Sample records for radar insar psinsar

  1. Synthetic Aperture Radar Persistent Scatterer Interferometry (PSInSAR) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0 - WarehousesSymerton,EV Jump to:Open Energy

  2. Detecting and monitoring UCG subsidence with InSAR

    SciTech Connect (OSTI)

    Mellors, R J; Foxall, W; Yang, X

    2012-03-23T23:59:59.000Z

    The use of interferometric synthetic aperture radar (InSAR) to measure surface subsidence caused by Underground Coal Gasification (UCG) is tested. InSAR is a remote sensing technique that uses Synthetic Aperture Radar images to make spatial images of surface deformation and may be deployed from satellite or an airplane. With current commercial satellite data, the technique works best in areas with little vegetation or farming activity. UCG subsidence is generally caused by roof collapse, which adversely affects UCG operations due to gas loss and is therefore important to monitor. Previous studies have demonstrated the usefulness of InSAR in measuring surface subsidence related to coal mining and surface deformation caused by a coal mining roof collapse in Crandall Canyon, Utah is imaged as a proof-of-concept. InSAR data is collected and processed over three known UCG operations including two pilot plants (Majuba, South Africa and Wulanchabu, China) and an operational plant (Angren, Uzbekistan). A clear f eature showing approximately 7 cm of subsidence is observed in the UCG field in Angren. Subsidence is not observed in the other two areas, which produce from deeper coal seams and processed a smaller volume. The results show that in some cases, InSAR is a useful tool to image UCG related subsidence. Data from newer satellites and improved algorithms will improve effectiveness.

  3. INVESTIGATION OF CRUSTAL MOTION IN THE TIEN SHAN USING INSAR

    SciTech Connect (OSTI)

    Mellors, R J

    2011-02-25T23:59:59.000Z

    The northern Tien Shan of Central Asia is an area of active mid-continent deformation. Although far from a plate boundary, this region has experienced 5 earthquakes larger than magnitude 7 in the past century and includes one event that may as be as large as Mw 8.0. Previous studies based on GPS measurements indicate on the order of 23 mm/yr of shortening across the entire Tien Shan and up to 15 mm/year in the northern Tien Shan (Figure 1). The seismic moment release rate appears comparable with the geodetic measured slip, at least to first order, suggesting that geodetic rates can be considered a proxy for accumulation rates of stress for seismic hazard estimation. Interferometric synthetic aperture radar may provide a means to make detailed spatial measurements and hence in identifying block boundaries and assisting in seismic hazard. Therefore, we hoped to define block boundaries by direct measurement and by identifying and resolving earthquake slip. Due to political instability in Kyrgzystan, the existing seismic network has not performed as well as required to precisely determine earthquake hypocenters in remote areas and hence InSAR is highly useful. In this paper we present the result of three earthquake studies and show that InSAR is useful for refining locations of teleseismically located earthquakes. ALOS PALSAR data is used to investigate crustal motion in the Tien Shan mountains of Central Asia. As part of the work, considerable software development was undertaken to process PALSAR data. This software has been made freely available. Two damaging earthquakes have been imaged in the Tien Shan and the locations provided by ALOS InSAR have helped to refine seismological velocity models. A third earthquake south of Kyrgyzstan was also imaged. The use of InSAR data and especially L band is therefore very useful in providing groundtruth for earthquake locations.

  4. Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations

    E-Print Network [OSTI]

    Sandwell, David T.

    Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey Anatolian Fault (NAF) in Turkey using interferometric synthetic aperture radar data from the Advanced Land Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties, J

  5. Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis

    Broader source: Energy.gov [DOE]

    Fining Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis presentation at the April 2013 peer review meeting held in Denver, Colorado.

  6. Monitoring EGS Stimulation and Reservoir Dynamics with InSAR...

    Broader source: Energy.gov (indexed) [DOE]

    Monitoring EGS Stimulation and Reservoir Dynamics with InSAR and MEQ Monitoring EGS Stimulation and Reservoir Dynamics with InSAR and MEQ Monitoring EGS Stimulation and Reservoir...

  7. Final Report (O1-ERD-051) Dynamic InSAR: Imaging Seismic Waves Remotely from Space

    SciTech Connect (OSTI)

    Vincent, P; Rodgers, A; Dodge, D; Zucca, J; Schultz, C; Walter, B; Portnoff, M

    2003-02-07T23:59:59.000Z

    The purpose of this LDRD project was to determine the feasibility of using InSAR (interferometric synthetic aperture radar) to image seismic waves remotely from space. If shown to be feasible, the long-term goal of this project would be to influence future SAR satellite missions and airborne SAR platforms to include a this new capability. This final report summarizes the accomplishments of the originally-planned 2-year project that was cut short to 1 year plus 2 months due to a funding priority change that occurred in the aftermath of the September 11th tragedy. The LDRD-ER project ''Dynamic InSAR: Imaging Seismic Waves from Space'' (01-ERD-051) began in October, (FY01) and ended in December (FY02). Consequently, most of the results and conclusions for this project are represented in the FY0l Annual Report. Nonetheless, additional conclusions and insights regarding the progress of this work are included in this report. In should be noted that this work was restarted and received additional funding under the NA-22 DOE Nonproliferation Program in FY03.

  8. Monitoring EGS Stimulation and Reservoir Dynamics with InSAR...

    Broader source: Energy.gov (indexed) [DOE]

    Monitoring EGS Stimulation and Reservoir Dynamics with InSAR and MEQ, DE-EE0005510 PI: Nicholas C. Davatzes Temple University Topic 4: Observation Tools and Data Collection System...

  9. Identification of mine collapses, explosions and earthquakes using INSAR: a preliminary investigation

    SciTech Connect (OSTI)

    Foxall, B; Sweeney, J J; Walter, W R

    1998-07-07T23:59:59.000Z

    Interferograms constmcted from satellite-borne synthetic aperture radar images have the capability of mapping sub-cm ground surface deformation over areas on the order of 100 x 100 km with a spatial resolution on the order of 10 meters. We investigate the utility of synthetic aperture radar interferomehy (InSAR) used in conjunction with regional seismic methods in detecting and discriminating different types of seismic events in the context of special event analysis for the CTBT. For this initial study, we carried out elastic dislocation modeling of underground explosions, mine collapses and small (M<5.5) shallow earthquakes to produce synthetic interferograms and then analyzed satellite radar data for a large mine collapse. The synthetic modeling shows that, for a given magnitude each type of event produces a distinctive pattern of ground deformation that can be recognized in, and recovered from, the corresponding interferogram. These diagnostic characteristics include not only differences in the polarities of surface displacements but also differences in displacement amplitudes from the different sources. The technique is especially sensitive to source depth, a parameter that is crucial in discriminating earthquakes from the other event types but is often very poorly constrained by regional seismic data alone. The ERS radar data analyzed is from a ML 5.2 seismic event that occurred in southwestern Wyoming on February 3,1995. Although seismic data from the event have some characteristics of an underground explosion, based on seismological and geodetic data it has been identified as being caused by a large underground collapse in the Solvay Mine. Several pairs of before-collapse and after-collapse radar images were phase processed to obtain interferograms. The minimum time separation for a before-collapse and after-collapse pair was 548 days. Even with this long time separation, phase coherence between the image pairs was acceptable and a deformation map was successfully obtained. Two images, separated by 1 day and occurring after the mine collapse, were used to form a digital elevation map (DEM) that was used to correct for topography. The interferograms identify the large deformation at the Solvay Mine as well as some areas of lesser deformation near other mines in the area. The large amount of deformation at the Solvay Mine was identified, but (as predicted by our dislocation modeling) could not be quantified absolutely because of the incoherent interference pattern it produced

  10. Surface deformation analysis over a hydrocarbon reservoir using InSAR with ALOS-PALSAR data

    E-Print Network [OSTI]

    ?ahin, Sedar Cihan

    2013-01-01T23:59:59.000Z

    InSAR has been developed to estimate the temporal change on the surface of Earth by combining multiple SAR images acquired over the same area at different times. In the last two decades, in addition to conventional InSAR, ...

  11. Allan variance computed in space domain: Application to InSAR data to characterize noise and geophysical signal

    E-Print Network [OSTI]

    Cavalié, Olivier

    2015-01-01T23:59:59.000Z

    The Allan variance was introduced fifty years ago for analyzing the stability of frequency standards. Beside its metrological interest, it is also an estimator of the large trends of the power spectral density (PSD) of frequency deviation. For instance, the Allan variance is able to discriminate different types of noise characterized by different power laws in the PSD. But, it was also used in other fields: accelerometry, geophysics, geodesy, astrophysics and even finances! However, it seems that up to now, it has been exclusively applied for time series analysis. We propose here to use the Allan variance onto spatial data. Interferometric synthetic aperture radar (InSAR) is used in geophysics to image ground displacements in space (over the SAR image spatial coverage) and in time thank to the regular SAR image acquisitions by dedicated satellites. The main limitation of the technique is the atmospheric disturbances that affect the radar signal while traveling from the sensor to the ground and back. In this p...

  12. Analysis, comparison, and modeling of radar interferometry, date of surface deformation signals associated with underground explosions, mine collapses and earthquakes. Phase I: underground explosions, Nevada Test Site

    SciTech Connect (OSTI)

    Foxall, W; Vincent, P; Walter, W

    1999-07-23T23:59:59.000Z

    We have previously presented simple elastic deformation modeling results for three classes of seismic events of concern in monitoring the CTBT--underground explosions, mine collapses and earthquakes. Those results explored the theoretical detectability of each event type using synthetic aperture radar interferometry (InSAR) based on commercially available satellite data. In those studies we identified and compared the characteristics of synthetic interferograms that distinguish each event type, as well the ability of the interferograms to constrain source parameters. These idealized modeling results, together with preliminary analysis of InSAR data for the 1995 mb 5.2 Solvay mine collapse in southwestern Wyoming, suggested that InSAR data used in conjunction with regional seismic monitoring holds great potential for CTBT discrimination and seismic source analysis, as well as providing accurate ground truth parameters for regional calibration events. In this paper we further examine the detectability and ''discriminating'' power of InSAR by presenting results from InSAR data processing, analysis and modeling of the surface deformation signals associated with underground explosions. Specifically, we present results of a detailed study of coseismic and postseismic surface deformation signals associated with underground nuclear and chemical explosion tests at the Nevada Test Site (NTS). Several interferograms were formed from raw ERS-1/2 radar data covering different time spans and epochs beginning just prior to the last U.S. nuclear tests in 1992 and ending in 1996. These interferograms have yielded information about the nature and duration of the source processes that produced the surface deformations associated with these events. A critical result of this study is that significant post-event surface deformation associated with underground nuclear explosions detonated at depths in excess of 600 meters can be detected using differential radar interferometry. An immediate implication of this finding is that underground nuclear explosions may not need to be captured coseismically by radar images acquired before and after an event in order to be detectable. This has obvious advantages in CTBT monitoring since suspect seismic events--which usually can be located within a 100 km by 100 km area of an ERS-1/2 satellite frame by established seismic methods-can be imaged after the event has been identified and located by existing regional seismic networks. Key Words: InSAR, SLC images, interferogram, synthetic interferogram, ERS-1/2 frame, phase unwrapping, DEM, coseismic, postseismic, source parameters.

  13. Sandia National Laboratories: Radar Friendly Blades

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MitigationRadar Friendly Blades Radar Friendly Blades Some wind farms have the potential to cause interference with the normal operation of radar systems used for security, weather...

  14. Synthetic Aperture Radar Interferometry with 3 satellites

    E-Print Network [OSTI]

    Wong, Wallace D. (Wallace Dazheng)

    2005-01-01T23:59:59.000Z

    Our study investigates interferometric SAR (InSAR) post-processing height retrieval techniques. We explore the possible improvements by adding a third satellite to the two already in orbit, and examine some potential uses ...

  15. InSAR At Medicine Lake Area (Poland, Et Al., 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation,Information InSAR At Medicine Lake

  16. InSAR At North Brawley Geothermal Area (Eneva, Et Al., 2013) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation,Information InSAR At Medicine

  17. InSAR At Redfield Campus Area (Oppliger, Et Al., 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation,Information InSAR At

  18. InSAR At Salton Sea Area (Eneva And Adams, 2010) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation,Information InSAR AtEneva And

  19. InSAR At Walker-Lane Transitional Zone Region (Laney, 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation,Information InSAR AtEneva

  20. PoroTomo Subtask 3.4 Analysis of existing InSAR data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kurt Feigl

    Attributes of synthetic aperture radar (SAR) data acquired by TerraSAR-X and TandemX satellite missions and archived at WINSAR facility.

  1. PoroTomo Subtask 3.4 Analysis of existing InSAR data

    SciTech Connect (OSTI)

    Kurt Feigl

    2014-12-26T23:59:59.000Z

    Attributes of synthetic aperture radar (SAR) data acquired by TerraSAR-X and TandemX satellite missions and archived at WINSAR facility.

  2. Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations

    E-Print Network [OSTI]

    Fialko, Yuri

    Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey the central section of the North Anatolian Fault (NAF) in Turkey using interferometric synthetic aperture along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications

  3. Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial

    E-Print Network [OSTI]

    Amelung, Falk

    with an artificial recharge program, long-term, residual, inelastic aquifer-system compaction (subsidenceSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial rechargePermanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater

  4. Impulse radar studfinder

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

  5. Imaging synthetic aperture radar

    DOE Patents [OSTI]

    Burns, Bryan L. (Tijeras, NM); Cordaro, J. Thomas (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  6. Radar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:b <RGS Development BV JumpRTEV IncRadar

  7. ARM Scanning Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP Update Information on new,Scanning Radar Azores Graciosa

  8. ARM Climate Research Facility Radar Operations Plan

    SciTech Connect (OSTI)

    Voyles, JW

    2012-05-18T23:59:59.000Z

    Roles, responsibilities, and processes associated with Atmospheric Radiation Measurement (ARM) Radar Operations.

  9. Radar polarimetry for geoscience applications

    SciTech Connect (OSTI)

    Elachi, C.; Kuga, Y.; McDonald, K.; Sarabandi, K.; Ulaby, F.T.; Whitt, M.; Zebker, H.; van Zyl, J.J.

    1990-01-01T23:59:59.000Z

    A source book for remote sensing and radar design engineers, this text covers wave polarization, polarization synthesis, scattering matrices, SAR polarization systems, and an array of applications It covers: an introduction to the different mathematical representations used to describe scattering properties, a review of scatterometer system design and calibration techniques for use in polarimetric measurements, a study of specific polarimetric radar systems, such as the shuttle imaging radar C (SIR-C), that includes calibration and compression techniques, data processing guidelines, and design approaches.

  10. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  11. Signal processing for airborne bistatic radar 

    E-Print Network [OSTI]

    Ong, Kian P

    The major problem encountered by an airborne bistatic radar is the suppression of bistatic clutter. Unlike clutter echoes for a sidelooking airborne monostatic radar, bistatic clutter echoes are range dependent. Using ...

  12. Obstacle penetrating dynamic radar imaging system

    DOE Patents [OSTI]

    Romero, Carlos E. (Livermore, CA); Zumstein, James E. (Livermore, CA); Chang, John T. (Danville, CA); Leach, Jr.. Richard R. (Castro Valley, CA)

    2006-12-12T23:59:59.000Z

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  13. Antarctic Mapping Project ACTIVE RADAR CALIBRATOR

    E-Print Network [OSTI]

    Howat, Ian M.

    RADARSAT Antarctic Mapping Project ACTIVE RADAR CALIBRATOR INSTALLATION DOCUMENT October, 1999 ENVIRONMENTAL RESEARCH INSTITUTE OF MICHIGAN CENTER FOR EARTH SCIENCES ALASKA SAR FACILITY BYRD POLAR RESEARCH...................................................................................................................................................3 Active Radar Calibrator Testing

  14. PSInSAR | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCN Technology Jump to:PPL EnergyPlus LLCPPT

  15. EIA Workshop, Edinburgh, Scotland, September 19-22, 2000 1 USE OF INSAR IN SURVEILLANCE AND CONTROL OF A LARGE FIELD

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    21st EIA Workshop, Edinburgh, Scotland, September 19-22, 2000 1 USE OF INSAR IN SURVEILLANCE, injection data SQL Database Control & optimization Data integration & inversion Off-line On-line Field injection project Far field sensors Near field sensors Production, injection data SQL Database Control

  16. GMTI radar minimum detectable velocity.

    SciTech Connect (OSTI)

    Richards, John Alfred

    2011-04-01T23:59:59.000Z

    Minimum detectable velocity (MDV) is a fundamental consideration for the design, implementation, and exploitation of ground moving-target indication (GMTI) radar imaging modes. All single-phase-center air-to-ground radars are characterized by an MDV, or a minimum radial velocity below which motion of a discrete nonstationary target is indistinguishable from the relative motion between the platform and the ground. Targets with radial velocities less than MDV are typically overwhelmed by endoclutter ground returns, and are thus not generally detectable. Targets with radial velocities greater than MDV typically produce distinct returns falling outside of the endoclutter ground returns, and are thus generally discernible using straightforward detection algorithms. This document provides a straightforward derivation of MDV for an air-to-ground single-phase-center GMTI radar operating in an arbitrary geometry.

  17. Microwave emissions from police radar

    E-Print Network [OSTI]

    Fink, John Michael

    1994-01-01T23:59:59.000Z

    MICROWAVE EMISSIONS FROM POLICE RADAR A Thesis by JOHN MICHAEL FINK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1994 Major Subject...: Industrial Hygiene MICROWAVE EMISSIONS FROM POLICE RADAR A Thesis by JOHN MICHAEL FINK Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE John P. Wag (Chair of Committee) Jero e J. C...

  18. Two terminal micropower radar sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.

  19. Two terminal micropower radar sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-11-07T23:59:59.000Z

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.

  20. Minimizing Biases in Radar Precipitation Estimates

    E-Print Network [OSTI]

    McRoberts, Douglas B

    2014-12-08T23:59:59.000Z

    ................................................................................................. 57 3.4 The same as Fig. 3.3b, but with HRAP grid cells detected by the flagging algorithm (gray diamonds) in the 90 km – 100 km annulus in the KABR radar domain .......................................................................... 62 3.5... ...................... 163 xiii FIGURE Page 5.1 Same as Fig. 3.1, but without radar locations or boundaries for radar domains ................................................................................................... 169 5.2 (a) Stage IV 1-month Po...

  1. A land based radar polarimeter processing system

    E-Print Network [OSTI]

    Kronke, Chester William

    1984-01-01T23:59:59.000Z

    Assignments 4 Indicator Circuit Read Port Assignments. 5 Interpretation of Indicator Circuit Data . 6 RF Head Common Control Port Signal Assignments . 7 iSBC-80/24 Parallel I/O Summary. 8 iSBX-311 Analog Input Signal Assignments 9 Memory Map... Polarimeter Antennas 2 Azimuthal Angle of Radar Polarimeter Boom. 3 Block Diagram of the Radar Polarimeter System. 4 Block Diagram of Radar Hardware. 10 5 Microwave Transceiver Circuit Transfer Switches Controlled by RDADS. 12 6 Block Diagram...

  2. Radar range measurements in the atmosphere.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-02-01T23:59:59.000Z

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  3. Radar network communication through sensing of frequency hopping

    DOE Patents [OSTI]

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28T23:59:59.000Z

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  4. Sandia Energy - TTU Advanced Doppler Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radar technologies and techniques developed at TTU have the potential to revolutionize wind energy generation by providing comprehensive information about the modulated flows...

  5. Radar investigation of the Hockley salt dome

    E-Print Network [OSTI]

    Hluchanek, James Andrew

    1973-01-01T23:59:59.000Z

    : Geophysics RADAR INVESTIGATION OF THE HOCKLEY SALT DOME A Thesis by UAMES ANDREW HLUCHANEK A'pproved as to style and content by: (Head of Departme t ? Member) May 1. 973 ABSTRACT Radar investigation of the Hockley Salt Dome. . (Nay, 1973) James... Andrew Hluchanek, B. S. , Texas A&M University Directed by: Dr. Robert R. Unterberger Radar probing through salt was accomplished at 17 radar stations established in the United Salt Company mine at Hockley, Texas. The top of the salt dom is mapped...

  6. Sandia National Laboratories: TTU Advanced Doppler Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rotor sweep. Doppler radar technologies and techniques developed at TTU have the potential to revolutionize wind energy generation by providing comprehensive information...

  7. Sandia National Laboratories: National Air Space radar system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Space radar system Sandia Develops Tool to Evaluate Wind-TurbineRadar Impacts On December 3, 2014, in Computational Modeling & Simulation, Energy, News, News & Events,...

  8. Radar MeteorologyRadar Meteorology Feb 20, 1941 10 cm (S-band) radar used to track rain showers (Ligda)

    E-Print Network [OSTI]

    Rutledge, Steven

    (Ligda) Possibility of such observations was predicted by Ryde (1941) MIT Radiation Laboratory made in 1943 First operational weather radar, Panama, 1943 Science of radar meteorology born from WWII research fluctuations at 1/2 the wavelength of the incident radiation (a few meters in this case). Power returned from

  9. Ultra-wideband radar sensors and networks

    DOE Patents [OSTI]

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06T23:59:59.000Z

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  10. Sandia Energy - Radar Friendly Blades

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshoreLiveSustainablePriceRadar

  11. Computing the apparent centroid of radar targets

    SciTech Connect (OSTI)

    Lee, C.E.

    1996-12-31T23:59:59.000Z

    A high-frequency multibounce radar scattering code was used as a simulation platform for demonstrating an algorithm to compute the ARC of specific radar targets. To illustrate this simulation process, several targets models were used. Simulation results for a sphere model were used to determine the errors of approximation associated with the simulation; verifying the process. The severity of glint induced tracking errors was also illustrated using a model of an F-15 aircraft. It was shown, in a deterministic manner, that the ARC of a target can fall well outside its physical extent. Finally, the apparent radar centroid simulation based on a ray casting procedure is well suited for use on most massively parallel computing platforms and could lead to the development of a near real-time radar tracking simulation for applications such as endgame fuzing, survivability, and vulnerability analyses using specific radar targets and fuze algorithms.

  12. Tangential velocity measurement using interferometric MTI radar

    DOE Patents [OSTI]

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03T23:59:59.000Z

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  13. Magneto-Radar Hidden Metal Detector

    DOE Patents [OSTI]

    McEwan, Thomas E. (Las Vegas, NV)

    2005-07-05T23:59:59.000Z

    A varying magnetic field excites slight vibrations in an object and a radar sensor detects the vibrations at a harmonic of the excitation frequency. The synergy of the magnetic excitation and radar detection provides increased detection range compared to conventional magnetic metal detectors. The radar rejects background clutter by responding only to reflecting objects that are vibrating at a harmonic excitation field, thereby significantly improving detection reliability. As an exemplary arrangement, an ultra-wideband micropower impulse radar (MIR) is capable of being employed to provide superior materials penetration while providing range information. The magneto-radar may be applied to pre-screening magnetic resonance imaging (MRI) patients, landmine detection and finding hidden treasures.

  14. Observations of colocated optical and radar aurora H. Bahcivan,1

    E-Print Network [OSTI]

    Lummerzheim, Dirk

    Observations of colocated optical and radar aurora H. Bahcivan,1 D. L. Hysell,2 D. Lummerzheim,3 M of the E region radar aurora obtained with a 30 MHz imaging radar and the optical aurora (green line, the radar aurora in the vicinity of a stable evening auroral arc arises because of the arc's polarization

  15. Development of the Solid State X-band Radar and the Phased Array Radar System in Japan

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    Development of the Solid State X-band Radar and the Phased Array Radar System in Japan By DR. TOMOO array radar system have been developed. Toshiba has developed the latest model of weather radar of precipitation and to achieve drastic reduction of its size and life cycle cost. It is now well known

  16. Using doppler radar images to estimate aircraft navigational heading error

    DOE Patents [OSTI]

    Doerry, Armin W. (Albuquerque, NM); Jordan, Jay D. (Albuquerque, NM); Kim, Theodore J. (Albuquerque, NM)

    2012-07-03T23:59:59.000Z

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  17. Radar echo signatures versus relative precipitation

    E-Print Network [OSTI]

    Huber, Terry Alvin

    1987-01-01T23:59:59.000Z

    the relationship between cell-echo signatures and precipitation characteristics, and to support the hypothesis that, during the lifespan of any particular isolated convective cell, the relative rainfall rate, as determined by radar for a given volume scan... Cooperative Program) field experiment of 1979. Four isolated cases, two rainshowers and two thundershowers, were selected for study. Profiles from volume scans taken 10 minutes before, during, and 10 minutes after the maximum radar-determined rainfall rate...

  18. Ground Penetrating Radar in Hydrogeophysics

    SciTech Connect (OSTI)

    Hubbard, Susan; Lambot, S.; Binley, A.; Slob, E.; Hubbard, S.

    2008-01-15T23:59:59.000Z

    To meet the needs of a growing population and to provide us with a higher quality of life, increasing pressures are being placed on our environment through the development of agriculture, industry, and infrastructures. Soil erosion, groundwater depletion, salinization, and pollution have been recognized for decades as major threats to ecosystems and human health. More recently, the progressive substitution of fossil fuels by biofuels for energy production and climate change have been recognized as potential threats to our water resources and sustained agricultural productivity. The vadose zone mediates many of the processes that govern water resources and quality, such as the partition of precipitation into infiltration and runoff , groundwater recharge, contaminant transport, plant growth, evaporation, and energy exchanges between the Earth's surface and its atmosphere. It also determines soil organic carbon sequestration and carbon-cycle feedbacks, which could substantially impact climate change. The vadose zone's inherent spatial variability and inaccessibility precludes direct observation of the important subsurface processes. In a societal context where the development of sustainable and optimal environmental management strategies has become a priority, there is a strong prerequisite for the development of noninvasive characterization and monitoring techniques of the vadose zone. In particular, hydrogeophysical approaches applied at relevant scales are required to appraise dynamic subsurface phenomena and to develop optimal sustainability, exploitation, and remediation strategies. Among existing geophysical techniques, ground penetrating radar (GPR) technology is of particular interest for providing high-resolution subsurface images and specifically addressing water-related questions. Ground penetrating radar is based on the transmission and reception of VHF-UHF (30-3000 MHz) electromagnetic waves into the ground, whose propagation is determined by the soil electromagnetic properties and their spatial distribution. As the dielectric permittivity of water overwhelms the permittivity of other soil components, the presence of water in the soil principally governs GPR wave propagation. Therefore, GPR-derived dielectric permittivity is usually used as surrogate measure for soil water content. In the areas of unsaturated zone hydrology and water resources, GPR has been used to identify soil stratigraphy, to locate water tables, to follow wetting front movement, to estimate soil water content, to assist in subsurface hydraulic parameter identification, to assess soil salinity, and to support the monitoring of contaminants. The purpose of this special section of the Vadose Zone Journal is to present recent research advances and applications of GPR in hydrogeophysics, with a particular emphasis on vadose zone investigations. This special section includes contributions presented at the European Geosciences Union General Assembly 2006 (EGU 2006, Vienna, Austria) and the 11th International Conference on Ground Penetrating Radar (GPR 2006, Columbus, OH). The studies presented here deal with a wide range of surface and borehole GPR applications, including GPR sensitivity to contaminant plumes, new methods for soil water content determination, three-dimensional imaging of the subsurface, time-lapse monitoring of hydrodynamic events and inversion techniques for soil hydraulic properties estimation, and joint interpretation of GPR and electric resistivity tomography (ERT) data.

  19. The Accuracy of Radar Estimates of Ice Terminal Fall Speed from Vertically Pointing Doppler Radar Measurements

    E-Print Network [OSTI]

    Protat, Alain

    The Accuracy of Radar Estimates of Ice Terminal Fall Speed from Vertically Pointing Doppler Radar and 2835 MHz) are used to characterize the terminal fall speed of hydrometeors and the vertical air motion air velocity in ice clouds is small on average, as is assumed in terminal fall speed retrieval methods

  20. Stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Vadnais, Kenneth G. (Ojai, CA); Bashforth, Michael B. (Buellton, CA); Lewallen, Tricia S. (Ventura, CA); Nammath, Sharyn R. (Santa Barbara, CA)

    1994-01-01T23:59:59.000Z

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  1. Tracking butterfly flight paths across the landscape with harmonic radar

    E-Print Network [OSTI]

    Northampton, University of

    Tracking butterfly flight paths across the landscape with harmonic radar E. T. Cant1,*, A. D. Smith of five butterfly species were successfully tracked using harmonic radar within an agricultural landscape. Keywords: butterfly flight; harmonic radar; linear landscape features; Aglais urticae; Inachis io 1

  2. Bias adjustment of radar-based 3-hour precipitation accumulations

    E-Print Network [OSTI]

    Stoffelen, Ad

    projection of KNMI radar images 55 4 #12;Chapter 1 Introduction Since June 2003 a daily gauge is generated at 1400 UTC when the majority of the manual gauge observations have been reported. The radar-gaugeBias adjustment of radar-based 3-hour precipitation accumulations Iwan Holleman Technical Report

  3. Climatology of extreme rainfall from rain gauges and weather radar

    E-Print Network [OSTI]

    Stoffelen, Ad

    by conventional rain gauge networks. A 10-year radar-based climatology of rainfall depths for durations of 15 minClimatology of extreme rainfall from rain gauges and weather radar Aart Overeem #12;Thesis:30 PM in the Aula #12;Aart Overeem Climatology of extreme rainfall from rain gauges and weather radar

  4. Soil-penetrating synthetic aperture radar

    SciTech Connect (OSTI)

    Boverie, B.; Brock, B.C.; Doerry, A.W.

    1994-12-01T23:59:59.000Z

    This report summarizes the results for the first year of a two year Laboratory Directed Research and Development (LDRD) effort. This effort included a system study, preliminary data acquisition, and preliminary algorithm development. The system study determined the optimum frequency and bandwidth, surveyed soil parameters and targets, and defined radar cross section in lossy media. The data acquisition imaged buried objects with a rail-SAR. Algorithm development included a radar echo model, three-dimensional processing, sidelobe optimization, phase history data interpolation, and clutter estimation/cancellation.

  5. USAGE OF RADARS FOR WIND ENERGY APPICATIONS Determine the benefit of using radar observations for wind energy applications by

    E-Print Network [OSTI]

    USAGE OF RADARS FOR WIND ENERGY APPICATIONS TASK: Determine the benefit of using radar observations for wind energy applications by analyzing i) the resolution effects and ii) sensitivity effects of weather radar systems. MOTIVATION: Wind energy applications strongly focus high-resolution wind observations

  6. Some non-precipitation radar echoes as observed by CPS-9 radar

    E-Print Network [OSTI]

    Luckenbach, Guenther Edward

    1959-01-01T23:59:59.000Z

    . Solar Signal Lightning Metallic Objects Anomalous Propagation 23 23 25 25 1. 23 July 1958 5 August 1958 7 August 1958 13 August 1958 5. 8 September 1958. 9 September 1958 Cold Front 32 32 41 41 47 10. Lightning Layers - Radiosonde... artificially produced boundaries of temperature~ humidity, and turbulence but failed to detect angels on 3. 2 and 1. 25 cm radar. No means independent of the radar for measuring the inhomogenities was employed. In 1948, Baldwin [ 2 ] suggested that angels...

