Powered by Deep Web Technologies
Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

R-value Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Wall Systems Advanced Wall Systems ORNL Home ASTM Testing BEP Home Related Sites Work With Us Advanced Wall Systems Home Interactive Calculators New Whole Wall R-value Calculators As A Part Of The ORNL Material Database For Whole Building Energy Simulations These calculators are replacing the old Whole Wall Thermal Performance calculator. These new versions of the calculator contain many new features and are part of the newly developed Interactive Envelope Materials Database for Whole-Building Energy Simulation Programs. The simple version of the Whole Wall R-value calculator is now available for use. This calculator is similar to the previous Whole Wall Thermal Performance calculator and does not require any downloads from the user. However, it was updated to allow calculations for fourteen wall details

2

Thermal contact resistance  

E-Print Network (OSTI)

This work deals with phenomena of thermal resistance for metallic surfaces in contact. The main concern of the work is to develop reliable and practical methods for prediction of the thermal contact resistance for various ...

Mikic, B. B.

1966-01-01T23:59:59.000Z

3

Building Energy Software Tools Directory: Construction R-value Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Construction R-value Calculator Construction R-value Calculator This online calculator calculates the R-value of a large number of common wall and roof constructions given a specified level of insulation. It uses the isothermal planes method to account for thermal bridging of framing material. Keywords R-value, thermal bridging Validation/Testing N/A Expertise Required Basic understanding of construction details is required. Users Approximately 15,000 web hits per month, mainly from New Zealand. Audience Designers and architects, researchers, officials dealing with building regulations Input The user selects the appropriate wall and roof design details from a number of drop-down boxes and enters the R-value of the installed insulation product. Output The program displays the R-value achieved by the wall or roof construction

4

Thermal Shock-resistant Cement  

SciTech Connect

We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved cement, causing its volume to expand.

Sugama T.; Pyatina, T.; Gill, S.

2012-02-01T23:59:59.000Z

5

Thermal shock resistance ceramic insulator  

DOE Patents (OSTI)

Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.

Morgan, Chester S. (Oak Ridge, TN); Johnson, William R. (Maynardville, TN)

1980-01-01T23:59:59.000Z

6

Wall R-values that tell it like it is  

SciTech Connect

The R-value of a whole wall can be considerable lower than the R-value of the insulation that fills it. At DOE`s Buildings Technology Center, scientists have developed a system for measuring whole wall R-value and have already tested several wall systems. Topics covered include the following: how wall r-value is usually calculated; measuring whole-wall r-values; evaluating wall performance; a wall rating label; beyond r-value; r-value terminology. 1 fig., 1 tab.

Christian, J.E. [Oak Ridge National Lab., TN (United States); Kosny, J. [Univ. of Tennessee, Knoxville, TN (United States)

1997-03-01T23:59:59.000Z

7

The Equivalent Thermal Resistance of Tile Roofs with and without Batten Systems  

Science Conference Proceedings (OSTI)

Clay and concrete tile roofs were installed on a fully instrumented attic test facility operating in East Tennessee s climate. Roof, attic and deck temperatures and heat flows were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventionally pigmented and direct-nailed asphalt shingle roof. The data were used to benchmark a computer tool for simulation of roofs and attics and the tool used to develop an approach for computing an equivalent seasonal R-value for sub-tile venting. The approach computed equal heat fluxes through the ceilings of roofs having different combinations of surface radiation properties and or building constructions. A direct nailed shingle roof served as a control for estimating the equivalent thermal resistance of the air space. Simulations were benchmarked to data in the ASHRAE Fundamentals for the thermal resistance of inclined and closed air spaces.

Miller, William A [ORNL] [ORNL

2013-01-01T23:59:59.000Z

8

Thermal barrier coating resistant to sintering  

DOE Patents (OSTI)

A device (10) having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10) and is not soluble with the underlying ceramic layer (16). For a YSZ ceramic layer (16) the sintering resistant layer (22) may preferably be aluminum oxide or yttrium aluminum oxide, deposited as a continuous layer or as nodules.

Subramanian, Ramesh (Orlando, FL); Sabol, Stephen M. (Orlando, FL)

2001-01-01T23:59:59.000Z

9

Low thermal resistance power module assembly - Energy Innovation ...  

A power module assembly (400) with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate (410 ...

10

Thermal Barrier Coatings for Resistance Against Attack by Molten ...  

Science Conference Proceedings (OSTI)

Presentation Title, Thermal Barrier Coatings for Resistance Against Attack by Molten Silicate Deposits from CMAS Sand, Volcanic Ash, or Coal Fly Ash Ingested ...

11

Low thermal resistance power module assembly  

DOE Patents (OSTI)

A power module assembly with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate with passageways or openings for coolant that extend through the plate from a lower surface to an upper surface. A circuit substrate is provided and positioned on the spreader plate to cover the coolant passageways. The circuit substrate includes a bonding layer configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer may be solder material which bonds to the upper surface of the plate to provide a continuous seal around the upper edge of each opening in the plate. The assembly includes power modules mounted on the circuit substrate on a surface opposite the bonding layer. The power modules are positioned over or proximal to the coolant passageways.

Hassani, Vahab (Denver, CO); Vlahinos, Andreas (Castle Rock, CO); Bharathan, Desikan (Arvada, CO)

2007-03-13T23:59:59.000Z

12

Low thermal resistance power module assembly  

DOE Patents (OSTI)

A power module assembly (400) with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate (410) with passageways or openings (414) for coolant that extend through the plate from a lower surface (411) to an upper surface (412). A circuit substrate (420) is provided and positioned on the spreader plate (410) to cover the coolant passageways. The circuit substrate (420) includes a bonding layer (422) configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer (422) may be solder material which bonds to the upper surface (412) of the plate to provide a continuous seal around the upper edge of each opening (414) in the plate. The assembly includes power modules (430) mounted on the circuit substrate (420) on a surface opposite the bonding layer (422). The power modules (430) are positioned over or proximal to the coolant passageways.

Hassani, Vahab (Denver, CO); Vlahinos, Andreas (Castle Rock, CO); Bharathan, Desikan (Arvada, CO)

2010-12-28T23:59:59.000Z

13

Experimental and numerical study of the effective thermal conductivity of silica nanocomposites with thermal boundary resistance  

SciTech Connect

The thermal interface resistance at the macro scale is mainly described by the physical gap between two interfaces and constriction resistance due to this gap. The small gaps between the two material faces makes up the majority of thermal interface resistance at the macro scale. So, most of the studies have been focused on characterizing effect of surface geometry and material properties to thermal interface resistance. This resistance is more widely known as thermal contact resistance, represented with Rc. There are various models to predict thermal contact resistance at macro scale. These models predict thermal resistance Rc for given two materials by utilizing their bulk thermomechanical properties. Although, Rc represents thermal resistance accurately for macro size contacts between two metals, it is not suitable to describe interface resistance of particles in modern TIMs, aka particulate composites. The particles inside recently available TIMs are micron size and with effort to further increase surface area this particle size is approaching nano scale. At this small scale, Rc does not accurately predict thermal interface, as it is very difficult to characterize the surface topography. The thermal discontinuity at perfectly bonded interface of two dissimilar materials is termed as thermal boundary resistance (Rb) or Kapitza resistance. The macroscopic assumptions that thermal discontinuity only exists due to gaps and surface geometry leads to substantial error in determining interface thermal properties at micron and nano scale. The phenomenon of thermal boundary resistance is an inherent material property and arises due to fundamental mechanism of thermal transport. For metal-matrix particulate composites, Rb plays more important role than Rc. The free flowing nature of the polymer would eliminate most of the gaps between the two materials at their interface. This means almost all of the thermal resistance at particle/matrix interface would occur due to Rb. The current study presents experimental study of thermal boundary resistance for silica nano particles embedded inside epoxy resin. The bulk conductivity of the sample is measured and Rc is back calculated using Hasselman-Johnson s (H-J) equation. The numerical validation of the equation is also presented, including extrapolation study to predict effective conductivity of the nanocomposite TIM.

Kothari, Rushabh M [ORNL; Dinwiddie, Ralph Barton [ORNL; Wang, Hsin [ORNL

2013-01-01T23:59:59.000Z

14

Influence of surface roughness and waviness upon thermal contact resistance  

E-Print Network (OSTI)

This work deals with the phenomenon of thermal resistance between contacting solids. Attention is directed towards contiguous solids possessing both surface roughness and waviness. When two such surfaces are brought together ...

Yovanovich, M. Michael

1967-01-01T23:59:59.000Z

15

Estimation of Thermal Resistance from Room Temperature Electrical Resistance Measurements for Different LHC Beam Screen Support Systems  

E-Print Network (OSTI)

In this note the thermal resistance between the LHC beam screen and cold bore is estimated from room temperature electrical resistance measurements. The results indicate that the beam screen without supports should have a comparable, if not better, thermal performance than the one with the existing spring supports. This prediction from electrical resistance measurements is confirmed by recent preliminary thermal measurements.

Jenninger, B

1999-01-01T23:59:59.000Z

16

Moisture Management for High R-Value Walls  

SciTech Connect

The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.

Lepage, R.; Schumacher, C.; Lukachko, A.

2013-11-01T23:59:59.000Z

17

Ultra low thermal expansion, highly thermal shock resistant ceramic  

DOE Patents (OSTI)

Three families of ceramic compositions having the given formula: .phi..sub.1+X Zr.sub.4 P.sub.6-2X Si.sub.2X O.sub.24, .phi..sub.1+X Zr.sub.4-2X Y.sub.2X P.sub.6 O.sub.24 and .phi..sub.1+X Zr.sub.4-X Y.sub.X P.sub.6-2X Si.sub.X O.sub.24 wherein .phi. is either Strontium or Barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures.

Limaye, Santosh Y. (1440 Sandpiper Cir. #38, Salt Lake City, UT 84117)

1996-01-01T23:59:59.000Z

18

Ultra low thermal expansion, highly thermal shock resistant ceramic  

DOE Patents (OSTI)

Three families of ceramic compositions having the given formula: {phi}{sub 1+X}Zr{sub 4}P{sub 6{minus}2X}Si{sub 2X}O{sub 24}, {phi}{sub 1+X}Zr{sub 4{minus}2X}Y{sub 2X}P{sub 6}O{sub 24} and {phi}{sub 1+X}Zr{sub 4{minus}X}Y{sub X}P{sub 6{minus}2X}Si{sub X}O{sub 24} wherein {phi} is either strontium or barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures. 7 figs.

Limaye, S.Y.

1996-01-30T23:59:59.000Z

19

Soil Thermal Resistivity and Thermal Stability Measuring Instrument: Volume 5: Abridged Manual for Use of the Statistical Weather Analysis Program  

Science Conference Proceedings (OSTI)

Numerous considerations influence the thermal design of an underground power cable, including the soil thermal resistivity, thermal diffusivity, and thermal stability. Each of these properties is a function of soil moisture which is, in turn, a function of past weather, soil composition, and biological burden. The Neher-McGrath formalism has been widely used for thermal cable design. However, this formalism assumes knowledge of soil thermal properties. For design purposes, these parameters should be trea...

1981-12-01T23:59:59.000Z

20

New and Underutilized Technology: High R-Value Windows | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High R-Value Windows High R-Value Windows New and Underutilized Technology: High R-Value Windows October 8, 2013 - 2:47pm Addthis The following information outlines key deployment considerations for high R-value windows within the Federal sector. Benefits High R-value windows are highly insulated windows rated at triple pane, R5 or greater (U value 0.22 and lower). Application High R-value windows are appropriate for deployment within most building categories. These windows should be considered in building design, renovation, or during window replacement projects. Key Factors for Deployment High R-value windows are available within the Federal sector and should be considered in building design, renovation, or during window replacement projects. The U.S. Department of Energy (DOE) has a volume purchasing program in

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Optical device with low electrical and thermal resistance bragg reflectors  

DOE Patents (OSTI)

A compound-semiconductor optical device and method. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors.

Lear, Kevin L. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

22

Graphite having improved thermal stress resistance and method of preparation  

DOE Patents (OSTI)

An improved method for fabricating a graphite article comprises the steps of impregnating a coke article by first heating the coke article in contact with a thermoplastic pitch at a temperature within the range of 250.degree.-300.degree. C. at a pressure within the range of 200-2000 psig for at least 4-10 hours and then heating said article at a temperature within the range of 450.degree.-485.degree. C. at a pressure of 200-2000 psig for about 16-24 hours to provide an impregnated article; heating the impregnated article for sufficient time to carbonize the impregnant to provide a second coke article, and graphitizing the second coke article. A graphite having improved thermal stress resistance results when the coke to be impregnated contains 1-3 wt.% sulfur and no added puffing inhibitors. An additional improvement in thermal stress resistance is achieved when the second coke article is heated above about 1400.degree. C. at a rate of at least 10.degree. C./minute to a temperature above the puffing temperature.

Kennedy, Charles R. (Oak Ridge, TN)

1980-01-01T23:59:59.000Z

23

Structural stability vs. thermal performance: old dilemma, new solutions  

SciTech Connect

In many building envelopes, actual thermal performance falls quite a bit short of nominal design parameters given in standards. Very often only windows, doors, and a small part of the wall area meet standards requirements. In the other parts of the building envelope, unaccounted thermal bridges reduce the effective thermal resistance of the insulation material. Such unaccounted heat losses compromise the thermal performance of the whole building envelope. For the proper analysis of the thermal performance of most wall and roof details, measurements and three-dimensional thermal modeling are necessary. For wall thermal analysis the whole-wall R-value calculation method can be very useful. In ties method thermal properties of all wall details are incorporated as an area weighted average. For most wall systems, the part of the wall that is traditionally analyzed, is the clear wall, that is, the flat part of the wall that is uninterrupted by details. It comprises only 50 to 80% of the total area of the opaque wall. The remaining 20 to 50% of the wall area is not analyzed nor are its effects incorporated in the thermal performance calculations. For most of the wall technologies, traditionally estimated R-values are 20 to 30% higher than whole-wall R-values. Such considerable overestimation of wall thermal resistance leads to significant errors in building heating and cooling load estimations. In this paper several examples are presented of the use of the whole-wall R-value procedure for building envelope components. The advantages of the use of the whole wall R-value calculation procedure are also discussed. For several building envelope components, traditional clear-wall R-values are compared with the results of whole-wall thermal analysis to highlight significant limits on the use of the traditional methods and the advantages of advanced computer modeling.

Kosny, J.; Christian, J.E.

1996-10-01T23:59:59.000Z

24

Thermal Barrier Coatings Resistant to Attack by Molten Fly Ash in ...  

Science Conference Proceedings (OSTI)

Presentation Title, Thermal Barrier Coatings Resistant to Attack by Molten Fly Ash in Integrated Gas Combined Cycle Turbine Engines. Author(s), Andrew D.

25

Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings  

E-Print Network (OSTI)

The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass walls; as one of envelope surfaces; has an important impact on solar radiation. Design and construction of glass walls have significant effects on building comfort and energy consumption. This paper describes methods of improving glass walls thermal resistance in air conditioned buildings. Effect of glass wall radiation temperature on the indoor temperature distribution of building rooms is also investigated. Heat gain through various types of glass is discussed. Optimization and testing of these types are carried out theoretically and experimentally as well. A series of experiments on different types of glass with special strips is performed.

Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

2010-01-01T23:59:59.000Z

26

Measurement of Thermal Diffusity and Flow Resistance for TCAP Materials  

DOE Green Energy (OSTI)

SRS uses the Thermal Cycling Absorption Process (TCAP) to separate isotopes of hydrogen. The frequency of thermal cycles is a limit of the productivity of the process and that frequency is largely determined by the thermal diffusivity of the absorbent material. For a given tube diameter, a larger thermal diffusivity decreases the time required for each cycle. In 1998, the Engineering Development Laboratory measured thermal diffusivity and thermal conductivity for three TCAP materials in helium.

STEIMKE, JOHN

2004-11-11T23:59:59.000Z

27

Measured R-values for two horizontal reflective cavities in series  

SciTech Connect

The Large Scale Climate Simulator at the DOE-sponsored Roof Research Center has been used to provide data for steady-state temperatures and heat fluxes in two horizontal reflective cavities in series. The cavities have nominal effective emittances of 0.015 and 0.03 and are relatively narrow. The resulting R-values cover a range of mean air temperatures from {minus}5 F to 135 F and temperature differences from 12 F{degree} to 26 F{degree}. The cavities studied had exposed wood sides. The R-values for heat down-flow fall significantly below those for the same nominal emittances in the ASHRAE Handbook of Fundamentals. Values for heat upflow are slightly lower than the ASHRAE data. Analysis of a graybody radiation network for this situation shows that the lower R-values are the effect of non-reflecting sides. It also confirms that the sides should be covered with foil. 5 refs., 7 figs., 2 tabs.

Petrie, T.W.; Courville, G.E.; Childs, P.W.; Shipp, P.H. (Oak Ridge National Lab., TN (USA); USG Corp., Libertyville, IL (USA))

1989-01-01T23:59:59.000Z

28

Standard Test Method for Thermal Oxidative Resistance of Carbon Fibers  

E-Print Network (OSTI)

1.1 This test method covers the apparatus and procedure for the determination of the weight loss of carbon fibers, exposed to ambient hot air, as a means of characterizing their oxidative resistance. 1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units which are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard information, see Section 8.

American Society for Testing and Materials. Philadelphia

1982-01-01T23:59:59.000Z

29

Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof  

DOE Patents (OSTI)

An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

Sarin, V.K.

1990-08-21T23:59:59.000Z

30

Measurement of the Equivalent Thermal Resistance of Rooftop Lawns in a Hot-Climate Wind Tunnel  

E-Print Network (OSTI)

In a very hot summer equivalent to a Guangzhou summer, the reduction of heat coming into rooms is very important with respect to thermal comfort and energy efficiency. The objective of this study is to investigate the evaporation cooling effect on a rooftop lawn. A hot-climate wind tunnel experiment was carried out in order to obtain and analyze the heat and moisture transport in the rooftop lawn. Furthermore, a calculation with the energy conservation equation was carried out using the results of the hot-climate wind tunnel experiment. The calculated equivalent thermal resistance and synthesis exterior surface heat transfer coefficient were in fairly good agreement with that in the design standard for energy efficiency of residential buildings in the hot summer and warm winter zone, while the average velocity in hot-climate wind tunnel equals the summer average outdoor velocity in Guangzhou.

Meng, Q.; Zhang, Y.; Zhang, L.

2006-01-01T23:59:59.000Z

31

Effective thermal boundary resistance from thermal decoupling of magnons and phonons in SrRuO3 thin films  

E-Print Network (OSTI)

indicates that in SRO thermal energy is stored predominantlybecause the fraction of thermal energy stored in the con?nedC. On this time-scale, thermal energy stored in the phonons

Langner, M.C.

2010-01-01T23:59:59.000Z

32

Hyper-resistivity and electron thermal conductivity due to destroyed magnetic surfaces in axisymmetric plasma equilibria  

Science Conference Proceedings (OSTI)

In order to model the effects of small-scale current-driven magnetic fluctuations in a mean-field theoretical description of a large-scale plasma magnetic field B(x,t), a space and time dependent hyper-resistivity {Lambda}(x,t) can be incorporated into the Ohm's law for the parallel electric field E Dot-Operator B. Using Boozer coordinates, a theoretical method is presented that allows for a determination of the hyper-resistivity {Lambda}({psi}) functional dependence on the toroidal magnetic flux {psi} for arbitrary experimental steady-state Grad-Shafranov axisymmetric plasma equilibria, if values are given for the parallel plasma resistivity {eta}({psi}) and the local distribution of any auxiliary plasma current. Heat transport in regions of plasma magnetic surfaces destroyed by resistive tearing modes can then be modeled by an electron thermal conductivity k{sub e}({psi})=({epsilon}{sub 0}{sup 2}m{sub e}/e{sup 2}){Lambda}({psi}), where e and m{sub e} are the electron charge and mass, respectively, while {epsilon}{sub 0} is the permittivity of free space. An important result obtained for axisymmetric plasma equilibria is that the {psi}{psi}-component of the metric tensor of Boozer coordinates is given by the relation g{sup {psi}{psi}}({psi}){identical_to}{nabla}{psi} Dot-Operator {nabla}{psi}=[{mu}{sub 0}G({psi})][{mu}{sub 0}I({psi})]/{iota}({psi}), with {mu}{sub 0} the permeability of free space, G({psi}) the poloidal current outside a magnetic surface, I({psi}) the toroidal current inside a magnetic surface, and {iota}({psi}) the rotational transform.

Weening, R. H. [Department of Radiologic Sciences, Thomas Jefferson University, 901 Walnut Street, Philadelphia, Pennsylvania 19107-5233 (United States)

2012-06-15T23:59:59.000Z

33

Hotbox Test R-value Database from ORNL's Building Technology Center  

DOE Data Explorer (OSTI)

The Building Envelopes Program at Oak Ridge National Laboratory (ORNL) is a program within the Buildings Technology Center (BTC), the premier U.S. research facility devoted to developing technologies that improve the energy efficiency and environmental compatibility of residential and commercial buildings. Our program is divided into two parts: building envelope research, which focuses on the structural elements that enclose a building (walls, roofs and foundations), and materials research, which concentrates on the materials within the envelope systems (such as insulation). The building envelope provides the thermal barrier between the indoor and outdoor environment, and its elements are the key determinants of a building's energy requirements that result from the climate where it is located. [copied from http://www.ornl.gov/sci/roofs+walls/

34

Effective thermal boundary resistance from thermal decoupling of magnons and phonons in SrRuO3 thin films  

SciTech Connect

We use the time-resolved magneto-optical Kerr effect (TRMOKE) to measure the local temperature and heat flow dynamics in ferromagnetic SrRuO3 thin films. After heating by a pump pulse, the film temperature decays exponentially, indicating that the heat flow out of the film is limited by the film/substrate interface. We show that this behavior is consistent with an effective boundary resistance resulting from disequilibrium between the spin and phonon temperatures in the film.

Langner, M.C.; Kantner, C.L.S.; Chu, Y.H.; Martin, L.M.; Yu, P.; Ramesh, R.; Orenstein, J.

2010-01-20T23:59:59.000Z

35

IMPACT OF TEMPERATURE-DEPENDENT RESISTIVITY AND THERMAL CONDUCTION ON PLASMOID INSTABILITIES IN CURRENT SHEETS IN THE SOLAR CORONA  

SciTech Connect

In this paper, we investigate, by means of two-dimensional magnetohydrodynamic simulations, the impact of temperature-dependent resistivity and thermal conduction on the development of plasmoid instabilities in reconnecting current sheets in the solar corona. We find that the plasma temperature in the current-sheet region increases with time and it becomes greater than that in the inflow region. As secondary magnetic islands appear, the highest temperature is not always found at the reconnection X-points, but also inside the secondary islands. One of the effects of anisotropic thermal conduction is to decrease the temperature of the reconnecting X-points and transfer the heat into the O-points, the plasmoids, where it gets trapped. In the cases with temperature-dependent magnetic diffusivity, {eta} {approx} T {sup -3/2}, the decrease in plasma temperature at the X-points leads to (1) an increase in the magnetic diffusivity until the characteristic time for magnetic diffusion becomes comparable to that of thermal conduction, (2) an increase in the reconnection rate, and (3) more efficient conversion of magnetic energy into thermal energy and kinetic energy of bulk motions. These results provide further explanation of the rapid release of magnetic energy into heat and kinetic energy seen during flares and coronal mass ejections. In this work, we demonstrate that the consideration of anisotropic thermal conduction and Spitzer-type, temperature-dependent magnetic diffusivity, as in the real solar corona, are crucially important for explaining the occurrence of fast reconnection during solar eruptions.

Ni Lei; Roussev, Ilia I.; Lin Jun [Yunnan Astronomical Observatory, CAS, P.O. Box 110, Kunming 650011, Yunnan (China); Ziegler, Udo, E-mail: leini@ynao.ac.cn, E-mail: iroussev@ifa.hawaii.edu, E-mail: uziegler@aip.de [Leibniz-Institut fuer Astrophysik Potsdam, D-14482 Potsdam (Germany)

2012-10-10T23:59:59.000Z

36

An Attempt to Estimate the Thermal Resistance of the Upper Ocean to Climatic Change  

Science Conference Proceedings (OSTI)

An attempt is made to estimate the thermal inertia of the upper ocean, relevant to climatic change. This is done by assuming that the annual variation in sea surface temperature (SST) can, to a first-order approximation, be described by a simple ...

H. M. Van Den Dool; J. D. Horel

1984-05-01T23:59:59.000Z

37

Evaluation of the thermal resistance of a roof-mounted multi-reflective radiant barrier for tropical and humid conditions: Experimental study from field measurements  

E-Print Network (OSTI)

This paper deals with the experimental evaluation of a roof-mounted multi-reflective radiant barrier (MRRB), installed according to the state of the art, on a dedicated test cell. An existing experimental device was completed with a specific system for the regulation of the airflow rate in the upper air layer included in a typical roof from Reunion Island. Several experimental sequences were conducted to determine the thermal resistance of the roof according to several parameters and following a specific method. The mean method, well known in international standards (ISO 9869 - 1994) for the determination of the thermal resistance using dynamic data, was used. The method was implemented in a building simulation code in order to allow the determination of the thermal indicator automatically. Experimental results are proposed according to different seasonal periods and for different values of the airflow rate in the upper air layer.

Frédéric Miranville; Ali Hamada Fakra; Stéphane Guichard; Harry Boyer; Jean Philippe Praene; Dimitri Bigot

2012-12-19T23:59:59.000Z

38

Evaluation of the thermal resistance of a roof-mounted multi-reflective radiant barrier for tropical and humid conditions: Experimental study from field measurements  

E-Print Network (OSTI)

This paper deals with the experimental evaluation of a roof-mounted multi-reflective radiant barrier (MRRB), installed according to the state of the art, on a dedicated test cell. An existing experimental device was completed with a specific system for the regulation of the airflow rate in the upper air layer included in a typical roof from Reunion Island. Several experimental sequences were conducted to determine the thermal resistance of the roof according to several parameters and following a specific method. The mean method, well known in international standards (ISO 9869 - 1994) for the determination of the thermal resistance using dynamic data, was used. The method was implemented in a building simulation code in order to allow the determination of the thermal indicator automatically. Experimental results are proposed according to different seasonal periods and for different values of the airflow rate in the upper air layer

Miranville, Frédéric; Guichard, Stéphane; Boyer, Harry; Praene, Jean Philippe; Bigot, Dimitri

2012-01-01T23:59:59.000Z

39

Structure and resistivity of bismuth nanobelts in situ synthesized on silicon wafer through an ethanol-thermal method  

Science Conference Proceedings (OSTI)

Bismuth nanobelts in situ grown on a silicon wafer were synthesized through an ethanol-thermal method without any capping agent. The structure of the bismuth belt-silicon composite nanostructure was characterized by scanning electron microscope, energy-dispersive X-ray spectroscopy, and high resolution transmission electron microscope. The nanobelt is a multilayered structure 100-800 nm in width and over 50 {mu}m in length. One layer has a thickness of about 50 nm. A unique sword-like nanostructure is observed as the initial structure of the nanobelts. From these observations, a possible growth mechanism of the nanobelt is proposed. Current-voltage property measurements indicate that the resistivity of the nanobelts is slightly larger than that of the bulk bismuth material. - Graphical Abstract: TEM images, EDS, and electron diffraction pattern of bismuth nanobelts. Highlights: Black-Right-Pointing-Pointer Bismuth nanobelts in situ grown on silicon wafer were achieved. Black-Right-Pointing-Pointer Special bismuth-silicon nanostructure. Black-Right-Pointing-Pointer Potential application in sensitive magnetic sensor and other electronic devices.

Gao Zheng; Qin Haiming; Yan Tao [State Key Laboratory of Crystal Materials, Bio-Micro/Nano Functional Materials Center, Shandong University, Jinan 250100 (China); Liu Hong, E-mail: hongliu@sdu.edu.cn [State Key Laboratory of Crystal Materials, Bio-Micro/Nano Functional Materials Center, Shandong University, Jinan 250100 (China); Wang Jiyang [State Key Laboratory of Crystal Materials, Bio-Micro/Nano Functional Materials Center, Shandong University, Jinan 250100 (China)

2011-12-15T23:59:59.000Z

40

thermal_resistance_measurements  

Science Conference Proceedings (OSTI)

... "The NBS Line-Heat-Source Guarded Hot Plate for Thick Materials",FJ Powell and BG Rennex, Proceedings ASHRAE/DOE Conference - II, Atlanta ...

2013-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Thermal-fluid and electrochemical modeling and performance study of a planar solid oxide electrolysis cell : analysis on SOEC resistances, size, and inlet flow conditions.  

DOE Green Energy (OSTI)

Argonne National Laboratory and Idaho National Laboratory researchers are analyzing the electrochemical and thermal-fluid behavior of solid oxide electrolysis cells (SOECs) for high temperature steam electrolysis using computational fluid dynamics (CFD) techniques. The major challenges facing commercialization of steam electrolysis technology are related to efficiency, cost, and durability of the SOECs. The goal of this effort is to guide the design and optimization of performance for high temperature electrolysis (HTE) systems. An SOEC module developed by FLUENT Inc. as part of their general CFD code was used for the SOEC analysis by INL. ANL has developed an independent SOEC model that combines the governing electrochemical mechanisms based on first principals to the heat transfer and fluid dynamics in the operation of SOECs. The ANL model was embedded into the commercial STAR-CD CFD software, and is being used for the analysis of SOECs by ANL. The FY06 analysis performed by ANL and reported here covered the influence of electrochemical properties, SOEC component resistances and their contributing factors, SOEC size and inlet flow conditions, and SOEC flow configurations on the efficiency and expected durability of these systems. Some of the important findings from the ANL analysis are: (1) Increasing the inlet mass flux while going to larger cells can be a compromise to overcome increasing thermal and current density gradients while increasing the cell size. This approach could be beneficial for the economics of the SOECs; (2) The presence of excess hydrogen at the SOEC inlet to avoid Ni degradation can result in a sizeable decrease in the process efficiency; (3) A parallel-flow geometry for SOEC operation (if such a thing be achieved without sealing problems) yields smaller temperature gradients and current density gradients across the cell, which is favorable for the durability of the cells; (4) Contact resistances can significantly influence the total cell resistance and cell temperatures over a large range of operating potentials. Thus it is important to identify and avoid SOEC stack conditions leading to such high resistances due to poor contacts.

