorescence burst from each fragment was related directly to its length, thus providing a means to size small quantities of kilobase lengths of DNA quickly. Improvements of several orders of magnitude in analysis time and sample size over current gel electrophoresis techniques were realized. Fragments of 17.1,29.9, and 48.5 thousand base pairs were well resolved, and were sized in 164 seconds. Less than one pg of DNA was required for analysis. We have demonstrated sizing of individual, stained DNA fragments with resolution approaching that of gel electrophoresis for moderately large fragments, but with significant reductions in the analysis time and the amount of sample required. Furthermore, system response is linear with DNA fragment length, in contrast to the logarithmic response in gel electrophoresis. There exists the potential to perform this sizing using relatively simple instrumentation, i.e. a continuous wave laser of low power and current mode detection.

  20. On the applicability of the standard approaches for evaluating a neoclassical radial electric field in a tokamak edge region

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dorf, M. A.; Cohen, R. H.; Simakov, A. N.; Joseph, I.

    2013-08-27

    The use of the standard approaches for evaluating a neoclassical radial electric field Er, i.e., the Ampere (or gyro-Poisson) equation, requires accurate calculation of the difference between the gyroaveraged electron and ion particle fluxes (or densities). In the core of a tokamak, the nontrivial difference appears only in high-order corrections to a local Maxwellian distribution due to the intrinsic ambipolarity of particle transport. The evaluation of such high-order corrections may be inconsistent with the accuracy of the standard long wavelength gyrokinetic equation (GKE), thus imposing limitations on the applicability of the standard approaches. However, in the edge of a tokamak,more » charge-exchange collisions with neutrals and prompt ion orbit losses can drive non-intrinsically ambipolar particle fluxes for which a nontrivial (Er-dependent) difference between the electron and ion fluxes appears already in a low order and can be accurately predicted by the long wavelength GKE. As a result, the parameter regimes where the radial electric field dynamics in the tokamak edge region is dominated by the non-intrinsically ambipolar processes, thus allowing for the use of the standard approaches, are discussed.« less

  1. NON-RADIAL OSCILLATIONS IN M-GIANT SEMI-REGULAR VARIABLES: STELLAR MODELS AND KEPLER OBSERVATIONS

    SciTech Connect (OSTI)

    Stello, Dennis; Compton, Douglas L.; Bedding, Timothy R.; Kiss, Laszlo L.; Bellamy, Beau; Christensen-Dalsgaard, Jørgen; Kjeldsen, Hans; García, Rafael A.

    2014-06-10

    The success of asteroseismology relies heavily on our ability to identify the frequency patterns of stellar oscillation modes. For stars like the Sun this is relatively easy because the mode frequencies follow a regular pattern described by a well-founded asymptotic relation. When a solar-like star evolves off the main sequence and onto the red giant branch its structure changes dramatically, resulting in changes in the frequency pattern of the modes. We follow the evolution of the adiabatic frequency pattern from the main sequence to near the tip of the red giant branch for a series of models. We find a significant departure from the asymptotic relation for the non-radial modes near the red giant branch tip, resulting in a triplet frequency pattern. To support our investigation we analyze almost four years of Kepler data of the most luminous stars in the field (late K and early M type) and find that their frequency spectra indeed show a triplet pattern dominated by dipole modes even for the most luminous stars in our sample. Our identification explains previous results from ground-based observations reporting fine structure in the Petersen diagram and sub-ridges in the period-luminosity diagram. Finally, we find ''new ridges'' of non-radial modes with frequencies below the fundamental mode in our model calculations, and we speculate they are related to f modes.

  2. Onset of radial flow in p+p collisions

    SciTech Connect (OSTI)

    Jiang, Kun; Zhu, Yinying; Liu, Weitao; Chen, Hongfang; Li, Cheng; Ruan, Lijuan; Tang, Zebo; Xu, Zhangbu

    2015-02-23

    It has been debated for decades whether hadrons emerging from p+p collisions exhibit collective expansion. The signal of the collective motion in p+p collisions is not as clear as in heavy-ion collisions because of the low multiplicity and large fluctuation in p+p collisions. Tsallis Blast-Wave (TBW) model is a thermodynamic approach, introduced to handle the overwhelming correlation and fluctuation in the hadronic processes. We have systematically studied the identified particle spectra in p+p collisions from RHIC to LHC using TBW and found no appreciable radial flow in p+p collisions below √s = 900 GeV. At LHC higher energy of 7 TeV in p+p collisions, the radial flow velocity achieves an average of (β) = 0.320 ± 0.005. This flow velocity is comparable to that in peripheral (40-60%) Au+Au collisions at RHIC. In addition, breaking of the identified particle spectra mT scaling was also observed at LHC from a model independent test.