  7. Motion Measurement for Synthetic Aperture Radar.

    SciTech Connect (OSTI)

    Doerry, Armin W.

    2015-01-01T23:59:59.000Z

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3 - D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  8. Doppler Radar Wind Profiles Iwan Holleman

    E-Print Network [OSTI]

    Stoffelen, Ad

    ). The potential impact of a network of boundary layer wind profilers and sodars for mesoscale wind analysisDoppler Radar Wind Profiles Iwan Holleman Scientific Report, KNMI WR-2003-02, 2003 #12;2 #12 Strategy 18 3 Methods for Wind Profile Retrieval 25 3.1 Radial Velocity from Local Wind Model 25 3

  9. Micropower impulse radar technology and applications

    SciTech Connect (OSTI)

    Mast, J., LLNL

    1998-04-15T23:59:59.000Z

    The LLNL-developed Micropower Impulse Radar (MIR) technology has quickly gone from laboratory concept to embedded circuitry in numerous government and commercial systems in the last few years[l]. The main ideas behind MIR, invented by T. McEwan in the Laser Program, are the generation and detection systems for extremely low- power ultra-wideband pulses in the gigaHertz regime using low-cost components. These ideas, coupled with new antenna systems, timing and radio-frequency (RF) circuitry, computer interfaces, and signal processing, have provided the catalyst for a new generation of compact radar systems. Over the past several years we have concentrated on a number of applications of MIR which address a number of remote-sensing applications relevant to emerging programs in defense, transportation, medical, and environmental research. Some of the past commercial successes have been widely publicized [2] and are only now starting to become available for market. Over 30 patents have been filed and over 15 licenses have been signed on various aspects of the MIR technology. In addition, higher performance systems are under development for specific laboratory programs and government reimbursables. The MIR is an ultra- wideband, range-gated radar system that provides the enabling hardware technology used in the research areas mentioned above. It has numerous performance parameters that can be Selected by careful design to fit the requirements. We have improved the baseline, short- range, MIR system to demonstrate its effectiveness. The radar operates over the hand from approximately I to 4 GHz with pulse repetition frequencies up to 10 MHz. It provides a potential range resolution of I cm at ranges of greater than 20 m. We have developed a suite of algorithms for using MIR for image formation. These algorithms currently support Synthetic aperture and multistate array geometries. This baseline MIR radar imaging system has been used for several programmatic applications.

  10. A framework for comparing geomechanical models of InSAR-measured surface deformation

    E-Print Network [OSTI]

    De Laplante, Neil Edward James

    2011-01-01T23:59:59.000Z

    High-quality Interferometric Synthetic Aperture Radar (InSAR) surface deformation data for field sites around the world has become widely available over the past decade. Geomechanical models based on InSAR data occur ...

  11. Development of a Drillrod/Telemetry Radar

    SciTech Connect (OSTI)

    Raton Technology Research, Inc.

    1999-11-12T23:59:59.000Z

    Efficient extraction of deeply buried natural resources is dependent upon accurate geologic models. The model becomes the basis for developing plans for extraction of the resource. Geoscientists working in geothermal and hydrocarbon recovery have a great deal in common with fellow geoscientists working in the mining industry. They appreciate the intractable problem of increasing the depth of investigation to tens of meters from the wellbore. The goal of this project was to develop a borehole radar tool to acquire data within tens of meters from the wellbore. For geothermal and hydrocarbon applications, the tool was to acquire data for mapping fractures surrounding the wellbore. In mining of coal, the radar acquires data for determining coal seam thickness and detecting geologic anomalies ahead of mining.

  12. Digitized dual wavelength radar data from a Texas thunderstorm

    E-Print Network [OSTI]

    Radlein, Robin Ann

    1977-01-01T23:59:59.000Z

    DIGITIZED DUAL WAVL'LENGTH RADAR DATA FROM A TEXAS THUNDERSTORM A Thesis ROBIN ANN RADLEIN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree ol MASTER OF SCIENCE December 1977... Wavelength Radar Data from a Texas Thunderstorm. (December 1977) Robin Ann Radlein~ B. S , Texas ASN University Chairman of Advisory Committee: Dr Vance Noyer Nulti-tilt digitized dual wavelength radar data collected during a Texas thunderstorm were...

  13. Raindrop size distributions and radar reflectivity-rain rate relationships for radar hydrology Hydrology and Earth System Sciences, 5(4), 615627 (2001) EGS

    E-Print Network [OSTI]

    Boyer, Edmond

    Raindrop size distributions and radar reflectivity-rain rate relationships for radar hydrology 615 Hydrology and Earth System Sciences, 5(4), 615­627 (2001) © EGS Raindrop size distributions and radar reflectivity­rain rate relationships for radar hydrology* Remko Uijlenhoet1 Sub-department Water Resources

  14. Applications of Radar Interferometry to Detect Surface Deformation...

    Open Energy Info (EERE)

    Valley in Southern California Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Applications of Radar Interferometry to Detect Surface...

  15. NNSA Completes its Critical Radar Arming and Fuzing Test for...

    National Nuclear Security Administration (NNSA)

    its Critical Radar Arming and Fuzing Test for the W88 ALT 370 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  16. Design and Development of Dual Polarized, Stacked Patch Antenna Element for S-Band Dual-Pol Weather Radar Array

    E-Print Network [OSTI]

    Bhardwaj, Shubhendu

    2012-01-01T23:59:59.000Z

    in Weather Detection . . . . . . . . . . . . . . . . . .for S-Band Weather Radar . . . . . . . . . . . . . Dual-polpatterns of polarimetric weather radars,” Journal of

  17. PSInSAR (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York:Ozark, Alabama:ASES 2003, Austin TXScience

  18. 32nd Conf. Radar Meteorology Albuquerque, NM, 2005

    E-Print Network [OSTI]

    Xue, Ming

    32nd Conf. Radar Meteorology Albuquerque, NM, 2005 J1J.4 MULTIPLE DOPPLER WIND ANALYSIS and smoothness constraints by incorporating them into a cost function yielding the 3-D wind. In this study, this 3DVAR analysis method is adapted to perform multiple Doppler wind analysis for CASA radars, together

  19. Radar-cross-section reduction of wind turbines. part 1.

    SciTech Connect (OSTI)

    Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

    2012-03-05T23:59:59.000Z

    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

  20. Greenland snow accumulation estimates from satellite radar scatterometer data

    E-Print Network [OSTI]

    Long, David G.

    Greenland snow accumulation estimates from satellite radar scatterometer data Mark R. Drinkwater accumulation on the Greenland ice sheet. Microwave radar backscatter images of Greenland are derived using (or decrease) in net snow accumulation on the polar ice caps. The net mass balance of the Greenland

  1. Weather Radar Control System Seidu Ibrahim; Advisor: Eric J. Knapp

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Weather Radar Control System Seidu Ibrahim; Advisor: Eric J. Knapp Dept. of Electrical and Computer Engineering University of Massachusetts, Amherst Abstract Weather radar is an important part of the national infrastructure that is used in producing forecasts and issuing hazardous weather warnings. Traditional weather

  2. Cassini Radio Detection and Ranging (RADAR): Earth and Venus observations

    E-Print Network [OSTI]

    Lorenz, Ralph D.

    of operation is as a synthetic aperture radar (SAR) mapper at Titan, with the fan-shaped beam dragged across of incidence angles. During all of the active modes, SAR, altimeter, and scat- terometer, the microwave power but rather was operated to obtain calibration data and rehearse instrument operations. 2. Venus The RADAR

  3. Ultrawideband radar clutter measurements of forested terrain, 1991--1992

    SciTech Connect (OSTI)

    Sheen, D.M.; Severtsen, R.H.; Prince, J.M.; Davis, K.C.; Collins, H.D.

    1993-06-01T23:59:59.000Z

    The ultrawideband (UWB) radar clutter measurements project was conducted to provide radar clutter data for new ultrawideband radar systems which are currently under development. A particular goal of this project is to determine if conventional narrow band clutter data may be extrapolated to the UWB case. This report documents measurements conducted in 1991 and additional measurements conducted in 1992. The original project consisted of clutter measurements of forested terrain in the Olympic National Forest near Sequim, WA. The impulse radar system used a 30 kW peak impulse source with a 2 Gigasample/second digitizer to form a UHF (300--1000 MHz) ultrawideband impulse radar system. Additional measurements were conducted in parallel using a Systems Planning Corporation (SPC) step-chirp radar system. This system utilized pulse widths of 1330 nanoseconds over a bandwidth of 300--1000 MHz to obtain similar resolution to the impulse system. Due to the slow digitizer data throughput in the impulse radar system, data collection rates were significantly higher using the step-chirp system. Additional forest clutter measurements were undertaken in 1992 to increase the amount of data available, and especially to increase the amount of data from the impulse radar system.

  4. Radar transponder apparatus and signal processing technique

    DOE Patents [OSTI]

    Axline, Jr., Robert M. (Albuquerque, NM); Sloan, George R. (Albuquerque, NM); Spalding, Richard E. (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  5. Impulse radar with swept range gate

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-09-08T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna (10), so a background subtraction is not needed, simplifying the circuitry while improving performance. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive (24) and transmit cavities (22) by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. The antennas can be arranged in a side-by-side parallel spaced apart configuration or in a coplanar opposed configuration which significantly reduces main bang coupling.

  6. Impulse radar with swept range gate

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-09-08T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. The antennas can be arranged in a side-by-side parallel spaced apart configuration or in a coplanar opposed configuration which significantly reduces main bang coupling. 25 figs.

  7. Assembly flow simulation of a radar

    SciTech Connect (OSTI)

    Rutherford, W.C.; Biggs, P.M.

    1993-10-01T23:59:59.000Z

    A discrete event simulation model has been developed to predict the assembly flow time of a new radar product. The simulation was the key tool employed to identify flow constraints. The radar, production facility, and equipment complement were designed, arranged, and selected to provide the most manufacturable assembly possible. A goal was to reduce the assembly and testing cycle time from twenty-six weeks to six weeks. A computer software simulation package (SLAM II) was utilized as the foundation a for simulating the assembly flow time. FORTRAN subroutines were incorporated into the software to deal with unique flow circumstances that were not accommodated by the software. Detailed information relating to the assembly operations was provided by a team selected from the engineering, manufacturing management, inspection, and production assembly staff. The simulation verified that it would be possible to achieve the cycle time goal of six weeks. Equipment and manpower constraints were identified during the simulation process and adjusted as required to achieve the flow with a given monthly production requirement. The simulation is being maintained as a planning tool to be used to identify constraints in the event that monthly output is increased. ``What-if`` studies have been conducted to identify the cost of reducing constraints caused by increases in output requirement.

  8. Calibration of the groundbased radars during CLARE'98 Robin J. Hogan

    E-Print Network [OSTI]

    Hogan, Robin

    Calibration of the ground­based radars during CLARE'98 Robin J. Hogan Department of Meteorology. The approach used to calibrate the radars is to start with the absolute calibration provided by the Rabelais radar in Rayleigh­scattering light rain or cloud. Finally the W­band radars are calibrated

  9. A 10-year radar-based climatology of rainfall Aart Overeem, Iwan Holleman, Adri Buishand

    E-Print Network [OSTI]

    Stoffelen, Ad

    the derivation of a 10- year radar-based precipitation climatology for the Netherlands. Using rain gauges of the radar-based accumulations with an independent gauge network confirms the quality of the data set. Finally, the radar data are used to obtain exceedance probabilities and maximum rainfall depths. II. RADAR

  10. ELEVATION-DEPENDENT TRENDS IN PRECIPITATION OBSERVED BY THE NAME RADAR NETWORK

    E-Print Network [OSTI]

    Rutledge, Steven

    i THESIS ELEVATION-DEPENDENT TRENDS IN PRECIPITATION OBSERVED BY THE NAME RADAR NETWORK Submitted BY ANGELA K. ROWE ENTITLED ELEVATION- DEPENDENT TRENDS IN PRECIPITATION OBSERVED BY THE NAME RADAR NETWORK BY THE NAME RADAR NETWORK Radar data from the 2004 North American Monsoon Experiment (NAME) Enhanced Observing

  11. Considerations for the use of radar-derived precipitation estimates in determining return intervals for extreme

    E-Print Network [OSTI]

    Allen, Robert J.

    to those based on traditional rain gauge networks. For both the radar and gauge data, increasing, considerable differences between radar ARF and gauge ARF exist. Radar ARF decays at a faster rate (with increasing area) than gauge ARF. For a basin size of 20,000 km2 , the percent difference between radar ARF

  12. Radar echo, Doppler Effect and Radar detection in the uniformly accelerated reference frame

    E-Print Network [OSTI]

    Bernhard Rothenstein; Stefan Popescu

    2006-09-14T23:59:59.000Z

    The uniformly accelerated reference frame described by Hamilton, Desloge and Philpott involves the observers who perform the hyperbolic motion with constant proper acceleration gi. They start to move from different distances measured from the origin O of the inertial reference frame K(XOY), along its OX axis with zero initial velocity. Equipped with clocks and light sources they are engaged with each other in Radar echo, Doppler Effect and Radar detection experiments. They are also engaged in the same experiments with an inertial observer at rest in K(XOY) and located at its origin O. We derive formulas that account for the experiments mentioned above. We study also the landing conditions of the accelerating observers on a uniformly moving platform.

  13. Automatic signal processing of front monitor radar for tunneling machines

    SciTech Connect (OSTI)

    Sato, Toru [Kyoto Univ. (Japan). Dept. of Electronics and Communication] [Kyoto Univ. (Japan). Dept. of Electronics and Communication; Takeda, Kenya [NTT Co. Ltd., Chiba (Japan)] [NTT Co. Ltd., Chiba (Japan); Nagamatsu, Takashi [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)] [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Wakayama, Toshio [Mitsubishi Electric Corp., Kamakura, Kanagawa (Japan)] [Mitsubishi Electric Corp., Kamakura, Kanagawa (Japan); Kimura, Iwane [Osaka Inst. of Tech., Hirakata, Osaka (Japan)] [Osaka Inst. of Tech., Hirakata, Osaka (Japan); Shinbo, Tetsuya [Komatsu Co. Ltd., Kanagawa (Japan)] [Komatsu Co. Ltd., Kanagawa (Japan)

    1997-03-01T23:59:59.000Z

    It is planned to install a front monitoring impulse radar on the surface of the rotating drill of tunneling machines in order to detect obstacles such as casing pipes of vertical borings. The conventional aperture synthesis technique can no more be applied to such cases because the radar image of a pipe dies not constituent a hyperbola as is the case for linear scanning radars. The authors have developed a special purpose signal processing algorithm with the aid of the discrete model fitting method, which can be used for any pattern of scanning. The details of the algorithm are presented together with the results of numerical simulations and test site experiments.

  14. Development and characterization analysis of a radar polarimeter

    E-Print Network [OSTI]

    Bong, Soei Siang

    1984-01-01T23:59:59.000Z

    . OPERATIONAL ANALYSIS OF THE RPS Assembling the RPS. Theoretical Calculations. Losses in the RF Heads. 1. The L-Band Radar Head (1. 6 GHz). 2. The C-Band Radar Head (4. 75 GHz) 3. The X-Band Radar Head (10. 003 GHz) RF Head Stability as Measured... of the Components in the IF Section. List of Components in the L-Band RF Head. List of Components in the C-Band RF Head. List of Components in the X-Band RF Head. Detail List of Components in the L-Band RF Head . Specifications of the Components in the L...

  15. Development and characterization analysis of a radar polarimeter 

    E-Print Network [OSTI]

    Bong, Soei Siang

    1984-01-01T23:59:59.000Z

    . OPERATIONAL ANALYSIS OF THE RPS Assembling the RPS. Theoretical Calculations. Losses in the RF Heads. 1. The L-Band Radar Head (1. 6 GHz). 2. The C-Band Radar Head (4. 75 GHz) 3. The X-Band Radar Head (10. 003 GHz) RF Head Stability as Measured... of the Components in the IF Section. List of Components in the L-Band RF Head. List of Components in the C-Band RF Head. List of Components in the X-Band RF Head. Detail List of Components in the L-Band RF Head . Specifications of the Components in the L...

  16. Researchers in the faculty of Civil Engineering and

    E-Print Network [OSTI]

    Langendoen, Koen

    . The measurements can be used to predict natural hazards like earthquakes or volcanic eruptions, or to assess, such as oil & gas, transport, infrastructure and construction, rely heavily on geodetic data. Scientifically-called Interferometric Synthetic Aperture Radar systems (InSAR). Pros and cons of InSAR With InSAR it is possible

  17. Monitoring internal organ motion with continuous wave radar in CT

    SciTech Connect (OSTI)

    Pfanner, Florian [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany)] [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany); Maier, Joscha [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)] [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Allmendinger, Thomas; Flohr, Thomas [Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany)] [Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany); Kachelrieß, Marc [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)] [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2013-09-15T23:59:59.000Z

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the measurements of the test persons, there is a very good correlation (?= 0.917) between the respiratory motion phases received by the radar system and the external motion monitor. Our concept of using an array of transmitting antennas turned out to be widely insensitive to the positioning of the test persons. A time shift between the respiratory motion curves recorded with the radar system and the motion curves from the external respiratory monitor was observed which indicates a slight difference between internal organ motion and motion detected by the external respiratory monitor. The simulations were in good accordance with the measurements.Conclusions: A continuous wave radar operating in the near field of the antennas can be used to determine the respiratory motion of humans accurately. In contrast to trigger systems used today, the radar system is able to measure motion inside the body. If such a monitor was routinely available in clinical CT, it would be possible optimizing the scan start with respect to the respiratory state of the patient. Breathing commands would potentially widely be avoided, and as far as uncooperative patients or children are concerned, less sedation might be necessary. Further applications of the radar system could be in radiation therapy or interventional imaging for instance.

  18. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12T23:59:59.000Z

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  19. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, Michael B. (Buellton, CA); Gardner, Duane (Santa Maria, CA); Patrick, Douglas (Santa Maria, CA); Lewallen, Tricia A. (Ventura, CA); Nammath, Sharyn R. (Santa Barbara, CA); Painter, Kelly D. (Goleta, CA); Vadnais, Kenneth G. (Alexandria, VA)

    1996-01-01T23:59:59.000Z

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  20. Coherent radar ice thickness measurements over the Greenland ice sheet

    E-Print Network [OSTI]

    Gogineni, S. Prasad; Tammana, Dilip; Braaten, David A.; Leuschen, C.; Legarsky, J.; Kanagaratnam, P.; Stiles, J.; Allen, C.; Jezek, K.; Akins, T.

    2001-12-27T23:59:59.000Z

    We developed two 150-MHz coherent radar depth sounders for ice thickness measurements over the Greenland ice sheet. We developed one of these using connectorized components and the other using radio frequency integrated circuits (RFICs). Both...

  1. Sea surface wave reconstruction from marine radar images

    E-Print Network [OSTI]

    Qi, Yusheng, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    The X-band marine radar is one type of remote sensing technology which is being increasingly used to measure sea surface waves nowadays. In this thesis, how to reconstruct sea surface wave elevation maps from X-band marine ...

  2. Inversion of synthetic aperture radar interferograms for sources...

    Open Energy Info (EERE)

    synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to...

  3. Earth curvature and atmospheric refraction effects on radar signal propagation.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-01-01T23:59:59.000Z

    The earth isn't flat, and radar beams don't travel straight. This becomes more noticeable as range increases, particularly at shallow depression/grazing angles. This report explores models for characterizing this behavior.

  4. Radar Vehicle Detection Within Four Quadrant Gate Crossings

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    of the exit gate · Less delay between entry and exit gate descent · Extends the exit gate delay only) Methodology 4) Results 5) Conclusions 6) Acknowledgments Exit Gate Operating Modes (EGOM) Radar Vehicle

  5. A spatial display for Ground-Penetrating Radar change detection

    E-Print Network [OSTI]

    Quimby, Paul W

    2013-01-01T23:59:59.000Z

    Ground-Penetrating Radar (GPR) enables the exploration and mapping of subterranean volumes for applications such as construction, humanitarian demining, archeology, and environmental science. In each of these applications, ...

  6. Sandia National Laboratories: evaluating wind-turbine/radar impacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Space (NAS) radar system, which has led to a blanket rejection of several wind-farm developments. To improve the siting and ... Last Updated: December 3, 2014 Go To...

  7. An airborne digital processor for radar scatterometer data

    E-Print Network [OSTI]

    Yeadon, David Steven

    1977-01-01T23:59:59.000Z

    AN AIRBORNE DIGITAL PROCESSOR FOR RADAR SCATTEROMETER DATA A Thesis by DAVID STEVEN YEADON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1977... Major Subject: Electrical Engineering AN AIRBORNE DIGITAL PROCESSOR FOR RADAR SCATTEROMETER DATA A Thesis by DAVID STEVEN YEADON Approved as to style and content by: (Chairman o Committee) Head of epartment) ( (Member ) (Member) August 1977...

  8. Differences in radar derived rainfall amounts due to sampling intervals

    E-Print Network [OSTI]

    Zdenek, David James

    1986-01-01T23:59:59.000Z

    DIFFERENCES IN RADAR DERIVED RAINFALL AMOUNTS DUE TO SAMPLING INTERVALS A Thesis by DAVID JAMES ZDENEK Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 1986 Major Subject: Meteorology DIFFERENCES IN RADAR DERIVED RAINFALL AMOUNTS DUE TO SAMPLING INTERVALS A Thesis by DAVID JAMES ZDENEK Approved as to style and content by: eorge L. Huebner (Chairman of Committee) CP~ CG~& Robert C...

  9. Conventional and synthetic aperature processing for airborne ground penetrating radar

    SciTech Connect (OSTI)

    Cameron, R.M. [Airborne Environmental Surveys, Santa Maria, CA (United States); Simkins, W.L.; Brown, R.D. [MSB Technologies, Inc., Rome, NY (United States)

    1994-12-31T23:59:59.000Z

    For the past four years Airborne Environmental Surveys (AES), a Division of Era Aviation, Inc. has used unique and patented airborne Frequency-Modulated, Continuous Wave (FM-CW) radars and processes for detecting and mapping subsurface phenomena. Primary application has focused on the detection of man-made objects in landfills, hazardous waste sites (some of which contain unexploded ordinance), and subsurface plumes of refined free-floating hydrocarbons. Recently, MSB Technologies, Inc. (MSB) has developed a form of synthetic aperture radar processing (SAR), called GPSAR{trademark}, that is tailored especially for the AES radars. Used as an adjunct to more conventional airborne ground-penetrating radar data processing techniques, GPSAR takes advantage of the radars` coherent transmission and produces imagery that is better focused and more accurate in determining an object`s range and true depth. This paper describes the iterative stages of data processing and analysis used with the radars and shows the added advantages that GPSAR processing offers.

  10. ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS

    SciTech Connect (OSTI)

    Chiswell, S.; Buckley, R.

    2009-01-15T23:59:59.000Z

    During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has made higher resolution real-time model simulations possible, the need to obtain observations to both initialize numerical models and verify their output has become increasingly important. The assimilation of high resolution radar observations therefore provides a vital component in the development and utility of numerical model forecasts for both weather forecasting and contaminant transport, including future opportunities to improve wet deposition computations explicitly.

  11. Measuring soil moisture with imaging radars

    SciTech Connect (OSTI)

    Dubois, P.C.; Zyl, J. van [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.] [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.; Engman, T. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)] [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1995-07-01T23:59:59.000Z

    An empirical algorithm for the retrieval of soil moisture content and surface Root Mean Square (RMS) height from remotely sensed radar data was developed using scatterometer data. The algorithm is optimized for bare surfaces and requires two copolarized channels at a frequency between 1.5 and 11 GHz. It gives best results for kh {le} 2.5, {mu}{sub {upsilon}}{le}35%, and {theta}{ge}30{degree}. Omitting the usually weaker hv-polarized returns makes the algorithm less sensitive to system cross-talk and system noise, simplify the calibration process and adds robustness to the algorithm in the presence of vegetation. However, inversion results indicate that significant amounts of vegetation (NDVI>0.4) cause the algorithm to underestimate soil moisture and overestimate RMS height. A simple criteria based on the {sigma}{sub hv}{sup 0}/{sigma}{sub vv}{sup 0} ratio is developed to select the areas where the inversion is not impaired by the vegetation. The inversion accuracy is assessed on the original scatterometer data sets but also on several SAR data sets by comparing the derived soil moisture values with in-situ measurements collected over a variety of scenes between 1991 and 1994. Both spaceborne (SIR-C) and airborne (AIRSAR) data are used in the test. Over this large sample of conditions, the RMS error in the soil moisture estimate is found to be less than 4.2% soil moisture.

  12. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    SciTech Connect (OSTI)

    Huang, Xianjun, E-mail: xianjun.huang@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Hu, Zhirun [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Liu, Peiguo [College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-11-15T23:59:59.000Z

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.

  13. Incoherent scatter radar detection of enhanced plasma line in ionospheric E-region over Arecibo

    E-Print Network [OSTI]

    Pradipta, Rezy

    2006-01-01T23:59:59.000Z

    A series of incoherent scatter radar (ISR) observation were conducted at the Arecibo Observatory from December 27, 2005 until January 3, 2006. From plasma line measurements that were taken during this radar campaign, we ...

  14. Focused synthetic aperture radar processing of ice-sounder data collected over the Greenland ice sheet

    E-Print Network [OSTI]

    Legarsky, J.; Gogineni, Sivaprasad; Akins, T. L.

    2001-10-01T23:59:59.000Z

    We developed a synthetic aperture radar (SAR) processing algorithm for airborne/spaceborne ice-sounding radar systems and applied it to data collected in Greenland. By using focused SAR (phase-corrected coherent averaging), we improved along...

  15. Accuracy and resolution of shuttle radar topography mission data Bridget Smith and David Sandwell

    E-Print Network [OSTI]

    Sandwell, David T.

    Accuracy and resolution of shuttle radar topography mission data Bridget Smith and David Sandwell: General or miscellaneous. Citation: Smith, B., and D. Sandwell, Accuracy and resolution of shuttle radar

  16. Near real-time runoff estimation using spatially distributed radar rainfall data

    E-Print Network [OSTI]

    Hadley, Jennifer Lyn

    2004-09-30T23:59:59.000Z

    associated with rainfall. Radar networks, such as the Next Generation Weather Radar (NEXRAD) of the National Weather Service (NWS), which are widely available and continue to improve in quality and resolution, can accomplish these tasks. In general, a...

  17. Near Real-Time Runoff Estimation Using Spatially Distributed Radar Rainfall Data

    E-Print Network [OSTI]

    Hadley, Jennifer Lynn

    associated with rainfall. Radar networks, such as the Next Generation Weather Radar (NEXRAD) of the National Weather Service (NWS), which are widely available and continue to improve in quality and resolution, can accomplish these tasks. In general, a...

  18. Antarctica X-band MiniSAR crevasse detection radar : final report.

    SciTech Connect (OSTI)

    Sander, Grant J.; Bickel, Douglas Lloyd

    2007-09-01T23:59:59.000Z

    This document is the final report for the Antarctica Synthetic Aperture Radar (SAR) Project. The project involved the modification of a Sandia National Laboratories MiniSAR system to operate at X-band in order to assess the feasibility of an airborne radar to detect crevasses in Antarctica. This radar successfully detected known crevasses at various geometries. The best results were obtained for synthetic aperture radar resolutions of at most one foot and finer. In addition to the main goal of detecting crevasses, the radar was used to assess conops for a future operational radar. The radar scanned large areas to identify potential safe landing zones. In addition, the radar was used to investigate looking at objects on the surface and below the surface of the ice. This document includes discussion of the hardware development, system capabilities, and results from data collections in Antarctica.

  19. Analog FIR Filter Used for Range-Optimal Pulsed Radar Applications

    E-Print Network [OSTI]

    Su, Eric Chen

    2014-08-13T23:59:59.000Z

    Matched filter is one of the most critical block in radar applications. With different measured range and relative velocity of a target we will need different bandwidth of the matched filter to maximize the radar signal to noise ratio (SNR...

  20. On reconciling ground-based with spaceborne normalized radar cross section measurements

    E-Print Network [OSTI]

    Baumgartner, F.; Munk, J.; Jezek, K. C.; Gogineni, Sivaprasad

    2002-02-01T23:59:59.000Z

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) ...

  1. FMCW radars for snow research Hans-Peter Marshall a,b,, Gary Koh a

    E-Print Network [OSTI]

    Marshall, Hans-Peter

    -available impulse radars are currently used operationally in Scandinavia's deep snow packs (e.g. Sand and Bruland

  2. Vertical Structure of Tropical Cyclone Rainbands as seen by the TRMM Precipitation Radar

    E-Print Network [OSTI]

    Houze Jr., Robert A.

