Sample records for r-value thermal resistance

  1. Reduction in the thermal resistance (R-value) of loose-fill insulation and fiberglass batts due to compression

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Wright, J.H.

    1981-04-01T23:59:59.000Z

    A method is presented for calculating the thickness reduction of loose-fill insulations and fiberglass batts that result from compressive forces exerted by additional insulation. The thickness reduction is accompanied by an increase in density and a reduction in the R value of the compressed layer. Calculations for thermal resistance of two layers of insulation are given. Information in 4 appendices includes: identification of products tested (products from 3 companies); experimental values for thickness as a function of loading; Fortran programs and output; and calculated R values for stacked insulations. (MCW)

  2. The performance check between whole building thermal performance criteria and exterior wall measured clear wall R-value, thermal bridging, thermal mass, and airtightness

    SciTech Connect (OSTI)

    Kosny, J.; Christian, J.E.; Desjarlais, A.O. [Oak Ridge National Lab., TN (United States). Buildings Technology Center; Kossecka, E. [Polish Academy of Sciences (Poland); Berrenberg, L. [American Polysteel Forms (United States)

    1998-06-01T23:59:59.000Z

    At the last IEA Annex 32 meeting it was proposed that the annex develop the links between level 1 (the whole building performance) and level 2 (the envelope system). This paper provides a case study of just that type of connection. An exterior wall mockup is hot box tested and modeled in the laboratory. Measurements of the steady state and dynamic behavior of this mockup are used as the basis to define the thermal bridging, thermal mass benefit and air tightness of the whole wall system. These level two performance characteristics are related to the whole building performance. They can be analyzed by a finite difference modeling of the wall assembly. An equivalent wall theory is used to convert three dimensional heat flow to one dimensional terms that capture thermal mass effects, which in turn are used in a common whole building simulation model. This paper illustrates a performance check between the thermal performance of a Massive ICF (Insulating Concrete Form) wall system mocked up (level 2) and Whole Building Performance criteria (level 1) such as total space heating and cooling loads (thermal comfort).

  3. Thermal Shock-resistant Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01T23:59:59.000Z

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved cement, causing its volume to expand.

  4. Improvements of the Variable Thermal Resistance

    E-Print Network [OSTI]

    Székely, V; Kollar, E

    2008-01-01T23:59:59.000Z

    A flat mounting unit with electronically variable thermal resistance [1] has been presented in the last year [2]. The design was based on a Peltier cell and the appropriate control electronics and software. The device is devoted especially to the thermal characterization of packages, e.g. in dual cold plate arrangements. Although this design meets the requirements of the static measurement we are intended to improve its parameters as the settling time and dynamic thermal impedance and the range of realized thermal resistance. The new design applies the heat flux sensor developed by our team as well [3], making easier the control of the device. This development allows even the realization of negative thermal resistances.

  5. Improvements of the Variable Thermal Resistance

    E-Print Network [OSTI]

    V. Szekely; S. Torok; E. Kollar

    2008-01-07T23:59:59.000Z

    A flat mounting unit with electronically variable thermal resistance [1] has been presented in the last year [2]. The design was based on a Peltier cell and the appropriate control electronics and software. The device is devoted especially to the thermal characterization of packages, e.g. in dual cold plate arrangements. Although this design meets the requirements of the static measurement we are intended to improve its parameters as the settling time and dynamic thermal impedance and the range of realized thermal resistance. The new design applies the heat flux sensor developed by our team as well [3], making easier the control of the device. This development allows even the realization of negative thermal resistances.

  6. The Equivalent Thermal Resistance of Tile Roofs with and without Batten Systems

    SciTech Connect (OSTI)

    Miller, William A [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Clay and concrete tile roofs were installed on a fully instrumented attic test facility operating in East Tennessee s climate. Roof, attic and deck temperatures and heat flows were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventionally pigmented and direct-nailed asphalt shingle roof. The data were used to benchmark a computer tool for simulation of roofs and attics and the tool used to develop an approach for computing an equivalent seasonal R-value for sub-tile venting. The approach computed equal heat fluxes through the ceilings of roofs having different combinations of surface radiation properties and or building constructions. A direct nailed shingle roof served as a control for estimating the equivalent thermal resistance of the air space. Simulations were benchmarked to data in the ASHRAE Fundamentals for the thermal resistance of inclined and closed air spaces.

  7. Thermal barrier coating resistant to sintering

    DOE Patents [OSTI]

    Subramanian, Ramesh (Orlando, FL); Sabol, Stephen M. (Orlando, FL)

    2001-01-01T23:59:59.000Z

    A device (10) having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10) and is not soluble with the underlying ceramic layer (16). For a YSZ ceramic layer (16) the sintering resistant layer (22) may preferably be aluminum oxide or yttrium aluminum oxide, deposited as a continuous layer or as nodules.

  8. Thermal barrier coating resistant to sintering

    DOE Patents [OSTI]

    Subramanian, Ramesh; Seth, Brij B.

    2004-06-29T23:59:59.000Z

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.

  9. Thermal Analyses Thermal Resistance of Precast Concrete Wall Panels with Concrete

    E-Print Network [OSTI]

    Meyer, Christian

    ) analyses. 3-D analyses are more accurate since the concrete ribs act as thermal bridges to both horizontal considered are as follows: · cavity insulation thickness · concrete conductivity · stud channel conductivity channel increases too. The cavity R-value is calculated by ignoring the effect of the concrete web. Assume

  10. Low thermal resistance power module assembly

    DOE Patents [OSTI]

    Hassani, Vahab (Denver, CO); Vlahinos, Andreas (Castle Rock, CO); Bharathan, Desikan (Arvada, CO)

    2007-03-13T23:59:59.000Z

    A power module assembly with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate with passageways or openings for coolant that extend through the plate from a lower surface to an upper surface. A circuit substrate is provided and positioned on the spreader plate to cover the coolant passageways. The circuit substrate includes a bonding layer configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer may be solder material which bonds to the upper surface of the plate to provide a continuous seal around the upper edge of each opening in the plate. The assembly includes power modules mounted on the circuit substrate on a surface opposite the bonding layer. The power modules are positioned over or proximal to the coolant passageways.

  11. Thermal barrier coating resistant to sintering

    DOE Patents [OSTI]

    Subramanian, Ramesh; Seth, Brig B.

    2005-08-23T23:59:59.000Z

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process. The sintering inhibiting material (22) has a morphology adapted to improve the functionality of the sintering inhibiting material (22), characterized as continuous, nodule, rivulet, grain, crack, flake and combinations thereof and being disposed within at least some of the vertical and horizontal gaps.

  12. Thermal resistance gaps for solid breeder blankets using packed beds

    SciTech Connect (OSTI)

    Gorbis, Z.R.; Raffray, A.R.; Tillack, M.S.; Abdou, M.A.

    1989-03-01T23:59:59.000Z

    The main design features of a new concept for solid breeder blanket thermal resistance gaps are described and analysis is shown for the blanket thermal characteristics. The effective thermal conductivity of a helium-beryllium packed bed configuration is studied, including the effect of a purge stream. Possible applications of this concept to ITER blanket designs are stressed.

  13. Low thermal resistance power module assembly

    DOE Patents [OSTI]

    Hassani, Vahab (Denver, CO); Vlahinos, Andreas (Castle Rock, CO); Bharathan, Desikan (Arvada, CO)

    2010-12-28T23:59:59.000Z

    A power module assembly (400) with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate (410) with passageways or openings (414) for coolant that extend through the plate from a lower surface (411) to an upper surface (412). A circuit substrate (420) is provided and positioned on the spreader plate (410) to cover the coolant passageways. The circuit substrate (420) includes a bonding layer (422) configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer (422) may be solder material which bonds to the upper surface (412) of the plate to provide a continuous seal around the upper edge of each opening (414) in the plate. The assembly includes power modules (430) mounted on the circuit substrate (420) on a surface opposite the bonding layer (422). The power modules (430) are positioned over or proximal to the coolant passageways.

  14. Influence of surface roughness and waviness upon thermal contact resistance

    E-Print Network [OSTI]

    Yovanovich, M. Michael

    1967-01-01T23:59:59.000Z

    This work deals with the phenomenon of thermal resistance between contacting solids. Attention is directed towards contiguous solids possessing both surface roughness and waviness. When two such surfaces are brought together ...

  15. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids

    E-Print Network [OSTI]

    Fish, Jacob

    and colloidal nanofluids William Evans a,b , Ravi Prasher c , Jacob Fish b , Paul Meakin d , Patrick Phelan e of aggregation and interfacial thermal resistance on the effective thermal conductivity of nanofluids and nano- composites. We found that the thermal conductivity of nanofluids and nanocomposites can be significantly

  16. TRANSIENT THERMAL BEHAVIOR IN RESISTANCE SPOT WELDING

    E-Print Network [OSTI]

    Eagar, Thomas W.

    temperature response during resistance spot welding was measured and discussed with various process parameters that the measurement of temperature profiles developed during the welding process is very important in this respect composition on galvanized steel, the temperature distribution during welding was monitored in a one

  17. Thermal Science & Engineering Vol.7 No 1 (1999) A Study on Thermal Resistance over a Solid-Liquid Interface

    E-Print Network [OSTI]

    Maruyama, Shigeo

    1999-01-01T23:59:59.000Z

    Thermal Science & Engineering Vol.7 No 1 (1999) - 63 - A Study on Thermal Resistance over a Solid-ku, Tokyo, 113-8656, JAPAN, Tel. (03)-5800-6983) #12;Thermal Science & Engineering Vol.7 No 1 (1999) - 64 dynamics simulations, it was demonstrated that a thermal resistance cannot be neglected over a solid

  18. Thermal and mechanical properties of EPDM/PP + thermal shock-resistant ceramic composites

    E-Print Network [OSTI]

    North Texas, University of

    the polymer matrix. The brittleness, B, decreases upon surface modification of the ceramic. The highest valueThermal and mechanical properties of EPDM/PP + thermal shock-resistant ceramic composites Witold-scale ceramic powder. To overcome the difficulty of particles dispersion and adhe- sion, the filler was modified

  19. Thermal resistance of composite panels containing superinsulation and urethane foam

    SciTech Connect (OSTI)

    Wilkes, K.E.; Graves, R.S.; Childs, K.W.

    1996-09-01T23:59:59.000Z

    Laboratory data are presented on the thermal resistance of composite panels that incorporate superinsulation embedded in urethane foam. Composite panels were fabricated using four types of advanced insulations (three types of evacuated panel superinsulation and one type of gas-filled panel), and three foam blowing agents (CFC-11, HCFC-141b, and HCFC-142b/22 blend). Panels were also fabricated with only the urethane foam to serve as a baseline. Thermal measurements were performed using an ASTM C 518 Heat Flow Meter Apparatus. The thermal resistances of the panels were measured over a two-year period to detect whether any significant changes occurred. A computer model was used to analyze the data, adjusting for differences in size of the advanced insulations, and extrapolating to different sizes of composite panels.

  20. Thermal resistance of superinsulation/foam composite panels

    SciTech Connect (OSTI)

    Wilkes, K.E.; Graves, R.S.; Childs, K.W.

    1996-05-01T23:59:59.000Z

    Laboratory data are presented on the thermal resistance of composite panels that incorporate superinsulation embedded in urethane foam. Composite panels were fabricated using four types of advanced insulations (three types of evacuated panel superinsulation and one type of gas-filled panel), and three foam blowing agents (CFC-11, HCFC-141b, and HCFC-142b/22 blend). Panels were also fabricated with only the urethane foam to serve as a baseline. Thermal measurements were performed using an ASTM C 518 Heat Flow Meter Apparatus. The thermal resistances of the panels were measured over a two-year period to detect whether any significant changes occurred. A computer model was used to analyze the data, normalizing for differences in size of the advanced insulations, and extrapolating to different sizes of composite panels.

  1. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOE Patents [OSTI]

    Limaye, S.Y.

    1996-01-30T23:59:59.000Z

    Three families of ceramic compositions having the given formula: {phi}{sub 1+X}Zr{sub 4}P{sub 6{minus}2X}Si{sub 2X}O{sub 24}, {phi}{sub 1+X}Zr{sub 4{minus}2X}Y{sub 2X}P{sub 6}O{sub 24} and {phi}{sub 1+X}Zr{sub 4{minus}X}Y{sub X}P{sub 6{minus}2X}Si{sub X}O{sub 24} wherein {phi} is either strontium or barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures. 7 figs.

  2. Ultra low thermal expansion, highly thermal shock resistant ceramic

    DOE Patents [OSTI]

    Limaye, Santosh Y. (1440 Sandpiper Cir. #38, Salt Lake City, UT 84117)

    1996-01-01T23:59:59.000Z

    Three families of ceramic compositions having the given formula: .phi..sub.1+X Zr.sub.4 P.sub.6-2X Si.sub.2X O.sub.24, .phi..sub.1+X Zr.sub.4-2X Y.sub.2X P.sub.6 O.sub.24 and .phi..sub.1+X Zr.sub.4-X Y.sub.X P.sub.6-2X Si.sub.X O.sub.24 wherein .phi. is either Strontium or Barium and X has a value from about 0.2 to about 0.8 have been disclosed. Ceramics formed from these compositions exhibit very low, generally near neutral, thermal expansion over a wide range of elevated temperatures.

  3. Optical device with low electrical and thermal resistance bragg reflectors

    DOE Patents [OSTI]

    Lear, Kevin L. (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    A compound-semiconductor optical device and method. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors.

  4. Optical device with low electrical and thermal resistance Bragg reflectors

    DOE Patents [OSTI]

    Lear, K.L.

    1996-10-22T23:59:59.000Z

    A compound-semiconductor optical device and method are disclosed. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors. 16 figs.

  5. Graphite having improved thermal stress resistance and method of preparation

    DOE Patents [OSTI]

    Kennedy, Charles R. (Oak Ridge, TN)

    1980-01-01T23:59:59.000Z

    An improved method for fabricating a graphite article comprises the steps of impregnating a coke article by first heating the coke article in contact with a thermoplastic pitch at a temperature within the range of 250.degree.-300.degree. C. at a pressure within the range of 200-2000 psig for at least 4-10 hours and then heating said article at a temperature within the range of 450.degree.-485.degree. C. at a pressure of 200-2000 psig for about 16-24 hours to provide an impregnated article; heating the impregnated article for sufficient time to carbonize the impregnant to provide a second coke article, and graphitizing the second coke article. A graphite having improved thermal stress resistance results when the coke to be impregnated contains 1-3 wt.% sulfur and no added puffing inhibitors. An additional improvement in thermal stress resistance is achieved when the second coke article is heated above about 1400.degree. C. at a rate of at least 10.degree. C./minute to a temperature above the puffing temperature.

  6. Thermal stability and oxidation resistance of TiCrAlYO coatings...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stability and oxidation resistance of TiCrAlYO coatings on SS430 for solid oxide fuel cell interconnect applications. Thermal stability and oxidation resistance of TiCrAlYO...

  7. A multi-scale iterative approach for finite element modeling of thermal contact resistance

    E-Print Network [OSTI]

    Thompson, Mary Kathryn, 1980-

    2007-01-01T23:59:59.000Z

    Surface topography has long been considered a key factor in the performance of many contact applications including thermal contact resistance. However, essentially all analytical and numerical models of thermal contact ...

  8. Structural stability vs. thermal performance: old dilemma, new solutions

    SciTech Connect (OSTI)

    Kosny, J.; Christian, J.E.

    1996-10-01T23:59:59.000Z

    In many building envelopes, actual thermal performance falls quite a bit short of nominal design parameters given in standards. Very often only windows, doors, and a small part of the wall area meet standards requirements. In the other parts of the building envelope, unaccounted thermal bridges reduce the effective thermal resistance of the insulation material. Such unaccounted heat losses compromise the thermal performance of the whole building envelope. For the proper analysis of the thermal performance of most wall and roof details, measurements and three-dimensional thermal modeling are necessary. For wall thermal analysis the whole-wall R-value calculation method can be very useful. In ties method thermal properties of all wall details are incorporated as an area weighted average. For most wall systems, the part of the wall that is traditionally analyzed, is the clear wall, that is, the flat part of the wall that is uninterrupted by details. It comprises only 50 to 80% of the total area of the opaque wall. The remaining 20 to 50% of the wall area is not analyzed nor are its effects incorporated in the thermal performance calculations. For most of the wall technologies, traditionally estimated R-values are 20 to 30% higher than whole-wall R-values. Such considerable overestimation of wall thermal resistance leads to significant errors in building heating and cooling load estimations. In this paper several examples are presented of the use of the whole-wall R-value procedure for building envelope components. The advantages of the use of the whole wall R-value calculation procedure are also discussed. For several building envelope components, traditional clear-wall R-values are compared with the results of whole-wall thermal analysis to highlight significant limits on the use of the traditional methods and the advantages of advanced computer modeling.

  9. Reduced thermal resistance of the silicon-synthetic diamond composite substrates at elevated temperatures

    E-Print Network [OSTI]

    /Si sub- strates, depends on the polycrystalline-diamond grain size, diamond layer thicknessReduced thermal resistance of the silicon-synthetic diamond composite substrates at elevated of synthetic diamond-silicon composite substrates. Although composite substrates are more thermally resistive

  10. SHORT-TERM THERMAL RESISTANCE OF ZOEAE OF 10 SPECIES OF CRABS FROM PUGET SOUND, WASHINGTON

    E-Print Network [OSTI]

    SHORT-TERM THERMAL RESISTANCE OF ZOEAE OF 10 SPECIES OF CRABS FROM PUGET SOUND, WASHINGTON BENJAMIN to protect the most sensitive species studied is 24OC for the Puget Sound area. Thermal resistance of marine species of Puget INorthwest and Alaska Fisheries Center, National Marine Fisheries Service, NOAA, 2725

  11. Thermal resistance of bridged cracks in fiber-reinforced ceramic John Dryden

    E-Print Network [OSTI]

    Zok, Frank

    -reinforced ceramic composites obtain high toughness is through the de- velopment of multiple matrix cracksThermal resistance of bridged cracks in fiber-reinforced ceramic composites John Dryden Department November 2000; accepted for publication 16 January 2001 The thermal resistance of a bridged matrix crack

  12. Moisture Management for High R-Value Walls

    SciTech Connect (OSTI)

    Lepage, R.; Schumacher, C.; Lukachko, A.

    2013-11-01T23:59:59.000Z

    The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.

  13. Field test of a new method for determining soil formation thermal conductivity and borehole resistance

    SciTech Connect (OSTI)

    Shonder, J.A.; Beck, J.V.

    2000-07-01T23:59:59.000Z

    A new method of determining soil thermal properties from in-situ tests has been developed. Based on a one-dimensional numerical heat transfer model, the method uses parameter estimation techniques to determine soil thermal conductivity and borehole resistance from field-collected data. This paper presents the results of analysis of data from three tests performed in Lincoln, Nebraska, in order to validate the method. The one-dimensional method was found to agree well with line source and cylindrical source thermal conductivity estimates derived from the same data sets. The method was also able to measure the resistance of the three borehole heat exchangers. The measured resistances lie within the expected range of resistances for the given grouting materials. A further benefit of the method is its relative insensitivity to changes in power input caused by short-term voltage fluctuations.

  14. Study on the thermal resistance in secondary particles chain of silica aerogel by molecular dynamics simulation

    SciTech Connect (OSTI)

    Liu, M. [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing100190 (China); Department of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Qiu, L., E-mail: qiulin111@sina.com, E-mail: jzzhengxinghua@163.com; Zheng, X. H., E-mail: qiulin111@sina.com, E-mail: jzzhengxinghua@163.com; Zhu, J.; Tang, D. W. [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing100190 (China)

    2014-09-07T23:59:59.000Z

    In this article, molecular dynamics simulation was performed to study the heat transport in secondary particles chain of silica aerogel. The two adjacent particles as the basic heat transport unit were modelled to characterize the heat transfer through the calculation of thermal resistance and vibrational density of states (VDOS). The total thermal resistance of two contact particles was predicted by non-equilibrium molecular dynamics simulations (NEMD). The defects were formed by deleting atoms in the system randomly first and performing heating and quenching process afterwards to achieve the DLCA (diffusive limited cluster-cluster aggregation) process. This kind of treatment showed a very reasonable prediction of thermal conductivity for the silica aerogels compared with the experimental values. The heat transport was great suppressed as the contact length increased or defect concentration increased. The constrain effect of heat transport was much significant when contact length fraction was in the small range (<0.5) or the defect concentration is in the high range (>0.5). Also, as the contact length increased, the role of joint thermal resistance played in the constraint of heat transport was increasing. However, the defect concentration did not affect the share of joint thermal resistance as the contact length did. VDOS of the system was calculated by numerical method to characterize the heat transport from atomic vibration view. The smaller contact length and greater defect concentration primarily affected the longitudinal acoustic modes, which ultimately influenced the heat transport between the adjacent particles.

  15. Thermal resistance of prototypical cellular plastic roof insulations

    SciTech Connect (OSTI)

    McElroy, D.L.; Graves, R.S.; Weaver, F.J.

    1991-01-01T23:59:59.000Z

    A cooperative industry/government project was initiated in 1989 to evaluate the viability of alternative hydrochlorofluorocarbons (HCFCs) as blowing agents in polyisocyanurate (PIR) boardstock for roofing applications. Five sets of PIR boardstock were produced to industry specifications for current roof insulation technology. The boardstock allowed the performance of four alternative blowing agents (HCFC-123, HCFC-14lb, and two blends of HCFC-123 and HCFC-14lb) to compared to CFC-11. Laboratory and field tests show the relative thermal performance of the individual PIR boards. One set of laboratory tests show the thermal conductivity (k) from 0 to 50{degree}C (30 to 120{degree}F) of boards prior to installation and as a function of time after exposure to field conditions in the Roof Thermal Research Apparatus (0, 9, and 15 months). Another set of laboratory tests show k as a function of aging time 24{degree}C (75{degree}F) and 65{degree}C (150{degree}F) for full-thickness, half-thickness, and quarter-thickness specimens. These test results and modeling calculations show the value of thin specimen testing as an accelerated aging procedure. 24 refs., 5 figs., 7 tabs.

  16. Corrosion-resistant coating prepared by the thermal decomposition of lithium permanganate

    SciTech Connect (OSTI)

    Ferrando, W.A.

    1999-09-01T23:59:59.000Z

    A ceramic, metal, or metal alloy surface is covered with lithium permanganate which is then thermally decomposed to produce a corrosion resistant coating on the surface. This coating serves as a primer coating which is preferably covered with an overcoat of a sealing paint.

  17. Molecular dynamics simulations of grain boundary thermal resistance in UO2

    SciTech Connect (OSTI)

    Tianyi Chen; Di Chen; Bulent H. Sencer; Lin Shao

    2014-09-01T23:59:59.000Z

    By means of molecular dynamics (MD) simulations, we have calculated Kaptiza resistance of UO2 with or without radiation damage. For coincident site lattice boundaries of different configurations, the boundary thermal resistance of unirradiated UO2 can be well described by a parameter-reduced formula by using boundary energies as variables. We extended the study to defect-loaded UO2 by introducing damage cascades in close vicinity to the boundaries. Following cascade annealing and defect migrations towards grain boundaries, the boundary energy increases and so does Kaptiza resistance. The correlations between these two still follow the same formula extracted from the unirradiated UO2. The finding will benefit multi-scale modeling of UO2 thermal properties under extreme radiation conditions by combining effects from boundary configurations and damage levels.

  18. Anomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar Wind Plasma

    E-Print Network [OSTI]

    Mahendra K. Verma

    1995-09-05T23:59:59.000Z

    In this paper we have estimated typical anomalous viscosity, resistivity, and thermal difffusivity of the solar wind plasma. Since the solar wind is collsionless plasma, we have assumed that the dissipation in the solar wind occurs at proton gyro radius through wave-particle interactions. Using this dissipation length-scale and the dissipation rates calculated using MHD turbulence phenomenology [{\\it Verma et al.}, 1995a], we estimate the viscosity and proton thermal diffusivity. The resistivity and electron's thermal diffusivity have also been estimated. We find that all our transport quantities are several orders of magnitude higher than those calculated earlier using classical transport theories of {\\it Braginskii}. In this paper we have also estimated the eddy turbulent viscosity.

  19. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOE Patents [OSTI]

    Sarin, V.K.

    1990-08-21T23:59:59.000Z

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  20. Corrosion resistance of stainless steels during thermal cycling in alkali nitrate molten salts.

    SciTech Connect (OSTI)

    Bradshaw, Robert W.; Goods, Steven Howard

    2001-09-01T23:59:59.000Z

    The corrosion behavior of three austenitic stainless steels was evaluated during thermal cycling in molten salt mixtures consisting of NaNO{sub 3} and KNO{sub 3}. Corrosion tests were conducted with Types 316, 316L and 304 stainless steels for more than 4000 hours and 500 thermal cycles at a maximum temperature of 565 C. Corrosion rates were determined by chemically descaling coupons. Metal losses ranged from 5 to 16 microns and thermal cycling resulted in moderately higher corrosion rates compared to isothermal conditions. Type 316 SS was somewhat more corrosion resistant than Type 304 SS in these tests. The effect of carbon content on corrosion resistance was small, as 316L SS corroded only slightly slower than 316 SS. The corrosion rates increased as the dissolved chloride content of the molten salt mixtures increased. Chloride concentrations approximating 1 wt.%, coupled with thermal cycling, resulted in linear weight loss kinetics, rather than parabolic kinetics, which described corrosion rates for all other conditions. Optical microscopy and electron microprobe analysis revealed that the corrosion products consisted of iron-chromium spinel, magnetite, and sodium ferrite, organized as separate layers. Microanalysis of the elemental composition of the corrosion products further demonstrated that the chromium content of the iron-chromium spinel layer was relatively high for conditions in which parabolic kinetics were observed. However, linear kinetics were observed when the spinel layer contained relatively little chromium.

  1. Corrosion and wear resistance of tungsten carbide-cobalt and tungsten carbide-cobalt-chromium thermal spray coatings

    SciTech Connect (OSTI)

    Quets, J.; Alford, J.R.