Yildiz, B.; Smith, J.; Sofu, T.; Nuclear Engineering Division

2008-06-25T23:59:59.000Z

42

Examination of Compatibility of Potentially Cavitation-Resistant Modifications of Type 316LN Stainless Steel with Mercury in a Thermal Convection Loop  

Science Conference Proceedings (OSTI)

A 316L stainless steel thermal convection loop (TCL) containing a variety of stainless steel coupons circulated mercury for 2000 h. The TCL conditions included a maximum temperature of 307 C, a maximum temperature gradient of 90 C, and a Hg velocity of about 1.4 m/min. In addition to mill-annealed/surface-ground 316LN coupons serving as the baseline material, other coupons included 316LN that was 50% cold-worked, 316LN that was given a proprietary surface hardening treatment termed ''kolsterizing,'' and Nitronic 60. The purpose of this test was to examine Hg compatibility with these modest variations of annealed 31 6LN stainless steel that are considered potential improvements over annealed 31 6LN for cavitation-erosion resistance in the Spallation Neutron Source (SNS) target containment system. The results indicated negligible weight change for each coupon type, no significant indication of attack or surface roughening, and generally no interaction with Hg.

Pawel, SJ

2002-08-29T23:59:59.000Z

43

Silica and boron-containing ultraphosphate laser glass with low concentration quenching and improved thermal shock resistance  

DOE Patents (OSTI)

Neodymium-doped phosphate glasses having a refractive index, nd>1.520; an Abbe number, Vd, <60; a density <3.0 g/cm.sup.3, a thermal expansion coefficient, .alpha., .ltoreq.110.times.10.sup.-7 .degree.C..sup.-1 ; a Young's Modulus, E, <70.times.10.sup.3 N/mm.sup.2 ; a Poisson's Ratio, .nu., <0.28; a thermal conductivity, K, >0.5 W/m.multidot.K, a thermal FOM=(1-.nu.).multidot.K/.alpha.E>0.7, consisting essentially of, in mol. %: P.sub.2 O.sub.5 : 40-70% SiO.sub.2 : 0-20% B.sub.2 O.sub.3 : 5-20% Sum SiO.sub.2 +B.sub.2 O.sub.3 : 5-35% Sum Li.sub.2 O+Na.sub.2 O+K.sub.2 O: 5-20% Sum La.sub.2 O.sub.3 +Nd.sub.2 O.sub.3 : 3-10% Sum MgO+CaO+SrO+BaO+ZnO: 0-10% and preferably containing an amount of Nd.sub.2 O.sub.3 effective for laser activity having an emission cross-section, .sigma., >3.5.times.10.sup.-20 cm.sup.2 ; a fluorescence linewidth (.DELTA..lambda..sub.f1)<23.5 nm; a first e-folding time of the Nd.sup.3+ fluorescence at 0.5 wt. % Nd.sub.2 O.sub.3 >375 .mu.sec, and a first e-folding time of the Nd.sup.3+ fluorescence at 10 wt. % >175 .mu.sec at 10 wt. %, have very low self-concentration quenching rates.

Cook, Lee M. (Duryea, PA); Stokowski, Stanley E. (Danville, CA)

1987-04-28T23:59:59.000Z

44

Thermal Interface Materials for Power Electronics Applications: Preprint  

SciTech Connect

The thermal resistance of the thermal interface material layer greatly affects the maximum temperature of the power electronics.

Narumanchi, S.; Mihalic, M.; Kelly, K.; Eesley, G.

2008-07-01T23:59:59.000Z

45

Effect of Solder Microstructure on Mechanical and Thermal Shock ...  

Science Conference Proceedings (OSTI)

Critical tests were designed to couple the corresponding microstructure with mechanical and thermal shock properties. For thermal shock resistance of ...

46

Determination of mechanisms of host plant resistance to the Banks grass mite Oligonychus pratensis (Banks) (Acari: Tetranychidae) in selected maize inbreds  

E-Print Network (OSTI)

Maize lines selected for resistance to the Banks Grass Mite were tested to determine which mechanisms of resistance were being expressed: Antibiosis, Nonpreference, or Tolerance. Inbred 3 and, to a lesser degree Inbred 2, expressed antibiosis when compared with Mo17, the susceptible check. None of the resistant inbreds expressed nonpreference when compared with Mo17 and no conclusive evidence was determined about expression of tolerance. Useful estimates of r[] values, the intrinsic rate of increase, could be calculated from data collected over a shortened period of time. Differences in r[] values calculated with and without the Jackknife method were so small as to negate the usefulness of the Jackknife method. The Wyatt and White method for calculating r[] values did not provide good estimates of r[] values for mites on resistant plants, especially when juvenile mortality was high. Greenhouse grown plants did not provide a satisfactory substitute for held grown plants.

Krakowsky, Matthew David

1999-01-01T23:59:59.000Z

47

Development of Low Thermal Expansion Superalloys  

Science Conference Proceedings (OSTI)

For heat resistant alloys it is useful to decrease the thermal expansion for improved adherance of low thermal expansion ceramic coatings like silicon nitride,.

48

Thermal insulation for residential homes. (Latest citations from the NTIS data base). Published Search  

SciTech Connect

The bibliography contains citations concerning materials and methods used for thermal insulation of residential buildings. The thermal efficiency of window glass, cellular materials, glass wool, fibers, wood, foams, and other insulating materials is reviewed. Construction methods and insulation R values are compared between geographic regions. (Contains a minimum of 217 citations and includes a subject term index and title list.)

Not Available

1992-06-01T23:59:59.000Z

49

Freeze resistant buoy system  

DOE Patents (OSTI)

A freeze resistant buoy system includes a tail-tube buoy having a thermally insulated section disposed predominantly above a waterline, and a thermo-siphon disposed predominantly below the waterline.

Hill, David E. (Knoxville, TN); Rodriguez, Jr., Miguel (Oak Ridge, TN); Greenbaum, Elias (Knoxville, TN); Klett, James W. (Knoxville, TN)

2007-08-21T23:59:59.000Z

50

Multilayer Nanoscale Thermal Barrier Coatings  

Science Conference Proceedings (OSTI)

Advanced high-efficiency gas turbines require thermal barrier coatings (TBCs) with low thermal conductivity and excellent thermal-cycling resistance. The multilayer TBC developed in this project has a thermal conductivity about half that of conventional TBCs and also rejects up to 70 percent of incoming radiant energy.

1999-05-26T23:59:59.000Z

51

Reduced Thermal Conductivity of Compacted Silicon Nanowires  

E-Print Network (OSTI)

alpha1=k1/(density1*cp1); %Thermal diffusivity of PMMA B1=Simon R. Phillpot, “Nanoscale Thermal Transport”, Journal of9] E.T. Swartz, R.O. Pohl, “Thermal Boundary Resistance”,

Yuen, Taylor S.

52

High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program  

Science Conference Proceedings (OSTI)

The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

2007-09-19T23:59:59.000Z

53

Structural Changes During Thermal Fatigue of Two Nickel-Based ...  

Science Conference Proceedings (OSTI)

greatly affect the thermal endurance of these heat-resisting alloys. I?. ... factors govern- ing the thermal fatigue behavior of a number of commercial nickel-.

54

Making Steel Framing as Thermally Efficient as Wood  

E-Print Network (OSTI)

In many world regions like North America and Scandinavia wood framing is dominant technology for residential buildings. During last two decades several companies around the world started to promote a low-gage steel framing for residential and commercial buildings. Steel framing has many advantages over wood framing; strength, low weight, dimensional stability, resistance to termite damage, almost 100% recycleability, etc .. However because of several reasons an application of steel as a framing material in US residential building market is relatively low. Steel industry has noticed much more success on commercial building market which is not as rigorous regarding thermal efficiency and energy conservation. Steel framing has one significant disadvantage over wood; Steel members conduct heat extremely well. This effect is known as thermal bridging, and it can sharply reduce a wall's effective Rvalue. The simplest and most common way to overcome this problem is to block the path of heat flow with rigid foam insulation. Adding rigid foam insulation not only increases the whole wall's R-value, but it also reduces the temperature difference between the center of the cavity and the stud area, which cuts down on the possibility of black stains forming from dirt getting asymmetrically attracted to cold spots on a wall's surface. However, rigid foam insulation is an expensive solution. Several material configurations were developed in the past to increase thermal effectiveness of steel-framed structures. This paper is focused on most common options of thermal improvements of steels framed walls. They were as follow: 1) diminishing the contact area between the studs and exterior sheathing materials, 2) reducing the steel stud web area, 3) replacing the steel web with a less conductive material, and 4) placing foam insulation in locations where the thermal shorts are most critical. Researchers at Oak Ridge National Laboratory (ORNL) have utilized both hot box testing and computer simulations in aim to optimize thermal design of steel stud walls.. While examining several material options, ORNL's BTC was also striving to develop energy-efficient steel stud wall technologies that would enable steel-stud walls to beat the performance of traditional 2 x 6 wood stud walls. Several, most current, ORNL developments in steel framing are presented below.

Kosny, J.; Childs, P.

2002-01-01T23:59:59.000Z

55

CA Dept of Consumer Affairs, BEARHFTI - Thermal Insulation  

Science Conference Proceedings (OSTI)

... Density). Thermal Resistance. [01/T05] ASTM C335 Steady-State Heat Transfer Properties of Horizontal Pipe Insulation. [01 ...

2013-07-26T23:59:59.000Z

56

resistance thermometry  

Science Conference Proceedings (OSTI)

Thermodynamic Quantities. Resistance Thermometry. Rate our Services. ... NIST provides worksheets on which the participant records data. ...

2013-07-17T23:59:59.000Z

57

On the charging and thermal characterization of a micro/nano structured thermal ground plane  

E-Print Network (OSTI)

As power densities in electronic devices have increased dramatically over the last decade, advanced thermal management solutions are required. A significant part of the thermal resistance budget is commonly taken up by the ...

de Bock, H. Peter J.

58

High Performance Thermal Interface Technology Overview  

E-Print Network (OSTI)

An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

R. Linderman; T. Brunschwiler; B. Smith; B. Michel

2008-01-07T23:59:59.000Z

59

THERMAL RECOVERY  

NLE Websites -- All DOE Office Websites (Extended Search)

THERMAL RECOVERY Thermal recovery comprises the techniques of steamflooding, cyclic steam stimulation, and in situ combustion. In steamflooding, high-temperature steam is injected...

60

Abrasion resistant heat pipe  

DOE Patents (OSTI)

A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, D.M.

1984-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Abrasion resistant heat pipe  

DOE Patents (OSTI)

A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, Donald M. (Leola, PA)

1984-10-23T23:59:59.000Z

62

Fire resistant nuclear fuel cask  

DOE Patents (OSTI)

The disclosure is directed to a fire resistant nuclear fuel cask employing reversibly thermally expansible bands between adjacent cooling fins such that normal outward flow of heat is not interfered with, but abnormal inward flow of heat is impeded or blocked.

Heckman, Richard C. (Albuquerque, NM); Moss, Marvin (Albuquerque, NM)

1979-01-01T23:59:59.000Z

63

Resistivity analysis  

DOE Patents (OSTI)

According to an example embodiment of the present invention a semiconductor die having a resistive electrical connection is analyzed. Heat is directed to the die as the die is undergoing a state-changing operation to cause a failure due to suspect circuitry. The die is monitored, and a circuit path that electrically changes in response to the heat is detected and used to detect that a particular portion therein of the circuit is resistive. In this manner, the detection and localization of a semiconductor die defect that includes a resistive portion of a circuit path is enhanced.

Bruce, Michael R. (Austin, TX); Bruce, Victoria J. (Austin, TX); Ring, Rosalinda M. (Austin, TX); Cole, Edward Jr. I. (Albuquerque, NM); Hawkins, Charles F. (Albuquerque, NM); Tangyungong, Paiboon (Albuquerque, NM)

2006-06-13T23:59:59.000Z

64

Patching the thermal hole of windows  

SciTech Connect

Materials research is being applied to the significant reduction of undesired heat gains and losses through apertures. This paper summarizes the background and recent progress supporting the development of vacuum and electrochromic windows at SERI. Evacuated glazings now under investigation feature a thin-film, transparent infrared reflector, spherical glass spacers, and laser-welded edges. We believe that these features will result in an overall glazing R-value of 10 or more, maintainable over architectural lifetimes. Technical issues discussed include thermal and mechanical stress, optimal spacer configuration, and gaseous diffusion. The electrochromic work has concentrated on achieving large differences in the transmissivity of window glazing by using thin, transparent films that respond to small electrical potential by becoming, reversibly, partially colored or opaque. Color memory, bleaching rates, and alternative transparent solid-state conductors are discussed.

Potter, T.F.

1985-04-01T23:59:59.000Z

65

Effect of design parameter changes on the performance of thermal storage wall passive systems  

DOE Green Energy (OSTI)

Hour-by-hour computer simulations based on one year of solar radiation and temperature data are used to analyze annual energy savings in thermal storage wall passive designs, both Trombe wall and water wall cases. The calculations are rerun many times changing various parameters one at a time to assess the effect on performance. Parameters analyzed are: night insulation R-value, number of glazings, wall absorptance and emittance, thermal storage capacity, Trombe wall properties and vent area size, additional building mass, and temperature control set points. Calculations are done for eight cities.

McFarland, R.D.; Balcomb, J.D.

1979-01-01T23:59:59.000Z

66

Resistivity Tomography | Open Energy Information  

Open Energy Info (EERE)

Resistivity Tomography Resistivity Tomography Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Resistivity Tomography Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Resistivity Log Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 60.986,098 centUSD 0.061 kUSD 6.098e-5 MUSD 6.098e-8 TUSD / foot Median Estimate (USD): 76.227,622 centUSD 0.0762 kUSD 7.622e-5 MUSD 7.622e-8 TUSD / foot High-End Estimate (USD): 106.7110,671 centUSD 0.107 kUSD 1.0671e-4 MUSD 1.0671e-7 TUSD / foot Time Required Low-End Estimate: 1 days0.00274 years

67

Electric Resistance Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

68

Electric Resistance Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

69

Thermophysical properties of selected wear-resistant alloys  

SciTech Connect

Thermophysical properties of 13 selected wear-resistant materials, including specific heat, thermal conductivity, thermal diffusivity, and thermal expansion (instantaneous, mean, and linear) are provided. The Center for Information and Numerical Data Analysis and Synthesis (CINDAS) at Purdue University supplied properties data.

Farwick, D.G.; Johnson, R.N.

1980-06-01T23:59:59.000Z

70

Thermal barrier coatings  

DOE Patents (OSTI)

This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

Alvin, Mary Anne (Pittsburg, PA)

2010-06-22T23:59:59.000Z

71

Thermal indicator for wells  

DOE Patents (OSTI)

Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

1983-01-01T23:59:59.000Z

72

Quantification of corrosion resistance of a new-class of criticality control materials: thermal-spray coatings of high-boron iron-based amorphous metals - Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4  

Science Conference Proceedings (OSTI)

An iron-based amorphous metal, Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5), with very good corrosion resistance was developed. This material was produced as a melt-spun ribbon, as well as gas atomized powder and a thermal-spray coating. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. Earlier studies have shown that ingots and melt-spun ribbons of these materials have good passive film stability in these environments. Thermal spray coatings of these materials have now been produced, and have undergone a variety of corrosion testing, including both atmospheric and long-term immersion testing. The modes and rates of corrosion have been determined in the various environments, and are reported here.

Farmer, J C; Choi, J S; Shaw, C K; Rebak, R; Day, S D; Lian, T; Hailey, P; Payer, J H; Branagan, D J; Aprigliano, L F

2007-03-28T23:59:59.000Z

73

Building Energy Software Tools Directory: Construction R-value...  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Energy Software Tools Directory...

74

Building Energy Software Tools Directory: Construction R-value...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Software Tools Directory Printable Version Share this resource Home About the Directory Tools by Subject Tools Listed Alphabetically Tools by Platform PC...

75

Thermal shock modeling of Ultra-High Temperature Ceramics under active cooling  

Science Conference Proceedings (OSTI)

Thermal shock resistance is one of the most important parameters in Ultra-High Temperature Ceramics (UHTCs) since it determines their performance in various applications. In this paper, due to the fact that the material parameters of UHTCs are very sensitive ... Keywords: Active cooling, Target temperature, Thermal protection system, Thermal shock resistance, Ultra-High Temperature Ceramics

Weiguo Li; Fan Yang; Daining Fang

2009-12-01T23:59:59.000Z

76

Pre-resistance-welding resistance check  

DOE Patents (OSTI)

A preweld resistance check for resistance welding machines uses an open circuited measurement to determine the welding machine resistance, a closed circuit measurement to determine the parallel resistance of a workpiece set and the machine, and a calculation to determine the resistance of the workpiece set. Any variation in workpiece set or machine resistance is an indication that the weld may be different from a control weld.

Destefan, Dennis E. (Broomfield, CO); Stompro, David A. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

77

Pre-resistance-welding resistance check  

DOE Patents (OSTI)

A preweld resistance check for resistance welding machines uses an open circuited measurement to determine the welding machine resistance, a closed circuit measurement to determine the parallel resistance of a workpiece set and the machine, and a calculation to determine the resistance of the workpiece set. Any variation in workpiece set or machine resistance is an indication that the weld may be different from a control weld.

Destefan, D.E.; Stompro, D.A.

1989-06-08T23:59:59.000Z

78

Thermal via placement in 3D ICs  

E-Print Network (OSTI)

As thermal problems become more evident, new physical design paradigms and tools are needed to alleviate them. Incorporating thermal vias into integrated circuits (ICs) is a promising way of mitigating thermal issues by lowering the thermal resistance of the chip itself. However, thermal vias take up valuable routing space, and therefore, algorithms are needed to minimize their usage while placing them in areas where they would make the greatest impact. With the developing technology of three-dimensional integrated circuits (3D ICs), thermal problems are expected to be more prominent, and thermal vias can have a larger impact on them than in traditional 2D ICs. In this paper, thermal vias are assigned to specific areas of a 3D IC and used to adjust their effective thermal conductivities. The thermal via placement method makes iterative adjustments to these thermal conductivities in order to achieve a desired maximum temperature objective. Finite element analysis (FEA) is used in formulating the method and in calculating temperatures quickly during each iteration. As a result, the method efficiently achieves its thermal objective while minimizing the thermal via utilization.

Brent Goplen

2005-01-01T23:59:59.000Z

79

Thermal Properties  

Science Conference Proceedings (OSTI)

Table 12   Thermal conductivities of polymers and other materials...40,000 2.8 Aluminum 24,000 1.7 Steel 5000 0.35 Granite 350 0.02 Crown glass (75 wt% silica) 90 0.006 Source: Ref 4...

80

Toward zero-emission data centers through direct reuse of thermal energy  

Science Conference Proceedings (OSTI)

We have tested hot water data center cooling by directly reusing the generated thermal energy in neighborhood heating systems. First, we introduce high-performance liquid cooling devices with minimal thermal resistance in order to cool a computer system ...

T. Brunschwiler; B. Smith; E. Ruetsche; B. Michel

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Preparation and Thermal Characterization of Carbon Nanotubes-Based Composites for Applications in Electronics Packaging  

Science Conference Proceedings (OSTI)

The thermal resistance of nanocomposite layers formed by Single Wall Carbon Nanotubes (SWCNT) dispersed in epoxy resins has been measured under conditions similar to the ones used to dissipate heat in microelettronic devices. Thevariation of thermal ... Keywords: Carbon Nanotubes, Thermal Management, Epoxy Resin, Nanocomposite, TIM, Thermal Interface Materials

Francesco Toschi; Emanuela Tamburri; Valeria Guglielmotti; Maria Letizia Terranova; Andrea Reale; Aldo Di Carlo; Daniele Passeri; Marco Rossi; Carlo Falessi; Annamaria Fiorello; Roberta Buttiglione

2008-02-01T23:59:59.000Z

82

Thermal fatigue evaluation of solder alloys. Final report  

SciTech Connect

An evaluation was made of the relative thermal fatigue resistance of 29 solder alloys. A number of these alloys were found to be less susceptible to thermal fatigue cracking in encapsulated printed wiring board applications than the commonly used tin-lead eutectic (63Sn-37Pb). Three alloys, 95Sn-5Ag, 96.5Sn-3.5Ag, and 95Sn-5Sb offered the greatest resistance to thermal fatigue. The selection of the encapsulation materials was confirmed to be a significant factor in thermal fatigue of solder joints, regardless of the solder alloy used.

Jarboe, D.M.

1980-02-01T23:59:59.000Z

83

3 omega method for specific heat and thermal conductivity measurements  

E-Print Network (OSTI)

We present a 3 omega method for simultaneously measuring the specific heat and thermal conductivity of a rod- or filament-like specimen using a way similar to a four-probe resistance measurement. The specimen in this method needs to be electrically conductive and with a temperature-dependent resistance, for acting both as a heater to create a temperature fluctuation and as a sensor to measure its thermal response. With this method we have successfully measured the specific heat and thermal conductivity of platinum wire specimens at cryogenic temperatures, and measured those thermal quantities of tiny carbon nanotube bundles some of which are only 10^-9 g in mass.

L. Lu; W. Yi; D. L. Zhang

2002-02-06T23:59:59.000Z

84

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

85

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

86

DC Resistivity Survey (Dipole-Dipole Array) | Open Energy Information  

Open Energy Info (EERE)

DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Dipole-Dipole Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Dipole-Dipole Array) Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Profiling Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

87

Direct-Current Resistivity Survey | Open Energy Information  

Open Energy Info (EERE)

Direct-Current Resistivity Survey Direct-Current Resistivity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Direct-Current Resistivity Survey Details Activities (65) Areas (34) Regions (4) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Techniques Information Provided by Technique Lithology: Rock type, mineral and clay content may be inferred. Stratigraphic/Structural: Determination of fracture zones, faults, depth to groundwater aquifers. Hydrological: Resistivity influenced by porosity, permeability, fluid saturation, fluid type and phase state of the pore water. Thermal: Resistivity influenced by temperature.[1] Cost Information

88

Magnetorotational supernovae with resistivities  

Science Conference Proceedings (OSTI)

We numerically investigate the effects of electrical resistivity on the dynamics of core-collapse supernovae. Initially strong magnetic fields and rapid rotations are assumed together with high resistivities. We find that resistivity acts as a negative ... Keywords: core-collapse, electric resistivity, magnetohydrodynamics, supernovae

Hidetomo Sawai; Shoichi Yamada; Kei Kotake

2010-02-01T23:59:59.000Z

89

Effective passivation of the low resistivity silicon surface by a rapid thermal oxide/PECVD silicon nitride stack and its application to passivated rear and bifacial Si solar cells  

DOE Green Energy (OSTI)

A novel stack passivation scheme, in which plasma silicon nitride (SiN) is stacked on top of a rapid thermal SiO{sub 2} (RTO) layer, is developed to attain a surface recombination velocity (S) approaching 10 cm/s at the 1.3 {Omega}-cm p-type (100) silicon surface. Such low S is achieved by the stack even when the RTO and SiN films individually yield considerably poorer surface passivation. Critical to achieving low S by the stack is the use of a short, moderate temperature anneal (in this study 730 C for 30 seconds) after film growth and deposition. This anneal is believed to enhance the release and delivery of atomic hydrogen from the SiN film to the Si-SiO{sub 2} interface, thereby reducing the density of interface traps at the surface. Compatibility with this post-deposition anneal makes the stack passivation scheme attractive for cost-effective solar cell production since a similar anneal is required to fire screen-printed contacts. Application of the stack to passivated rear screen-printed solar cells has resulted in V{sub oc}`s of 641 mV and 633 mV on 0.65 {Omega}-cm and 1.3 {Omega}-cm FZ Si substrates, respectively. These V{sub oc} values are roughly 20 mV higher than for cells with untreated, highly recombinative back surfaces. The stack passivation has also been used to form fully screen-printed bifacial solar cells which exhibit rear-illuminated efficiency as high as 11.6% with a single layer AR coating.

Rohatgi, A.; Narasimha, S. [Georgia Inst. of Tech., Atlanta, GA (United States). Univ. Center for Excellence in Photovoltaics Research and Education; Ruby, D.S. [Sandia National Labs., Albuquerque, NM (United States)

1998-08-01T23:59:59.000Z

90

High thermal conductivity connector having high electrical isolation  

DOE Patents (OSTI)

A method and article for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection. The connection method involves clamping, by thermal interference fit, an electrically isolating cylinder between an outer metallic ring and an inner metallic disk. The connection provides durable coupling of a heat sink and a heat source.

Nieman, Ralph C. (Downers Grove, IL); Gonczy, John D. (Oak Lawn, IL); Nicol, Thomas H. (St. Charles, IL)

1995-01-01T23:59:59.000Z

91

Thermal Analysis of Curaua Fiber Reinforced Polyester Matrix ...  

Science Conference Proceedings (OSTI)

Among the drawbacks associated with the application of natural fibers, ... the effect of the curaua fiber on the thermal resistance of the composites. ... Characterization of High Carbon Equivalent Cast Iron Using Thermal Analysis Curves ... Nanosecond Electrical Discharges between Semiconducting Sulfide Mineral Particles ...

92

Thermal conductivity of thermal-battery insulations  

DOE Green Energy (OSTI)

The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

Guidotti, R.A.; Moss, M.

1995-08-01T23:59:59.000Z

93

Original article: Lumped-parameter-based thermal analysis of a doubly radial forced-air-cooled direct-driven permanent magnet wind generator  

Science Conference Proceedings (OSTI)

A lumped-parameter-based thermal analysis of a direct-driven permanent magnet wind generator with double radial forced-air cooling is presented. In the proposed thermal model, the thermal conduction and convection as well as the heating of the cooling ... Keywords: Air cooling, Permanent magnet synchronous generator, Thermal analysis, Thermal resistance networks

Janne Nerg, Vesa Ruuskanen

2013-04-01T23:59:59.000Z

94

Methods for enhancing mapping of thermal fronts in oil recovery  

DOE Patents (OSTI)

A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Wayland, Jr., James R. (Albuquerque, NM)

1987-01-01T23:59:59.000Z

95

Methods for enhancing mapping of thermal fronts in oil recovery  

DOE Patents (OSTI)

A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

1984-03-30T23:59:59.000Z

96

Seasonal thermal energy storage  

DOE Green Energy (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

97

Reducing Thermal Losses and Gains With Buried and Encapsulated Ducts in Hot-Humid Climates  

SciTech Connect

The Consortium for Advanced Residential Buildings (CARB) monitored three houses in Jacksonville, FL, to investigate the effectiveness of encapsulated and encapsulated/buried ducts in reducing thermal losses and gains from ductwork in unconditioned attics. Burying ductwork beneath loose-fill insulation has been identified as an effective method of reducing thermal losses and gains from ductwork in dry climates, but it is not applicable in humid climates where condensation may occur on the outside of the duct jacket. By encapsulating the ductwork in closed cell polyurethane foam (ccSPF) before burial beneath loose-fill mineral fiber insulation, the condensation potential may be reduced while increasing the R-value of the ductwork.

Shapiro, C.; Magee, A.; Zoeller, W.

2013-02-01T23:59:59.000Z

98

Electric Resistance Heating  

Energy.gov (U.S. Department of Energy (DOE))

Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to...

99

Dynamic thermal modelling of a power integrated circuit with the application of structure functions  

Science Conference Proceedings (OSTI)

This paper presents dynamic thermal analyses of a power integrated circuit with a cooling assembly. The investigations are based on the examination of the cumulative and differential structure functions obtained from the circuit cooling curves recorded ... Keywords: Contact thermal resistance, Heat transfer coefficient, Structure function, Thermal modelling and simulation

Marcin Janicki; Jedrzej Banaszczyk; Gilbert De Mey; Marek Kaminski; Bjorn Vermeersch; Andrzej Napieralski

2009-07-01T23:59:59.000Z

100

A New Thermal-Conscious System-Level Methodology for Energy-Efficient Processor Voltage Selection  

E-Print Network (OSTI)

A New Thermal-Conscious System-Level Methodology for Energy-Efficient Processor Voltage Selection a thermal-conscious system-level methodology to make energy-efficient voltage selection (VS) for nanometer), thermal resistance, are integrated and considered in our system models, and their impacts on energy

Wang, Yu

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Thermal conductance and rectification of asymmetric tilt grain boundary in graphene  

E-Print Network (OSTI)

We have investigated the lattice thermal transport across the asymmetry tilt grain boundary between armchair and zigzag grains by using nonequilibrium molecular dynamics (NEMD). We have observed significant temperature drop and ultralow temperature-dependent thermal boundary resistance. Importantly, we find an unexpected thermal rectification phenomenon, i.e, the thermal conductivity and Kapitza conductance is asymmetric with respect to the thermal transport direction. And the effect of thermal rectification could be amplified by increasing the difference of temperature imposed on two sides. Our results propose a new promising kind of thermal rectifier and phonon diodes from polycrystalline graphene without delicate manupulation of the atomic structures.

Cao, Hai-Yuan; Gong, Xin-Gao

2011-01-01T23:59:59.000Z

102

Energy Basics: Electric Resistance Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance...

103

Resistance after firing protected electric match  

SciTech Connect

An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

Montoya, Arsenio P. (Albuquerque, NM)

1981-11-10T23:59:59.000Z

104

Radiation coloration resistant glass  

SciTech Connect

A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

Tomozawa, Minoru (Troy, NY); Watson, E. Bruce (Troy, NY); Acocella, John (Troy, NY)

1986-01-01T23:59:59.000Z

105

Thermal conductivity and other properties of cementitious grouts  

DOE Green Energy (OSTI)

The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

Allan, M.