    1 Vertical Structure of Tropical Cyclone Rainbands as seen by the TRMM Precipitation Radar Deanna A's Precipitation Radar (TRMM PR) show the vertical structure of tropical cyclone rainbands. Radar-echo statistics show that rainbands have a two-layered structure, with distinct modes separated by the melting layer

  3. Off-The-Grid X-band Weather Radar Network for the West

    E-Print Network [OSTI]

    Gilbes, Fernando

    and target. CayeyNWS radar Mayaguez The Problem #12;Puerto Rico Test Bed · Multi-level Research Team · Low · Relay Stations #12;Network Node · Weather Radar · Processing Computer · Wireless Link #12;X-Band Weather cost · Better Merging algorithms · More Radars.... #12;PR Test Bed Team #12;Questions · ??? #12;Live

  4. Radar Network Scanning Coordination Based on Ensemble Transform Kalman Filtering Variance

    E-Print Network [OSTI]

    White, Luther

    Radar Network Scanning Coordination Based on Ensemble Transform Kalman Filtering Variance an ensemble Kalman filter is used as a criterion with which to op- timize radar network scanning strategies, is a function of the retrieval scanning parameters. It is shown that the mapping from radar parameters

  5. SCANNING CLOUD RADAR OBSERVATIONS AT AZORES: PRELIMINARY 3D CLOUD PRODUCTS

    E-Print Network [OSTI]

    SCANNING CLOUD RADAR OBSERVATIONS AT AZORES: PRELIMINARY 3D CLOUD PRODUCTS P. Kollias, I. Jo, A, NY www.bnl.gov ABSTRACT The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers

  6. ERAD 2008 -THE FIFTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGYAND HYDROLOGY 1. Introduction

    E-Print Network [OSTI]

    Haak, Hein

    , and the enhancement of the radar processing with capabilities found in modern radar equipment. In the European tender receivers and all data processing equipment in the radar sensor was replaced with modern equipment. The short pulse mode (0.8 microseconds) is used for PRFs up to 1200 Hz. To enhance reliability the thyratron

  7. A New Coherent Radar for Ice Sounding in Greenland A. Moussessian

    E-Print Network [OSTI]

    Kansas, University of

    A New Coherent Radar for Ice Sounding in Greenland A. Moussessian 1 , R.L. Jordan 1 , E. Rodriguez of this radar on board a P-3 aircraft took place in May of 1999 over Greenland with successful results blanking. The first deployment of this radar took place in May of 1999 in Greenland. During this deployment

  8. 2 1 APPLICATION GALLERY 1.1 Tracking ``Fuzzy'' Storms in Doppler Radar Images

    E-Print Network [OSTI]

    Barron, John

    and tornadoes. The Doppler radar generates intensity and radial velocity images, examples of which are shown Doppler radar radial and velocity image (a) (b) (c) (d) Figure 1.2: The storm tracks for the (a) 5 th , (b2 1 APPLICATION GALLERY 1.1 Tracking ``Fuzzy'' Storms in Doppler Radar Images J. L. Barron 1 , R. E

  9. Determining weather radar antenna pointing using signals detected from the sun at low antenna elevations

    E-Print Network [OSTI]

    Stoffelen, Ad

    Determining weather radar antenna pointing using signals detected from the sun at low antenna radiation of the sun for checking of the antenna alignment and of the sensitivity of the receiver chain is a well established method in weather radar maintenance, and radar manufacturers offer sun calibration

  10. Resultados obtidos com a utilizao de imagens de RADAR do satlite ALOS

    E-Print Network [OSTI]

    Resultados obtidos com a utilização de imagens de RADAR do satélite ALOS no combate ao desmatamento Documentos Indicativos de desmatamento com ALOS PALSAR #12;#12;INDICAR- Indicador de desmatamento por imagens de RADAR · Projeto desenvolvido pelo CSR/IBAMA · Utiliza imagens de RADAR do satélite Japonês ALOS

  11. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended

  12. Influence of small scale rainfall variability on standard comparison tools between radar and rain gauge data

    E-Print Network [OSTI]

    in revised form 18 October 2013 Accepted 8 November 2013 Rain gauges and weather radars do not measure some usual practice. © 2013 Elsevier B.V. All rights reserved. Keywords: Radar­rain gauge comparison are tipping bucket rain gauges, disdrometers, weather radars and (passive or active) sensors onboard

  13. A radar study of the interaction between lightning and precipitation

    SciTech Connect (OSTI)

    Holden, D.N.; Ulbrich, C.W.

    1988-01-01T23:59:59.000Z

    A radar study was made of the interaction between lightning and precipitation with the 430 MHz Doppler radar at the Arecibo Observatory in Puerto Rico. On one occasion, the spectral power at Doppler velocities near that corresponding to the updraft increased substantially within a fraction of a second after a discharge was detected in the beam. Calculations were made to simulate the effect of an electric field change on mean Doppler velocity for a distribution of droplets in a thunderstorm. 13 refs., 4 figs.

  14. Elements of a continuous-wave borehole radar. Final report

    SciTech Connect (OSTI)

    Caffey, T.W.H. [Sandia National Labs., Albuquerque, NM (United States). Geophysical Technology Dept.

    1997-08-01T23:59:59.000Z

    The theory is developed for the antenna array for a proposed continuous-wave, ground-penetrating radar for use in a borehole, and field measurements are presented. Accomplishments include the underground measurement of the transmitting beam in the azimuth plane, active azimuth-steering of the transmitting beam, and the development of a range-to-target algorithm. The excellent performance of the antenna array supports the concept of a continuous-wave borehole radar. A field-prototype should be developed for use in both geothermal zones and for the exploration and recovery of oil and gas.

  15. Progress reports for October 1994 -- Joint UK/US Radar Program

    SciTech Connect (OSTI)

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Chambers, D.H.; Robey, H.F.

    1994-11-18T23:59:59.000Z

    This report gives the principle investigator, objectives, recent accomplishments, milestones for reporting period, expected milestones for ensuing period, other issues and planned expenditures for each of the following programs: airborne RAR/SAR; radar data processor; ground-based SAR signal processing workstation; static airborne radar; multi-aperture space-time array radar; radar field experiments; data analysis and detection theory; management; E-2C radar data analysis; modeling and analysis; current meter array; UCSB wave tank; stratified flow facility; and IR sensor system. Finally the budget status is given.

  16. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01T23:59:59.000Z

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore »and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  17. Assessment Of The Wind Farm Impact On The Radar

    E-Print Network [OSTI]

    Norman, Evgeny D

    2010-01-01T23:59:59.000Z

    This study shows the means to evaluate the wind farm impact on the radar. It proposes the set of tools, which can be used to realise this objective. The big part of report covers the study of complex pattern propagation factor as the critical issue of the Advanced Propagation Model (APM). Finally, the reader can find here the implementation of this algorithm - the real scenario in Inverness airport (the United Kingdom), where the ATC radar STAR 2000, developed by Thales Air Systems, operates in the presence of several wind farms. Basically, the project is based on terms of the department "Strategy Technology & Innovation", where it has been done. Also you can find here how the radar industry can act with the problem engendered by wind farms. The current strategies in this area are presented, such as a wind turbine production, improvements of air traffic handling procedures and the collaboration between developers of radars and wind turbines. The possible strategy for Thales as a main pioneer was given as ...

  18. Generating nonlinear FM chirp radar signals by multiple integrations

    DOE Patents [OSTI]

    Doerry, Armin W. (Albuquerque, NM)

    2011-02-01T23:59:59.000Z

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  19. PAVEMENT OVERLAY THICKNESS EVALUATION USING GROUND PENTRATING RADAR (GPR)

    E-Print Network [OSTI]

    Shan, Jie

    PAVEMENT OVERLAY THICKNESS EVALUATION USING GROUND PENTRATING RADAR (GPR) Dwayne Harris, M.Sc., PG University, West Lafayette, IN 47907 jshan@ecn.purdue.edu ABSTRACT Accurate knowledge of pavement thickness is important information to have both at a network and project level. This information aids in pavement

  20. Automatic Radar Antenna Scan Type Recognition in Electronic

    E-Print Network [OSTI]

    Barshan, Billur

    Automatic Radar Antenna Scan Type Recognition in Electronic Warfare BILLUR BARSHAN BAHAEDDIN ERAVCI in electronic warfare (EW). The stages of the algorithm are scan period estimation, preprocessing (normalization Continuous-wave EW Electronic warfare EM Electromagnetic LFM Linear frequency modulation DTW Dynamic time

  1. RADAR OBSERVATIONS OF COMET 103P/HARTLEY 2

    SciTech Connect (OSTI)

    Harmon, John K.; Nolan, Michael C.; Howell, Ellen S.; Taylor, Patrick A. [Arecibo Observatory, National Astronomy and Ionosphere Center, HC3 Box 53995, Arecibo, Puerto Rico 00612 (Puerto Rico); Giorgini, Jon D., E-mail: harmon@naic.edu [Jet Propulsion Laboratory, California Institute of Technology, MS 301-150, 4800 Oak Grove Dr., Pasadena, California 91109 (United States)

    2011-06-10T23:59:59.000Z

    Comets rarely come close enough to be studied intensively with Earth-based radar. The most recent such occurrence was when Comet 103P/Hartley 2 passed within 0.12 AU in late 2010 October, less than two weeks before the EPOXI flyby. This offered a unique opportunity to improve pre-encounter trajectory knowledge and obtain complementary physical data for a spacecraft-targeted comet. 103P/Hartley 2 is only the fourth comet nucleus to be imaged with radar and already the second to be identified as an elongated, bilobate object based on its delay-Doppler signature. The images show the dominant spin mode to be a rotation about the short axis with a period of 18.2 hr. The nucleus has a low radar albedo consistent with a surface density of 0.5-1.0 g cm{sup -3}. A separate echo component was detected from large (>cm) grains ejected anisotropically with velocities of several to tens of meters per second. Radar shows that, in terms of large-grain production, 103P/Hartley 2 is an unusually active comet for its size.

  2. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma [McGill Univ., Montreal, QC (Canada); Giangrande, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Kollias, Pavlos [McGill Univ., Montreal, QC (Canada)

    2014-12-01T23:59:59.000Z

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  3. Automated Target Recognition Using Passive Radar and Coordinated Flight Models

    E-Print Network [OSTI]

    Lanterman, Aaron

    of altitude and range. The Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, so Georgia Institute of Technology, Atlanta, GA 30332, USA ABSTRACT Rather than emitting pulses, passive system is in the transmitter, whereas designers of "hitchhiking" or "parasitic" radars have high

  4. The use of composite radar photographs in synoptic weather analysis

    E-Print Network [OSTI]

    Smith, G. D.

    1957-01-01T23:59:59.000Z

    of ursa. Velooity of line, figure K3 Xn addition t* th? foregoing infornacion, the bases and tope of leyscs end tops of convective echoes oan be ruporced. With certain radar installations, end under certain conditions, tha height of thu freeaing...

  5. Synthetic Aperture Radar Imaging with Motion Estimation and Liliana Borcea

    E-Print Network [OSTI]

    Papanicolaou, George C.

    Callaghan George Papanicolaou Abstract We introduce from first principles a synthetic aperture radar (SAR calibrated small apertures, (b) preliminary motion estimation from the data using the Wigner transform-band persistent surveillance SAR is a specific application that is covered by our analysis. Detailed numerical

  6. Synthetic aperture radar and interferometry development at Sandia National Laboratories

    SciTech Connect (OSTI)

    NONE

    1993-04-01T23:59:59.000Z

    Environmental monitoring, earth-resource mapping, and military systems require broad-area imaging at high resolutions. Many times the imagery must be acquired in inclement weather or during night as well as day. Synthetic aperture radar (SAR) provides such a capability. SAR systems take advantage of the long-range propagation characteristics of radar signals and the complex information processing capability of modern digital electronics to provide high resolution imagery. SAR complements photographic and other optical imaging capabilities because of the minimum constrains on time-of-day and atmospheric conditions and because of the unique responses of terrain and cultural targets to radar frequencies. Interferometry is a method for generating a three-dimensional image of terrain. The height projection is obtained by acquiring two SAR images from two slightly differing locations. It is different from the common method of stereoscopic imaging for topography. The latter relies on differing geometric projections for triangulation to define the surface geometry whereas interferometry relies on differences in radar propagation times between the two SAR locations. This paper presents the capabilities of SAR, explains how SAR works, describes a few SAR applications, provides an overview of SAR development at Sandia, and briefly describes the motion compensation subsystem.

  7. Methods And System Suppressing Clutter In A Gain-Block, Radar-Responsive Tag System

    DOE Patents [OSTI]

    Ormesher, Richard C. (Albuquerque, NM); Axline, Robert M. (Albuquerque, NM)

    2006-04-18T23:59:59.000Z

    Methods and systems reduce clutter interference in a radar-responsive tag system. A radar transmits a series of linear-frequency-modulated pulses and receives echo pulses from nearby terrain and from radar-responsive tags that may be in the imaged scene. Tags in the vicinity of the radar are activated by the radar's pulses. The tags receive and remodulate the radar pulses. Tag processing reverses the direction, in time, of the received waveform's linear frequency modulation. The tag retransmits the remodulated pulses. The radar uses a reversed-chirp de-ramp pulse to process the tag's echo. The invention applies to radar systems compatible with coherent gain-block tags. The invention provides a marked reduction in the strength of residual clutter echoes on each and every echo pulse received by the radar. SAR receiver processing effectively whitens passive-clutter signatures across the range dimension. Clutter suppression of approximately 14 dB is achievable for a typical radar system.

  8. Feasibility of a borehole VHF radar technique for fracture mapping

    SciTech Connect (OSTI)

    Chang, H.T.

    1984-01-01T23:59:59.000Z

    Experiments were conducted to establish the feasibility of a downhole high-frequency electromagnetic technique for location of fractures in the vicinity of boreholes. An existing flame-cut slot in granite was filled with salt water to simulate a brine-filled fracture. A transmitter consisting of a phased dual-dipole array arranged to provide a directional signal toward the fracture was installed in a borehole opposite the fracture. A receiver operated at 30 to 300 MHz was also located in the same borehole. The radar returns from the simulated fracture were detectable in boreholes located at distances of up to 12 meters from the fracture. These results indicate for the first time the feasibility of a downhole VHF radar for use in a single borehole for detection of fractures located away from the borehole.

  9. Forensic Application of FM-CW and Pulse Radar

    SciTech Connect (OSTI)

    S. K. Koppenjan; R. S. Freeland; M. L. Miller; R. E. Yoder

    2003-01-01T23:59:59.000Z

    Ground-penetrating radar (GPR) technology has supplied vital assistance in criminal investigations. However, law enforcement personnel desire further developments such that the technology is rapidly deployable, and that it provides both a simple user interface and sophisticated target identification. To assist in the development of target identification algorithms, our efforts involve gathering background GPR data for the various site conditions and circumstances that often typify clandestine burials. For this study, forensic anthropologists established shallow-grave plots at The University of Tennessee Anthropological Research Facility (ARF) that are specific to GPR research. These plots contain donated human cadavers lying in various configurations and depths, surrounded by assorted construction material and backfill debris. We scanned the plots using two GPR technologies: (1) a multi-frequency synthetic-aperture FM-CW radar (200-700 MHz) (GPR-X) developed by the U.S. Department of Energy's (DOE) Special Technologies Laboratory (STL), Bechtel Nevada (Koppenjan et al., 2000), and (2) a commercial pulse radar (SIR-20) manufactured by Geophysical Survey Systems, Inc. (400 and 900 MHz)(GSSI). The sweep-frequency data show the large biological mass decomposing within the torso as encircled ''hot spots.'' The 400-MHz pulse radar exhibit major horizontal reflectors above the body, with shadow reflectors (horizontal multiples) occurring beneath the body at 60 cm depth. The 400-MHz antenna was able to discern the grave walls and folded tarp covering the lower body. Under these moist, clay-rich conditions, the 900-MHz antenna was able to penetrate slightly beyond 30 cm beneath the concrete layer. However, neither system was able to penetrate beyond a one meter depth in the moist, clay-rich soil (fine, mixed, thermic Typic Paleudalf). Example scans from each system are provided, along with a discussion of the survey protocol and general performance.

  10. Radar antenna pointing for optimized signal to noise ratio.

    SciTech Connect (OSTI)

    Doerry, Armin Walter; Marquette, Brandeis [General Atomics Aeronautical Systems, Inc., San Diego, CA

    2013-01-01T23:59:59.000Z

    The Signal-to-Noise Ratio (SNR) of a radar echo signal will vary across a range swath, due to spherical wavefront spreading, atmospheric attenuation, and antenna beam illumination. The antenna beam illumination will depend on antenna pointing. Calculations of geometry are complicated by the curved earth, and atmospheric refraction. This report investigates optimizing antenna pointing to maximize the minimum SNR across the range swath.

  11. Digital meteorological radar data compared with digital infrared data from a geostationary meteorological satellite

    E-Print Network [OSTI]

    Henderson, Rodney Stuart

    1979-01-01T23:59:59.000Z

    OF CONTENTS Page ABSTRACT. ACKNOWLEDGMENTS. DEDICATION . iv vi TABLE OF CONTENTS . vii LIST OF TABLES. IX LIST OF FIGURES . LIST OF ACRONYMS CHAPTER xii I. INTRODUCTION 1. The Need for This Investigation 2. Present Status of Research Relating... to This Investigation 3. Objectives of the Investigation 4. Techniques and Scope of the Investigation. II. METEOROLOGICAL RADAR DATA . 10 1. Basic Radar Theory . 2. Earth Curvature Correction . 3. The TAMU Weather Radar System. 4. Data Reduction and Display 10...

  12. Improving ISR Radar Utilization (How I quit blaming the user and made the radar easier to use).

    SciTech Connect (OSTI)

    Doerry, Armin W.

    2014-08-01T23:59:59.000Z

    In modern multi - sensor multi - mode Intelligence, Surveillance, and Reconnaissance ( ISR ) platforms, the plethora of options available to a sensor/payload operator are quite large, leading to an over - worked operator often down - selecting to favorite sensors an d modes. For example, Full Motion Video (FMV) is justifiably a favorite sensor at the expense of radar modes, even if radar modes can offer unique and advantageous information. The challenge is then to increase the utilization of the radar modes in a man ner attractive to the sensor/payload operator. We propose that this is best accomplished by combining sensor modes and displays into 'super - modes'. - 4 - Acknowledgements This report is the result of a n unfunded research and development activity . Sandia Natio nal Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL850 00.

  13. Incorporating WAAS Data Into an Ionospheric Model for Correcting Satellite Radar

    E-Print Network [OSTI]

    Toews, Carl

    at the Millstone Hill Satellite Tracking Radar. She currently holds a joint appointment with the Atmospheric corrections to radar measurements, incorporating data from a single receiver to generate TEC estimates that the GRIMS ionospheric model degenerates during times of sharp spatial TEC gradients, e.g. during geomagnetic

  14. Vertical Structure of Tropical Cyclone Rainbands as Seen by the TRMM Precipitation Radar

    E-Print Network [OSTI]

    Houze Jr., Robert A.

    Vertical Structure of Tropical Cyclone Rainbands as Seen by the TRMM Precipitation Radar DEANNA A Measurement Mission satellite's Precipitation Radar (TRMM PR) show the vertical structure of tropical cyclone separated by the melting layer. The ice layer is a combination of particles imported from the eyewall

  15. Vertical Structure of Tropical Cyclone Rainbands as seen by the TRMM Precipitation Radar

    E-Print Network [OSTI]

    Houze Jr., Robert A.

    1 Vertical Structure of Tropical Cyclone Rainbands as seen by the TRMM Precipitation Radar Deanna A (TRMM PR) show the vertical structure of tropical cyclone rainbands. Radar-echo2 statistics show that rainbands have a two-layered structure, with distinct modes separated by the3 melting layer. The ice layer

  16. Operational Monitoring of Weather Radar Receiving Chain Using the Sun IWAN HOLLEMAN

    E-Print Network [OSTI]

    Stoffelen, Ad

    Operational Monitoring of Weather Radar Receiving Chain Using the Sun IWAN HOLLEMAN Royal, is presented. The ``online'' method is entirely based on the analysis of sun signals in the polar volume data- termining the weather radar antenna pointing at low elevations using sun signals, and it is suited

  17. MECHANICAL VIBRATION SENSING FOR STRUCTURAL HEALTH MONITORING USING A MILLIMETER-WAVE DOPPLER RADAR SENSOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MECHANICAL VIBRATION SENSING FOR STRUCTURAL HEALTH MONITORING USING A MILLIMETER-WAVE DOPPLER RADAR of structural health monitoring (SHM). In this paper, we report on a millimeter-wave Doppler radar sensor sensing, millimeter-waves, structural health monitoring. INTRODUCTION Structural health monitoring based

  18. Ensemble Kalman Filter Assimilation of Doppler Radar Data with a Compressible Nonhydrostatic Model: OSS Experiments

    E-Print Network [OSTI]

    Xue, Ming

    Ensemble Kalman Filter Assimilation of Doppler Radar Data with a Compressible Nonhydrostatic Model on an ensemble Kalman filter (EnKF) method and tested with simulated radar data from a supercell storm for at least 2 h. 1. Introduction Since its introduction by Evensen (1994), the en- semble Kalman filter (En

  19. Wind Profiling by Doppler Weather Radar Iwan Holleman (holleman@knmi.nl)

    E-Print Network [OSTI]

    Stoffelen, Ad

    Wind Profiling by Doppler Weather Radar Iwan Holleman (holleman@knmi.nl) Royal Netherlands wind profiles at a high temporal resolution. Several algorithms and quality ensuring procedures for the extraction of wind profiles from radar volume data have been published. A comparison and verification

  20. ERAD 2008 -THE FIFTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY 1. Introduction

    E-Print Network [OSTI]

    Stoffelen, Ad

    , and the enhancement of the radar processing with capabilities found in modern radar equipment. In the European tender receivers and completely new data processing equipment. This modern equipment was integrated in the existing for PRFs up to 1200 Hz. To enhance reliability the thyratron powered switch unit, used to "fire

  1. Soil texture estimation over a semi-arid area using TERRASAR-X radar data

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Soil texture estimation over a semi-arid area using TERRASAR-X radar data M. Zribi1 , F. Kotti1 , Z Abstract In this paper, it is proposed to use TERRASAR-X data for analysis and estimation of soil surface. Simultaneously to TERRASAR-X radar acquisitions, ground measurements (texture, soil moisture and roughness) were

  2. Lagrangian Structures in Very High-Frequency Radar Data and Optimal Pollution Timing

    E-Print Network [OSTI]

    Marsden, Jerrold

    Lagrangian Structures in Very High-Frequency Radar Data and Optimal Pollution Timing Francois radar-based pollution release scheme using the hidden flow structure reduces the effect of industrial pollution in the coastal environment. INTRODUCTION The release of pollution in coastal areas [1, 2, 3] can

  3. Optimal Pollution Mitigation in Monterey Bay Based on Coastal Radar Data and Nonlinear

    E-Print Network [OSTI]

    Marsden, Jerrold

    Optimal Pollution Mitigation in Monterey Bay Based on Coastal Radar Data and Nonlinear Dynamics run-off which is a typical source of pollution in the bay. We show that a HF radar-based pollution release scheme using this flow structure reduces the impact of pollution on the coastal envi- ronment

  4. Radar Sounding of Glaciers in Greenland C. Allen, B, Wohletz, and S, Gogineni

    E-Print Network [OSTI]

    Kansas, University of

    Radar Sounding of Glaciers in Greenland C. Allen, B, Wohletz, and S, Gogineni The University on several flights over Greenland glaciers during the summer of 1995. The radar data were collected the theory and present results of the homomorphic deconvolution procedure. INTRODUCTION The Greenland

  5. FUSING MICROWAVE RADAR AND MICROWAVE-INDUCED THERMOACOUSTICS FOR BREAST CANCER DETECTION

    E-Print Network [OSTI]

    FUSING MICROWAVE RADAR AND MICROWAVE-INDUCED THERMOACOUSTICS FOR BREAST CANCER DETECTION Evgeny in the microwave range. Microwave-radar and microwave-induced thermoacoustic methods both struggle when-induced thermoacoustic (MIT) methods measure and process the acoustic signals induced by differential microwave heating

  6. Planning of Low-Cost 77-GHz Radar Transceivers for Automotive Applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Moghavvemi University ofMalaya INTRODUCTION The use of electronics in the automotive industry will reach (or the position and speed as with other components used in the automotive industry, radars will find widespreadPlanning of Low-Cost 77-GHz Radar Transceivers for Automotive Applications H. Ameri, A. Attaran & M

  7. High frequency radar and its application to fresh water Lorelle A. Meadows a,

    E-Print Network [OSTI]

    Ruf, Christopher

    ) at a Doppler shift corresponding very nearly to the phase velocity of the radially ad- vancing and receding frequency of the radar, c is the radial velocity of the Bragg resonant waves and cem is the speed of light average radiated powers, respectively. The effective offshore range for these radars was found to be 18 km

  8. Performance comparison of pulse-pair and wavelets methods for the pulse Doppler weather radar

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - eters. The radar reflectivity (Z), the radial velocity (Vr) and the spectral width of velocities (W). [1). Generally, the meteorological targets move with speeds lower than 50 m/secs. The Doppler Effect wouldPerformance comparison of pulse-pair and wavelets methods for the pulse Doppler weather radar

  9. "A Functional Design and System Architecture of a Control System for a Weather Radar"

    E-Print Network [OSTI]

    Mountziaris, T. J.

    "A Functional Design and System Architecture of a Control System for a Weather Radar" Seidu Ibrahim Faculty Mentor: Eric Knapp Weather radars operate by transmitting pulses of very high microwave energy antenna scan, a three dimensional view of the surrounding atmosphere is created. Traditional weather

  10. Reflectivity retrieval in a networked radar environment: Demonstration from the CASA IP1

    E-Print Network [OSTI]

    Jayasumana, Anura P.

    using data from the first Integration Project (IP1) radar network in Oklahoma. Electromagnetic waves, the lowest coverage altitude gets higher with range due to earth curvature [1]. A networked radar environment is capable of high spatial coverage and temporal resolution. The Engineering Research Center for CASA

  11. Thunderstorm lightning and radar characteristics: insights on electrification and severe weather forecasting

    E-Print Network [OSTI]

    Steiger, Scott Michael

    2007-04-25T23:59:59.000Z

    THUNDERSTORM LIGHTNING AND RADAR CHARACTERISTICS: INSIGHTS ON ELECTRIFICATION AND SEVERE WEATHER FORECASTING A Dissertation by SCOTT MICHAEL STEIGER Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2005 Major Subject: Atmospheric Sciences THUNDERSTORM LIGHTNING AND RADAR CHARACTERISTICS: INSIGHTS ON ELECTRIFICATION AND SEVERE WEATHER...

  12. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloudscale. Profiling, millimeterwavelength (cloud) radars can provide such observations. In particular, the first three

  13. Design of X-Band FMCW Short Range Radar Dong-hun Shin*

    E-Print Network [OSTI]

    Park, Seong-Ook

    Proposed radar system is bi-static radar type. It is adopted for increasing the isolation between Tx and Rx of a power divider. A portion of the swept signal is coupled to the mixer as reference signal. The final transmitted power of the system is under 0dBm. Received echo signal from the Rx antenna is injected to mixer

  14. Prospects of the WSR-88D Radar for Cloud Studies

    E-Print Network [OSTI]

    Melnikov, Valery M.; Zrni?, Dusan S.; Doviak, Richard J.; Chilson, Phillip B.; Mechem, David B.; Kogan, Yefim L.

    2011-04-01T23:59:59.000Z

    - flectivity field at 908 azimuth. APRIL 2011 M E L N I K O V E T A L . 863 compared measured solar radiation with model results. The Bird model (Bird and Hulstrom 1981) has been used to estimate the solar flux on the ground in the absence of clouds....S. Department of Commerce). REFERENCES Battan, L. J., 1973: Radar Observation of the Atmosphere. Uni- versity of Chicago, 324 pp. Bird, R. E., and R. L. Hulstrom, 1981: A simplified clear sky model for direct and diffuse insolation on horizontal surfaces. Solar...

  15. Compressive Radar with Off-Grid and Extended Targets

    E-Print Network [OSTI]

    Fannjiang, Albert

    2012-01-01T23:59:59.000Z

    Compressed sensing (CS) schemes are proposed for monostatic as well as synthetic aperture radar (SAR) imaging of sparse targets with chirps. In particular, a simple method is developed to improve performance with off-grid targets. Tomographic formulation of spotlight SAR is analyzed by CS methods with several bases and under various bandwidth constraints. Performance guarantees are established via coherence bound and the restricted isometry property. CS analysis provides a fresh and clear perspective on how to optimize temporal and angular samplings for spotlight SAR.

  16. Radar investigation of the Cote Blanche salt dome

    E-Print Network [OSTI]

    Stewart, Robert Donald

    1974-01-01T23:59:59.000Z

    THE COTE BLANCHE SALT DOME. Geology of the Cote Blanche Salt-Dome Azea. . Economic History of the Cote BLanche Salt-Dome Azea, Salt. . Oil and gas. III. ELECTROMAGNETIC WAVE PROPAGATION. . . Radar Speed in Air and in Salt. . . Velocity...' zznd i'r. mzznz 1959) . The east, south, end west flanks are nearly vertical. However, the north side oi the dome is characterised by a massive overhang. A well drilled by Shell Oil Company, Caffrey No. 1, confirmed the presence of a minimum of 3300...

  17. North and northeast Greenland ice discharge from satellite radar interferometry

    SciTech Connect (OSTI)

    Rignot, E.J. [California Institute of Technology, Pasadena, CA (United States)] [California Institute of Technology, Pasadena, CA (United States); Gogineni, S.P. [Univ. of Kansas, Lawrence, KS (United States)] [Univ. of Kansas, Lawrence, KS (United States); Krabill, W.B. [NASA Goddard Space Flight Center, Wallops Island, VA (United States)] [and others] [NASA Goddard Space Flight Center, Wallops Island, VA (United States); and others

    1997-05-09T23:59:59.000Z

    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier front, because basal melting is extensive at the underside of the floating glacier sections. The results suggest that the north and northeast parts of the Greenland ice sheet may be thinning and contributing positively to sea-level rise. 24 refs., 3 figs., 1 tab.

  18. Mitigating Wind-Radar Interference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official FileEnergyAERMOD-PRIME, UnitsMitigating Wind-Radar

  19. THE REGIONAL AND DIURNAL VARIABILITY OF THE VERTICAL STRUCTURE OF PRECIPITATION SYSTEMS IN AFRICA, BASED ON TRMM PRECIPITATION RADAR DATA

    E-Print Network [OSTI]

    Geerts, Bart

    IN AFRICA, BASED ON TRMM PRECIPITATION RADAR DATA Bart Geerts1 and Teferi Dejene University of Wyoming 1 microwave radiances (e.g. Kummerow and Giglio 1994), and 14 GHz radar reflectivities (e.g. Ferreira et al-based techniques are much inferior to radar-based techniques, in principle at least, because the anvil of large

  20. Merged and corrected 915 MHz Radar Wind Profiler moments

    SciTech Connect (OSTI)

    Jonathan Helmus,Virendra Ghate, Frederic Tridon

    2014-06-25T23:59:59.000Z

    The radar wind profiler (RWP) present at the SGP central facility operates at 915 MHz and was reconfigured in early 2011, to collect key sets of measurements for precipitation and boundary layer studies. The RWP is configured to run in two main operating modes: a precipitation (PR) mode with frequent vertical observations and a boundary layer (BL) mode that is similar to what has been traditionally applied to RWPs. To address issues regarding saturation of the radar signal, range resolution and maximum range, the RWP PR mode is set to operate with two different pulse lengths, termed as short pulse (SP) and long pulse (LP). Please refer to the RWP handbook (Coulter, 2012) for further information. Data from the RWP PR-SP and PR-LP modes have been extensively used to study deep precipitating clouds, especially their dynamical structure as the RWP data does not suffer from signal attenuation during these conditions (Giangrande et al., 2013). Tridon et al. (2013) used the data collected during the Mid-latitude Continental Convective Cloud Experiment (MC3E) to improve the estimation of noise floor of the RWP recorded Doppler spectra.

  1. Merged and corrected 915 MHz Radar Wind Profiler moments

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jonathan Helmus,Virendra Ghate, Frederic Tridon

    The radar wind profiler (RWP) present at the SGP central facility operates at 915 MHz and was reconfigured in early 2011, to collect key sets of measurements for precipitation and boundary layer studies. The RWP is configured to run in two main operating modes: a precipitation (PR) mode with frequent vertical observations and a boundary layer (BL) mode that is similar to what has been traditionally applied to RWPs. To address issues regarding saturation of the radar signal, range resolution and maximum range, the RWP PR mode is set to operate with two different pulse lengths, termed as short pulse (SP) and long pulse (LP). Please refer to the RWP handbook (Coulter, 2012) for further information. Data from the RWP PR-SP and PR-LP modes have been extensively used to study deep precipitating clouds, especially their dynamical structure as the RWP data does not suffer from signal attenuation during these conditions (Giangrande et al., 2013). Tridon et al. (2013) used the data collected during the Mid-latitude Continental Convective Cloud Experiment (MC3E) to improve the estimation of noise floor of the RWP recorded Doppler spectra.