    1999-07-01T23:59:59.000Z

    Tungsten carbide thermal spray coatings provide wear surfaces to new and overhauled components for various industries. Their wear resistance is obtained by incorporating small tungsten carbide particles into a metal matrix. This presentation will show what parameters influence their corrosion resistance in the ASTM B-117 Salt Spray Corrosion Test,

  2. Reduced thermal resistance in AlGaN/GaN multi-mesa-channel high electron mobility transistors

    SciTech Connect (OSTI)

    Asubar, Joel T., E-mail: joel@rciqe.hokudai.ac.jp; Yatabe, Zenji; Hashizume, Tamotsu [Research Center for Integrated Quantum Electronics (RCIQE) and Graduate School of Information Science and Technology, Hokkaido University, Sapporo (Japan); Japan Science and Technology Agency (JST), CREST, 102-0075 Tokyo (Japan)

    2014-08-04T23:59:59.000Z

    Dramatic reduction of thermal resistance was achieved in AlGaN/GaN Multi-Mesa-Channel (MMC) high electron mobility transistors (HEMTs) on sapphire substrates. Compared with the conventional planar device, the MMC HEMT exhibits much less negative slope of the I{sub D}-V{sub DS} curves at high V{sub DS} regime, indicating less self-heating. Using a method proposed by Menozzi and co-workers, we obtained a thermal resistance of 4.8?K-mm/W at ambient temperature of ?350?K and power dissipation of ?9?W/mm. This value compares well to 4.1?K-mm/W, which is the thermal resistance of AlGaN/GaN HEMTs on expensive single crystal diamond substrates and the lowest reported value in literature.

  3. Hyper-resistivity and electron thermal conductivity due to destroyed magnetic surfaces in axisymmetric plasma equilibria

    SciTech Connect (OSTI)

    Weening, R. H. [Department of Radiologic Sciences, Thomas Jefferson University, 901 Walnut Street, Philadelphia, Pennsylvania 19107-5233 (United States)

    2012-06-15T23:59:59.000Z

    In order to model the effects of small-scale current-driven magnetic fluctuations in a mean-field theoretical description of a large-scale plasma magnetic field B(x,t), a space and time dependent hyper-resistivity {Lambda}(x,t) can be incorporated into the Ohm's law for the parallel electric field E Dot-Operator B. Using Boozer coordinates, a theoretical method is presented that allows for a determination of the hyper-resistivity {Lambda}({psi}) functional dependence on the toroidal magnetic flux {psi} for arbitrary experimental steady-state Grad-Shafranov axisymmetric plasma equilibria, if values are given for the parallel plasma resistivity {eta}({psi}) and the local distribution of any auxiliary plasma current. Heat transport in regions of plasma magnetic surfaces destroyed by resistive tearing modes can then be modeled by an electron thermal conductivity k{sub e}({psi})=({epsilon}{sub 0}{sup 2}m{sub e}/e{sup 2}){Lambda}({psi}), where e and m{sub e} are the electron charge and mass, respectively, while {epsilon}{sub 0} is the permittivity of free space. An important result obtained for axisymmetric plasma equilibria is that the {psi}{psi}-component of the metric tensor of Boozer coordinates is given by the relation g{sup {psi}{psi}}({psi}){identical_to}{nabla}{psi} Dot-Operator {nabla}{psi}=[{mu}{sub 0}G({psi})][{mu}{sub 0}I({psi})]/{iota}({psi}), with {mu}{sub 0} the permeability of free space, G({psi}) the poloidal current outside a magnetic surface, I({psi}) the toroidal current inside a magnetic surface, and {iota}({psi}) the rotational transform.

  4. Simulation of thermal reset transitions in resistive switching memories including quantum effects

    SciTech Connect (OSTI)

    Villena, M. A.; Jiménez-Molinos, F.; Roldán, J. B. [Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, Facultad de Ciencias, Avd. Fuentenueva s/n, 18071 Granada (Spain); González, M. B.; Campabadal, F. [Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Campus UAB, 08193 Bellaterra (Spain); Suñé, J.; Miranda, E. [Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra Cerdanyola del Vallès 08193 (Spain); Romera, E. [Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Avd. Fuentenueva s/n, 18071 Granada (Spain)

    2014-06-07T23:59:59.000Z

    An in-depth study of reset processes in RRAMs (Resistive Random Access Memories) based on Ni/HfO{sub 2}/Si-n{sup +} structures has been performed. To do so, we have developed a physically based simulator where both ohmic and tunneling based conduction regimes are considered along with the thermal description of the devices. The devices under study have been successfully fabricated and measured. The experimental data are correctly reproduced with the simulator for devices with a single conductive filament as well as for devices including several conductive filaments. The contribution of each conduction regime has been explained as well as the operation regimes where these ohmic and tunneling conduction processes dominate.

  5. Thermal-hydraulic development a small, simplified, proliferation-resistant reactor.

    SciTech Connect (OSTI)

    Farmer, M. T.; Hill, D. J.; Sienicki, J. J.; Spencer, B. W.; Wade, D. C.

    1999-07-02T23:59:59.000Z

    This paper addresses thermal-hydraulics related criteria and preliminary concepts for a small (300 MWt), proliferation-resistant, liquid-metal-cooled reactor system. A main objective is to assess what extent of simplification is achievable in the concepts with the primary purpose of regaining economic competitiveness. The approach investigated features lead-bismuth eutectic (LBE) and a low power density core for ultra-long core lifetime (goal 15 years) with cartridge core replacement at end of life. This potentially introduces extensive simplifications resulting in capital cost and operating cost savings including: (1) compact, modular, pool-type configuration for factory fabrication, (2) 100+% natural circulation heat transport with the possibility of eliminating the main coolant pumps, (3) steam generator modules immersed directly in the primary coolant pool for elimination of the intermediate heat transport system, and (4) elimination of on-site fuel handling and storage provisions including rotating plug. Stage 1 natural circulation model and results are presented. Results suggest that 100+% natural circulation heat transport is readily achievable using LBE coolant and the long-life cartridge core approach; moreover, it is achievable in a compact pool configuration considerably smaller than PRISM A (for overland transportability) and with peak cladding temperature within the existing database range for ferritic steel with oxide layer surface passivation. Stage 2 analysis follows iteration with core designers. Other thermal hydraulic investigations are underway addressing passive, auxiliary heat removal by air cooling of the reactor vessel and the effects of steam generator tube rupture.

  6. The Effect of the Thermal Boundary Resistance on Self-Heating of AlGaN/GaN HFETs

    E-Print Network [OSTI]

    The Effect of the Thermal Boundary Resistance on Self-Heating of AlGaN/GaN HFETs 1. Introduction, performance of these devices has been limited by self-heating [1] [6]. Thus, accurate modeling of heat diffusion and self-heating effects in AlGaN/GaN heterostructures and device optimization based

  7. Enhancement of thermal stability and water resistance in yttrium-doped GeO{sub 2}/Ge gate stack

    SciTech Connect (OSTI)

    Lu, Cimang, E-mail: cimang@adam.t.u-tokyo.ac.jp; Hyun Lee, Choong; Zhang, Wenfeng; Nishimura, Tomonori; Nagashio, Kosuke; Toriumi, Akira [Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656 (Japan); JST, CREST, 7-3-1 Hongo, Tokyo 113-8656 (Japan)

    2014-03-03T23:59:59.000Z

    We have systematically investigated the material and electrical properties of yttrium-doped GeO{sub 2} (Y-GeO{sub 2}) on Germanium (Ge). A significant improvement of both thermal stability and water resistance were demonstrated by Y-GeO{sub 2}/Ge stack, compared to that of pure GeO{sub 2}/Ge stack. The excellent electrical properties of Y-GeO{sub 2}/Ge stacks with low D{sub it} were presented as well as enhancement of dielectric constant in Y-GeO{sub 2} layer, which is beneficial for further equivalent oxide thickness scaling of Ge gate stack. The improvement of thermal stability and water resistance are discussed both in terms of the Gibbs free energy lowering and network modification of Y-GeO{sub 2}.

  8. ON THE INFLUENCE OF COLD WORK ON RESISTIVITY VARIATIONS WITH THERMAL EXPOSURE IN IN-718 NICKEL-BASE SUPERALLOY

    SciTech Connect (OSTI)

    Madhi, Elhoucine; Nagy, Peter B. [Department of Aerospace Engineering, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2010-02-22T23:59:59.000Z

    In nickel-base superalloys, irreversible electrical conductivity changes occur above a transition temperature where thermally-activated microstructural evolution initiates. The electrical conductivity first decreases above about 450 deg. C then increases above 600 deg. C. However, the presence of plastic deformation results in accelerated microstructure evolution at an earlier transition temperature. It was recently suggested that this well-known phenomenon might explain the notable conductivity difference between the peened near-surface part and the intact part at sufficiently large depth in surface-treated specimens. The influence of cold work on the electrical conductivity change with thermal exposure offers a probable answer to one of the main remaining questions in eddy current residual stress assessment, namely unusually fast and occasionally even non-monotonic decay of the apparent eddy current conductivity (AECC) change that was observed at temperatures as low as 400 deg. C. To validate this explanation, the present study investigates the influence of cold work on low-frequency Alternating Current Potential Drop (ACPD) resistivity variations with thermal exposure. In-situ resistivity monitoring was conducted throughout various heating cycles using the ACPD technique. IN-718 nickel-base superalloy specimens with different levels of cold work were exposed to gradually increasing peak temperatures from 400 deg. C to 800 deg. C. The results indicate that the initial irreversible rise in resistivity is approximately one order of magnitude higher and occurs at about 50 deg. C lower temperature in cold-worked samples of 30% plastic strain than in the intact material.

  9. Impact of Columns and Beams on the Thermal Resistance of the Building Envelope

    E-Print Network [OSTI]

    Omar, E.

    2002-01-01T23:59:59.000Z

    of the buildings envelope. Multi-dimensional heat transfer method was implemented to assess the magnitude of this effect and then to incorporate this in a whole building energy simulation program to assess the impact on the overall thermal performance...

  10. Controlling the thermal contact resistance of a carbon nanotube heat spreader

    E-Print Network [OSTI]

    Li, Teng

    supports that realize either weak or strong thermal coupling, selectively. Direct imaging by in situ m/W from photothermal current mi- croscopy relying on local heating from a scanning laser. Un to liquid phase transition of low-melting-point 156.6 °C nanoscale indium In islands, acting as binary

  11. Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene

    E-Print Network [OSTI]

    Elliott, James

    dynamics study of heat conduction in carbon nanotube (CNT)/polyethylene (PE) composites. Particular thermal conductivity of a macroscopic CNT/PE composite is quantified based on an effective medium approximation model. Ó 2013 Elsevier Ltd. All rights reserved. 1. Introduction Polymer composites are employed

  12. Oxidation-resistant, solution-processed plasmonic Ni nanochain-SiO{sub x} (x?thermal absorbers

    SciTech Connect (OSTI)

    Yu, Xiaobai; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755 (United States); Zhang, Qinglin [Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506 (United States); Li, Juchuan [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-08-21T23:59:59.000Z

    Metal oxidation at high temperatures has long been a challenge in cermet solar thermal absorbers, which impedes the development of atmospherically stable, high-temperature, high-performance concentrated solar power (CSP) systems. In this work, we demonstrate solution-processed Ni nanochain-SiO{sub x} (x?thermal absorbers that exhibit a strong anti-oxidation behavior up to 600?°C in air. The thermal stability is far superior to previously reported Ni nanoparticle-Al{sub 2}O{sub 3} selective solar thermal absorbers, which readily oxidize at 450?°C. The SiO{sub x} (x?resistant Ni nanochain-SiO{sub x} (x?

  13. Numerical Investigation of the Effect of Chirality of Carbon Nanotube on the Interfacial Thermal Resistance

    E-Print Network [OSTI]

    Hu, Yuzhu

    2014-06-05T23:59:59.000Z

    , such as Rankine cycle or Stirling cycle. The advantage of CSP systems accrues from the better reliability of operation in face of the intermittent nature of the energy source (i.e. diurnal cycles of the sun) and the cheap as well as cost-effective thermal... conversion module is typically a turbine (i.e., operating on Rankine cycle) or an engine utilizing air-cycle (i.e., operating on Stirling cycle). The molten salt exiting the heat exchanges is at a lower temperature compared to the inlet to the heat...

  14. Evaluation of the thermal resistance of a roof-mounted multi-reflective radiant barrier for tropical and humid conditions: Experimental study from field measurements

    E-Print Network [OSTI]

    Miranville, Frédéric; Guichard, Stéphane; Boyer, Harry; Praene, Jean Philippe; Bigot, Dimitri

    2012-01-01T23:59:59.000Z

    This paper deals with the experimental evaluation of a roof-mounted multi-reflective radiant barrier (MRRB), installed according to the state of the art, on a dedicated test cell. An existing experimental device was completed with a specific system for the regulation of the airflow rate in the upper air layer included in a typical roof from Reunion Island. Several experimental sequences were conducted to determine the thermal resistance of the roof according to several parameters and following a specific method. The mean method, well known in international standards (ISO 9869 - 1994) for the determination of the thermal resistance using dynamic data, was used. The method was implemented in a building simulation code in order to allow the determination of the thermal indicator automatically. Experimental results are proposed according to different seasonal periods and for different values of the airflow rate in the upper air layer

  15. Evaluation of the thermal resistance of a roof-mounted multi-reflective radiant barrier for tropical and humid conditions: Experimental study from field measurements

    E-Print Network [OSTI]

    Frédéric Miranville; Ali Hamada Fakra; Stéphane Guichard; Harry Boyer; Jean Philippe Praene; Dimitri Bigot

    2012-12-19T23:59:59.000Z

    This paper deals with the experimental evaluation of a roof-mounted multi-reflective radiant barrier (MRRB), installed according to the state of the art, on a dedicated test cell. An existing experimental device was completed with a specific system for the regulation of the airflow rate in the upper air layer included in a typical roof from Reunion Island. Several experimental sequences were conducted to determine the thermal resistance of the roof according to several parameters and following a specific method. The mean method, well known in international standards (ISO 9869 - 1994) for the determination of the thermal resistance using dynamic data, was used. The method was implemented in a building simulation code in order to allow the determination of the thermal indicator automatically. Experimental results are proposed according to different seasonal periods and for different values of the airflow rate in the upper air layer.

  16. Hotbox Test R-value Database and the Building Envelopes Program (BEP)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Building Envelopes Program at Oak Ridge National Laboratory (ORNL) is a program within the Buildings Technology Center (BTC), the premier U.S. research facility devoted to developing technologies that improve the energy efficiency and environmental compatibility of residential and commercial buildings. Our program is divided into two parts: building envelope research, which focuses on the structural elements that enclose a building (walls, roofs and foundations), and materials research, which concentrates on the materials within the envelope systems (such as insulation). The building envelope provides the thermal barrier between the indoor and outdoor environment, and its elements are the key determinants of a building's energy requirements that result from the climate where it is located. [copied from http://www.ornl.gov/sci/roofs+walls/

  17. Laboratory test results on the thermal resistance of polyisocyanurate foamboard insulation blown with CFC-11 substitutes: A cooperative industry/government project

    SciTech Connect (OSTI)

    McElroy, D.L.; Graves, R.S.; Yarbrough, D.W.; Weaver, F.J.

    1991-09-01T23:59:59.000Z

    The fully halogenated chlorofluorocarbon gases (CFC-11 and CFC-12) are used as blowing agents for foam insulations for building and appliance applications. The thermal resistance per unit thickness of these insulations is greater than that of other commercially available insulations. Mandated reductions in the production of these chemicals may lead to less efficient substitutes and increase US energy consumption by one quad or more. This report describes laboratory thermal and aging tests on a set of industry-produced, experimental polyisocyanurate (PIR) laminate boardstock to evaluate the viability of hydrochlorofluorocarbons (HCFSs) as alternative blowing agents to chlorofluorcarbon-11 (CFC-11). The PIR boards were blown with five gases: CFC-11, HCFC- 123, HCFC-141b, and 50/50 and 65/35 blends of HCFC-123/HCFC-141b. These HCFC gases have a lower ozone depletion potential than CFC-11 or CFC-12. Apparent thermal conductivity (k) was determined from 0 to 50{degrees}C. Results on the laminate boards provide an independent laboratory check on the increase in k observed for field exposure in the Roof Thermal Research Apparatus (RTRA). The measured laboratory increase in k was between 8 and 11% after a 240-d field exposure in the RTRA. Results are reported on a thin-specimen, aging procedure to establish the long-term thermal resistance of gas-filled foams. These thin specimens were planed from the industry-produced boardstock foams and aged at 75 and 150{degrees}F for up to 300 d. The resulting k-values were correlated with an exponential dependency on (diffusion coefficient {times} time){sup {1/2}}/thickness and provided diffusion coefficients for air components into, and blowing agent out of, the foam. This aging procedure was used to predict the five-year thermal resistivity of the foams. The thin-specimen aging procedure is supported with calculations by a computer model for aging of foams. 43 refs., 33 figs., 25 tabs.

  18. R-value Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITYResponses: Question 1:Office of Science|Advanced

  19. Sizing Thermally Activated Building Systems (TABS): A Brief Literature Review and Model Evaluation

    E-Print Network [OSTI]

    Basu, Chandrayee; Schiavon, Stefano; Bauman, Fred

    2012-01-01T23:59:59.000Z

    m 2 /W Thermal resistance of the building envelope, K-m 2 /Wtemperature, envelope, slab and tubing thermal resistance,

  20. ABSTRACT -The effect of the structural variation of device on its thermal resistance was investigated for trench-isolated

    E-Print Network [OSTI]

    Rieh, Jae-Sung

    of self-heating and thermal management of chips a prime issue in practical circuit designs. In device for which the initial design was optimized due to severe self-heating effect. In this study, structural

  1. A Study of UO2 Grain Boundary Structure and Thermal Resistance Change under Irradiation using Molecular Dynamics Simulations 

    E-Print Network [OSTI]

    Chen, Tianyi

    2013-08-02T23:59:59.000Z

    showing formation of intermetallic phases ........................................................................................................... 12 Figure 2.1 The thermal conductivity of UO2 as a function on temperature .................... 15... in the fissile materials creates localized heating in the fuel element, which is transferred to a coolant, and then be used to produce mechanical energy and ultimately electricity. Understanding the properties and behaviors of these fissile material compounds...

  2. Thermal performance of steel-framed walls. Final report

    SciTech Connect (OSTI)

    Barbour, E. [NAHB Research Center, Inc., Upper Marlboro, MD (United States); Goodrow, J. [Holometrix, Inc., Bedford, MA (United States); Kosny, J.; Christian, J.E. [Oak Ridge National Lab., TN (United States)

    1994-11-21T23:59:59.000Z

    In wall construction, highly conductive members spaced along the wall, which allow higher heat transfer than that through less conductive areas, are referred to as thermal bridges. Thermal bridges in walls tend to increase heat loss and, under certain adverse conditions, can cause dust streaking (``ghosting``) on interior walls over studs due to temperature differentials, as well as condensation in and on walls. Although such adverse conditions can be easily avoided by proper thermal design of wall systems, these effects have not been well understood and thermal data has been lacking. Therefore, the present study was initiated to provide (1) a better understanding of the thermal behavior of steel-framed walls, (2) a set of R-values for typical wall constructions, and (3) information that could be used to develop improved methods of predicting R-values. An improved method for estimating R-value would allow an equitable comparison of thermal performance with other construction types and materials. This would increase the number of alternative materials for walls available to designers, thus allowing them to choose the optimum choice for construction. Twenty-three wall samples were tested in a calibrated hot box (ASTM C9761) to measure the thermal performance of steel-framed wall systems. The tests included an array of stud frame configurations, exterior sheathing and fiberglass batt insulations. Other studies have not included the use of insulating sheathing, which reduces the extent of the thermal bridges and improves total thermal performance. The purpose of the project was to provide measured R-values for commonly used steel-framed wall configurations and to improve R-value estimating methods. Test results were compared to R-value estimates using the parallel path method, the isothermal planes method and the ASHRAE Zone method. The comparison showed that the known procedures do not fully account for the three-dimensional effects created by steel framing in a wall.

  3. Effects of Framing on the Thermal Performance of Wood and Steel-Framed Walls

    E-Print Network [OSTI]

    Kosny, J.; Yarbrough, D. W.; Childs, P.; Mohiuddin, S. A.

    2006-01-01T23:59:59.000Z

    , the consequences of installation imperfections in cavity insulation on thermal performance are analyzed. The results of the study demonstrated significant sensitivity in some configurations of residential walls to the framing factor and insulation installation... imperfections. Keywords R-value, Framing Factor, Cavity Insulation, Framing Effect Coefficient, Steel Frame walls, Wood-frame walls TERMINOLOGY OF THE WHOLE WALL R-VALUE PROCEDURE USED IN THIS PAPER The following list of thermal performance...

  4. Silica and boron-containing ultraphosphate laser glass with low concentration quenching and improved thermal shock resistance

    DOE Patents [OSTI]

    Cook, Lee M. (Duryea, PA); Stokowski, Stanley E. (Danville, CA)

    1987-04-28T23:59:59.000Z

    Neodymium-doped phosphate glasses having a refractive index, nd>1.520; an Abbe number, Vd, <60; a density <3.0 g/cm.sup.3, a thermal expansion coefficient, .alpha., .ltoreq.110.times.10.sup.-7 .degree.C..sup.-1 ; a Young's Modulus, E, <70.times.10.sup.3 N/mm.sup.2 ; a Poisson's Ratio, .nu., <0.28; a thermal conductivity, K, >0.5 W/m.multidot.K, a thermal FOM=(1-.nu.).multidot.K/.alpha.E>0.7, consisting essentially of, in mol. %: P.sub.2 O.sub.5 : 40-70% SiO.sub.2 : 0-20% B.sub.2 O.sub.3 : 5-20% Sum SiO.sub.2 +B.sub.2 O.sub.3 : 5-35% Sum Li.sub.2 O+Na.sub.2 O+K.sub.2 O: 5-20% Sum La.sub.2 O.sub.3 +Nd.sub.2 O.sub.3 : 3-10% Sum MgO+CaO+SrO+BaO+ZnO: 0-10% and preferably containing an amount of Nd.sub.2 O.sub.3 effective for laser activity having an emission cross-section, .sigma., >3.5.times.10.sup.-20 cm.sup.2 ; a fluorescence linewidth (.DELTA..lambda..sub.f1)<23.5 nm; a first e-folding time of the Nd.sup.3+ fluorescence at 0.5 wt. % Nd.sub.2 O.sub.3 >375 .mu.sec, and a first e-folding time of the Nd.sup.3+ fluorescence at 10 wt. % >175 .mu.sec at 10 wt. %, have very low self-concentration quenching rates.

  5. A NEW MEASUREMENT STRATEGY FOR in situ TESTING OF WALL THERMAL PERFORMANCE

    E-Print Network [OSTI]

    Condon, P.E.

    2011-01-01T23:59:59.000Z

    conservation, Dynamic thermal envelope thermal performanceTHERHAL TEST UNIT The envelope thermal test unit (ETTU) is athe thermal resistance of building envelope systems through

  6. Freeze resistant buoy system

    DOE Patents [OSTI]

    Hill, David E [Knoxville, TN; Greenbaum, Elias [Knoxville, TN

    2007-08-21T23:59:59.000Z

    A freeze resistant buoy system includes a tail-tube buoy having a thermally insulated section disposed predominantly above a waterline, and a thermo-siphon disposed predominantly below the waterline.

  7. Effective Thermal Conductivity of Graded Nanocomposites with Interfacial Thermal

    E-Print Network [OSTI]

    Paulino, Glaucio H.

    Effective Thermal Conductivity of Graded Nanocomposites with Interfacial Thermal Resistance H Engineering, Newmark Laboratory, 205 North Mathews Avenue, University of Illinois at Urbana-Champaign, Urbana, IL 61801 Department of Civil and Environmental Engineering, 4139 Engineering Gateway, University

  8. High PID Resistant Cross-Linked Encapsulnt Based on Polyolefin...

    Broader source: Energy.gov (indexed) [DOE]

    are some concern about thermal creep resistance We have developed new polyolefin encapsulant "SOLAR ASCE TM" , which is based on high electrical resistivity polyolefin...

  9. Thermal performance of typical light frame walls with reflective surface insulations

    SciTech Connect (OSTI)

    Miller, R.G. (Jim Walter Research Corp., St. Petersburg, FL (US)); Riskowski, G.L.; Christianson, L.L. (Agricultural Engineering Dept., Univ. of Illinois at Urbana-Champaign, IL (US))

    1989-01-01T23:59:59.000Z

    A series of tests were conducted in a guarded hotbox to evaluate the thermal performance (R-value) of wall constructions typical of light-frame buildings that are commonly used in agricultural applications. The systems were insulated with either a commercially available foil-faced bubble pack material (FFBP) or foil-faced polyisocyanurate (PIR) foam board. Tests were conducted under two different temperature conditions, chosen to be representative of a midwestern winter and summer. This paper reports temperatures of the surfaces bounding the reflective airspaces measured and the R-value calculated. These data were used in the ASHRAE series/parallel calculations and the resultant R-value was compared to the measured R-value. Agreement was usually better than 10%.

  10. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    SciTech Connect (OSTI)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19T23:59:59.000Z

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  11. CHARACTERIZATION OF A THERMAL SWITCH WITH A DIELECTRIC LIQUID (GLYCERIN) MICRO DROPLET

    E-Print Network [OSTI]

    Collins, Gary S.

    the experimental test stand 3. Calibration of laser sensor detector 4. Using the load cell and the step motorResistance(ohm) Heater Voltage (V) Thermal resistance vs. heater voltage "on state" 400 micron 300 micron 50 micron 0 micron 52 53 54 55 56 57 58 59 0 5 10 15 20 ThermalResistance(ohm) Heater Voltage (V) Thermal resistance

  12. Heat resistances and thermal acclimation rates in the mosquitofish, Gambusia affinis (Baird and Girard) and the red shiner, Notropis lutrensis (Baird and Girard)

    E-Print Network [OSTI]

    Cox, Myron Isaiah

    1970-01-01T23:59:59.000Z

    , Gambusia ai'finis (Baird and Girard) and the Red Sh', ~Nt 1 1t ' (2 ' d dG d). (Ny1970) Myron I. Cox, B. S. , University of Utah Directed by: Dr. Kirk Strawn Nosquitofish and red shiners were collected from the Little Brazos River and Country Club Lake... CONCLUSIONS. 8 e 22 26 31 31 34 39 4B 59 REI"ERENCES. VITA. 63 LIST OF TABLES Table 1. Analysis of covariance of heat resistances of mosquitofish collected June 28, 1968 from Country Club lake and tested at 40 C ~ Table 2. Analysis of covs...