1998-08-01T23:59:59.000Z

106

THERMAL CONDUCTIVITY AND OTHER PROPERTIES OF CEMENTITIOUS GROUTS  

DOE Green Energy (OSTI)

The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

ALLAN,M.

1998-05-01T23:59:59.000Z

107

Property:ThermalInfo | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:ThermalInfo Jump to: navigation, search Property Name ThermalInfo Property Type Text Subproperties This property has the following 93 subproperties: A Acoustic Logs Active Seismic Methods Active Sensors Aeromagnetic Survey Airborne Electromagnetic Survey Analytical Modeling C Caliper Log Cation Geothermometers Cement Bond Log Conceptual Model Controlled Source Frequency-Domain Magnetics Cross-Dipole Acoustic Log Cuttings Analysis D Data Acquisition-Manipulation Data Collection and Mapping Data Techniques Data and Modeling Techniques Density Log Direct-Current Resistivity Survey Drilling Methods E Earth Tidal Analysis Electric Micro Imager Log Electromagnetic Sounding Methods Elemental Analysis with Fluid Inclusion

108

Investigation on High Thermal Stability and Creep Resistant ...  

Science Conference Proceedings (OSTI)

05%) and Ti (1.22%) and also high atomic sum of Al+TifNb and atomic ra ... Age hardening study on Alloys 11, 13 and 15 was conducted with 950”C/lh/WC solu-.

109

Characterization of Thermal Barrier Coatings Resistant to Corrosion ...  

Science Conference Proceedings (OSTI)

Mechanisms of TBC failure after sealing have not been adequately explored. ... Bi-layer TBCs, comprising an air plasma sprayed yttria-stabilized zirconia inner ...

110

Novel Molten Metal Corrosion Resistance Thermal Sprayed Coatings  

Science Conference Proceedings (OSTI)

Synthesis and Characterization of Plasma Polymerized Thin Films Deposited from Benzene and Hexamethyldisiloxane Using (PECVD) Method · Synthesis of ...

111

Development of a Low Thermal Expansion, Crack Growth Resistant ...  

Science Conference Proceedings (OSTI)

significant commercial usage in industries as diverse as gas turbine engine static ... Manufacturing and fabricating simplicity, and compatibility of heat treatments ...

112

Improved Thermal Shock Resistance of Shaped Alumina-Chromia ...  

Science Conference Proceedings (OSTI)

Synthesis and Characterization of Pb Free Piezoelectric Ceramics - Barium ... Thermographic Characterization of Tensile Behavior in Railway Bogie Materials.

113

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

114

Hydrogen permeation resistant barrier  

DOE Patents (OSTI)

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, Joseph C. (Richland, WA); Brehm, William F. (Richland, WA)

1982-01-01T23:59:59.000Z

115

Hydrogen permeation resistant barrier  

DOE Patents (OSTI)

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, J.C.; Brehm, W.F.

1980-02-08T23:59:59.000Z

116

The Effect of Prongs in the Measurement of Atmospheric Turbulence with Fine-Wire Resistance Transducers  

Science Conference Proceedings (OSTI)

The response of the fine-wire resistance temperature transducer was analyzed including the effects of (i) conducive heat transfer between wire and the supporting prong and (ii) a thermal boundary layer, which can form around the prongs especially ...

V. P. Singh; F. Eaton; R. Rubio

1992-04-01T23:59:59.000Z

117

DC Resistivity Survey (Wenner Array) | Open Energy Information  

Open Energy Info (EERE)

Wenner Array) Wenner Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Wenner Array) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Vertical Electrical Sounding Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

118

DC Resistivity Survey (Schlumberger Array) | Open Energy Information  

Open Energy Info (EERE)

Schlumberger Array) Schlumberger Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Schlumberger Array) Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Vertical Electrical Sounding Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

119

DC Resistivity Survey (Pole-Dipole Array) | Open Energy Information  

Open Energy Info (EERE)

Pole-Dipole Array) Pole-Dipole Array) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Pole-Dipole Array) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Profiling Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

120

Direct-Current Resistivity Survey At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Dixie Valley Direct-Current Resistivity Survey At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault zones which have experienced fluid flux as indicated by low resistivity;

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Thermal Spray Coatings  

Science Conference Proceedings (OSTI)

Table 35   Thermal spray coatings used for hardfacing applications...piston ring (internal combustion);

122

Ocean Thermal Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

123

Nanocomposite Thermal Spray Coatings.  

Science Conference Proceedings (OSTI)

Long-Term Surface Restoration Effect Introduced by Advanced Lubricant Additive · Nanocomposite Thermal Spray Coatings. New Hardfacing Overlay Claddings ...

124

Plasma-Thermal Synthesis  

INL’s Plasma-Thermal Synthesis process improves the conversion process for natural gas into liquid hydrocarbon fuels.

125

Thermal and Electrical Transport in Oxide Heterostructures  

E-Print Network (OSTI)

of thermal conductivity . . . . . . . . . . . . . . . .4.4 Thermal transport in2.3.2 Thermal transport . . . . . . . . . . . . . . . .

Ravichandran, Jayakanth

2011-01-01T23:59:59.000Z

126

Thermal Management of Solar Cells  

E-Print Network (OSTI)

phonon transmission and interface thermal conductance acrossF. Miao, et al. , "Superior Thermal Conductivity of Single-Advanced Materials for Thermal Management of Electronic

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

127

Thermal neutron detection system  

DOE Patents (OSTI)

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

128

Experimental Determination of the Effect of Reactor Radiation on the Thermal Conductivity of Uranium-Impregnated Graphite  

SciTech Connect

Experiments are described in which the change in thermal conductivity of U-impregnated graphite under neutron irradiation was measured. Thermal resistivities relative to the thermal resistivity of undamaged impregnated graphite are reorted as functions of exposure. From applications of the expermental results to the North American Aviation low-power research reactor the peak tem. of the core is determined for a given reactor power and time of operation.

Hetrick, D.L.; McCarty, W.K.; Steele, G.N.; Brown, M.S.; Clark, E.V.; Holmes, F.R.; Howard, D.F.; McElroy, W.N.; Shields, B.L.

1953-01-06T23:59:59.000Z

129

High temperature, low expansion, corrosion resistant ceramic and gas turbine  

DOE Patents (OSTI)

The present invention relates to ZrO.sub.2 -MgO-Al.sub.2 O.sub.3 -SiO.sub.2 ceramic materials having improved thermal stability and corrosion resistant properties. The utilization of these ceramic materials as heat exchangers for gas turbine engines is also disclosed.

Rauch, Sr., Harry W. (Lionville, PA)

1981-01-01T23:59:59.000Z

130

AC resistance measuring instrument  

DOE Patents (OSTI)

An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

Hof, P.J.

1983-10-04T23:59:59.000Z

131

Building Energy Software Tools Directory: Thermal Comfort  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Comfort Thermal Comfort logo. Provides a user-friendly interface for calculating thermal comfort parameters and making thermal comfort predictions using several thermal...

132

Improvement of the Stress Corrosion Resistance of Alloy 718 in the PWR Environment  

Science Conference Proceedings (OSTI)

The costs associated with replacement of high-strength, nickel- base in-core components has led to efforts to improve corrosion resistance by various thermal, chemical and mechanical means. This report describes efforts designed to optimize the SCC resistance of alloy 718 in the PWR environment.

1996-08-01T23:59:59.000Z

133

Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Abstract Self potential and electrical resistivity surveys have been completed at the Blue Mountain geothermal area to search for the source of thermal fluids discovered during drilling for mineral exploration, and to help characterize the geothermal resource. Two large SP anomalies are associated with the artesian thermal area and the area of highest temperature observed in drill holes. Two similar anomalies were mapped 1 to 3 km to the south

134

Radiation resistant austenitic stainless steel alloys  

DOE Patents (OSTI)

An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

1987-02-11T23:59:59.000Z

135

Catalytic thermal barrier coatings  

Science Conference Proceedings (OSTI)

A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

2009-06-02T23:59:59.000Z

136

Coupled power and thermal simulation with active cooling  

E-Print Network (OSTI)

Abstract. Power is rapidly becoming the primary design constraint for systems ranging from server computers to handhelds. In this paper we study microarchitecture-level coupled power and thermal simulation considering dynamic and leakage power models with temperature and voltage scaling. We develop an accurate temperature-dependent leakage power model and efficient temperature calculation, and show that leakage energy can be different by up to 10X for temperatures between 35 o C and 110 o C. Given the growing significance of leakage power and its sensitive dependence on temperature, no power simulation without considering dynamic temperature calculation is accurate. Furthermore, we discuss the thermal runaway induced by the interdependence between leakage power and temperature, and show that in the near future thermal runaway could be a severe problem. We also study the microarchitecture level coupled power and thermal management by novel active cooling techniques that reduce packaging thermal resistance. We show that the active cooling technique that reduces thermal resistance from 0.8 o C/W to 0.05 o C/W can increase system maximum clock by up to 2.44X under the same thermal constraints. 1

Weiping Liao; Lei He

2003-01-01T23:59:59.000Z

137

Thermal Barrier Coatings  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Barrier Coatings Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States...

138

Thermally Conductive Graphite Foam  

oriented graphite planes, similar to high performance carbon fibers, which have been estimated to exhibit a thermal conductivity greater than 1700 ...

139

Variable pressure thermal insulating jacket  

DOE Patents (OSTI)

A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

1994-01-01T23:59:59.000Z

140

Variable pressure thermal insulating jacket  

DOE Patents (OSTI)

A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

1994-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Method for transferring thermal energy and electrical current in thin-film electrochemical cells  

DOE Patents (OSTI)

An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

2003-05-27T23:59:59.000Z

142

Thermal performance of residential duct systems in basements  

Science Conference Proceedings (OSTI)

There are many unanswered questions about the typical effects of duct system operation on the infiltration rates and energy usage of single- family residences with HVAC systems in their basements. In this paper, results from preliminary field studies and computer simulations are used to examine the potential for improvements in efficiency of air distribution systems in such houses. The field studies comprise thermal and flow measurements on four houses in Maryland. The houses were found to have significant envelope leakage, duct leakage, and duct conduction losses. Simulations of a basement house, the characteristics of which were chosen from the measured houses, were performed to assess the energy savings potential for basement house. The simulations estimate that a nine percent reduction in space conditioning energy use is obtained by sealing eighty percent of the duct leaks and insulating ducts to an R-value of 0.88 {degree}C{center_dot}m{sup 2}/W (5{degree}F{center_dot}ft{sup 2}{center_dot}h/BTU) where they are exposed in the basement. To determine the maximum possible reduction m energy use, simulations were run with all ducts insulated to 17.6 {degree}C{center_dot}m{sup 2}/W (100 {degree}F{center_dot}ft{sup 2}{center_dot}h/BTU) and with no duct leakage. A reduction of energy use by 14% is obtained by using perfect ducts instead of nominal ducts.

Treidler, B.; Modera, M.

1994-02-01T23:59:59.000Z

143

DC Resistivity Survey (Schlumberger Array) At Coso Geothermal Area (1977) |  

Open Energy Info (EERE)

DC Resistivity Survey (Schlumberger Array) At Coso DC Resistivity Survey (Schlumberger Array) At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique DC Resistivity Survey (Schlumberger Array) Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes 18 USGS Schlumberger soundings and 6 Schlumberger soundings by Furgerson (1973) were plotted and automatically processed and interpreted References Jackson, D.B. ODonnell, J.E.; Gregory, D. I. (1 January 1977) Schlumberger soundings, audio-magnetotelluric soundings and telluric mapping in and around the Coso Range, California Retrieved from "http://en.openei.org/w/index.php?title=DC_Resistivity_Survey_(Schlumberger_Array)_At_Coso_Geothermal_Area_(1977)&oldid=591389

144

NEHRP - Earthquake Resistant Design Research Needs ...  

Science Conference Proceedings (OSTI)

Library. Research Needs Reports Earthquake Resistant Design. Earthquake Resistant Design. 2011. Research Plan for the ...

145

Thermal masses in leptogenesis  

E-Print Network (OSTI)

We investigate the validity of using thermal masses in the kinematics of final states in the decay rate of heavy neutrinos in leptogenesis calculations. We find that using thermal masses this way is a reasonable approximation, but corrections arise through quantum statistical distribution functions and leptonic quasiparticles.

Kiessig, Clemens P

2009-01-01T23:59:59.000Z

146

Thermal protection apparatus  

DOE Patents (OSTI)

An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

Bennett, Gloria A. (Los Alamos, NM); Elder, Michael G. (Los Alamos, NM); Kemme, Joseph E. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

147

Thermal protection apparatus  

DOE Patents (OSTI)

The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

Bennett, G.A.; Elder, M.G.; Kemme, J.E.

1984-03-20T23:59:59.000Z

148

Thermal conduction and particle transport in strong MHD turbulence, with application to galaxy-cluster plasmas  

E-Print Network (OSTI)

We investigate field-line separation in strong MHD turbulence analytically and with direct numerical simulations. We find that in the static-magnetic-field approximation the thermal conductivity in galaxy clusters is reduced by a factor of about 5-10 relative to the Spitzer thermal conductivity of a non-magnetized plasma. We also estimate how the thermal conductivity would be affected by efficient turbulent resistivity.

Benjamin D. G. Chandran; Jason L. Maron

2003-03-11T23:59:59.000Z

149

THERMAL PROPERTIES OF FIBERBOARD OVERPACK MATERIALS IN THE 9975 SHIPPING PACKAGE  

DOE Green Energy (OSTI)

The 9975 shipping package incorporates a cane fiberboard overpack for thermal insulation and impact resistance. Thermal properties (thermal conductivity and specific heat capacity) have been measured on cane fiberboard and a similar wood fiber-based product at several temperatures representing potential storage conditions. While the two products exhibit similar behavior, the measured specific heat capacity varies significantly from prior data. The current data are being developed as the basis to verify that this material remains acceptable over the extended storage time period.

VORMELKER, PHILLIP; DAUGHERTY, W. L.

2005-06-10T23:59:59.000Z

150

Hydrogen Permeation Resistant Coatings  

DOE Green Energy (OSTI)

As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings may be applied to these ferrous alloys to retard hydrogen ingress. Hydrogen is known to be very mobile in materials of construction. In this study, the permeation resistance of bare stainless steel samples and coated stainless steel samples was tested. The permeation resistance was measured using a modular permeation rig using a pressure rise technique. The coating microstructure and permeation results will be discussed in this document as will some additional testing.

KORINKO, PAUL; ADAMS, THAD; CREECH, GREGGORY

2005-06-15T23:59:59.000Z

151

Thermal treatment wall  

DOE Patents (OSTI)

A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

2000-01-01T23:59:59.000Z

152

Solar thermal aircraft  

DOE Patents (OSTI)

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

153

Corrosion resistant refractory ceramics for slagging gasifier environment  

Science Conference Proceedings (OSTI)

Integrated gasification combined cycle power systems are the most efficient and economical power generation systems with a relatively low environmental impact. The gasification process requires the optimal design of gasifiers with extremely corrosion resistant refractory lining. The majority of the refractory materials tested for gasifier lining applications cannot resist the action of slagging corrosive environment combined with high operation temperatures as high as 1600?C and possible thermal shocks and thermal expansion mismatch between the lining and the slag. Silicon carbide-based ceramics and some zirconia- and zircon-based ceramics manufactured by Ceramic Protection Corporation (CPC) have been tested in a simulated coal-fired slagging gasifier environment at a temperature of 1500?C. Crucible ceramic samples have been examined after exposure to the slag at high temperature. Microstructure studies of the ceramic zone contacted with the slag have been carried out. The highest performance, i.e. the absence of corrosion damage and thermal cracking after testing, was observed for silicon carbide-based ceramics ABSC formed by silicon carbide grains with an optimized particle size distribution bonded by the aluminosilicate crystalline-glassy matrix. Dense zirconia and alumina-zirconia and slightly porous zircon ceramics demonstrated comparatively lower performance due to their lower corrosion resistance and greater thermal cracking. ABSC ceramics can be manufactured as thick-walled large components and may be considered as a promising material for gasifier refractory applications. Similar ceramics, but with finer grain sizes, may also be recommended for thermocouple protection.

Medvedovski, E. (Ceramic Protection Corp., Calgary, Alberta, Canada); Chinn, Richard E.

2004-01-01T23:59:59.000Z

154

Thermal Performance of Uninsulated and Partially Filled Wall Cavities  

SciTech Connect

Wall cavities are widely present in the construction of low rise homes since wood framing is the most common type of construction for residential buildings in the United States. The primary function of such wall construction is to provide a stable frame to which interior and exterior wall coverings can be attached and by which a roof can be supported. The existence of wall cavities increases the thermal resistance of the enclosure, particularly when they are filled with insulating material. Several design guides provide data for prediction of the thermal resistance of uninsulated wall cavities of varying internal geometries. However, U-value coefficients provided in these guides do not account for partially insulated cavities or for variations in aspect ratio. Whole building energy simulation tools, like DOE2 or Energy Plus, use simplified, 1-D characterization of building envelopes. For the most part, this characterization assumes a fixed thermal resistance over the range of temperatures experienced by the enclosure. In reality, the thermal resistance is dominated by convection and radiation and is a function of several parameters, including the temperatures and emissivities of the cavity surfaces and the aspect ratio of the cavity. This study describes detailed CFD modeling to evaluate the thermal performance of uninsulated or partially filled wall cavities accounting for conduction through framing, convection, and radiation. The resulting correlations can serve as input for DOE2 and Energy Plus modeling of older homes, where the walls are either uninsulated or partially insulated due to the settling of the insulating material. Parameters of the study are the ambient temperature outdoors, emissivity of the cavity surfaces, cavity aspect ratio, and height of the insulation level. The outcomes of this study provide: An understanding of the thermal performance of uninsulated or partially insulated wall cavities, which is an essential aspect of energy conservation in residential buildings. Accurate input for whole building simulations models like DOE2 and Energy Plus in various climate zones. Recommendations on retrofit measures.

Ridouane, E.H.; Bianchi, M. V. A.

2011-01-01T23:59:59.000Z

155

Resistivity Log At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

Resistivity Log At Long Valley Caldera Area (Sorey, Resistivity Log At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Resistivity Log Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Lithologic and resistivity logs from wells drilled into areas of less than 20 ohm-m resistivity show clay mineralization resulting from hydrothermal alteration within the volcanic fill (Nordquist, 1987). Low resistivity in the vicinity of well 44-16, identified in wellbore geophysical logs and two dimensional MT modeling is restricted to the thermal-fluid reservoirs in the early rhyolite and Bishop Tuff (Nordquist, 1987; Suemnicht, 1987). The MT data suggest that the resistivity structure near Mammoth Mountain is

156

Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A dipole-dipole resistivity survey of the area was carried out with estimated penetration up to 700 meters and no indication of low values of resistivity were found associated with the thermal anomaly. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Marysville_Mt_Area_(Blackwell)&oldid=510539

157

Thermally-related safety issues associated with thermal batteries.  

DOE Green Energy (OSTI)

Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

Guidotti, Ronald Armand

2006-06-01T23:59:59.000Z

158

Damage Evolution in Thermal Barrier Coatings with Thermal Cycling  

Science Conference Proceedings (OSTI)

Abstract Scope, Thermal barrier coatings typically fail on cooling after prolonged thermal cycling by the growth of sub-critical interface separations. Observations ...

159

Efficient thermal management for multiprocessor systems  

E-Print Network (OSTI)

2.2.4 Thermal Modeling . . . . . . . .63 Table 4.3: Thermal Hot Spots . . . . . . . . . . . . . .Performance-Efficient Thermal Management . . . . . . . . . .

Co?kun, Ay?e K?v?lc?m

2009-01-01T23:59:59.000Z

160

Solar Thermal Conversion  

DOE Green Energy (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Cooling thermal storage  

Science Conference Proceedings (OSTI)

This article gives some overall guidelines for successful operation of cooling thermal storage installations. Electric utilities use rates and other incentives to encourage thermal storage, which not only reduces their system peaks but also transfers a portion of their load from expensive daytime inefficient peaking plants to less expensive nighttime base load high efficiency coal and nuclear plants. There are hundreds of thermal storage installations around the country. Some of these are very successful; others have failed to achieve all of their predicted benefits because application considerations were not properly addressed.

Gatley, D.P.

1987-04-01T23:59:59.000Z

162

Thermomechanical behavior of plasma-sprayed zirconia thermal barrier coatings.  

SciTech Connect

The effect of coating porosity and thickness on the resistance to damage of yttria stabilized zirconia thermal barrier coatings in an oxidizing environment by thermal cycling was evaluated. Hardness and elastic modulus of an as-processed porous coating were lower than those of a dense coating and the porous coating failed after fewer thermal cycles. Similarly, specimen with a thicker coating failed after fewer thermal cycles than specimen with a thinner coating. The earlier failure of the porous coating is due to lower fracture toughness and enhanced oxidation of the coating/substrate interface, whereas, the earlier failure of the thick coating is due to higher thermal transient stresses that developed in the coating during thermal cycling. Generally, an increase in coating density led to initial increase in both hardness and elastic modulus with increasing thermal cycles. However, hardness and density gradually decreased as the number of thermal cycles increase because of microcracks formation and growth. Microscopic observations indicated that the formation of multiple microcracks and their subsequent growth and coalescence led to final coating failure.

Singh, J. P.

1998-04-01T23:59:59.000Z

163

Thermal conductor for high-energy electrochemical cells  

DOE Patents (OSTI)

A thermal conductor for use with an electrochemical energy storage device is disclosed. The thermal conductor is attached to one or both of the anode and cathode contacts of an electrochemical cell. A resilient portion of the conductor varies in height or position to maintain contact between the conductor and an adjacent wall structure of a containment vessel in response to relative movement between the conductor and the wall structure. The thermal conductor conducts current into and out of the electrochemical cell and conducts thermal energy between the electrochemical cell and thermally conductive and electrically resistive material disposed between the conductor and the wall structure. The thermal conductor may be fabricated to include a resilient portion having one of a substantially C-shaped, double C-shaped, Z-shaped, V-shaped, O-shaped, S-shaped, or finger-shaped cross-section. An elastomeric spring element may be configured so as to be captured by the resilient conductor for purposes of enhancing the functionality of the thermal conductor. The spring element may include a protrusion that provides electrical insulation between the spring conductor and a spring conductor of an adjacently disposed electrochemical cell in the presence of relative movement between the cells and the wall structure. The thermal conductor may also be fabricated from a sheet of electrically conductive material and affixed to the contacts of a number of electrochemical cells.

Hoffman, Joseph A. (Minneapolis, MN); Domroese, Michael K. (South St. Paul, MN); Lindeman, David D. (Hudson, WI); Radewald, Vern E. (Austin, TX); Rouillard, Roger (Beloeil, CA); Trice, Jennifer L. (Eagan, MN)

2000-01-01T23:59:59.000Z

164

Multilayer thermal barrier coating systems  

DOE Patents (OSTI)

The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

2000-01-01T23:59:59.000Z

165

Thermal insulations using vacuum panels  

DOE Patents (OSTI)

Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

166

Ocean Thermal | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Ocean Thermal Jump to: navigation, search TODO: Add description List of Ocean Thermal Incentives...

167

Comparison of Thermal Insulation Materials.  

E-Print Network (OSTI)

??This thesis is about comparing of different thermal insulation materials of different manufactures. In our days there are a lot of different thermal insulation materials… (more)

Chaykovskiy, German

2010-01-01T23:59:59.000Z

168

Integrability vs Quantum Thermalization  

E-Print Network (OSTI)

Non-integrability is often taken as a prerequisite for quantum thermalization. Still, a generally accepted definition of quantum integrability is lacking. With the basis in the driven Rabi model we discuss this careless usage of the term "integrability" in connection to quantum thermalization. The model would be classified as non-integrable according to the most commonly used definitions, for example, the only preserved quantity is the total energy. Despite this fact, a thorough analysis conjectures that the system will not thermalize. Thus, our findings suggest first of all (i) that care should be paid when linking non-integrability with thermalization, and secondly (ii) that the standardly used definitions for quantum integrability are unsatisfactory.

Jonas Larson

2013-04-12T23:59:59.000Z

169

Contact thermal lithography  

E-Print Network (OSTI)

Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

Schmidt, Aaron Jerome, 1979-

2004-01-01T23:59:59.000Z

170

Properties of Thermal Glueballs  

E-Print Network (OSTI)

We study the properties of the 0++ glueball at finite temperature using SU(3) quenched lattice QCD. We find a significant thermal effects near T_c. We perform the \\chi^2 fit analyses adopting two Ansaetze for the spectral function, i.e., the conventional narrow-peak Ansatz and an advanced Breit-Wigner Ansatz. The latter is an extension of the former, taking account of the appearance of the thermal width at T>0. We also perform the MEM analysis. These analyses indicate that the thermal effect on the glueball is a significant thermal-width broadening \\Gamma(T_c) \\sim 300 MeV together with a modest reduction in the peak center \\Delta\\omega_0(T_c) \\sim 100 MeV.

Noriyoshi Ishii; Hideo Suganuma

2003-12-27T23:59:59.000Z

171

Thermal springs of Wyoming  

SciTech Connect

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

172

Thermal springs of Wyoming  

DOE Green Energy (OSTI)

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

173

Solar Thermal Manufacturing Activities  

Reports and Publications (EIA)

This report, Solar Thermal Collector Manufacturing Activities, providesan overview and tables with historical data spanning 2000-2009. These tables willcorrespond to similar tables to be presented in the Renewable Energy Annual 2009 andare numbered accordingly.

Michele Simmons

2010-12-01T23:59:59.000Z

174

Photovoltaic-thermal collectors  

DOE Patents (OSTI)

A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

Cox, III, Charles H. (Carlisle, MA)

1984-04-24T23:59:59.000Z

175

Thermal Energy Storage  

Science Conference Proceedings (OSTI)

This Technology Brief provides an update on the current state of cool thermal energy storage systems (TES) for end-use applications. Because of its ability to shape energy use, TES is strategic technology that allows end-users to reduce their energy costs while simultaneously providing benefits for electric utilities through persistent peak demand reduction and peak shifting. In addition to discussing the concepts of thermal energy storage, the Brief discusses the current state of TES technologies and dr...

2008-12-16T23:59:59.000Z

176

Texas Thermal Comfort Report  

NLE Websites -- All DOE Office Websites (Extended Search)

thermal comfort thermal comfort Too often, the systems in our houses are both physically and intellectually inaccessible. In the SNAP House, HVAC components are integrated into the overall structure, and act as an experiential threshold between public and private spaces. They are located in a central, structural chase that supports the clerestory and gives the systems a functional presence within the interior. Each individual component is contained within a single chase

177

Improvement of Contact Resistance with Molecular Ion Implantation  

SciTech Connect

Basic characteristics of ClusterBoron (B{sub 18}H{sub 22}) implantation were investigated for improving contact resistance in DRAM devices. Generally, {sup 49}BF{sub 2} has been widely used for contact implant application in DRAM manufacturing because of its higher productivity compared to monomer boron ({sup 11}B). However, because of limited activation in a low thermal budget ({approx}800 deg. C) anneal, the sheet resistance was saturated for doses over 5x10{sup 15} ions/cm{sup 2}. Although many investigations have been reported, such as {sup 30}BF implant mixed implant with monomer boron etc., no practical solution has been found for dramatic improvement of contact resistance in a productive manner. B{sub 18}H{sub 22} was developed to overcome the productivity limitations encountered in low energy, high dose boron implantation and the limited activation of {sup 49}BF{sub 2} due to co-implanted fluorine. In this study, basic characterization of the B{sub 18}H{sub 22} contact implant was performed through sheet resistance, SIMS (Secondary Ion Mass Spectrometry) and XTEM (cross-sectional transmission electron microscopy). The B{sub 18}H{sub 22} implants showed lower sheet resistance than conventional {sup 49}BF{sub 2} for 5x10{sup 15} ions/cm{sup 2} on bare wafer tests. Through XTEM study, we found the activation behavior of both B{sub 18}H{sub 22} and {sup 49}BF{sub 2} were directly related with the amorphous layer thickness and residual defects from low thermal budget anneal. PMOS contact resistance in the sub-70 nm device by B{sub 18}H{sub 22} implantation showed considerable improvement (about 30%), showing B{sub 18}H{sub 22} could replace the BF{sub 2} for contact implant in contact resistance implant.

Lee, Kyung Won [Axcelis Technologies Inc., 108 Cherry Hill Drive, Beverly, MA 01915 (United States); Sungkyunkwan University., 300 Cheoncheon, Jangan, Suwon, Kyoungki-do, 440-746 (Korea, Republic of); Lee, Jin Ku; Oh, Jae Geun; Ju, Min Ae; Jeon, Seung Joon; Ku, Ja Chun; Park, Sung Ki [Hynix Semiconductor Inc., San 136-1 Ami, Bubal, Ichon, Kyoungki-do, 467-701 (Korea, Republic of); Huh, Tae Hoon; Kim, Steve; Ra, Geum Joo; Harris, Mark A.; Reece, Ronald N. [Axcelis Technologies Inc., 108 Cherry Hill Drive, Beverly, MA 01915 (United States); Yoon, Dae Ho [Sungkyunkwan University., 300 Cheoncheon, Jangan, Suwon, Kyoungki-do, 440-746 (Korea, Republic of)

2008-11-03T23:59:59.000Z

178

PROBLEM 13.94 KNOWN: Diameter, temperature and emissivity of boiler tube. Thermal conductivity and emissivity of  

E-Print Network (OSTI)

PROBLEM 13.94 KNOWN: Diameter, temperature and emissivity of boiler tube. Thermal conductivity of 0.5 mm), Td = 773 K nd the ash provides a significant resistance to heat transfer.a COMMENTS: Boiler

Rothstein, Jonathan

179

Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett,  

Open Energy Info (EERE)

Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

180

Theoretical investigation of the impact of grain boundaries and fission gases on UO2 thermal conductivity  

SciTech Connect

Thermal conductivity is one of the most important metrics of nuclear fuel performance. Therefore, it is crucial to understand the impact of microstructure features on thermal conductivity, especially since the microstructure evolves with burn-up or time in the reactor. For example, UO{sub 2} fuels are polycrystalline and for high-burnup fuels the outer parts of the pellet experience grain sub-division leading to a very fine grain structure. This is known to impact important physical properties such as thermal conductivity as fission gas release. In a previous study, we calculated the effect of different types of {Sigma}5 grain boundaries on UO{sub 2} thermal conductivity and predicted the corresponding Kapitza resistances, i.e. the resistance of the grain boundary in relation to the bulk thermal resistance. There have been reports of pseudoanisotropic effects for the thermal conductivity in cubic polycrystalline materials, as obtained from molecular dynamics simulations, which means that the conductivity appears to be a function of the crystallographic direction of the temperature gradient. However, materials with cubic symmetry should have isotropic thermal conductivity. For this reason it is necessary to determine the cause of this apparent anisotropy and in this report we investigate this effect in context of our earlier simulations of UO{sub 2} Kapitza resistances. Another source of thermal resistance comes from fission products and fission gases. Xe is the main fission gas and when generated in sufficient quantity it dissolves from the lattice and forms gas bubbles inside the crystalline structure. We have performed studies of how Xe atoms dissolved in the UO{sub 2} matrix or precipitated as bubbles impact thermal conductivity, both in bulk UO{sub 2} and in the presence of grain boundaries.