  2. Ultra-wideband short-pulse radar with range accuracy for short range detection

    DOE Patents [OSTI]

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07T23:59:59.000Z

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  3. 915-MHz Radar Wind Profiler (915RWP) Handbook

    SciTech Connect (OSTI)

    Coulter, R

    2005-01-01T23:59:59.000Z

    The 915 MHz radar wind profiler/radio acoustic sounding system (RWP/RASS) measures wind profiles and backscattered signal strength between (nominally) 0.1 km and 5 km and virtual temperature profiles between 0.1 km and 2.5 km. It operates by transmitting electromagnetic energy into the atmosphere and measuring the strength and frequency of backscattered energy. Virtual temperatures are recovered by transmitting an acoustic signal vertically and measuring the electromagnetic energy scattered from the acoustic wavefront. Because the propagation speed of the acoustic wave is proportional to the square root of the virtual temperature of the air, the virtual temperature can be recovered by measuring the Doppler shift of the scattered electromagnetic wave.

  4. Digital hf radar observations of equatorial spread-F

    SciTech Connect (OSTI)

    Argo, P.E.

    1984-01-01T23:59:59.000Z

    Modern digital ionosondes, with both direction finding and doppler capabilities can provide large scale pictures of the Spread-F irregularity regions. A morphological framework has been developed that allows interpretation of the hf radar data. A large scale irregularity structure is found to be nightward of the dusk terminator, stationary in the solar reference frame. As the plasma moves through this foehn-wall-like structure it descends, and irregularities may be generated. Localized upwellings, or bubbles, may be produced, and they drift with the background plasma. The spread-F irregularity region is found to be best characterized as a partly cloudy sky, due to the patchiness of the substructures. 13 references, 16 figures.

  5. Iterative Self-Dual Reconstruction on Radar Image Recovery

    SciTech Connect (OSTI)

    Martins, Charles; Medeiros, Fatima; Ushizima, Daniela; Bezerra, Francisco; Marques, Regis; Mascarenhas, Nelson

    2010-05-21T23:59:59.000Z

    Imaging systems as ultrasound, sonar, laser and synthetic aperture radar (SAR) are subjected to speckle noise during image acquisition. Before analyzing these images, it is often necessary to remove the speckle noise using filters. We combine properties of two mathematical morphology filters with speckle statistics to propose a signal-dependent noise filter to multiplicative noise. We describe a multiscale scheme that preserves sharp edges while it smooths homogeneous areas, by combining local statistics with two mathematical morphology filters: the alternating sequential and the self-dual reconstruction algorithms. The experimental results show that the proposed approach is less sensitive to varying window sizes when applied to simulated and real SAR images in comparison with standard filters.

  6. Phase coded, micro-power impulse radar motion sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-05-21T23:59:59.000Z

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.

  7. Lightning and radar observations of hurricane Rita landfall

    SciTech Connect (OSTI)

    Henderson, Bradley G [Los Alamos National Laboratory; Suszcynsky, David M [Los Alamos National Laboratory; Hamlin, Timothy E [Los Alamos National Laboratory; Jeffery, C A [Los Alamos National Laboratory; Wiens, Kyle C [TEXAS TECH U.; Orville, R E [TEXAS A& M

    2009-01-01T23:59:59.000Z

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  8. Phase coded, micro-power impulse radar motion sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.

  9. The Design and Development of a Hybrid RF/Laser Radar System for Measuring Changes in

    E-Print Network [OSTI]

    Kansas, University of

    transmit power and higher PRF. RF pulse compression is used to improve system performance further. Receiver compression. Compared to laser radars like GLAS and MOLA, this sensor requires a lower peak transmit power Compression .......................................................... 14 2.6 Coherent Integration

  10. Joint anisotropy characterization and image formation in wide-angle synthetic aperture radar

    E-Print Network [OSTI]

    Varshney, Kush R. (Kush Raj)

    2006-01-01T23:59:59.000Z

    Imagery formed from wide-angle synthetic aperture radar (SAR) measurements has fine cross-range resolution in principle. However, conventional SAR image formation techniques assume isotropic scattering, which is not valid ...

  11. Ground penetrating radar technique to locate coal mining related features: case studies in Texas 

    E-Print Network [OSTI]

    Save, Neelambari R

    2006-04-12T23:59:59.000Z

    The goal of this research project is to identify the efficacy of the ground penetrating radar (GPR) technique in locating underground coal mine related subsidence features at Malakoff and Bastrop, Texas. The work at Malakoff ...

  12. Assessing and Analyzing Near-Surface Radar Snow Accumulation Layers at Summit, Greenland

    E-Print Network [OSTI]

    Overly, Thomas Buckmaster

    2010-04-28T23:59:59.000Z

    depth are compared to physical properties, age-depth relationships, and accumulation rates from ice cores near Summit. Having established the radar horizons as annual accumulation markers, a 350-year record of accumulation rate is derived and analyzed...

  13. A census of precipitation features in the tropics using TRMM: radar, ice scattering, and lightning observations

    E-Print Network [OSTI]

    Nesbitt, Stephen William

    1999-01-01T23:59:59.000Z

    and two ocean regions during August, September and October 1998, this study used radar retrievals and 85 GHz Polarization Corrected Temperatures (PCTs, which passively measure relative concentrations of precipitation-sized ice particles within a cloud...

  14. Radar signal pre-processing to suppress surface bounce and multipath

    DOE Patents [OSTI]

    Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald

    2013-12-31T23:59:59.000Z

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  15. Development of an electronically tunable ultra-wideband radar imaging sensor and its components

    E-Print Network [OSTI]

    Han, Jeongwoo

    2006-08-16T23:59:59.000Z

    Novel microwave transmitter and receiver circuits have been developed for implementing UWB (Ultra-Wideband) impulse radar imaging sensor operating in frequency band 0.2 to 4 GHz. with tunable operating frequency band. The fundamental system design...

  16. Weather Radar and Hydrology 1 Influence of rainfall spatial variability on hydrological modelling: a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Weather Radar and Hydrology 1 Influence of rainfall spatial variability on hydrological modelling variability as well as characteristics and hydrological behavior of catchments, we have proceeded simulator and a distributed hydrological model (with four production functions and a distributed transfer

  17. E-Print Network 3.0 - acquisition regime radar Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    except the data acquisition system and the controller unit... A New Coherent Radar for Ice Sounding in Greenland A. Moussessian 1 , R.L. Jordan 1 , E. Rodriguez... : (818)...

  18. Radar-Based Vehicle Detection for Four-Quadrant Gate Crossing

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    · Work Crew Safety · Maximize Coverage · Longer Life · Immunity to Elements · Reliability · Potential Implementation #12;AREMA Compliance per Class C Equipment Environmental - Temperature, Humidity, Mechanical, EMI (Trackers) to Configuration Application Add Dual Radar Tracking Metrics Reliability Enhancements Accelerate

  19. 12B.4 2010 PHASEDARRAY RADAR INNOVATIVE SENSING EXPERIMENT Pam Heinselman 1

    E-Print Network [OSTI]

    Sensing Experiment (PARISE) via two components: radar data collection and National Weather Service (NWS." This sampling approach provides denser sampling at low altitudes, where it is needed most. In PARISE 2010

  20. Millimeter-wave radar sensor for automotive intelligent cruise control (ICC)

    SciTech Connect (OSTI)

    Russell, M.E.; Crain, A.; Curran, A.; Campbell, R.A.; Drubin, C.A.; Miccioli, W.F. [Raytheon, Tewksbury, MA (United States)] [Raytheon, Tewksbury, MA (United States)

    1997-12-01T23:59:59.000Z

    If automotive intelligent cruise-control (ICC) systems are to be successful in the marketplace, they must provide robust performance in a complex roadway environment. Inconveniences caused by reduced performance during inclement weather, interrupted performance due to dropped tracks, and annoying nuisance alarms will not be tolerated by the consumer, and would likely result in the rejection of this technology in the marketplace. An all-weather automotive millimeter-wave (MMW) radar sensor is described that uses a frequency-modulation coplanar-wave (FMCW) radar design capable of acquiring and tracking all obstacles in its field of view. Design tradeoffs are discussed and radar-sensor test results are presented along with the applicability of the radar to collision-warning systems.

  1. EFFICIENT ASSIMILATION OF RADAR DATA AT HIGH RESOLUTION FOR SHORT-RANGE NUMERICAL WEATHER PREDICTION

    E-Print Network [OSTI]

    Xue, Ming

    system must assimilate Doppler radar data including radial velocity and reflectivity, and combine and also con- tain the hydrometeors and latent heating effects that eliminate the need for spinning up

  2. On the Feasibility of Precisely Measuring the Properties of a Precipitating Cloud with a Weather Radar

    E-Print Network [OSTI]

    Runnels, R.C.

    In this paper the results of an investigation are presented that are concerned with the feasibility of employing a weather radar to make precise measurements of the properties of a precipitating cloud. A schematic cloud is proposed as a model...

  3. Ground penetrating radar characterization of wood piles and the water table in Back Bay, Boston

    E-Print Network [OSTI]

    LeFrançois, Suzanne O'Neil, 1980-

    2003-01-01T23:59:59.000Z

    Ground penetrating radar (GPR) surveys are performed to determine the depth to the water table and the tops of wood piles beneath a residential structure at 122 Beacon Street in Back Bay, Boston. The area of Boston known ...

  4. A model for forming airborne synthetic aperture radar images of underground targets

    SciTech Connect (OSTI)

    Doerry, A.W.

    1994-01-01T23:59:59.000Z

    Synthetic Aperture Radar (SAR) from an airborne platform has been proposed for imaging targets beneath the earth`s surface. The propagation of the radar`s energy within the ground, however, is much different than in the earth`s atmosphere. The result is signal refraction, echo delay, propagation losses, dispersion, and volumetric scattering. These all combine to make SAR image formation from an airborne platform much more challenging than a surface imaging counterpart. This report treats the ground as a lossy dispersive half-space, and presents a model for the radar echo based on measurable parameters. The model is then used to explore various imaging schemes, and image properties. Dynamic range is discussed, as is the impact of loss on dynamic range. Modified window functions are proposed to mitigate effects of sidelobes of shallow targets overwhelming deeper targets.

  5. Radar and lightning analyses of gigantic jet-producing storms Tiffany C. Meyer,1,2

    E-Print Network [OSTI]

    Rutledge, Steven

    Radar and lightning analyses of gigantic jet-producing storms Tiffany C. Meyer,1,2 Timothy J. Lang of gigantic jets, similar to prior modeling studies. Citation: Meyer, T. C., T. J. Lang, S. A. Rutledge, W. A

  6. Multiple-scattering in radar systems: A review Alessandro Battaglia a,b,, Simone Tanelli c

    E-Print Network [OSTI]

    Hogan, Robin

    Review Multiple-scattering in radar systems: A review Alessandro Battaglia a,b,Ã, Simone Tanelli c. Tel.: +44 116 2709859. E-mail address: a.battaglia@le.ac.uk (A. Battaglia). Journal of Quantitative Spectroscopy & Radiative Transfer ] (

  7. Ground penetrating radar technique to locate coal mining related features: case studies in Texas

    E-Print Network [OSTI]

    Save, Neelambari R

    2006-04-12T23:59:59.000Z

    The goal of this research project is to identify the efficacy of the ground penetrating radar (GPR) technique in locating underground coal mine related subsidence features at Malakoff and Bastrop, Texas. The work at Malakoff has been done...

  8. Real-time 3-d localization using radar and passive surface acoustic wave transponders

    E-Print Network [OSTI]

    LaPenta, Jason Michael

    2007-01-01T23:59:59.000Z

    This thesis covers ongoing work into the design, fabrication, implementation, and characterization of novel passive transponders that allow range measurements at short range and at high update rates. Multiple RADAR measurement ...

  9. Thickness estimation of subsurface layers in asphalt pavement using monstatic ground penetrating radar

    E-Print Network [OSTI]

    Lau, Chun Lok

    1991-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE December 1991 Major Subject: Electrical Engineering THICKNESS ESTIMATION OF SUBSURFACE LAYERS IN ASPHALT PAVEMENT USING MONSTATIC GROUND PENETRATING RADAR A Thesis CHUN LOK LAU Approved as to style and content by... ACKNOWLEDGEMENTS. LIST OF FIGURES. . CHAPTER I INTRODUCTION. 1. 1 Importance of pavement profile data. 1. 2 Principle of Ground Penetrating Radar (GPR) . . . 1. 3 Subsurface layer thickness measurement method. . . . . . II GPR ANTENNA AND SYSTEM CALIBRATION...

  10. Laser radar VI; Proceedings of the Meeting, Los Angeles, CA, Jan. 23-25, 1991

    SciTech Connect (OSTI)

    Becherer, R.J.

    1991-01-01T23:59:59.000Z

    Topics presented include lidar wind shear detection for commercial aircraft, centroid tracking of range-Doppler images, an analytic approach to centroid performance analysis, simultaneous active/passive IR vehicle detection, and resolution limits for high-resolution imaging lidar. Also presented are laser velocimetry applications, the application of laser radar to autonomous spacecraft landing, 3D laser radar simulation for autonomous spacecraft landing, and ground based CW atmospheric Doppler lidar performamce modeling.

  11. The effect of smoothing the Doppler radar derived wind field on perturbation pressure retrieval

    E-Print Network [OSTI]

    Rosser, George Philip

    1986-01-01T23:59:59.000Z

    THE EFFECT OF SMOOTHING THE DOPPLER RADAR DERIVED WIND FIELD ON PERTURBATION PRESSURE RETRIEVAL A Thesis by GEORGE PHILIP ROSSER, JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1986 Major Subject: Meteorology THE EFFECT OF SMOOTHING THE DOPPLER RADAR DERIVED WIND FIELD ON PERTURBATION PRESSURE RETRIEVAL A Thesis by GEORGE PHILIP ROSSER, JR. Approved as to style and content by...

  12. Assessing the capabilities of ground penetrating radar for applications in geologic and engineering subsurface studies

    E-Print Network [OSTI]

    Servos, Stacia Lynn

    1998-01-01T23:59:59.000Z

    of different display parameters from GSSI's RADAN software package . . . 21 (a) Unfiltered radar profile over an underground storage tank. (b) Profile (a) has been filtered wdth a horizontal high pass boxcar filter, removing the long horizontal reflector... and processed in the laboratory using RADAN, interpretation software developed by GSSI. The radar profile (or radargram) seen on the computer screen is a composition of paraUel series of amplitude versus time. The darkness or color displayed is proportional...

  13. IFP V4.0:a polar-reformatting image formation processor for synthetic aperture radar.

    SciTech Connect (OSTI)

    Eichel, Paul H.

    2005-09-01T23:59:59.000Z

    IFP V4.0 is the fourth generation of an extraordinarily powerful and flexible image formation processor for spotlight mode synthetic aperture radar. It has been successfully utilized in processing phase histories from numerous radars and has been instrumental in the development of many new capabilities for spotlight mode SAR. This document provides a brief history of the development of IFP, a full exposition of the signal processing steps involved, and a short user's manual for the software implementing this latest iteration.

  14. Radar cross section of triangular trihedral reflector with extended bottom plate.

    SciTech Connect (OSTI)

    Brock, Billy C.; Doerry, Armin Walter

    2009-05-01T23:59:59.000Z

    Trihedral corner reflectors are the preferred canonical target for SAR performance evaluation for many radar development programs. The conventional trihedrals have problems with substantially reduced Radar Cross Section (RCS) at low grazing angles, unless they are tilted forward, but in which case other problems arise. Consequently there is a need for better low grazing angle performance for trihedrals. This is facilitated by extending the bottom plate. A relevant analysis of RCS for an infinite ground plate is presented. Practical aspects are also discussed.

  15. Some effects of range upon AN/CPS-9 radar reflectivities in thunderstorms

    E-Print Network [OSTI]

    Sanford, Tom E

    1961-01-01T23:59:59.000Z

    SOMB BFFBCTS OF RANGE UPON AN/CPS-9 RADAR RBFLECTIVITIBS IN THUNDBRSTORMS A Thesis Tommy Eugene Sanford Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE January 1961 Major Subject: Meteorology SOME EFFECI'S OF RANGE UPON AN/CPS-9 RADAR REFLECTIVITIES IN THUNDERSTORMS A Thesis Tommy Eugene Sanford Approved as to style and content by: (Chairman of Committe ) 4~4 (Head...

  16. Decadal-scale variations in ice flow along Whillans Ice Stream and its tributaries, West Antarctica

    E-Print Network [OSTI]

    Stearns, Leigh; Jezek, K.A.; Van der Veen, C.J.

    2005-01-01T23:59:59.000Z

    We investigate velocity changes occurring along Whillans Ice Stream (WIS) by comparing velocities derived from repeat aerial photographs acquired in 1985–89 (average date of 1987) to interferometric satellite radar (InSAR) velocities collected...

  17. VOLUME 78, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 3 FEBRUARY 1997 Multifrequency Doppler Radar Observations of Electron Gyroharmonic Effects

    E-Print Network [OSTI]

    Doppler Radar Observations of Electron Gyroharmonic Effects during Electromagnetic Pumping the first detailed mul- tifrequency HF Doppler radar (MDR) studies of elec- tron gyroharmonic effects) Experimental results of multifrequency HF Doppler radar studies during electromagnetic pumping

  18. PSInSAR At San Emidio Desert Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York:Ozark, Alabama:ASES 2003, Austin TXScienceArea

  19. Long-term variation of radar-auroral backscatter and the interplanetary sector structure

    SciTech Connect (OSTI)

    Yeoman, T.K.; Burrage, M.D.; Lester, M.; Robinson, T.R.; Jones, T.B. (Univ. of Leicester (England))

    1990-12-01T23:59:59.000Z

    Recurrent variation of geomagnetic activity at the {approximately}27-day solar rotation period and higher harmonics is a well-documented phenomenon. Auroral radar backscatter data from the Sweden and Britain Radar-Auroral Experiment (SABRE) radar provide a continuous time series from 1981 to the present which is a highly sensitive monitor of geomagnetic activity. In this study, Maximum Entropy Method (MEM) dynamic power spectra of SABRE backscatter data from 1981 to 1989, concurrent interplanetary magnetic field (IMF) and solar wind parameters from 1981 to 1987, and the Kp index since 1932 are examined. Data since 1977 are compared with previously published heliospheric current sheet measurements mapped out from the solar photosphere. Stong periodic behavior is observed in the radar backscatter during the declining phase of solar cycle 21, but this periodicity disappears at the start of solar cycle 22. Similar behavior is observed in earlier solar cycles in the Kp spectra. Details of the radar backscatter, IMF, and solar wind spectra indicate that the solar wind momentum density is the dominant parameter in determining the backscatter periodicity. The temporal evolution of two- and four-sector structures, as predicted by SABRE backscatter spectra, throughout solar cycle 21 generally still agree well with heliospheric current sheet measurements. For one interval, however, there is evidence that evolution of the current sheet has occurred between the photospheric source surface and the Earth.

  20. Prediction of buried mine-like target radar signatures using wideband electromagnetic modeling

    SciTech Connect (OSTI)

    Warrick, A.L.; Azevedo, S.G.; Mast, J.E.

    1998-04-06T23:59:59.000Z

    Current ground penetrating radars (GPR) have been tested for land mine detection, but they have generally been costly and have poor performance. Comprehensive modeling and experimentation must be done to predict the electromagnetic (EM) signatures of mines to access the effect of clutter on the EM signature of the mine, and to understand the merit and limitations of using radar for various mine detection scenarios. This modeling can provide a basis for advanced radar design and detection techniques leading to superior performance. Lawrence Livermore National Laboratory (LLNL) has developed a radar technology that when combined with comprehensive modeling and detection methodologies could be the basis of an advanced mine detection system. Micropower Impulse Radar (MIR) technology exhibits a combination of properties, including wideband operation, extremely low power consumption, extremely small size and low cost, array configurability, and noise encoded pulse generation. LLNL is in the process of developing an optimal processing algorithm to use with the MIR sensor. In this paper, we use classical numerical models to obtain the signature of mine-like targets and examine the effect of surface roughness on the reconstructed signals. These results are then qualitatively compared to experimental data.

  1. 13A.1 ASSIMILATION OF SIMULATED NETWORK RADAR DATA OF VARIED STORM TYPES USING ENSRF FOR CONVECTIVE STORM ANALYSES AND FORECASTS

    E-Print Network [OSTI]

    Xue, Ming

    installation costs down, the CASA radars will be placed on cell phone towers or other existing infras- tructure with large data transmission capabilities. Unlike the existing pre-programmed radar network, the collabo

  2. ARM: Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Widener, Kevin; Bharadwaj, Nitin; Johnson, Karen

    Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

  3. Dryline Characteristics near Lubbock, Texas, Based on Radar and West Texas Mesonet Data for May 2005 and May 2006

    E-Print Network [OSTI]

    Geerts, Bart

    Dryline Characteristics near Lubbock, Texas, Based on Radar and West Texas Mesonet Data for May, in final form 14 November 2007) ABSTRACT Two months of Lubbock, Texas, radar reflectivity data and West the spring" (Hane et al. 1993). Thus, forecasters from southwest Texas to west- ern Kansas routinely examine

  4. 500 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 3, NO. 4, OCTOBER 2006 ELF Radar System Proposed for Localized

    E-Print Network [OSTI]

    Simpson, Jamesina J.

    500 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 3, NO. 4, OCTOBER 2006 ELF Radar System frequency (ELF), finite difference time domain (FDTD), ionospheric disturbances, radar, remote sensing. I to be of sufficiently low power to have negligible heating or any other effects upon the ionospheric anomaly.) Employing

  5. J1.10 FAA SURVEILLANCE RADAR DATA AS A COMPLEMENT TO THE WSR-88D NETWORK *

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    .S. Federal Aviation Administration (FAA) operates over 400 C- to L-band surveillance radars-- Airport realization of these benefits. This work was sponsored by the Federal Aviation Administration under Air ForceJ1.10 FAA SURVEILLANCE RADAR DATA AS A COMPLEMENT TO THE WSR-88D NETWORK * Mark E. Weber

  6. HumanWildlife Interactions 5(2):210217, Fall 2011 Using radar cross-section to enhance

    E-Print Network [OSTI]

    D; Brand 2010a) and the Federal Aviation Administration (FAA; FAA 2010, Herricks et al. 2010). The testing, airfield management, alert, aviation safety, BASH, bird strike, human­ wildlife conflicts, radar, radar cross-section, situational awareness, wildlife hazard Birds pose a threat to aviation safety and cost

  7. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; et al

    2014-12-01T23:59:59.000Z

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe themore »design and performance of the TARA transmitter and receiver systems.« less

  8. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abbasi, R. [Univ. of Utah, Salt Lake City, UT (United States); Takai, H. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Allen, C. [Univ. of Kansas, Lawrence, KS (United States); Beard, L. [Purdue Univ., West Lafayette, IN (United States); Belz, J. [Univ. of Utah, Salt Lake City, UT (United States); Besson, D. [Univ. of Kansas, Lawrence, KS (United States). Moscow Engineering and Physics Inst. (Russian Federation); Byrne, M. [Univ. of Utah, Salt Lake City, UT (United States); Abou Bakr Othman, M. [Univ. of Utah, Salt Lake City, UT (United States); Farhang-Boroujeny, B. [Univ. of Utah, Salt Lake City, UT (United States); Gardner, A. [Univ. of Utah, Salt Lake City, UT (United States); Gillman, W.H. [Gillman and Associates, Salt Lake City, UT (United States); Hanlon, W. [Univ. of Utah, Salt Lake City, UT (United States); Hanson, J. [Univ. of Kansas, Lawrence, KS (United States); Jayanthmurthy, C. [Univ. of Utah, Salt Lake City, UT (United States); Kunwar, S. [Univ. of Kansas, Lawrence, KS (United States); Larson, S. L. [Utah State Univ., Logan, UT (United States); Myers, I. [Univ. of Utah, Salt Lake City, UT (United States); Prohira, S. [Univ. of Kansas, Lawrence, KS (United States); Ratzlaff, K. [Univ. of Kansas, Lawrence, KS (United States); Sokolsky, P. [Univ. of Utah, Salt Lake City, UT (United States); Thomson, G. B. [Univ. of Utah, Salt Lake City, UT (United States); Von Maluski, D. [Univ. of Utah, Salt Lake City, UT (United States)

    2014-12-01T23:59:59.000Z

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  9. Radar imagery interpretation to assess the hydrocarbon potential of four sites in the Philippines

    SciTech Connect (OSTI)

    Not Available

    1988-11-17T23:59:59.000Z

    The Republic of the Philippines is intensely interested in the identification, development, and conservation of natural resources. In keeping with this, the Government of the Philippines has recently completed a nationwide sedimentary basin evaluation program to assess hydrocarbon potential and assist in future exploration activities. This program of collection and interpretation of the radar imagery was designed to augment and complement the existing data base. The primary objective of the project was to further the goals of international energy development by aiding the Republic of the Philippines in the assessment of potential petroleum and geothermal prospects within the areas imaged. Secondary goals were to assist the Republic of the Philippines in utilizing state-of-the-art radar remote sensing technology for resource exploration, and to train key Philippines scientists in the use of imaging radar data. 29 refs., 30 figs., 14 tabs.

  10. Short range, ultra-wideband radar with high resolution swept range gate

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-05-26T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control.

  11. Short range, ultra-wideband radar with high resolution swept range gate

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-05-26T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. 14 figs.

  12. High-frequency scannerless imaging laser radar for industrial inspection and measurement applications

    SciTech Connect (OSTI)

    Schmitt, R.L.; Williams, R.J.; Matthews, J.D.

    1996-11-01T23:59:59.000Z

    This report describes the development and testing of a high-frequency scannerless imaging laser radar system to evaluate its viability as an industrial inspection and measurement sensor. We modified an existing 5.5-Mhz scannerless laser radar to operate at 150 Mhz, and measured its performance including its spatial resolution and range resolution. We also developed new algorithms that allow rapid data reduction with improved range resolution. The resulting 150-Mhz ladar system demonstrated a range resolution of better than 3 mm, which represents nearly a factor-of-100 improvement in range resolution over the existing scannerless laser radar system. Based on this work, we believe that a scannerless range imager with 1- to 2-mm range resolution is feasible. This work was performed as part of a small-business CRADA between Sandia National Laboratories and Perceptron, Inc.

  13. A newsletter for non-scientists (and scientists) interested in MAGIC The last two updates discussed how the Doppler effect can be used by radars to provide

    E-Print Network [OSTI]

    updates discussed how the Doppler effect can be used by radars to provide information on the sizes-pointing radar using the Doppler effect is equal to the speed of the surrounding air, i.e., the speed of raindrops falling in still air: an upward-pointing radar measures the Doppler shifts from falling raindrops

  14. Impacts of Beam Broadening and Earth Curvature on Storm-Scale 3D Variational Data Assimilation of Radial Velocity with Two Doppler Radars

    E-Print Network [OSTI]

    Gao, Jidong

    of Radial Velocity with Two Doppler Radars GUOQING GE Center for Analysis and Prediction of Storms assimilation. This study examines the effects of simplifying ray path and ray broadening calculations. Introduction The operational Weather Surveillance Radar-1988 Doppler (WSR-88D) Next Generation Weather Radar

  15. IFT&E Industry Report Wind Turbine-Radar Interference Test Summary.

    SciTech Connect (OSTI)

    Karlson, Benjamin; LeBlanc, Bruce Philip; Minster, David G; Estill, Milford; Miller, Bryan Edward; Busse, Franz (MIT LL); Keck, Chris (MIT LL); Sullivan, Jonathan (MIT LL); Brigada, David (MIT LL); Parker, Lorri (MIT LL); Younger, Richard (MIT LL); Biddle, Jason (MIT LL)

    2014-10-01T23:59:59.000Z

    Wind turbines have grown in size and capacity with today's average turbine having a power capacity of around 1.9 MW, reaching to heights of over 495 feet from ground to blade tip, and operating with speeds at the tip of the blade up to 200 knots. When these machines are installed within the line-of-sight of a radar system, they can cause significant clutter and interference, detrimentally impacting the primary surveillance radar (PSR) performance. The Massachusetts Institute of Technology's Lincoln Laboratory (MIT LL) and Sandia National Laboratories (SNL) were co-funded to conduct field tests and evaluations over two years in order to: I. Characterize the impact of wind turbines on existing Program-of-Record (POR) air surveillance radars; II. Assess near-term technologies proposed by industry that have the potential to mitigate the interference from wind turbines on radar systems; and III. Collect data and increase technical understanding of interference issues to advance development of long-term mitigation strategies. MIT LL and SNL managed the tests and evaluated resulting data from three flight campaigns to test eight mitigation technologies on terminal (short) and long-range (60 nmi and 250 nmi) radar systems. Combined across the three flight campaigns, more than 460 of hours of flight time were logged. This paper summarizes the Interagency Field Test & Evaluation (IFT&E) program and publicly- available results from the tests. It will also discuss the current wind turbine-radar interference evaluation process within the government and a proposed process to deploy mitigation technologies.

  16. Meteorological significance of frontal thin-line angel echoes observed by CPS-9 radar

    E-Print Network [OSTI]

    Miller, Donald Bradford

    1959-01-01T23:59:59.000Z

    METEOROLOGICAL SIGNIFICANCE OF FRONTAL THIN-LINE ANGEL ECHOES OBSERVED BY CPS-9 RADAR A Thesis By DONAID B. MILLER I/Lt USAF Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1959 Ma]or Sub)ect Meteorology METEOROLOGICAL SIGNIFICANCE OF FRONTAL THIN-LINE ANGEL ECHOES OBSERVED BY CPS-9 RADAR A Thesi. s By DONALD B. MILLER I/Lt USAF Approved as to style and content by...

  17. X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N

    2012-10-29T23:59:59.000Z

    The X-band scanning ARM cloud radar (X-SAPR) is a full-hemispherical scanning polarimetric Doppler radar transmitting simultaneously in both H and V polarizations. With a 200 kW magnetron transmitter, this puts 100 kW of transmitted power for each polarization. The receiver for the X-SAPR is a Vaisala Sigmet RVP-900 operating in a coherent-on-receive mode. Three X-SAPRs are deployed around the Southern Great Plains (SGP) Central Facility in a triangular array. A fourth X-SAPR is deployed near Barrow, Alaska on top of the Barrow Arctic Research Center.