  13. On the charging and thermal characterization of a micro/nano structured thermal ground plane

    E-Print Network [OSTI]

    de Bock, H. Peter J.

    As power densities in electronic devices have increased dramatically over the last decade, advanced thermal management solutions are required. A significant part of the thermal resistance budget is commonly taken up by the ...

  14. High Performance Thermal Interface Technology Overview

    E-Print Network [OSTI]

    R. Linderman; T. Brunschwiler; B. Smith; B. Michel

    2008-01-07T23:59:59.000Z

    An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

  15. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23T23:59:59.000Z

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  16. Condensation potential in high thermal performance walls. Hot, humid summer climate. Forest Service research paper

    SciTech Connect (OSTI)

    Sherwood, G.E.

    1985-07-01T23:59:59.000Z

    To observe actual moisture patterns and the potential for condensation due to long periods of air conditioning in a hot, humid climate, a test structure was constructed near Gulfport, Mississippi, for exposure of eight types of insulated wall panels at controlled indoor conditions and typical outdoor weather conditions. Panels were instrumented with moisture sensors and tested without (Phase 1) and with (Phase 2) penetrations (electrical outlets) in the indoor surface. There was no sustained condensation in any of the walls during either winter season. One type of high thermal performance wall had sustained condensation during both summers, but the wall dried out as the weather became cooler, and moisture content of framing never exceeded 17 percent. Low-permeance sheathing appeared to provide resistance to the buildup of moisture during summer in walls with high overall R values. Penetrating the walls with electrical outlets resulted in slightly higher moisture levels in all of the walls throughout the year. This paper should be useful to building designers, builders, and building code officials in establishing vapor retarder requirements for walls.

  17. IEEE BCTM5.1 Dependenceof ThermalResistanceon Ambientand Actual Temperature

    E-Print Network [OSTI]

    Technische Universiteit Delft

    resistance is inversely proportional to the thermal conductivity. This means that the temperature behaviour of the thermal resistance as function of power dissipation at constant ambient, but increasing device temperature increases the thermal resistance. The relation between temperature and power dissipation is then no longer

  18. Project Profile: Novel Thermal Energy Storage Systems for Concentratin...

    Broader source: Energy.gov (indexed) [DOE]

    resistance between the location where phase change occurs and the working fluid of the power cycle. Either thermosyphons or heat pipes can: Provide an effective thermal...

  19. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    E-Print Network [OSTI]

    Goyal, Vivek Kumar

    2011-01-01T23:59:59.000Z

    Boundary Resistance at GaN/substrate Interface,” Electron.Diamond with GaN Substrate for Improved ThermalDiamond with GaN Substrate for Improved Thermal

  20. Resistivity analysis

    DOE Patents [OSTI]

    Bruce, Michael R. (Austin, TX); Bruce, Victoria J. (Austin, TX); Ring, Rosalinda M. (Austin, TX); Cole, Edward Jr. I. (Albuquerque, NM); Hawkins, Charles F. (Albuquerque, NM); Tangyungong, Paiboon (Albuquerque, NM)

    2006-06-13T23:59:59.000Z

    According to an example embodiment of the present invention a semiconductor die having a resistive electrical connection is analyzed. Heat is directed to the die as the die is undergoing a state-changing operation to cause a failure due to suspect circuitry. The die is monitored, and a circuit path that electrically changes in response to the heat is detected and used to detect that a particular portion therein of the circuit is resistive. In this manner, the detection and localization of a semiconductor die defect that includes a resistive portion of a circuit path is enhanced.

  1. INSTALLATION CERTIFICATE CF-6R-ENV-01 Envelope Insulation; Roofing; Fenestration (Page 1 of 3)

    E-Print Network [OSTI]

    INSTALLATION CERTIFICATE CF-6R-ENV-01 Envelope ­ Insulation; Roofing; Fenestration (Page 1 of 3:__________________________________ Brand Name:_______________________________ Thickness (inches):_________________________ Thermal:_______________________________ Thickness (inches):_________________________ Thermal Resistance (R-Value):_________________ Perimeter

  2. Pre-resistance-welding resistance check

    DOE Patents [OSTI]

    Destefan, Dennis E. (Broomfield, CO); Stompro, David A. (Idaho Falls, ID)

    1991-01-01T23:59:59.000Z

    A preweld resistance check for resistance welding machines uses an open circuited measurement to determine the welding machine resistance, a closed circuit measurement to determine the parallel resistance of a workpiece set and the machine, and a calculation to determine the resistance of the workpiece set. Any variation in workpiece set or machine resistance is an indication that the weld may be different from a control weld.

  3. Thermal barrier coatings

    DOE Patents [OSTI]

    Alvin, Mary Anne (Pittsburg, PA)

    2010-06-22T23:59:59.000Z

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  4. Thermal conductivity measurements of Summit polycrystalline silicon.

    SciTech Connect (OSTI)

    Clemens, Rebecca; Kuppers, Jaron D.; Phinney, Leslie Mary

    2006-11-01T23:59:59.000Z

    A capability for measuring the thermal conductivity of microelectromechanical systems (MEMS) materials using a steady state resistance technique was developed and used to measure the thermal conductivities of SUMMiT{trademark} V layers. Thermal conductivities were measured over two temperature ranges: 100K to 350K and 293K to 575K in order to generate two data sets. The steady state resistance technique uses surface micromachined bridge structures fabricated using the standard SUMMiT fabrication process. Electrical resistance and resistivity data are reported for poly1-poly2 laminate, poly2, poly3, and poly4 polysilicon structural layers in the SUMMiT process from 83K to 575K. Thermal conductivity measurements for these polysilicon layers demonstrate for the first time that the thermal conductivity is a function of the particular SUMMiT layer. Also, the poly2 layer has a different variation in thermal conductivity as the temperature is decreased than the poly1-poly2 laminate, poly3, and poly4 layers. As the temperature increases above room temperature, the difference in thermal conductivity between the layers decreases.

  5. Thermal indicator for wells

    DOE Patents [OSTI]

    Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

    1983-01-01T23:59:59.000Z

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  6. Low thermal conductivity skutterudites

    SciTech Connect (OSTI)

    Fleurial, J.P.; Caillat, T.; Borshchevsky, A.

    1997-07-01T23:59:59.000Z

    Recent experimental results on semiconductors with the skutterudite crystal structure show that these materials possess attractive transport properties and have a good potential for achieving ZT values substantially larger than for state-of-the-art thermoelectric materials. Both n-type and p-type conductivity samples have been obtained, using several preparation techniques. Associated with a low hole effective mass, very high carrier mobilities, low electrical resistivities and moderate Seebeck coefficients are obtained in p-type skutterudites. For a comparable doping level, the carrier mobilities of n-type samples are about an order of magnitude lower than the values achieved on p-type samples. However, the much larger electron effective masses and Seebeck coefficients on p-type samples. However, the much larger electron effective masses and Seebeck coefficients make n-type skutterudite promising candidates as well. Unfortunately, the thermal conductivities of the binary skutterudites compounds are too large, particularly at low temperatures, to be useful for thermoelectric applications. Several approaches to the reduction of the lattice thermal conductivity in skutterudites are being pursued: heavy doping, formation of solid solutions and alloys, study of novel ternary and filled skutterudite compounds. All those approaches have already resulted in skutterudite compositions with substantially lower thermal conductivity values in these materials. Recently, superior thermoelectric properties in the moderate to high temperature range were achieved for compositions combining alloying and filling of the skutterudite structure. Experimental results and mechanisms responsible for low thermal conductivity in skutterudites are discussed.

  7. Thermal Processes

    Broader source: Energy.gov [DOE]

    Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass, to release hydrogen, which is part of their molecular structure. In other processes, heat, in...

  8. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, M.T.; Basaran, O.A.; Kollie, T.G.; Weaver, F.J.

    1996-01-02T23:59:59.000Z

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm{sup 3} and an external surface area in the range of about 90 to 600 m{sup 2}/g is described. The silica powders are prepared by reacting a tetraalkyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders. 2 figs.

  9. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

    1996-01-01T23:59:59.000Z

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  10. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2 /g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  11. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  12. Heat transmission between a profiled nanowire and a thermal bath

    SciTech Connect (OSTI)

    Blanc, Christophe; Heron, Jean-Savin; Fournier, Thierry; Bourgeois, Olivier [Institut NÉEL, CNRS, 25 Avenue des Martyrs, F-38042 Grenoble (France); Inst NEEL, Univ. Grenoble Alpes, F-38042 Grenoble (France)

    2014-07-28T23:59:59.000Z

    Thermal transport through profiled and abrupt contacts between a nanowire and a reservoir has been investigated by thermal conductance measurements. It is demonstrated that above 1?K the transmission coefficients are identical between abrupt and profiled junctions. This shows that the thermal transport is principally governed by the nanowire itself rather than by the resistance of the thermal contact. These results are perfectly compatible with the previous theoretical models. The thermal conductance measured at sub-Kelvin temperatures is discussed in relation to the universal value of the quantum of thermal conductance.

  13. CORROSION RESISTANCE OF DENTAL ALLOYS

    E-Print Network [OSTI]

    Belma Muhamedagi?; Bosna I Hercegovina; Lejla Muhamedagi?; Bosna I Hercegovina

    Metals and metallic alloys are unavoidable materials in everyday dental use for the making of fillings, cast cores and post systems, individual crowns, implantants ’ suprastructures, dentures and orthodontic devices. They still belong to the vital materials in dentistry. Applied alloys in a mouth are exposed to the influence of chemical, biological, mechanical, thermal and electrical forces which can have a negative impact on a very therapeutic work or surrounding tissue. Electrochemical corrosion is the most important damaging factor of dental works. The corrosive resistance of metal is its important characteristic during implantation into a mouth. Therefore precious alloys are the most suitable for dental use. However, due to economic reasons, nonprecious alloys are frequently used, while corrosive resistant precious metals have been used less frequently. Based on studying different literature, the purpose of this work was to give and overview of the existing dental metals and alloys in contexts with their anticorrosive characteristics.

  14. Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint

    SciTech Connect (OSTI)

    DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

    2014-08-01T23:59:59.000Z

    Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

  15. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  16. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  17. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

  18. Numerical and Experimental Investigation of Inorganic Nanomaterials for Thermal Energy Storage (TES) and Concentrated Solar Power (CSP) Applications 

    E-Print Network [OSTI]

    Jung, Seunghwan

    2012-07-16T23:59:59.000Z

    cause significant enhancement in the specific heat capacity of nanofluids and nanocomposites. The interfacial thermal resistance (also known as Kapitza resistance, or “Rk”) between a nanoparticle and the surrounding solvent molecules (for these molten...

  19. THERMAL HYDRAULICS KEYWORDS: thermal hydraulics,

    E-Print Network [OSTI]

    Smith, Barton L.

    -fluid modeling of nuclear reactor systems. Thermal-hydraulic analysis codes such as RELAP5-3D ~Ref. 1! and FLICA regions of the system. In fact, the CFD code FLUENT has previously been coupled to RELAP5-3D ~Refs. 3

  20. Electrical and thermal conductivities in dense plasmas

    SciTech Connect (OSTI)

    Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-09-15T23:59:59.000Z

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  1. Heat conduction through a trapped solid: effect of structural changes on thermal conductance

    E-Print Network [OSTI]

    Debasish Chaudhuri; Abhishek Chaudhuri; Surajit Sengupta

    2007-03-20T23:59:59.000Z

    We study the conduction of heat across a narrow solid strip trapped by an external potential and in contact with its own liquid. Structural changes, consisting of addition and deletion of crystal layers in the trapped solid, are produced by altering the depth of the confining potential. Nonequilibrium molecular dynamics simulations and, wherever possible, simple analytical calculations are used to obtain the thermal resistance in the liquid, solid and interfacial regions (Kapitza or contact resistance). We show that these layering transitions are accompanied by sharp jumps in the contact thermal resistance. Dislocations, if present, are shown to increase the thermal resistance of the strip drastically.

  2. Mechanical Engineering & Thermal Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has · STOP (Structural, Thermal, and Optical Performance) analyses of optical systems Thermal engineers lead evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

  3. 1060 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006 Effects of Thermal-Via Structures on Thin-Film

    E-Print Network [OSTI]

    Chen, Ray

    -heat generation, thermal­electric coupled field analysis, thermal resistance, thermal via, thin-film vertical Effects of Thermal-Via Structures on Thin-Film VCSELs for Fully Embedded Board-Level Optical Interconnection System J. H. Choi, L. Wang, H. Bi, and R. T. Chen, Fellow, IEEE Abstract--The thermal

  4. Utility of transient testing to characterize thermal interface materials

    E-Print Network [OSTI]

    B. Smith; T. Brunschwiler; B. Michel

    2008-01-07T23:59:59.000Z

    This paper analyzes a transient method for the characterization of low-resistance thermal interfaces of microelectronic packages. The transient method can yield additional information about the package not available with traditional static methods at the cost of greater numerical complexity, hardware requirements, and sensitivity to noise. While the method is established for package-level thermal analysis of mounted and assembled parts, its ability to measure the relatively minor thermal impedance of thin thermal interface material (TIM) layers has not yet been fully studied. We combine the transient thermal test with displacement measurements of the bond line thickness to fully characterize the interface.

  5. Methods for enhancing mapping of thermal fronts in oil recovery

    DOE Patents [OSTI]

    Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Wayland, Jr., James R. (Albuquerque, NM)

    1987-01-01T23:59:59.000Z

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  6. Methods for enhancing mapping of thermal fronts in oil recovery

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30T23:59:59.000Z

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  7. Apparatus for thermal performance measurements of insulated roof systems

    SciTech Connect (OSTI)

    Courville, G.E.; Childs, K.W.; Walukas, D.J.; Childs, P.W.; Griggs, E.I.

    1984-01-01T23:59:59.000Z

    The US Department of Energy conducted thermal performance measurements on low-slope roofs with a recently developed field test apparatus at Oak Ridge National Laboratory (ORNL). The apparatus accommodates four 4 ft x 8 ft test specimens and includes the measurement capabilities for specimen temperatures, temperature gradients, heat flows and moisture content. A weather station characterizes outdoor weather conditions. Tests underway include (1) validation of a roof surface temperature model developed to study the effects of wet insulation; (2) measurement of temperature distributions and heat transfer in high R-value roofs; and (3) validation of an analysis of the effectiveness of high reflectance surfaces. Preliminary experimental results are presented and correlations between experiment and modeling are discussed.

  8. Validation of thermal models for a prototypical MEMS thermal actuator.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2008-09-01T23:59:59.000Z

    This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the polycrystalline silicon test structures, as well as uncontrolled nonuniform changes in this quantity over time and during operation.

  9. Study of thermal interfaces aging for power electronics applications J.-P. Ousten, Z. Khatir

    E-Print Network [OSTI]

    Boyer, Edmond

    (change phase, graphite and polymer based) have undergone 1500 of such cycles. As a result, only the phase change material thermal interface has been affected with a 30% decrease of initial thermal resistance. Nevertheless, any structural alterations of these materials should result in changes in their thermal

  10. A New Thermal-Conscious System-Level Methodology for Energy-Efficient Processor Voltage Selection

    E-Print Network [OSTI]

    Wang, Yu

    A New Thermal-Conscious System-Level Methodology for Energy-Efficient Processor Voltage Selection a thermal-conscious system-level methodology to make energy-efficient voltage selection (VS) for nanometer), thermal resistance, are integrated and considered in our system models, and their impacts on energy

  11. Thermal conductivity of thermal-battery insulations

    SciTech Connect (OSTI)

    Guidotti, R.A.; Moss, M.

    1995-08-01T23:59:59.000Z

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  12. Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique: Preprint

    SciTech Connect (OSTI)

    Feng, X.; King, C.; DeVoto, D.; Mihalic, M.; Narumanchi, S.

    2014-08-01T23:59:59.000Z

    With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 to 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 ?m bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.

  13. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

  14. Seasonal thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01T23:59:59.000Z

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  15. Reexamination of Basal Plane Thermal Conductivity of Suspended Graphene Samples Measured by Electro-Thermal Micro-Bridge Methods

    SciTech Connect (OSTI)

    Jo, Insun [University of Texas at Austin; Pettes, Michael [University of Connecticut, Storrs; Lindsay, Lucas R [ORNL; Ou, Eric [University of Texas at Austin; Weathers, Annie [University of Texas at Austin; Moore, Arden [Louisiana Tech University; Yao, Zhen [University of Texas at Austin; Shi, Li [University of Texas at Austin

    2015-01-01T23:59:59.000Z

    Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD), and that such a feature does not reveal the failure of Fourier s law despite the increase in the apparent thermal conductivity with length. The re-analyzed thermal conductivity of a single-layer CVD graphene sample reaches about ( 1680 180 )Wm-1K-1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about ( 880 60 ) and ( 730 60 ) Wm-1K-1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary.

  16. THERMAL CONDUCTIVITY AND OTHER PROPERTIES OF CEMENTITIOUS GROUTS

    SciTech Connect (OSTI)

    ALLAN,M.

    1998-05-01T23:59:59.000Z

    The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.

  17. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  18. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01T23:59:59.000Z

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  19. Improving the thermal performance of the US residential window stock

    SciTech Connect (OSTI)

    Brown, R.E.; Arasteh, D.K.; Eto, J.H.

    1992-05-01T23:59:59.000Z

    Windows have typically been the least efficient thermal component in the residential envelope, but technology advances over the past decade have helped to dramatically improve the energy efficiency of window products. While the thermal performance of these advanced technology windows can be easily characterized for a particular building application, few precise estimates exist of their aggregate impact on national or regional energy use. Policy-makers, utilities, researchers and the fenestration industry must better understand these products` ultimate conservation potential in order to determine the value of developing new products and initiating programs to accelerate their market acceptance. This paper presents a method to estimate the conservation potential of advanced window technologies, combining elements of two well-known modeling paradigms: supply curves of conserved energy and residential end-use forecasting. The unique features include: detailed descriptions of the housing stock by region and vintage, state-of-the-art thermal descriptions of window technologies, and incorporation of market effects to calculate achievable conservation potential and timing. We demonstrate the methodology by comparing, for all new houses built between 1990 and 2010, the conservation potential of very efficient, high R-value ``superwindows`` in the North Central federal region and spectrally-selective low-emissivity (moderate Revalue and solar transmittance) windows in California.

  20. Numerical evaluation of the thermal performances of roof-mounted radiant barriers

    E-Print Network [OSTI]

    Miranville, Frédéric; Lucas, Franck; Johan, Seriacaroupin

    2014-01-01T23:59:59.000Z

    This paper deals with the thermal performances of roof-mounted radiant barriers. Using dynamic simulations of a mathematical model of a whole test cell including a radiant barrier installed between the roof top and the ceiling, the thermal performance of the roof is calculated. The mean method is more particularly used to assess the thermal resistance of the building component and lead to a value which is compared to the one obtained for a mass insulation product such as polyurethane foam. On a further stage, the thermal mathematical model is replaced by a thermo-aeraulic model which is used to evaluate the thermal resistance of the roof as a function of the airflow rate. The results shows a better performance of the roof in this new configuration, which is widely used in practice. Finally, the mathematical relation between the thermal resistance and the airflow rate is proposed.

  1. Thermal properties of organic and inorganic aerogels

    SciTech Connect (OSTI)

    Hrubesh, L.W.; Pekala, R.W. (Chemistry and Material Science Department, Lawrence Livermore National Laboratory, Livermore, California 94551-9900 (United States))

    1994-03-01T23:59:59.000Z

    Aerogels are open-cell foams that have already been shown to be among the best thermal insulating solid materials known. This paper examines the three major contributions to thermal transport through porous materials; solid, gaseous, and radiative, to identify how to reduce the thermal conductivity of air-filled aerogels. We find that significant improvements in the thermal insulation property of aerogels are possible by; (i) employing materials with a low intrinsic solid conductivity, (ii) reducing the average pore size within aerogels, and (iii) affecting an increase of the infrared extinction in aerogels. Theoretically, polystyrene is the best of the organic materials and zirconia is the best inorganic material to use for the lowest achievable conductivity. Significant reduction of the thermal conductivity for all aerogel varieties is predicted with only a modest decrease of the average pore size. This might be achieved by modifying the sol-gel chemistry leading to aerogels. For example, a thermal resistance value of [ital R]=20 per inch would be possible for an air-filled resorcinol-formaldehyde aerogel at a density of 156 kg/m[sup 3], if the average pore size was less than 35 nm. An equation is included which facilitates the calculation of the optimum density for the minimum total thermal conductivity, for all varieties of aerogels.

  2. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, J.C.; Brehm, W.F.

    1980-02-08T23:59:59.000Z

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  3. From Consumer Resistance to Stakeholder Resistance The case of nanotechnology*

    E-Print Network [OSTI]

    Boyer, Edmond

    1 From Consumer Resistance to Stakeholder Resistance The case of nanotechnology* Caroline Gauthier proposes to study the resistance of stakeholders, by exploring the nanotech field. Nanotechnology is today in the resistance context. Keywords. Nanotechnology; Resistance Bio. Caroline Gauthier is currently Professor

  4. Reducing Thermal Losses and Gains With Buried and Encapsulated Ducts in Hot-Humid Climates

    SciTech Connect (OSTI)

    Shapiro, C.; Magee, A.; Zoeller, W.

    2013-02-01T23:59:59.000Z

    The Consortium for Advanced Residential Buildings (CARB) monitored three houses in Jacksonville, FL, to investigate the effectiveness of encapsulated and encapsulated/buried ducts in reducing thermal losses and gains from ductwork in unconditioned attics. Burying ductwork beneath loose-fill insulation has been identified as an effective method of reducing thermal losses and gains from ductwork in dry climates, but it is not applicable in humid climates where condensation may occur on the outside of the duct jacket. By encapsulating the ductwork in closed cell polyurethane foam (ccSPF) before burial beneath loose-fill mineral fiber insulation, the condensation potential may be reduced while increasing the R-value of the ductwork.

  5. Correspondences DDT resistance in

    E-Print Network [OSTI]

    Buckling, Angus

    Magazine R587 Correspondences DDT resistance in flies carries no cost Caroline McCart1, Angus to carry a cost in the absence of pesticide and consequently not to spread to fixation [1,2]. However, DDT resistance in Drosophila melanogaster (DDT-R) is approaching fixation globally, long after withdrawl of DDT

  6. Graded Materials for Resistance to Contact Deformation and Damage

    E-Print Network [OSTI]

    Suresh, Subra

    surfaces to impart hard- ness, and fatigue and wear resistance in trans- mission gear teeth. However surface coatings (typically more than 1 mm thick) than is feasible with sharp interfaces. In some applications, such as diesel- engine piston heads, thicker coatings impart better protection against thermal

  7. High temperature, low expansion, corrosion resistant ceramic and gas turbine

    DOE Patents [OSTI]

    Rauch, Sr., Harry W. (Lionville, PA)

    1981-01-01T23:59:59.000Z

    The present invention relates to ZrO.sub.2 -MgO-Al.sub.2 O.sub.3 -SiO.sub.2 ceramic materials having improved thermal stability and corrosion resistant properties. The utilization of these ceramic materials as heat exchangers for gas turbine engines is also disclosed.

  8. Crack-resistant siloxane molding compounds. [Patent application

    DOE Patents [OSTI]

    McFarland, J.W.; Swearngin, C.B.

    1980-11-03T23:59:59.000Z

    The crack resistance of phenyl silicone molding resins containing siliceous fillers is improved by incorporating therein about 0.5 to 5.5% by weight of ..beta..-eucryptite, a lithium aluminum silicate having a negative thermal expansion coefficient. These molding resins are particularly suitable for encapsulating electronic devices such as diodes, coils, resistors, and the like.

  9. Induction Motors Thermal Monitoring by Means of Rotor Resistance Identification

    E-Print Network [OSTI]

    Boyer, Edmond

    , FRANCE Mohamed-El-Hackemi.Benbouzid@sc.u-picardie.fr Abstract: Rotor and stator temperature machines. Especially, when operating with overload cycles, it is necessary to monitor rotor bars and stator winding temperatures to make sure that the temperature remains below prescribed limits. The purpose

  10. Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings 

    E-Print Network [OSTI]

    Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

    2010-01-01T23:59:59.000Z

    The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass...

  11. Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings

    E-Print Network [OSTI]

    Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

    2010-01-01T23:59:59.000Z

    The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass...

  12. High strength, thermally stable, oxidation resistant, nickel-based alloy

    DOE Patents [OSTI]

    Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Midlothian, VA); Vought, Joseph D. (Rockwood, TN); Howell, C. Randal (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    A polycrystalline alloy is composed essentially of, by weight %: 15% to 30% Mo, 3% to 10% Al, up to 10% Cr, up to 10% Fe, up to 2% Si, 0.01% to 0.2% C, 0.01% to 0.04% B, balance Ni.

  13. Calculation of thermal parameters of SiGe microbolometers

    E-Print Network [OSTI]

    Voitsekhovskii, A V; Yuryev, V A; Nesmelov, S N; 10.1007/s11182-008-9015-4

    2012-01-01T23:59:59.000Z

    The thermal parameters of a SiGe microbolometer were calculated using numerical modeling. The calculated thermal conduction and thermal response time are in good agreement with the values found experimentally and range between 2x10$^-7$ and 7x10$^-8$ W/K and 1.5 and 4.5 ms, respectively. High sensitivity of microbolometer is achieved due to optimization of the thermal response time and thermal conduction by fitting the geometry of supporting heat-removing legs or by selection of a suitable material providing boundary thermal resistance higher than 8x10$^-3$ cm$^2$K/W at the SiGe interface.