Du, Shiyu [Los Alamos National Laboratory; Andersson, Anders D. [Los Alamos National Laboratory; Germann, Timothy C. [Los Alamos National Laboratory; Stanek, Christopher R. [Los Alamos National Laboratory

2012-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Corrosion-resistant metal surfaces  

DOE Patents (OSTI)

The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

Sugama, Toshifumi (Wading River, NY)

2009-03-24T23:59:59.000Z

182

Corrosive resistant heat exchanger  

DOE Patents (OSTI)

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

183

Heat-Resistant Alloys  

Science Conference Proceedings (OSTI)

Table 1   Nominal compositions of selected heat-resistant nickel alloys...max 0.15 max Cu Gas turbines, rocket engines, nuclear applications N07750 Inconel X-750 15.5 73.0 � � 1.0 2.5 0.7 7.0 0.04 0.25 max Cu Gas turbine components, pressure vessels,

184

Thermal sprayed composite melt containment tubular component and method of making same  

DOE Patents (OSTI)

A tubular thermal sprayed melt containment component for transient containment of molten metal or alloy wherein the tubular member includes a thermal sprayed inner melt-contacting layer for contacting molten metal or alloy to be processed, a thermal sprayed heat-generating layer deposited on the inner layer, and an optional thermal sprayed outer thermal insulating layer. The thermal sprayed heat-generating layer is inductively heated as a susceptor of an induction field or electrical resistively heated by passing electrical current therethrough. The tubular thermal sprayed melt containment component can comprise an elongated melt pour tube of a gas atomization apparatus where the melt pour tube supplies molten material from a crucible to an underlying melt atomization nozzle.

Besser, Matthew F. (Urbandale, IA); Terpstra, Robert L. (Ames, IA); Sordelet, Daniel J. (Ames, IA); Anderson, Iver E. (Ames, IA)

2002-03-19T23:59:59.000Z

185

Thermal Performance Engineer's Handbook: Introduction to Thermal Performance  

Science Conference Proceedings (OSTI)

The two-volume Thermal Performance Engineer Handbook will assist thermal performance engineers in identifying and investigating the cause of megawatt (MWe) losses as well as in proposing new ways to increase MWe output. Volume 1 contains a thermal performance primer to provide a brief review of thermodynamic principles involved in the stream power plant thermal cycle. The primer also contains brief descriptions of the equipment and systems in the cycle that can be sources of thermal losses. Also in Volum...

1998-04-01T23:59:59.000Z

186

Resistive coating for current conductors in cryogenic applications  

DOE Patents (OSTI)

This invention relates to a resistive or semiconducting coating for use on current conductors in cryogenic applications. This includes copper-clad superconductor wire, copper wire used for stabilizing superconductor magnets, and for hyperconductors. The coating is a film of cuprous sulfide (Cu.sub.2 S) that has been found not to degrade the properties of the conductors. It is very adherent to the respective conductors and satisfies the mechanical, thermal and electrical requirements of coatings for the conductors.

Hirayama, Chikara (Murrysville, PA); Wagner, George R. (Murrysville, PA)

1982-05-18T23:59:59.000Z

187

Resistance after firing protected electric match. [Patent application  

DOE Patents (OSTI)

An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

Montoya, A.P.

1980-03-20T23:59:59.000Z

188

Thermal Management of Solar Cells  

E-Print Network (OSTI)

UNIVERSITY OF CALIFORNIA RIVERSIDE Thermal Management ofUniversity of California, Riverside Acknowledgments First, I

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

189

Solar-thermal technology  

DOE Green Energy (OSTI)

Solar-thermal technology converts sunlight into thermal energy. It stands alongside other solar technologies including solar-electric and photovoltaic technologies, both of which convert sunlight into electricity. Photovoltaic technology converts by direct conversion, and solar-electric converts by using sunlight`s thermal energy in thermodynamic power cycles. The numerous up-and-running solar energy systems prove solar-thermal technology works. But when is it cost-effective, and how can HVAC engineers and facility owners quickly identify cost-effective applications? This article addresses these questions by guiding the reader through the basics of solar-thermal technology. The first section provides an overview of today`s technology including discussions of collectors and typical systems. The next section presents an easy method for identifying potentially cost-effective applications. This section also identifies sources for obtaining more information on the technology--collector ratings and performance, solar manufacturers, and solar design and analysis tools. The article discusses only those collectors and systems that are most often used. Many others are on the market--the article does not, by omission, mean to infer that one is better than the other.

Bennett, C. [Sandia National Labs., Albuquerque, NM (United States)

1995-09-01T23:59:59.000Z

190

Improved tunnel resistance of silvered-polymer mirrors  

DOE Green Energy (OSTI)

This report documents the research performed at the Solar Energy Research Institute during fiscal year (FY) 1991 to develop ways to prevent delamination failure (known as tunneling) of silvered-polymer reflector materials. Several promising approaches have been identified and demonstrated that substantially reduce such failures. These approaches include (1) use of Tedlar edge tape rather than the manufacturer-recommended ECP-244 tape, (2) thermal treatment of laminated reflector/substrate constructions, and (3) application of silver to the polymer film through an alternative deposition process. Approaches 1 and 2 offer readily available engineering solutions to the delamination problem. Approaches 2 and 3 provide tunnel resistance over the entire surface of the reflector material, including the edges. Tedlar (a polyvinyl fluoride from DuPont) tape is an opaque white tape available in different widths from 3M Company. The base material has demonstrated outstanding outdoor durability. Thermal treatment of ECP-305 laminated to substrate materials has demonstrated outstanding resistance to tunneling. Alternative silver deposition techniques such as sputtering (rather than thermal evaporation) offer increased resistance to tunneling. 15 refs., 10 figs.

Jorgensen, G.; Schissel, P.; Kennedy, C.; Shinton, Y.; Powell, D.; Siebarth, J.

1991-10-01T23:59:59.000Z

191

Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)  

SciTech Connect

The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

2013-09-26T23:59:59.000Z

192

Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney,  

Open Energy Info (EERE)

2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

193

Direct-Current Resistivity Survey At Stillwater Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Stillwater Area (Laney, 2005) Stillwater Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Stillwater Area (Laney, 2005) Exploration Activity Details Location Stillwater Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

194

Article for thermal energy storage  

DOE Patents (OSTI)

A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

Salyer, Ival O. (Dayton, OH)

2000-06-27T23:59:59.000Z

195

Thermal insulated glazing unit  

SciTech Connect

An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

1991-01-01T23:59:59.000Z

196

THERMAL NEUTRON BACKSCATTER IMAGING.  

DOE Green Energy (OSTI)

Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

2004-10-16T23:59:59.000Z

197

Thermal insulated glazing unit  

DOE Patents (OSTI)

An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

1988-04-05T23:59:59.000Z

198

Thermal test options  

SciTech Connect

Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods.

Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

1993-02-01T23:59:59.000Z

199

Thermal energy storage material  

DOE Patents (OSTI)

A thermal energy storage material which is stable at atmospheric temperature and pressure and has a melting point higher than 32.degree.F. is prepared by dissolving a specific class of clathrate forming compounds, such as tetra n-propyl or tetra n-butyl ammonium fluoride, in water to form a substantially solid clathrate. The resultant thermal energy storage material is capable of absorbing heat from or releasing heat to a given region as it transforms between solid and liquid states in response to temperature changes in the region above and below its melting point.

Leifer, Leslie (Hancock, MI)

1976-01-01T23:59:59.000Z

200

Thermal Insulation Systems  

E-Print Network (OSTI)

Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy cost reduction programs. One of the best places to start with energy conservation is to employ proper insulation systems. This article discusses the significant properties of thermal insulation materials primarily for industrial application. Some of the information is applicable to commercial and residential insulation. Only hot service conditions will be covered.

Stanley, T. F.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Thermal ignition combustion system  

DOE Patents (OSTI)

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

202

Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.  

SciTech Connect

A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

Fuller, Thomas F. (Georgia Institute of Technology, Atlanta, GA); Bandhauer, Todd (Georgia Institute of Technology, Atlanta, GA); Garimella, Srinivas (Georgia Institute of Technology, Atlanta, GA)

2012-01-01T23:59:59.000Z

203

Experimental and analytical systems studies of a combined thermal-photovoltaic residential solar system. Technical status report No. 3  

DOE Green Energy (OSTI)

Technical progress reported included testing of the corrosion resistance of a turbine flow meter and parametric studies using computerized simulation of a combined thermal-photovoltaic concentrating collector, thermal storage tank, absorption air conditioner with auxiliary heater, and a load. Also, work on a test facility, including data processing equipment and a cooling load simulator, is reported. (LEW)

Not Available

1980-01-01T23:59:59.000Z

204

EVALUATION OF THERMAL CONDUCTIVITY OF INSTALLED-IN-PLACE POLYURETHANE FOAM INSULATION BY EXPERIMENT AND ANALYSIS  

SciTech Connect

In the thermal analysis of the 9977 package, it was found that calculated temperatures, determined using a typical thermal analysis code, did not match those measured in the experimental apparatus. The analysis indicated that the thermal resistance of the overpack in the experimental apparatus was less than that expected, based on manufacturer's reported value of thermal conductivity. To resolve this question, the thermal conductivity of the installed foam was evaluated from the experimental results, using a simplified analysis. This study confirmed that the thermal resistance of the experimental apparatus was lower than that which would result from the manufacturer's published values for thermal conductivity of the foam insulation. The test package was sectioned to obtain samples for measurement of material properties. In the course of the destructive examination a large uninsulated region was found at the bottom of the package, which accounted for the anomalous results. Subsequent measurement of thermal conductivity confirmed the manufacturer's published values. The study provides useful insight into the use of simplified, scoping calculations for evaluation of thermal performance of packages.

Smith, A; Bruce Hardy, B; Kurt Eberl, K; Nick Gupta, N

2007-12-05T23:59:59.000Z

205

Thermal Reactor Safety  

Science Conference Proceedings (OSTI)

Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

Not Available

1980-06-01T23:59:59.000Z

206

Thermal barrier coating  

SciTech Connect

A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

2001-01-01T23:59:59.000Z

207

Solar thermal financing guidebook  

DOE Green Energy (OSTI)

This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

1983-05-01T23:59:59.000Z

208

Cylindrical thermal contact conductance  

E-Print Network (OSTI)

Thermal contact conductance is highly important in a wide variety of applications, from the cooling of electronic chips to the thermal management of spacecraft. The demand for increased efficiency means that components need to withstand higher temperatures and heat transfer rates. Many situations call for contact heat transfer through nominally cylindrical interfaces, yet relatively few studies of contact conductance through cylindrical interfaces have been undertaken. This study presents a review of the experimental and theoretical investigations of the heat transfer characteristics of composite cylinders, presenting data available in open literature in comparison with relevant correlations. The present investigation presents a study of the thermal contact conductance of cylindrical interfaces. The experimental investigation of sixteen different material combinations offers an opportunity to develop predictive correlations of the contact conductance, in conjunction with an analysis of the interface pressure as a function of the thermal state of the individual cylindrical shells. Experimental results of the present study are compared with previously published conductance data and conductance models.

Ayers, George Harold

2003-08-01T23:59:59.000Z

209

Skew resisting hydrodynamic seal  

DOE Patents (OSTI)

A novel hydrodynamically lubricated compression type rotary seal that is suitable for lubricant retention and environmental exclusion. Particularly, the seal geometry ensures constraint of a hydrodynamic seal in a manner preventing skew-induced wear and provides adequate room within the seal gland to accommodate thermal expansion. The seal accommodates large as-manufactured variations in the coefficient of thermal expansion of the sealing material, provides a relatively stiff integral spring effect to minimize pressure-induced shuttling of the seal within the gland, and also maintains interfacial contact pressure within the dynamic sealing interface in an optimum range for efficient hydrodynamic lubrication and environment exclusion. The seal geometry also provides for complete support about the circumference of the seal to receive environmental pressure, as compared the interrupted character of seal support set forth in U.S. Pat. Nos. 5,873,576 and 6,036,192 and provides a hydrodynamic seal which is suitable for use with non-Newtonian lubricants.

Conroy, William T. (Pearland, TX); Dietle, Lannie L. (Sugar Land, TX); Gobeli, Jeffrey D. (Houston, TX); Kalsi, Manmohan S. (Houston, TX)

2001-01-01T23:59:59.000Z

210

Thermal Analysis of a SHIELD Electromigration Test Structure  

Science Conference Proceedings (OSTI)

The steady state and transient thermal behavior of an electromigration test structure was analyzed. The test structure was a Sandia SHIELD (Self-stressing HIgh fregquency rELiability Device) electromigration test device manufactured by an outside vendor. This device has a high frequency oscillator circuit, a buffer circuit to isolate and drive the metal line to the tested (DUT), the DUT to be electromigrated itself, a metal resistance thermometry monitor, and a heater elment to temperature accelerate the electromigration effect.

Benson, David A.; Bowman, Duane J.; Mitchell, Robert T.

1999-05-01T23:59:59.000Z

211

--No Title--  

NLE Websites -- All DOE Office Websites (Extended Search)

the R-value in your walls? The answer used to be simply the R-value of your wall insulation. For standard wood frame construction, determining R-value, or resistance to heat...

212

Preliminary requirements for thermal storage subsystems in solar thermal applications  

DOE Green Energy (OSTI)

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

213

Computer interactive resistance simulator (CIRS)  

DOE Patents (OSTI)

A system for simulating the insertion of electric resistance values of either positive or negative quantity into an electric circuit and for cancelling drift errors therefrom.

Mayn, Bobby G. (Pleasanton, CA)

1976-01-01T23:59:59.000Z

214

Resistivity Log | Open Energy Information  

Open Energy Info (EERE)

Reservoir Evaluation- Results From The Alum 25-29 Well, Nevada Resistivity Log At Fish Lake Valley Area (DOE GTP) Fish Lake Valley Geothermal Area GTP ARRA Spreadsheet...

215

CORROSION RESISTANCE OF STRUCTURAL AMORPHOUS METAL  

SciTech Connect

Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The potential advantages of amorphous metals have been recognized for some time [Latanison 1985]. Iron-based corrosion-resistant, amorphous-metal coatings under development may prove important for maritime applications [Farmer et al. 2005]. Such materials could also be used to coat the entire outer surface of containers for the transportation and long-term storage of spent nuclear fuel, or to protect welds and heat affected zones, thereby preventing exposure to environments that might cause stress corrosion cracking [Farmer et al. 1991, 2000a, 2000b]. In the future, it may be possible to substitute such high-performance iron-based materials for more-expensive nickel-based alloys, thereby enabling cost savings in a wide variety of industrial applications. It should be noted that thermal-spray ceramic coatings have also been investigated for such applications [Haslam et al. 2005]. This report focuses on the corrosion resistance of a yttrium-containing amorphous metal, SAM1651. SAM1651 has a glass transition temperature of {approx}584 C, a recrystallization temperature of {approx}653 C, and a melting point of {approx}1121 C. The measured critical cooling rate for SAM1651 is {le} 80 K per second, respectively. The yttrium addition to SAM1651 enhances glass formation, as reported by Guo and Poon [2003]. The corrosion behavior of SAM1651 was compared with nickel-based Alloy 22 in electrochemical polarization measurements performed in several highly concentrated chloride solutions.

Lian, T; Day, S D; Farmer, J C

2006-04-10T23:59:59.000Z

216

Fighting Antiobiotic Resistance  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Nathaniel J. Cosper1, David L. Bienvenue2, Jacob E. Shokes1, Danuta M. Gilner2, Takashi Tsukamoto3, Robert A. Scott1, and Richard C. Holz2 1Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556 2Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300 3Guilford Pharmaceuticals Inc., 6611 Tributary Street, Baltimore, Maryland 21224 Bacterial infections, such as tuberculosis, have been identified as a world-wide problem leading to the deaths of millions of people each year. The importance of developing new drugs to fight infectious disease caused by these pathogenic organisms is underscored by the emergence of several bacterial strains that are resistant to all currently available antibiotics.1-4 Antibiotics, such as b-lactams, succeed by targeting vital

217

Thermal And Mechanical Analysis of High-power Light-emitting Diodes with Ceramic Packages  

E-Print Network (OSTI)

In this paper we present the thermal and mechanical analysis of high-power light-emitting diodes (LEDs) with ceramic packages. Transient thermal measurements and thermo-mechanical simulation were performed to study the thermal and mechanical characteristics of ceramic packages. Thermal resistance from the junction to the ambient was decreased from 76.1 oC/W to 45.3 oC/W by replacing plastic mould to ceramic mould for LED packages. Higher level of thermo-mechanical stresses in the chip were found for LEDs with ceramic packages despite of less mismatching coefficients of thermal expansion comparing with plastic packages. The results suggest that the thermal performance of LEDs can be improved by using ceramic packages, but the mounting process of the high power LEDs with ceramic packages is critically important and should be in charge of delaminating interface layers in the packages.

J. Hu; L. Yang; M. -W. Shin

2008-01-07T23:59:59.000Z

218

National Solar Thermal Test Facility  

SciTech Connect

This is a brief report about a Sandia National Laboratory facility which can provide high-thermal flux for simulation of nuclear thermal flash, measurements of the effects of aerodynamic heating on radar transmission, etc

Cameron, C.P.

1989-12-31T23:59:59.000Z

219

Corrosion resistant ceramic materials  

DOE Patents (OSTI)

Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

1995-01-01T23:59:59.000Z

220

Corrosion resistant ceramic materials  

DOE Patents (OSTI)

Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

THERMAL INSULATION MATERIALS TEST METHOD ...  

Science Conference Proceedings (OSTI)

... _____ 01/W01 CAN/CGSB-51.2-M88 Thermal Insulation, Calcium Silicate, for Piping, Machinery and Boilers _____ ...

2012-05-22T23:59:59.000Z

222

Liquid metal thermal electric converter  

DOE Patents (OSTI)

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

223

NVLAP Thermal Insulation Materials LAP  

Science Conference Proceedings (OSTI)

... for thermal insulation materials. The final report for Round 31 was released in February 2010. Proficiency testing is on hold ...

2013-07-18T23:59:59.000Z

224

Direct-Current Resistivity Survey At Lightning Dock Area (Warpinski, Et  

Open Energy Info (EERE)

Et Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Lightning Dock Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Lightning Dock Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes As a foundation for successful siting and drilling a deep test well, additional geophysical work has been completed including gravity, resistivity, and airborne magnetic surveys. Several new seismic profiles are planned to provide more focused siting and drilling plans. These new geophysical surveys are being integrated into the combined thermal, hydrologic, and subsurface stratigraphic information data sets to provide a

225

DC Resistivity Survey (Mise-Á-La-Masse) | Open Energy Information  

Open Energy Info (EERE)

Mise-Á-La-Masse) Mise-Á-La-Masse) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: DC Resistivity Survey (Mise-Á-La-Masse) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Profiling Configurations Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

226

Direct-Current Resistivity At Lightning Dock Area (Warpinski, Et Al., 2002)  

Open Energy Info (EERE)

2) 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Lightning Dock Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Lightning Dock Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes As a foundation for successful siting and drilling a deep test well, additional geophysical work has been completed including gravity, resistivity, and airborne magnetic surveys. Several new seismic profiles are planned to provide more focused siting and drilling plans. These new geophysical surveys are being integrated into the combined thermal, hydrologic, and subsurface stratigraphic information data sets to provide a

227

Holographic Thermal Helicity  

E-Print Network (OSTI)

We study the thermal helicity, defined in arXiv:1211.3850, of a conformal field theory with anomalies in the context of AdS$_{2n+1}$/CFT$_{2n}$. To do so, we consider large charged rotating AdS black holes in the Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant using fluid/gravity expansion. We compute the anomaly-induced current and stress tensor of the dual CFT in leading order of the fluid/gravity derivative expansion and show their agreement with the field theoretical replacement rule for the thermal helicity. Such replacement rule is reflected in the bulk by new replacement rules obeyed by the Hall currents around the black hole.

Tatsuo Azeyanagi; R. Loganayagam; Gim Seng Ng; Maria J. Rodriguez

2013-11-12T23:59:59.000Z

228

Thermally stable diamond brazing  

DOE Patents (OSTI)

A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

Radtke, Robert P. (Kingwood, TX)

2009-02-10T23:59:59.000Z

229

Thermal spallation drilling  

DOE Green Energy (OSTI)

Thermal spallation drilling is an underdeveloped process with great potential for reducing the costs of drilling holes and mining shafts and tunnels in most very hard rocks. Industry has used this process to drill blast holes for emplacing explosives and to quarry granite. Some theoretical work has been performed, and many signs point to a great future for this process. The Los Alamos National Laboratory has studied the theory of the spallation process and is conducting experiments to prove out the system and to adapt it for use with a conventional rotary rig. This report describes work that has been accomplished at the Laboratory on the development of thermal spallation drilling and some work that is projected for the future on the system. 3 references, 3 figures.

Williams, R.E.

1985-01-01T23:59:59.000Z

230

Thermal Stabilization Blend Plan  

SciTech Connect

This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.

RISENMAY, H.R.

2000-05-02T23:59:59.000Z

231

Solar thermal power  

DOE Green Energy (OSTI)

Solar thermal power is produced by three types of concentrating systems, which utilize parabolic troughs, dishes, and heliostats as the solar concentrators. These systems are at various levels of development and commercialization in the United States and in Europe. The U.S. Industry is currently developing these systems for export at the end of this century and at the beginning of the next one for remote power, village electrification, and grid-connected power. U.S. utilities are not forecasting to need power generation capacity until the middle of the first decade of the 21{sup st} century. At that time, solar thermal electric power systems should be cost competitive with conventional power generation in some unique U.S. markets. In this paper, the authors describe the current status of the development of trough electric, dish/engine, and power tower solar generation systems. 46 refs., 20 figs., 8 tabs.

Mancini, T.R.; Kolb, G.J.; Prairie, M.R. [Sandia National Labs., Albuquerque, NM (United States)

1997-12-31T23:59:59.000Z

232

Reactor Thermal-Hydraulics  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

233

Thermal Performance of Uninsulated and Partially Filled Wall Cavities: Preprint  

SciTech Connect

Low-rise, wood-framed homes are the most common type of residential structures in the United States. Wood wall construction supports roofs efficiently and provides a stable frame for attaching interior and exterior wall coverings. Wall cavities are prevalent and increase thermal resistance, particularly when they are filled with insulating material. This paper describes detailed computational fluid dynamics modeling to evaluate the thermal performance of uninsulated or partially filled wall cavities and accounts for conduction through framing, convection, and radiation. Parameters are ambient outdoor temperature, cavity surface emissivity, cavity aspect ratio, and insulation height. Understanding the thermal performance of uninsulated or partially insulated wall cavities is essential for conserving energy in residential buildings. The results can serve as input for building energy simulation tools such as DOE2 and EnergyPlus for modeling the temperature dependent energy performance of new and older homes with uninsulated or partially insulated walls.

Ridouane, E. H.; Bianchi, M.

2011-08-01T23:59:59.000Z

234

Integrated EM & Thermal Simulations with Upgraded VORPAL Software  

SciTech Connect

Nuclear physics accelerators are powered by microwaves which must travel in waveguides between room-temperature sources and the cryogenic accelerator structures. The ohmic heat load from the microwaves is affected by the temperature-dependent surface resistance and in turn affects the cryogenic thermal conduction problem. Integrated EM & thermal analysis of this difficult non-linear problem is now possible with the VORPAL finite-difference time-domain simulation tool. We highlight thermal benchmarking work with a complex HOM feed-through geometry, done in collaboration with researchers at the Thomas Jefferson National Accelerator Laboratory, and discuss upcoming design studies with this emerging tool. This work is part of an effort to generalize the VORPAL framework to include generalized PDE capabilities, for wider multi-physics capabilities in the accelerator, vacuum electronics, plasma processing and fusion R&D fields, and we will also discuss user interface and algorithmic upgrades which facilitate this emerging multiphysics capability.

D.N. Smithe, D. Karipides, P. Stoltz, G. Cheng, H. Wang

2011-03-01T23:59:59.000Z

235

Thermal Transport in Graphene Multilayers and Nanoribbons  

E-Print Network (OSTI)

1 CHAPTER 2 Thermal transport atvalues of graphene’s thermal conductivity and different1 Thermal conductivity : metals and non - metallic

Subrina, Samia

2011-01-01T23:59:59.000Z

236

Modeling thermal comfort in stratified environments  

E-Print Network (OSTI)

Arens E. , and Wang D. 2004. "Thermal sensation and comfortin transient non-uniform thermal environments", European7730, 1994, Moderate Thermal Environments – Determination of

Zhang, H.; Huizenga, C.; Arens, Edward A; Yu, T.

2005-01-01T23:59:59.000Z

237

Thermal Conduction in Graphene and Graphene Multilayers  

E-Print Network (OSTI)

1 1.2 Thermal transport atxv Introduction xii 1.1 Thermal conductivity and65 4.13 Thermal conductivity of graphene as a function of

Ghosh, Suchismita

2009-01-01T23:59:59.000Z

238

Indoor Thermal Comfort, an Evolutionary Biology Perspective  

E-Print Network (OSTI)

ASHRAE Standard 55-2004: Thermal environmental conditionsA behavioural approach to thermal comfort assessment inBerger, X. , 1998. Human thermal comfort at Nimes in summer

Stoops, John L.

2006-01-01T23:59:59.000Z

239

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

240

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

B. Quale. Seasonal storage of thermal energy in water in theand J. Schwarz, Survey of Thermal Energy Storage in AquifersSecond Annual Thermal Energy Storage Contractors'

Authors, Various

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

242

THERMAL NEUTRONIC REACTOR  

DOE Patents (OSTI)

A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

Spinrad, B.I.

1960-01-12T23:59:59.000Z

243

Concentrating Solar Thermal Technology  

Science Conference Proceedings (OSTI)

After nearly 20 years of commercial dormancy, concentrating solar thermal (CST) power development and investment activity is heating up globally. Encouraged by volatile energy prices, carbon markets, and renewable-friendly policies, an increasing number of established companies, newcomers, utilities, and government agencies are planning to deploy CST systems to tap the technologies' improving conversion efficiencies and low-cost electricity production potential. This renewable energy technology perspecti...

2009-03-27T23:59:59.000Z

244

Thermal reactor safety  

SciTech Connect

Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

1980-06-01T23:59:59.000Z

245

Thermally actuated thermionic switch  

DOE Patents (OSTI)

A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

Barrus, D.M.; Shires, C.D.

1982-09-30T23:59:59.000Z

246

Mobile Window Thermal Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Window Thermal Test (MoWiTT) Facility Mobile Window Thermal Test (MoWiTT) Facility winter.jpg (469135 bytes) The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems is one strategy for reducing the energy use of buildings. But the net energy flowing through a window is a combination of temperature- driven thermal flows and transmission of incident solar energy, both of which vary with time. U-factor and solar heat gain coefficient (SHGC), the window properties that control these flows, depend partly on ambient conditions. Window energy flows can affect how much energy a building uses, depending on when the window flows are available to help meet other energy demands within the building, and when they are adverse, adding to building energy use. This leads to a second strategy for reducing building energy use: using the beneficial solar gain available through a window, either for winter heating or for daylighting, while minimizing adverse flows.

247

Corrosion resistant PEM fuel cell  

DOE Patents (OSTI)

A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

Fronk, Matthew Howard (Honeoye Falls, NY); Borup, Rodney Lynn (East Rochester, NY); Hulett, Jay S. (Rochester, NY); Brady, Brian K. (North Chili, NY); Cunningham, Kevin M. (Romeo, MI)

2002-01-01T23:59:59.000Z

248

Corrosion resistant PEM fuel cell  

DOE Patents (OSTI)

A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

Fronk, Matthew Howard (Honeoye Falls, NY); Borup, Rodney Lynn (East Rochester, NY); Hulett, Jay S. (Rochester, NY); Brady, Brian K. NY); Cunningham, Kevin M. (Romeo, MI)

2011-06-07T23:59:59.000Z

249

Direct-Current Resistivity Survey At Coso Geothermal Area (1977) | Open  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Coso Geothermal Area (1977) Direct-Current Resistivity Survey At Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1977 Usefulness useful regional reconnaissance DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes DC resistivity geophysical surveys determined that the secondary low in the geothermal area, best defined by the 7.5-Hz AMT map and dc soundings, is caused by a shallow conductive zone (5--30 ohm m) interpreted to be

250

Thermal and non-thermal energies in solar flares  

E-Print Network (OSTI)

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

251

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK  

E-Print Network (OSTI)

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK CALIFORNIA PUBLIC UTILITIES California Solar Initiative Thermal Program Handbook i 1. Introduction to CSI-Thermal Program...........................................................................................................................11 #12;Table of Contents California Solar Initiative Thermal Program Handbook ii 2.5 Surface

252

Silica-alumina trihydrate filled epoxy castings resistant to arced SF.sub.6  

SciTech Connect

A cured, insulating, casting composition, having a coefficient of linear thermal expansion of below about 38 .times. 10.sup.-6 in./in./.degree. C and being resistant to arced sulfur hexafluoride gas, in contact with a metal surface in a sulfur hexafluoride gas environment, is made from hydantoin epoxy resin, anhydride curing agent and a filler combination of fused silica and alumina trihydrate.