  18. Performance limits for exo-clutter Ground Moving Target Indicator (GMTI) radar.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2010-09-01T23:59:59.000Z

    The performance of a Ground Moving Target Indicator (GMTI) radar system depends on a variety of factors, many which are interdependent in some manner. It is often difficult to 'get your arms around' the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall GMTI radar system. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the 'seek time'.

  19. InSAR | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSAR Jump to: navigation, search

  20. Downburst-producing thunderstorms in southern Germany: Radar analysis and predictability

    E-Print Network [OSTI]

    Downburst-producing thunderstorms in southern Germany: Radar analysis and predictability Nikolai der Atmosphäre, Oberpfaffenhofen, 82234 Wessling, Germany b European Severe Storms Laboratory (ESSL), Münchner Str. 20, 82234 Wessling, Germany a r t i c l e i n f o a b s t r a c t Article history: Received

  1. An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA

    E-Print Network [OSTI]

    Shupe, Matthew

    distribution of cloud boundary heights, and occurrence of liquid phase in clouds are determined from radar-observed clouds containing liquid was 73% for the year. The least amount of liquid water phase was observed during-detected clouds. Liquid was distributed in a combination of all-liquid and mixed phase clouds, and was detected

  2. Finland HF and Esrange MST radar observations of polar mesosphere summer echoes

    E-Print Network [OSTI]

    Kirkwood, Sheila

    , Neil F. Arnold2 , Sheila Kirkwood3 , Nozomu Nishitani1 , and Mark Lester2 1 Solar Ogawa1 , Neil F. Arnold2 , Sheila Kirkwood3 , Nozomu Nishitani1 , and Mark Lester2 1 Solar et al., 1997; Jenk- ins and Jarvis, 1999; Arnold et al., 2002). The first HF radar observations

  3. Improvement of radar ice-thickness measurements of Greenland outlet glaciers using SAR processing

    E-Print Network [OSTI]

    Braaten, David A.; Gogineni, S. Prasad; Tammana, Dilip; Namburi, Saikiran; Paden, John; Gurumoorthy, Krishna K.

    2002-01-01T23:59:59.000Z

    Extensive aircraft-based radar ice-thickness measurements over the interior and outlet-glacier regions of the Greenland ice sheet have been obtained by the University of Kansas since 1993, with the latest airborne surveys conducted in May 2001...

  4. ESTIMATING BEDROCK AND SURFACE LAYER BOUNDARIES AND CONFIDENCE INTERVALS IN ICE SHEET RADAR IMAGERY USING MCMC

    E-Print Network [OSTI]

    Menczer, Filippo

    ESTIMATING BEDROCK AND SURFACE LAYER BOUNDARIES AND CONFIDENCE INTERVALS IN ICE SHEET RADAR IMAGERY and Computing Indiana University Bloomington, Indiana USA ABSTRACT Climate models that predict polar ice sheet behavior require accurate measurements of the bedrock-ice and ice-air bound- aries in ground

  5. Development of a 1319-nm Laser Radar Using Fiber Optics and RF Pulse Compression

    E-Print Network [OSTI]

    Kansas, University of

    Development of a 1319-nm Laser Radar Using Fiber Optics and RF Pulse Compression Christopher T of this concept. Our laboratory breadboard uses standard, single-mode optical fiber, off-the-shelf fiber-optic IMPLEMENTATION 3.1 Transmitter--Single-mode laser 3.2 Transmitter--Single-mode fiber 3.3 Transmitter--Optical

  6. Ice iron/sodium film as cause for high noctilucent cloud radar reflectivity

    E-Print Network [OSTI]

    Bellan, Paul M.

    Ice iron/sodium film as cause for high noctilucent cloud radar reflectivity P. M. Bellan1 Received] Noctilucent clouds, tiny cold electrically charged ice grains located at about 85 km altitude, exhibit by assuming the ice grains are coated by a thin metal film; substantial evidence exists indicating

  7. Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry

    E-Print Network [OSTI]

    Boyer, Edmond

    Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry Thomas FLAMENT, Fre significantly accelerated thinning on any glacier elsewhere than on the coast of the Amundsen Sea. INTRODUCTION, Smith and Kohler glaciers. The latter three were reported to be accelerating, whereas the Thwaites

  8. UCSB helps develop massive coastal radar network GARRY WORMSER, NEWS-PRESS CORRESPONDENT

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    UCSB helps develop massive coastal radar network GARRY WORMSER, NEWS-PRESS CORRESPONDENT June 12, is experiencing a green resurgence in a massive mapping network of computerized systems that can save the lives., to Tijuana, Mexico. UCSB and other member institutions of the Southern California Coastal Ocean Observing

  9. Meridian-scanning photometer, coherent HF radar, and magnetometer observations of the cusp: a case study

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the transport of mass, energy, and momentum from the solar wind into the near-Earth environment, is facilitated with the CUTLASS Finland coherent HF radar, a meridian-scanning photometer located at Ny AÃ? lesund, Svalbard on the scale of minutes, and which are believed to be related to the dynamic nature of energy and momentum

  10. OEP Terminal and CONUS Weather Radar Coverage Gap Identification Analysis for NextGen

    E-Print Network [OSTI]

    Cho, John Y. N.

    iii OEP Terminal and CONUS Weather Radar Coverage Gap Identification Analysis for NextGen April 2-density terminal airspace, we focused on this domain with the 35 Operational Evolution Plan (OEP) airports acting as proxy for the yet-to-be-determined list of super-density terminals. We also analyzed, to a lesser extent

  11. Radar Measurements of Ice Sheet Thickness of Outlet Glaciers in Greenland D. Braaten+

    E-Print Network [OSTI]

    Kansas, University of

    Radar Measurements of Ice Sheet Thickness of Outlet Glaciers in Greenland D. Braaten+ and S of Kansas Lawrence, KS 66045 U.S.A. Abstract ­ We have conducted airborne measurements over the Greenland the mass balance of the Greenland ice sheet, the University of Kansas has been operating an airborne radio

  12. Effects of magnetite on high-frequency ground-penetrating radar Remke L. Van Dam1

    E-Print Network [OSTI]

    Borchers, Brian

    Effects of magnetite on high-frequency ground-penetrating radar Remke L. Van Dam1 , Jan M. H, paleoclimatology (Maher and Thompson, 1995), soil development (Singer et al., 1996; Van Dam et al., 2008 et al., 2011), the detection of unexploded ordnance (UXO) and land mines (Van Dam et al., 2005

  13. IEEE IGARSS 03, Toulouse, France, July 2003 Puerto Rico Deployable Radar Network

    E-Print Network [OSTI]

    Cruz-Pol, Sandra L.

    IEEE IGARSS 03, Toulouse, France, July 2003 Puerto Rico Deployable Radar Network Design; Site of Atmospheric Events (CLiMMATE) Electrical and Computer Engineering Department University of Puerto Rico (CLiMMATE) Laboratory at the University of Puerto Rico at Mayagüez are collaborating to modify a MK2

  14. Winter Precipitation Microphysics Characterized by Polarimetric Radar and Video Disdrometer Observations in Central Oklahoma

    E-Print Network [OSTI]

    Xue, Ming

    Observations in Central Oklahoma GUIFU ZHANG AND SEAN LUCHS School of Meteorology, and Atmospheric Radar Research Center, University of Oklahoma, Norman, Oklahoma ALEXANDER RYZHKOV Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma MING XUE School of Meteorology, and Center for Analysis

  15. Characterization of Doppler Effects in the Context of Over-the-Horizon Radar

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Characterization of Doppler Effects in the Context of Over-the-Horizon Radar Cornel Ioana Grenoble addresses the problem of the characterization of Doppler effect of maneuvering targets in the context reveals the Doppler effects characterizing the target's trajectory. Analysis of such signals

  16. Evaluating radial component current measurements from CODAR high frequency radars and moored in situ current meters

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    error of 19o . The effects of bearing errors on total velocity vector estimates were evaluated usingEvaluating radial component current measurements from CODAR high frequency radars and moored of the moorings carried vector measuring current meters (VMCM's), the ninth an upward-looking acoustic Doppler

  17. Short-term forecasting through intermittent assimilation of data from Taiwan and mainland China coastal radars

    E-Print Network [OSTI]

    Xue, Ming

    ; published 29 March 2012. [1] Radial velocity (Vr) and reflectivity (Z) data from eight coastal operational, but the benefit is mostly lost within the first hour of forecast. Assimilating data from a single Doppler radar with a good coverage of the typhoon inner core region is also quite effective, but it takes one more cycle

  18. FRESNEL-ZONE MEASUREMENT AND ANALYSIS OF A DUAL-POLARIZED METEOROLOGICAL RADAR ANTENNA

    E-Print Network [OSTI]

    Collings, Iain B.

    FRESNEL-ZONE MEASUREMENT AND ANALYSIS OF A DUAL- POLARIZED METEOROLOGICAL RADAR ANTENNA D.B. Hayman Fresnel-zone holographic technique was used to obtain the radiation pattern for the upgraded antenna in the measurement of this antenna and the analysis of the results. Keywords: Antenna measurements, Fresnel zone

  19. Basics of Polar-Format algorithm for processing Synthetic Aperture Radar images.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2012-05-01T23:59:59.000Z

    The purpose of this report is to provide a background to Synthetic Aperture Radar (SAR) image formation using the Polar Format (PFA) processing algorithm. This is meant to be an aid to those tasked to implement real-time image formation using the Polar Format processing algorithm.

  20. Weather Radar Monitoring using the Sun Iwan Holleman and Hans Beekhuis

    E-Print Network [OSTI]

    Stoffelen, Ad

    Weather Radar Monitoring using the Sun Iwan Holleman and Hans Beekhuis Technical Report, KNMI TR and azimuthal averaging 13 2.5 Corrected solar power 15 3 Position of the sun 17 3.1 Celestial sphere and equatorial coordinates 17 3.2 Equatorial coordinates of the sun 18 3.3 Conversion to elevation and azimuth 20

  1. Through-the-wall Imaging Radar Students: Thang Bui and Joseph Rabig

    E-Print Network [OSTI]

    Ghahramani, Zoubin

    radar (SAR) to image objects behind a wall, using a pair of horn antennas and a vector network analyser was used to calibrate out unknown cable and system delays · Objects are resolved at correct locations close to the SAR Focusing delay geometry Theory ­ Image Processing Electromagnetic distance between horn

  2. Synthetic Aperture Radar Imaging with Motion Estimation and , T. Callaghan1

    E-Print Network [OSTI]

    Borcea, Liliana

    principles a synthetic aperture radar (SAR) imaging and target motion estimation method that is combined of the data into properly calibrated small apertures, (b) motion or platform trajectory perturbation estimation process. X-band persistent surveillance SAR is a specific application that is covered by our

  3. Bridge Deck Evaluation with Ground Penetrating Radar Dryver Huston, Jing Hu, Noel Pelczarski, and Brian Esser

    E-Print Network [OSTI]

    Huston, Dryver R.

    in a step-frequency mode. The system is used to test laboratory specimens and bridge decks in the field Health Monitoring Stanford University September 1999 ABSTRACT Ground Penetrating Radar (GPR) uses electromagnetic (EM) waves to identify underlying features in solid structures. The typical technique uses

  4. HF radar in French Mediterranean Sea: an element of MOOSE Mediterranean Ocean Observing System on Environment

    E-Print Network [OSTI]

    Boyer, Edmond

    Sea in the context of climate change and anthropogenic pressure and to supply and maintain longHF radar in French Mediterranean Sea: an element of MOOSE Mediterranean Ocean Observing System , Pascal Guterman2 , Karim Bernardet2 1 Mediterranean Institute of Oceanography (MIO, UM 110, USTV

  5. Automatic identification of bird targets with radar via patterns produced by

    E-Print Network [OSTI]

    Loon, E. Emiel van

    migration research, environmental impact assessments (e.g. wind farms), aircraft security and radar lines, wind farms or bridges (Harmata et al. 1999; Desholm & Kahlert 2005) and (iv) in the context). The potential increase in the construction of wind farms in the coming years is a serious concern for avian

  6. Probabilistic Conic Mixture Model and its Applications to Mining Spatial Ground Penetrating Radar Data

    E-Print Network [OSTI]

    Leeds, University of

    to image data is a basic task in pattern recognition and spatial data mining and also is an important a reliable report after the inspection. The patterns appearing in the B-scans [5] of GPR data have shapesProbabilistic Conic Mixture Model and its Applications to Mining Spatial Ground Penetrating Radar

  7. FMCW Radar with enhanced frequency estimation# Dong-hun Shin 1

    E-Print Network [OSTI]

    Park, Seong-Ook

    is shown in Figure.1. Bi-static radar type is used for the isolation between Tx and Rx antennas. Isolators, and supplied with LO port of the mixer and the Tx antenna. Received signal from the Rx antenna is supplied to the RF port of the mixer. In the mixer, RF signal is mixed with LO signal and down #12;converted

  8. Ground penetrating radar surveys over an alluvial DNAPL site, Paducah Gaseous Diffusion Plant, Kentucky

    SciTech Connect (OSTI)

    Carpenter, P.J. [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Geology]|[Oak Ridge National Lab., TN (United States); Doll, W.E. [Oak Ridge National Lab., TN (United States); Phillips, B.E. [Paducah Gaseous Diffusion Plant, KY (United States)

    1994-09-01T23:59:59.000Z

    Ground penetrating radar (GPR) surveys were used to map shallow sands and gravels which are DNAPL migration pathways at the Paducah Gaseous Diffusion Plant in western Kentucky. The sands and gravels occur as paleochannel deposits, at depths of 17-25 ft, embedded in Pleistocene lacustrine clays. More than 30 GPR profiles were completed over the Drop Test Area (DTA) to map the top and base of the paleochannel deposits, and to assess their lateral continuity. A bistatic radar system was used with antenna frequencies of 25 and 50 MHz. An average velocity of 0.25 ft/ns for silty and clayey materials above the paleochannel deposits was established from radar walkaway tests, profiles over culverts of known depth, and comparison of radar sections with borings. In the south portion of the DTA, strong reflections corresponded to the water table at approximately 9-10 ft, the top of the paleochannel deposits at approximately 18 ft, and to gravel horizons within these deposits. The base of these deposits was not visible on the radar sections. Depth estimates for the top of the paleochannel deposits (from 50 records) were accurate to within 2 ft across the southern portion of the DTA. Continuity of these sands and gravels could not be assessed due to interference from air-wave reflections and lateral changes in signal penetration depth. However, the sands and gravels appear to extend across the entire southern portion of the DTA, at depths as shallow as 17 ft. Ringing, air-wave reflections and diffractions from powerlines, vehicles, well casings, and metal equipment severly degraded GPR profiles in the northern portion of the DTA; depths computed from reflection times (where visible) were accurate to within 4 ft in this area. The paleochannel deposits are deeper to the north and northeast where DNAPL has apparently pooled (DNAPL was not directly imaged by the GPR, however). Existing hydrogeological models of the DTA will be revised.

  9. 30 ENGINEERING & SCIENCE WI NTE R 2012 Whether processing radar signals in Norway or assessing rock properties in Nigeria, Calte

    E-Print Network [OSTI]

    30 ENGINEERING & SCIENCE WI NTE R 2012 Whether processing radar signals in Norway or assessing rock deeply into basic physics to solve problems. Oslo, Norway, José Navarro, PhD '94, Astronomy José Navarro

  10. Aircraft-protection radar for use with atmospheric lidars Thomas J. Duck, Bernard Firanski, Frank D. Lind, and Dwight Sipler

    E-Print Network [OSTI]

    Duck, Thomas J.

    . Lind, and Dwight Sipler A modified X-band radar system designed to detect aircraft during atmospheric, Dalhousie Univer- sity, Halifax, Nova Scotia, Canada B3H 3J5. F. D. Lind and D. Sipler are with Haystack

  11. Case studies in magnetics and ground penetrating radar, Shreveport Convention Center, Shreveport, LA and Yankee Boy Rock Glacier, Ouray, CO

    E-Print Network [OSTI]

    Pierce, Carl J

    2002-01-01T23:59:59.000Z

    The use of geophysical tools such as magnetics and ground penetrating radar are becoming more prevalent in site characterization studies and other geologic research. Two case studies which illustrate this are described here. The first case study...

  12. The Retrieval of Ice Water Content from Radar Reflectivity Factor and Temperature and Its Use in Evaluating a Mesoscale Model

    E-Print Network [OSTI]

    Hogan, Robin

    in Evaluating a Mesoscale Model ROBIN J. HOGAN, MARION P. MITTERMAIER,* AND ANTHONY J. ILLINGWORTH Department-GHz radar with the values held in the Met Office mesoscale forecast model, for eight precipitating

  13. IMPROVED CAPABILITIES FOR SITING WIND FARMS AND MITIGATING IMPACTS ON RADAR OBSERVATIONS

    SciTech Connect (OSTI)

    Chiswell, S.

    2010-01-15T23:59:59.000Z

    The development of efficient wind energy production involves challenges in technology and interoperability with other systems critical to the national mission. Wind turbines impact radar measurements as a result of their large reflectivity cross section as well as through the Doppler phase shift of their rotating blades. Wind farms can interfere with operational radar in multiple contexts, with degradation impacts on: weather detection such as tornado location, wind shear, and precipitation monitoring; tracking of airplanes where air traffic control software can lose the tracks of aircraft; and in identification of other low flying targets where a wind farm located close to a border might create a dead zone for detecting intruding objects. Objects in the path of an electromagnetic wave affect its propagation characteristics. This includes actual blockage of wave propagation by large individual objects and interference in wave continuity due to diffraction of the beam by individual or multiple objects. As an evolving industry, and the fastest growing segment of the energy sector, wind power is poised to make significant contributions in future energy generation requirements. The ability to develop comprehensive strategies for designing wind turbine locations that are mutually beneficial to both the wind industry that is dependent on production, and radar sites which the nation relies on, is critical to establishing reliable and secure wind energy. The mission needs of the Department of Homeland Security (DHS), Department of Defense (DOD), Federal Aviation Administration (FAA), and National Oceanographic and Atmospheric Administration (NOAA) dictate that the nation's radar systems remain uninhibited, to the maximum extent possible, by man-made obstructions; however, wind turbines can and do impact the surveillance footprint for monitoring airspace both for national defense as well as critical weather conditions which can impact life and property. As a result, a number of potential wind power locations have been contested on the basis of radar line of site. Radar line of site is dependent on local topography, and varies with atmospheric refractive index which is affected by weather and geographic conditions.

  14. C-Band Scanning ARM Precipitation Radar (C-SAPR) Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N

    2012-11-13T23:59:59.000Z

    The C-band scanning ARM precipitation radar (C-SAPR) is a scanning polarimetric Doppler radar transmitting simultaneously in both H and V polarizations. With a 350-kW magnetron transmitter, this puts 125 kW of transmitted power for each polarization. The receiver for the C-SAPR is a National Center for Atmospheric Research (NCAR) -developed Hi-Q system operating in a coherent-on-receive mode. The ARM Climate Research Facility operates two C-SAPRs; one of them is deployed near the Southern Great Plains (SGP) Central Facility near the triangular array of X-SAPRs, and the second C-SAPR is deployed at ARM’s Tropical Western Pacific (TWP) site on Manus Island in Papua New Guinea.

  15. A low-cost, high-resolution, video-rate imaging optical radar

    SciTech Connect (OSTI)

    Sackos, J.T.; Nellums, R.O.; Lebien, S.M.; Diegert, C.F. [Sandia National Labs., Albuquerque, NM (United States); Grantham, J.W.; Monson, T. [Air Force Research Lab., Eglin AFB, FL (United States)

    1998-04-01T23:59:59.000Z

    Sandia National Laboratories has developed a unique type of portable low-cost range imaging optical radar (laser radar or LADAR). This innovative sensor is comprised of an active floodlight scene illuminator and an image intensified CCD camera receiver. It is a solid-state device (no moving parts) that offers significant size, performance, reliability, and simplicity advantages over other types of 3-D imaging sensors. This unique flash LADAR is based on low cost, commercially available hardware, and is well suited for many government and commercial uses. This paper presents an update of Sandia`s development of the Scannerless Range Imager technology and applications, and discusses the progress that has been made in evolving the sensor into a compact, low, cost, high-resolution, video rate Laser Dynamic Range Imager.

  16. Scanning ARM Cloud Radars Part II: Data Quality Control and Processing

    SciTech Connect (OSTI)

    Kollias, Pavlos; Jo, Ieng; Borque, Paloma; Tatarevic, Aleksandra; Lamer, Katia; Bharadwaj, Nitin; Widener, Kevin B.; Johnson, Karen; Clothiaux, Eugene E.

    2014-03-01T23:59:59.000Z

    The Scanning ARM Cloud Radars (SACR’s) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30 km radius from the ARM fixed and mobile sites. Here, the post-processing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the Hemispherical Sky – Range Height Indicator SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step towards the utilization of SACR measurements for cloud research.

  17. NOTES AND CORRESPONDENCE CloudSat as a Global Radar Calibrator

    E-Print Network [OSTI]

    Protat, Alain

    Research, Melbourne, Victoria, Australia 1 Laboratoire Atmosphe`re, Milieux, et Observations Spatiales, Ve is the case). The power of using CloudSat as a global radar calibrator is demonstrated using the Atmospheric, Melbourne, VIC 3008, Australia. E-mail: a.protat@bom.gov.au MARCH 2011 N O T E S A N D C O R R E S P O N D E

  18. Incremental online object learning in a vehicular radar-vision fusion framework

    SciTech Connect (OSTI)

    Ji, Zhengping [Los Alamos National Laboratory; Weng, Juyang [Los Alamos National Laboratory; Luciw, Matthew [IEEE; Zeng, Shuqing [IEEE

    2010-10-19T23:59:59.000Z

    In this paper, we propose an object learning system that incorporates sensory information from an automotive radar system and a video camera. The radar system provides a coarse attention for the focus of visual analysis on relatively small areas within the image plane. The attended visual areas are coded and learned by a 3-layer neural network utilizing what is called in-place learning, where every neuron is responsible for the learning of its own signal processing characteristics within its connected network environment, through inhibitory and excitatory connections with other neurons. The modeled bottom-up, lateral, and top-down connections in the network enable sensory sparse coding, unsupervised learning and supervised learning to occur concurrently. The presented work is applied to learn two types of encountered objects in multiple outdoor driving settings. Cross validation results show the overall recognition accuracy above 95% for the radar-attended window images. In comparison with the uncoded representation and purely unsupervised learning (without top-down connection), the proposed network improves the recognition rate by 15.93% and 6.35% respectively. The proposed system is also compared with other learning algorithms favorably. The result indicates that our learning system is the only one to fit all the challenging criteria for the development of an incremental and online object learning system.

  19. Continuous-wave radar to detect defects within heat exchangers and steam generator tubes.

    SciTech Connect (OSTI)

    Nassersharif, Bahram (New Mexico State University, Las Cruces, NM); Caffey, Thurlow Washburn Howell; Jedlicka, Russell P. (New Mexico State University, Las Cruces, NM); Garcia, Gabe V. (New Mexico State University, Las Cruces, NM); Rochau, Gary Eugene

    2003-01-01T23:59:59.000Z

    A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The experimental program resulted in a completed product development schedule and the design of an experimental apparatus for studying handling of the probe and data acquisition. These tests were completed as far as the prototypical probe performance allowed. The prototype probe design did not have sufficient sensitivity to detect a defect signal using the defined radar technique and did not allow successful completion of all of the project milestones. The best results from the prototype probe could not detect a tube defect using the radar principle. Though a more precision probe may be possible, the cost of design and construction was beyond the scope of the project. This report describes the probe development and the status of the design at the termination of the project.

  20. A 77 GHz Transceiver for Automotive Radar System Using a120nm In AlAs/In GaAs Metamorphic HEMTs

    E-Print Network [OSTI]

    Kwon, Youngwoo

    A 77 GHz Transceiver for Automotive Radar System Using a120nm 0.4 0.35 In AlAs/In GaAs Metamorphic-mail:ykwon@snu.ac.kr) Abstract -- In this work, we demonstrate a compact 77GHz single-chip transceiver for an automotive radar at the transmitter and a 5dB conversion gain at the receiver. Index Terms -- Automotive radar, 77GHz, MHEMT, MMIC

  1. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  2. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  3. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bharadwaj, Nitin; Widener, Kevin

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  4. Assessment of Solder Interconnect Integrity in Dismantled Electronic Components from N57 and B61 Tube-Type Radars

    SciTech Connect (OSTI)

    Rejent, J.A.; Vianco, P.T.; Woodrum, R.A.

    1999-07-01T23:59:59.000Z

    Aging analyses were performed on solder joints from two radar units: (1) a laboratory, N57 tube-type radar unit and (2) a field-returned, B61-0, tube-type radar unit. The cumulative temperature environments experienced by the units during aging were calculated from the intermetallic compound layer thickness and the mean Pb-rich phase particle size metrics for solder joints in the units, assuming an aging time of 35 years for both radars. Baseline aging metrics were obtained from a laboratory test vehicle assembled at AS/FM and T; the aging kinetics of both metrics were calculated from isothermal aging experiments. The N57 radar unit interconnect board solder joints exhibited very little aging. The eyelet solder joints did show cracking that most likely occurred at the time of assembly. The eyelet, SA1126 connector solder joints, showed some delamination between the Cu pad and underlying laminate. The B61 field-returned radar solder joints showed a nominal degree of aging. Cracking of the eyelet solder joints was observed. The Pb-rich phase particle measurements indicated additional aging of the interconnects as a result of residual stresses. Cracking of the terminal pole connector, pin-to-pin solder joint was observed; but it was not believed to jeopardize the electrical functionality of the interconnect. Extending the stockpile lifetime of the B61 tube-type radar by an additional 20 years would not be impacted by the reliability of the solder joints with respect to further growth of the intermetallic compound layer. Additional coarsening of the Pb-rich phase will increase the joints' sensitivity to thermomechanical fatigue.

  5. ASAP progress and expenditure report for the month of December 1--31, 1995. Joint UK/US radar program

    SciTech Connect (OSTI)

    Twogood, R.E.; Brase, J.M.; Chambers, D.H.; Mantrom, D.D.; Miller, M.G.; Newman, M.J.; Robey, H.F.; Vigars, M.L.

    1996-01-19T23:59:59.000Z

    The RAR/SAR is a high-priority radar system for the joint US/UK Program. Based on previous experiment results and coordination with the UK, specifications needed for future radar experiments were identified as follows: dual polarimetric (HH and VV) with medium to high resolution in SAR mode. Secondary airborne installation requirements included; high power (circa 10kw) and SLIER capability to emulate Tupelev-134 type system; initially x-band but easily extendible to other frequencies. In FY96 we intended to enhance the radar system`s capabilities by providing a second polarization (VV), spotlight imaging mode, extended frequency of operation to include S- band, increase power, and interface to an existing infrared sensor. Short term objectives are: continue to evaluate and characterize the radar system; upgrade navigation and real-time processing capability to refine motion compensation; upgrade to dual polarimetry (add VV); and develop a ``spotlight`` mode capability. Accomplishments this reporting period: design specifications for the SAR system polarimetric upgrade are complete. The upgrade is ready to begin the procurement cycle when funds become available. System characterization is one of the highest priority tasks for the SAR. Although the radar is dedicated for our use, Hughes is waiting for contract funding before allowing us access to the hardware

  6. Compressive radar with off-grid targets: a perturbation approach This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Fannjiang, Albert

    Compressive radar with off-grid targets: a perturbation approach This article has been downloaded.1088/0266-5611/29/5/054008 Compressive radar with off-grid targets: a perturbation approach Albert Fannjiang1,3 and Hsiao-Chieh Tseng2 1. In particular, a simple, perturbation method is developed to reduce the gridding error for off-grid targets

  7. Constructing a Merged CloudPrecipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    E-Print Network [OSTI]

    of observations from three radars--the S-band dual-polarization Doppler radar (S-Pol), the C-band Shared Mobile, and radiative heating rate retrievals. With this dataset the full spectrum of tropical convective clouds during, U.S. Department of Energy, Washington, D.C. Corresponding author address: Dr. Zhe Feng, Pacific

  8. A newsletter for non-scientists (and scientists) interested in MAGIC The last update discussed how an upward-pointing radar can utilize the Doppler effect to

    E-Print Network [OSTI]

    discussed how an upward-pointing radar can utilize the Doppler effect to determine the downdraft (or updraft the Doppler signal from a vertically pointing radar can be used to determine sizes and numbers of raindrops, the frequency shifts in the Doppler signal corresponds directly to speeds of the drops relative to the ground

  9. Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part I: Observation Operators for Reflectivity and

    E-Print Network [OSTI]

    Xue, Ming

    the Weather Sur- veillance Radar-1988 Doppler (WSR-88D), the radial velocity and equivalent radar reflectivity and reflectivity link the model velocity compo- nents to the observed radial velocity and the model hydrometeor melting model that defines the water fraction in the melting snow or hail. The effect of varying density

  10. Analysis and Prediction of 8 May 2003 Oklahoma City Tornadic Thunderstorm and Embedded Tornado using ARPS with Assimilation of WSR-88D Radar Data

    E-Print Network [OSTI]

    Xue, Ming

    dimensional variational (3DVAR) analysis (Gao et al. 2002; 2004) to analyze the radar radial velocity data the environment that guarantees tornado formation. To include the effect of tornado parent mesocyclone and study storms, the WSR-88D Doppler radar network of the United States provides a key information for storm

  11. An Examination of Version 5 Rainfall Estimates from the TRMM Microwave Imager, Precipitation Radar, and Rain Gauges on Global, Regional, and Storm Scales

    E-Print Network [OSTI]

    Rutledge, Steven

    An Examination of Version 5 Rainfall Estimates from the TRMM Microwave Imager, Precipitation Radar, and Rain Gauges on Global, Regional, and Storm Scales STEPHEN W. NESBITT1 AND EDWARD J. ZIPSER Department Current affiliation: Radar Meteorology Group, Department of Atmospheric Science, Colorado State University

  12. Evaluation of Single-Doppler Radar Wind Retrievals in Flat and Complex Terrain

    SciTech Connect (OSTI)

    Newsom, Rob K.; Berg, Larry K.; Pekour, Mikhail S.; Fast, Jerome D.; Xu, Qin; Zhang, Pengfei; Yang, Qing; Shaw, William J.; Flaherty, Julia E.

    2014-08-01T23:59:59.000Z

    The accuracy of winds derived from NEXRAD level II data is assessed by comparison with independent observations from 915 MHz radar wind profilers. The evaluation is carried out at two locations with very different terrain characteristics. One site is located in an area of complex terrain within the State Line Wind Energy Center in northeast Oregon. The other site is located in an area of flat terrain on the east-central Florida coast. The National Severe Storm Laboratory’s 2DVar algorithm is used to retrieve wind fields from the KPDT (Pendleton OR) and KMLB (Melbourne FL) NEXRAD radars. Comparisons between the 2DVar retrievals and the radar profilers were conducted over a period of about 6 months and at multiple height levels at each of the profiler sites. Wind speed correlations at most observation height levels fell in the range from 0.7 to 0.8, indicating that the retrieved winds followed temporal fluctuations in the profiler-observed winds reasonably well. The retrieved winds, however, consistently exhibited slow biases in the range of1 to 2 ms-1. Wind speed difference distributions were broad with standard deviations in the range from 3 to 4 ms-1. Results from the Florida site showed little change in the wind speed correlations and difference standard deviations with altitude between about 300 and 1400 m AGL. Over this same height range, results from the Oregon site showed a monotonic increase in the wind speed correlation and a monotonic decrease in the wind speed difference standard deviation with increasing altitude. The poorest overall agreement occurred at the lowest observable level (~300 m AGL) at the Oregon site, where the effects of the complex terrain were greatest.