  14. Thermal non-equilibrium in dispersed flow film boiling in a vertical tube

    E-Print Network [OSTI]

    Forslund, Robert Paul

    1966-01-01T23:59:59.000Z

    The departure from thermal equilibrium between a dispersed liquid phase and its vapor at high quality during film boiling is investigated, The departure from equilibruim is manifested by the high resistance to heat transfer ...

  15. Electro thermal simulation of superconducting nanowire avalanche photodetectors

    E-Print Network [OSTI]

    Francesco Marsili; Faraz Najafi; Charles Herder; Karl K. Berggren

    2010-12-17T23:59:59.000Z

    We developed an electro thermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates. SNAPs are single photon detectors consisting of the parallel connection of N superconducting nanowires. We extrapolated the physical constants of the model from experimental data and we simulated the time evolution of the device resistance, temperature and current by solving two coupled electrical and thermal differential equations describing the nanowires. The predictions of the model were in good quantitative agreement with the experimental results.

  16. AC Resistance measuring instrument

    DOE Patents [OSTI]

    Hof, Peter J. (Richland, WA)

    1983-01-01T23:59:59.000Z

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  17. AC resistance measuring instrument

    DOE Patents [OSTI]

    Hof, P.J.

    1983-10-04T23:59:59.000Z

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  18. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  19. Radiation resistant austenitic stainless steel alloys

    DOE Patents [OSTI]

    Maziasz, Philip J. (Oak Ridge, TN); Braski, David N. (Oak Ridge, TN); Rowcliffe, Arthur F. (Oak Ridge, TN)

    1989-01-01T23:59:59.000Z

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  20. Radiation resistant austenitic stainless steel alloys

    DOE Patents [OSTI]

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11T23:59:59.000Z

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  1. Wear Resistant Amorphous and Nanocomposite Coatings

    SciTech Connect (OSTI)

    Racek, O

    2008-03-26T23:59:59.000Z

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  2. Thermal unobtainiums? The perfect thermal conductor and

    E-Print Network [OSTI]

    Braun, Paul

    conduction · Heat conduction in Bose condensates ­ electronic superconductors ­ superfluid helium ­ Bose condensate of magnons #12;Outline--toward perfect thermal insulators · Einstein and minimum thermal directions #12;Gas kinetic equation is a good place to start · Anharmonicity (high T limit) · Point defect

  3. Non-thermal Plasma Chemistry Non-thermal Thermal

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    -thermal Plasma Chemical Flow Reactor #12;Werner von Siemens ,, ... construction of an apparatus generation (1857) pollution control volatile organic components, NOx reforming, ... radiation sources excimer;Leuchtstoffröhre Plasma-Bildschirm Energiesparlampe #12;electrical engineering light sources textile industry

  4. High efficiency, oxidation resistant radio frequency susceptor

    DOE Patents [OSTI]

    Besmann, Theodore M.; Klett, James W.

    2004-10-26T23:59:59.000Z

    An article and method of producing an article for converting energy from one form to another having a pitch-derived graphitic foam carbon foam substrate and a single layer coating applied to all exposed surfaces wherein the coating is either silicon carbide or carbides formed from a Group IVA metal. The article is used as fully coated carbon foam susceptors that more effectively absorb radio frequency (RF) band energy and more effectively convert the RF energy into thermal band energy or sensible heat. The essentially non-permeable coatings also serve as corrosion or oxidation resistant barriers.

  5. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05T23:59:59.000Z

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  6. Multiwavelength Thermal Emission

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks

  7. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01T23:59:59.000Z

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  8. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01T23:59:59.000Z

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  9. Field examples of electrical resistivity changes during steamflooding

    SciTech Connect (OSTI)

    Mansure, A.J. (Sandia National Lab., Albuquerque, NM (United States)); Meldau, R.F.; Weyland, H.V.

    1993-03-01T23:59:59.000Z

    An essential part of using electrical geodiagnostic techniques to map thermal recovery processes is understanding the relationship between the process and the formation resistivity. This paper shows how the relationship used to interpret electrical well logs can be used to understand steamflood resistivity changes. Examples are presented of data from steamfloods in fields with different reservoir characteristics. Included is a typical heavy-oil steamflood (Kern River field) and a steamflood where fresh water is used for the steam generator feedwater (Elk Hills field). Because of differences in reservoir characteristics, changes in resistivity vary from reservoir to reservoir. The information presented include well logs taken before and after steamflooding and petrophysical measurements sufficient to determine the factors that controlled the resistivity changes in each field.

  10. Note: A simple model for thermal management in solenoids

    SciTech Connect (OSTI)

    McIntosh, E. M., E-mail: emb56@cam.ac.uk; Ellis, J. [The Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)] [The Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2013-11-15T23:59:59.000Z

    We describe a model of the dynamical temperature evolution in a solenoid winding. A simple finite element analysis is calibrated by accurately measuring the thermally induced resistance change of the solenoid, thus obviating the need for accurate knowledge of the mean thermal conductivity of the windings. The model predicts quasi thermal runaway for relatively modest current increases from the normal operating conditions. We demonstrate the application of this model to determine the maximum current that can be safely applied to solenoids used for helium spin-echo measurements.

  11. Computational modeling of thermal conductivity of single walled carbon nanotube polymer composites

    E-Print Network [OSTI]

    Maruyama, Shigeo

    was developed to study the thermal conductivity of single walled carbon nanotube (SWNT)-polymer composites1 Computational modeling of thermal conductivity of single walled carbon nanotube polymer resistance on effective conductivity of composites were quantified. The present model is a useful tool

  12. INTER-CARBON NANOTUBE CONTACT IN THERMAL TRANSPORT OF CONTROLLED-MORPHOLOGY

    E-Print Network [OSTI]

    Maruyama, Shigeo

    conductivities of aligned carbon nanotube (CNT) polymer nano-composites were calculated using a random walk-isotropic heat conduction in aligned-CNT polymeric composites, because this geometry is an ideal thermal layer-CNT contact, volume fraction and thermal boundary resistance on the effective conductivities of CNT-composites

  13. Method for transferring thermal energy and electrical current in thin-film electrochemical cells

    DOE Patents [OSTI]

    Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

    2003-05-27T23:59:59.000Z

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  14. Hydrogen Permeation Resistant Coatings

    SciTech Connect (OSTI)

    KORINKO, PAUL; ADAMS, THAD; CREECH, GREGGORY

    2005-06-15T23:59:59.000Z

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings may be applied to these ferrous alloys to retard hydrogen ingress. Hydrogen is known to be very mobile in materials of construction. In this study, the permeation resistance of bare stainless steel samples and coated stainless steel samples was tested. The permeation resistance was measured using a modular permeation rig using a pressure rise technique. The coating microstructure and permeation results will be discussed in this document as will some additional testing.

  15. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

    2009-06-02T23:59:59.000Z

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  16. Vital Stats SPLIT RESISTIVE

    E-Print Network [OSTI]

    Weston, Ken

    6 TONS) That's as much as one female African elephant! 25 T SPLITAN ENGINEERING MARVEL W hile the Magnet Lab has developed 14 previous world- record resistive magnets over the years, the new 25 T Split magnet is not simply the next in line. This world-unique magnet system required a complete rethinking

  17. Variable nonlinear resistances

    E-Print Network [OSTI]

    Howard, James Edgar

    1955-01-01T23:59:59.000Z

    VARIETAL". NONLINEAR RESIS'IANCES A Thes1s JA'. 4ES EDGAR HOWARD as to style and content by Head Department January 1955 LIBRARY A 4 IS COLLEGE PF TEXAS VARIABLE NONLINEAR RESISTANCES A Thesis By JAMES EDGAR HOWARD Submitted...

  18. Thermal Infrared Remote Sensing

    E-Print Network [OSTI]

    Thermal Infrared Remote Sensing Thermal Infrared Remote Sensing #12;0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4 and x-ray Ultraviolet Infrared Microwave and radio waves Wavelength in meters (m) Electromagnetic.77 700 red limit 30k0.041 2.48 green500 near-infrared far infrared ultraviolet Thermal Infrare refers

  19. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  20. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov (indexed) [DOE]

    eere.energy.gov * energy.govsunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving...

  1. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Thermal Control Technologies Advanced Vehicle Systems Technology Transfer Jet Cooling Alternative Coolants TIM Low R Structure Phase Change Spray Cooling Air Cooling...

  2. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

    1994-09-20T23:59:59.000Z

    A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

  3. Induced natural convection thermal cycling device

    DOE Patents [OSTI]

    Heung, Leung Kit (Aiken, SC)

    2002-08-13T23:59:59.000Z

    A device for separating gases, especially isotopes, by thermal cycling of a separation column using a pressure vessel mounted vertically and having baffled sources for cold and heat. Coils at the top are cooled with a fluid such as liquid nitrogen. Coils at the bottom are either electrical resistance coils or a tubular heat exchange. The sources are shrouded with an insulated "top hat" and simultaneously opened and closed at the outlets to cool or heat the separation column. Alternatively, the sources for cold and heat are mounted separately outside the vessel and an external loop is provided for each circuit.

  4. Hybrid organic/inorganic coatings for abrasion resistance on plastic and metal substrates

    SciTech Connect (OSTI)

    Wen, J.; Jordens, K.; Wilkes, G.L. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1996-12-31T23:59:59.000Z

    Novel abrasion resistant coatings have been successfully prepared by the sol-gel method. These materials are spin coated onto bisphenol-A polycarbonate, diallyl diglycol carbonate resin (CR-39) sheet, aluminum, and steel substrates and are thermally cured to obtain a transparent coating of a few microns in thickness. Following the curing, the abrasion resistance is measured and compared with an uncoated control. It was found that these hybrid organic/inorganic networks partially afford excellent abrasion resistance to the polycarbonate substrates investigated. In addition to having excellent abrasion resistance comparable to current commercial coatings, some newly developed systems are also UV resistant. Similar coating formulations applied to metals can greatly improve the abrasion resistance despite the fact that the coatings are lower in density than their substrates.

  5. Corrosion-resistant metal surfaces

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY)

    2009-03-24T23:59:59.000Z

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  6. Resistance after firing protected electric match. [Patent application

    DOE Patents [OSTI]

    Montoya, A.P.

    1980-03-20T23:59:59.000Z

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  7. Thermal conductor for high-energy electrochemical cells

    DOE Patents [OSTI]

    Hoffman, Joseph A. (Minneapolis, MN); Domroese, Michael K. (South St. Paul, MN); Lindeman, David D. (Hudson, WI); Radewald, Vern E. (Austin, TX); Rouillard, Roger (Beloeil, CA); Trice, Jennifer L. (Eagan, MN)

    2000-01-01T23:59:59.000Z

    A thermal conductor for use with an electrochemical energy storage device is disclosed. The thermal conductor is attached to one or both of the anode and cathode contacts of an electrochemical cell. A resilient portion of the conductor varies in height or position to maintain contact between the conductor and an adjacent wall structure of a containment vessel in response to relative movement between the conductor and the wall structure. The thermal conductor conducts current into and out of the electrochemical cell and conducts thermal energy between the electrochemical cell and thermally conductive and electrically resistive material disposed between the conductor and the wall structure. The thermal conductor may be fabricated to include a resilient portion having one of a substantially C-shaped, double C-shaped, Z-shaped, V-shaped, O-shaped, S-shaped, or finger-shaped cross-section. An elastomeric spring element may be configured so as to be captured by the resilient conductor for purposes of enhancing the functionality of the thermal conductor. The spring element may include a protrusion that provides electrical insulation between the spring conductor and a spring conductor of an adjacently disposed electrochemical cell in the presence of relative movement between the cells and the wall structure. The thermal conductor may also be fabricated from a sheet of electrically conductive material and affixed to the contacts of a number of electrochemical cells.

  8. Thermal control of ceramic breeder blankets

    SciTech Connect (OSTI)

    Raffray, A.R.; Tillack, M.S.; Abdou, M.A. (Univ. of California, Los Angeles, CA (United States))

    1993-05-01T23:59:59.000Z

    Thermal control is an important issue for ceramic breeder blankets since the breeder needs to operate within its temperature window for the tritium release and inventory to be acceptable. A thermal control region is applicable not only to situations where the coolant can be run at low temperature, such as for the International Thermonuclear Experimental Reactor (ITER) base blanket, but also to ITER test module and power reactor situations, where it would allow for ceramic breeder operation over a wide range of power densities in space and time. Four thermal control mechanisms applicable to ceramic breeder blanket designs are described: A helium gap, a beryllium sintered block region, a beryllium sintered block region with a metallic felt at the beryllium-cladding interface, and a beryllium packed-bed region. Key advantages and issues associated with each of these mechanisms are discussed. Experimental and modeling studies focusing on beryllium packed-bed thermal conductivity and wall conductance, and beryllium sintered block-stainless steel cladding contact resistance are then described. Finally, an assessment of the potential of the different mechanisms for both passive and active control is carried out based on example calculations for a given set of ITER-like conditions. 28 refs., 33 figs., 3 tabs.

  9. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM); Elder, Michael G. (Los Alamos, NM); Kemme, Joseph E. (Albuquerque, NM)

    1985-01-01T23:59:59.000Z

    An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

  10. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, G.A.; Elder, M.G.; Kemme, J.E.

    1984-03-20T23:59:59.000Z

    The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

  11. Degenerate resistive switching and ultrahigh density storage in resistive memory

    SciTech Connect (OSTI)

    Lohn, Andrew J., E-mail: drewlohn@gmail.com; Mickel, Patrick R., E-mail: prmicke@sandia.gov; James, Conrad D.; Marinella, Matthew J. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-09-08T23:59:59.000Z

    We show that in tantalum oxide resistive memories, activation power provides a multi-level variable for information storage that can be set and read separately from the resistance. These two state variables (resistance and activation power) can be precisely controlled in two steps: (1) the possible activation power states are selected by partially reducing resistance, then (2) a subsequent partial increase in resistance specifies the resistance state and the final activation power state. We show that these states can be precisely written and read electrically, making this approach potentially amenable for ultra-high density memories. We provide a theoretical explanation for information storage and retrieval from activation power and experimentally demonstrate information storage in a third dimension related to the change in activation power with resistance.

  12. Microsecond switchable thermal antenna

    SciTech Connect (OSTI)

    Ben-Abdallah, Philippe, E-mail: pba@institutoptique.fr; Benisty, Henri; Besbes, Mondher [Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France)

    2014-07-21T23:59:59.000Z

    We propose a thermal antenna that can be actively switched on and off at the microsecond scale by means of a phase transition of a metal-insulator material, the vanadium dioxide (VO{sub 2}). This thermal source is made of a periodically patterned tunable VO{sub 2} nanolayer, which support a surface phonon-polariton in the infrared range in their crystalline phase. Using electrodes properly registered with respect to the pattern, the VO{sub 2} phase transition can be locally triggered by ohmic heating so that the surface phonon-polariton can be diffracted by the induced grating, producing a highly directional thermal emission. Conversely, when heating less, the VO{sub 2} layers cool down below the transition temperature, the surface phonon-polariton cannot be diffracted anymore so that thermal emission is inhibited. This switchable antenna could find broad applications in the domain of active thermal coatings or in those of infrared spectroscopy and sensing.

  13. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  14. Tunable thermal link

    DOE Patents [OSTI]

    Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

    2014-07-15T23:59:59.000Z

    Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

  15. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2007-09-18T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  16. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01T23:59:59.000Z

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  17. Earworm resistance in maize

    E-Print Network [OSTI]

    Yu, Ming-Hung

    1967-01-01T23:59:59.000Z

    'ths effectiveness of the systemic insecticide/ Thimet, as a control for cora earworm. (2) To evaluate the effects of husk extension and tightness of husk on damage caused by earwors4 (3) To evaluate the field corn hybrids for earworm resistance snd.... Some cultural methods were able to reduce the in)ury caused by Che corn earworm to some degree. Damage wss lessened if sna smpgoyed good agronomic practices such as fall plowiug, fertilizing, rotation of crops, and planted adapted hybrids. Barber...

  18. Thermally-related safety issues associated with thermal batteries.

    SciTech Connect (OSTI)

    Guidotti, Ronald Armand

    2006-06-01T23:59:59.000Z

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  19. Electric Motor Thermal Management for Electric Traction Drives (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.; Cousineau, J.; Moreno, G.

    2014-09-01T23:59:59.000Z

    Thermal constraints place significant limitations on how electric motors ultimately perform. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of material thermal properties and convective heat transfer coefficients. In this work, the thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. Also, convective heat transfer coefficients of automatic transmission fluid (ATF) jets were measured to better understand the heat transfer of ATF impinging on motor copper windings. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients.

  20. High-Temperature Thermal Array for Next Generation Solar Thermal...

    Broader source: Energy.gov (indexed) [DOE]

    Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

  1. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

    2000-01-01T23:59:59.000Z

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  2. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect (OSTI)

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26T23:59:59.000Z

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  3. Parylene-based active micro space radiator with thermal contact switch

    SciTech Connect (OSTI)

    Ueno, Ai; Suzuki, Yuji [Department of Mechanical Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-03-03T23:59:59.000Z

    Thermal management is crucial for highly functional spacecrafts exposed to large fluctuations of internal heat dissipation and/or thermal boundary conditions. Since thermal radiation is the only means for heat removal, effective control of radiation is required for advanced space missions. In the present study, a MEMS (Micro Electro Mechanical Systems) active radiator using the contact resistance change has been proposed. Unlike previous bulky thermal louvers/shutters, higher fill factor can be accomplished with an array of electrostatically driven micro diaphragms suspended with polymer tethers. With an early prototype developed with parylene MEMS technologies, radiation heat flux enhancement up to 42% has been achieved.

  4. Solar Thermal Conversion

    SciTech Connect (OSTI)

    Kreith, F.; Meyer, R. T.

    1982-11-01T23:59:59.000Z

    The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

  5. Thermal insulations using vacuum panels

    DOE Patents [OSTI]

    Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

    1991-07-16T23:59:59.000Z

    Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

  6. Thermal Insulation Systems

    E-Print Network [OSTI]

    Stanley, T. F.

    1982-01-01T23:59:59.000Z

    Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy...

  7. Thermally driven circulation

    E-Print Network [OSTI]

    Nelken, Haim

    1987-01-01T23:59:59.000Z

    Several problems connected by the theme of thermal forcing are addressed herein. The main topic is the stratification and flow field resulting from imposing a specified heat flux on a fluid that is otherwise confined to a ...

  8. Contact thermal lithography

    E-Print Network [OSTI]

    Schmidt, Aaron Jerome, 1979-

    2004-01-01T23:59:59.000Z

    Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

  9. Abrasion resistant composition

    DOE Patents [OSTI]

    Fischer, Keith D; Barnes, Christopher A; Henderson, Stephen L

    2014-05-13T23:59:59.000Z

    A surface covering composition of abrasion resistant character adapted for disposition in overlying bonded relation to a metal substrate. The surface covering composition includes metal carbide particles within a metal matrix at a packing factor of not less than about 0.6. Not less than about 40 percent by weight of the metal carbide particles are characterized by an effective diameter in the range of +14-32 mesh prior to introduction to the metal matrix. Not less than about 3 percent by weight of the metal carbide particles are characterized by an effective diameter of +60 mesh prior to introduction to the metal matrix.

  10. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21T23:59:59.000Z

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  11. Electric Motor Thermal Management R&D (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.

    2014-11-01T23:59:59.000Z

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize the passive thermal performance, the effective thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. The active cooling performance of automatic transmission fluid (ATF) jets was also measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings. Ford's Mercon LV was the ATF evaluated in this study. The presentation provides an overview of prior work with a focus on describing future plans for research to be performed during FY15.

  12. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H. (Carlisle, MA)

    1984-04-24T23:59:59.000Z

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  13. Resistive hydrogen sensing element

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

  14. Oxidation Resistant Graphite Studies

    SciTech Connect (OSTI)

    W. Windes; R. Smith

    2014-07-01T23:59:59.000Z

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  15. Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.

    SciTech Connect (OSTI)

    Fuller, Thomas F. (Georgia Institute of Technology, Atlanta, GA); Bandhauer, Todd (Georgia Institute of Technology, Atlanta, GA); Garimella, Srinivas (Georgia Institute of Technology, Atlanta, GA)

    2012-01-01T23:59:59.000Z

    A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

  16. Thermal conductivity profile determination in proton-irradiated ZrC by spatial and frequency scanning thermal wave methods

    SciTech Connect (OSTI)

    Jensen, C. [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France) [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France); Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States); Chirtoc, M.; Horny, N.; Antoniow, J. S.; Pron, H. [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France)] [GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687 (France); Ban, H. [Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States)] [Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322 (United States)

    2013-10-07T23:59:59.000Z

    Using complementary thermal wave methods, the irradiation damaged region of zirconium carbide (ZrC) is characterized by quantifiably profiling the thermophysical property degradation. The ZrC sample was irradiated by a 2.6 MeV proton beam at 600 °C to a dose of 1.75 displacements per atom. Spatial scanning techniques including scanning thermal microscopy (SThM), lock-in infrared thermography (lock-in IRT), and photothermal radiometry (PTR) were used to directly map the in-depth profile of thermal conductivity on a cross section of the ZrC sample. The advantages and limitations of each system are discussed and compared, finding consistent results from all techniques. SThM provides the best resolution finding a very uniform thermal conductivity envelope in the damaged region measuring ?52 ± 2 ?m deep. Frequency-based scanning PTR provides quantification of the thermal parameters of the sample using the SThM measured profile to provide validation of a heating model. Measured irradiated and virgin thermal conductivities are found to be 11.9 ± 0.5 W m{sup ?1} K{sup ?1} and 26.7 ±1 W m{sup ?1} K{sup ?1}, respectively. A thermal resistance evidenced in the frequency spectra of the PTR results was calculated to be (1.58 ± 0.1) × 10{sup ?6} m{sup 2} K W{sup ?1}. The measured thermal conductivity values compare well with the thermal conductivity extracted from the SThM calibrated signal and the spatially scanned PTR. Combined spatial and frequency scanning techniques are shown to provide a valuable, complementary combination for thermal property characterization of proton-irradiated ZrC. Such methodology could be useful for other studies of ion-irradiated materials.

  17. Skew resisting hydrodynamic seal

    DOE Patents [OSTI]

    Conroy, William T. (Pearland, TX); Dietle, Lannie L. (Sugar Land, TX); Gobeli, Jeffrey D. (Houston, TX); Kalsi, Manmohan S. (Houston, TX)

    2001-01-01T23:59:59.000Z

    A novel hydrodynamically lubricated compression type rotary seal that is suitable for lubricant retention and environmental exclusion. Particularly, the seal geometry ensures constraint of a hydrodynamic seal in a manner preventing skew-induced wear and provides adequate room within the seal gland to accommodate thermal expansion. The seal accommodates large as-manufactured variations in the coefficient of thermal expansion of the sealing material, provides a relatively stiff integral spring effect to minimize pressure-induced shuttling of the seal within the gland, and also maintains interfacial contact pressure within the dynamic sealing interface in an optimum range for efficient hydrodynamic lubrication and environment exclusion. The seal geometry also provides for complete support about the circumference of the seal to receive environmental pressure, as compared the interrupted character of seal support set forth in U.S. Pat. Nos. 5,873,576 and 6,036,192 and provides a hydrodynamic seal which is suitable for use with non-Newtonian lubricants.

  18. PLANT RESISTANCE Variation in Tolerance and Resistance to the Leafhopper

    E-Print Network [OSTI]

    Ginzel, Matthew

    PLANT RESISTANCE Variation in Tolerance and Resistance to the Leafhopper Empoasca fabae (Hemiptera) (Hemiptera: Cicadellidae), is an emerging pest of potato and insecticide applications to control this insect, Empoasca fabae (Harris) (Hemiptera: Cicadellidae), is a sap-feeding insect that attacks a variety of plants

  19. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27T23:59:59.000Z

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  20. Holographic thermalization in noncommutative geometry

    E-Print Network [OSTI]

    Xiao-Xiong Zeng; Xian-Ming Liu; Wen-Biao Liu

    2015-05-02T23:59:59.000Z

    Gravitational collapse of a shell of dust in noncommutative geometry is probed by the renormalized geodesic length, which is dual to probe the thermalization by the two-point correlation function in the dual conformal field theory. We find that larger the noncommutative parameter is, longer the thermalization time is, which implies that the large noncommutative parameter delays the thermalization process. We also investigate how the noncommutative parameter affects the thermalization velocity and thermalization acceleration.

  1. MESO-SCALE MODELING OF THE INFLUENCE OF INTERGRANULAR GAS BUBBLES ON EFFECTIVE THERMAL CONDUCTIVITY

    SciTech Connect (OSTI)

    Paul C. Millett; Michael Tonks

    2011-06-01T23:59:59.000Z

    Using a mesoscale modeling approach, we have investigated how intergranular fission gas bubbles, as observed in high-burnup nuclear fuel, modify the effective thermal conductivity in a polycrystalline material. The calculations reveal that intergranular porosity has a significantly higher resistance to heat transfer compared to randomly-distributed porosity. A model is developed to describe this conductivity reduction that considers an effective grain boundary Kapitza resistance as a function of the fractional coverage of grain boundaries by bubbles.

  2. Thermal And Mechanical Analysis of High-power Light-emitting Diodes with Ceramic Packages

    E-Print Network [OSTI]

    J. Hu; L. Yang; M. -W. Shin

    2008-01-07T23:59:59.000Z

    In this paper we present the thermal and mechanical analysis of high-power light-emitting diodes (LEDs) with ceramic packages. Transient thermal measurements and thermo-mechanical simulation were performed to study the thermal and mechanical characteristics of ceramic packages. Thermal resistance from the junction to the ambient was decreased from 76.1 oC/W to 45.3 oC/W by replacing plastic mould to ceramic mould for LED packages. Higher level of thermo-mechanical stresses in the chip were found for LEDs with ceramic packages despite of less mismatching coefficients of thermal expansion comparing with plastic packages. The results suggest that the thermal performance of LEDs can be improved by using ceramic packages, but the mounting process of the high power LEDs with ceramic packages is critically important and should be in charge of delaminating interface layers in the packages.