Chenoweth, Terrence E. (Monroeville, PA); Yeoman, Frederick A. (Murrysville, PA)

1978-01-01T23:59:59.000Z

253

Thermal transient anemometer  

DOE Patents (OSTI)

A thermal transient anemometer is disclosed having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe. 12 figs.

Bailey, J.L.; Vresk, J.

1989-07-18T23:59:59.000Z

254

Multispectral thermal imaging  

SciTech Connect

Many remote sensing applications rely on imaging spectrometry. Here the authors use imaging spectrometry for thermal and multispectral signatures measured from a satellite platform enhanced with a combination of accurate calibrations and on-board data for correcting atmospheric distortions. The approach is supported by physics-based end-to-end modeling and analysis, which permits a cost-effective balance between various hardware and software aspects. The goal is to develop and demonstrate advanced technologies and analysis tools toward meeting the needs of the customer; at the same time, the attributes of this system can address other applications in such areas as environmental change, agriculture, and volcanology.

Weber, P.G.; Bender, S.C.; Borel, C.C.; Clodius, W.B.; Smith, B.W. [Los Alamos National Lab., NM (United States). Space and Remote Sensing Sciences Group; Garrett, A.; Pendergast, M.M. [Westinghouse Savannah River Corp., Aiken, SC (United States). Savannah River Technology Center; Kay, R.R. [Sandia National Lab., Albuquerque, NM (United States). Monitoring Systems and Technology Center

1998-12-01T23:59:59.000Z

255

Manipulation of Thermal Phonons  

E-Print Network (OSTI)

Developing materials that can conduct electricity easily, but block the motion of phonons is necessary in the applications of thermoelectric devices, which can generate electricity from temperature differences. In converse, a key requirement as chips get faster is to obtain better ways to dissipate heat. Controlling heat transfer in these crystalline materials devices — such as silicon — is important. The heat is actually the motion or vibration of atoms known as phonons. Finding ways to manipulate the behavior of phonons is crucial for both energy applications and the cooling of integrated circuits. A novel class of artificially periodic structured materials — phononic crystals — might make manipulation of thermal phonons possible. In many fields of physical sciences and engineering, acoustic wave propagation in solids attracts many researchers. Wave propagation phenomena can be analyzed by mathematically solving the acoustic wave equation. However, wave propagation in inhomogeneous media with various geometric structures is too complex to find an exact solution. Hence, the Finite Difference Time Domain method is developed to investigate these complicated problems. In this work, the Finite-Difference Time-Domain formula is derived from acoustic wave equations based on the Taylor’s expansion. The numerical dispersion and stability problems are analyzed. In addition, the convergence conditions of numerical acoustic wave are stated. Based on the periodicity of phononic crystal, the Bloch’s theorem is applied to fulfill the periodic boundary condition of the FDTD method. Then a wide-band input signal is used to excite various acoustic waves with different frequencies. In the beginning of the calculation process, the wave vector is chosen and fixed. By means of recording the displacement field and taking the Fourier transformation, we can obtain the eigenmodes from the resonance peaks of the spectrum and draw the dispersion relation curve of acoustic waves. With the large investment in silicon nanofabrication techniques, this makes tungsten/silicon phononic crystal a particularly attractive platform for manipulating thermal phonons. Phononic crystal makes use of the fundamental properties of waves to create band gap over which there can be no propagation of acoustic waves in the crystal. This crystal can be applied to deterministically manipulate the phonon dispersion curve affected by different crystal structures and to modify the phonon thermal conductivity accordingly. We can expect this unique metamaterial is a promising route to creating unprecedented thermal properties for highly-efficient energy harvesting and thermoelectric cooling.

Hsu, Chung-Hao

2013-05-01T23:59:59.000Z

256

Thermal Stabilization Blend Plan  

SciTech Connect

The Blend Plan was written to identify items stored outside of the 213 MBA that will be moved into the MBA for thermal stabilization processing. Product quality oxide items stored in our vaults are found in Appendix A. A table is included in Appendix A which details the isotopic values for the oxide items and calculates the amount of material of any specific run that can be placed in a product can and maintain the 15 watt limit to meet storage vault specifications. This Revision of the Blend Plan adds items of lesser dose rate to lower the exposure of the workers until additional shielding can be added to the gloveboxes.

RISENMAY, H.R.

2000-04-20T23:59:59.000Z

257

Advanced solar thermal technology  

SciTech Connect

The application of dish solar collectors to industrial process heat (IPH) has been reviewed. IPH represents a market for displacement of fossil fuels (10 quads/y). A 10% market penetration would indicate a substantial market for solar thermal systems. Apparently, parabolic dish systems can produce IPH at a lower cost than that of troughs or compound parabolic concentrators, even though dish fabrication costs per unit area are more expensive. Successful tests of point-focusing collectors indicate that these systems can meet the energy requirements for process heat applications. Continued efforts in concentrator and transport technology development are needed. 7 figures.

Leibowitz, L.P.; Hanseth, E.; Liu, T.M.

1982-06-01T23:59:59.000Z

258

Evaluation and Test of Improved Fire Resistant Fluid Lubricants for Water Reactor Coolant Pump Motors, Volume 1: Fluid Evaluation, Bearing Model Tests, Motor Tests, and Fire Tests  

Science Conference Proceedings (OSTI)

Commercially available fire-resistant fluid lubricants were evaluated to determine their suitability for use in primary-system pump motors in nuclear reactors. Volume 1 describes the procedures and results of tests of lubrication properties; fire and radiation resistance; and thermal, oxidative, and hydrolytic stability.

1980-07-01T23:59:59.000Z

259

Interstrand resistance of SSC magnets  

SciTech Connect

In situ interstrand resistance measurements were conducted on selected section of the inner coil of a full size (15 m) and a short (1 m) model SSC magnets. A model for evaluating single contacts resistance between two strands was developed. Using this model analyses of adjacent and non-adjacent strand contacts were performed. The interstrand resistance distribution throughout the coil was found to correlate with the quench location data as well as with the multipoles decay characteristics of the magnet. An anisotropic continuum based model for evaluation of cable eddy current losses was developed and results were compared with the experimental data.

Kovachev, V.T.; Neal, M.J.; Capone, D.W. II [Superconducting Super Collider Lab., Dallas, TX (United States); Carr, W.J. Jr.; Swenson, C. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

1994-01-01T23:59:59.000Z

260

Hard thermal effective action in QCD through the thermal operator  

E-Print Network (OSTI)

Through the application of the thermal operator to the zero temperature retarded Green's functions, we derive in a simple way the well known hard thermal effective action in QCD. By relating these functions to forward scattering amplitudes for on-shell particles, this derivation also clarifies the origin of important properties of the hard thermal effective action, such as the manifest Lorentz and gauge invariance of its integrand.

Ashok Das; J. Frenkel

2007-03-08T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

2 Technology Description: Solar Thermal Parabolic Trough Solar Thermal  

E-Print Network (OSTI)

– Parabolic troughs track sun, concentrate incident light onto a centralized, tubular receiver that runs length of each trough – Thermal fluid circulates through all receivers in solar field – Thermal fluid brought to one or more centralized power production facilities – Heat transferred to a steam cycle, drives a steam turbine to generate power – Cooled thermal fluid is then recirculated th through h solar fi field ld – Wet cooling is common, dry cooling possible

Timothy J. Skone; Risks Of Implementation

2012-01-01T23:59:59.000Z

262

Comparison of energy modeling and laboratory tests on green roof potential to decrease the cooling demand for North European office buildings  

Science Conference Proceedings (OSTI)

Greenroofs have been shown to reduce the rooftop heat transfer, offering enhancement to a building's thermal resistance or R-value in warm climate zones. However a comprehensive study of neither the magnitude of that effect, nor the impact of green roof ... Keywords: cooling load, energy efficiency, energy modeling, greenroofs

Hendrik Voll; Teet-Andrus Kõiv

2011-05-01T23:59:59.000Z

263

Rapid thermal cycling of metal-supported solid oxide fuel cellmembranes  

DOE Green Energy (OSTI)

Solid oxide fuel cell (SOFC) membranes were developed in which zirconia-based electrolyte thin films were supported by a composite metal/ceramic electrode, and were subjected to rapid thermal cycling between 200 and 800 C. The effects of this cycling on membrane performance were evaluated. The membranes, not yet optimized for performance, showed a peak power density of 350mW/cm2at 900 C in laboratory-sized SOFCs that was not affected by the thermal cycling. This resistance to cycling degradation is attributed to the close matching of thermal expansion coefficient of the cermet support electrode with that of the zirconia electrolyte.

Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

2004-01-02T23:59:59.000Z

264

The Thermal Expansion, Elastic and Fracture Properties of Porous Cordierite at Elevated Temperatures  

Science Conference Proceedings (OSTI)

The properties that determine the thermal shock resistance in materials are reported for porous cordierite, a leading candidate material for the fabrication of diesel particulate filters. Fracture toughness and slow crack growth tests were performed on test specimens obtained from the walls of diesel particulate filter monolithic substrates using the double-torsion test method at temperatures between 20 C and 900 C. The thermal expansion and elastic properties were characterized between 20 C and 1000 C. The role of the microstructure of porous cordierite in determining its unusual thermal expansion and elevated temperature Young's modulus and fracture toughness are discussed.

Shyam, Amit [ORNL; Lara-Curzio, Edgar [ORNL; Pandey, Amit [ORNL; Watkins, Thomas R [ORNL; More, Karren [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

265

THERMALLY DRIVEN ATMOSPHERIC ESCAPE  

Science Conference Proceedings (OSTI)

Accurately determining the escape rate from a planet's atmosphere is critical for determining its evolution. A large amount of Cassini data is now available for Titan's upper atmosphere and a wealth of data is expected within the next decade on escape from Pluto, Mars, and extra-solar planets. Escape can be driven by upward thermal conduction of energy deposited well below the exobase, as well as by nonthermal processes produced by energy deposited in the exobase region. Recent applications of a model for escape driven by upward thermal conduction, called the slow hydrodynamic escape model, have resulted in surprisingly large loss rates for the atmosphere of Titan, Saturn's largest moon. Based on a molecular kinetic simulation of the exobase region, these rates appear to be orders of magnitude too large. Therefore, the slow hydrodynamic model is evaluated here. It is shown that such a model cannot give a reliable description of the atmospheric temperature profile unless it is coupled to a molecular kinetic description of the exobase region. Therefore, the present escape rates for Titan and Pluto must be re-evaluated using the atmospheric model described here.

Johnson, Robert E., E-mail: rej@virginia.ed [Engineering Physics, Thornton Hall B102, University of Virginia, Charlottesville, VA 22902 (United States); Physics Department, New York University, New York, NY 10003 (United States)

2010-06-20T23:59:59.000Z

266

 

NLE Websites -- All DOE Office Websites (Extended Search)

Media Relations Media Relations Communications 865.576.1946 ORNL develops procedure to rate thermal performance of whole walls OAK RIDGE, Tenn., Nov. 20, 1996 - What's the R-value in your walls? The answer used to be simply the R-value of your wall insulation. For standard wood frame construction, determining R-value, or resistance to heat flow, based solely on wall insulation was not too far off. But because of the increasing use of metal frame systems and other more conductive materials, such as masonry and concrete, in our walls, R-value should now be determined by studying the whole wall, not just the insulation. How? By using a new wall testing and rating procedure developed at the Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL). "We've created a procedure to help users measure the ability of whole walls

267

Bipole-dipole survey at Roosevelt Hot Springs, Thermal Area, Beaver County, Utah  

DOE Green Energy (OSTI)

A bipole-dipole electrical resistivity survey at Roosevelt Hot Springs thermal area, Beaver County, Utah was undertaken to evaluate the technique in a well-studied Basin and Range geothermal prospect. The major electrical characteristics of the area are clearly revealed but are not particularly descriptive of the geothermal system. More subtle variations of electrical resistivity accompanying the geothermal activity are detectable, although the influence of near-surface lateral resistivity variations imposes upon the survey design the necessity of a high station density. A useful practical step is to conduct a survey using transmitter locations and orientations which minimize the response of known features such as the resistivity boundary due to a range front fault. Survey results illustrate the effects of transmitter orientation and placement, and of subtle lateral resistivity variations. A known near-surface conductive zone is detected while no evidence is found for a deep conductive region.

Frangos, W.; Ward, S.H.

1980-09-01T23:59:59.000Z

268

Thermal and Structural Equilibrium Studies of Organic Thermal ...  

Science Conference Proceedings (OSTI)

These organic materials undergo a solid-solid state phase transition before melting which will store large amounts of thermal energy. The binary system of ...

269

Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)  

SciTech Connect

This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

Rugh, J. P.; Pesaran, A.; Smith, K.

2013-07-01T23:59:59.000Z

270

RESISTIVITY MODELING FOR ARBITRARILY SHAPED THREE-DIMENSIONAL STRUCTURES  

E-Print Network (OSTI)

Full utilization of the electrical resistivity method ingeologic models for electrical resistivity applications, theResistivity In electrical resistivity surveys a current

Dey, Abhijit

2011-01-01T23:59:59.000Z

271

WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT  

E-Print Network (OSTI)

Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

Bhat, M.S.

2011-01-01T23:59:59.000Z

272

Surface modification to improve fireside corrosion resistance ...  

... for corrosion resistance. Fe--Cr ferritic steels can be modified to enhance their corrosion resistance to liquid coal ash and other chemical environments, ...

273

Production of virus resistant plants  

DOE Patents (OSTI)

A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection.

Dougherty, William G. (Philomath, OR); Lindbo, John A. (Kent, WA)

1996-01-01T23:59:59.000Z

274

Corrosion resistance of concrete reinforcement  

E-Print Network (OSTI)

The objective of this thesis is to investigate the mechanism of corrosion of steel reinforcement in concrete and epoxy coated reinforcing bars as corrosion resistant alternatives. Several case studies explore the durability ...

Ward-Waller, Elizabeth, 1982-

2005-01-01T23:59:59.000Z

275

Resistive instabilities in a tokamak  

SciTech Connect

Application of resistive instability theory shows that toroidal effects can stabilize the tearing mode in devices like the Princeton Large Torus. Contraction of the current channel is destabilizing. Finite fluid compressibility is crucial to this phenomenon. (auth)

Glasser, A.H.; Greene, J.M.; Johnson, J.L.

1975-10-01T23:59:59.000Z

276

Production of virus resistant plants  

DOE Patents (OSTI)

A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection. 9 figs.

Dougherty, W.G.; Lindbo, J.A.

1996-12-10T23:59:59.000Z

277

Thermal Cycling Effects on the Thermoelectric Properties of n-Type In, Ce based Skutterudite Compounds  

SciTech Connect

N-type In-filled CoSb3 are known skutterudite compounds that have shown promising thermoelectric (TE) properties resulting in high dimensionless figure of merit values at elevated temperatures. Their use in various waste heat recovery applications will require that they survive and operate after exposure to harsh thermal cycling environments. This research focused on uncovering the thermal cycling effects on thermoelectric properties of n-type In0.2Co4Sb12 and In0.2Ce0.15Co4Sb12 skutterudite compositions as well as quantifying their temperature-dependent structural properties (elastic modulus, shear modulus, and Poisson's ratio). It was observed that the Seebeck coefficient and resistivity increased only slightly in the double-filled In,Ce skutterudite materials upon thermal cycling. In the In-filled skutterudites the Seebeck coefficient remained approximately the same on thermal cycling, while electrical resistivity increased significantly after thermal cycling. Results also show that thermal conductivity marginally decreases in the case of In-filled skutterudites, whereas the reduction is more pronounced in In, Ce-based skutterudite compounds. The possible reason for this kind of reduction can be attributed to grain pinning effects due to formation of nano inclusions. High temperature structural property measurements (i.e., Young's modulus and shear modulus) are also reported and the results show that these structural properties decrease slowly as temperature increases and the compounds are structurally stable after numerous thermal cycles.

Biswas, Krishnendu; Subramanian, Mas A.; Good, Morris S.; Roberts, Kamandi C.; Hendricks, Terry J.

2012-06-14T23:59:59.000Z

278

Corrosion resistant neutron absorbing coatings  

SciTech Connect

A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

Choi, Jor-Shan (El Cerrito, CA); Farmer, Joseph C. (Tracy, CA); Lee, Chuck K. (Hayward, CA); Walker, Jeffrey (Gaithersburg, MD); Russell, Paige (Las Vegas, NV); Kirkwood, Jon (Saint Leonard, MD); Yang, Nancy (Lafayette, CA); Champagne, Victor (Oxford, PA)

2012-05-29T23:59:59.000Z

279

Joule Heating and Anomalous Resistivity in the Solar Corona  

E-Print Network (OSTI)

Recent radioastronomical observations of Faraday rotation in the solar corona can be interpreted as evidence for coronal currents, with values as large as $2.5 \\times 10^9$ Amperes (Spangler 2007). These estimates of currents are used to develop a model for Joule heating in the corona. It is assumed that the currents are concentrated in thin current sheets, as suggested by theories of two dimensional magnetohydrodynamic turbulence. The Spitzer result for the resistivity is adopted as a lower limit to the true resistivity. The calculated volumetric heating rate is compared with an independent theoretical estimate by Cranmer et al (2007). This latter estimate accounts for the dynamic and thermodynamic properties of the corona at a heliocentric distance of several solar radii. Our calculated Joule heating rate is less than the Cranmer et al estimate by at least a factor of $3 \\times 10^5$. The currents inferred from the observations of Spangler (2007) are not relevant to coronal heating unless the true resistivity is enormously increased relative to the Spitzer value. However, the same model for turbulent current sheets used to calculate the heating rate also gives an electron drift speed which can be comparable to the electron thermal speed, and larger than the ion acoustic speed. It is therefore possible that the coronal current sheets are unstable to current-driven instabilities which produce high levels of waves, enhance the resistivity and thus the heating rate.

Steven R. Spangler

2008-12-22T23:59:59.000Z

280

Thermal Flipping of Interstellar Grains  

E-Print Network (OSTI)

In interstellar dust grains, internal processes dissipate rotational kinetic energy. The dissipation is accompanied by thermal fluctuations, which transfer energy from the vibrational modes to rotation. Together, these processes are known as internal relaxation. For the past several years, internal relaxation has been thought to give rise to thermal flipping, with profound consequences for grain alignment theory. I show that thermal flipping is not possible in the limit that the inertia tensor does not vary with time.

Joseph C. Weingartner

2008-08-27T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Shock waves in thermal lensing  

E-Print Network (OSTI)

We review experimental investigation on spatial shock waves formed by the self-defocusing action of a laser beam propagation in a disordered thermal nonlinear media.

Gentilini, S; DeRe, E; Conti, C

2013-01-01T23:59:59.000Z

282

Actively driven thermal radiation shield  

DOE Patents (OSTI)

A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

2002-01-01T23:59:59.000Z

283

Thermal Oxidation of Titanium Wires  

Science Conference Proceedings (OSTI)

Structural and Thermal Study of Al2O3 Produced by Oxidation of Al-Powders Mixed with Corn Starch · Study of Silicon Carbide/Silicon Nitride Composite ...

284

Enhanced Thermal Conductivity Oxide Fuels  

SciTech Connect

the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

Alvin Solomon; Shripad Revankar; J. Kevin McCoy

2006-01-17T23:59:59.000Z

285

Thermally activated miniaturized cooling system.  

E-Print Network (OSTI)

??A comprehensive study of a miniaturized thermally activated cooling system was conducted. This study represents the first work to conceptualize, design, fabricate and successfully test… (more)

Determan, Matthew Delos

2008-01-01T23:59:59.000Z

286

Thermal Barrier Coating Systems II  

Science Conference Proceedings (OSTI)

Oct 26, 2009... on the application requirements and not on substrate physical properties such as thermal expansion rate Esp. within the same class of alloys.

287

Definition: Resistivity Log | Open Energy Information  

Open Energy Info (EERE)

Resistivity Log Resistivity Log Jump to: navigation, search Dictionary.png Resistivity Log Electrical resistivity logging is the measurement of potential (voltage) differences resulting from electrical current flow in the vicinity of a borehole in order to determine formation resistivity.[1] View on Wikipedia Wikipedia Definition Resistivity logging is a method of well logging that works by characterizing the rock or sediment in a borehole by measuring its electrical resistivity. Resistivity is a fundamental material property which represents how strongly a material opposes the flow of electric current. In these logs, resistivity is measured using 4 electrical probes to eliminate the resistance of the contact leads. The log must run in holes containing electrically conductive mud or water. Resistivity logging is

288

Thermally stabilized heliostat  

DOE Patents (OSTI)

An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

Anderson, Alfred J. (Littleton, CO)

1983-01-01T23:59:59.000Z

289

Thermal protection apparatus  

DOE Patents (OSTI)

An apparatus for thermally protecting heat sensitive components of tools. The apparatus comprises a Dewar holding the heat sensitive components. The Dewar has spaced-apart inside walls, an open top end and a bottom end. A plug is located in the top end. The inside wall has portions defining an inside wall aperture located at the bottom of the Dewar and the outside wall has portions defining an outside wall aperture located at the bottom of the Dewar. A bottom connector has inside and outside components. The inside component sealably engages the inside wall aperture and the outside component sealably engages the outside wall aperture. The inside component is operatively connected to the heat sensitive components and to the outside component. The connections can be made with optical fibers or with electrically conducting wires.

Bennett, G.A.; Moore, T.K.

1986-08-20T23:59:59.000Z

290

SUPERFAST THERMALIZATION OF PLASMA  

DOE Patents (OSTI)

A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

Chang, C.C.

1962-06-12T23:59:59.000Z

291

Inhomogeneous holographic thermalization  

E-Print Network (OSTI)

The sudden injection of energy in a strongly coupled conformal field theory and its subsequent thermalization can be holographically modeled by a shell falling into anti-de Sitter space and forming a black brane. For a homogeneous shell, Bhattacharyya and Minwalla were able to study this process analytically using a weak field approximation. Motivated by event-by-event fluctuations in heavy ion collisions, we include inhomogeneities in this model, obtaining analytic results in a long wavelength expansion. In the early-time window in which our approximations can be trusted, the resulting evolution matches well with that of a simple free streaming model. Near the end of this time window, we find that the stress tensor approaches that of second-order viscous hydrodynamics. We comment on possible lessons for heavy ion phenomenology.

V. Balasubramanian; A. Bernamonti; J. de Boer; B. Craps; L. Franti; F. Galli; E. Keski-Vakkuri; B. Müller; A. Schäfer

2013-07-26T23:59:59.000Z

292

Underground Coal Thermal Treatment  

Science Conference Proceedings (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

293

Thermal Stabilization Blend Plan  

SciTech Connect

The Blend Plan was written to identify items stored outside of the 213 MBA that will be moved into the MBA for thermal stabilization processing. Product quality oxide items stored in our vaults are found in Appendix B. A table is included in Appendix B which details the isotopic values for the oxide items and calculates the amount of material of any specific run that can be placed in a product can and maintain the 15 watt limit to meet storage vault specifications. There is no chance of exceeding the 15 watt limit with items starting with the designations ''LAO'' or ''PBO.'' All items starting with the designations ''BO,'' ''BLO,'' and ''DZ0'' are at risk of exceeding the 15 watt specification if the can were to be filled.

RISENMAY, H.R.

1999-08-19T23:59:59.000Z

294

Nanoscale thermal transport and the thermal conductance of interfaces  

E-Print Network (OSTI)

absorption depends on temperature of the nanotube · Assume heat capacity is comparable to graphite · Cooling conductance · Pump probe apparatus · Transient absorption ­ Carbon nanotubes and thermal transport at hard optical absorption of nanoparticles and nanotubes in liquid suspensions. ­ Measure the thermal relaxation

Braun, Paul

295

Thermal shock behavior of alumina/MoSi2 plasma sprayed laminated composites  

Science Conference Proceedings (OSTI)

Alumina (Al{sub 2}O{sub 3}) is very susceptible to thermal shock, which leads to strength degradation. By reinforcing Al{sub 2}O{sub 3} with molybdenum disilicide (MoSi{sub 2}) layers, the tolerance to damage caused by thermal shock can be improved. The thermal shock resistance of plasma sprayed Al{sub 2}O{sub 3}/MoSi{sub 2} laminated composites were investigated. Three laminate microstructures having different layer thickness were fabricated by atmospheric plasma spraying while maintaining a 50/50-volume fraction. Quenching experiments done on 4-point bend bars showed a gradual decrease in the strength as the change in temperature ({Delta}T) increased. Thermal shock resistant parameters (R{prime} and R-quadruple prime) provided a representative numerical value of the thermal shock resistance for the laminated composites. The corresponding material properties for the different microstructures were determined experimentally in order to calculate the R{prime} and R quadruple prime values. The intermediate layered composite showed the highest R-quadruple prime va1ue at 1061 {micro}m, while the thin layered composite had the highest R{prime} value at 474 W/m.

Castro, R. G. (Richard G.); Petrovic, J. J.; Vaidya, R. U. (Rajendra U.); Mendoza, D. (Daniel)

2001-01-01T23:59:59.000Z

296

Monitored Thermal Performance Results of Second Generation Superwindows in Three Montana Residences.  

SciTech Connect

Simulation studies have shown that highly insulating windows with moderate solar transmittances (R values greater than 6 hr-ft[sup 2]--F/Btu and shading coefficients greater than 0.5) can outperform insulated walls on any orientation, even in a northern US climate. Such superwindows achieve this feat by admitting more useful solar heat gains during the heating season than energy lost through conduction, convection and infrared radiation. Testing of first generation superwindows in three new homes in northern Montana during the winter of 1989--1990, reported in an earlier study, indicated that the glazed areas of superwindows can in fact outperform insulated walls on obstructed off-south orientations. However, this same study also showed that further improvements in the thermal performance of window edges and frames are necessary if the entire window is to outperform an insulated wall. As a result, second generation superwindows with improved frame, edge, and glazing features were installed in these houses during the summer and fall of 1990 and these windows were monitored during the winter of 1990--1991. Results from this monitoring effort, discussed in this paper, showed that while small performance improvements may have been made with these second generation superwindows, the frame and edge still limited performance.

Arasteh, D.

1993-05-01T23:59:59.000Z

297

Thermal sensation and comfort in transient non-uniform thermal environments  

E-Print Network (OSTI)

environments. and evaluating thermal 6.0 References AttiaM, Engel P (1981) Thermal alliesthesial response in man isof vehicle climate with a thermal manikin - the relationship

Zhang, Hui; Huizenga, Charlie; Arens, Edward; Wang, Danni

2004-01-01T23:59:59.000Z

298

Determination of thermal parameters of one-dimensional nanostructures through a thermal transient method  

E-Print Network (OSTI)

of heat capacity and thermal conductivity measurements bythe heat pulse method for thermal transport measurements ofG. Speci?c heat and thermal conductivity measurements on

Arriagada, A.; Yu, E. T.; Bandaru, P. R.

2009-01-01T23:59:59.000Z

299

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa, Ontario: 1999.Concentrated Solar Thermal Power Plants A Thesis submittedConcentrated Solar Thermal Power Plants by Corey Lee Hardin

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

300

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARMaterials for Thermal Energy Storage in Concentrated SolarMaterials for Thermal Energy Storage in Concentrated Solar

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

302

Thermal sensation and comfort in transient non-uniform thermal environments  

E-Print Network (OSTI)

cooling applied cooling removed Thermal Sensation Skincooling = 14°C cooling removed Thermal Sensation We measureda hand cooling test Models to predict thermal sensation and

Zhang, Hui; Huizenga, Charlie; Arens, Edward; Wang, Danni

2004-01-01T23:59:59.000Z

303

Solar Thermal Electric Technology: 2009  

Science Conference Proceedings (OSTI)

This report summarizes the status and progress of the solar thermal and concentrating solar power (CSP) industry in 2009. It addresses relevant policies in the United States and internationally, technology status, trends, companies and organizations involved in the field, and modeling activities supported by the Electric Power Research Institute (EPRI) and the Solar Thermal Electric Project (STEP).

2010-06-23T23:59:59.000Z

304

Solar Thermal Electric Technology: 2008  

Science Conference Proceedings (OSTI)

This report summarizes the status and progress of the solar thermal and concentrating solar power (CSP) industry in 2008. It addresses technology status, trends, companies and organizations involved in the field, and modeling activities supported by EPRI and the Solar Thermal Electric Project (STEP).

2009-03-31T23:59:59.000Z

305

Peg supported thermal insulation panel  

DOE Patents (OSTI)

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

1985-01-01T23:59:59.000Z

306

Thermal conductivity Measurements of Kaolite  

Science Conference Proceedings (OSTI)

Testing was performed to determine the thermal conductivity of Kaolite 1600, which primarily consists of Portland cement and vermiculite. The material was made by Thermal Ceramics for refractory applications. Its combination of light weight, low density, low cost, and noncombustibility made it an attractive alternative to the materials currently used in ES-2 container for radioactive materials. Mechanical properties and energy absorption tests of the Kaolite have been conducted at the Y-12 complex. Heat transfer is also an important factor for the application of the material. The Kaolite samples are porous and trap moisture after extended storage. Thermal conductivity changes as a function of moisture content below 100 C. Thermal conductivity of the Kaolite at high temperatures (up to 700 C) are not available in the literature. There are no standard thermal conductivity values for Kaolite because each sample is somewhat different. Therefore, it is necessary to measure thermal conductivity of each type of Kaolite. Thermal conductivity measurements will help the modeling and calculation of temperatures of the ES-2 containers. This report focuses on the thermal conductivity testing effort at ORNL.