  13. Development of Radar Navigation and Radio Data Transmission for Microhole Coiled Tubing Bottom Hole Assemblies

    SciTech Connect (OSTI)

    Larry G. Stolarczyk; Gerald L. Stolarczyk; Larry Icerman; John Howard; Hooman Tehrani

    2007-03-25T23:59:59.000Z

    This Final Technical Report summarizes the research and development (R&D) work performed by Stolar Research Corporation (Stolar) under U.S. Department of Energy (DOE) Contract Number DE-FC26-04NT15477. This work involved the development of radar navigation and radio data transmission systems for integration with microhole coiled tubing bottom hole assemblies. Under this contract, Stolar designed, fabricated, and laboratory and field tested two advanced technologies of importance to the future growth of the U.S. oil and gas industry: (1) real-time measurement-while-drilling (MWD) for guidance and navigation of coiled tubing drilling in hydrocarbon reservoirs and (2) two-way inductive radio data transmission on coiled tubing for real-time, subsurface-to-surface data transmission. The operating specifications for these technologies are compatible with 3.5-inch boreholes drilled to a true vertical depth (TVD) of 5,000 feet, which is typical of coiled tubing drilling applications. These two technologies (i.e., the Stolar Data Transmission System and Drill String Radar) were developed into pre-commercial prototypes and tested successfully in simulated coiled tubing drilling conditions. Integration of these two technologies provides a real-time geosteering capability with extremely quick response times. Stolar is conducting additional work required to transition the Drill String Radar into a true commercial product. The results of this advanced development work should be an important step in the expanded commercialization of advanced coiled tubing microhole drilling equipment for use in U.S. hydrocarbon reservoirs.

  14. Applications of digital radar in the analysis of severe local storms

    E-Print Network [OSTI]

    Vogel, John Everett

    1973-01-01T23:59:59.000Z

    . Severe storm data 3. ANALYSIS PROCEDURES a. General b. Constant altitude reflectivity displays c. Vertical integration of liquid water (VIL) and displays of VIL 13 33 4. PRESENTATION AND DISCUSSION OF RESULTS 42 a. Case I, storm of April 26, 1969... values to 100 n mi, thus 21ogr = 4. Using a value of 0. 9 for K (Greene, 1971) and the value of C 2 obtained earlier, we have log CK = -10. 5. 2 (7) 11 DIGITAL RADAR DATA FORMAT op IE A. /+~ +~ Eb g Q PV THRESHOlD LEVEL OF V INTEGERS- (dbm ) ~ I...

  15. Sandia National Laboratories land use permit for operations at Oliktok Alaska Long Range Radar Station.

    SciTech Connect (OSTI)

    Catechis, Christopher Spyros

    2013-02-01T23:59:59.000Z

    The property subject to this Environmental Baseline Survey (EBS) is located at the Oliktok Long Range Radar Station (LRRS). The Oliktok LRRS is located at 70%C2%B0 30' W latitude, 149%C2%B0 53' W longitude. It is situated at Oliktok Point on the shore of the Beaufort Sea, east of the Colville River. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  16. Correction of motion measurement errors beyond the range resolution of a synthetic aperture radar

    DOE Patents [OSTI]

    Doerry, Armin W. (Albuquerque, NM); Heard, Freddie E. (Albuquerque, NM); Cordaro, J. Thomas (Albuquerque, NM)

    2008-06-24T23:59:59.000Z

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  17. Mesoscale divergence, vorticity, and vertical motion compared to radar and rainfall patterns

    E-Print Network [OSTI]

    Withers, Donald Mead

    1971-01-01T23:59:59.000Z

    analysis, 1800 CST, May 16, 1969 33. 700-mb analysis, 1800 CST, May 16, 1969 34. 500-mb analysis, 1800 CST, May 16, 1969 35. Radar contours, 2033 CST, May 16, 1969 36. Rainfall, 2015-2030 CST, May 16, 1969 37. Surface wind analysis, 2030 CST, May 16..., 1969 49 51 52 53 54 55 56 57 38. 850-mb streamline and equi. valent potential tempera- ture analyses, 2030 CST, May 16, 1969 58 39. 850-mb temperature and dew-point analyses, 2030 CST, May 16, 1969 59 40. 700-mb streamline and equivalent...

  18. On the measurement of wind speeds in tornadoes with a portable CW/FM-CW Doppler radar

    SciTech Connect (OSTI)

    Bluestein, H.B. (Oklahoma Univ., Norman, OK (USA). School of Meteorology); Unruh, W.P. (Los Alamos National Lab., NM (USA))

    1991-01-01T23:59:59.000Z

    Both the formation mechanism and structure of tornadoes are not yet well understood. The Doppler radar is probably the best remote-sensing instrument at present for determining the wind field in tornadoes. Although much has been learned about the non-supercell tornado from relatively close range using Doppler radars at fixed sites, close-range measurements in supercell tornadoes are relatively few. Doppler radar can increase significantly the number of high-resolution, sub-cloud base measurements of both the tornado vortex and its parent vortex in supercells, with simultaneous visual documentation. The design details and operation of the CW/FM-CW Doppler radar developed at the Los Alamos National Laboratory and used by storm-intercept teams at the Univ. of Oklahoma are described elsewhere. The radar transmits 1 W at 3 cm, and can be switched back and forth between CW and FM-CW modes. In the FM-CW mode the sweep repetition frequency is 15.575 kHz and the sweep width 1.9 MHz; the corresponding maximum unambiguous range and velocity, and range resolution are 5 km, {plus minus} 115 m s{sup {minus}1}, and 78 m respectively. The bistatic antennas, which have half-power beamwidths of 5{degree}, are easily pointed wit the aid of a boresighted VCR. FM-CW Data are recorded on the VCR, while voice documentation is recorded on the audio tape; video is recorded on another VCR. The radar and antennas are easily mounted on a tripod, and can be set up by three people in a minute or two. The purpose of this paper is to describe the signal processing techniques used to determine the Doppler spectrum in the FM-CW mode and a method of its interpretation in real time, and to present data gathered in a tornadic storm in 1990. 15 refs., 7 figs.

  19. ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS

    SciTech Connect (OSTI)

    Chiswell, S

    2009-01-11T23:59:59.000Z

    Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.

  20. Tomographic data developed using the ABEM RAMAC borehole radar system at the Mixed Waste Landfill Integrated Demonstration

    SciTech Connect (OSTI)

    MacLeod, G.A.; Barker, D.L.; Molnar, S. [Raytheon Services Nevada, Las Vegas, NV (United States)

    1994-02-18T23:59:59.000Z

    The ABEM RAMAC borehole radar system was run as part of the Mixed Waste Landfill Integrated Demonstration for Sandia National Laboratories at Kirtland AFB. Tomograms were created between three test boreholes-UCAP No. 1, UCAP No. 2, and UCAP No. 3. These tomograms clearly delineate areas of amplitude attenuation and residual time of arrival or slowness differences. Plots for slowness were made using both the maximum and minimum of the first arrival pulse. The data demonstrates that the ABEM RAMAC 60-MHz pulse sampling radar system can be used to collect usable data in a highly conductive environment.

  1. HERMES: a high-speed radar imaging system for inspection of bridge decks

    SciTech Connect (OSTI)

    Azevedo, S.G.

    1996-10-26T23:59:59.000Z

    Corrosion of rebar in concrete bridges causes subsurface cracks and is a major cause of structural degradation that necessitates repair or replacement. Early detection of corrosion effects can limit the location and extent of necessary repairs, while providing long-term information about the infrastructure status. Most current detection methods, however, are destructive of the road surface and require closing or restricting traffic while the tests are performed. A ground-penetrating radar imaging system has been designed and developed that will perform the nondestructive evaluation of road-bed cracking at traffic speeds; i.e., without the need to restrict traffic flow. The first-generation system (called the HERMES bridge inspector), consists of an offset-linear array of 64 impulse radar transceivers and associated electronics housed in a trailer. Computers in the trailer and in the towing vehicle control the data acquisition, processing, and display. Cross-road resolution is three centimeters at up to 30 cm in depth, while down-road resolution depends on speed; 3 cm below 20 mph up to 8 cm at 50 mph. A two-meter- wide path is inspected on each pass over the roadway. This paper, describes the design of this system, shows preliminary results, and lays out its deployment schedule.

  2. A High Resolution, Light-Weight, Synthetic Aperture Radar for UAV Application

    SciTech Connect (OSTI)

    Doerry, A.W.; Hensley, W.H.; Stence, J.; Tsunoda, S.I. Pace, F.; Walker, B,C.; Woodring, M.

    1999-05-27T23:59:59.000Z

    (U) Sandia National Laboratories in collaboration with General Atomics (GA) has designed and built a high resolution, light-weight, Ku-band Synthetic Aperture Radar (SAR) known as "Lynx". Although Lynx can be operated on a wide variety of manned and unmanned platforms, its design is optimized for use on medium altitude Unmanned Aerial Vehicles (UAVS). In particular, it can be operated on the Predator, I-GNAT, and Prowler II platforms manufactured by GA. (U) The radar production weight is less than 120 lb and operates within a 3 GHz band from 15.2 GHz to 18.2 GHz with a peak output power of 320 W. Operating range is resolution and mode dependent but can exceed 45 km in adverse weather (4 mm/hr rain). Lynx has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode, over substantial depression angles (5 to 60 deg) and squint angles (broadside ±45 deg). Real-time Motion Compensation is implemented to allow high-quality image formation even during vehicle turns and other maneuvers.

  3. The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar

    E-Print Network [OSTI]

    Ellingson, Steven W.

    , Brownsville, TX 78520 and on behalf of the LWA Consortium. ABSTRACT The Long Wavelength Array (LWA), currently accurate geomagnetic storm prediction from the Earth's surface. Both radar and passive receiving techniques sensing techniques. The LWA will also naturally provide a measure of small-scale spatial and temporal

  4. The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar

    E-Print Network [OSTI]

    Ellingson, Steven W.

    Consortium #12;Executive Summary The Long Wavelength Array (LWA), currently under construction in New be an excellent receiver for solar radar, potentially demonstrating accurate geomagnetic storm prediction from naturally provide a measure of small-scale spatial and temporal ionospheric structure, a prerequisite

  5. Discontinuous Non-Rigid Motion Analysis of Sea Ice using C-Band Synthetic Aperture Radar Satellite Imagery

    E-Print Network [OSTI]

    Delaware, University of

    Discontinuous Non-Rigid Motion Analysis of Sea Ice using C-Band Synthetic Aperture Radar Satellite@cis.udel.edu Cathleen Geiger Snow and Ice Branch USACRREL 72 Lyme Rd, Hanover, NH 03755 cathleen@cis.udel.edu Abstract Sea-ice motion consists of complex non-rigid motions in- volving continuous, piece-wise continuous

  6. A Fiber-Optic-Based 1550-nm Laser Radar Altimeter with RF Pulse Compression Christopher Allen, Sivaprasad Gogineni

    E-Print Network [OSTI]

    Kansas, University of

    A Fiber-Optic-Based 1550-nm Laser Radar Altimeter with RF Pulse Compression Christopher Allen-the-shelf fiber-optic components and traditional RF and digital signal processing techniques to achieve fine erbium-doped fiber amplifiers (EDFAs) could be used to provide optical gain. The transmitted signal

  7. Development of a 1319 nm Laser Radar using Fiber-Optics and RF Pulse Compression: Receiver Characterization

    E-Print Network [OSTI]

    Kansas, University of

    Development of a 1319 nm Laser Radar using Fiber-Optics and RF Pulse Compression: Receiver and commercially available fiber-optic technologies. We use radio frequency (RF) pulse compression and digital commensurate with the desired range accuracy. With today's off-the-shelf fiber-optic components, multi

  8. MULTI-FUNCTION PHASED ARRAY RADAR FOR12R.2 U.S. CIVIL-SECTOR SURVEILLANCE NEEDS

    E-Print Network [OSTI]

    Zhang, Yan

    . This is managed jointly by the National Weather Service (NWS), the Federal Aviation Administration (FAA primary aircraft * This work was sponsored by the Federal Aviation Administration under Air Force Contract four separate ground based surveillance radar networks supporting public and aviation-specific weather

  9. Impact of CASA Radar and Oklahoma Mesonet Data Assimilation on the Analysis and Prediction of Tornadic Mesovortices in an MCS

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    Impact of CASA Radar and Oklahoma Mesonet Data Assimilation on the Analysis and Prediction and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma KEITH BREWSTER Center for Analysis and Prediction of Storms, Norman, Oklahoma JIDONG GAO National Severe Storms

  10. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 6, JUNE 2009 1777 Cassini RADAR Sequence Planning and

    E-Print Network [OSTI]

    Goddard III, William A.

    in the Saturn system. Two SAR modes are used for high- and medium-resolution (300­1000 m) imaging of Titan, and calibration observations have provided an absolute calibration good to about 1.3 dB. Relative uncertainties, radiometer, synthetic aperture radar (SAR). I. INTRODUCTION THE Cassini­Huygens mission to Saturn

  11. Abstract--In the design of a spaceborne Synthetic Aperture RADAR mission with multiple modes and swaths, like the

    E-Print Network [OSTI]

    Gesbert, David

    the modes. Index Terms-- Synthetic Aperture Radar, STRIPMAP, TOPSAR. Conference topic: SAR/ISAR I Sophia-Antipolis cedex, France. mail: lorenzo.maggi@eurecom.fr calibration and the processing. In order of a spaceborne SAR. Let us refer to the geometry of Fig. 1.a, where we assumed for simplicity flat earth

  12. Use of ground-penetrating radar to define recharge areas in the Central Sand Plain. Technical completion report

    SciTech Connect (OSTI)

    Bohling, G.C.; Anderson, M.P.; Bentley, C.R.

    1989-01-01T23:59:59.000Z

    Contamination of ground water by agricultural chemicals in the Central Sand Plain (Portage County in Wisconsin) has prompted studies of ground water flow in the region. Because the ground water system is particularly susceptible to contamination in areas where ground water recharge occurs, identification of recharge zones can contribute significantly to the effective management of agricultural chemical use. An accurate map of water-table elevation (ground water head) is crucial to identifying the distribution of recharge. The reliability of ground-penetrating radar as a total for obtaining high resolution maps of water table elevation was assessed. Sparse subsets of wells in the area were used to calibrate the radar; water-table depths obtained from these calibrations were compared to known water-table depths in the remaining wells. Three wells are the minimum needed to obtain an estimate of uncertainty in calibration parameters; specifically, the radar signal velocity in the subsurface materials and the return time correction factor. If several wells distributed throughout a region of interest yield consistent calibration results, radar can be used to produce a map of water-table elevation for that region.

  13. Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar

    E-Print Network [OSTI]

    Li, Zhanqing

    Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud to analyze cloud vertical structure over this area by taking advantage of the first direct measurements of cloud vertical layers from the 95 GHz radar. Singlelayer, twolayer, and threelayer clouds account for 28

  14. Arctic-Winter Climatology and Radiative Effects of Clouds and Aerosols Based on Lidar and Radar Measurements at PEARL

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    Arctic-Winter Climatology and Radiative Effects of Clouds and Aerosols Based on Lidar and Radar Atmospheric Radiative Transfer (SBDART) code. Results on the climatology and radiative effects of clouds, arctic regions are the site of interactions between aerosols, clouds, radiation and precipitations

  15. Testing IWC Retrieval Methods using Radar and Ancillary Measurements with In-Situ Andrew J. Heymsfield1

    E-Print Network [OSTI]

    Hogan, Robin

    profiles of ice water content (IWC) can now be derived globally from spaceborne cloud radar (CloudSat) data energy to space. Because of their height in the atmosphere, ice clouds have a dominant effect on longwave (), and ice particle shape, significantly affect ice cloud radiative properties. CloudSat, with an onboard

  16. A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.

    SciTech Connect (OSTI)

    Luke,E.; Kollias, P.

    2007-08-06T23:59:59.000Z

    The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phase cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered by the highly reflecting ice-covered ground and persistent temperature inversions. From the ground, the retrieval of mixed-phase cloud properties has been the subject of extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 1996), and recently radar Doppler spectra (Shupe et al. 2004). Millimeter-wavelength radars have substantially improved our ability to observe non-precipitating clouds (Kollias et al., 2007) due to their excellent sensitivity that enables the detection of thin cloud layers and their ability to penetrate several non-precipitating cloud layers. However, in mixed-phase clouds conditions, the observed Doppler moments are dominated by the highly reflecting ice crystals and thus can not be used to identify the cloud phase. This limits our ability to identify the spatial distribution of cloud phase and our ability to identify the conditions under which mixed-phase clouds form.

  17. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    SciTech Connect (OSTI)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya [College of Science, Air Force Engineering University, Xi'an, Shaanxi 710051 (China); Zhang, Jieqiu [College of Science, Air Force Engineering University, Xi'an, Shaanxi 710051 (China); Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China); Xu, Zhuo [Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China); Zhang, Anxue [School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China)

    2014-06-02T23:59:59.000Z

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  18. Estimating Saturated Hydraulic Conductivity from Surface Ground-Penetrating Radar Monitoring of Infiltration

    E-Print Network [OSTI]

    Léger, Emmanuel; Coquet, Yves

    2013-01-01T23:59:59.000Z

    In this study we used Hydrus-1D to simulate water infiltration from a ring infiltrometer. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity while knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the depth of the inflection point of the water content profile simulated at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relationship to invert the saturated hydraulic conductivity for constant and falling head infiltrations. We present our method on synthetic examples and on two experiments carried out on sand. We f...

  19. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11T23:59:59.000Z

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  20. Vertical profiles of radar reflectivity of convective cells in tropical and mid-latitude mesoscale convective systems

    E-Print Network [OSTI]

    Lutz, Kurt Reed

    1992-01-01T23:59:59.000Z

    meteorological phenomenon of particular interest to forecasters is the mesoscale convective system (MCS). Chappell (1986) defines an MCS as "any multicellular storm or group of interacting storms that suggests some organization in its forcing". An MCS...VERTICAL PROFILES OF RADAR REFLECTIVITY OF CONVECTIVE CELLS IN TROPICAL AND MID-LATITUDE MESOSCALE CONVECTIVE SYSTEMS A Thesis by KURT REED LUTZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  1. An analysis of the data collection modes of a digital weather radar system with respect to significant severe weather features

    E-Print Network [OSTI]

    Neyland, Michael Arthur

    1978-01-01T23:59:59.000Z

    . CONCLUSIONS AND RECOMMENDATIONS. Conclusions Recommendations Page 109 109 111 REFERENCES. APPENDIX A. APPENDIX B. 113 115 131 143 viii LIST OF TABLES Table Page WSR/TAM-2 Weather Radar Technical Characteristics. . . 20 Antenna Scan Rates (rpm... reduction techniques can be applied. The usual pracr. ice is to measure the returned power in terms of decibels with respect to a standard reference power level, normally 1 mw. Power levels are then expressed in units of dBm, either above (+) or below...

  2. Ground-penetrating radar imaging of depositional and diagenetic features in an Upper Miocene carbonate reservoir analog, SE Spain

    E-Print Network [OSTI]

    Knoph, Katharine Marie

    2011-08-31T23:59:59.000Z

    that have carefully examined the sedimentologic and stratigraphic character of each of the four TCC sequences (Franseen et al., 1993; Whitesell, 1995; Lipinski, 2009). These studies indicate the following characteristics of each sequence... of sedimentology and stratigraphy (Bristow et al., 2000; Bristow and Jol, 2003; Roberts et al., 2003). This study compares radar facies to adjacent, well-exposed outcrops, allowing evaluation of the capability of GPR to image geometries, sedimentary facies...

  3. Short range micro-power impulse radar with high resolution swept range gate with damped transmit and receive cavities

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-06-30T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with atypical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. 20 figs.

  4. Three-dimensional subsurface imaging synthetic aperture radar (3D SISAR). Final report, September 22, 1993--September 22, 1996

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    The concept developed under this applied research and development contract is a novel Ground Penetrating Radar system capable of remotely detecting, analyzing, and mapping buried waste containers from a mobile platform. From the testing and analysis performed to date, the 3-D SISAR has achieved the detection, accurate location, and three-dimensional imaging of buried test objects from a stand-off geometry. Tests have demonstrated that underground objects have been located to within 0.1 meter of their actual position. This work validates that the key elements of the approach are performing as anticipated. The stand-off synthetic aperture radar (SAR) methodology has been demonstrated to be a feasible approach as a remote sensing technique. The radar sensor constructed under this project is providing adequate quality data for imaging, and the matched filters have been demonstrated to provide enhanced target detection. Additional work is on-going in the area of underground propagation and scattering phenomena to provide enhanced depth performance, as the current imaging results have been limited to a few feet of depth underground.

  5. Short range micro-power impulse radar with high resolution swept range gate with damped transmit and receive cavities

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-01-01T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with atypical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings.

  6. Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes ; Revised September 3, 2003

    SciTech Connect (OSTI)

    Gary E. Rochau and Thurlow W.H. Caffey, Sandia National Laboratories, Albuquerque, NM 87185-0740; Bahram Nassersharif and Gabe V. Garcia, Department of Mechanical Engineering, New Mexico State University, Las Cruces, NM 88003-8001; Russell P. Jedlicka, Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM 88003-8001

    2003-05-01T23:59:59.000Z

    OAK B204 Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes ; Revised September 3, 2003. A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The technique is 100% volumetric, and may find smaller defects, more rapidly, and less expensively than present methods. The project described in this report was a joint development effort between Sandia National Laboratories (SNL) and New Mexico State University (NMSU) funded by the US Department of Energy. The goal of the project was to research, design, and develop a new concept utilizing a continuous wave radar to detect defects inside metallic tubes and in particular nuclear plant steam generator tubing. The project was divided into four parallel tracks: computational modeling, experimental prototyping, thermo-mechanical design, and signal detection and analysis.

  7. Constructing a Merged Cloud-Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    SciTech Connect (OSTI)

    Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney; Ellis, Scott; Comstock, Jennifer M.; Bharadwaj, Nitin

    2014-05-16T23:59:59.000Z

    To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective clouds and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.

  8. Method and apparatus for reducing range ambiguity in synthetic aperture radar

    DOE Patents [OSTI]

    Kare, Jordin T. (San Ramon, CA)

    1999-10-26T23:59:59.000Z

    A modified Synthetic Aperture Radar (SAR) system with reduced sensitivity to range ambiguities, and which uses secondary receiver channels to detect the range ambiguous signals and subtract them from the signal received by the main channel. Both desired and range ambiguous signals are detected by a main receiver and by one or more identical secondary receivers. All receivers are connected to a common antenna with two or more feed systems offset in elevation (e.g., a reflector antenna with multiple feed horns or a phased array with multiple phase shift networks. The secondary receiver output(s) is (are) then subtracted from the main receiver output in such a way as to cancel the ambiguous signals while only slightly attenuating the desired signal and slightly increasing the noise in the main channel, and thus does not significantly affect the desired signal. This subtraction may be done in real time, or the outputs of the receivers may be recorded separately and combined during signal processing.

  9. On the detection of crevasses in glacial ice with synthetic-aperture radar.

    SciTech Connect (OSTI)

    Brock, Billy C.

    2010-02-01T23:59:59.000Z

    The intent of this study is to provide an analysis of the scattering from a crevasse in Antarctic ice, utilizing a physics-based model for the scattering process. Of primary interest is a crevasse covered with a snow bridge, which makes the crevasse undetectable in visible-light images. It is demonstrated that a crevasse covered with a snow bridge can be visible in synthetic-aperture-radar (SAR) images. The model of the crevasse and snow bridge incorporates a complex dielectric permittivity model for dry snow and ice that takes into account the density profile of the glacier. The surface structure is based on a fractal model that can produce sastrugi-like features found on the surface of Antarctic glaciers. Simulated phase histories, computed with the Shooting and Bouncing Ray (SBR) method, are processed into SAR images. The viability of the SBR method for predicting scattering from a crevasse covered with a snow bridge is demonstrated. Some suggestions for improving the model are given.

  10. Interpretation of Ground Penetrating Radar data at the Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Bergstrom, K.A.; Mitchell, T.H.; Kunk, J.R.

    1993-07-01T23:59:59.000Z

    Ground Penetrating Radar (GPR) is being used extensively during characterization and remediation of chemical and radioactive waste sites at the Hanford Site in Washington State. Time and money for GPR investigations are often not included during the planning and budgeting phase. Therefore GPR investigations must be inexpensive and quick to minimize impact on already established budgets and schedules. An approach to survey design, data collection, and interpretation has been developed which emphasizes speed and budget with minimal impact on the integrity of the interpretation or quality of the data. The following simple rules of thumb can be applied: (1) Assemble as much pre-survey information as possible, (2) Clearly define survey objectives prior to designing the survey and determine which combination of geophysical methods will best meet the objectives, (3) Continuously communicate with the client, before, during and after the investigation, (4) Only experienced GPR interpreters should acquire the field data, (5) Use real-time monitoring of the data to determine where and how much data to collect and assist in the interpretation, (6) Always ``error`` in favor of collecting too much data, (7) Surveys should have closely spaced (preferably 5 feet, no more than 10 feet), orthogonal profiles, (8) When possible, pull the antenna by hand.

  11. Radar Imaging and Characterization of Binary Near-Earth Asteroid (185851) 2000 DP107

    E-Print Network [OSTI]

    Naidu, Shantanu P; Taylor, Patrick A; Nolan, Michael C; Busch, Michael W; Benner, Lance A M; Brozovic, Marina; Giorgini, Jon D; Jao, Joseph S; Magri, Chris

    2015-01-01T23:59:59.000Z

    Potentially hazardous asteroid (185851) 2000 DP107 was the first binary near-Earth asteroid to be imaged. Radar observations in 2000 provided images at 75 m resolution that revealed the shape, orbit, and spin-up formation mechanism of the binary. The asteroid made a more favorable flyby of the Earth in 2008, yielding images at 30 m resolution. We used these data to obtain shape models for the two components and to improve the estimates of the mutual orbit, component masses, and spin periods. The primary has a sidereal spin period of 2.7745 +/- 0.0007 h and is roughly spheroidal with an equivalent diameter of 863 m +/- 5%. It has a mass of 4.656 +/- 0.56 x 10^11 kg and a density of 1381 +/- 268 kg/m^3. It exhibits an equatorial ridge similar to the (66391) 1999 KW4 primary, however the equatorial ridge in this case is not as regular and has a ~300 m diameter concavity on one side. The secondary has a sidereal spin period of 1.77 +/- 0.02 days commensurate with the orbital period. The secondary is slightly elon...

  12. published in JGR, 105, 21,781-21,794, 2000 Deformation and seismicity in the Coso geothermal

    E-Print Network [OSTI]

    published in JGR, 105, 21,781-21,794, 2000 Deformation and seismicity in the Coso geothermal area. Interferometric synthetic aperture radar (InSAR) data collected in the Coso geothermal area, eastern California with the production area of the Coso geothermal plant. The maximum subsidence rate in the peak of the anomaly is 3

  13. TWO-DIMENSIONAL POLYNOMIAL PHASE SIGNALS: PARAMETER ESTIMATION AND BOUNDS

    E-Print Network [OSTI]

    Francos, Joseph M.

    , the problem of modeling and analyzing Synthetic Aperture Radar (SAR) data, and in particular Interferometric SAR (INSAR) images, involves the analysis of complex valued 2-D non-homogeneous signals. Perspective such as camera calibration and the computation of shape from texture. Existing solutions to problems where

  14. 2446 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 6, NOVEMBER 2000 An Evaluation of the JPL TOPSAR for Extracting

    E-Print Network [OSTI]

    Sarabandi, Kamal

    the interferometric SAR(INSAR) DEM. To accomplish this, differential global po- sitioning system (GPS) measurements. It is accurate to within 1 m or 10% for the red pine test stands used here. Index Terms--Calibration aperture radar (SAR), vegetation. I. INTRODUCTION ONE OF the most critical biophysical parameters

  15. A joint study of the lower ionosphere by radar, lidar, and spectrometer

    SciTech Connect (OSTI)

    Zhou, Qihou.

    1991-01-01T23:59:59.000Z

    The dynamics and associated phenomena occurring in the lower ionospheric-E region, especially the mesopause region between 80 km to 110 km at low latitude, are studied. In particular, incoherent scatter radar (ISR), sodium lidar and airglow spectrometry are used to study the ionospheric structure and neutral sodium structure. The simultaneous study of the ionospheric plasma and neutral atomic sodium is unprecedented in scope and detail. The joint study of the mesopause region reveals that plasma, neutral densities and temperature are interconnected through the same atmospheric dynamics. The theme of the thesis is to explain the formation of the controversial sporadic sodium layer (SSL) events. Strong correlation is established between the average total ion and sodium concentrations, and between sporadic-E and SSL events. The mechanism proposed in the thesis, which invokes temperature fluctuations induced by tides and gravity waves, finds good agreement with observations. Tides and gravity waves can converge ions into thin layers through the windshear mechanisms and can influence the concentration of atomic sodium through temperature fluctuations. Sodium abundance is shown to augment rapidly when the temperature is increased. Gravity wave theory states that the ion convergence node coincides with a temperature maximum for a westward propagating gravity wave, and coincides with a temperature minimum for an eastward propagating wave. Because tidal winds propagate westward, the ion layer coincides with the temperature maximum which consequently induces higher sodium concentration. This can account for the general correlation between sodium and total ion concentration and is supported by the O2(0-1) rotational temperature. Gravity waves and their interaction with tidal winds are believed to be responsible for the close association between sudden sodium layers and sporadic-E layers.

  16. Material Property Estimation for Direct Detection of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    SciTech Connect (OSTI)

    John H. Bradford; Stephen Holbrook; Scott B. Smithson

    2004-12-09T23:59:59.000Z

    The focus of this project is direct detection of DNAPL's specifically chlorinated solvents, via material property estimation from multi-fold surface ground-penetrating radar (GPR) data. We combine state-of-the-art GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects.