  3. Standard Practice for Evaluating Thermal Insulation Materials for Use in Solar Collectors

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    1994-01-01T23:59:59.000Z

    1.1 This practice sets forth a testing methodology for evaluating the properties of thermal insulation materials to be used in solar collectors with concentration ratios of less than 10. Tests are given herein to evaluate the pH, surface burning characteristics, moisture adsorption, water absorption, thermal resistance, linear shrinkage (or expansion), hot surface performance, and accelerated aging. This practice provides a test for surface burning characteristics but does not provide a methodology for determining combustibility performance of thermal insulation materials. 1.2 The tests shall apply to blanket, rigid board, loose-fill, and foam thermal insulation materials used in solar collectors. Other thermal insulation materials shall be tested in accordance with the provisions set forth herein and should not be excluded from consideration. 1.3 The assumption is made that elevated temperature, moisture, and applied stresses are the primary factors contributing to the degradation of thermal insulation mat...

  4. Factors affecting the microstructural stability and durability of thermal barrier coatings fabricated by air plasma spraying

    SciTech Connect (OSTI)

    Helminiak, M. A. [National Energy Technology Laboratory (NETL) and Univ. of Pittsburgh, PA (United States); Yanar, N. M. [National Energy Technology Laboratory (NETL) and Univ. of Pittsburgh, PA (United States); Pettit, F. S. [National Energy Technology Laboratory (NETL) and Univ. of Pittsburgh, PA (United States); Taylor, T. A. [Praxair Surface Technologies, Inc., Indianapolis, IN (United States); Meier, G. H. [National Energy Technology Laboratory (NETL) and Univ. of Pittsburgh, PA (United States)

    2012-10-01T23:59:59.000Z

    The high-temperature behavior of high-purity, low-density (HP-LD) air plasma sprayed (APS) thermal barrier coatings (TBCs) with NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying is described. The high purity yttria-stabilized zirconia resulted in top coats which are highly resistant to sintering and transformation from the metastable tetragonal phase to the equilibrium mixture of monoclinic and cubic phases. The thermal conductivity of the as-processed TBC is low but increases during high temperature exposure even before densification occurs. The porous topcoat microstructure also resulted in good spallation resistance during thermal cycling. The actual failure mechanisms of the APS coatings were found to depend on topcoat thickness, topcoat density, and the thermal cycle frequency. The failure mechanisms are described and the durability of the HP-LD coatings is compared with that of state-of-the-art electron beam physical vapor deposition TBCs.

  5. Computational Analysis of Factors Influencing Enhancement of Thermal Conductivity of Nanofluids

    E-Print Network [OSTI]

    Okeke, George; Antony, Joseph; Ding, Yulong; 10.1007/s11051-011-0389-9

    2012-01-01T23:59:59.000Z

    Numerical investigations are conducted to study the effect of factors such as particle clustering and interfacial layer thickness on thermal conductivity of nanofluids. Based on this, parameters including Kapitza radius, and fractal and chemical dimension which have received little attention by previous research are rigorously investigated. The degree of thermal enhancement is analysed for increasing aggregate size, particle concentration, interfacial thermal resistance, and fractal and chemical dimensions. This analysis is conducted for water-based nanofluids of Alumina (Al2O3), CuO and Titania (TiO2) nanoparticles where the particle concentrations are varied up to 4vol%. Results from the numerical work are validated using available experimental data. For the case of aggregate size, particle concentration and interfacial thermal resistance; the aspect ratio (ratio of radius of gyration of aggregate to radius of primary particle, Rg/a) is varied between 2 to 60. It was found that the enhancement decreases wit...

  6. Thermal trim for luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-11-19T23:59:59.000Z

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  7. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05T23:59:59.000Z

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  8. Thermal insulated glazing unit

    SciTech Connect (OSTI)

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01T23:59:59.000Z

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  9. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2011-06-07T23:59:59.000Z

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  10. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Fronk, Matthew Howard (Honeoye Falls, NY); Borup, Rodney Lynn (East Rochester, NY); Hulett, Jay S. (Rochester, NY); Brady, Brian K. (North Chili, NY); Cunningham, Kevin M. (Romeo, MI)

    2002-01-01T23:59:59.000Z

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  11. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, T.D.

    1996-07-23T23:59:59.000Z

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  12. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

    1995-01-01T23:59:59.000Z

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  13. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

    1996-01-01T23:59:59.000Z

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  14. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

  15. Thermal test options

    SciTech Connect (OSTI)

    Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

    1993-02-01T23:59:59.000Z

    Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods.

  16. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19T23:59:59.000Z

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  17. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    "This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

  18. Downhole geothermal well sensors comprising a hydrogen-resistant optical fiber

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2005-02-08T23:59:59.000Z

    A new class of optical fiber based thermal sensors has been invented. The new sensors comprise hydrogen-resistant optical fibers which are able to withstand a hot, hydrogen-containing environment as is often found in the downhole well environment.

  19. Prediction of Thermal Conductivity for Irradiated SiC/SiC Composites by Informing Continuum Models with Molecular Dynamics Data

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Gao, Fei; Henager, Charles H.; Kurtz, Richard J.

    2014-05-01T23:59:59.000Z

    This article proposes a new method to estimate the thermal conductivity of SiC/SiC composites subjected to neutron irradiation. The modeling method bridges different scales from the atomic scale to the scale of a 2D SiC/SiC composite. First, it studies the irradiation-induced point defects in perfect crystalline SiC using molecular dynamics (MD) simulations to compute the defect thermal resistance as a function of vacancy concentration and irradiation dose. The concept of defect thermal resistance is explored explicitly in the MD data using vacancy concentrations and thermal conductivity decrements due to phonon scattering. Point defect-induced swelling for chemical vapor deposited (CVD) SiC as a function of irradiation dose is approximated by scaling the corresponding MD results for perfect crystal ?-SiC to experimental data for CVD-SiC at various temperatures. The computed thermal defect resistance, thermal conductivity as a function of grain size, and definition of defect thermal resistance are used to compute the thermal conductivities of CVD-SiC, isothermal chemical vapor infiltrated (ICVI) SiC and nearly-stoichiometric SiC fibers. The computed fiber and ICVI-SiC matrix thermal conductivities are then used as input for an Eshelby-Mori-Tanaka approach to compute the thermal conductivities of 2D SiC/SiC composites subjected to neutron irradiation within the same irradiation doses. Predicted thermal conductivities for an irradiated Tyranno-SA/ICVI-SiC composite are found to be comparable to available experimental data for a similar composite ICVI-processed with these fibers.

  20. Sierra Designs 20 degrees F Wild Bill Climashield Sleeping Bag ClimashieldTM HL, a high-loft continuous filament insulation, offers excellent thermal

    E-Print Network [OSTI]

    Walker, Lawrence R.

    -loft continuous filament insulation, offers excellent thermal efficiency, durability and water resistance Chest to create a pillow; no need for a pillow to take up valuable space in your backpack Insulated draft tube

  1. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R.J.

    1981-08-01T23:59:59.000Z

    During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

  2. Nonclassicality of Thermal Radiation

    E-Print Network [OSTI]

    Lars M. Johansen

    2004-02-16T23:59:59.000Z

    It is demonstrated that thermal radiation of small occupation number is strongly nonclassical. This includes most forms of naturally occurring radiation. Nonclassicality can be observed as a negative weak value of a positive observable. It is related to negative values of the Margenau-Hill quasi-probability distribution.

  3. Thermal Reactor Safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  4. Thermal barrier coating

    DOE Patents [OSTI]

    Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

    2001-01-01T23:59:59.000Z

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  5. Thermal Infrared Remote Sensing

    E-Print Network [OSTI]

    to us, like reflective ("nearreflective ("near--" infrared (0.7" infrared (0.7 -- 3.03.0 µµm)m) andand near-infrared far infrared ultraviolet Thermal Infrared refers to region o EM spectrum from ~3 - 14 µm.landscape. IMPORTANT: NEARIMPORTANT: NEAR--INFRARED is short enough wavelength toINFRARED is short enough wavelength

  6. Solar thermal financing guidebook

    SciTech Connect (OSTI)

    Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

    1983-05-01T23:59:59.000Z

    This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

  7. High-Temperature Thermal Array for Next Generation Solar Thermal...

    Broader source: Energy.gov (indexed) [DOE]

    3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

  8. Fast Thermal Simulation for Architecture Level Dynamic Thermal Management

    E-Print Network [OSTI]

    Tan, Sheldon X.-D.

    Fast Thermal Simulation for Architecture Level Dynamic Thermal Management Pu Liu, Zhenyu Qi, Hang Li, Lingling Jin, Wei Wu, Sheldon X.-D. Tan, Jun Yang Department of Electrical Engineering temperature by dynamic thermal managements becomes necessary. This paper proposes a novel approach

  9. Covered Product Category: Residential Electric Resistance Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Resistance Water Heaters Covered Product Category: Residential Electric Resistance Water Heaters The Federal Energy Management Program (FEMP) sets federal efficiency...

  10. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

  11. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedLow Temperature Thermal Energy Storage Program of Oak Ridge

  12. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Environmental Management (EM)

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

  13. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftin Ocean Thermal Energy Conversion (OTEC) technology haveThe Ocean Thermal Energy Conversion (OTEC) 2rogrammatic

  14. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Survey of Thermal Energy Storage in Aquifers Coupled withAnnual Thermal Energy Storage Contractors' InformationLarge-Scale Thermal Energy Storage for Cogeneration and

  15. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

  16. Development of Submerged Entry Nozzles that Resist Clogging

    SciTech Connect (OSTI)

    Dr. Jeffrey D. Smith; Kent D. Peasle

    2002-10-14T23:59:59.000Z

    Accretion formation and the associated clogging of SENs is a major problem for the steel industry leading to decreased strand speed, premature changing of SENs or strand termination and the associated reductions in productivity, consistency, and steel quality. A program to evaluate potentially clog resistance materials was initiated at the University of Missouri-Rolla. The main objective of the research effort was to identify combinations of steelmaking and refractory practices that would yield improved accretion resistance for tundish nozzles and submerged entry nozzles. A number of tasks were identified during the initial kick-off meeting and each was completed with two exceptions, the thermal shock validation and the industrial trials. Not completing these two tasks related to not having access to industrial scale production facilities. Though much of the results and information generated in the project is of proprietary nature.

  17. Joule Heating and Anomalous Resistivity in the Solar Corona

    E-Print Network [OSTI]

    Steven R. Spangler

    2008-12-22T23:59:59.000Z

    Recent radioastronomical observations of Faraday rotation in the solar corona can be interpreted as evidence for coronal currents, with values as large as $2.5 \\times 10^9$ Amperes (Spangler 2007). These estimates of currents are used to develop a model for Joule heating in the corona. It is assumed that the currents are concentrated in thin current sheets, as suggested by theories of two dimensional magnetohydrodynamic turbulence. The Spitzer result for the resistivity is adopted as a lower limit to the true resistivity. The calculated volumetric heating rate is compared with an independent theoretical estimate by Cranmer et al (2007). This latter estimate accounts for the dynamic and thermodynamic properties of the corona at a heliocentric distance of several solar radii. Our calculated Joule heating rate is less than the Cranmer et al estimate by at least a factor of $3 \\times 10^5$. The currents inferred from the observations of Spangler (2007) are not relevant to coronal heating unless the true resistivity is enormously increased relative to the Spitzer value. However, the same model for turbulent current sheets used to calculate the heating rate also gives an electron drift speed which can be comparable to the electron thermal speed, and larger than the ion acoustic speed. It is therefore possible that the coronal current sheets are unstable to current-driven instabilities which produce high levels of waves, enhance the resistivity and thus the heating rate.

  18. Thermal Modeling of Lundell Alternators

    E-Print Network [OSTI]

    Tang, Sai Chun

    Thermal analysis of Lundell alternators used in automobiles is presented. An analytical thermal model for Lundell alternators is proposed, and procedures for acquiring the model parameters are elucidated. Based on the ...

  19. Thermal Conductivity of Coated Paper

    SciTech Connect (OSTI)

    Kerr, Lei L [ORNL; Pan, Yun-Long [Smart Papers, Hamilton, OH 45013; Dinwiddie, Ralph Barton [ORNL; Wang, Hsin [ORNL; Peterson, Robert C. [Miami University, Oxford, OH

    2009-01-01T23:59:59.000Z

    In this paper, we introduce a method for measuring the thermal conductivity of paper using a hot disk system. To the best of our knowledge, few publications are found discussing the thermal conductivity of a coated paper although it is important to various forms of today s digital printing where heat is used for imaging as well as for toner fusing. This motivates us to investigate the thermal conductivity of paper coating. Our investigation demonstrates that thermal conductivity is affected by the coat weight and the changes in the thermal conductivity affect ink gloss and density. As the coat weight increases, the thermal conductivity increases. Both the ink gloss and density decrease as the thermal conductivity increases. The ink gloss appears to be more sensitive to the changes in the thermal conductivity.

  20. Jet Quenching and Holographic Thermalization

    E-Print Network [OSTI]

    Elena Caceres; Arnab Kundu; Berndt Müller; Diana Vaman; Di-Lun Yang

    2012-08-31T23:59:59.000Z

    We employ the AdS/CFT correspondence to investigate the thermalization of the strongly-coupled plasma and the jet quenching of a hard probe traversing such a thermalizing medium.

  1. Cermet fuel thermal conductivity 

    E-Print Network [OSTI]

    Alvis, John Mark

    1988-01-01T23:59:59.000Z

    particles of low conductivity dispersed in a metal matrix of high conductivity. A computer code was developed in order to compute the conductivity of cermet fuels as predicted by existing models and an additional model derived in this work... gas release from the fuel particle and contact resistance at the fuel-matrix interface. A description of the methodology used to construct the model is given in Chapter 3. Comparisons between the analytic predictions and the experimental data...

  2. Microviscometric studies on thermal diffusion 

    E-Print Network [OSTI]

    Reyna, Eddie

    1959-01-01T23:59:59.000Z

    for its improvement. This in~estigation was supported in part by the Convsir Division of General Dynamics Corporation. TABLE OF CONTENTS Chapter III INTRODUCTION EXPERINENTAL NETHODS AND PROCEDUPJIS Thermal Diffusion Column Viscosity Measurements.... The main interest of 6 tais work was the molecular weight dependence of the thermal diffusion coefficient and the suitability of thermal diffusion as a method of frac- tionation of polymers. Since the work of Debye and Bueche, applications of thermal...

  3. Production of virus resistant plants

    DOE Patents [OSTI]

    Dougherty, W.G.; Lindbo, J.A.

    1996-12-10T23:59:59.000Z

    A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection. 9 figs.

  4. Production of virus resistant plants

    DOE Patents [OSTI]

    Dougherty, William G. (Philomath, OR); Lindbo, John A. (Kent, WA)

    1996-01-01T23:59:59.000Z

    A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection.

  5. Corrosion resistance of concrete reinforcement

    E-Print Network [OSTI]

    Ward-Waller, Elizabeth, 1982-

    2005-01-01T23:59:59.000Z

    The objective of this thesis is to investigate the mechanism of corrosion of steel reinforcement in concrete and epoxy coated reinforcing bars as corrosion resistant alternatives. Several case studies explore the durability ...

  6. Rapid thermal cycling of metal-supported solid oxide fuel cellmembranes

    SciTech Connect (OSTI)

    Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

    2004-01-02T23:59:59.000Z

    Solid oxide fuel cell (SOFC) membranes were developed in which zirconia-based electrolyte thin films were supported by a composite metal/ceramic electrode, and were subjected to rapid thermal cycling between 200 and 800 C. The effects of this cycling on membrane performance were evaluated. The membranes, not yet optimized for performance, showed a peak power density of 350mW/cm2at 900 C in laboratory-sized SOFCs that was not affected by the thermal cycling. This resistance to cycling degradation is attributed to the close matching of thermal expansion coefficient of the cermet support electrode with that of the zirconia electrolyte.

  7. The Thermal Expansion, Elastic and Fracture Properties of Porous Cordierite at Elevated Temperatures

    SciTech Connect (OSTI)

    Shyam, Amit [ORNL; Lara-Curzio, Edgar [ORNL; Pandey, Amit [ORNL; Watkins, Thomas R [ORNL; More, Karren [Oak Ridge National Laboratory (ORNL)

    2012-01-01T23:59:59.000Z

    The properties that determine the thermal shock resistance in materials are reported for porous cordierite, a leading candidate material for the fabrication of diesel particulate filters. Fracture toughness and slow crack growth tests were performed on test specimens obtained from the walls of diesel particulate filter monolithic substrates using the double-torsion test method at temperatures between 20 C and 900 C. The thermal expansion and elastic properties were characterized between 20 C and 1000 C. The role of the microstructure of porous cordierite in determining its unusual thermal expansion and elevated temperature Young's modulus and fracture toughness are discussed.

  8. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12T23:59:59.000Z

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  9. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan (El Cerrito, CA); Farmer, Joseph C. (Tracy, CA); Lee, Chuck K. (Hayward, CA); Walker, Jeffrey (Gaithersburg, MD); Russell, Paige (Las Vegas, NV); Kirkwood, Jon (Saint Leonard, MD); Yang, Nancy (Lafayette, CA); Champagne, Victor (Oxford, PA)

    2012-05-29T23:59:59.000Z

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  10. Methods of forming thermal management systems and thermal management methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05T23:59:59.000Z

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  11. Thermal Stabilization Blend Plan

    SciTech Connect (OSTI)

    RISENMAY, H.R.

    2000-05-02T23:59:59.000Z

    This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.

  12. Thermally stable diamond brazing

    DOE Patents [OSTI]

    Radtke, Robert P. (Kingwood, TX)

    2009-02-10T23:59:59.000Z

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  13. Thermal synthesis apparatus

    DOE Patents [OSTI]

    Fincke, James R. (Idaho Falls, ID) [Idaho Falls, ID; Detering, Brent A. (Idaho Falls, ID) [Idaho Falls, ID

    2009-08-18T23:59:59.000Z

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  14. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  15. Multiscale thermal transport.

    SciTech Connect (OSTI)

    Graham, Samuel Jr. (; .); Wong, C. C.; Piekos, Edward Stanley

    2004-02-01T23:59:59.000Z

    A concurrent computational and experimental investigation of thermal transport is performed with the goal of improving understanding of, and predictive capability for, thermal transport in microdevices. The computational component involves Monte Carlo simulation of phonon transport. In these simulations, all acoustic modes are included and their properties are drawn from a realistic dispersion relation. Phonon-phonon and phonon-boundary scattering events are treated independently. A new set of phonon-phonon scattering coefficients are proposed that reflect the elimination of assumptions present in earlier analytical work from the simulation. The experimental component involves steady-state measurement of thermal conductivity on silicon films as thin as 340nm at a range of temperatures. Agreement between the experiment and simulation on single-crystal silicon thin films is excellent, Agreement for polycrystalline films is promising, but significant work remains to be done before predictions can be made confidently. Knowledge gained from these efforts was used to construct improved semiclassical models with the goal of representing microscale effects in existing macroscale codes in a computationally efficient manner.

  16. Nanofluids for vehicle thermal management.

    SciTech Connect (OSTI)

    Choi, S. U.-S.; Yu, W.; Hull, J. R.; Zhang, Z. G.; Lockwood, F. E.; Energy Technology; The Valvoline Co.

    2003-01-01T23:59:59.000Z

    Applying nanotechnology to thermal engineering, ANL has addressed the interesting and timely topic of nanofluids. We have developed methods for producing both oxide and metal nanofluids, studied their thermal conductivity, and obtained promising results: (1) Stable suspensions of nanoparticles can be achieved. (2) Nanofluids have significantly higher thermal conductivities than their base liquids. (3) Measured thermal conductivities of nanofluids are much greater than predicted. For these reasons, nanofluids show promise for improving the design and performance of vehicle thermal management systems. However, critical barriers to further development and application of nanofluid technology are agglomeration of nanoparticles and oxidation of metallic nanoparticles. Therefore, methods to prevent particle agglomeration and degradation are required.

  17. Thermal control structure and garment

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN); Cameron, Christopher Stan (Sanford, NC)

    2012-03-13T23:59:59.000Z

    A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.

  18. THERMAL PERFORMANCE OF MANAGED WINDOW SYSTEMS

    E-Print Network [OSTI]

    Selkowitz, S. E.

    2011-01-01T23:59:59.000Z

    on Thermal Performance of the Exterior Envelopes ofof thermal loads resulting from the building envelope areThermal Test Facility, LhL-9653, prepared for the ASHRAE/DOE Conference-on"t:heThermal Performance the Exterior Envelope

  19. LSPE Qualification and Flight Acceptance T /V Test Su.m..mary and Thermal Design

    E-Print Network [OSTI]

    Rathbun, Julie A.

    5. 2 5. 3 5.4 5.5 5. 6 5.7 Nodal Description Thermal Resistances Solar Heating Lunar Surface ------------ 8. 3 Lunar Surface Simulator 8. 4 Solar Simulation 8. 4. I 8. 3. 2 High Explosive Package Solar Simulation Geophone Infrared Heaters 8. 5 Experiment Location -------------- 8. 5. I 8. 5. 2 High Explosive

  20. Cross-verification of thermal characterisation of a micro-cooler Extended abstract

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of holding the microcooler plate and ensured the necessary cooling gas supply to it. The method of obtaining was recorded in the measurement. The measured transients (cooling curves) were transformed into structure functions from which the partial thermal resistance corresponding to the cooling assembly was identified

  1. Lithographic lasers with low thermal A. Demir, G. Zhao and D.G. Deppe

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Lithographic lasers with low thermal resistance A. Demir, G. Zhao and D.G. Deppe Data are presented to better heat spreading through the epi- taxial structure for small lasers. Introduction: Oxide-confinement using the oxide-aperture. The low threshold and low power consumption have produced high-speed modu

  2. Thermal management systems and methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12T23:59:59.000Z

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  3. Thermal and non-thermal energies in solar flares

    E-Print Network [OSTI]

    Pascal Saint-Hilaire; Arnold O. Benz

    2005-03-03T23:59:59.000Z

    The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

  4. Computational Analysis of Factors Influencing Enhancement of Thermal Conductivity of Nanofluids

    E-Print Network [OSTI]

    George Okeke; Sanjeeva Witharana; Joseph Antony; Yulong Ding

    2012-05-09T23:59:59.000Z

    Numerical investigations are conducted to study the effect of factors such as particle clustering and interfacial layer thickness on thermal conductivity of nanofluids. Based on this, parameters including Kapitza radius, and fractal and chemical dimension which have received little attention by previous research are rigorously investigated. The degree of thermal enhancement is analysed for increasing aggregate size, particle concentration, interfacial thermal resistance, and fractal and chemical dimensions. This analysis is conducted for water-based nanofluids of Alumina (Al2O3), CuO and Titania (TiO2) nanoparticles where the particle concentrations are varied up to 4vol%. Results from the numerical work are validated using available experimental data. For the case of aggregate size, particle concentration and interfacial thermal resistance; the aspect ratio (ratio of radius of gyration of aggregate to radius of primary particle, Rg/a) is varied between 2 to 60. It was found that the enhancement decreases with interfacial layer thickness. Also the rate of decrease is more significant after a given aggregate size. For a given interfacial resistance, the enhancement is mostly sensitive to Rg/a <20 indicated by the steep gradients of data plots. Predicted and experimental data for thermal conductivity enhancement are in good agreement.

  5. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOE Patents [OSTI]

    Dunning, John S. (Corvallis, OR); Alman, David E. (Salem, OR)

    2002-11-05T23:59:59.000Z

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800.degree. C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800.degree. C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700.degree. C. at a low cost

  6. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOE Patents [OSTI]

    Dunning, John S.; Alman, David E.

    2002-11-05T23:59:59.000Z

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  7. High-Performance Corrosion-Resistant Iron-Based Amorphous Metals: The Effects of Composition, Structure and Environment on Corrosion Resistance

    SciTech Connect (OSTI)

    Farmer, J; Choi, J S; Haslam, J; Lian, T; Day, S; Yang, N; Blue, C; Peters, W; Bayles, R; Lewandowski, J; Perepezko, J; Hildal, K; Lavernia, E; Ajdelsztajn, A; Grave, O; Aprigliano, L; Kaufman, L; Boudreau, J; Branagan, D J; Beardsley, B

    2006-04-11T23:59:59.000Z

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative thermal phase stability, microstructure, mechanical properties, damage tolerance, and corrosion resistance. Some alloy additions are known to promote glass formation and to lower the critical cooling rate [F. Guo, S. J. Poon, Applied Physics Letters, 83 (13) 2575-2577, 2003]. Other elements are known to enhance the corrosion resistance of conventional stainless steels and nickel-based alloys [A. I. Asphahani, Materials Performance, Vol. 19, No. 12, pp. 33-43, 1980] and have been found to provide similar benefits to iron-based amorphous metals. Many of these materials can be cast as relatively thick ingots, or applied as coatings with advanced thermal spray technology. A wide variety of thermal spray processes have been developed by industry, and can be used to apply these new materials as coatings. Any of these can be used for the deposition of the formulations discussed here, with varying degrees of residual porosity and crystalline structure. Thick protective coatings have now been made that are fully dense and completely amorphous in the as-sprayed condition. An overview of the High-Performance Corrosion Resistant Materials (HPCRM) Project will be given, with particular emphasis on the corrosion resistance of several different types of iron-based amorphous metals in various environments of interest. The salt fog test has been used to compare the performance of various wrought alloys, melt-spun ribbons, arc-melted drop-cast ingots, and thermal-spray coatings for their susceptibility to corrosion in marine environments. Electrochemical tests have also been performed in seawater. Spontaneous breakdown of the passive film and localized corrosion require that the open-circuit corrosion potential exceed the critical potential. The resistance to localized corrosion is seawater has been quantified through measurement of the open-circuit corrosion potential (E{sub corr}), the breakdown potential (E{sub crit}) and the repassivation potential (E{sub rp}). The greater the difference between the open-circuit corrosion potential and the repassivation potential ({Delta}E), the more resistant a material is to modes of localized corrosion such as pitting and crevice corrosion. Cyclic polarization (CP) was used as a means of measuring the critical potential (E{sub crit}) relative to the open-circuit corrosion potential (E{sub corr}). Linear polarization (LP) has been used to determine the corrosion current (i{sub corr}) and the corresponding corrosion rate. Other aspects of the materials will also be discussed, as well as potential applications.