Wang, H

2003-02-21T23:59:59.000Z

307

Thermal conductivity of aqueous foam  

Science Conference Proceedings (OSTI)

Thermal conductivity plays an important part in the response of aqueous foams used as geothermal drilling fluids. The thermal conductivity of these foams was measured at ambient conditions using the thermal conductivity probe technique. Foam densities studied were from 0.03 to 0.2 g/cm/sup 3/, corresponding to liquid volume fractions of the same magnitude. Microscopy of the foams indicated bubble sizes in the range 50 to 300 ..mu..m for nitrogen foams, and 30 to 150 ..mu..m for helium foams. Bubble shapes were observed to be polyhedral at low foam densities and spherical at the higher densities. The measured conductivity values ranged from 0.05 to 0.12 W/m-K for the foams studied. The predicted behavior in foam conductivity caused by a change in the conductivity of the discontinuous gas phase was observed using nitrogen or helium gas in the foams. Analysis of the probe response data required an interpretation using the full intergral solution to the heat conduction equation, since the thermal capacity of the foam was small relative to the thermal mass of the probe. The measurements of the thermal conductivity of the foams were influenced by experimental effects such as the probe input power, foam drainage, and the orientation of the probe and test cell. For nitrogen foams, the thermal conductivity vs liquid volume fraction was observed to fall between predictions based on the parallel ordering and Russell models for thermal conduction in heterogeneous materials.

Drotning, W.D.; Ortega, A.; Havey, P.E.

1982-05-01T23:59:59.000Z

308

Peg supported thermal insulation panel  

DOE Patents (OSTI)

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

Nowobilski, J.J.; Owens, W.J.

1985-04-30T23:59:59.000Z

309

Oxidation resistant alloys, method for producing oxidation resistant alloys  

DOE Patents (OSTI)

A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

Dunning, John S.; Alman, David E.

2002-11-05T23:59:59.000Z

310

Near-field thermal transistor  

E-Print Network (OSTI)

Using a block of three separated solid elements, a thermal source and drain together with a gate made of an insulator-metal transition material exchanging near-field thermal radiation, we introduce a nanoscale analog of a field-effect transistor which is able to control the flow of heat exchanged by evanescent thermal photons between two bodies. By changing the gate temperature around its critical value, the heat flux exchanged between the hot body (source) and the cold body (drain) can be reversibly switched, amplified, and modulated by a tiny action on the gate. Such a device could find important applications in the domain of nanoscale thermal management and it opens up new perspectives concerning the development of contactless thermal circuits intended for information processing using the photon current rather than the electric current.

Ben-Abdallah, Philippe

2013-01-01T23:59:59.000Z

311

A method for the thermal characterization, visualization, and integrity evaluation of conducting material samples or complex structures  

DOE Patents (OSTI)

This invention is useful in thermal imaging of conducting materials, and is particularly useful in measuring thermal conductivity and thermal boundary conditions in composite anisotropic materials, in materials of irregular shape, and in materials for high-temperature applications. It also has utility in visualizing the integrity of complex structures such as a machine, power plant, or chemical plant. The method is for modeling a conducting material sample or structure (system) as an electrical network of resistances, for measuring electric resistance between selected leads attached to the surface of the system, and, using basic circuit theory, for translating measured resistances into temperatures or indications of integrity in corresponding regions of the system. 10 figs.

Ortiz, M.G.

1991-12-31T23:59:59.000Z

312

Thermal to electricity conversion using thermal magnetic properties  

DOE Patents (OSTI)

A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

2010-04-27T23:59:59.000Z

313

Solar Thermal Demonstration Project  

SciTech Connect

HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with â??Kalwallâ?? building panels. An added feature of the â??Kalwallâ? system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

Biesinger, K.; Cuppett, D.; Dyer, D.

2012-01-30T23:59:59.000Z

314

Cesium capsule thermal analysis  

SciTech Connect

Double-walled stainless steel capsules, produced by the Hanford Waste Encapsulation and Storage Facility (WESF), were designed to facilitate storage of radioactive cesium chloride (CsCl). The capsules were later determined to be a useful resource for irradiation facilities (IFs), and are currently being used at several commercial IFs. A capsule at one of these facilities recently failed, resulting in a release of the CsCl. A thermal analysis of a WESF capsule was performed by Pacific Northwest Laboratory (PNL) at the request of Westinghouse Hanford Company. In this analysis, parametric calculations demonstrates the impact that various parameters have on the temperature distribution within a capsule in a commercial irradiation facility. Specifically, the effect of varying the gas gap conductivity, the exterior heat sink temperatures, the exterior heat transfer distribution, the stainless steel emissivity, and the gamma heating rate were addressed. In addition, a calculation was performed to estimate the highest temperatures likely to have been encountered in one of these capsules. 8 refs., 17 figs., 4 tabs.

Eyler, L.L.; Dodge, R.E.

1989-12-01T23:59:59.000Z

315

Thermally activated heat pumps  

SciTech Connect

This article describes research to develop efficient gas-fired heat pumps heat and cool buildings without CFCs. Space heating and cooling use 46% of all energy consumed in US buildings. Air-conditioning is the single leading cause of peak demand for electricity and is a major user of chlorofluorocarbons (CFCs). Advanced energy conversion technology can save 50% of this energy and eliminate CFCs completely. Besides saving energy, advanced systems substantially reduce emissions of carbon dioxide (a greenhouse gas), sulfur dioxide, and nitrogen oxides, which contribute to smog and acid rain. These emissions result from the burning of fossil fuels used to generate electricity. The Office of Building Technologies (OBT) of the US Department of Energy supports private industry`s efforts to improve energy efficiency and increase the use of renewable energy in buildings. To help industry, OBT, through the Oak Ridge National Laboratory, is currently working on thermally activated heat pumps. OBT has selected the following absorption heat pump systems to develop: generator-absorber heat-exchange (GAX) cycle for heating-dominated applications in residential and light commercial buildings; double-condenser-coupled (DCC) cycle for commercial buildings. In addition, OBT is developing computer-aided design software for investigating the absorption cycle.

NONE

1995-05-01T23:59:59.000Z

316

Magnetotelluric models of the Roosevelt Hot Springs thermal area, Utah  

DOE Green Energy (OSTI)

The Roosevelt Hot Springs (RHS) thermal area, which includes a hotwater-dominated fracture zone prospect, near the eastern margin of the Basin-Range tectonic province, conceivably possesses a whole family of resistivity structures that includes the following: deep hot brine reservoirs, deep-seated partially molten heat sources in the crust or upper mantle that drive the convective system, near-surface hydrothermal alteration zones, wet sedimentary fill in valleys, and a regional, apparently one-dimensional resistivity profile of the crust and upper mantle. This complex resistivity makeup, particular to RHS but probably similar to that at other geothermal areas in the Great Basin, must be treated as being fully three-dimensional (3-D). In an attempt to understand these structures, broadband (10/sup -3/ to 10/sup -2/ Hz) tensor magnetotelluric (MT) data were obtained including apparent resistivities (rho/sub a/), impedance phases (phi) and vertical magnetic field transfer functions for 93 sites in the vicinity of this resource area.

Wannamaker, P.E.; Ward, S.H.; Hohmann, G.W.; Sill, W.R.

1980-09-01T23:59:59.000Z

317

Thermal Gradient Holes At Coso Geothermal Area (1974) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (1974) Coso Geothermal Area (1974) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1974 Usefulness useful DOE-funding Unknown Exploration Basis Use heat flow studies for the first time at Coso to indicate the presence or absence of abnormal heat Notes Located 10 sites for heat flow boreholes using available seismic ground noise and electrical resistivity data; data collected from 9 of 10; thermal conductivity measurements were completed using both the needle probe technique and the divided bar apparatus with a cell arrangement. In the upper few hundred meters of the subsurface heat is being transferred by a conductive heat transfer mechanism with a value of ~ 15 µcal/cm2sec; the background heat flow is ~ 3.5 HFU.

318

Multilayer Thermal Barrier Coatings: Interplay Among Coating ...  

Science Conference Proceedings (OSTI)

... and resistant to environmental damage from ingested sand particles ( categorized ... A Study on the Hot Corrosion Resistance of Metal-cemet-glass Coating on ...

319

Ceramic thermal barrier coating for rapid thermal cycling applications  

DOE Patents (OSTI)

A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.

Scharman, Alan J. (Hebron, CT); Yonushonis, Thomas M. (Columbus, IN)

1994-01-01T23:59:59.000Z

320

Thermal performance of the Brookhaven natural thermal storage house  

DOE Green Energy (OSTI)

In the Brookhaven natural thermal storage house, an energy-efficient envelope, passive solar collectors, and a variety of energy conservation methods are incorporated. The thermal characteristics of the house during the tested heating season are evaluated. Temperature distributions at different zones are displayed, and the effects of extending heating supply ducts only to the main floor and heating return ducts only from the second floor are discussed. The thermal retrievals from the structure and the passive collectors are assessed, and the total conservation and passive solar contributions are outlined. Several correlation factors relating these thermal behaviors are introduced, and their diurnal variations are displayed. Finally, the annual energy requirements, and the average load factors are analyzed and discussed.

Ghaffari, H.T.; Jones, R.F.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor  

Science Conference Proceedings (OSTI)

We have developed a borehole methodology to estimate formation thermal conductivity in situ with a spatial resolution of one meter. In parallel with a fiber-optic distributed temperature sensor (DTS), a resistance heater is deployed to create a controlled thermal perturbation. The transient thermal data is inverted to estimate the formation's thermal conductivity. We refer to this instrumentation as a Distributed Thermal Perturbation Sensor (DTPS), given the distributed nature of the DTS measurement technology. The DTPS was deployed in permafrost at the High Lake Project Site (67 degrees 22 minutes N, 110 degrees 50 minutes W), Nunavut, Canada. Based on DTPS data, a thermal conductivity profile was estimated along the length of a wellbore. Using the thermal conductivity profile, the baseline geothermal profile was then inverted to estimate a ground surface temperature history (GSTH) for the High Lake region. The GSTH exhibits a 100-year long warming trend, with a present-day ground surface temperature increase of 3.0 {+-} 0.8 C over the long-term average.

Freifeld, B.M.; Finsterle, S.; Onstott, T.C.; Toole, P.; Pratt, L.M.

2008-10-10T23:59:59.000Z

322

Ocean Thermal Energy Conversion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Ocean Thermal Energy Conversion August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in...

323

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

and J. Schwarz, Survey of Thermal Energy Storage in AquifersA. 1957. Steady State Free Thermal Convection of Liquid in a1958. An Experiment on Free Thermal Convection of Water in

Authors, Various

2011-01-01T23:59:59.000Z

324

The Development of Thermals from Rest  

Science Conference Proceedings (OSTI)

Conventional techniques for releasing a thermal in laboratory experiments induce enough initial motion to affect seriously the thermal's subsequent evolution. We have invented a mechanism for releasing thermals from very close to a state of rest. ...

Odòn Sànchez; David J. Raymond; Larry Libersky; Albert G. Petschek

1989-07-01T23:59:59.000Z

325

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

solar power plants, thermal power plants(fuel, nuclear),reject heat from thermal power plants can only be re-protection is the thermal electric power plant. Electric

Authors, Various

2011-01-01T23:59:59.000Z

326

Advanced nanofabrication of thermal emission devices  

E-Print Network (OSTI)

Nanofabricated thermal emission devices can be used to modify and modulate blackbody thermal radiation. There are many areas in which altering thermal radiation is extremely useful, especially in static power conversion, ...

Hurley, Fergus (Fergus Gerard)

2008-01-01T23:59:59.000Z

327

Thermal Conversion Process (TCP) Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Changing World Technologies' Changing World Technologies' Thermal Conversion Process Commercial Demonstration Plant DOE/EA 1506 Weld County, Colorado December 2004 U.S. DEPARTMENT OF ENERGY GOLDEN FIELD OFFICE 1617 Cole Boulevard Golden, Colorado 80401 Thermal Conversion Process (TCP) Technology Commercial Demonstration - Weld County, CO TABLE OF CONTENTS Environmental Assessment Thermal Conversion Process (TCP) Technology Commercial Demonstration Project Weld County, Colorado SUMMARY............................................................................................................................. S-1 1.0 INTRODUCTION.........................................................................................................1-1 1.1. National Environmental Policy Act and Related Procedures...........................1-1

328

Rapid thermal processing by stamping  

DOE Patents (OSTI)

A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

Stradins, Pauls; Wang, Qi

2013-03-05T23:59:59.000Z

329

REACTOR GROUT THERMAL PROPERTIES  

DOE Green Energy (OSTI)

Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

2011-01-28T23:59:59.000Z

330

Long-term dipole-dipole resistivity monitoring at the Cerro Prieto geothermal field  

DOE Green Energy (OSTI)

Dipole-dipole resistivity measurements for the combined purposes of reservoir delineation and reservoir monitoring were first made at Cerro Prieto in 1978 and have continued on approximately an annual basis since then. Two 20 km-long dipole-dipole lines with permanently emplaced electrodes at 1-km spacings were established over the field area. Resistivity remeasurements have been made on one line at 6- to 18-month intervals using a 25 kW generator capable of up to 80A output and a microprocessor-controlled signal-averaging receiver. This high-power, low-noise system provides highly accurate measurements even at large transmitter receiver separations. Standard error calculations for collected data indicate errors less than 5% for all points. Results from four years of monitoring (1979-1983) indicate a 5% average annual increase in apparent resistivity over the present production area, and larger decreases in apparent resistivity in the region to the east. The increase in resistivity in the production zone is most likely due to dilution of reservoir fluids with fresher water, as evidenced by a drop in chloride content of produced waters. The area of decreasing resistivity east of the reservoir is associated with a steeply dipping conductive body, a zone of higher thermal gradients and an increase in shale thickness in the section. Decreasing resistivity in this area may be caused by an influx of high temperature, saline water from depths of 3/sup +/ km through a sandy gap in the shales.

Wilt, M.; Goldstein, N.E.; Sasaki, Y.

1984-04-01T23:59:59.000Z

331

Thermal analysis of solar thermal energy storage in a molten-salt thermocline  

SciTech Connect

A comprehensive, two-temperature model is developed to investigate energy storage in a molten-salt thermocline. The commercially available molten salt HITEC is considered for illustration with quartzite rocks as the filler. Heat transfer between the molten salt and quartzite rock is represented by an interstitial heat transfer coefficient. Volume-averaged mass and momentum equations are employed, with the Brinkman-Forchheimer extension to the Darcy law used to model the porous-medium resistance. The governing equations are solved using a finite-volume approach. The model is first validated against experiments from the literature and then used to systematically study the discharge behavior of thermocline thermal storage system. Thermal characteristics including temperature profiles and discharge efficiency are explored. Guidelines are developed for designing solar thermocline systems. The discharge efficiency is found to be improved at small Reynolds numbers and larger tank heights. The filler particle size strongly influences the interstitial heat transfer rate, and thus the discharge efficiency. (author)

Yang, Zhen; Garimella, Suresh V. [Cooling Technologies Research Center, NSF I/UCRC, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 (United States)

2010-06-15T23:59:59.000Z

332

Development of New Generation of Thermally-Enhanced Fiber Glass Insulation  

Science Conference Proceedings (OSTI)

This report presents experimental and numerical results from thermal performance studies. The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and John s Manville was to design a basic concept of a new generation of thermally-enhanced fiber glass insulation. Different types of Phase Change Materials (PCMs) have been tested as dynamic components in buildings during the last 4 decades. Most historical studies have found that PCMs enhance building energy performance. Some PCM-enhanced building materials, like PCM-gypsum boards or PCM-impregnated concretes have already found their limited applications in different countries. Today, continued improvements in building envelope technologies suggest that throughout Southern and Central U.S. climates, residences may soon be routinely constructed with PCM in order to maximize insulation effectiveness and maintain low heating and cooling loads. The proposed thermally-enhanced fiber glass insulation will maximize this integration by utilizing a highly-efficient building envelope with high-R thermal insulation, active thermal mass and superior air-tightness. Improved thermal resistance will come from modifications in infrared internal characteristics of the fiber glass insulation. Thermal mass effect can be provided by proprietary thermally-active microencapsulated phase change material (PCM). Work carried out at the Oak Ridge National Laboratory (ORNL) on the CRADA is described in this report.

Kosny, Jan [ORNL; Yarbrough, David W [ORNL; Childs, Phillip W [ORNL; Miller, William A [ORNL; Atchley, Jerald Allen [ORNL; Shrestha, Som S [ORNL

2010-03-01T23:59:59.000Z

333

Corrosion resistant metallic bipolar plate  

SciTech Connect

A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

Brady, Michael P. (Oak Ridge, TN); Schneibel, Joachim H. (Knoxville, TN); Pint, Bruce A. (Knoxville, TN); Maziasz, Philip J. (Oak Ridge, TN)

2007-05-01T23:59:59.000Z

334

Thermal-sprayed, thin-film pyrite cathodes for thermal batteries -- Discharge-rate and temperature studies in single cells  

DOE Green Energy (OSTI)

Using an optimized thermal-spray process, coherent, dense deposits of pyrite (FeS{sub 2}) with good adhesion were formed on 304 stainless steel substrates (current collectors). After leaching with CS{sub 2} to remove residual free sulfur, these served as cathodes in Li(Si)/FeS{sub 2} thermal cells. The cells were tested over a temperature range of 450 C to 550 C under baseline loads of 125 and 250 mA/cm{sup 2}, to simulate conditions found in a thermal battery. Cells built with such cathodes outperformed standard cells made with pressed-powder parts. They showed lower interracial resistance and polarization throughout discharge, with higher capacities per mass of pyrite. Post-treatment of the cathodes with Li{sub 2}O coatings at levels of >7% by weight of the pyrite was found to eliminate the voltage transient normally observed for these materials. Results equivalent to those of standard lithiated catholytes were obtained in this manner. The use of plasma-sprayed cathodes allows the use of much thinner cells for thermal batteries since only enough material needs to be deposited as the capacity requirements of a given application demand.

GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; DAI,JINXIANG; XIAO,T. DANNY; REISNER,DAVID

2000-05-25T23:59:59.000Z

335

Nanosecond time resolved thermal emission measurements during...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanosecond time resolved thermal emission measurements during pulse excimer laser interaction with materials Title Nanosecond time resolved thermal emission measurements during...

336

Efficient thermal energy distribution in commercial buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient thermal energy distribution in commercial buildings -- Final Report Title Efficient thermal energy distribution in commercial buildings -- Final Report Publication Type...

337

Environmental Energy Technologies Division Thermal Field Tests  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Field Tests Joseph H. Klems, LBNL DOE PEER Review San Francisco, CA April 20, 1999 Environmental Energy Technologies Division Current Work l Skylight Thermal Performance *...

338

Definition: Thermal Gradient Holes | Open Energy Information  

Open Energy Info (EERE)

Gradient Holes Jump to: navigation, search Dictionary.png Thermal Gradient Holes "A hole logged by a temperature probe to determine the thermal gradient. Usually involves a hole...

339

Stewart Thermal Ltd | Open Energy Information  

Open Energy Info (EERE)

Stewart Thermal Ltd Jump to: navigation, search Name Stewart Thermal Ltd Place United Kingdom Sector Biomass Product Provides specialist advice in the field of biomass energy....

340

Solar Thermal Electric | Open Energy Information  

Open Energy Info (EERE)

Electric Jump to: navigation, search TODO: Add description List of Solar Thermal Electric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalElectric&o...

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Solar Thermal Process Heat | Open Energy Information  

Open Energy Info (EERE)

Process Heat Jump to: navigation, search TODO: Add description List of Solar Thermal Process Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalPr...

342

Nextreme Thermal Solutions Inc | Open Energy Information  

Open Energy Info (EERE)

Nextreme Thermal Solutions Inc Jump to: navigation, search Name Nextreme Thermal Solutions Inc Place North Carolina Zip 27709-3981 Product String representation "Manufactures ad...

343

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

344

Electrospun Polymer Nanofiber Composite as Thermal Neutron ...  

Science Conference Proceedings (OSTI)

Lithium-6 isotope has a significant thermal neutron cross-section and produces high energy charged particles on thermal neutron absorption. In this research ...

345

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Conversion A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when...

346

California Solar Initiative - Solar Thermal Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Program California Solar Initiative - Solar Thermal Program Eligibility Commercial Fed. Government Industrial Local Government Low-Income Residential Multi-Family...

347

Thermal Transport in Graphene Multilayers and Nanoribbons  

E-Print Network (OSTI)

1 CHAPTER 2 Thermal transport atxix List of Tables Phonon transport regimes – Length scaleRIVERSIDE Thermal Transport in Graphene Multilayers and

Subrina, Samia

2011-01-01T23:59:59.000Z

348

Ceramic Coatings for Corrosion Resistant Nuclear Waste Container Evaluated in Simulated Ground Water at 90?C  

SciTech Connect

Ceramic materials have been considered as corrosion resistant coatings for nuclear waste containers. Their suitability can be derived from the fully oxidized state for selected metal oxides. Several types of ceramic coatings applied to plain carbon steel substrates by thermal spray techniques have been exposed to 90 C simulated ground water for nearly 6 years. In some cases no apparent macroscopic damage such as coating spallation was observed in coatings. Thermal spray processes examined in this work included plasma spray, High Velocity Oxy Fuel (HVOF), and Detonation Gun. Some thermal spray coatings have demonstrated superior corrosion protection for the plain carbon steel substrate. In particular the HVOF and Detonation Gun thermal spray processes produced coatings with low connected porosity, which limited the growth rate of corrosion products. It was also demonstrated that these coatings resisted spallation of the coating even when an intentional flaw (which allowed for corrosion of the carbon steel substrate underneath the ceramic coating) was placed in the coating. A model for prediction of the corrosion protection provided by ceramic coatings is presented. The model includes the effect of the morphology and amount of the porosity within the thermal spray coating and provides a prediction of the exposure time needed to produce a crack in the ceramic coating.

Haslam, J J; Farmer, J C

2004-03-31T23:59:59.000Z

349

Thermal Management of Solar Cells  

E-Print Network (OSTI)

as a source of photovoltaic energy is rapidly increasingphotovoltaic cells under concentrated illumination: a critical review," Solar Energyphotovoltaic/thermal collector, PV/T, and it utilizes both electrical and heat energies

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

350

Research Article Building Thermal, Lighting,  

NLE Websites -- All DOE Office Websites (Extended Search)

Article Building Thermal, Lighting, and Acoustics Modeling E-mail: yanda@tsinghua.edu.cn A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST...

351

Thermal Equilibration of Planetary Waves  

Science Conference Proceedings (OSTI)

Equilibration of planetary waves toward free-mode forms, steady solutions of the unforced, undamped equations of motion, is studied in a three-level quasi-geostrophic model on the hemisphere. A thermal mechanism is invoked, parameterized as a ...

John Marshall; Damon W. K. So

1990-04-01T23:59:59.000Z

352

Thermal Mass and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Mass and Demand Response Speaker(s): Gregor Henze Phil C. Bomrad Date: November 2, 2011 - 12:00pm Location: 90-4133 Seminar HostPoint of Contact: Janie Page The topic of...

353

Solar thermal electric hybridization issues  

DOE Green Energy (OSTI)

Solar thermal electric systems have an advantage over many other renewable energy technologies because the former use heat as an intermediate energy carrier. This is an advantage as it allows for a relatively simple method of hybridization by using heat from fossil-fuel. Hybridization of solar thermal electric systems is a topic that has recently generated significant interest and controversy and has led to many diverse opinions. This paper discusses many of the issues associated with hybridization of solar thermal electric systems such as what role hybridization should play; how it should be implemented; what are the efficiency, environmental, and cost implications; what solar fraction is appropriate; how hybrid systems compete with solar-only systems; and how hybridization can impact commercialization efforts for solar thermal electric systems.

Williams, T A; Bohn, M S; Price, H W

1994-10-01T23:59:59.000Z

354

Thermal energy storage application areas  

DOE Green Energy (OSTI)

The use of thermal energy storage in the areas of building heating and cooling, recovery of industrial process and waste heat, solar power generation, and off-peak energy storage and load management in electric utilities is reviewed. (TFD)

Not Available

1979-03-01T23:59:59.000Z

355

Thermal insulation of window glass  

SciTech Connect

The thermal insulation of window glass can be increased by a factor of two using spray-on semiconductive SnO/sub 2/: Sb or IN/sub 2/O/sub 3/: Sn coatings. (auth)

Sievers, A.J.

1973-11-01T23:59:59.000Z

356

Lih thermal energy storage device  

DOE Patents (OSTI)

A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

1994-01-01T23:59:59.000Z

357

Thermal Batteries for Electric Vehicles  

Science Conference Proceedings (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

358

Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

359

Glossary | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

R-value R-value A measure (h ft2 °F/Btu) of thermal resistance, or how well a material or series of materials resists the flow of heat. The R-value is the reciprocal of the U-factor. Radiant Heating System A heating system that transfers heat to objects and surfaces within the heated space primarily (greater than 50%) by infrared radiation. Raised Truss Raised truss refers to any roof/ceiling construction that allows the insulation to achieve its full thickness over the plate line of exterior walls. Several constructions allow for this, including elevating the heel (sometimes referred to as an energy truss, raised-heel truss, or Arkansas truss), use of cantilevered or oversized trusses, lowering the ceiling joists, or framing with a raised rafter plate. Rated Lamp Wattage

360

Advanced Thermal Simulator Testing: Thermal Analysis and Test Results  

SciTech Connect

Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe [NASA Marshall Space Flight Center, Nuclear Systems Branch/ER24, MSFC, AL 35812 (United States)

2008-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Blast Resistance Standards For Trash Receptacles  

Science Conference Proceedings (OSTI)

... 10, Standard Specification for Trash Receptacles Subjected to Blast Resistance Testing". Available at Standards/E2639.htm>.

2013-04-16T23:59:59.000Z

362

Plant Pathogen Resistance - Energy Innovation Portal  

Plant Pathogen Resistance Agent for Plant Protection from Common Virulent Pathogens Oak Ridge National Laboratory. Contact ORNL About This Technology

363

Attrition Resistant Catalyst Materials for Fluid Bed ...  

Biomass and Biofuels Attrition Resistant Catalyst Materials for Fluid Bed Applications National Renewable Energy Laboratory. Contact NREL About This ...

364

Evaluation of Commercially Available Oxidation Resistance ...  

Science Conference Proceedings (OSTI)

... Oxidation resistance alloy interconnects have been used in planar SOFC systems ... alloys under the SOFC interconnect dual exposure conditions: ...

2005-03-04T23:59:59.000Z

365

Alkali Resistant Refractories - Oak Ridge National Laboratory  

Alkali Resistant Refractories Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

366

Fatigue Resistance of Carbon Nanotube Reinforced Aluminum ...  

Science Conference Proceedings (OSTI)

Presentation Title, Fatigue Resistance of Carbon Nanotube Reinforced Aluminum ... Fatigue crack propagation (FCP) and fracture mechanism of Al-CNT  ...

367

EUV Resists: Illuminating the challenges  

SciTech Connect

As extreme ultraviolet (EUV) lithography enters the commercialization phase with potential introduction at the 3x nm half-pitch node in 2013, the attention of advanced EUV resist research has turned to addressing patterning at 16-nm half pitch and below. Whereas line-edge roughness is the primary concern at 2x half pitch and larger, research at the 16-nm half pitch level is uncovering broader.

Naulleau, Patrick; Anderson, Christopher; George, Simi

2011-06-01T23:59:59.000Z

368

THREE-DIMENSIONAL TERRAIN EFFECTS IN ELECTRICAL AND MAGNETOMETRIC RESISTIVITY SURVEYS  

E-Print Network (OSTI)

1 Introduction The Electrical Resistivity Method • Terrainin Electrical Resistivity Surveys • • • • . • • . • • • • •effects in electrical resistivity and magnetometric

Oppliger, G.L.

2012-01-01T23:59:59.000Z

369

Solar thermal power systems. Program summary  

DOE Green Energy (OSTI)

Each of DOE's solar Thermal Power Systems projects funded and/or in existence during FY 1978 is described and the status as of September 30, 1978 is reflected. These projects are divided as follows: small thermal power applications, large thermal power applications, and advanced thermal technology. Also included are: 1978 project summary tables, bibliography, and an alphabetical index of contractors. (MHR)

Not Available

1978-12-01T23:59:59.000Z

370

Thermal storage module for solar dynamic receivers  

DOE Patents (OSTI)

A thermal energy storage system comprising a germanium phase change material and a graphite container.

Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

371

Battery Thermal Management System Design Modeling (Presentation)  

DOE Green Energy (OSTI)

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

372

The Nature of Thermal Blackbody Radiation  

E-Print Network (OSTI)

It was shown recently that thermal radio emission has a stimulated character, and it is quite possible that thermal black body radiation in other spectral ranges also has an induced origin. The induced origin of thermal black body emission leads to important astrophysical consequences, such as the existence of laser type sources and thermal harmonics in stellar spectra.

F. V. Prigara

2002-01-11T23:59:59.000Z

373

Thermal Modeling of Hybrid Storage Clusters  

Science Conference Proceedings (OSTI)

There is a lack of thermal models for storage clusters; most existing thermal models do not take into account the utilization of hard drives (HDDs) and solid state disks (SSDs). To address this problem, we build a thermal model for hybrid storage clusters ... Keywords: Cluster, Hybrid, Model, Storage, Thermal

Xunfei Jiang; Maen M. Al Assaf; Ji Zhang; Mohammed I. Alghamdi; Xiaojun Ruan; Tausif Muzaffar; Xiao Qin

2013-09-01T23:59:59.000Z

374

Resistance of a water spark.  

Science Conference Proceedings (OSTI)

The later time phase of electrical breakdown in water is investigated for the purpose of improving understanding of the discharge characteristics. One dimensional simulations in addition to a zero dimensional lumped model are used to study the spark discharge. The goal is to provide better electrical models for water switches used in the pulse compression section of pulsed power systems. It is found that temperatures in the discharge channel under representative drive conditions, and assuming small initial radii from earlier phases of development, reach levels that are as much as an order of magnitude larger than those used to model discharges in atmospheric gases. This increased temperature coupled with a more rapidly rising conductivity with temperature than in air result in a decreased resistance characteristic compared to preceding models. A simple modification is proposed for the existing model to enable the approximate calculation of channel temperature and incorporate the resulting conductivity increase into the electrical circuit for the discharge channel. Comparisons are made between the theoretical predictions and recent experiments at Sandia. Although present and past experiments indicated that preceding late time channel models overestimated channel resistance, the calculations in this report seem to underestimate the resistance relative to recent experiments. Some possible reasons for this discrepancy are discussed.

Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Lehr, Jane Marie

2005-11-01T23:59:59.000Z

375

Device for thermal transfer and power generation  

SciTech Connect

A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

Weaver, Stanton Earl (Northville, NY); Arik, Mehmet (Niskayuna, NY)

2011-04-19T23:59:59.000Z

376

Direct Measurement of EGR Cooler Deposit Thermal Properties for Improved Understanding of Cooler Fouling  

DOE Green Energy (OSTI)

Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with NOX emissions standards. This paper reports results of a study of fundamental aspects of EGR cooler fouling. An apparatus and procedure were developed to allow surrogate EGR cooler tubes to be exposed to diesel engine exhaust under controlled conditions. The resulting fouled tubes were removed and analyzed. Volatile and non-volatile deposit mass was measured for each tube. Thermal diffusivity of the deposited soot cake was measured by milling a window into the tube and using the Xenon flash lamp method. The heat capacity of the deposit was measured at temperatures up to 430 C and was slightly higher than graphite, presumably due to the presence of hydrocarbons. These measurements were combined to allow calculation of the deposit thermal conductivity, which was determined to be 0.041 W/mK, only ~1.5 times that of air and much lower than the 304 stainless steel tube (14.7 W/mK). The main determinant of the deposit thermal conductivity is density, which was measured to be just 2% that of the density of the primary soot particles (or 98% porous). The deposit layer thermal resistance was calculated and compared with estimates of the thermal resistance calculated from gas temperature data during the experiment. The deposit properties were also used to further analyze the temperature data collected during the experiment.

Wang, Hsin [ORNL; Sluder, Scott [ORNL; Storey, John Morse [ORNL

2009-01-01T23:59:59.000Z

377

Second thermal storage applications workshop  

DOE Green Energy (OSTI)

On February 7 and 8, 1980, approximately 20 persons representing the management of both the Solar Thermal Power Systems Program (TPS) of the US Department of Energy (DOE) Division of Central Solar Technology (CST) and the Thermal Energy Storage Program (TES) of the DOE Division of Energy Storage Systems (STOR) met in San Antonio, Texas, for the Second Thermal Storage Applications Workshop. The purpose of the workshop was to review the joint Thermal Energy Storage for Solar Thermal Applications (TESSTA) Program between CST and STOR and to discuss important issues in implementing it. The meeting began with summaries of the seven major elements of the joint program (six receiver-related, storage development elements, and one advanced technology element). Then, a brief description along with supporting data was given of several issues related to the recent joint multiyear program plan (MYPP). Following this session, the participants were divided into three smaller groups representing the program elements that mainly supported large power, small power, and advanced technology activities. During the afternoon of the first day, each group prioritized the program elements through program budgets and discussed the issues defined as well as others of concern. On the morning of the second day, representatives of each group presented the group's results to the other participants. Major conclusions arising from the workshop are presented regarding program and budget. (LEW)

Wyman, C.E.; Larson, R.W.

1980-06-01T23:59:59.000Z

378

Computational Efficient Upscaling Methodology for Predicting Thermal Conductivity of Nuclear Waste forms  

SciTech Connect

This study evaluated different upscaling methods to predict thermal conductivity in loaded nuclear waste form, a heterogeneous material system. The efficiency and accuracy of these methods were compared. Thermal conductivity in loaded nuclear waste form is an important property specific to scientific researchers, in waste form Integrated performance and safety code (IPSC). The effective thermal conductivity obtained from microstructure information and local thermal conductivity of different components is critical in predicting the life and performance of waste form during storage. How the heat generated during storage is directly related to thermal conductivity, which in turn determining the mechanical deformation behavior, corrosion resistance and aging performance. Several methods, including the Taylor model, Sachs model, self-consistent model, and statistical upscaling models were developed and implemented. Due to the absence of experimental data, prediction results from finite element method (FEM) were used as reference to determine the accuracy of different upscaling models. Micrographs from different loading of nuclear waste were used in the prediction of thermal conductivity. Prediction results demonstrated that in term of efficiency, boundary models (Taylor and Sachs model) are better than self consistent model, statistical upscaling method and FEM. Balancing the computation resource and accuracy, statistical upscaling is a computational efficient method in predicting effective thermal conductivity for nuclear waste form.

Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

2011-09-28T23:59:59.000Z

379

Thermal management system and method for a solid-state energy storing device  

DOE Patents (OSTI)

An improved electrochemical energy storing device includes a number of thin-film electrochemical cells which are maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of each electrochemical cell, conducts current into and out of the electrochemical cells and also conducts thermal energy between the electrochemical cells and thermally conductive material disposed on a wall structure adjacent the conductors. The wall structure includes electrically resistive material, such as an anodized coating or a thin film of plastic. The thermal conductors are fabricated to include a spring mechanism which expands and contacts to maintain mechanical contact between the electrochemical cells and the thermally conductive material in the presence of relative movement between the electrochemical cells and the wall structure. An active cooling apparatus may be employed external to a hermetically sealed housing containing the electrochemical cells to enhance the transfer of thermal energy into and out of the electrochemical cells. An integrated interconnect board may be disposed within the housing onto which a number of electrical and electro-mechanical components are mounted. Heat generated by the components is conducted from the interconnect board to the housing using the thermal conductors.

Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Gauthier, Michel (La Prairie, CA); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Rouillard, Jean (Saint-Luc, CA); Shiota, Toshimi (St. Bruno, CA); St-Germain, Philippe (Outremont, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

2000-01-01T23:59:59.000Z

380

Coatings for Corrosion and Wear Resistance Applications  

Science Conference Proceedings (OSTI)

Apr 2, 2012 ... Long-Term Surface Restoration Effect Introduced by Advanced Lubricant Additive · Nanocomposite Thermal Spray Coatings. New Hardfacing ...

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Materials Reliability Program: Input for Pressurized Thermal Shock Rulemaking (MRP-248)  

Science Conference Proceedings (OSTI)

The Pressurized Thermal Shock (PTS) rule addresses the risk of a nuclear power plant reactor vessel failing due to propagation of a crack through the vessel wall. If a plant has an emergency cool-down event that superimposes a large thermal transient stress on a large pressure stress in the presence of a pre-existing flaw, it is possible that a crack could initiate and propagate through the vessel wall. The resistance of a vessel to crack initiation and propagation declines as the vessel ages. As a resul...

2008-12-23T23:59:59.000Z

382

Thermal fatigue behavior of US and Russian grades of beryllium  

Science Conference Proceedings (OSTI)

A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 KW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ``spike`` of 750{degrees}C for each pass of the beam. Large thermal stress in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m{sup 2}. Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S-65H, S-200F, S-300F-H, Sr-200, I-400, extruded high purity. HIP`d sperical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe{sub 12}. Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be(SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis.

Watson, R.D.; Youchison, D.L. [Sandia National Labs., Albuquerque, NM (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States); Guiniatouline, R.N. [Efremov Institute, St. Petersburg (USSR); Kupriynov, I.B. [Russian Inst. of Inorganic Materials, Moscow (USSR)

1996-02-01T23:59:59.000Z

383

Corrosion resistant coatings for silicon carbide heat exchanger tubes -- Volume 3. Final report  

SciTech Connect

The development of a silicon carbide (SiC) heat exchanger is a critical step in the development of the Externally-Fired Combined Cycle (EFCC) power system. SiC is the only material that provides the necessary combination of resistance to creep, thermal shock, and oxidation. While the SiC structure materials provide the thermomechanical and thermophysical properties needed for an efficient system, the mechanical properties of the SiC tubes are severely degraded through corrosion by the coal combustion products. To obtain the necessary service life of thousands of hours at temperature, a protective coating is needed that is stable with both the SiC tube and the coal combustion products, resists erosion from the particle laden gas stream, is thermal shock resistant, adheres to SiC during repeated thermal shocks (start-up, process upsets, shut-down), and allows the EFCC system to be cost competitive. This demanding set of technical performance and cost drivers was used in reviewing and selecting candidate protective materials. After a review of open literature, discussion with leading researchers in materials for coal combustion environments, and preliminary thermodynamic studies, a total of ten materials were identified for future study that were grouped into three categories: alumina-based materials, materials stable with SiO{sub 2}, and low expansion materials.

Boss, D.E.

1996-06-07T23:59:59.000Z

384

Cornell University Thermal Comfort Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Comfort Thermal Comfort Thermal comfort in the CUSD home is a top priority for our team. Accordingly, we designed a redundant HVAC system that would carefully manage the comfort of our decathletes and guests throughout the competition and the life of the house. The CUSD home's HVAC system was optimized for Washington, DC, with the cold Ithaca climate in mind. Our design tools included a schematic energy-modeling interface called TREAT, which was built off of the SuNREL platform. TREAT was used to passively condition the space. Our schematic energy modeling helped us properly size window areas, overhangs, and building mass distribution. We used a computation fluid dynamics (CFD) package called AirPak, to refine our design. The home was modeled in both

385

solar thermal | OpenEI  

Open Energy Info (EERE)

thermal thermal Dataset Summary Description This dataset presents summary information related to world solar energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Source Earth Policy Institute Date Released January 12th, 2011 (3 years ago) Date Updated Unknown Keywords EU solar solar PV solar thermal world Data application/vnd.ms-excel icon Excel spreadsheet, summary solar energy data on multiple tabs (xls, 145.9 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License Comment "Reuse of our data is permitted. We merely ask that wherever it is listed, it be appropriately cited"

386

Invert Effective Thermal Conductivity Calculation  

SciTech Connect

The objective of this calculation is to evaluate the temperature-dependent effective thermal conductivities of a repository-emplaced invert steel set and surrounding ballast material. The scope of this calculation analyzes a ballast-material thermal conductivity range of 0.10 to 0.70 W/m {center_dot} K, a transverse beam spacing range of 0.75 to 1.50 meters, and beam compositions of A 516 carbon steel and plain carbon steel. Results from this calculation are intended to support calculations that identify waste package and repository thermal characteristics for Site Recommendation (SR). This calculation was developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 1, ICN 0, Calculations.

M.J. Anderson; H.M. Wade; T.L. Mitchell

2000-03-17T23:59:59.000Z

387

Application of Combined Thermal Equivalen in Thermal Power Plant Reduction  

Science Conference Proceedings (OSTI)

The 3.8MPa medium-pressure steam of Yuntianhua Company get low pressure steam through reducing temperature and pressure, which is used as a heat tracing, a reserve supply of heat. For this situation, the article based on the analysis of energy and chemical ... Keywords: combined thermal equivalent, turbine, economize on energy

Zhang Zhuming; Li Hu; Wang Hua; Qing Shan; Li Liangqing; He Ping; Ma Linzhuan

2011-02-01T23:59:59.000Z

388

Thermal reclaimer apparatus for a thermal sand reclamation system  

SciTech Connect

A thermal reclaimer apparatus is disclosed for thermally removing from the used foundry sand the organic matter that is present therein. The subject thermal reclaimer apparatus includes chamber means in which the used foundry sand is heated to a predetermined temperature for a preestablished period in order to accomplish the burning away of the organic matter that the used foundry sand contains. The chamber means includes inlet means provided at one end thereof and outlet means provided at the other end thereof. Feed means are cooperatively associated with the pipe means and thereby with the inlet means for feeding the used foundry sand through the inlet means into the chamber means. The subject thermal reclaimer apparatus further includes rotating means operative for effecting the rotation of the chamber means as the used foundry sand is being heated therein. The chamber means has cooperatively associated therewith burner means located at the same end thereof as the outlet means. The burner means is operative to effect the heating of the used foundry sand to the desired temperature within the chamber means. Tumbling means are provided inside the chamber means to ensure that the used foundry sand is constantly turned over, i.e., tumbled, and that the lumps therein are broken up as the chamber means rotates. Lastly, the used foundry sand from which the organic matter has been removed leaves the chamber means through the outlet means.

Deve, V.

1984-02-07T23:59:59.000Z

389

CPC thermal collector test plan  

DOE Green Energy (OSTI)

A comprehensive set of test procedures has evolved at Argonne National Laboratory for establishing the performance of compound parabolic and related concentrating thermal collectors with large angular fields of view. The procedures range from separate thermal and optical tests, to overall performance tests. A calorimetric ratio technique has been developed to determine the heat output of a collector without knowledge of the heat transfer fluid's mass flow rate and heat capacity. Sepcial attention is paid to the problem of defining and measuring the incident solar flux with respect to which the collector efficiency is to be calculated.

Reed, K A

1977-01-01T23:59:59.000Z

390

Wear-resistant materials for coal conversion and utilization. First progress report, October 1979-April 1980  

SciTech Connect

Studies of wear-resistant materials were concentrated mostly on hard coatings and surface treatments, such as chemical vapor deposited materials, thermal-sprayed materials with post-deposition laser treatments, and surface-bonded materials. Several coatings were found to have extremely good erosion resistance. A nickel-bonded titanium diboride material was found to have extremely high erosion resistance. An erosion data bank for existing and promising valve materials was begun. Erosion test results at six impingment angles and four particle velocities were produced. Testing of a 6-inch ball-valve ball coated with a Cr-Ni-B coating in a laboratory ball-valve testing facility reached the half-way point; 10,000 open-close cycles in coal-ash.

Block, F.E.; Kelley, J.E.; Leavenworth, H.W. Jr.

1980-01-01T23:59:59.000Z

391

Carbon fiber composite characterization in adverse thermal environments.  

Science Conference Proceedings (OSTI)

The behavior of carbon fiber aircraft composites was studied in adverse thermal environments. The effects of resin composition and fiber orientation were measured in two test configurations: 102 by 127 millimeter (mm) test coupons were irradiated at approximately 22.5 kW/m{sup 2} to measure thermal response, and 102 by 254 mm test coupons were irradiated at approximately 30.7 kW/m{sup 2} to characterize piloted flame spread in the vertically upward direction. Carbon-fiber composite materials with epoxy and bismaleimide resins, and uni-directional and woven fiber orientations, were tested. Bismaleimide samples produced less smoke, and were more resistant to flame spread, as expected for high temperature thermoset resins with characteristically lower heat release rates. All materials lost approximately 20-25% of their mass regardless of resin type, fiber orientation, or test configuration. Woven fiber composites displayed localized smoke jetting whereas uni-directional composites developed cracks parallel to the fibers from which smoke and flames emanated. Swelling and delamination were observed with volumetric expansion on the order of 100% to 200%. The purpose of this work was to provide validation data for SNL's foundational thermal and combustion modeling capabilities.

Gomez-Vasquez, Sylvia; Brown, Alexander L.; Hubbard, Joshua A.; Ramirez, Ciro J.; Dodd, Amanda B.

2011-05-01T23:59:59.000Z

392

Attrition resistant fluidizable reforming catalyst  

DOE Patents (OSTI)

A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

Parent, Yves O. (Golden, CO); Magrini, Kim (Golden, CO); Landin, Steven M. (Conifer, CO); Ritland, Marcus A. (Palm Beach Shores, FL)

2011-03-29T23:59:59.000Z

393

A corrosive resistant heat exchanger  

DOE Patents (OSTI)

A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

Richlen, S.L.

1987-08-10T23:59:59.000Z

394

Thermal management of batteries using a Variable-Conductance Insulation (VCI) enclosure  

DOE Green Energy (OSTI)

Proper thermal management is important for optimum performance and durability of most electric-vehicle batteries. For high-temperature cells such as sodium/sulphur, a very efficient and responsive thermal control system is essential. Heat must be removed during exothermic periods and retained when the batteries are not in use. Current thermal management approaches rely on passive insulation enclosures with active cooling loops that penetrate the enclosure. This paper presents the design, analysis, and testing of an enclosure with variable conductance insulation (VCI). VCI uses a hydride with an integral electric resistance heater to expel and retrieve a small amount of hydrogen gas into a vacuum space. By controlling the amount of hydrogen gas, the thermal conductance can be varied by more than 100:1, enabling the cooling loop (cold plate) to be mounted on the enclosure exterior. By not penetrating the battery enclosure, the cooling system is simpler and more reliable. Also, heat can be retained more effectively when desired. For high temperatures, radiation shields within the vacuum space are required. Ceramic spacers are used to maintain separation of the steel enclosure materials against atmospheric loading. Ceramic-to-ceramic thermal contact resistance within the spacer assembly minimizes thermal conductance. Two full-scale (0.8-m {times} 0.9-m {times} 0.3-m) prototypes were designed, built, and tested under high-temperature 200{degrees}-350{degrees}C battery conditions. With an internal temperature of 330{degrees}C (and 20{degrees}C ambient), the measured total-enclosure minimum heat loss was 80 watts (excluding wire pass-through losses). The maximum heat rejection was 4100 watts. The insulation can be switched from minimum to maximum conductance (hydrogen pressure from 2.0 {times} 10{sup -3} to 8 torr) in 3 minutes. Switching from maximum to minimum conductance was longer (16 minutes), but still satisfactory because of the large thermal mass of the battery.

Burch, S.D.; Parish, R.C.; Keyser, M.A.

1995-05-01T23:59:59.000Z

395

University of Colorado Thermal Comfort Report  

NLE Websites -- All DOE Office Websites (Extended Search)

A A Warmboard sub-floor with tubing and wood Image Courtsey of Warmboard Image Thermal Comfort "That Condition of mind, which expresses satisfaction with the thermal environment" (ASHRAE Standard 55) Design Criteria Design Criteria Design Criteria Design Criteria 1. Thermally comfortable conditions achieved by integrating technologically and economically innovative, low-energy strategies: a. Temperatures between 72 o F and 76 o F b. Humidity between 40.0% and 55.0% 2. Minimal distractions to the occupant 3. Easy control of thermal comfort system 4. Uniform thermal conditions exist throughout the house Bio Bio Bio Bio- - - -S S S S ( ( ( (h h h h) ) ) ) ip ip ip ip Thermal Comfort Features Thermal Comfort Features Thermal Comfort Features Thermal Comfort Features

396

What can Recycling in Thermal Reactors Accomplish?  

SciTech Connect

Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives.

Steven Piet; Gretchen E. Matthern; Jacob J. Jacobson

2007-09-01T23:59:59.000Z

397

Active solar thermal design manual  

SciTech Connect

This manual is aimed at systems design engineers, architects, system supplier/installers, and contractor/builders. Practical information for both skilled and inexperienced designers. Solar thermal applications focuses on residential and commercial space heating, potable hot water heating, process water heating, and space cooling.

1985-01-01T23:59:59.000Z

398

Solar mechanics thermal response capabilities.  

DOE Green Energy (OSTI)

In many applications, the thermal response of structures exposed to solar heat loads is of interest. Solar mechanics governing equations were developed and integrated with the Calore thermal response code via user subroutines to provide this computational simulation capability. Solar heat loads are estimated based on the latitude and day of the year. Vector algebra is used to determine the solar loading on each face of a finite element model based on its orientation relative to the sun as the earth rotates. Atmospheric attenuation is accounted for as the optical path length varies from sunrise to sunset. Both direct and diffuse components of solar flux are calculated. In addition, shadowing of structures by other structures can be accounted for. User subroutines were also developed to provide convective and radiative boundary conditions for the diurnal variations in air temperature and effective sky temperature. These temperature boundary conditions are based on available local weather data and depend on latitude and day of the year, consistent with the solar mechanics formulation. These user subroutines, coupled with the Calore three-dimensional thermal response code, provide a complete package for addressing complex thermal problems involving solar heating. The governing equations are documented in sufficient detail to facilitate implementation into other heat transfer codes. Suggestions for improvements to the approach are offered.

Dobranich, Dean D.

2009-07-01T23:59:59.000Z

399

Thermally insulated windows and doors  

SciTech Connect

Complete thermal insulation of metal rails and stiles in vertically or horizontally sliding or rolling windows or doors is provided by including in the frame thereof centered rigid plastic shapes which extend between panels of the windows or doors. All rails and stiles of each panel are thereby exposed only to either interior or exterior ambient temperatures.

Schmidt, D.F.

1979-05-01T23:59:59.000Z

400

Thermal decomposition of mercuric sulfide  

Science Conference Proceedings (OSTI)

The rate of thermal decomposition of mercuric sulfide (HgS) has been measured at temperatures from 265 to 345 C. These data have been analyzed using a first-order chemical reaction model for the time dependence of the reaction and the Arrhenius equation for the temperature dependence of the rate constant. Using this information, the activation energy for the reaction was found to be 55 kcal/mol. Significant reaction vessel surface effects obscured the functional form of the time dependence of the initial portion of the reaction. The data and the resulting time-temperature reaction-rate model were used to predict the decomposition rate of HgS as a function of time and temperature in thermal treatment systems. Data from large-scale thermal treatment studies already completed were interpreted in terms of the results of this study. While the data from the large-scale thermal treatment studies were consistent with the data from this report, mass transport effects may have contributed to the residual amount of mercury which remained in the soil after most of the large-scale runs.

Leckey, J.H.; Nulf, L.E.

1994-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

HYDROGEOLOGY OF THE THERMAL LANDSLIDE  

DOE Green Energy (OSTI)

The large Thermal Landslide overlies the initial area of geothermal development at The Geysers. The landslide is waterbearing while the underlying Franciscan formation bedrock units are essentially non-waterbearing except where affected by hydrothermal alteration. Perched ground water moving through the landslide is heated prior to discharge as spring flow.

Vantine, J.

1985-01-22T23:59:59.000Z

402

Effect of Pre-Oxidation Treatment on the Thermal Shock Resistance ...  

Science Conference Proceedings (OSTI)

The combustion gas was produced by burning the jet fuel with high speed air in a high temperature wind tunnel, which simulates the real service conditions in ...

403

Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings  

SciTech Connect

A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

2013-09-03T23:59:59.000Z

404

Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings  

SciTech Connect

A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan (Jane); Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.

2013-07-09T23:59:59.000Z

405

Estimation of Regional Surface Resistance to Evapotranspiration from NDVI and Thermal-IR AVHRR Data  

Science Conference Proceedings (OSTI)

Infrared surface temperatures from satellite sensors have been used to infer evaporation and soil moisture distribution over large areas. However, surface energy partitioning to latent versus sensible heat changes with surface vegetation cover ...

Ramakrishna R. Nemani; Steven W. Running

1989-04-01T23:59:59.000Z

406

Method For Improving The Oxidation Resistance Of Metal Substrates Coated With Thermal Barrier Coatings  

DOE Patents (OSTI)

A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described. A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

Thompson, Anthony Mark (Niskayuna, NY); Gray, Dennis Michael (Delanson, NY); Jackson, Melvin Robert (Niskayuna, NY)

2003-05-13T23:59:59.000Z

407

Method for improving the oxidation-resistance of metal substrates coated with thermal barrier coatings  

DOE Patents (OSTI)

A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

Thompson, Anthony Mark (Niskayuna, NY); Gray, Dennis Michael (Delanson, NY); Jackson, Melvin Robert (Niskayuna, NY)

2002-01-01T23:59:59.000Z

408

Kinetic damping of resistive wall modes in ITER  

SciTech Connect

Full drift kinetic modelling including finite orbit width effects has been used to assess the passive stabilisation of the resistive wall mode (RWM) that can be expected in the ITER advanced scenario. At realistic plasma rotation frequency, the thermal ions have a stabilising effect on the RWM, but the stability limit remains below the target plasma pressure to achieve Q = 5. However, the inclusion of damping arising from the fusion-born alpha particles, the NBI ions, and ICRH fast ions extends the RWM stability limit above the target {beta} for the advanced scenario. The fast ion damping arises primarily from finite orbit width effects and is not due to resonance between the particle frequencies and the instability.

Chapman, I. T.; Liu, Y. Q. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Asunta, O. [Department of Applied Physics, Association EURATOM-Tekes, Aalto University, P.O. Box 14100 FI-00076 AALTO (Finland); Graves, J. P. [CRPP, Association EURATOM/Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Johnson, T. [EURATOM-VR Association, EES, KTH, Stockholm (Sweden); Jucker, M. [GFDL/Princeton University, AOS Program, Princeton, New Jersey 08544 (United States)

2012-05-15T23:59:59.000Z

409

Advanced thermally stable jet fuels  

Science Conference Proceedings (OSTI)

The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

Schobert, H.H.

1999-01-31T23:59:59.000Z

410

Solar energy thermalization and storage device  

DOE Patents (OSTI)

A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

McClelland, John F. (Ames, IA)

1981-09-01T23:59:59.000Z

411

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A Thesis

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

412

Monitoring of thermal enhanced oil recovery processes with electromagnetic methods  

SciTech Connect

Research in applying electromagnetic methods for imaging thermal enhanced oil recovery has progressed significantly during the past eighteen months. Working together with researchers at Lawrence Berkeley Laboratory (LBL) and supported by a group of industrial sponsors we have focused our effort on field system development and doing field surveys connected with EOR operations. Field surveys were recently completed at the Lost Hills No.3 oil field and at UC Richmond Field station. At Lost Hills, crosshole EM data sets were collected before a new phase of steam injection for EOR and again four months after the onset of steaming. The two data sets were nearly identical suggesting that very little steam had been injected into this borehole. This is in accord with the operators records which indicate injectivity problems with this particular well. At Richmond we conducted a salt water injection monitoring experiment where 50,000 gallons of salt water were injected in a shallow aquifer and crosshole EM data were collected using the injection well and several observation wells. We applied the imaging code to some of the collected data and produced an image showing that the salt water slug has propagated 8--10 m from the injector into the aquifer. This result is partially confirmed by prior calculations and well logging data. Applying the EM methods to the problem of oil field characterization essentially means extending the borehole resistivity log into the region between wells. Since the resistivity of a sedimentary environment is often directly dependent on the fluids in the rock the knowledge of the resistivity distribution within an oil field can be invaluable for finding missed or bypassed oil or for mapping the overall structure. With small modification the same methods used for mapping EOR process can be readily applied to determining the insitu resistivity structure.

Wilt, M.

1992-09-01T23:59:59.000Z

413

AlCu alloy films prepared by the thermal diffusion technique  

SciTech Connect

100-nm thick films of Al{sub 1-x}Cu{sub x} alloys were prepared on glass substrates by thermal diffusion technique. The Cu atomic concentration was varied from 10% to 90%. Alloys were prepared at different temperatures into a vacuum oven with Argon atmosphere. Two thermal processes were used: i) heating the film at 400 deg. C in a single step, and ii) heating the films in sequential steps at 100, 200, 300 and 400 deg. C. Morphology, electrical resistivity, and crystalline orientation of the alloys were studied. The electrical resistivity and surface roughness of the alloys were found to depend strongly on the atomic composition and the diffusion temperature. However, we did not find differences between samples prepared under the two thermal processes. Alloys prepared with x = 0.6 and x = 0.1-0.3 as Cu at concentration exhibited values on electrical resistivity and surface roughness lower than pure Al. Different phases of the Al{sub 1} {sub -} {sub x}Cu{sub x} films were observed as a function of Cu concentration showing a good agreement with the AlCu phase diagram.

Oliva, A.I., E-mail: oliva@mda.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, CP 97310, Merida Yucatan (Mexico); Corona, J.E.; Sosa, V. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, CP 97310, Merida Yucatan (Mexico)

2010-07-15T23:59:59.000Z

414

Electric Resistance Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Resistance Heating Electric Resistance Heating Electric Resistance Heating June 24, 2012 - 4:51pm Addthis Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Electric resistance heating converts nearly 100% of the energy in the electricity to heat. However, most electricity is produced from coal, gas, or oil generators that convert only about 30% of the fuel's energy into electricity. Because of electricity generation and transmission losses, electric heat is often more expensive than heat produced in the home or business using combustion appliances, such as natural gas, propane, and oil furnaces. If electricity is the only choice, heat pumps are preferable in most

415

Measured values of coal mine stopping resistance  

Science Conference Proceedings (OSTI)

As coal mines become larger, the number of stoppings in the ventilation system increases. Each stopping represents a potential leakage path which must be adequately represented in the ventilation model. Stopping resistance can be calculated using two methods, the USBM method, used to determine a resistance for a single stopping, and the MVS technique, in which an average resistance is calculated for multiple stoppings. Through MVS data collected from ventilation surveys of different subsurface coal mines, average resistances for stoppings were determined for stopping in poor, average, good, and excellent conditions. The calculated average stoppings resistance were determined for concrete block and Kennedy stopping. Using the average stopping resistance, measured and calculated using the MVS method, provides a ventilation modeling tool which can be used to construct more accurate and useful ventilation models. 3 refs., 3 figs.

Oswald, N.; Prosser, B.; Ruckman, R. [Mine Ventilation Services, Fresno, CA (United States)

2008-12-15T23:59:59.000Z

416

Superconductive microstrip exhibiting negative differential resistivity  

DOE Patents (OSTI)

A device capable of exhibiting negative differential electrical resistivity over a range of values of current and voltage is formed by vapor- depositing a thin layer of a material capable of exhibiting superconductivity on an insulating substrate, establishing electrical connections at opposite ends of the deposited strip, and cooling the alloy into its superconducting range. The device will exhibit negative differential resistivity when biased in the current- induced resistive state.

Huebener, R.P.; Gallus, D.E.

1975-10-28T23:59:59.000Z

417

Vortex Formation in Ellipsoidal Thermal Bubbles  

Science Conference Proceedings (OSTI)

The rise of an isolated dry thermal bubble in a quiescent unstratified environment is a prototypical natural convective flow. This study considers the rise of an isolated dry thermal bubble of ellipsoidal shape (elliptical in both horizontal and ...

Alan Shapiro; Katharine M. Kanak

2002-07-01T23:59:59.000Z

418

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

DOE-EPA Working Group on Ocean TherUial Energy Conversion,Sands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)r:he comnercialization of ocean thermal energy conversion

Sands, M.Dale

2013-01-01T23:59:59.000Z

419

Thermal pumping of light-emitting diodes  

E-Print Network (OSTI)

The work presented here is a study of thermally enhanced injection in light-emitting diodes (LEDs). This effect, which we refer to as "thermal pumping", results from Peltier energy exchange from the lattice to charge ...