  17. InSAR (Monaster And Coolbaugh, 2007) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation, searchInformation Mexico

  18. Joint inversion of crosshole radar and seismic traveltimes acquired at the South Oyster BacterialTransport Site

    SciTech Connect (OSTI)

    Linde, Niklas; Tryggvason, Ari; Peterson, John; Hubbard, Susan

    2008-04-15T23:59:59.000Z

    The structural approach to joint inversion, entailing common boundaries or gradients, offers a flexible way to invert diverse types of surface-based and/or crosshole geophysical data. The cross-gradients function has been introduced as a means to construct models in which spatial changes in two models are parallel or anti-parallel. Inversion methods that use such structural constraints also provide estimates of non-linear and non-unique field-scale relationships between model parameters. Here, we invert jointly crosshole radar and seismic traveltimes for structurally similar models using an iterative non-linear traveltime tomography algorithm. Application of the inversion scheme to synthetic data demonstrates that it better resolves lithological boundaries than the individual inversions. Tests of the scheme on observed radar and seismic data acquired within a shallow aquifer illustrate that the resultant models have improved correlations with flowmeter data than with models based on individual inversions. The highest correlation with the flowmeter data is obtained when the joint inversion is combined with a stochastic regularization operator, where the vertical integral scale is estimated from the flowmeter data. Point-spread functions shows that the most significant resolution improvements of the joint inversion is in the horizontal direction.

  19. Radar-based dynamic testing of the cable-suspended bridge crossing the Ebro River at Amposta, Spain

    SciTech Connect (OSTI)

    Gentile, Carmelo [Politecnico di Milano, Dept. of Architecture, Built environment and Construction engineering (ABC), Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Luzi, Guido [Centre Tecnòlogic de Telecomunicacions de Catalunya (CTTC), Division of Geomatics, Av. Gauss, 7 E-08860 Castelldefels (Barcelona) (Spain)

    2014-05-27T23:59:59.000Z

    Microwave remote sensing is the most recent experimental methodology suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. After a brief description of the radar measurement system, the paper addresses the application of microwave remote sensing to ambient vibration testing of a cable-suspended bridge. The investigated bridge crosses the Ebro River at Amposta, Spain and consists of two steel stiffening trusses and a series of equally spaced steel floor beams; the main span is supported by inclined stay cables and two series of 8 suspension cables. The dynamic tests were performed in operational conditions, with the sensor being placed in two different positions so that the response of both the steel deck and the arrays of suspension elements was measured. The experimental investigation confirms the simplicity of use of the radar and the accuracy of the results provided by the microwave remote sensing as well as the issues often met in the clear localization of measurement points.

  20. Dynamic thinning of Antarctic glaciers from along-track repeat radar Thomas Flament, LEGOS, 14 Avenue E. Belin, 31400 Toulouse France

    E-Print Network [OSTI]

    Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry Thomas Flament acceleration of the thinning on any glacier elsewhere than on the coast of the Amundsen Sea. Introduction an acceleration of thinning close to the grounding line. Other glaciers in the surroundings are exposed

  1. Damage Survey, Radar, and Environment Analyses on the First-Ever Documented Tornado in Beijing during the Heavy Rainfall Event of 21 July 2012

    E-Print Network [OSTI]

    Meng, Zhiyong

    Damage Survey, Radar, and Environment Analyses on the First-Ever Documented Tornado in Beijing wind damage occurred in Beijing, China, during a heavy rainfall event. Through a damage survey that had the most detailed information in all of the published tornado damage surveys so far in China, this work

  2. Sub-mesoscale coastal eddies observed by high frequency radar: A new mechanism for delivering nutrients to kelp forests in the Southern

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    nutrients to kelp forests in the Southern California Bight Corinne J. Bassin and Libe Washburn Institute radar: A new mechanism for delivering nutrients to kelp forests in the Southern California Bight] Internal waves are one such process that transport nutrients and larvae to kelp forests on the inner shelf

  3. An investigation of 3.2-cm attenuation by subtropical precipitation through use of a dual-frequency, equi-volume radar system

    E-Print Network [OSTI]

    Hodges, Donald Bartholomew

    1966-01-01T23:59:59.000Z

    than an A-R visual technique, if it were not for the loss in accuracy caused by the measurement of P at r arbitrary gain step values, several dbms apart. Both radars were turned on at least one hour prior to calibration or data collection. Also...

  4. A FOUNDATION FOR ORBITAL RADAR SOUNDING OF EUROPA FROM NEW MEASUREMENTS OF THE BROADBAND DIELECTRIC PROPERTIES OF TERRESTRIAL POLAR ICE CORES. David E.

    E-Print Network [OSTI]

    Stillman, David E.

    E. Grimm1 , Donald D. Blankenship2 , and Dale P. Wine- brenner3 . 1 Dept. of Space Studies at the high-frequency limit (e.g., Figure 1b), its temperature dependence (activation energy) and soluble and decrease its activation energy. Both of these shifts tend to increase attenuation at radar frequencies

  5. 12A.4 VERTICAL VELOCITY AND BUOYANCY CHARACTERISTICS OF ECHO PLUMES DETECTED BY AN AIRBORNE MM-WAVE RADAR IN THE CONVECTIVE

    E-Print Network [OSTI]

    Geerts, Bart

    12A.4 VERTICAL VELOCITY AND BUOYANCY CHARACTERISTICS OF ECHO PLUMES DETECTED BY AN AIRBORNE MM-WAVE, is the availability of in situ thermodynamic and kinematic observations, and the direct observation of horizontal, as part of IHOP_02 (The International Water Vapor Project, Weckwerth et al 2003). The key radar

  6. AMS Annual Meeting, Symposium on Recent Developments in Atmospheric Applications of Radar and Lidar. 20-24 January 2008, New Orleans, LA

    E-Print Network [OSTI]

    Xue, Ming

    the evolution of the MCV. The impact of assimilating radial velocity and reflectivity from CASA in addition of four x-band dual-polarization Doppler radars in southwest Oklahoma. During the spring of 2007 2006b. Previous work found that 3DVAR reflectivity assimilation is most effective when combined

  7. An OSSE Framework Based on the Ensemble Square Root Kalman Filter for Evaluating the Impact of Data from Radar Networks on Thunderstorm Analysis

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    by assimilating simulated radial velocity and reflectivity data from a Weather Surveillance Radar-1988 Doppler. The generally good analysis compared to earlier work indicates that the filter can effectively handle the non, significant errors develop in the analysis that cannot be effectively corrected. The combination of three CASA

  8. Semi-empirical calibration of the Integral Equation Model for SAR data in C-band and cross polarization using radar images and field

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 1 Semi-empirical calibration of the Integral Equation Model for SAR data in C-band and cross and roughness) from Synthetic Aperture Radar (SAR) images requires the use of well-calibrated backscattering was found between the backscattering coefficient provided by the SAR and that simulated by the calibrated

  9. Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave radiometer data are systematically compared to models to quantify and

    E-Print Network [OSTI]

    Hogan, Robin

    Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave a systematic evaluation of clouds in forecast models. Clouds and their associated microphysical processes for end users of weather forecasts, who may be interested not only in cloud cover, but in other variables

  10. Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data

    E-Print Network [OSTI]

    Stoffelen, Ad

    Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data ERWIN L. A. WOLTERS, ROBERT A. ROEBELING, AND ARNOUT J. FEIJT Royal Netherlands 2007) ABSTRACT Three cloud-phase determination algorithms from passive satellite imagers are explored

  11. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2010-06-29T23:59:59.000Z

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.

  12. Saturated hydraulic conductivity determined by on ground mono-offset Ground-Penetrating Radar inside a single ring infiltrometer

    E-Print Network [OSTI]

    Léger, Emmanuel; Coquet, Yves

    2013-01-01T23:59:59.000Z

    In this study we show how to use GPR data acquired along the infiltration of water inside a single ring infiltrometer to inverse the saturated hydraulic conductivity. We used Hydrus-1D to simulate the water infiltration. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity, knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the 1D time convolution between reflectivity and GPR signal at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relation ship to invert the saturated hydraulic conductivity for constant and fallin...

  13. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications

    SciTech Connect (OSTI)

    Wang, Zhixun; Cheng, Yongzhi, E-mail: cyz0715@126.com; Nie, Yan; Wang, Xian; Gong, Rongzhou, E-mail: rzhgong@mail.hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-07T23:59:59.000Z

    In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials applications was proposed and studied numerically and experimentally. First, based on transfer matrix method of thin-film optical theory, the propagation characteristics of the proposed structure comprising a stack of different alternating micrometer-thick layers of germanium and zinc sulfide were investigated numerically. Calculation results exhibit that this 1D single hetero-structure PC could achieve a flat high reflectivity gradually with increasing the number of the alternating media layers in a single broadband range. Then, based on principles of distributed Bragg reflector micro-cavity, a 1D double hetero-structure CPC comprising four PCs with thickness of 0.797??m, 0.592??m, 1.480??m, and 2.114??m, respectively, was proposed. Calculation results exhibit that this CPC could achieve a high reflectance of greater than 0.99 in the wavelength ranges of 3–5??m and 8–14??m and agreed well with experiment. Further experiments exhibit that the infrared emissivity of the proposed CPC is as low as 0.073 and 0.042 in the wavelength ranges of 3–5??m and 8–12??m, respectively. In addition, the proposed CPC can be used to construct infrared-radar stealth-compatible materials due to its high transmittance in radar wave band.

  14. O{sub 2} rotational temperature measurements in an atmospheric air microdischarge by radar resonance-enhanced multiphoton ionization

    SciTech Connect (OSTI)

    Sawyer, Jordan; Wu, Yue; Zhang, Zhili [Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville Tennessee 37996 (United States)] [Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville Tennessee 37996 (United States); Adams, Steven F. [Air Force Research Laboratory (AFRL/RQQE), Wright-Patterson AFB, Ohio 45433-7919 (United States)] [Air Force Research Laboratory (AFRL/RQQE), Wright-Patterson AFB, Ohio 45433-7919 (United States)

    2013-06-21T23:59:59.000Z

    Nonintrusive spatially resolved rotational temperature measurements in an atmospheric air microdischarge are presented. The measurements were based on coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization of molecular oxygen. The open air DC microdischarge source operated in a stable 'normal-glow' mode and pin-to-pin electrodes spaced 1.3 mm apart. The second harmonic of a tunable dye laser beam was focused between the two electrodes and scanned between 286 and 288 nm. Coherent microwave Rayleigh scattering was used to collect the two-photon rotational spectra of O{sub 2} at C{sup 3}{Pi}(v = 2) Leftwards-Arrow X{sup 3}{Sigma}(v Prime = 0) transitions. The Boltzmann plots from analyses of the O{sub 2} rotational lines determined local rotational temperatures at various axial locations between the electrodes. The molecular oxygen rotational temperature varied from {approx}1150 K to {approx}1350 K within the discharge area. The measurements had an accuracy of {approx}{+-}50 K.

  15. Design and implementation of a Synthetic Aperture Radar for Open Skies (SAROS) aboard a C-135 aircraft

    SciTech Connect (OSTI)

    Cooper, D.W.; Murphy, M. [Sandia National Labs., Albuquerque, NM (United States); Rimmel, G. [Loral Defense Systems, Litchfield, AZ (United States)

    1994-08-01T23:59:59.000Z

    NATO and former Warsaw Pact nations have agreed to allow overflights of their countries in the interest of easing world tension. The United States has decided to implement two C-135 aircraft with a Synthetic Aperture Radar (SAR) that has a 3-meter resolution. This work is being sponsored by the Defense Nuclear Agency (DNA) and will be operational in Fall 1995. Since the SAR equipment must be exportable to foreign nations, a 20-year-old UPD-8 analog SAR system was selected as the front-end and refurbished for this application by Loral Defense Systems. Data processing is being upgraded to a currently exportable digital design by Sandia National Laboratories. Amplitude and phase histories will be collected during these overflights and digitized on VHS cassettes. Ground stations will use reduction algorithms to process the data and convert it to magnitude-detected images for member nations. System Planning Corporation is presently developing a portable ground station for use on the demonstration flights. Aircraft integration into the C-135 aircraft is being done by the Air Force at Wright-Patterson AFB, Ohio.

  16. Deriving ice thickness, glacier volume and bedrock morphology of the Austre Lov\\'enbreen (Svalbard) using Ground-penetrating Radar

    E-Print Network [OSTI]

    Saintenoy, Albane; Booth, Adam D; Tolle, F; Bernard, E; Laffly, Dominique; Marlin, C; Griselin, M

    2013-01-01T23:59:59.000Z

    The Austre Lov\\'enbreen is a 4.6 km2 glacier on the Archipelago of Svalbard (79 degrees N) that has been surveyed over the last 47 years in order of monitoring in particular the glacier evolution and associated hydrological phenomena in the context of nowadays global warming. A three-week field survey over April 2010 allowed for the acquisition of a dense mesh of Ground-penetrating Radar (GPR) data with an average of 14683 points per km2 (67542 points total) on the glacier surface. The profiles were acquired using a Mala equipment with 100 MHz antennas, towed slowly enough to record on average every 0.3 m, a trace long enough to sound down to 189 m of ice. One profile was repeated with 50 MHz antenna to improve electromagnetic wave propagation depth in scattering media observed in the cirques closest to the slopes. The GPR was coupled to a GPS system to position traces. Each profile has been manually edited using standard GPR data processing including migration, to pick the reflection arrival time from the ic...

  17. Long-term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility

    SciTech Connect (OSTI)

    Chandra, A S; Kollias, P; Giangrande, S E; Klein, S A

    2009-08-20T23:59:59.000Z

    A long-term study of the turbulent structure of the convective boundary layer (CBL) at the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Climate Research Facility is presented. Doppler velocity measurements from insects occupying the lowest 2 km of the boundary layer during summer months are used to map the vertical velocity component in the CBL. The observations cover four summer periods (2004-08) and are classified into cloudy and clear boundary layer conditions. Profiles of vertical velocity variance, skewness, and mass flux are estimated to study the daytime evolution of the convective boundary layer during these conditions. A conditional sampling method is applied to the original Doppler velocity dataset to extract coherent vertical velocity structures and to examine plume dimension and contribution to the turbulent transport. Overall, the derived turbulent statistics are consistent with previous aircraft and lidar observations. The observations provide unique insight into the daytime evolution of the convective boundary layer and the role of increased cloudiness in the turbulent budget of the subcloud layer. Coherent structures (plumes-thermals) are found to be responsible for more than 80% of the total turbulent transport resolved by the cloud radar system. The extended dataset is suitable for evaluating boundary layer parameterizations and testing large-eddy simulations (LESs) for a variety of surface and cloud conditions.

  18. Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: a study of lightning initiation signatures as indicated by Doppler radar

    E-Print Network [OSTI]

    Gremillion, Michael Shane

    1998-01-01T23:59:59.000Z

    , except for 1806-1824 UTC 58 29 Same as Fig. 27, except for 1830-1847 UTC 59 30 Radar echo tops for all categories of storms 95 31 Scatter diagram of mixed-phase reflectivity lapse rate and maximum reflectivity at the freezing level for all storms... Mexico. Taylor (1978) also found the center of activity to be associated with the supercooled cloud layer between the regions of ? 5'C and ? 20'C. One theory of thunderstorm electrification supports the idea of an ice-related precipitation...

  19. Comparing range data across the slow-time dimension to correct motion measurement errors beyond the range resolution of a synthetic aperture radar

    DOE Patents [OSTI]

    Doerry, Armin W. (Albuquerque, NM); Heard, Freddie E. (Albuquerque, NM); Cordaro, J. Thomas (Albuquerque, NM)

    2010-08-17T23:59:59.000Z

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  20. The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at SIRTA Atmospheric Observatory

    SciTech Connect (OSTI)

    Chiriaco, M.; Vautard, R.; Chepfer, H.; Haeffelin, M.; Wanherdrick, Y.; Morille, Y.; Protat, A.; Dudhia, J.

    2005-03-18T23:59:59.000Z

    Ice clouds play a major role in the radiative energy budget of the Earth-atmosphere system (Liou 1986). Their radiative effect is governed primarily by the equilibrium between their albedo and greenhouse effects. Both macrophysical and microphysical properties of ice clouds regulate this equilibrium. For quantifying the effect of these clouds onto climate and weather systems, they must be properly characterized in atmospheric models. In this paper we use remote-sensing measurements from the SIRTA ground based atmospheric observatory (Site Instrumental de Recherche par Teledetection Atmospherique, http://sirta.lmd.polytechnique.fr). Lidar and radar observations taken over 18 months are used, in order to gain statistical confidence in the model evaluation. Along this period of time, 62 days are selected for study because they contain parts of ice clouds. We use the ''model to observations'' approach by simulating lidar and radar signals from MM5 outputs. Other more classical variables such as shortwave and longwave radiative fluxes are also used. Four microphysical schemes, among which that proposed by Reisner et al. (1998) with original or modified parameterizations of particle terminal fall velocities (Zurovac-Jevtic and Zhang 2003, Heymsfield and Donner 1990), and the simplified Dudhia (1989) scheme are evaluated in this study.

  1. Towards the azimuthal characteristics of ionospheric and seismic effects of "Chelyabinsk" meteorite fall according to the data from coherent radar, GPS and seismic networks

    E-Print Network [OSTI]

    Berngardt, O I; Kutelev, K A; Zherebtsov, G A; Dobrynina, A A; Shestakov, N V; Zagretdinov, R V; Bakhtiyarov, V F; Kusonsky, O A

    2015-01-01T23:59:59.000Z

    We present the results of a study of the azimuthal characteristics of ionospheric and seismic effects of the meteorite 'Chelyabinsk', based on the data from the network of GPS receivers, coherent decameter radar EKB SuperDARN and network of seismic stations. It is shown, that 6-14 minutes after the bolide explosion, GPS network observed the cone-shaped wavefront of TIDs that is interpreted as a ballistic acoustic wave. The typical TIDs propagation velocity were observed 661+/-256m/s, which corresponds to the expected acoustic wave speed for 240km height. 14 minutes after the bolide explosion, at distances of 200km we observed the emergence and propagation of a TID with spherical wavefront, that is interpreted as gravitational mode of internal acoustic waves. The propagation velocity of this TID was 337+/-89m/s which corresponds to the propagation velocity of these waves in similar situations. At EKB SuperDARN radar, we observed TIDs in the sector of azimuthal angles close to the perpendicular to the meteorite...

  2. Apport de l'imagerie radar SAR-ERS l'analyse de la gomtrie de la dformation rcente dans les monts Bni Snassen (Maroc) PANGEA No. 45/46 Hassan Tabyaoui et al. June / December 2009

    E-Print Network [OSTI]

    Boyer, Edmond

    monts Béni Snassen (Maroc) PANGEA No. 45/46 Hassan Tabyaoui et al. June / December 2009 18 Apport de l (Maroc nord-oriental) Contribution of the imagery radar SAR-ERS to the analysis of the geometry Modélisation, Equipe Risques Naturels, Aménagement des Territoires et Environnement, BP 1223, Taza-Gare, Maroc

  3. ARM - Measurement - Radar Doppler

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowband upwelling

  4. ARM - Measurement - Radar polarization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowband upwellingpolarization ARM Data Discovery Browse Data

  5. ARM - Measurement - Radar reflectivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowband upwellingpolarization ARM Data Discovery Browse

  6. ARM - Radar Backgrounder

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51Instruments Related Links RHUBC-II

  7. ackerman_radar.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12Zero Energy Ready Home4

  8. Ground-Based Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed ServicesGround-Based Microwave

  9. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    SciTech Connect (OSTI)

    Liu, Guosheng

    2013-03-15T23:59:59.000Z

    Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term of condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMsâ�� cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10�° (latitude) x 10�° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.

  10. aids assisted informed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INFORMATION FUSION CiteSeer Summary: This study investigates the options of information mining to enhance interpretation of PS-InSAR results of land subsidence analysis....

  11. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  12. Tide Model Accuracy in the Amundsen Sea, Antarctica, from InSAR Observations of Ice

    E-Print Network [OSTI]

    draining this region are out of balance; satellite records have documented glacier thinning, acceleration is currently losing ice mass at a rate comparable to that of the entire Greenland Ice Sheet. · Glaciers the flow of ice is removed using a prediction derived from tracking features in SAR backscatter intensity

  13. Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR

    E-Print Network [OSTI]

    Amelung, Falk

    2006 and 2010 [Simkin and Siebert, 2002]. Most of the Indonesian volca- noes are andesitic to dacitic-related fatalities [Simkin and Siebert, 2002; Blong, 1984], the two deadliest eruptions are the 1815 eruption [Simkin and Siebert, 2002]. More recently, the 1963 eruption of Agung in Bali caused over 1,100 fatalitie

  14. Applicability of InSAR to tropical volcanoes: insights from Central AmericaQ1

    E-Print Network [OSTI]

    Biggs, Juliet

    volcanoes: insights from Central AmericaQ1 S. K. EBMEIER1*, J. BIGGS2,3, T. A. MATHER1 & F. AMELUNG3 1 COMET. 2009; Biggs et al. 2010), as well as a variety of shallower surface processes. These include previously thought to be quiescent (e.g. on the East African Rift: Biggs et al. 2009) and at locations

  15. Applicability of InSAR to tropical volcanoes: insights from Central America

    E-Print Network [OSTI]

    Amelung, Falk

    . BIGGS2,3, T. A. MATHER1 & F. AMELUNG3 1 COMET+, Department of Earth Sciences, University of Oxford) or intrusive processes (e.g. dyke and sill intrusion: Hamling et al. 2009; Biggs et al. 2010), as well African Rift: Biggs et al. 2009) and at locations not obviou- sly associated with a particular volcanic

  16. PoroTomo Subtask 3.4 Analysis of existing InSAR data - Datasets...

    Open Energy Info (EERE)

    Relationship Dataset Dataset extent Map data OpenStreetMap contributors Tiles by MapQuest License Creative Commons Attribution 4.0 Open Data Author University of...

  17. Advanced InSAR Techniques for Geothermal Exploration and Production | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio:Ads-tec GmbH JumpEnergy Information and

  18. InSAR At Brady Hot Springs Area (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation, searchInformation MexicoBrady Hot

  19. InSAR At Brady Hot Springs Area (Oppliger, Et Al., 2004) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation, searchInformation MexicoBrady

  20. InSAR At Central Nevada Seismic Zone Region (Laney, 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation, searchInformation

  1. InSAR At Coso Geothermal Area (2000) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation, searchInformationCoso Geothermal

  2. InSAR At Desert Peak Area (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation, searchInformationCoso

  3. InSAR At Dixie Valley Geothermal Area (Laney, 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation,

  4. Monitoring EGS Stimulation and Reservoir Dynamics with InSAR and MEQ |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProducts |Catalysis of Fuel CellMonisha Shah About

  5. Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic

    SciTech Connect (OSTI)

    Janet Intrieri; Mathhew Shupe

    2005-01-01T23:59:59.000Z

    Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cycles of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two regions.

  6. Stratus cloud structure from MM-radar transects and satellite images: scaling properties and artifact detection with semi-discrete wavelet analysis

    SciTech Connect (OSTI)

    Davis, A. B. (Anthony B.); Petrov, N. P. (Nikola P.); Clothiaux, E. E. (Eugene E.); Marshak, A. (Alexander)

    2002-01-01T23:59:59.000Z

    Spatial and/or temporal variabilities of clouds is of paramount importance for at least two in tensely researched sub-problems in global and regional climate modeling: (1) cloud-radiation interaction where correlations can trigger 3D radiative transfer effects; and (2) dynamical cloud modeling where the goal is to realistically reproduce the said correlations. We propose wavelets as a simple yet powerful way of quantifying cloud variability. More precisely, we use 'semi-discrete' wavelet transforms which, at least in the present statistical applications, have advantages over both its continuous and discrete counterparts found in the bulk of the wavelet literature. With the particular choice of normalization we adopt, the scale-dependence of the variance of the wavelet coefficients (i.e,, the wavelet energy spectrum) is always a better discriminator of transition from 'stationary' to 'nonstationary' behavior than conventional methods based on auto-correlation analysis, second-order structure function (a.k.a. the semi-variogram), or Fourier analysis. Indeed, the classic statistics go at best from monotonically scale- or wavenumber-dependent to flat at such a transition; by contrast, the wavelet spectrum changes the sign of its derivative with respect to scale. We apply 1D and 2D semi-discrete wavelet transforms to remote sensing data on cloud structure from two sources: (1) an upward-looking milli-meter cloud radar (MMCR) at DOE's climate observation site in Oklahoma deployed as part of the Atmospheric Radiation Measurement (ARM) Progrm; and (2) DOE's Multispectral Thermal Imager (MTI), a high-resolution space-borne instrument in sunsynchronous orbit that is described in sufficient detail for our present purposes by Weber et al. (1999). For each type of data, we have at least one theoretical prediction - with empirical validation already in existence - for a power-law relation for wavelet statistics with respect to scale. This is what is expected in physical (i.e., finite scaling range) fractal phenomena. In particular, we find long-range correlations in cloud structure coming from the important nonstationary regime. More surprisingly, we also uncover artifacts the data that are traceable either to instrumental noise (in the satellite data) or to smoothing assumptions (in the MMCR data processing). Finally, we discuss the potentially damaging ramifications the smoothing artifact can have on both cloud-radiation and cloud-modeling studies using MMCR data.

  7. Imaging Structure With Fluid Fluxes At The Bradys Geothermal Field With

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatellite Interferometric Radar (Insar)- New

  8. Imola, Italy: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatellite Interferometric Radar (Insar)-

  9. Deployable Synthetic Aperture Radar Reflector

    E-Print Network [OSTI]

    Pellegrino, Sergio

    ) satellite. The structure consists of four cylindrical surfaces formed from thin sheets of carbon-fibre-reinforced-plastic (CFRP) connected by flexible hinges along the edges. The key to forming a cylindrical surface with any. At full scale the reflective surface will be 7.9 m long by 3.2 m wide, and it has been estimated

  10. Remote cardiac monitoring using radar

    E-Print Network [OSTI]

    Burnham, Jonathan S

    2009-01-01T23:59:59.000Z

    Recording a patient's vital signs without physical contact is a challenging research problem with applications in medicine, search and rescue, and security. In order to study this problem, an ultra wide band (UWB) pulse ...

  11. Comparing Clouds Using Cloud Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the followingth Lomonosov1Compact highDepartmentIntensity

  12. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis

    E-Print Network [OSTI]

    Biggs, Juliet

    Click Here for Full Article Ground surface deformation patterns, magma supply, and magma storage., and S. McNutt (2010), Ground surface deformation patterns, magma supply, and magma storage at Okmok at Okmok volcano and continuing until the start of the 2008 eruption, magma accumulated in a storage zone

  13. Mechanical modeling and InSAR measurements of Mount Sedom uplift, Dead Sea basin: Implications for effective

    E-Print Network [OSTI]

    Lyakhovsky, Vladimir

    -dimensional flow of Newtonian viscous fluid (salt) in a vertical channel that has been driven by the load viscous fluid may be more suitable than that of Newtonian viscous fluid for the Sedom rock salt at high of fuel or waste in engineering cavities. Hence constraining the properties of rock salt mass

  14. Co-eruptive subsidence at Galeras identified during an InSAR survey of Colombian volcanoes (20062009)

    E-Print Network [OSTI]

    Biggs, Juliet

    ­2009) M.M. Parks a, , J. Biggs b , T.A. Mather a , D.M. Pyle a , F. Amelung c , M.L. Monsalve d , L

  15. Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR,

    E-Print Network [OSTI]

    Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska of Volcanology and Geothermal Research 150 (2006) 186­201 www.elsevier.com/locate/jvolgeores #12;imagery have al., 2001), poroelastic rebound (Peltzer et al., 1996), cooling lava (Stevens et al., 2001

  16. Finding Large Aperture Fractures in Geothermal Resource Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component...

  17. Sedimentological and geophysical studies of clastic reservoir analogs: Methods, applications and developments of ground-penetrating radar for determination of reservoir geometries in near-surface settings. Final report

    SciTech Connect (OSTI)

    McMechan, G.A.; Soegaard, K.

    1998-05-25T23:59:59.000Z

    An integrated sedimentologic and GPR investigation has been carried out on a fluvial channel sandstone in the mid-Cretaceous Ferron Sandstone at Coyote Basin along the southwestern flank of the San Rafael Uplift in east-central Utah. This near-surface study, which covers a area of 40 {times} 16.5 meters to a depth of 15 meters, integrates detailed stratigraphic data from outcrop sections and facies maps with multi-frequency 3-D GPR surveys. The objectives of this investigation are two-fold: (1) to develop new ground-penetrating radar (GPR) technology for imaging shallow subsurface sandstone bodies, and (2) to construct an empirical three-dimensional sandstone reservoir model suitable for hydrocarbon flow-simulation by imaging near-surface sandstone reservoir analogs with the use of GPR. The sedimentological data base consists of a geologic map of the survey area and a detailed facies map of the cliff face immediately adjacent to the survey area. Five vertical sections were measured along the cliff face adjacent to the survey area. In addition, four wells were cored within the survey area from which logs were recorded. In the sections and well logs primary sedimentary structures were documented along with textural information and permeability data. Gamma-ray profiles were also obtained for all sections and core logs. The sedimentologic and stratigraphic information serves as the basis from which much of the processing and interpretation of the GPR data was made. Three 3-D GPR data sets were collected over the survey area at frequencies of 50 MHZ, 100 MHZ, and 200 MHZ.

  18. Radar and sonar probing of potash

    E-Print Network [OSTI]

    Lopez Aguilar, Luis Felipe

    1986-01-01T23:59:59.000Z

    , was able to detect reflections from acoustic discontinuities in salt located 8 to 325 m away. The piezoelectric acoustic transducer was coupled to the salt wall using castor oil. In the Kleer Salt Mine he was able to detect acoustic reflections from a... energy coupling into salt. He used the same linear sonar system developed by Butler (1977) to test castor oil, glycerin, UGL and some other commercial acoustic couplants as coupling fluids between the sonar transducer and the rock salt. He found...

  19. Homodyne impulse radar hidden object locator

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-04-30T23:59:59.000Z

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules. 15 figs.

  20. Radar remote sensing of the lower atmosphere

    E-Print Network [OSTI]

    Karimian, Ali

    2012-01-01T23:59:59.000Z

    from ray tracing (solid). (d) Clutter power from maximum rayby ray tracing (solid). (d) Clutter power calculated bysolid) and maximum of ray traces (dashed). (d) Clutter power

  1. Aircraft and Ground-based Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are necessary to further investigate the discrepancies and to better understand the effect of the microphysical assumptions on the vertical velocity retrievals. Reference(s)...

  2. Homodyne impulse radar hidden object locator

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules.

  3. A land based radar polarimeter processing system 

    E-Print Network [OSTI]

    Kronke, Chester William

    1984-01-01T23:59:59.000Z

    this document to my father for his Iong years of hard work and commitment to our family. ACKNOWLEDGMENTS I would like to express my thanks to the following people: Dr. A. J. B 1 ancha rd and Or. B. R. Jean for their k now 1 edge a nd guidance. Gary Warren... Assignments 4 Indicator Circuit Read Port Assignments. 5 Interpretation of Indicator Circuit Data . 6 RF Head Common Control Port Signal Assignments . 7 iSBC-80/24 Parallel I/O Summary. 8 iSBX-311 Analog Input Signal Assignments 9 Memory Map...