  3. On the applicability of the standard approaches for evaluating a neoclassical radial electric field in a tokamak edge region

    SciTech Connect (OSTI)

    Dorf, M. A.; Cohen, R. H.; Joseph, I.; Simakov, A. N.

    2013-08-15

    The use of the standard approaches for evaluating a neoclassical radial electric field E{sub r}, i.e., the Ampere (or gyro-Poisson) equation, requires accurate calculation of the difference between the gyroaveraged electron and ion particle fluxes (or densities). In the core of a tokamak, the nontrivial difference appears only in high-order corrections to a local Maxwellian distribution due to the intrinsic ambipolarity of particle transport. The evaluation of such high-order corrections may be inconsistent with the accuracy of the standard long wavelength gyrokinetic equation (GKE), thus imposing limitations on the applicability of the standard approaches. However, in the edge of a tokamak, charge-exchange collisions with neutrals and prompt ion orbit losses can drive non-intrinsically ambipolar particle fluxes for which a nontrivial (E{sub r}-dependent) difference between the electron and ion fluxes appears already in a low order and can be accurately predicted by the long wavelength GKE. The parameter regimes, where the radial electric field dynamics in the tokamak edge region is dominated by the non-intrinsically ambipolar processes, thus allowing for the use of the standard approaches, are discussed.

  4. Bi-Sn alloy catalyst for simultaneous morphology and doping control of silicon nanowires in radial junction solar cells

    SciTech Connect (OSTI)

    Yu, Zhongwei; Lu, Jiawen; Qian, Shengyi; Xu, Jun; Xu, Ling; Wang, Junzhuan; Shi, Yi; Chen, Kunji; Yu, Linwei E-mail: linwei.yu@polytechnique.edu

    2015-10-19

    Low-melting point metals such as bismuth (Bi) and tin (Sn) are ideal choices for mediating a low temperature growth of silicon nanowires (SiNWs) for radial junction thin film solar cells. The incorporation of Bi catalyst atoms leads to sufficient n-type doping in the SiNWs core that exempts the use of hazardous dopant gases, while an easy morphology control with pure Bi catalyst has never been demonstrated so far. We here propose a Bi-Sn alloy catalyst strategy to achieve both a beneficial catalyst-doping and an ideal SiNW morphology control. In addition to a potential of further growth temperature reduction, we show that the alloy catalyst can remain quite stable during a vapor-liquid-solid growth, while providing still sufficient n-type catalyst-doping to the SiNWs. Radial junction solar cells constructed over the alloy-catalyzed SiNWs have demonstrated a strongly enhanced photocurrent generation, thanks to optimized nanowire morphology, and largely improved performance compared to the reference samples based on the pure Bi or Sn-catalyzed SiNWs.

  5. Diode magnetic-field influence on radiographic spot size

    SciTech Connect (OSTI)

    Ekdahl, Carl A. Jr.

    2012-09-04

    radial variation of the total field across the cathode surface, solenoid misalignments, and long-term variability of solenoid fields for given currents. Therefore, it is useful to quantify the relative importance of canonical momentum in determining the focal spot, and to establish a systematic methodology for tuning the bucking coils for minimum spot size. That is the purpose of this article. Section II provides a theoretical foundation for understanding the relative importance of the canonical momentum. Section III describes the results of simulations used to quantify beam parameters, including the momentum, for each of the accelerators. Section IV compares the two accelerators, especially with respect to mis-tuned bucking coils. Finally, Section IV concludes with a methodology for optimizing the bucking coil settings.