Gray, Dodd (Dodd J.)

2011-01-01T23:59:59.000Z

420

Radiography used to image thermal explosions  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiography used to image thermal explosions Radiography used to image thermal explosions Radiography used to image thermal explosions Researchers have gained an understanding of the mechanism of thermal explosions and have created a model capturing the stages of the explosion. October 9, 2012 Tabletop X-ray radiography of a thermal explosion. Tabletop X-ray radiography of a thermal explosion. Researchers have gained an understanding of the mechanism of thermal explosions and have created a model capturing the stages of the explosion. Proton radiography (pRad) at LANSCE imaged thermal explosions at high speeds to provide a real-time look at how an explosion unfolds and releases its energy. Specifically, it is important to know the range of temperature over which ignition may occur and the subsequent power of the explosion.

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Crosswell Electromagnetic Resistivity Imaging: Illuminating the Reservior |  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Crosswell Electromagnetic Resistivity Imaging: Illuminating the Reservior Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Crosswell Electromagnetic Resistivity Imaging: Illuminating the Reservior Published Middle East Asia Reservior Reviiew, 2006 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Crosswell Electromagnetic Resistivity Imaging: Illuminating the Reservior Citation Crosswell Electromagnetic Resistivity Imaging: Illuminating the Reservior [Internet]. 2006. Middle East Asia Reservior Reviiew. [cited 2013/10/22]. Available from: http://www.slb.com/~/media/Files/resources/mearr/num7/illuminating_reservoir.pdf Retrieved from

422

Electrical Resistivity Investigation of Gas Hydrate Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One Bear Place, Box 97354...

423

Electrical Resistivity Investigation of Gas Hydrate Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

January 1 - March 31, 2011 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One...

424

Electrical Resistivity Investigation of Gas Hydrate Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

09 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One Bear Place, Box 97354...

425

Electrical Resistivity Investigation of Gas Hydrate Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

January 1 - March 31, 2012 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One...

426

Electrical Resistivity Investigation of Gas Hydrate Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

April 1 - June 30, 2011 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One...

427

Electrical Resistivity Investigation of Gas Hydrate Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

July 1 - September 30, 2011 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One...

428

Definition: DC Resistivity Survey (Schlumberger Array) | Open...  

Open Energy Info (EERE)

Schlumberger Array) Jump to: navigation, search Dictionary.png DC Resistivity Survey (Schlumberger Array) The Schlumberger array is a type of electrode configuration for a DC...

429

Fire Resistance Testing of WTC Floor System  

Science Conference Proceedings (OSTI)

... NYC Building Code Provisions (Fire Resistance in hours) ... [1] Letter dated October 30, 1969 from Robert J. Linn (Manager, Project Planning, The ...

2010-05-28T23:59:59.000Z

430

Surface Modification for Enhanced Corrosion Resistance Using ...  

Science Conference Proceedings (OSTI)

Presentation Title, Surface Modification for Enhanced Corrosion Resistance Using .... Microscopic Study on the Interface Reaction between Ti and Al-Zn Alloy  ...

431

Creep resistant, precipitation-dispersion-strengthened ...  

An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a ...

432

Session 8A: Radiation Resistant Materials III  

Science Conference Proceedings (OSTI)

Nanoscale Multilayers'13: Session 8A: Radiation Resistant Materials III Program Organizers: Jon Molina-Aldareguia, IMDEA Materials Institute; Javier LLorca, ...

433

Session 3: Radiation Resistant Materials I  

Science Conference Proceedings (OSTI)

Oct 1, 2013 ... Nanoscale Multilayers'13: Session 3: Radiation Resistant Materials I Program Organizers: Jon Molina-Aldareguia, IMDEA Materials Institute; ...

434

Analytic theory of stable resistive magnetohydrodynamic modes  

SciTech Connect

The spectrum of stable resistive magnetohydrodynamic modes is shown to be determined by the geometry of anti-Stokes lines. Behavior of the eigenfunctions is also examined.

Pao, Y.; Kerner, W.

1985-01-01T23:59:59.000Z

435

Electrical Resistance of Graphitic and Graphitized Cathode ...  

Science Conference Proceedings (OSTI)

The electrical resistance of graphitic and graphitized cathode materials before and after electrolysis was also measured at temperatures from 30°C to 965°C. An  ...

436

Attrition resistant fluidizable reforming catalyst - Energy ...  

A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and ...

437

Development of simplified process for environmentally resistant cells. Final report  

DOE Green Energy (OSTI)

A program to develop a simple, foolproof, all-vacuum solar cell manufacturing process which can be completely automated and which results in medium efficiency cells which are inherently environmentally resistant is described. All components of the completed cells are integrated into a monolithic structure with no material interfaces. The exposed materials (Si, Al/sub 2/O/sub 3/, Al, Ni) are all resistant to atmospheric attack and the junction, per se, is passivated to prevent long term degradation. Such cells are intended to be incorporated into a simple module consisting basically of a press-formed metallic superstructure with a separated glass cover for missile, etc., protection. A 5 cm x 5 cm test cell configuration was designed in which the various efficiency loss factors were adjusted to yield a 10% AMI cell. Each of the cell elements was individually optimized for combination with the others. The basic cell consists of alloyed front (Al) and back (Ag plus Ni) contacts, a multi-purpose (AR, hermetic seal, implantation oxide) front surface coating of Al/sub 2/O/sub 3/, and an implanted front junction. Implantation damage annealing and contact alloying are carried out in a simple one step thermal treatment at 870/sup 0/C using a resistance heated furnace in vacuum. The use of non-analyzed and semi-analyzed beams for fabricating these cells was developed by KCI. A final lot of 50 cells made using the semi-analyzed beam method had an average efficiency of 10.4% at AMI (28 +- 1/sup 0/C). An economic analysis predicts a manufacturing cost of $.45/peak-watt for these cells using a one machine automatic method.

King, W.J.

1980-12-01T23:59:59.000Z

438

Thermal Scout Software - Energy Innovation Portal  

Energy Analysis Thermal ... Technology Marketing Summary. ... The software uses GPS data to automate infrared camera image capture and temperature ana ...

439

Quantum thermal waves in quantum corrals  

E-Print Network (OSTI)

In this paper the possibility of the generation of the thermal waves in 2D electron gas is investigated. In the frame of the quantum heat transport theory the 2D quantum hyperbolic heat transfer equation is formulated and numerically solved. The obtained solutions are the thermal waves in electron 2D gases. As an exapmle the thermal waves in quantum corrals are described. Key words: 2D electron gas, quantum corrals, thermal waves.

J. Marciak-Kozlowska; M. Kozlowski

2004-05-07T23:59:59.000Z

440

Battery Thermal Modeling and Testing (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

Smith, K.

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

thermal storage can be interfaced with a variety of high temperature heat generating systems, e.g. nuclear

Authors, Various

2011-01-01T23:59:59.000Z

442

Solar Thermal Technologies Available for Licensing ...  

Solar Thermal Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have ...

443

Thermal Spray Coatings for Coastal Infrastructure  

Science Conference Proceedings (OSTI)

Several protection strategies for coastal infrastructure using thermal-spray technology are presented from research at the Albany Research Center. Thermal-sprayed zinc coatings for anodes in impressed current cathodic protection systems are used to extend the service lives of reinforced concrete bridges along the Oregon coast. Thermal-sprayed Ti is examined as an alternative to the consumable zinc anode. Sealed thermal-sprayed Al is examined as an alternative coating to zinc dust filled polyurethane paint for steel structures.

Holcomb, G.R.; Covino, BernardS. Jr.; Cramer, S.D.; Bullard, S.J.

1997-11-01T23:59:59.000Z

444

Window performance for human thermal comfort  

E-Print Network (OSTI)

gender, acclimation state, the opportunity to adjust clothing and physical disability on requirements for thermal comfort”. Energy

Huizenga, C; Zhang, H.; Mattelaer, P.; Yu, T.; Arens, Edward A; Lyons, P.

2006-01-01T23:59:59.000Z

445

Thermoelectrics and Thermal Transport - Programmaster.org  

Science Conference Proceedings (OSTI)

Mar 14, 2012 ... Energy Nanomaterials: Thermoelectrics and Thermal Transport Sponsored by: The Minerals, Metals and Materials Society, TMS Materials ...

446

Thermal Response Testing for Geothermal Heat Exchangers ...  

Science Conference Proceedings (OSTI)

Thermal Response Testing for Geothermal Heat Exchangers Begins. The Net-Zero house features a geothermal heat pump ...

2013-03-12T23:59:59.000Z

447

Battery Thermal Management System Design Modeling  

SciTech Connect

Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

Pesaran, A.; Kim, G. H.

2006-11-01T23:59:59.000Z

448

MEMS BASED PYROELECTRIC THERMAL ENERGY HARVESTER - Energy ...  

A pyroelectric thermal energy harvesting apparatus for generating an electric current includes a cantilevered layered pyroelectric capacitor extending ...

449

Solar Thermal Test Facility experiment manual  

DOE Green Energy (OSTI)

Information is provided on administrative procedures, capabilities, and requirements of experimenters using the Solar Thermal Test Facility. (MHR)

Darsey, D. M.; Holmes, J. T.; Seamons, L. O.; Kuehl, D. J.; Davis, D. B.; Stomp, J. M.; Matthews, L. K.; Otts, J. V.

1977-10-01T23:59:59.000Z

450

Appendix B Metric and Thermal Conversion Tables  

U.S. Energy Information Administration (EIA)

2011 U.S. Energy Information Administration | Natural Gas Annual 193 Appendix B Metric and Thermal Conversion Tables

451

High impact resistant ceramic composite  

DOE Patents (OSTI)

A ceramic material and a method of forming a ceramic material which possesses a high impact resistance are disclosed. The material comprises: (a) a first continuous phase of [beta]-SiC; and (b) a second phase of about 25-40 vol % TiB[sub 2]. Al[sub 2]O[sub 3] is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800 C to less than the transition temperature of [beta]-SiC to [alpha]-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material. 6 figures.

Derkacy, J.A.

1991-07-16T23:59:59.000Z

452

High impact resistant ceramic composite  

DOE Patents (OSTI)

A ceramic material and a method of forming a ceramic material which possesses a high impact resistance. The material comprises: (a) a first continuous phase of .beta.-SiC; and (b) a second phase of about 25-40 vol % TiB.sub.2. Al.sub.2 O.sub.3 is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800.degree. C. to less than the transition temperature of .beta.-SiC to .alpha.-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material.

Derkacy, James A. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

453

Smart Thermal Skins for Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Smart Thermal Skins for Vehicles With a modest effort, many of the energy-efficient technologies developed for buildings can be transferred to the transportation sector. The goal of vehicle thermal management research at LBL is to save the energy equivalent of one to two billion gallons of gasoline per year, and improve the marketability of next-generation vehicles using advanced solar control glazings and insulating shell components to reduce accessory loads. Spectrally selective and electrochromic window glass and lightweight insulating materials improve the fuel efficiency of conventional and hybrid vehicles and extend the range of electric vehicles by reducing the need for air conditioning and heating, and by allowing the downsizing of equipment.

454

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

455

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

456

Practical Solar Thermal Chilled Water  

E-Print Network (OSTI)

With the pressing need for the United States to reduce our dependence upon fossil fuels, it has become a national priority to develop technologies that allow practical use of renewable energy sources. One such energy source is sunlight. It has the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical success. The primary reason for these disappointments is a misunderstanding of solar energy dynamics by air conditioning designers; combined with a similar misunderstanding by solar engineers of how thermally driven chillers react to the loads and energy sources applied to them. With this in mind, a modeling tool has been developed which provides the flexibility to apply a strategy which can be termed, Optimization by Design.

Leavell, B.

2010-01-01T23:59:59.000Z

457

Solar Thermal Reactor Materials Characterization  

DOE Green Energy (OSTI)

Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

2008-03-01T23:59:59.000Z

458

Thermal Gradient Holes At Lightning Dock Area (Warpinski, Et Al., 2004) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Lightning Dock Area Thermal Gradient Holes At Lightning Dock Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lightning Dock Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The awardee conducted seismic, gravity, resistivity, and airborne magnetic surveys, drilled temperature-gradient wells, and selected a location for a test well (52-7). The test well was drilled to a total depth of 770 m during 2003. Maximum temperatures approached 140degrees C and a short flow test suggested that a production well could be drilled to 600 m and produce economic volumes of 130-140degrees C fluid. A final assessment of the resource is currently being performed. References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J.

459

Lightweight concrete materials and structural systems for water tanks for thermal storage. Final report  

DOE Green Energy (OSTI)

Thermally efficient hot water storage tanks were designed, fabricated and evaluated. The tanks were made using cellular concrete at a nominal density of 100 lb/ft/sup 3/ for the structural elements and at a 30 lb/ft/sup 3/ density for the insulating elements. Thermal performance testing of the tanks was done using a static decay test since the test procedure specified in ASHRAE 94-77 was not experimentally practical. A series of composition modifications to the cellular concrete mix were investigated and the addition of alkaline resistant glass fibers was found to enhance the mechanical properties at no sacrifice in thermal behavior. Economic analysis indicated that cellular concrete provides a cost-effective insulating material. The total portability of the plant for producing cellular concrete makes cellular concrete amenable to on-site fabrication and uniquely adaptable to retrofit applications.

Buckman, R.W. Jr.; Elia, G.G.; Ichikawa, Y.

1980-12-01T23:59:59.000Z

460

Atomistic calculation of the thermal conductance of large scale bulk-nanowire junctions  

SciTech Connect

We have developed a stable and efficient kernel method to compute thermal transport in open systems, based on the scattering-matrix approach. This method is applied to compute the thermal conductance of a junction between bulk silicon and silicon nanowires with diameter up to 10 nm. We have found that beyond a threshold diameter of 7 nm, transmission spectra and contact conductances scale with the cross section of the contact surface, whereas deviations from this general trend are observed in thinner wires. This result allows us to predict the thermal resistance of bulk-nanowire interfaces with larger cross sections than those tractable with atomistic simulations, and indicate the characteristic size beyond which atomistic systems can in principle be treated accurately by mean-field theories. Our calculations also elucidate how dimensionality reduction and shape affect interfacial heat transport.

Duchemin, Ivan; Donadio, Davide [Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany)

2011-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NREL-Ocean Energy Thermal Conversion | Open Energy Information  

Open Energy Info (EERE)

Ocean Energy Thermal Conversion Jump to: navigation, search Logo: NREL-Ocean Energy Thermal Conversion Name NREL-Ocean Energy Thermal Conversion AgencyCompany Organization...

462

Thermal Conductivity of Cubic and Hexagonal Mesoporous Silica Thin Films  

E-Print Network (OSTI)

K.L. Fang, “Anisotropic thermal conductivity of nanoporousmesoporous silica as a thermal isolation layer”, Ceramicsand V. Wittwer, “Some thermal and optical properties of a

Coquil, Thomas; Richman, Eric K.; Hutchinson, Neal J.; Tolbert, S H; Pilon, Laurent

2009-01-01T23:59:59.000Z

463

Thermal dependence of electrical characteristics of micromachined silica microchannel plates  

E-Print Network (OSTI)

Thermal dependence of electrical characteristics ofresults of our studies on the thermal properties of silicatemperature with a negative thermal coefficient of -0.036

Tremsin, A S; Vallerga, J V; Siegmund, OHW; Beetz, C P; Boerstler, R W

2004-01-01T23:59:59.000Z

464

Thermal-Aware CAD for Modern Integrated Circuits  

E-Print Network (OSTI)

Thermal Background 3.1 HeatExperiments 9.1 Thermal-Floorplanning9.1.1 Fast Thermal Floorplanning . . . . . . . . . . .

Logan, Sheldon Logan Paul

2013-01-01T23:59:59.000Z

465

Guide to Setting Thermal Comfort Criteria and Minimizing Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort Title Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in...

466

Thermal Characterization of Nanostructures and Advanced Engineered Materials  

E-Print Network (OSTI)

A. and McEuen, P. L. , “Thermal Transport Measurements ofTomanek, D. , “Unusually High Thermal Conductivity of Carbonand Lau, C. N. , “Superior thermal conductivity of single-

Goyal, Vivek Kumar

2011-01-01T23:59:59.000Z

467

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

the portion of thermal energy that can be converted toof high-performance thermal energy harvesting systems, butreferred to as the thermal energy from low- temperature heat

Lim, Hyuck

2011-01-01T23:59:59.000Z

468

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

Akbari, H.

2010-01-01T23:59:59.000Z

469

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

Sands, M.Dale

2013-01-01T23:59:59.000Z

470

A Magnetomechanical Thermal Energy Harvester With A Reversible Liquid Interface  

E-Print Network (OSTI)

and Mechanical Model of a Thermal Energy Harvesting Device”,M, and Ferrari V. , “Thermal energy harvesting throughand G. P. Carman, “Thermal energy harvesting device using

He, Hong

2012-01-01T23:59:59.000Z

471

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

Thermal Energy Conversion Conference. Ocean Systems Branch,Thermal Energy Conversion Conference. Ocean Systems Branch,thermal energy conversion, June 18, 1979. Ocean Systems

Sands, M. D.

2011-01-01T23:59:59.000Z

472

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Thermally-Chargeable Supercapacitor Fluctuating Low-GradeThermally-Chargeable Supercapacitor for Fluctuating Low-Thermally-Chargeable Supercapacitor for Fluctuating Low-

Lim, Hyuck

2011-01-01T23:59:59.000Z

473

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," Seminar25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF COMMERCIAL

Akbari, H.

2010-01-01T23:59:59.000Z

474

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTAL ASSESSMENTOcean Thermal Energy Conversion Draft Programmatic Environ-Ocean Thermal Energy Conversion. U.S. DOE Assistant Secre-

Sands, M.Dale

2013-01-01T23:59:59.000Z

475

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

OF THIS DOCUME THERMAL FOR COOLING ENERGY STORAGE BUILDINGSi- LBL-25393 THERMAL FOR COOLING w ENERGY STORAGE BUILDINGSpeak power periods, thermal storage for cooling has become a

Akbari, H.

2010-01-01T23:59:59.000Z

476

Gas Atomization of Amorphous Aluminum: Part I. Thermal Behavior Calculations  

E-Print Network (OSTI)

article, the thermal history and cooling rate experienced byalloys, knowledge of the thermal history and cooling rate isarticle, the thermal history and cooling rate experienced by

Zheng, Baolong; Lin, Yaojun; Zhou, Yizhang; Lavernia, Enrique J.

2009-01-01T23:59:59.000Z

477

THE MOBILE WINDOW THERMAL TEST FACILITY (MoWiTT)  

E-Print Network (OSTI)

December 3-5, 1979 THE MOBILE WINDOW THERMAL TEST FACILITY (Orlando, Florida. The Mobile Window Thermal Test Facility (Press, 197 . THE NOBILE WINDOW THERMAL TEST FACILITY (

Klems, J. H.

2011-01-01T23:59:59.000Z

478

Solar Thermal Generation Technologies: 2006  

Science Conference Proceedings (OSTI)

After years of relative inactivity, the solar thermal electric (STE) industry is experiencing renewed activity and investment. The shift is partly due to new interest in large-scale centralized electricity generation, for which STE is well suited and offers the lowest cost for solar-specific renewable portfolio standards. With policymaking and public interest driven by concerns such as global climate change, atmospheric emissions, and traditional fossil fuel price and supply volatility, STE is increasing...

2007-03-30T23:59:59.000Z

479

Thermal well-test method  

DOE Patents (OSTI)

A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

Tsang, Chin-Fu (Albany, CA); Doughty, Christine A. (Berkeley, CA)

1985-01-01T23:59:59.000Z

480

Electric thermal storage demonstration program  

DOE Green Energy (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and on affiliate in Rhode Island, responded to a DOE request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. This report discusses the demonstration of ETS equipment at four member light departments.

Not Available

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "r-value thermal resistance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Electric thermal storage demonstration program  

DOE Green Energy (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and on affiliate in Rhode Island, responded to a DOE request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. This report discusses the demonstration of ETS equipment at four member light departments.

Not Available

1992-01-01T23:59:59.000Z

482

Electric thermal storage demonstration program  

DOE Green Energy (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-02-01T23:59:59.000Z

483

Electric thermal storage demonstration program  

DOE Green Energy (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-01-01T23:59:59.000Z

484

Thermally stable, plastic-bonded explosives  

DOE Patents (OSTI)

By use of an appropriate thermoplastic rubber as the binder, the thermal stability and thermal stress characteristics of plastic-bonded explosives may be greatly improved. In particular, an HMX-based explosive composition using an oil-extended styrene-ethylenebutylene-styrene block copolymer as the binder exhibits high explosive energy and thermal stability and good handling safety and physical properties.

Benziger, Theodore M. (Santa Fe, NM)

1979-01-01T23:59:59.000Z

485

Hard thermal loops in static background fields  

E-Print Network (OSTI)

We discuss the high temperature behavior of retarded thermal loops in static external fields. We employ an analytic continuation of the imaginary time formalism and use a spectral representation of the thermal amplitudes. We show that, to all orders, the leading contributions of static hard thermal loops can be directly obtained by evaluating them at zero external energies and momenta.

Brandt, F T; Siqueira, J B

2013-01-01T23:59:59.000Z

486

LABORATORY VI ENERGY AND THERMAL PROCESSES  

E-Print Network (OSTI)

LABORATORY VI ENERGY AND THERMAL PROCESSES Lab VI - 1 The change of the internal energy of a system temperature by sweating to cool down. Running seems to be the conversion of chemical energy to thermal energy energy into thermal energy, you decide to make some measurements in the laboratory. To make

Minnesota, University of

487

Heat Exchanger Thermal Performance Margin Guidelines  

Science Conference Proceedings (OSTI)

This report provides utility engineers with guidance on how to identify the thermal performance margin that is available in a given heat exchanger by comparing the thermal performance requirement at design limiting conditions to the thermal performance capability of the heat exchanger under those same conditions.

2005-11-30T23:59:59.000Z

488

Practical 1P6 Thermal Analysis  

E-Print Network (OSTI)

and loaded into the tube furnace. The computer software `RS Recorder' logs the data from two furnacesPractical 1P6 Thermal Analysis 1 1P6 ­ Thermal Analysis 1. What you should learn from-tin (electrical solder) by thermal analysis. The results will show that whereas pure metals freeze at one

Paxton, Anthony T.

489

The effect of thermal aging on the thermal conductivity of plasma sprayed and EB-PVD thermal barrier coatings  

DOE Green Energy (OSTI)

Thermal barrier coatings (TBCs) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBCs is of primary importance. Electron beam-physical vapor deposition (EV-PVD) and air plasma spraying (APS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The density of the APS coatings was controlled by varying the spray parameters. The low density APS yttria-partially stabilized zirconia (yttria-PSZ) coatings yielded a thermal conductivity that is lower than both the high density APS coatings and the EB-PVD coatings. The thermal aging of both fully and partially stabilized zirconia are compared. The thermal conductivity of the coatings permanently increases upon exposure to high temperatures. These increases are attributed to microstructural changes within the coatings. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the EB-PVD coatings are less susceptible to thermal aging effects, results suggest that they typically have a higher thermal conductivity than APS coatings before thermal aging. The increases in thermal conductivity due to thermal aging for plasma sprayed partially stabilized zirconia have been found to be less than for plasma sprayed fully stabilized zirconia coatings.

Dinwiddie, R.B.; Beecher, S.C.; Porter, W.D. [Oak Ridge National Lab., TN (United States); Nagaraj, B.A. [General Electric Co., Cincinnati, OH (United States). Aircraft Engine Group

1996-05-01T23:59:59.000Z

490

Thermal Ion Dispersion | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Thermal Ion Dispersion Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Ion Dispersion Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Geochemical Data Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Thermal Ion Dispersion: Thermal Ion Dispersion (TID) is a method used by the precious-metals industry to determine the movement of hot, mineral-bearing waters through rocks, gravels, and soils. The survey involves collection of soil samples

491

Oscillatory thermal instability and the Bhopal disaster  

E-Print Network (OSTI)

A stability analysis is presented of the hydrolysis of methyl isocyanate (MIC) using a homogeneous flow reactor paradigm. The results simulate the thermal runaway that occurred inside the storage tank of MIC at the Bhopal Union Carbide plant in December 1984. The stability properties of the model indicate that the thermal runaway may have been due to a large amplitude, hard thermal oscillation initiated at a subcritical Hopf bifurcation. This type of thermal misbehavior cannot be predicted using conventional thermal diagrams, and may be typical of liquid thermoreactive systems.

Ball, R

2010-01-01T23:59:59.000Z

492

Thermal Performance Engineering Handbook, Volume II: Advanced Concepts in Thermal Performance  

Science Conference Proceedings (OSTI)

The two-volume Thermal Performance Engineering Handbook will assist thermal performance engineers in identifying and investigating the cause of megawatt (MWe) losses as well as in proposing new ways to increase MWe output. Volume I contains a thermal performance primer to provide a brief review of thermodynamic principles involved in the steam power plant thermal cycle. The primer also contains brief descriptions of the equipment and systems in the cycle that can be sources of thermal losses. Also in Vol...

1998-10-29T23:59:59.000Z

493

Thermally-Activated Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermally-Activated Technologies Thermally-Activated Technologies Thermally-Activated Technologies November 1, 2013 - 11:40am Addthis Thermally-activated technologies include a diverse portfolio of equipment that transforms heat for useful purposes such as heating, cooling, humidity control, thermal storage, and shaft/electrical power. Thermally-activated technologies are essential for combined heat and power (CHP)-integrated systems that maximize energy savings and economic return. Thermally-activated technologies systems also enable customers to reduce seasonal peak electric demand and future electric and gas grids to operate with more level loads. Absorption Chillers Absorption cycles have been used for more than 150 years. Early equipment used a mixture of ammonia and water as an absorption working pair, with

494

Proliferation resistance: issues, initiatives and evaluation  

Science Conference Proceedings (OSTI)

The vision of a nuclear renaissance has highlighted the issue of proliferation resistance. The prospects for a dramatic growth in nuclear power may depend on the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen proliferation resistance. The GenIV International Forum (GIF) and others have devoted attention and resources to proliferation resistance. However, the hope of finding a way to make the peaceful uses of nuclear energy resistant to proliferation has reappeared again and again in the history of nuclear power with little practical consequence. The concept of proliferation resistance has usually focused on intrinsic (technological) as opposed to extrinsic (institutional) factors. However, if there are benefits that may yet be realized from reactors and other facilities designed to minimize proliferation risks, it is their coupling with effective safeguards and other nonproliferation measures that likely will be critical. Proliferation resistance has also traditionally been applied only to state threats. Although there are no technologies that can wholly eliminate the risk of proliferation by a determined state, technology can play a limited role in reducing state threats and perhaps in eliminating many non-state threats. These and other issues are not academic. They affect efforts to evaluate proliferation resistance, including the methodology developed by GIF's Proliferation Resistance and Physical Protection (PR&PP) Working Group as well as the proliferation resistance initiatives that are being pursued or may be developed in the future. This paper will offer a new framework for thinking about proliferation resistance issues, including the ways the output of the methodology could be developed to inform the decisions that states, the International Atomic Energy (IAEA) and others will have to make in order to fully realize the promise of a nuclear renaissance.

Pilat, Joseph F [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

495

Several test results on earthing-resistance-estimation instrument  

Science Conference Proceedings (OSTI)

Whenever earth construction work is done, the implanted number and depth of electrodes have to be estimated in order to obtain the required resistance value. We call this earth resistance estimation. Under conventional method of earth resistance estimation, ... Keywords: earthing-resistance estimation, resistivity sounding, soil layer

Hitoshi Kijima

2008-02-01T23:59:59.000Z

496

Methicillin-resistant Staphylococcus aureus  

E-Print Network (OSTI)

To the Editor: Because methicillin-resistant Staphylococcus aureus (MRSA) has been identified in retail meat worldwide (1–4), the potential exists for its transmission to humans. Of the various meat products surveyed, pork had the highest contamination rate in the United States and Canada (1,2), as did beef in Korea (3) and poultry in the Netherlands (4). The study in Korea also observed MRSA from chicken, which demonstrated sequence type (ST) 692 by multilocus sequence typing (MLST), a type distinct from that isolated in beef and pork. Despite sample size variations, these studies suggested that MRSA contamination in different meat categories can vary by location and that molecular distinction may exist among MRSA isolates in meat of different origin. We collected 289 raw meat samples (156 beef, 76 chicken, and 57 turkey) from 30 grocery stores in Detroit, Michigan, USA, during August 2009–January 2010. Up to 3 presumptive S. aureus colonies per sample were identified by coagulase test and species-specific PCR (1). Antimicrobial drug MICs were determined and interpreted according to Clinical and Laboratory Standards Institute guidelines (5). S. aureus were characterized by pulsed-field gel electrophoresis (PFGE), mecA identification, SCCmec typing, Panton-Valentine leukocidin

unknown authors

2011-01-01T23:59:59.000Z

497

Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program  

SciTech Connect

An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and nickel-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling and tunnel boring applications. Large areas have been successfully coated with these materials, with thicknesses of approximately one centimeter. The observed corrosion resistance may enable applications of importance in industries such as: oil and gas production, refining, nuclear power generation, shipping, and others.

Farmer, J

2007-07-09T23:59:59.000Z

498

Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development  

Science Conference Proceedings (OSTI)

An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and nickel-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling and tunnel boring applications. Large areas have been successfully coated with these materials, with thicknesses of approximately one centimeter. The observed corrosion resistance may enable applications of importance in industries such as: oil and gas production, refining, nuclear power generation, shipping, and others.

Farmer, J C; Choi, J S; Saw, C; Haslam, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

2008-01-09T23:59:59.000Z

499

CC6, Graphene Reinforced Composites as Efficient Thermal ...  

Science Conference Proceedings (OSTI)

Efficient thermal management of electronics, optoelectronics and photonic devices require better thermal interface materials (TIMs). Current TIMs are based on ...

500

Infrared Thermography Measurements of Window Thermal Test Specimen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Measurements of Window Thermal Test Specimen: Surface Temperatures Title Infrared Thermography Measurements of Window Thermal Test Specimen: Surface...