  8. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-11-24T23:59:59.000Z

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  9. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2009-09-29T23:59:59.000Z

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  10. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R. (Manteca, CA); Simmons, Blake A. (San Francisco, CA); Zifer, Thomas (Manteca, CA); Jamison, Gregory M. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Rahimian, Kamyar (Albuquerque, NM); Long, Timothy M. (Urbana, IL); Wheeler, David R. (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2006-04-04T23:59:59.000Z

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  11. Thermally switchable dielectrics

    DOE Patents [OSTI]

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30T23:59:59.000Z

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  12. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-06-01T23:59:59.000Z

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  13. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01T23:59:59.000Z

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  14. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01T23:59:59.000Z

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  15. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15T23:59:59.000Z

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  16. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R. J.

    1980-08-01T23:59:59.000Z

    During FY80 analyses were conducted on thermal storage concepts for solar thermal applications. These studies include both estimates of the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, promising thermal storage concepts are being identified. A preliminary screening was completed in FY80 and a more in-depth study was initiated. Value studies are being conducted to establish cost goals. A ranking of storage concepts based on value in solar thermal electric plants was conducted for both diurnal and long duration applications. Ground mounted thermal storage concepts for a parabolic dish/Stirling systtem are also being evaluated.

  17. Enhanced Thermal Conductivity Oxide Fuels

    SciTech Connect (OSTI)

    Alvin Solomon; Shripad Revankar; J. Kevin McCoy

    2006-01-17T23:59:59.000Z

    the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

  18. Actively driven thermal radiation shield

    DOE Patents [OSTI]

    Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  19. Magnetotelluric models of the Roosevelt Hot Springs thermal area, Utah

    SciTech Connect (OSTI)

    Wannamaker, P.E.; Ward, S.H.; Hohmann, G.W.; Sill, W.R.

    1980-09-01T23:59:59.000Z

    The Roosevelt Hot Springs (RHS) thermal area, which includes a hotwater-dominated fracture zone prospect, near the eastern margin of the Basin-Range tectonic province, conceivably possesses a whole family of resistivity structures that includes the following: deep hot brine reservoirs, deep-seated partially molten heat sources in the crust or upper mantle that drive the convective system, near-surface hydrothermal alteration zones, wet sedimentary fill in valleys, and a regional, apparently one-dimensional resistivity profile of the crust and upper mantle. This complex resistivity makeup, particular to RHS but probably similar to that at other geothermal areas in the Great Basin, must be treated as being fully three-dimensional (3-D). In an attempt to understand these structures, broadband (10/sup -3/ to 10/sup -2/ Hz) tensor magnetotelluric (MT) data were obtained including apparent resistivities (rho/sub a/), impedance phases (phi) and vertical magnetic field transfer functions for 93 sites in the vicinity of this resource area.

  20. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

  1. Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort

    E-Print Network [OSTI]

    Regnier, Cindy

    2014-01-01T23:59:59.000Z

    including cost, energy and thermal comfort analysis, whichfor greatest energy benefits, prioritize thermal comfortSetting Thermal Comfort Criteria and Minimizing Energy Use

  2. Dynamic modelling for thermal micro-actuators using thermal networks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    electrical anal- ogy. However, current equivalent electrical models (thermal networks) are generally obtained - Universidad Aut´onoma de Nuevo Le´on, PIIT Monterrey, C.P. 66600, Nuevo Le´on, Mexico. Preprint submitted.2010.06.012 #12;are then proposed in this paper. The validities of both types of thermal net- works

  3. Measuring Thermal Transport in Extreme Environments: Thermal Conductivity

    E-Print Network [OSTI]

    Braun, Paul

    Chen California Institute of Technology Jackie Li University of Michigan supported by CarnegieMeasuring Thermal Transport in Extreme Environments: Thermal Conductivity of Water Ice VII to 20 GPa David G. Cahill, Wen-Pin Hsieh, Dallas Trinkle, University of Illinois at Urbana-Champaign Bin

  4. Corrosion resistant metallic bipolar plate

    DOE Patents [OSTI]

    Brady, Michael P. (Oak Ridge, TN); Schneibel, Joachim H. (Knoxville, TN); Pint, Bruce A. (Knoxville, TN); Maziasz, Philip J. (Oak Ridge, TN)

    2007-05-01T23:59:59.000Z

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  5. On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity

    E-Print Network [OSTI]

    Sevostianov, Igor

    expansion and thermal conductivity Igor Sevostianov Department of Mechanical and Aerospace Engineering, NewOn the thermal expansion of composite materials and cross-property connection between thermal: Composite material Thermal expansion Cross-property Microstructure Thermal conductivity a b s t r a c

  6. A Novel Thermal Position Sensor Integrated On A Plastic Substrate

    E-Print Network [OSTI]

    A. Petropoulos; G. Kaltsas; D. Goustouridis; A. G. Nassiopoulou

    2008-01-07T23:59:59.000Z

    A thermal position sensor was fabricated and evaluated. The device consists of an array of temperature sensing elements, fabricated entirely on a plastic substrate. A novel fabrication technology was implemented which allows direct integration with read out electronics and communication to the macro-world without the use of wire bonding. The fabricated sensing elements are temperature sensitive Pt resistors with an average TCR of 0.0024/C. The device realizes the detection of the position and the motion of a heating source by monitoring the resistance variation of the thermistor array. The application field of such a cost-effective position sensor is considered quite extensive.

  7. Thermally stabilized heliostat

    DOE Patents [OSTI]

    Anderson, Alfred J. (Littleton, CO)

    1983-01-01T23:59:59.000Z

    An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

  8. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

    2011-10-30T23:59:59.000Z

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

  9. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM); Moore, Troy K. (Los Alamos, NM)

    1988-01-01T23:59:59.000Z

    An apparatus for thermally protecting heat sensitive components of tools. The apparatus comprises a Dewar for holding the heat sensitive components. The Dewar has spaced-apart inside and outside walls, an open top end and a bottom end. An insulating plug is located in the top end. The inside wall has portions defining an inside wall aperture located at the bottom of the Dewar and the outside wall has portions defining an outside wall aperture located at the bottom of the Dewar. A bottom connector has inside and outside components. The inside component sealably engages the inside wall aperture and the outside component sealably engages the outside wall aperture. The inside component is operatively connected to the heat sensitive components and to the outside component. The connections can be made with optical fibers or with electrically conducting wires.

  10. Development of New Generation of Thermally-Enhanced Fiber Glass Insulation

    SciTech Connect (OSTI)

    Kosny, Jan [ORNL; Yarbrough, David W [ORNL; Childs, Phillip W [ORNL; Miller, William A [ORNL; Atchley, Jerald Allen [ORNL; Shrestha, Som S [ORNL

    2010-03-01T23:59:59.000Z

    This report presents experimental and numerical results from thermal performance studies. The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and John s Manville was to design a basic concept of a new generation of thermally-enhanced fiber glass insulation. Different types of Phase Change Materials (PCMs) have been tested as dynamic components in buildings during the last 4 decades. Most historical studies have found that PCMs enhance building energy performance. Some PCM-enhanced building materials, like PCM-gypsum boards or PCM-impregnated concretes have already found their limited applications in different countries. Today, continued improvements in building envelope technologies suggest that throughout Southern and Central U.S. climates, residences may soon be routinely constructed with PCM in order to maximize insulation effectiveness and maintain low heating and cooling loads. The proposed thermally-enhanced fiber glass insulation will maximize this integration by utilizing a highly-efficient building envelope with high-R thermal insulation, active thermal mass and superior air-tightness. Improved thermal resistance will come from modifications in infrared internal characteristics of the fiber glass insulation. Thermal mass effect can be provided by proprietary thermally-active microencapsulated phase change material (PCM). Work carried out at the Oak Ridge National Laboratory (ORNL) on the CRADA is described in this report.

  11. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

    1985-01-01T23:59:59.000Z

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  12. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30T23:59:59.000Z

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  13. Thermal Evolution of Strange Stars

    E-Print Network [OSTI]

    Zhou Xia; Wang Lingzhi; Zhou Aizhi

    2007-09-03T23:59:59.000Z

    We investigated the thermal evolution of rotating strange stars with the deconfinement heating due to magnetic braking. We consider the stars consisting of either normal quark matter or color-flavor-locked phase. Combining deconfinement heating with magnetic field decay, we find that the thermal evolution curves are identical to pulsar data.

  14. Multifunctional Corrosion-resistant Foamed Well Cement Composites...

    Broader source: Energy.gov (indexed) [DOE]

    Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well...

  15. New Air and Water-Resistive Barrier Technologies for Commercial...

    Energy Savers [EERE]

    New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive...

  16. 303:20130618.1036 Thermal Engineering Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    303:20130618.1036 Thermal Engineering Group LASP's Thermal Engineering Group is involved in all of the component, as well as on-orbit trending and operations planning. Design Experience The Thermal Engineering Systems Engineering The group has formulated general thermal design and thermal interface requirements

  17. Mechanism of acquired temozolomide resistance in glioblastoma

    E-Print Network [OSTI]

    McFaline-Figueroa, José L

    2014-01-01T23:59:59.000Z

    Glioblastoma (GBM) is the most common and malignant form of brain cancer. After aggressive treatment, therapy resistant tumors inevitably recur. However, the molecular mechanisms underlying such resistance remain unclear. ...

  18. Advanced thermal imaging of composites

    SciTech Connect (OSTI)

    Wang, H.; Dinwiddie, R.B.

    1996-06-01T23:59:59.000Z

    Composite materials were studied by Scanning Thermal Conductivity Microscope (STCM) and high speed thermography. The STCM is a qualitative technique which is used to study thermal conductivity variations on a sub-micrometer scale. High speed thermography is a quantitative technique for measuring thermal diffusivity with a variable spatial resolution from centimeters down to less than 25 gm. A relative thermal conductivity contrast map was obtained from a SiC/Si3N4 continuous fiber ceramic composite using the STCM. Temperature changes of a carbon/carbon composite after a heat pulse were captured by an IR camera to generate a thermal diffusivity map of the specimen. Line profiles of the temperature distribution showed significant variations as a result of fiber orientation.

  19. CORROSION RESISTANCE OF FISH TAGGING PINS

    E-Print Network [OSTI]

    CORROSION RESISTANCE OF FISH TAGGING PINS [Marine Biological Laboratoryj WOODS HOLE, MASS. SPECIAL A, Seaton, Secretary Fish and Wildlife Service, Arnie J. Suoraela, Commissioner CORROSION RESISTANCE were tagged with nickel and Type 304 stainless steel pins to compare the corrosion resistance

  20. CORROSION-RESISTANT COATING FOR CARBONATE

    E-Print Network [OSTI]

    CORROSION-RESISTANT COATING FOR CARBONATE FUEL CELL COMPONENTS Prepared For: California Energy ANALYSIS REPORT (FAR) CORROSION RESISTANT COATING FOR CARBONATE FUEL CELL COMPONENTS EISG AWARDEE Chemat://www.energy.ca.gov/research/index.html. #12;Page 1 Corrosion Resistant Coating for Carbonate Fuel Cell Components EISG Grant # 00-05 Awardee

  1. Basal-plane thermal conductivity of few-layer molybdenum disulfide

    SciTech Connect (OSTI)

    Jo, Insun; Ou, Eric; Shi, Li, E-mail: lishi@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Pettes, Michael Thompson [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Department of Mechanical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Wu, Wei [Department of Mechanical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States)

    2014-05-19T23:59:59.000Z

    We report the in-plane thermal conductivity of suspended exfoliated few-layer molybdenum disulfide (MoS{sub 2}) samples that were measured by suspended micro-devices with integrated resistance thermometers. The obtained room-temperature thermal conductivity values are (44–50) and (48–52) W m{sup ?1} K{sup ?1} for two samples that are 4 and 7 layers thick, respectively. For both samples, the peak thermal conductivity occurs at a temperature close to 120?K, above which the thermal conductivity is dominated by intrinsic phonon-phonon scattering although phonon scattering by surface disorders can still play an important role in these samples especially at low temperatures.

  2. Thermal to electricity conversion using thermal magnetic properties

    DOE Patents [OSTI]

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27T23:59:59.000Z

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  3. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01T23:59:59.000Z

    energy, geo-thermal energy, ocean thermal energy, wastedenergy, geothermal energy, ocean thermal energy, wasted heatthermal energy, geo/ocean-thermal energy, wasted heat in

  4. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01T23:59:59.000Z

    heat source can be solar thermal energy, biological thermaland concentrated solar thermal energy farms. They demandsources include solar thermal energy, geo-thermal energy,

  5. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01T23:59:59.000Z

    significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy,for efficient energy production. Solar thermal plants, such

  6. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01T23:59:59.000Z

    geo-thermal energy, ocean thermal energy, wasted heat ingeothermal energy, ocean thermal energy, wasted heat inthermal energy, geo/ocean-thermal energy, wasted heat in

  7. Resonant-cavity enhanced thermal emission

    E-Print Network [OSTI]

    Celanovic, Ivan

    In this paper we present a vertical-cavity enhanced resonant thermal emitter—a highly directional, narrow-band, tunable, partially coherent thermal source. This device enhances thermal emittance of a metallic or any other ...

  8. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

  9. CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK

    E-Print Network [OSTI]

    CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK CALIFORNIA PUBLIC UTILITIES California Solar Initiative Thermal Program Handbook i 1. Introduction to CSI-Thermal Program....................................................................................3 2.1.1 Host Customer

  10. The Human leading the Thermal Comfort Control

    E-Print Network [OSTI]

    Zeiler, W.; Boxem, G.; Van Houten, R.; Vissers, D.; Maaijen, R.

    2012-01-01T23:59:59.000Z

    2007 Zhang H., 2003, Human Thermal Sensation and Comfort in Transient and Non Uniform Thermal Environments; Phd Thesis Zhang H., Arens E., Huizinga C., Han T., 2010, Thermal sensations and comfort models for non-uniform and transient environments...

  11. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftof ocean thermal energy conversion technology. U.S. Depart~June 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

  12. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftr:he comnercialization of ocean thermal energy conversionJune 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

  13. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    and J. Schwarz, Survey of Thermal Energy Storage in AquifersB. Quale. Seasonal storage of thermal energy in water in theSecond Annual Thermal Energy Storage Contractors'

  14. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    Sands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)r:he comnercialization of ocean thermal energy conversionJune 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

  15. Solar Thermal Demonstration Project

    SciTech Connect (OSTI)

    Biesinger, K.; Cuppett, D.; Dyer, D.

    2012-01-30T23:59:59.000Z

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with â??Kalwallâ?? building panels. An added feature of the â??Kalwallâ? system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  16. Age hardening and creep resistance of cast Al–Cu alloy modified by praseodymium

    SciTech Connect (OSTI)

    Bai, Zhihao; Qiu, Feng; Wu, Xiaoxue; Liu, Yingying; Jiang, Qichuan, E-mail: jqc@jlu.edu.cn

    2013-12-15T23:59:59.000Z

    The effects of praseodymium on age hardening behavior and creep resistance of cast Al–Cu alloy were investigated. The results indicated that praseodymium facilitated the formation of the ?? precipitates during the age process and improved the hardness of the Al–Cu alloy. Besides, praseodymium resulted in the formation of the Al{sub 11}Pr{sub 3} phase in the grain boundaries and among the dendrites of the modified alloy. Because of the good thermal stability of Al{sub 11}Pr{sub 3} phase, it inhibits grain boundary migration and dislocation movement during the creep process, which contributes to the improvement in the creep resistance of the modified alloy at elevated temperatures. - Highlights: • Pr addition enhances the hardness and creep resistance of the Al–Cu alloy. • Pr addition facilitates the formation of the ?? precipitates. • Pr addition results in the formation of the Al11Pr3 phase in the Al–Cu alloy.

  17. Design and Construction of a Guarded Hot Box Facility for Evaluating the Thermal Performance of Building Wall Materials 

    E-Print Network [OSTI]

    Mero, Claire Renee

    2012-07-16T23:59:59.000Z

    , studs in walls are also thermal bridges, since the thermal resistance of wood is much less than the insulation surrounding them. [5] In order to block thermal bridging, either exterior insulation or Aerogel stud strips can be used. [4]. Most exterior... components. [6] 3 3 Aerogel is a silica based nano-scale structure originally developed by NASA and used on the Mars Rover that is 98% air [7], [8]. Until recently aerogel has been far too expensive to even consider using in homes, however...

  18. Design and Construction of a Guarded Hot Box Facility for Evaluating the Thermal Performance of Building Wall Materials

    E-Print Network [OSTI]

    Mero, Claire Renee

    2012-07-16T23:59:59.000Z

    , studs in walls are also thermal bridges, since the thermal resistance of wood is much less than the insulation surrounding them. [5] In order to block thermal bridging, either exterior insulation or Aerogel stud strips can be used. [4]. Most exterior... components. [6] 3 3 Aerogel is a silica based nano-scale structure originally developed by NASA and used on the Mars Rover that is 98% air [7], [8]. Until recently aerogel has been far too expensive to even consider using in homes, however...

  19. Thermal performance of the Brookhaven natural thermal storage house

    SciTech Connect (OSTI)

    Ghaffari, H.T.; Jones, R.F.

    1981-01-01T23:59:59.000Z

    In the Brookhaven natural thermal storage house, an energy-efficient envelope, passive solar collectors, and a variety of energy conservation methods are incorporated. The thermal characteristics of the house during the tested heating season are evaluated. Temperature distributions at different zones are displayed, and the effects of extending heating supply ducts only to the main floor and heating return ducts only from the second floor are discussed. The thermal retrievals from the structure and the passive collectors are assessed, and the total conservation and passive solar contributions are outlined. Several correlation factors relating these thermal behaviors are introduced, and their diurnal variations are displayed. Finally, the annual energy requirements, and the average load factors are analyzed and discussed.

  20. Rapid thermal processing by stamping

    DOE Patents [OSTI]

    Stradins, Pauls; Wang, Qi

    2013-03-05T23:59:59.000Z

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  1. Materials Selection Considerations for Thermal Process Equipment...

    Broader source: Energy.gov (indexed) [DOE]

    Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment:...

  2. Develop & evaluate materials & additives that enhance thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    evaluate materials & additives that enhance thermal & overcharge abuse Develop & evaluate materials & additives that enhance thermal & overcharge abuse 2009 DOE Hydrogen Program...

  3. Develop & Evaluate Materials & Additives that Enhance Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse 2011 DOE Hydrogen and Fuel...

  4. PEEM Thermal Stress and Reliability (Presentation)

    SciTech Connect (OSTI)

    O'Keefe, M. P.

    2007-11-08T23:59:59.000Z

    Advancing power electronics thermal stress and reliability is a critical factor in power electronics equipment. NREL aims to improve thermal stress and reliability of power electronics technologies.

  5. Integrated External Aerodynamic and Underhood Thermal Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    External Aerodynamic and Underhood Thermal Analysis for Heavy Vehicles Integrated External Aerodynamic and Underhood Thermal Analysis for Heavy Vehicles 2012 DOE Hydrogen and Fuel...

  6. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. ape016bennion2010o.pdf More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric...

  7. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 10, NO. 1, JANUARY 1998 81 Thermal Conductivity Reduction in GaAsAlAs

    E-Print Network [OSTI]

    Kolodzey, James

    , Senior Member, IEEE, and C. S. Ih, Member, IEEE Abstract--Self-heating of vertical-cavity laser diodes sensitive to internal heat- ing [1], [2]. Thermal resistance and self-heating of VCSEL's strongly depend to the stage. However, the measured self-heating of VCSEL's is consid- erably higher than expected from bulk

  8. Junction Temperature Measurements and Thermal Modeling of GaInN/GaN Quantum Well Light-Emitting Diodes

    E-Print Network [OSTI]

    Wetzel, Christian M.

    quantum well (QW) light-emitting diodes (LEDs) grown on sapphire and bulk GaN substrate by micro efficiency in dies grown on GaN substrates with a thermal resistance of 75 K/W. For dies on sapphire of GaN-based blue and green LEDs grown on sapphire and GaN substrates using micro-Raman spectroscopy

  9. Thermalization in External Magnetic Field

    E-Print Network [OSTI]

    Ali-Akbari, Mohammad

    2012-01-01T23:59:59.000Z

    In the AdS/CFT framework meson thermalization in the presence of a constant external magnetic field in a strongly coupled gauge theory has been studied. In the gravitational description the thermalization of mesons corresponds to the horizon formation on the flavour D7-brane which is embedded in the AdS_5 x S^5 background in the probe limit. The apparent horizon forms due to the time-dependent change in the baryon number chemical potential, the injection of baryons in the gauge theory. We will numerically show that the thermalization happens even faster in the presence of the magnetic field on the probe brane. We observe that this reduction in the thermalization time sustains up to a specific value of the magnetic field.

  10. Thermal analysis of vascular reactivity

    E-Print Network [OSTI]

    Deshpande, Chinmay Vishwas

    2009-05-15T23:59:59.000Z

    dysfunction. Given the promising nature of thermal monitoring to study VR, this thesis focuses on the analysis of the underlying physics affecting fingertip temperature during vascular occlusion and subsequent hyperemia. I will quantify the contribution...

  11. Thermal management system and method for a solid-state energy storing device

    DOE Patents [OSTI]

    Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Gauthier, Michel (La Prairie, CA); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Rouillard, Jean (Saint-Luc, CA); Shiota, Toshimi (St. Bruno, CA); St-Germain, Philippe (Outremont, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

    2000-01-01T23:59:59.000Z

    An improved electrochemical energy storing device includes a number of thin-film electrochemical cells which are maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of each electrochemical cell, conducts current into and out of the electrochemical cells and also conducts thermal energy between the electrochemical cells and thermally conductive material disposed on a wall structure adjacent the conductors. The wall structure includes electrically resistive material, such as an anodized coating or a thin film of plastic. The thermal conductors are fabricated to include a spring mechanism which expands and contacts to maintain mechanical contact between the electrochemical cells and the thermally conductive material in the presence of relative movement between the electrochemical cells and the wall structure. An active cooling apparatus may be employed external to a hermetically sealed housing containing the electrochemical cells to enhance the transfer of thermal energy into and out of the electrochemical cells. An integrated interconnect board may be disposed within the housing onto which a number of electrical and electro-mechanical components are mounted. Heat generated by the components is conducted from the interconnect board to the housing using the thermal conductors.

  12. Computational Efficient Upscaling Methodology for Predicting Thermal Conductivity of Nuclear Waste forms

    SciTech Connect (OSTI)

    Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

    2011-09-28T23:59:59.000Z

    This study evaluated different upscaling methods to predict thermal conductivity in loaded nuclear waste form, a heterogeneous material system. The efficiency and accuracy of these methods were compared. Thermal conductivity in loaded nuclear waste form is an important property specific to scientific researchers, in waste form Integrated performance and safety code (IPSC). The effective thermal conductivity obtained from microstructure information and local thermal conductivity of different components is critical in predicting the life and performance of waste form during storage. How the heat generated during storage is directly related to thermal conductivity, which in turn determining the mechanical deformation behavior, corrosion resistance and aging performance. Several methods, including the Taylor model, Sachs model, self-consistent model, and statistical upscaling models were developed and implemented. Due to the absence of experimental data, prediction results from finite element method (FEM) were used as reference to determine the accuracy of different upscaling models. Micrographs from different loading of nuclear waste were used in the prediction of thermal conductivity. Prediction results demonstrated that in term of efficiency, boundary models (Taylor and Sachs model) are better than self consistent model, statistical upscaling method and FEM. Balancing the computation resource and accuracy, statistical upscaling is a computational efficient method in predicting effective thermal conductivity for nuclear waste form.

  13. Microviscometric studies on thermal diffusion

    E-Print Network [OSTI]

    Reyna, Eddie

    1959-01-01T23:59:59.000Z

    proportions until Clusiui and Dickel introduced a type of therrail diffusion column 4 which caused a thermal circul~tion in addition to thermal diffusion. With tni' equipment they were able to separate chlorine isotopes. Applying this same method..., it was decided to . onstruct equipment which could measure the viscosity and concentration of 0. 1 ml. samples. It was desired to have the reproduceability of the viscosimeter better than I'X since the dilute solutions to be studied had maximum viscosities...

  14. Power Electronics Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2010-05-05T23:59:59.000Z

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  15. Thermal desorption for passive dosimeter

    E-Print Network [OSTI]

    Liu, Wen-Chen

    1981-01-01T23:59:59.000Z

    instrument in the field, such as portable gas chromatography or photoionization. However, these instruments usually are expensive and inap- (2) propriate for a personal monitoring program. Indirect methods involve collecting the toxicants in certain media..., the thermal desorber contained four ma)or parts: a purging gas purifi- cation chamber, a desorption oven, a syringe type collection chamber and a gas chromatographic sample infection loop. A diagram of sample flow from purge gas source through the thermal...