  4. Asynchronous Compressive Radar , Samuel Palermo1

    E-Print Network [OSTI]

    Palermo, Sam

    produces considerable static power during the charge accumulation stage. As both the mixer and integrator] for data compression. An employed random demodulator front-end, which consisting of a dedicated mixer and an integrator, implements CS front-end in [4]. In this architecture the mixer must operate at or above

  5. ARM - Field Campaign - Cloud Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments?

  6. ARM - Field Campaign - NSA Scanning Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL)govCampaignsMixed-Phase Arctic CloudgovCampaignsNSA

  7. Category:Radar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelListsPoliticalProperties Jumppage? For

  8. Sandia Energy - TTU Advanced Doppler Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSitingStaffSunshine toSystemsTTU

  9. How Radar Works | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project Jump to:

  10. ARM Installs Aircraft Detection Radar System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP Update Information on new, existing, and futureAnData

  11. Final Report: Detection and Characterization of Underground Facilities by Stochastic Inversion and Modeling of Data from the New Generation of Synthetic Aperture Satellites

    SciTech Connect (OSTI)

    Foxall, W; Cunningham, C; Mellors, R; Templeton, D; Dyer, K; White, J

    2012-02-27T23:59:59.000Z

    Many clandestine development and production activities can be conducted underground to evade surveillance. The purpose of the study reported here was to develop a technique to detect underground facilities by broad-area search and then to characterize the facilities by inversion of the collected data. This would enable constraints to be placed on the types of activities that would be feasible at each underground site, providing a basis the design of targeted surveillance and analysis for more complete characterization. Excavation of underground cavities causes deformation in the host material and overburden that produces displacements at the ground surface. Such displacements are often measurable by a variety of surveying or geodetic techniques. One measurement technique, Interferometric Synthetic Aperture Radar (InSAR), uses data from satellite-borne (or airborne) synthetic aperture radars (SARs) and so is ideal for detecting and measuring surface displacements in denied access regions. Depending on the radar frequency and the acquisition mode and the surface conditions, displacement maps derived from SAR interferograms can provide millimeter- to centimeter-level measurement accuracy on regional and local scales at spatial resolution of {approx}1-10 m. Relatively low-resolution ({approx}20 m, say) maps covering large regions can be used for broad-area detection, while finer resolutions ({approx}1 m) can be used to image details of displacement fields over targeted small areas. Surface displacements are generally expected to be largest during or a relatively short time after active excavation, but, depending on the material properties, measurable displacement may continue at a decreasing rate for a considerable time after completion. For a given excavated volume in a given geological setting, the amplitude of the surface displacements decreases as the depth of excavation increases, while the area of the discernable displacement pattern increases. Therefore, the ability to detect evidence for an underground facility using InSAR depends on the displacement sensitivity and spatial resolution of the interferogram, as well as on the size and depth of the facility and the time since its completion. The methodology development described in this report focuses on the exploitation of synthetic aperture radar data that are available commercially from a number of satellite missions. Development of the method involves three components: (1) Evaluation of the capability of InSAR to detect and characterize underground facilities ; (2) inversion of InSAR data to infer the location, depth, shape and volume of a subsurface facility; and (3) evaluation and selection of suitable geomechanical forward models to use in the inversion. We adapted LLNL's general-purpose Bayesian Markov Chain-Monte Carlo procedure, the 'Stochastic Engine' (SE), to carry out inversions to characterize subsurface void geometries. The SE performs forward simulations for a large number of trial source models to identify the set of models that are consistent with the observations and prior constraints. The inverse solution produced by this kind of stochastic method is a posterior probability density function (pdf) over alternative models, which forms an appropriate input to risk-based decision analyses to evaluate subsequent response strategies. One major advantage of a stochastic inversion approach is its ability to deal with complex, non-linear forward models employing empirical, analytical or numerical methods. However, while a geomechanical model must incorporate adequate physics to enable sufficiently accurate prediction of surface displacements, it must also be computationally fast enough to render the large number of forward realizations needed in stochastic inversion feasible. This latter requirement prompted us first to investigate computationally efficient empirical relations and closed-form analytical solutions. However, our evaluation revealed severe limitations in the ability of existing empirical and analytical forms to predict deformations from undergro

  12. Characterization of Radar Boundary Layer Data Collected During the 2001 Multi-Frequency Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMSStaffCeriumfor theChapter 3Characterization

  13. A Comparison of ARM Cloud Radar Profiles with MMF Simulated Radar Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3(SC) ANeutronPastAARM

  14. Geodetic Imaging of the Earthquake Cycle

    E-Print Network [OSTI]

    Tong, Xiaopeng

    SAFS, starting from the Cerro Prieto fault to the south tomisfit to InSAR WRMS to InSAR (mm/yr) Name S Cerro PrietoCerro Prieto Geothermal stepover Imperial Imerial stepover

  15. Slip distribution of the February 27, 2010 Mw = 8.8 Maule Earthquake, central Chile, from static and highrate GPS, InSAR,

    E-Print Network [OSTI]

    Madariaga, Raúl

    , a result consistent with the moderate size of the tsunami. Downdip, rupture stopped at about 50 km depthAmerican plates. This was also immediately con- firmed by the tsunami generated. Moreover, the subduction segment to the time evolution of slip during the rupture. Seismological data are sensitive to both the spatial

  16. CX-012119: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Recovery Act: Finding Large Aperture Fractures in Geothermal Resource Areas using a Three-Component Long-Offset Surface Seismic Survey, PSInSAR and Kinematic Analysis CX(s) Applied: A9, B3.1 Date: 05/13/2014 Location(s): Nevada Offices(s): Golden Field Office

  17. Spectral Analysis of Thinning Beds Using Ground Penetrating Radar

    E-Print Network [OSTI]

    Francese, Renee Rose

    2012-07-16T23:59:59.000Z

    to field data from North Padre Island National Seashore, Texas, to image ?pinch-outs?. Multiple survey arrays were collected using a 200 MHz frequency antenna to image internal dune structures. The results showed anomalous features at merging beds... the transmitter and receiver along the surface at a specific array spacing. In our case, the initial separation of the transmitter and receiver is 1 m and then the device is moved over 0.25 m. The diagram shows a radargram of amplitudes (B) resulting from a GPR...

  18. avoid radar installations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a substantial reduction in dust or engine plume susceptibility, a larger range of operating altitudes, and a coherent measurement of the platform velocity. In this paper, we...

  19. asteroid radar research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chondrite meteorites with orbits on the asteroid-comet boundary, and the Chelyabinsk fal... Borovi?ka, Ji?; Brown, Peter 2015-01-01 204 Low-energy capture of...

  20. asteroid radar astronomy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chondrite meteorites with orbits on the asteroid-comet boundary, and the Chelyabinsk fal... Borovi?ka, Ji?; Brown, Peter 2015-01-01 287 Low-energy capture of...

  1. Sub-Nyquist Radar Prototype: Hardware and Algorithm

    E-Print Network [OSTI]

    Eldar, Yonina

    , Kiryat Gat, Israel, 82 202. E-mail: (elibj123@gmail.com), G. Itzhak, HaSanhadryn, St. 22, Holon, Israel

  2. RECOVERY OF SURFACE PARAMETERS FROM STEPPEDFREQUENCY RADAR RETURNS

    E-Print Network [OSTI]

    Cheney, Margaret

    crystal matrix, so small pockets of brine tend to form. The size and number of these pockets depends in the portion of the ice above sea level. Because brine and air have very di#erent electrical properties from. At higher temperatures, a larger fraction of the sample is composed of brine, which tends to drain out when

  3. Radar Testbed Characterization for Evaluation of Modulated Scatterer Concepts

    E-Print Network [OSTI]

    Casper, Matt

    2010-05-27T23:59:59.000Z

    antenna. Backscattered signals are received and frequency downconverted on four identical channels, each fed by a dipole antenna. A 4-channel data acquisition system digitizes and records the output video signal at 1-GSa/s per channel for signal analysis...

  4. acoustic radar: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the electromagnetic waves... Lopez Aguilar, Luis Felipe 2012-06-07 12 Acoustic Daylight Imaging: Vision In The Ocean CiteSeer Summary: Sound provides a natural means for...

  5. ORIGINAL PAPER Synergistic use of very high-frequency radar

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    carbon sequestration (Hyde et al. 2007; Lucas et al. 2000; Skole and Tucker 1993). The traditional field · Introduction Accurate estimation of aboveground bio- mass is essential to better understand the carbon cycleSAR . Scanning lidar. Profiling lidar. Aboveground biomass . Best subsets regression . Carbon 1 Introduction

  6. Radar precipitation echo patterns associated with midwestern severe storms

    E-Print Network [OSTI]

    Inman, Rex Lee

    1959-01-01T23:59:59.000Z

    whh ?blob ta+mhes normally Imn be sssocQAH, bas bsoa a big qeeetlmI la Cbe minds of many metsorolcgists. fho purpose of this thesis ls to sbo?chat Ihet'0 aro many types cf patterns with which Chls phenomenon occurs. Ths main oh/octtves of this study...

  7. automated radar terminal system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ioannou A, utomatic is todesign and test avehicle control system in order toachieve full vehicle automation in the longitudinal vehicle following isan important feature of a fully...

  8. Radar Nowcasting of Total Lightning over the Kennedy Space Center

    E-Print Network [OSTI]

    Seroka, Gregory Nicholas

    2011-08-08T23:59:59.000Z

    BZ at -20 degrees C, while the best reflectivity at isothermal predictor for IC was 25 dBZ at -15 degrees C. Meanwhile, the best VII predictor of CG lightning was the 30th percentile (0.840 kg m-2), while the best VII predictor of IC was the 5th percentile...

  9. A 24GHz CMOS RF Transceiver for Car Radar Applications

    E-Print Network [OSTI]

    Nam, Sangwook

    Design In the receiving front, low noise amplifier (LNA) has a role of deciding overall receiver's noise amplifier (PA). Also, two bandgap circuits, low drop-out regulators and a temperature sensor help. Overall simulated results were S21 of 18dB, NF of 4dB and IIP3 of -6.6dBm. For mixer design, low NF

  10. aperture radar 3d: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a...

  11. Passive Synthetic Aperture Radar Imaging of Ground Moving Targets

    E-Print Network [OSTI]

    Yazici, Birsen

    of opportunity such as radio, cell phone, and television transmission towers. The absence of active signal towers. We describe a novel forward model and a corresponding filtered-backprojection type image

  12. Extraction of phase nonlinearities from an FM radar system

    E-Print Network [OSTI]

    Weigel, Henry Samuel

    1986-01-01T23:59:59.000Z

    . Bandwidth Effects C. O' Approximation D. Reference Phase E. Amplitude snd Phase Modulations F. Total Solution IV SIMULATION RESULTS A. Description of Work Performed B. Centroid Algorithm Results C. O' Approximation Results D. Results from AM.../PM Solution E. Optimization for a Final Solution V SUMMARY AND CONCLUSIONS Page 1 1 3 6 11 15 15 17 19 21 22 25 27 27. 27 28 31 44 57 REFERENCES . APPENDIX 60 VITA 68 LIST OF FIGURES Figure Linear Frequency Sweep Page 2. 1. 2. 3...

  13. On the effects of atmospheric refraction on radar ground patterns

    E-Print Network [OSTI]

    Cobb, Lalovee Glendale

    1963-01-01T23:59:59.000Z

    according to size and location of anomalous echoes. Refractivity profiles for SAT, ACF, and LCH are prepared from radiosonde data for selected cases of anomalous propagation. A profile for CLL is estimated, based on surface weather observations taken... about the time of occurrence of nonstandard ground patterns. Correlations are made between the echo patterns, their refrac- tivity profiles, and the terrain, Anomalous ground-return echoes are related directly to topography, except when caused...

  14. automotive radar systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L. 10 Detection of arcs in automotive electrical systems MIT - DSpace Summary: At the present time, there is no established method for the detection of DC electric arcing. This is...

  15. November 25, 2000 1 Ground Penetrating Radar Fundamentals

    E-Print Network [OSTI]

    Daniels, Jeffrey J.

    a 3-D pseudo image of the subsurface, includ- ing the fourth dimension of color, and can also provide of Geological Sciences, The Ohio State University Prepared as an appendix to a report to the U.S.EPA, Region V of operation for GPR have evolved through the disciplines of electrical engineering and seismic exploration

  16. Development and Improvement of Airborne Remote Sensing Radar Platforms

    E-Print Network [OSTI]

    Arnold, Emily J.

    2013-08-31T23:59:59.000Z

    SINR increase of 5-10 dB, depending on elevation angles being considered, and an average improvement of 15% in a figure of merit derived and documented herein. The limitation of this compensation method is that is does not account for changes...................................................138 9.2 Simulation and Measurement Procedures ................................................................141 9.2.1 Simulation Procedures ......................................................................................141 9.2.2 Measurement...

  17. Hazardous material minimization for radar assembly. Final report

    SciTech Connect (OSTI)

    Biggs, P.M.

    1997-03-01T23:59:59.000Z

    The Clean Air Act Amendment, enacted in November 1990, empowered the Environmental Protection Agency (EPA) to completely eliminate the production and usage of chlorofluorocarbons (CFCs) by January 2000. A reduction schedule for methyl chloroform beginning in 1993 with complete elimination by January 2002 was also mandated. In order to meet the mandates, the processes, equipment, and materials used to solder and clean electronic assemblies were investigated. A vapor-containing cleaning system was developed. The system can be used with trichloroethylene or d-Limonene. The solvent can be collected for recycling if desired. Fluxless and no-clean soldering were investigated, and the variables for a laser soldering process were identified.

  18. Application of Electromagnetic (EM): Radar Salah M. Al-Ofi

    E-Print Network [OSTI]

    Masoudi, Husain M.

    , Nikola Tesla was the first one who established the basic principles regarding frequency and power level

  19. Signal Generation for FMCW Ultra-Wideband Radar

    E-Print Network [OSTI]

    Patel, Aqsa Ejaz

    2009-01-01T23:59:59.000Z

    . The following jumper settings are used for successful functioning of the DDS board [14]. The FIFO jumper on the DDS board is set to disable. The CPLD is set to enable. W1 and W4 are also set to enable. Jumpers on W3 W5 and W6 are used. W7 is set to REF... s DC 18 G Hz 2 d B, 2 W +1 6.5 +6 .0 dB m 68 5m : 6 7.5 M Hz @ -5 .8 dB m 68 5m : 6 7.5 M Hz @ -6 .0 dB m Mi ni- Cir cu its SL P- 10 0 DC 98 M Hz Lo ss @ 1M Hz : 0 .25 dB Fig ure 4. 18 : F ibe r D ela y L ine an d A na log R ec...

  20. aperture radar image: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Websites Summary: ) satellite. The structure consists of four cylindrical surfaces formed from thin sheets of carbon-fibre-reinforced-plastic (CFRP) connected by...

  1. Sandia National Laboratories: Siting: Wind Turbine/Radar Interference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Publications Biochemical Conversion Program Lignocellulosic Biomass Microalgae Thermochemical Conversion Sign up for our E-Newsletter Required.gif?3.21 Email...

  2. ARM - Evaluation Product - Corrected Precipitation Radar Moments in Antenna

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m Documentation DataDatastreamsxsaprhsrhi1-min (NAVBE1M)Doppler Lidar

  3. ARM - Evaluation Product - Precipitation Radar Moments Mapped to a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m Documentation DataDatastreamsxsaprhsrhi1-minProductsMicroPulse LIDARCartesian Grid

  4. Title: Radar-observed convective characteristics during TWP-ICE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003 (NextTime-Resolved Study91Title:

  5. Angular and range interferometry to refine weather radar resolution

    E-Print Network [OSTI]

    Zhang, Guifu

    by increasing bandwidth and decreasing pulse width is often limited by Federal Communications Commission (FCC

  6. airborne radar observations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of ionospheric modication by high power radio waves Physics Websites Summary: with the Finland component of CUTLASS, and the rst observations of articial irregularities by...

  7. INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFEREN...

    Energy Savers [EERE]

    Results of IFT&E More Documents & Publications Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems...

  8. Sandia Energy - Siting: Wind Turbine/Radar Interference Mitigation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supply Chain Reliability, O&M, Standards Development Structural Health Monitoring Offshore Wind High-Resolution Computational Algorithms for Simulating Offshore Wind Farms...

  9. Automatic Fall Detection Based on Doppler Radar Motion Signature

    E-Print Network [OSTI]

    He, Zhihai "Henry"

    than one third of adults 65 and older fall each year in the United States. To address the problem, we above age 65 [2]. The death rate caused by falls among elders is increasing quickly over the past decade classification; SVM; kNN I. INTRODUCTION Falls are the leading causes of accidental death in the US population

  10. I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage inChang Curriculum Vitae' IPublicI. I.

  11. ARM - Field Campaign - 2001 Multi-Frequency Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under5 Southern

  12. ARM - Field Campaign - DC-8 Cloud Radar Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2 Deployment at

  13. INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernment Vehicle Utilization atMITIGATION

  14. Sample Observations from the 2001.Multi-Frequency Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton6 th US/German WorkshopAliquam

  15. Posters Radar/Radiometer Retrievals of Cloud Liquid Water and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal observations71971 Posters

  16. Sandia Energy - Siting: Wind Turbine/Radar Interference Mitigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting and Barrier Mitigation

  17. Sandia National Laboratories: Synthetic Aperture Radar (SAR) Imagery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters:Facebook Twitter YouTubeFacebook

  18. Mixed-Phase Cloud Retrievals Using Doppler Radar Spectra

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625DataNeutrinoMissionMissionJenningsMixed-Phase

  19. Inversion of synthetic aperture radar interferograms for sources of

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGPIntevac JumpInvener

  20. MOWII Webinar on Laufer Wind: Radar-Activated Obstruction Lighting |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossary ofHomeJC3 Bulletin ArchiveMANHATTAN

  1. Applications of Radar Interferometry to Detect Surface Deformation in

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,Anza Electric CoopEnergyinGeothermal

  2. Time Correlations in Backscattering Radar Reflectivity Measurements from Cirrus Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003 (Next ReleaseThomasTheoriesClean

  3. Modeling Of Surface Deformation From Satellite Radar Interferometry In The

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: EnergyAnalysis of Energy Demand (MAED-2) JumpSalton

  4. Algorithms for Filtering Insect Echoes from Cloud Radar Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic| NationalAlexanderAlgal

  5. WINDExchange Webinar: Overcoming Wind Siting Challenges II: Radar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships Toolkit VoluntaryHURRICANE * FLASHA

  6. Improving Radar Antenna Performance with Eigenvalue Processing of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenITLaboratory

  7. W-Band ARM Cloud Radar - Specifications and Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 -VisualizingVote For the Next HowSEE

  8. W-band ARM Cloud Radar (WACR) Update and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 -VisualizingVote For the Next HowSEEW-band ARM

  9. Sandia Energy - Siting: Wind Turbine/Radar Interference Mitigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectson the Cover ofSeminars Home(TSPEAR &

  10. Properties of tropical convection observed by ARM millimeter-radars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 HgPromising Magnesium Battery Research Weekly

  11. Discover the Benefits of Radar Imaging | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Energy Information At1986) |Disa Jump to:of

  12. Influence of radar frequency on the relationship between bare surface soil moisture vertical profile and radar backscatter

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    produced from Envisat ASAR and TerraSAR-X data, acquired over bare soils with in situ measurements heterogeneity into account in the backscatter model. Key words: SAR, AIEM, soil moisture profile, bare soil hal in the L, C, and X frequency bands, empirical and semi-empirical models are often calibrated using soil

  13. atera fault central: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations Geosciences Websites Summary: Interseismic deformation and creep...

  14. aquifer system idaho: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial Geosciences Websites Summary: characterize the storage properties of...

  15. 784 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 5, NO. 3, JUNE 2012 Multi-Link InSAR Time Series: Enhancement of a

    E-Print Network [OSTI]

    Avouac, Jean-Philippe

    Atomique et aux Energies Alternatives, the Keck In- stitute for Space Studies (California Institute.puyssegur@cea.fr). R. Michel was with the Commissariat à l'Energie Atomique et aux Energies Alternatives, Gif; date of current version June 28, 2012. This work was supported in part by the Commissariat à l'Energie

  16. Advanced Radar Research Center The University of Oklahoma seeks an exceptional, dynamic leader to serve as Director of its Advanced Radar Research Center

    E-Print Network [OSTI]

    Oklahoma, University of

    industry and federal agencies and carries out a vigorous program of teaching, research, and service in the world, housing twelve University of Oklahoma, state, and federal organizations with more than 650 of Electrical and Computer Engineering is housed nearby in the new Devon Energy Hall. The ARRC Director provides

  17. The use of ground-penetrating radar with a cooperative target

    E-Print Network [OSTI]

    Allen, Christopher Thomas; Shi, K.; Plumb, R. G.

    1998-09-01T23:59:59.000Z

    are presented for a time-domain CT, a dipole antenna connected to an unterminated delay line. By using several independent time-domain CT's, strategically arrayed about a target, the rotational aspect of the target can also be obtained. Finally, harmonic...

  18. SHORT-WAVELENGTH TECHNOLOGY AND THE POTENTIAL FOR DISTRIBUTED NETWORKS OF SMALL RADAR SYSTEMS

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    Bharadwajb , Yanting Wangb , Eric Lyonsa , Kurt Hondle , Yuxiang Liub , Eric Knappa , Ming Xuec , Anthony, Amherst, MA 01003 b. Colorado State University, Fort Collins, CO 80523 c. University of Oklahoma, Norman, and rapid-update (tens of seconds) observations extending from the boundary layer up to the tops of storms

  19. Detection of supercooled liquid in mixedphase clouds using radar Doppler spectra

    E-Print Network [OSTI]

    Shupe, Matthew

    in the temperature range from 0 to -40°C, where both liquid and ice hydrometeor phases are sustainable of their hydrometeors (i.e., liquid or ice). Current cloud parameterizations that parti- tion water into liquid and ice 2010; published 1 October 2010. [1] Cloud phase identification from active remote sensors

  20. Study of spatial scaling in braided river patterns using synthetic aperture radar imagery

    E-Print Network [OSTI]

    Foufoula-Georgiou, Efi

    imagery was used to extract braided river patterns such that their spatial scaling characteristics could to build bridges across sections of braided rivers, to harvest the rich mineral deposits left on their bars, determin- istic approach of water flow over a cohesionless bed. Their model reproduced the main spatial

  1. Coastal ocean studies in southern San Diego using high- frequency radar derived surface currents

    E-Print Network [OSTI]

    Kim, Sung Yong

    2009-01-01T23:59:59.000Z

    Port, Coastal and Ocean Engineering, [Bye(1965)] Bye, J. A.Naval Architecture and Ocean Engineering (Summa cum laude),Ocean Color Remote Sensing Professor Dariuz Stramski Mathematics and Methods in Physics and Engineering

  2. Coastal Ocean Studies in Southern San Diego Using High-Frequency Radar Derived Surface Currents

    E-Print Network [OSTI]

    Kim, Sung Yong

    2009-01-01T23:59:59.000Z

    Port, Coastal and Ocean Engineering, [Bye(1965)] Bye, J. A.Naval Architecture and Ocean Engineering (Summa cum laude),Ocean Color Remote Sensing Professor Dariuz Stramski Mathematics and Methods in Physics and Engineering

  3. A Power Converter with a Rotating Secondary Stage for an Airborne Radar System 

    E-Print Network [OSTI]

    Papastergiou, Konstantinos

    2006-06-22T23:59:59.000Z

    Contact-less transfer of energy has always been a desired feature for systems that require reliable and durable power transfer across their moving parts. In rotary equipment in particular, slip-rings are the established solution with off...

  4. GLOBAL GROUND-BASED ELECTRO-OPTICAL AND RADAR OBSERVATIONS OF THE 1999 LEONID SHOWER

    E-Print Network [OSTI]

    Brown, Peter

    P. BROWN1 , M.D. CAMPBELL1 , K.J. ELLIS2 , R.L. HAWKES3, *, J. JONES1 , P. GURAL4 , D. BABCOCK3, D. JEWELL17, A. JONES1, M. LEAKE6, A.G. LEBLANC3, 18 , J.K. LOOPER6 , B.A. MCINTOSH19 , T. MONTAGUE

  5. Shallow intraplate earthquakes in Western Australia observed by Interferometric Synthetic Aperture Radar

    E-Print Network [OSTI]

    Tregoning, Paul

    Shallow intraplate earthquakes in Western Australia observed by Interferometric Synthetic Aperture earthquakes in a stable continental region of southwest Western Australia. Both small-magnitude events occur with tectonic processes in this area of Western Australia often initiate in the upper 1 km of crust. Citation

  6. Instruments and Methods An integrated lightweight ice-penetrating radar system

    E-Print Network [OSTI]

    Flowers, Gwenn

    .5 kg. The entire system, including waterproof enclosures and batteries suited for >8 hours of continuous operation, weighs ). This system has been used to measure the thicknesses of two small polythermal glaciers in northwestern Canada

  7. Radar Imaging and Characterization of Binary Near-Earth Asteroid (185851) 2000 DP107

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    modeling of triple near-Earth Asteroid (136617) 1994 CC.CHARACTERIZATION OF BINARY NEAR-EARTH ASTEROID (185851) 2000of Contact Binary Near-Earth Asteroids. In AAS/Division for

  8. A Millimeter-Wave Radar Microfabrication Technique and Its Application in Detection of

    E-Print Network [OSTI]

    Sarabandi, Kamal

    , Greg Allion, Brian VanDerElzen, Matt Oonk, David Yates, Russ Clifford, Robert Hower, Sanrine Matrin

  9. An exploratory study of the nocturnal thunderstorm as observed by radar

    E-Print Network [OSTI]

    Jacobs, Lloyd E

    1958-01-01T23:59:59.000Z

    and 60 miles long. Both the indivkhml caU? and the area of sctivhy were moving faun 050' at an average speed of 8 knots. 'Ihe i~el cells were growhtg r?phRy sad were reported by surface obsenmdons eo bs quite active electricaUy. 13uring tbe early...

  10. Thunderstorm characteristics displayed with three-dimensional digital radar data and digital goes infrared data

    E-Print Network [OSTI]

    McAnelly, Ray Lewis

    1980-01-01T23:59:59.000Z

    of flash- flooding and severe local storm events (tornadoes, large hail, or strong surface winds) could be a factor in reducing the frequency of storm-related deaths and minimizing property damage, an effort to de- velop more accurate forecasting... researchers who analyzed severe local storms by the CAZM technique. Several fea- tures, such as a 1ow-level bounded weak echo region (BWER) and the de- crease with time of upper-level reflectivity, were found to correlate with severe weather events...

  11. Radar Observations of MJO and Kelvin Wave Interactions During DYNAMO/AMIE/CINDY2011

    E-Print Network [OSTI]

    DePasquale, Amanda Michele

    2013-07-05T23:59:59.000Z

    The Madden-Julian Oscillation (MJO), a tropical phenomenon that exists on the time scale of 30-90 days, commonly initiates over the Indian Ocean and slowly propagates into the western Pacific as a series of convective events, which have time scales...

  12. A Radar-like Iron based Nanohybrid as an Efficient and Stable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    synthetic strategy can be further extended to develop other metal complexesN-doped carbon materials for broad applications in the field of catalysts, batteries, and...

  13. STUDY OF CLOUD LIFETIME EFFECTS USING THE SGP HETEROGENEOUS DISTRIBUTED RADAR NETWORK: PRELIMINARY CONSIDERATIONS

    E-Print Network [OSTI]

    stages of cloud development. Here, we express cloud life cycle in terms of the temporal evolution-dimensional morphology and life cycle of clouds. Detailing key cloud processes as they transit from the formation stage National Laboratory For presentation at The Second Science Team Meeting of the Atmospheric System Research

  14. Determination of Seabird Density using Marine Radar Robert McFarlane* & James Lester

    E-Print Network [OSTI]

    Holberton, Rebecca L.

    for avian mortality due to the presence of wind turbines. The methodology utilized for the study involved has potential for onshore and offshore wind farm installations. Seabirds are important apex predators of estuarine and nearshore marine ecosystems and may be impacted by electricity-generating wind turbines

  15. Radar, satellite, and lightning characteristics of select mesoscale convective systems in Texas

    E-Print Network [OSTI]

    Toracinta, Ernest Richard

    1995-01-01T23:59:59.000Z

    , the observation of high negative flash counts coincident with convective cores having small reflectivity lapse rates in the mixed phase region is consistent with the presence of large ice particles aloft. Positive CG flashes were mostly located in low reflectivity...

  16. Ground controlled precision landing delivery in the presence of radar disturbances

    E-Print Network [OSTI]

    Durocher, Cort Louis

    1977-01-01T23:59:59.000Z

    Introduction: The purpose of Air Traffic Control is to ensure separation of aircraft in the most efficient manner possible. The need for efficiency is becoming more important as air traffic continues to increase at a high ...

  17. Use of low power EM radar sensors for speech articulator measurements

    SciTech Connect (OSTI)

    Holzrichter, J.F.; Burnett, G.C.

    1997-05-14T23:59:59.000Z

    Very low power electromagnetic (EM) wave sensors are being used to measure speech articulator motions such as the vocal fold oscillations, jaw, tongue, and the soft palate. Data on vocal fold motions, that correlate well with established laboratory techniques, as well as data on the jaw, tongue, and soft palate are shown. The vocal fold measurements together with a volume air flow model are being used to perform pitch synchronous estimates of the voiced transfer functions using ARMA (autoregressive moving average) techniques. 6 refs., 5 figs.

  18. Compact Microstrip Filter Designs and Phased Array for Multifunction Radar Applications

    E-Print Network [OSTI]

    Jung, Dong Jin

    2012-07-16T23:59:59.000Z

    This dissertation mainly discuses various microstrip bandpass filter (BPF) designs. The filter designs include: a coupled line BPF using nonuniform arbitrary image impedances, miniaturized BPF utilizing dumbbell shaped slot resonator (DSSR), BPF...

  19. Analysis of parameters for a space-based debris-tracking radar

    E-Print Network [OSTI]

    Pollock, Michael A

    1987-01-01T23:59:59.000Z

    for particles ranging in size from four to 80 millimeters. The system employs an electronically scanned phased array as the primary antenna and is designed to optimize the tracking accuracy for particles vrith velocities as great as 25 km/s. To Dr. Thomas... between each face of the antenna complex. The phase shifters can be arranged in many different ways. The primary design criteria are the number and accuracy of the phase shifting networks which are required in a monopulse tracker. These parameters...

  20. FOCUS OF ATTENTION FOR MILLIMETER AND ULTRA WIDEBAND SYNTHETIC APERTURE RADAR IMAGERY

    E-Print Network [OSTI]

    Slatton, Clint

    , but is not limited to, Chuan Wang, Doxing Xu and Quin Zhao for useful discussions on signal processing theory