  6. Investigations of initiation spot size effects

    SciTech Connect (OSTI)

    Clarke, Steven A; Akinci, Adrian A; Leichty, Gary; Schaffer, Timothy; Murphy, Michael J; Munger, Alan; Thomas, Keith A

    2010-01-01

    As explosive components become smaller, a greater understanding of the effect of initiation spot size on detonation becomes increasingly critical. A series of tests of the effect of initiation spot size will be described. A series of DOI (direct optical initiation) detonators with initiation spots sizes from {approx}50 um to 1000um have been tested to determine laser parameters for threshold firing of low density PETN pressings. Results will be compared with theoretical predictions. Outputs of the initiation source (DOI ablation) have been characterized by a suite of diagnostics including PDV and schlieren imaging. Outputs of complete detonators have been characterized using PDV, streak, and/or schlieren imaging. At present, we have not found the expected change in the threshold energy to spot size relationship for DOI type detonators found in similar earlier for projectiles, slappers and EBWs. New detonators designs (Type C) are currently being tested that will allow the determination of the threshold for spot sizes from 250 um to 105um, where we hope to see change in the threshold vs. spot size relationship. Also, one test of an extremely small diameter spot size (50um) has resulted in preliminary NoGo only results even at energy densities as much as 8 times the energy density of the threshold results presented here. This gives preliminary evidence that 50um spot may be beyond the critical initiation diameter. The constant threshold energy to spot size relationship in the data to date does however still give some insight into the initiation mechanism of DOI detonators. If the DOI initiation mechanism were a 1D mechanism similar to a slapper or a flyer impact, the expected inflection point in the graph would have been between 300um and 500um diameter spot size, within the range of the data presented here. The lack of that inflection point indicates that the DOI initiation mechanism is more likely a 2D mechanism similar to a sphere or rod projectile. We expect to

  7. Effects of the radial dependence of the fast electron diffusion coefficient on the current driven by lower-hybrid waves in tokamak

    SciTech Connect (OSTI)

    Zhang Xianmei; Wang Yanhui; Yu Limin; Shen Xin; Wang Jianbin

    2012-07-15

    The lower hybrid current drive (LHCD) is one of the promising methods not only for driving the non-inductive current required for steady-state tokamak operation, but also for controlling the plasma current profile to improve confinement in tokamak experiments. A direct consequence of experimental imperfection is difficult to obtain reliable estimate of the radial diffusion coefficient (D{sub st}) of the lower hybrid driven current. In this paper, the radial profile of D{sub st} is estimated to investigate its effect on the current driven by lower hybrid wave (LHW) in Experimental Advanced Superconducting Tokamak. Compared with the case of the constant radial diffusion coefficient, the efficiency of LHW driven current with the radial dependent diffusion coefficient D{sub st} ({rho}) becomes either higher or lower with respect to the plasma parameters, such as the density and the magnetic fluctuation. It is also found that the profiles of the LHW driven current are different. Therefore, it is necessary to consider the radial dependence of D{sub st} in order to get an accurate and reliable result in the numerical simulation of LHCD.

  8. Verification of maximum radial power peaking factor due to insertion of FPM-LEU target in the core of RSG-GAS reactor

    SciTech Connect (OSTI)

    Setyawan, Daddy; Rohman, Budi

    2014-09-30

    Verification of Maximum Radial Power Peaking Factor due to insertion of FPM-LEU target in the core of RSG-GAS Reactor. Radial Power Peaking Factor in RSG-GAS Reactor is a very important parameter for the safety of RSG-GAS reactor during operation. Data of radial power peaking factor due to the insertion of Fission Product Molybdenum with Low Enriched Uranium (FPM-LEU) was reported by PRSG to BAPETEN through the Safety Analysis Report RSG-GAS for FPM-LEU target irradiation. In order to support the evaluation of the Safety Analysis Report incorporated in the submission, the assessment unit of BAPETEN is carrying out independent assessment in order to verify safety related parameters in the SAR including neutronic aspect. The work includes verification to the maximum radial power peaking factor change due to the insertion of FPM-LEU target in RSG-GAS Reactor by computational method using MCNP5and ORIGEN2. From the results of calculations, the new maximum value of the radial power peaking factor due to the insertion of FPM-LEU target is 1.27. The results of calculations in this study showed a smaller value than 1.4 the limit allowed in the SAR.

  9. High flow rate nozzle system with production of uniform size droplets

    DOE Patents [OSTI]

    Stockel, I.H.

    1990-10-16

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.

  10. High flow rate nozzle system with production of uniform size droplets

    DOE Patents [OSTI]

    Stockel, Ivar H.

    1990-01-01

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.