  16. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  17. DEVELOPMENT OF AN IN-PILE TECHNIQUE FOR THERMAL CONDUCTIVITY MEASUREMENT

    SciTech Connect (OSTI)

    Brandon Fox; Heng Ban; Joy L. Rempe; Joshua E. Daw; Keith G. Condie; Darrell L. Knudson

    2009-04-01T23:59:59.000Z

    Thermophysical properties of advanced fuels and materials during irradiation must be known prior to their use in existing, advanced, or next generation reactors. Fuel thermal conductivity is one of the most important properties for predicting fuel performance and reactor safety. This paper discusses a joint Utah State University (USU)/Idaho National Laboratory (INL) project to investigate an in-pile fuel thermal conductivity measurement technique using a surrogate fuel rod. The method used a surrogate fuel rod with Joule heating to simulate volumetric heat generation as a proof-of-concept test in-pile application. Carbon structural foam, CFOAM®, a product of Touchtone Research Laboratory was chosen as the surrogate material because of the variable electrical and thermal properties upon fabrication. To stay within the surrogate fuel rod requirements, electrical and thermal properties were tailored by Touchtone Research Laboratory to match required values. This paper describes are the techniques used for quantifying thermal conductivity. A description of the test setup and preliminary results are presented. Two thermocouples are inserted into a 1-inch diameter, 6-inch long rod of CFOAM® at known locations. Knowing the applied volumetric heat to the rod by electrical resistance heating, the thermal conductivity can be calculated. Sensitivities of this measurement can also found by analysis and testing of different configurations of the sample setup. Verification of thermal conductivity is found by measuring the thermal properties of the CFOAM® using different methods. Thermal properties including thermal conductivity, specific heat capacity, and expansion coefficient of two types of CFOAM®, CFOAM20 and CFOAM25, were characterized using standard measurement techniques, such as laser flash, differential scanning calorimetry, and pushrod dilatometry.

  18. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    None

    2011-11-21T23:59:59.000Z

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  19. Oxidation-resistant interfacial coatings for continuous fiber ceramic composites

    SciTech Connect (OSTI)

    Shanmugham, S.; Liaw, P.K. [Tennessee Univ., Knoxville, TN (United States); Stinton, D.P.; Bleier, A.; Besmann, T.M.; Lara-Curzio, E. [Oak Ridge National Lab., TN (United States); Rebillat, F. [LCTS, Pessac (France)

    1995-06-01T23:59:59.000Z

    Developing an oxidation-resistant interfacial coating for continuous fiber ceramic composites (CFCCs) continues to be a major challenge. CFCCs` mechanical behavior are influenced by the interfacial bonding characteristics between the fiber and the matrix. Finite element modeling studies suggest that a low-modulus interfacial coating material will be effective in reducing the residual thermal stresses that are generated upon cooling from processing temperatures. Nicalon/SiC composites with carbon, alumina and mullite interfacial coatings were fabricated with the SiC matrix deposited using a forced-flow chemical vapor infiltration process. Composites with mullite interfacial coatings exhibited considerable fiber pull-out even after oxidation and have potential as a composite system.

  20. Enhanced radiation resistant fiber optics

    DOE Patents [OSTI]

    Lyons, P.B.; Looney, L.D.

    1993-11-30T23:59:59.000Z

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  1. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10T23:59:59.000Z

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  2. Abrasion resistant track shoe grouser

    DOE Patents [OSTI]

    Fischer, Keith D; Diekevers, Mark S; Afdahl, Curt D; Steiner, Kevin L; Barnes, Christopher A

    2013-04-23T23:59:59.000Z

    A track shoe for a track-type vehicle. The track shoe includes a base plate and a grouser projecting away from the base plate. A capping surface structure of substantially horseshoe shaped cross-section is disposed across a distal portion of the grouser. The capping surface structure covers portions of a distal edge surface and adjacent lateral surfaces. The capping surface structure is formed from an material characterized by enhanced wear resistance relative to portions of the grouser underlying the capping surface structure.

  3. Attrition resistant fluidizable reforming catalyst

    DOE Patents [OSTI]

    Parent, Yves O. (Golden, CO); Magrini, Kim (Golden, CO); Landin, Steven M. (Conifer, CO); Ritland, Marcus A. (Palm Beach Shores, FL)

    2011-03-29T23:59:59.000Z

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  4. Temperature Resistant Optimal Ratchet Transport

    E-Print Network [OSTI]

    Cesar Manchein; Alan Celestino; Marcus W Beims

    2012-11-12T23:59:59.000Z

    Stable periodic structures containing optimal ratchet transport, recently found in the parameter space dissipation versus ratchet parameter [PRL 106, 234101 (2011)], are shown to be resistant to reasonable temperatures, reinforcing the expectation that they are essential to explain the optimal ratchet transport in nature. Critical temperatures for their destruction, valid from the overdamping to close to the conservative limits, are obtained numerically and shown to be connected to the current efficiency, given here analytically. Results are demonstrated for a discrete ratchet model and generalized to the Langevin equation with an additional external oscillating force.

  5. Making Steel Framing as Thermally Efficient as Wood

    E-Print Network [OSTI]

    Kosny, J.; Childs, P.

    2002-01-01T23:59:59.000Z

    with rigid foam insulation. Adding rigid foam insulation not only increases the whole wall's R-value, but it also reduces the temperature difference between the center of the cavity and the stud area, which cuts down on the possibility of black stains forming...

  6. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe [NASA Marshall Space Flight Center, Nuclear Systems Branch/ER24, MSFC, AL 35812 (United States)

    2008-01-21T23:59:59.000Z

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  7. Thermal storage module for solar dynamic receivers

    DOE Patents [OSTI]

    Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

    1991-01-01T23:59:59.000Z

    A thermal energy storage system comprising a germanium phase change material and a graphite container.

  8. Device for thermal transfer and power generation

    SciTech Connect (OSTI)

    Weaver, Stanton Earl (Northville, NY); Arik, Mehmet (Niskayuna, NY)

    2011-04-19T23:59:59.000Z

    A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

  9. Carbon fiber composite characterization in adverse thermal environments.

    SciTech Connect (OSTI)

    Gomez-Vasquez, Sylvia; Brown, Alexander L.; Hubbard, Joshua A.; Ramirez, Ciro J.; Dodd, Amanda B.

    2011-05-01T23:59:59.000Z

    The behavior of carbon fiber aircraft composites was studied in adverse thermal environments. The effects of resin composition and fiber orientation were measured in two test configurations: 102 by 127 millimeter (mm) test coupons were irradiated at approximately 22.5 kW/m{sup 2} to measure thermal response, and 102 by 254 mm test coupons were irradiated at approximately 30.7 kW/m{sup 2} to characterize piloted flame spread in the vertically upward direction. Carbon-fiber composite materials with epoxy and bismaleimide resins, and uni-directional and woven fiber orientations, were tested. Bismaleimide samples produced less smoke, and were more resistant to flame spread, as expected for high temperature thermoset resins with characteristically lower heat release rates. All materials lost approximately 20-25% of their mass regardless of resin type, fiber orientation, or test configuration. Woven fiber composites displayed localized smoke jetting whereas uni-directional composites developed cracks parallel to the fibers from which smoke and flames emanated. Swelling and delamination were observed with volumetric expansion on the order of 100% to 200%. The purpose of this work was to provide validation data for SNL's foundational thermal and combustion modeling capabilities.

  10. A transient thermal cloak made of engineered thermal materials

    E-Print Network [OSTI]

    Ma, Yungui; Jiang, Wei; Sun, Fei; He, Sailing

    2013-01-01T23:59:59.000Z

    Transformation optics originating from the invariance of Maxwell's equations under the coordinate mapping has enabled the design and demonstration of many fascinating electromagnetic devices that were unconceivable or deemed impossible before [1-11], and has greatly contributed to the advancement of modern electromagnetism and related researches assisted with the development of metamaterials [12-15]. This technique has been extended to apply to other partial differential equations governing different waves [16-23] or flux [24-28], and has produced various novel functional devices such as acoustic cloaks [20-23] and Schrodinger's 'hat' [19]. In the present work we applied the coordinate transformation to the time-dependent heat diffusion equation [24-28] and achieved the manipulation of the heat flux by predefined diffusion paths. In the experiment we demonstrated a transient thermal cloaking device engineered with thermal metamaterials and successfully hid a centimeter sized strong 'scatter' (thermal disturbe...

  11. Active Thermal Extraction of Near-field Thermal Radiation

    E-Print Network [OSTI]

    Ding, Ding

    2015-01-01T23:59:59.000Z

    Radiative heat transport between materials supporting surface-phonon polaritons is greatly enhanced when the materials are placed at sub-wavelength separation as a result of the contribution of near-field surface modes. However, the enhancement is limited to small separations due to the evanescent decay of the surface waves. In this work, we propose and numerically demonstrate an active scheme to extract these modes to the far-field. Our approach exploits the monochromatic nature of near-field thermal radiation to drive a transition in a laser gain medium, which, when coupled with external optical pumping, allows the resonant surface mode to be emitted into the far-field. Our study demonstrates a new approach to manipulate thermal radiation that could find applications in thermal management.

  12. Identifying and bounding uncertainties in nuclear reactor thermal power calculations

    SciTech Connect (OSTI)

    Phillips, J.; Hauser, E.; Estrada, H. [Cameron, 1000 McClaren Woods Drive, Coraopolis, PA 15108 (United States)

    2012-07-01T23:59:59.000Z

    Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also decreasing the probability of significant over-power events. This paper will examine the basic elements involved in calculation of thermal power using ultrasonic transit-time technology and will discuss the criteria for bounding uncertainties associated with each element in order to achieve reactor thermal power calculations to within 0.3% to 0.4%. (authors)

  13. Composable Thermal Modeling and Simulation for Architecture-Level Thermal Designs of Multi-core Microprocessors

    E-Print Network [OSTI]

    Tan, Sheldon X.-D.

    1 Composable Thermal Modeling and Simulation for Architecture-Level Thermal Designs of Multi and Technology of China Efficient temperature estimation is vital for designing thermally efficient, lower power and robust integrated circuits in nanometer regime. Thermal simulation based on the detailed thermal

  14. Thermal axion constraints in non-standard thermal histories

    SciTech Connect (OSTI)

    Grin, Daniel; Smith, Tristan; Kamionkowski, Marc [California Institute of Technology, Mail Code 130-33, Pasadena, CA 91125 (United States)

    2010-08-30T23:59:59.000Z

    There is no direct evidence for radiation domination prior to big-bang nucleosynthesis, and so it is useful to consider how constraints to thermally-produced axions change in non-standard thermal histories. In the low-temperature-reheating scenario, radiation domination begins as late as {approx}1 MeV, and is preceded by significant entropy generation. Axion abundances are then suppressed, and cosmological limits to axions are significantly loosened. In a kination scenario, a more modest change to axion constraints occurs. Future possible constraints to axions and low-temperature reheating are discussed.

  15. Thermal axion constraints in non-standard thermal histories

    E-Print Network [OSTI]

    Daniel Grin; Tristan Smith; Marc Kamionkowski

    2009-11-10T23:59:59.000Z

    There is no direct evidence for radiation domination prior to big-bang nucleosynthesis, and so it is useful to consider how constraints to thermally-produced axions change in non-standard thermal histories. In the low-temperature-reheating scenario, radiation domination begins at temperatures as low as 1 MeV, and is preceded by significant entropy generation. Axion abundances are then suppressed, and cosmological limits to axions are significantly loosened. In a kination scenario, a more modest change to axion constraints occurs. Future possible constraints to axions and low-temperature reheating are discussed.

  16. Second thermal storage applications workshop

    SciTech Connect (OSTI)

    Wyman, C.E.; Larson, R.W.

    1980-06-01T23:59:59.000Z

    On February 7 and 8, 1980, approximately 20 persons representing the management of both the Solar Thermal Power Systems Program (TPS) of the US Department of Energy (DOE) Division of Central Solar Technology (CST) and the Thermal Energy Storage Program (TES) of the DOE Division of Energy Storage Systems (STOR) met in San Antonio, Texas, for the Second Thermal Storage Applications Workshop. The purpose of the workshop was to review the joint Thermal Energy Storage for Solar Thermal Applications (TESSTA) Program between CST and STOR and to discuss important issues in implementing it. The meeting began with summaries of the seven major elements of the joint program (six receiver-related, storage development elements, and one advanced technology element). Then, a brief description along with supporting data was given of several issues related to the recent joint multiyear program plan (MYPP). Following this session, the participants were divided into three smaller groups representing the program elements that mainly supported large power, small power, and advanced technology activities. During the afternoon of the first day, each group prioritized the program elements through program budgets and discussed the issues defined as well as others of concern. On the morning of the second day, representatives of each group presented the group's results to the other participants. Major conclusions arising from the workshop are presented regarding program and budget. (LEW)

  17. Schlumberger Resistivity Soundings At Chena Geothermal Area ...

    Open Energy Info (EERE)

    Schlumberger Resistivity Soundings Activity Date 1979 - 1980 Usefulness useful DOE-funding Unknown Exploration Basis Geophysical studies through the University of Alaska...

  18. Magnetotelluric Transect of Long Valley Caldera: Resistivity...

    Open Energy Info (EERE)

    MT line. Our MT data set reveals numerous resistivity structures which illuminate the evolution and present state of the Long Valley system. Many of these have been quantified...

  19. Enhanced Resistance to Control Potato Tuberworm by Combining Engineered Resistance, Avidin, and Natural

    E-Print Network [OSTI]

    Douches, David S.

    Enhanced Resistance to Control Potato Tuberworm by Combining Engineered Resistance, Avidin & Edward J. Grafius Published online: 15 November 2008 # Potato Association of America 2008 Abstract Potato tuberworm, Phthorimaea operculella (Zeller), is a destructive insect pest of potato, Solanum tuberosum (L

  20. Insulation of steel studs in the rehab of masonry structures

    SciTech Connect (OSTI)

    Ide, N.F. [Grass Roots Alliance for a Solar Pennsylvania, Philadelphia, PA (United States); Larson, D.C.; Abdou, O.A. [Drexel Univ., Philadelphia, PA (United States)

    1998-10-01T23:59:59.000Z

    Metal studs cause thermal bridging when erected next to existing masonry walls. To mitigate this thermal bridge, the authors propose to move the studs away from the masonry and install thicker batt to fill the entire cavity. This experiment addresses two questions: (1) How much does R-value improve when using batt this is thicker than the studs;? (2) How much do gaps between batts degrade this improved R-value? A 4 ft (1.22 m) square test wall was constructed with a 5.25 in. (133 mm) deep cavity. Steel studs, spaced 16 in. (406 mm) on center, were set 1.75 in. (44 mm) away from the masonry (simulated by gypsum). Three insulation configurations were tested using a scanning heat flux meter. Clear-wall R-values were calculated from the heat flux profile across the center stud cavity. The base case used R-11 batt (R{sub SI}-1.94) and yielded R-8.5 (1.50). Completely filling the cavity with batt having an installed thermal resistance of R-17.2 (3.03) improved the R-value to R-14.2 (2.50). Introducing gaps the width of the studs decreased the R-value to R-12.8 (2.25). The apparatus was calibrated against a transfer standard obtained from National Institute of Standards and Technology (NIST).

  1. Full-field characterization of thermal diffusivity in continuous- fiber ceramic composite materials and components

    SciTech Connect (OSTI)

    Steckenrider, J.S.; Ellingson, W.A. [Argonne National Lab., IL (United States); Rothermel, S.A. [South Dakota State Univ., Brookings, SD (United States)

    1995-05-01T23:59:59.000Z

    Continuous-fiber ceramic matrix composites (CFCCs) are currently being developed for various high-temperature applications, including use in advanced heat engines. Among the material classes of interest for such applications are silicon carbide (SiC)-fiber-reinforced SiC (SiC{sub (f)}/SiC), SiC-fiber-reinforced silicon nitride (SiC {sub (f)}/Si{sub 3}N{sub 4}), aluminum oxide (Al{sub 2}O{sub 3})-fiber-reinforced Al{sub 2}O{sub 3} (Al{sub 2}O{sub 3}{sub (f)}/Al{sub 2}O{sub 3}), and others. In such composites, the condition of the interfaces (between the fibers and matrix) are critical to the mechanical and thermal behavior of the component (as are conventional mechanical defects such as cracks, porosity, etc.). For example, oxidation of this interface (especially on carbon coated fibers) can seriously degrade both mechanical and thermal properties. Furthermore, thermal shock damage can degrade the matrix through extensive crack generation. A nondestructive evaluation method that could be used to assess interface condition, thermal shock damage, and to detect other ``defects`` would thus be very beneficial, especially if applicable to full-scale components. One method under development uses infrared thermal imaging to provide ``single-shot`` full-field assessment of the distribution of thermal properties in large components by measuring thermal diffusivity. By applying digital image filtering, interpolation, and least-squares-estimation techniques for noise reduction, we can achieve acquisition and analysis times of minutes or less with submillimeter spatial resolution. The system developed at Argonne has been used to examine the effects of thermal shock, oxidation treatment, density variations, and variations in oxidation resistant coatings in a full array of test specimens. Subscale CFCC components with nonplanar geometries have also been studied for manufacturing-induced variations in thermal properties.

  2. Thermal trim for a luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-02-19T23:59:59.000Z

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  3. A survey of anthracnose resistant sorghum germplasm lines to identify additional resistance genes

    E-Print Network [OSTI]

    Wiltse, Curtis Craig

    1998-01-01T23:59:59.000Z

    and Discussion. . Conclusion 12 . . . 14 . . . 14 . . . 17 . . . . 20 . . . . 21 25 vn CHAPTER Page IV INHERITANCE OF DIFFERENT SOURCES OF RESISTANCE. . . 27 Introduction Materials and Methods Plant Materials Collerornchum gramimcola Inoculation... must be characterized Once characterized, the new resistance genes can be pyramided or used as needed. This experiment was designed to determine if different 14 sources of genetic resistance exist among 13 resistant sorghum germplasm lines released...

  4. A new formula to compute apparent resistivities from marine magnetometric resistivity data

    E-Print Network [OSTI]

    Oldenburg, Douglas W.

    A new formula to compute apparent resistivities from marine magnetometric resistivity data Jiuping formulas to compute the apparent resistiv- ity have their own limitations and are invalid for a deep-sea experiment. In this paper, we derive an apparent-resistivity formula based upon the magnetic field resulting

  5. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    SciTech Connect (OSTI)

    Mark J. Rigali

    2001-08-15T23:59:59.000Z

    A set of materials property data for potential wear resistant materials was collected. These materials are designated for use as the ''core'' materials in the Fibrous Monolith structure. The material properties of hardness, toughness, thermal conductivity and cost were selected as determining factors for material choice. Data for these four properties were normalized, and weighting factors were assigned for each property to establish priority and evaluate the effects of priority fluctuation. Materials were then given a score based on the normalized parameters and weighting values. Using the initial estimates for parameter priority, the highest ranking material was tungsten carbide, with diamond as the second ranked material. Several materials were included in the trade study, and five were selected as promising ''core'' materials to include in this effort. These materials are tungsten carbide, diamond, boron carbide, titanium diboride and silicon carbide. Work was initiated on a trade study to evaluate ''shell'' materials. These materials will require the investigation of different material properties, including ultimate tensile strength, ductility, toughness, thermal expansion, thermal conductivity and compatibility during consolidation with the ''core'' materials. Kyocera Industrial Ceramics in Kyoto, Japan was visited, with the purpose of negotiating and signing the subcontract for Kyocera's participation on this program. An assessment was made on the testing and manufacturing capabilities of Kyocera and how such capabilities can be integrated into our development effort. Tours were conducted of Kyocera's machine tool production plant in Sendai, Japan, as well as their research and development facilities in Kagoshima, Japan. Kyocera's facilities include substantial materials characterization and testing capabilities at room and elevated temperatures, and manufacturing capabilities of thousands of parts/hr, all of which will be made available to us for use on this program as part of Kyocera's in-kind program cost share contribution. The Kyocera subcontract and the details of Kyocera's participation on this program were discussed and agreed upon during the two-day meeting (see Attachment A). Kennametals's Vice President and Chief Technical joined discussions regarding potential 3-way collaborations between Kyocera, ACR Inc. and Kennametal. This collaboration would involve the utilization of Kennametal's Rapid Omni-Directional Compaction Process (ROC Process) in the production of FM-based cutting tools. Kyocera and ARC Inc are in the process of evaluating the potential of this process in the fabrication of wear resistant composite tooling.

  6. Automatic insulation resistance testing apparatus

    DOE Patents [OSTI]

    Wyant, Francis J.; Nowlen, Steven P.; Luker, Spencer M.

    2005-06-14T23:59:59.000Z

    An apparatus and method for automatic measurement of insulation resistances of a multi-conductor cable. In one embodiment of the invention, the apparatus comprises a power supply source, an input measuring means, an output measuring means, a plurality of input relay controlled contacts, a plurality of output relay controlled contacts, a relay controller and a computer. In another embodiment of the invention the apparatus comprises a power supply source, an input measuring means, an output measuring means, an input switching unit, an output switching unit and a control unit/data logger. Embodiments of the apparatus of the invention may also incorporate cable fire testing means. The apparatus and methods of the present invention use either voltage or current for input and output measured variables.

  7. Fire resistant PV shingle assembly

    DOE Patents [OSTI]

    Lenox, Carl J.

    2012-10-02T23:59:59.000Z

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  8. High impact resistant ceramic composite

    DOE Patents [OSTI]

    Derkacy, J.A.

    1991-07-16T23:59:59.000Z

    A ceramic material and a method of forming a ceramic material which possesses a high impact resistance are disclosed. The material comprises: (a) a first continuous phase of [beta]-SiC; and (b) a second phase of about 25-40 vol % TiB[sub 2]. Al[sub 2]O[sub 3] is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800 C to less than the transition temperature of [beta]-SiC to [alpha]-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material. 6 figures.

  9. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

  10. Proceedings of Thermal VII, Thermal Performance of the Exterior Envelopes of Buildings,

    E-Print Network [OSTI]

    LBNL-42871 BS-400 Proceedings of Thermal VII, Thermal Performance of the Exterior Envelopes locations. The user describes the physical, thermal and optical properties of the windows in each

  11. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials

    E-Print Network [OSTI]

    Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials Engineering and Materials Science and Engineering Program, Bourns College of Engineering, University 2012 Accepted by L. Bery Available online 25 April 2012 Keywords: A. Graphene A. Thermal interface

  12. Thermal resistance and acclimation at various salinities in the sheepshead minnow (Cyprinodon variegatus Lacepede

    E-Print Network [OSTI]

    Simmons, Herbert Benton

    1971-01-01T23:59:59.000Z

    . I. Eap r ento itn Girella ~n' ' an (Arr a). Biol. Bull. 85: ~1 Hildebrand, S. F. 1919. Notes on the life history of the minnows, Gambusia affinis snd ~C rprinodon ~ar' t e. peep. . g~o. 2'an. , ~5~t-da. Hub'bs, C. L. 1956. Fishes of the Yucatan...

  13. Creating Direct-write Gray-scale Photomasks with Bimetallic Thin Film Thermal Resists

    E-Print Network [OSTI]

    Chapman, Glenn H.

    that the dots merge to create an exposure intensity that replicates the corresponding gray-scale and 3D energy, resulting alloyed layers appear to become oxides, causing a change of absorption at 365nm from >3 and photoresist strip. Just as in halftone printing, the beam blocking consists of chrome dots whose area varies

  14. Measurement of the Equivalent Thermal Resistance of Rooftop Lawns in a Hot-Climate Wind Tunnel

    E-Print Network [OSTI]

    Meng, Q.; Zhang, Y.; Zhang, L.

    2006-01-01T23:59:59.000Z

    rooftop lawn. A hot-climate wind tunnel experiment was carried out in order to obtain and analyze the heat and moisture transport in the rooftop lawn. Furthermore, a calculation with the energy conservation equation was carried out using the results...

  15. Method For Improving The Oxidation Resistance Of Metal Substrates Coated With Thermal Barrier Coatings

    DOE Patents [OSTI]

    Thompson, Anthony Mark (Niskayuna, NY); Gray, Dennis Michael (Delanson, NY); Jackson, Melvin Robert (Niskayuna, NY)

    2003-05-13T23:59:59.000Z

    A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described. A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

  16. Method for improving the oxidation-resistance of metal substrates coated with thermal barrier coatings

    DOE Patents [OSTI]

    Thompson, Anthony Mark (Niskayuna, NY); Gray, Dennis Michael (Delanson, NY); Jackson, Melvin Robert (Niskayuna, NY)

    2002-01-01T23:59:59.000Z

    A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

  17. Numerical Investigation of the Effect of Chirality of Carbon Nanotube on the Interfacial Thermal Resistance 

    E-Print Network [OSTI]

    Hu, Yuzhu

    2014-06-05T23:59:59.000Z

    Concentrated Solar Power (CSP) systems are used widely as a stable and reliable renewable source of energy. However, intermittency of this power source and the variability in demand for electrical power creates challenges that necessitate...

  18. A determination of thermal surface resistance of interior walls in intermittently heated buildings

    E-Print Network [OSTI]

    Thomson, John Edmund

    1951-01-01T23:59:59.000Z

    ?I. 0' ILDlUG G(, NDITION"' G C . ;DIIIOIID ~ ~ ~ ~ ~ 0 ~ ou&Xs' Y ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ LIT?'"w&FUIm CIT''D ~ ~ ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ M LIST 07 FIOUBES 1, I Model wall with smooth surfaoe 8 ~ II tlodel wall with painted surfaoe... ~ ~ C 5. III Lfodel wall faoing interior and exterior room walls ~ ~ ~ ~ ~ ~ \\ ~ ~ ~ ~ ~ Page 4. IV Looation of heater with respeot to the mode 1 wall e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 21 5. Graph I iiverage unit surfaoe oonduotanoe fox smooth surfaoe...

  19. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOE Patents [OSTI]

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan (Jane); Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.

    2013-07-09T23:59:59.000Z

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  20. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOE Patents [OSTI]

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03T23:59:59.000Z

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  1. Measurement of the Equivalent Thermal Resistance of Rooftop Lawns in a Hot-Climate Wind Tunnel 

    E-Print Network [OSTI]

    Meng, Q.; Zhang, Y.; Zhang, L.

    2006-01-01T23:59:59.000Z

    rooftop lawn. A hot-climate wind tunnel experiment was carried out in order to obtain and analyze the heat and moisture transport in the rooftop lawn. Furthermore, a calculation with the energy conservation equation was carried out using the results...

  2. Modification of petroleum-bitumen anticorrosion coatings aimed at improvement of their thermal resistance

    SciTech Connect (OSTI)

    Nironovych, I.O.; Suprun, V.V.; Tselyukh, O.I. [Karpenko Physicomechanical Institute, L`viv (Ukraine)] [and others

    1994-11-01T23:59:59.000Z

    We develop petroleum-bitumen coatings modified by mineral fillers and epoxy resins, give experimental demonstration of the improvement of mechanical, thermophysical, and anticorrosion properties of mastics and reinforced coatings obtained on their basis, and outline the areas of possible use of these coatings.

  3. Thermal conductivity, electrical resistivity, and permeability of saturated soils at various porosities

    E-Print Network [OSTI]

    Enderby, James Keith

    1981-01-01T23:59:59.000Z

    Lee (18) . 97 CHAPTER I INTRODUCTION Statement of the Problem When drilling in the earth, formations are frequently encountered in which the pore pressure exceeds the hydrostatic pressure. Such for- mations are termed overpressured...

  4. Enlargement of concrete blocks of arch dams with allowance of the formation of radial thermal cracks

    SciTech Connect (OSTI)

    Verbetskii, G.P.; Chogovadze, G.I.; Daneliya, A.I.

    1988-04-01T23:59:59.000Z

    Considerable acceleration of the construction of arch dams with the use of highly productive continuous concreting mechanisms is possible with enlargement of the blocks and allowance of the formation of thermal radial cracks in them. A theoretical analysis and the results of on-site observations show that under the effect of the hydrostatic head of water, radial joints and cracks in compressed zones of an arch dam close and the dam in these zones works as a solid dam. Thermal cracking in concrete blocks of arch dams enlarged in plan should be controlled by making radial notches to concentrate tensile stresses providing the formation of radial cracks at prescribed places and through the usual methods of thermal regulation. The block size along the face of an arch dam is then no longer limited by the condition of crack resistance but is determined by the rate of concreting. The technical and economic effects from concreting arch dams are cited.

  5. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development

    SciTech Connect (OSTI)

    Farmer, J C; Choi, J S; Saw, C; Haslam, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

    2008-01-09T23:59:59.000Z

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and nickel-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling and tunnel boring applications. Large areas have been successfully coated with these materials, with thicknesses of approximately one centimeter. The observed corrosion resistance may enable applications of importance in industries such as: oil and gas production, refining, nuclear power generation, shipping, and others.

  6. Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program

    SciTech Connect (OSTI)

    Farmer, J

    2007-07-09T23:59:59.000Z

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and nickel-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling and tunnel boring applications. Large areas have been successfully coated with these materials, with thicknesses of approximately one centimeter. The observed corrosion resistance may enable applications of importance in industries such as: oil and gas production, refining, nuclear power generation, shipping, and others.

  7. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A Thesis

  8. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010, Graz,STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa, Ontario: 1999.Concentrated Solar Thermal Power Plants A Thesis submitted

  9. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1981-09-01T23:59:59.000Z

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  10. Solar mechanics thermal response capabilities.

    SciTech Connect (OSTI)

    Dobranich, Dean D.

    2009-07-01T23:59:59.000Z

    In many applications, the thermal response of structures exposed to solar heat loads is of interest. Solar mechanics governing equations were developed and integrated with the Calore thermal response code via user subroutines to provide this computational simulation capability. Solar heat loads are estimated based on the latitude and day of the year. Vector algebra is used to determine the solar loading on each face of a finite element model based on its orientation relative to the sun as the earth rotates. Atmospheric attenuation is accounted for as the optical path length varies from sunrise to sunset. Both direct and diffuse components of solar flux are calculated. In addition, shadowing of structures by other structures can be accounted for. User subroutines were also developed to provide convective and radiative boundary conditions for the diurnal variations in air temperature and effective sky temperature. These temperature boundary conditions are based on available local weather data and depend on latitude and day of the year, consistent with the solar mechanics formulation. These user subroutines, coupled with the Calore three-dimensional thermal response code, provide a complete package for addressing complex thermal problems involving solar heating. The governing equations are documented in sufficient detail to facilitate implementation into other heat transfer codes. Suggestions for improvements to the approach are offered.

  11. Thermo Tracer Infrared Thermal Imager

    E-Print Network [OSTI]

    Walker, D. Greg

    such as production lines, electric power facilities, petrochemical plants and public institutions, etc. by thermal-range area G Environment monitoring Volcano, ecology, vegetation, global warming, pollution G R&D Evaluation Production line monitoring Quality anomalies in production processes G Facility monitoring Anomalies

  12. Practical Solar Thermal Chilled Water 

    E-Print Network [OSTI]

    Leavell, B.

    2010-01-01T23:59:59.000Z

    the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

  13. Practical Solar Thermal Chilled Water

    E-Print Network [OSTI]

    Leavell, B.

    2010-01-01T23:59:59.000Z

    the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

  14. Space Science: Atmosphere Thermal Structure

    E-Print Network [OSTI]

    Johnson, Robert E.

    Space Science: Atmosphere Part -2 Thermal Structure Review tropospheres Absorption of Radiation Adiabatic Lapse Rate ~ 9 K/km Slightly smaller than our estimate Pressure ~3000ft under ocean surface thickness (positive up) is the solar zenith angle Fs is the solar energy flux at frequency (when

  15. Advanced thermally stable jet fuels

    SciTech Connect (OSTI)

    Schobert, H.H.

    1999-01-31T23:59:59.000Z

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

  16. Thermal Behavior of Mixtures of Perlite and Phase Change Materials in a Simulated Climate

    SciTech Connect (OSTI)

    Childs, K.W.; Childs, P.W.; Christian, J.E.; Petrie, T.W.

    1995-05-01T23:59:59.000Z

    Carefully controlled and well documented experiments have been done for two candidate configurations to control the heat load on a conditioned space. The 2:1 PCM/perlite mixture and the 6:1 PCM/perlite mixture, both on a weight basis, accomplished thermal control. The 2:1 system seemed to have enough PCM to be effective and involve a much larger fraction of its PCM in diurnal freezing and melting than the 6:1 system. It is a good starting point for engineering design of an optimum thermal control system. The results from the 2:1 system were reproduced with the computer program HEATING to prove that we know the relevant mechanisms and thermophysical properties of the PCM used in the system. Even without a model for the supersaturation and hysteresis that this material exhibited, HEATING reproduced the heat fluxes to the conditioned space in the experiments accurately enough to mirror the good thermal control performance of the system. The modified sensible heat capacity that was used in HEATING is a handy way to account for phase change effects and could be used in a subroutine to compute hourly phase change effects for whole building models like DOE-2. The experiments were done with PCM/perlite mixtures sealed in small methylmethacrylate boxes and covered top and bottom by XPS. The boxes allowed precise placement of the instrumentation used to follow the phase change effects. The XPS gave high R-value per unit thickness. A more practical prototype configuration such as PCM/perlite hermetically sealed in plastic pouches between layers of batts or blown-in insulation should be tested over a larger cross section. A good candidate is the whole attic cavity of the manufactured home test section used in the present work. Use of a PCM that does not exhibit supersaturation and hysteresis would make interpretation of the results easier. If the results of the larger scale test areas are as encouraging as the test cell results, a whole house model with a phase change algorithm should be constructed to optimize the configuration for the climate in which it will perform.

  17. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," SeminarTHERMAL FOR COOLING ENERGY STORAGE BUILDINGS OF COMMERCIAL

  18. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01T23:59:59.000Z

    density, making direct thermal energy storage methods, e.g.reduced. Conventional thermal energy harvesting and storageharvesting, storage, and utilization of thermal energy has

  19. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

  20. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    ADVANCED THERMAL ENERGY STORAGE CONCEPT DEFINITION STUDY FORSchilling. F. E. , Thermal Energy Storage Using PrestressedNo ~cumulate thermal energy storage. Estimate ESTrof2(

  1. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

  2. Commercial thermal distribution systems, Final report for CIEE/CEC

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01T23:59:59.000Z

    thermal envelope..Branch Duct -Hot-Air Duct Outside Thermal Envelope. - - -Cold-Air Duct Outside Thermal Envelope =="-"Hot-Air Duct

  3. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    Thermal Efficiency of Generation, Discharging, Gross Electric Generation,e 1% of the gross electric generation. Thermal losses fromNet Electric Power Generation, Discharging, MWe Net Thermal

  4. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion ( OTEC) plants byand M.D. Sands. Ocean thermal energy conversion (OTEC) pilotfield of ocean thermal energy conversion discharges. I~. L.

  5. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01T23:59:59.000Z

    of ocean thermal energy conversion technology. U.S. DOE.Open cycle ocean thermal energy conversion. A preliminaryof the Fifth Ocean Thermal Energy Conversion Conference,

  6. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Sands. 1980. Ocean thermal energy conversion (OTEC) pilotCommercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,

  7. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01T23:59:59.000Z

    Thermally-Chargeable Supercapacitor Fluctuating Low-GradeThermally-Chargeable Supercapacitor for Fluctuating Low-Thermally-Chargeable Supercapacitor for Fluctuating Low-

  8. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALM.D. (editor). 1980. Ocean Thermal Energy Conversion DraftDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

  9. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  10. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01T23:59:59.000Z

    of ocean thermal energy conversion technology. U.S. DOE.Open cycle ocean thermal energy conversion. A preliminaryCompany. Ocean thermal energy conversion mission analysis

  11. Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large

  12. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion ( OTEC) plants byfield of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

  13. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion (OTEC) plants bySands. 1980. Ocean thermal energy conversion (OTEC) pilotof the Ocean Thermal Energy Conversion (OTEC) Biofouling,

  14. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01T23:59:59.000Z

    of the Ocean Thermal Energy Conversion (OTEC) Biofouling,development of ocean thermal energy conversion (OTEC) plant-impact assessment ocean thermal energy conversion (OTEC)

  15. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion ( OTEC) plants bySands. Ocean thermal energy conversion (OTEC) pilot plantof the Ocean Thermal Energy Conversion (OTEC) Biofouling,

  16. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," Seminar25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF COMMERCIAL

  17. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    1979. Commercial ocean thermal energy conversion ( OTEC)field of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

  18. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01T23:59:59.000Z

    the portion of thermal energy that can be converted toof high-performance thermal energy harvesting systems, butreferred to as the thermal energy from low- temperature heat

  19. A Magnetomechanical Thermal Energy Harvester With A Reversible Liquid Interface

    E-Print Network [OSTI]

    He, Hong

    2012-01-01T23:59:59.000Z

    and Mechanical Model of a Thermal Energy Harvesting Device”,M, and Ferrari V. , “Thermal energy harvesting throughand G. P. Carman, “Thermal energy harvesting device using

  20. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  1. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

  2. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01T23:59:59.000Z

    for the commercialization of ocean thermal energy conversionE. Hathaway. Open cycle ocean thermal energy conversion. AElectric Company. Ocean thermal energy conversion mission

  3. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    1979. Commercial ocean thermal energy conversion ( OTEC)the intermediate field of ocean thermal energy conversionII of the Sixth Ocean Thermal Energy conversion Conference.

  4. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,and M.D. Sands. 1980. Ocean thermal energy conversion (OTEC)

  5. Doctoral Defense "Thermal-hydro-mechanical model

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Doctoral Defense "Thermal-hydro-mechanical model for freezing and thawing soils" Yao Zhang Date been implemented in a finite element system, with a thermal-hydro- mechanical framework being used

  6. Conceptual Thermal Treatment Technologies Feasibility Study

    SciTech Connect (OSTI)

    Suer, A.

    1996-02-28T23:59:59.000Z

    This report presents a conceptual Thermal Treatment Technologies Feasibility Study (FS) for the Savannah River Site (SRS) focusing exclusively on thermal treatment technologies for contaminated soil, sediment, or sludge remediation projects.

  7. City of Dubuque- Solar Thermal Licensing Requirement

    Broader source: Energy.gov [DOE]

    The City of Dubuque requires a Solar Thermal License in order for a person to install a solar thermal project on a home or business. The requirement does not apply to solar photovoltaics. The...

  8. Absorption Cooling Optimizes Thermal Design for Cogeneration

    E-Print Network [OSTI]

    Hufford, P. E.

    1986-01-01T23:59:59.000Z

    Contrary to popular concept, in most cases, thermal energy is the real VALUE in cogeneration and not the electricity. The proper consideration of the thermal demands is equal to or more important than the electrical demands. High efficiency two...

  9. Thermally Induced Nonlinear Optical Absorption in Metamaterial Perfect Absorbers

    E-Print Network [OSTI]

    Guddala, Sriram; Ramakrishna, S Anantha

    2015-01-01T23:59:59.000Z

    A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks is fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm2.

  10. Earth resistivity measurement near substation ground grids

    SciTech Connect (OSTI)

    Lodwig, S.G.; Mateja, S.A. [ComEd, Chicago, IL (United States)

    1996-11-01T23:59:59.000Z

    Proper substation grounding grid design requires good, accurate soil resistivity measurements. This data is essential to model the substation ground grid to design a safe ground grid with a satisfactory ground grid resistance at minimum cost. For substations with several decades of service, there is some concern that a grid may have deteriorated, been damaged during equipment installation or excavation, or that initial soil resistivity measurements were lost or may not have been correctly performed. Ground grid conductors change the substation surface voltage distribution. Any voltage measurements taken at the complete substation will also vary from the tests made without conductors present. During testing, current was injected in the soil by probes placed near the ground grid. The current tends to follow the ground grid conductors since copper is a far better conductor than the soil it is placed in. Resistance readings near grids will be lower than readings in undisturbed soil. Since computer models were unavailable for many years, analyzing the effect of the grid conductors on soil resistivity measurements was very difficult. As a result, soil resistivity measurements made close to substations were of little use to the engineer unless some means of correcting the measured values could be developed. This paper will present results of soil resistivity measurements near a substation ground grid before and after a ground grid has been installed and describes a means of calculating the undisturbed soil model.

  11. Thermal Storage Options for HVAC Systems

    E-Print Network [OSTI]

    Weston, R. F.; Gidwani, B. N.

    THERMAL STORAGE OPTIONS FOR HVAC SYSTEMS B. N. Gidwani, P.E. Roy F. Weston, Inc. West Chester, Pennsylvania ABSTRACT With the ever-increasing cost of electricity and the high demand charges levied by utility compa nies, thermal storage... for cooling is rapidly becom ing a widely recognized method to lower cooling costs. There are three maior types of thermal stor age systems: ? Ice Storage: This utilizes the latent heat of fusion of ice for thermal storage. During off Deak periods...

  12. Thermal Conductivity of Polycrystalline Semiconductors and Ceramics

    E-Print Network [OSTI]

    Wang, Zhaojie

    2012-01-01T23:59:59.000Z

    Brown, C. M. ; Zhang, Q. ; Tritt, T. M. Nano Letters 2010,Monteiro, O. Microelectronics journal Tritt, T. M. , Thermal

  13. Reduced Thermal Conductivity of Compacted Silicon Nanowires

    E-Print Network [OSTI]

    Yuen, Taylor S.

    thermal energy into electrical energy is known as the Seebeck effect, which refers to the generation of an electric

  14. Battery Thermal Modeling and Testing (Presentation)

    SciTech Connect (OSTI)

    Smith, K.

    2011-05-01T23:59:59.000Z

    This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

  15. Battery Thermal Management System Design Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.

    2006-11-01T23:59:59.000Z

    Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

  16. Name of Lecture Intensive Thermal Engineering

    E-Print Network [OSTI]

    Name of Lecture Intensive Thermal Engineering Term 2nd semester (October) Units 2-0-0 Lecturers' understanding of the essential part of thermal engineering, comprehensively. The classes are given by three in Thermal Engineering field require the students to have fundamental concepts of thermodynamics and heat

  17. Measurements of the Thermal Neutron Scattering Kernel

    E-Print Network [OSTI]

    Danon, Yaron

    Measurements of the Thermal Neutron Scattering Kernel Li (Emily) Liu, Yaron Danon, Bjorn Becker and discussions Problems and Future study Questions #12;3 M. Mattes and J. Keinert, Thermal Neutron Scattering experimental data used was from 1973-1974! M. Mattes and J. Keinert, Thermal Neutron Scattering Data

  18. Using CrAIN Multilayer Coatings to Improve Oxidation Resistance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coatings to Improve Oxidation Resistance of Steel Interconnects for Solid Oxide Fuel Cell Stacks. Using CrAIN Multilayer Coatings to Improve Oxidation Resistance of Steel...

  19. Test Procedure for UV Weathering Resistance of Backsheet | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Test Procedure for UV Weathering Resistance of Backsheet Test Procedure for UV Weathering Resistance of Backsheet Presented at the PV Module Reliability Workshop, February 26 - 27...

  20. adult plant resistance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 39 THE ASCORBIC ACID CONTENT OF STEM RUST SUSCEPTIBLE AND RESISTANT WHEATS Breeding new varieties of wheat resistant... to the stem rust fungus, Puccinia...

  1. antimicrobial resistance mechanisms: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (more) Myers, Cullen Lucan 2013-01-01 31 Original article Mechanisms of resistance to acrolein Physics Websites Summary: Original article Mechanisms of resistance to acrolein in...

  2. ALS Gives Chevron Scientists New Insights into Corrosion Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Gives Chevron Scientists New Insights into Corrosion Resistance ALS Gives Chevron Scientists New Insights into Corrosion Resistance Print Thursday, 25 July 2013 13:44 In the...

  3. New lithium-based ionic liquid electrolytes that resist salt...

    Energy Savers [EERE]

    lithium-based ionic liquid electrolytes that resist salt concentration polarization New lithium-based ionic liquid electrolytes that resist salt concentration polarization...

  4. Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium 2007 Diesel Engine-Efficiency &...

  5. how many doses can you miss before resistance emerges?

    E-Print Network [OSTI]

    Title: Adherence to antiretroviral HIV drugs: how many doses can you miss before resistance emerges? Abstract. The emergence of drug resistance is one of the ...

  6. DC Resistivity Survey (Wenner Array) At Mt Princeton Hot Springs...

    Open Energy Info (EERE)

    2008 - 2010 Usefulness useful DOE-funding Unknown Exploration Basis Determination of groundwater flux patterns Notes Researchers measured DC resistivity and produced 12 resistivity...

  7. Erosion-Resistant Nanocoatings for Improved Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines...

  8. Comparative Study on the Sulfur Tolerance and Carbon Resistance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the Sulfur Tolerance and Carbon Resistance of Supported Noble Metal Catalysts in Steam Reforming of Liquid Comparative Study on the Sulfur Tolerance and Carbon Resistance of...

  9. Corrosion resistant storage container for radioactive material

    DOE Patents [OSTI]

    Schweitzer, Donald G. (Bayport, NY); Davis, Mary S. (Wading River, NY)

    1990-01-01T23:59:59.000Z

    A corrosion resistant long-term storage container for isolating radioactive waste material in a repository. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between judxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  10. Corrosion resistant storage container for radioactive material

    DOE Patents [OSTI]

    Schweitzer, D.G.; Davis, M.S.

    1984-08-30T23:59:59.000Z

    A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  11. Odne Stokke Burheim Thermal Signature and Thermal Conductivities of PEM Fuel Cells

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Odne Stokke Burheim Thermal Signature and Thermal Conductivities of PEM Fuel Cells Thesis-Holst for believing in me and for giving me the opportunity to join the work on the "Thermal Effects in Fuel cell The work presented here gives estimates on thermal gradients within the PEM fuel cell, an experimental

  12. Volume 48 2006 CANADIAN BIOSYSTEMS ENGINEERING 3.1 Thermal conductivity and thermal diffusivity

    E-Print Network [OSTI]

    Saskatchewan, University of

    Volume 48 2006 CANADIAN BIOSYSTEMS ENGINEERING 3.1 Thermal conductivity and thermal diffusivity of timothy hay A. Opoku, L.G. Tabil*, B. Crerar and M.D. Shaw DepartmentofAgriculturaland BioresourceEngineering, L.G., Crerar, B. and Shaw, M.D. 2006. Thermal conductivity and thermal diffusivity of timothy hay

  13. A Power-Driven Thermal Sensor Placement Algorithm for Dynamic Thermal Management

    E-Print Network [OSTI]

    Tan, Sheldon X.-D.

    of Electrical Engineering, University of California, Riverside, CA 92521 USA Abstract--On-chip physical thermalA Power-Driven Thermal Sensor Placement Algorithm for Dynamic Thermal Management Hai Wang, Sheldon sensors play a vital role for accurately estimating the full-chip thermal profile. How to place physical

  14. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    UNIVERSITY OF CALIFORNIA RIVERSIDE Phase Change Materials for Thermal Energy Storage in Concentrated Solar

  15. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    SciTech Connect (OSTI)

    Pawel, Steven J [ORNL; Hsu, Julia [Massachusetts Institute of Technology (MIT)

    2010-11-01T23:59:59.000Z

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C were found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.

  16. Direct observation of resistive heating at graphene wrinkles and grain boundaries

    SciTech Connect (OSTI)

    Grosse, Kyle L. [University of Illinois Urbana-Champaign; Dorgan, Vincent E. [University of Illinois at Urbana-Champaign, Urbana-Champaign; Estrada, David [University of Illinois at Urbana-Champaign, Urbana-Champaign; Wood, Joshua D. [University of Illinois at Urbana-Champaign, Urbana-Champaign; Vlassiouk, Ivan V [ORNL; Eres, Gyula [ORNL; Lyding, Joseph W [University of Illinois at Urbana-Champaign, Urbana-Champaign; King, William P. [University of Illinois at Urbana-Champaign, Urbana-Champaign; Pop, Eric [Stanford University

    2014-01-01T23:59:59.000Z

    We directly measure the nanometer-scale temperature rise at wrinkles and grain boundaries (GBs) in functioning graphene devices by scanning Joule expansion microscopy with 50 nm spatial and 0.2K temperature resolution. We observe a small temperature increase at select wrinkles and a large (100 K) temperature increase at GBs between coalesced hexagonal grains. Comparisons of measurements with device simulations estimate the GB resistivity (8 150 X lm) among the lowest reported for graphene grown by chemical vapor deposition. An analytical model is developed, showing that GBs can experience highly localized resistive heating and temperature rise, most likely affecting the reliability of graphene devices. Our studies provide an unprecedented view of thermal effects surrounding nanoscale defects in nanomaterials such as graphene.

  17. Processing and properties of a lightweight fire resistant core material for sandwich structures

    SciTech Connect (OSTI)

    Shivakumar, K.N.; Argade, S.D.; Sadler, R.L.; Sharpe, M.M.; Dunn, L.; Swaminathan, G.; Sorathia, U. [North Carolina Agriculture & Technical State University, Greensboro, NC (United States)

    2006-01-15T23:59:59.000Z

    A process for syntactic foam made from fly ash, a waste product of coal combustion from thermal power plants, has been developed using phenolic resin binders at low levels. The fly ash consists of hollow glass or ceramic microspheres and needs to be treated to remove contaminants. The production process is easily scalable and can be tailored to produce foams of desired properties for specific applications. Complex shaped parts also are possible with appropriate compression mold tooling. Mechanical properties, compression, tension, shear and fracture toughness, have been determined in this preliminary investigation on this syntactic material and are found to be comparable or better than commercially available core materials. Initial testing for fire resistance has indicated very encouraging results. Further work is being continued to develop this core material with superior mechanical and fire resistance properties.

  18. Experimental investigation of copper matrix longitudinal resistance in a composite Nb-Ti wire

    SciTech Connect (OSTI)

    Gubkin, I.N.; Kozlenkova, N.I.; Nikulin, A.D.; Polikarpova, M.V.; Filkin, V.Ya. (A.A. Bochvar Inst. of Inorganic Materials, Moscow (Russian Federation))

    1994-07-01T23:59:59.000Z

    The longitudinal resistance of multifilamentary superconducting wires is among the major parameters used in design and optimization of superconducting magnetic systems. To enhance the conductivity of the copper matrix, it is made of pipes and rods of enhanced quality copper produced by electron beam melting (resistance ratio between two temperatures, 295 K and 4.2 K, R[sub 295]/R[sub 4.2] > 200). Yet for readily obtainable conductors this parameter is much lower. The reduction of the copper-matrix electrical conductivity may be attributed to wire-production technology involving processes such as extrusion, drawing and intermediate thermal processing, as well as to the size effect. Copper-matrix longitudinal resistance was studied as a function of wire diameter on specimens of multifilamentary Nb-Ti wire with filaments coated by a Nb layer. Experimental results are compared with the Sondheimer calculations for a monofilament conductor as well as with the Gavalloni calculations for an ideal wire with hexagonally located filaments. It has been shown that the best fit with the experiment is provided by the Sondheimer approximation. Comparison of the results of this work with other authors' data obtained for the specimens with no niobium barrier, allows the authors to single out the influence of a pure size effect and diffusion of Ti on the resistivity.

  19. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-09-08T23:59:59.000Z

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  20. Calculate thermal-expansion coefficients

    SciTech Connect (OSTI)

    Yaws, C.L. [Lamar Univ., Beaumont, TX (United States)

    1995-08-01T23:59:59.000Z

    To properly design and use process equipment, an engineer needs a sound knowledge of physical and thermodynamic property data. A lack of such knowledge can lead to design or operating mistakes that can be dangerous, costly or even fatal. One useful type of property data is the thermal-expansion coefficient. This article presents equations and tables to find the thermal-expansion coefficients of many liquids that contain carbon. These data are useful in process-engineering applications, including the design of relief systems which are crucial to safeguarding process equipment. Data are provided for approximately 350 compounds. A computer software program, which contains the thermophysical property data for all of the compounds discussed in this article, is available for $43 prepaid from the author (Carl L. Yaws, Box 10053, Lamar University, beaumont, TX 77710; Tel. 409-880-8787; fax 409-880-8404). The program is in ASCII format, which can be accessed by most other types of computer software.

  1. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08T23:59:59.000Z

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  2. Solar Thermal Reactor Materials Characterization

    SciTech Connect (OSTI)

    Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

    2008-03-01T23:59:59.000Z

    Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

  3. Coshcous turbulence and its thermalization

    SciTech Connect (OSTI)

    Zhu, Jian-zhou [Los Alamos National Laboratory; Taylor, Mark [SNL

    2008-01-01T23:59:59.000Z

    Dissipation rate {mu}[cosh(k/k{sub c}) - 1] in Fourier space, which reduces to the Newtonian viscosity dissipation rate {nu}k{sup 2} for small k/k{sub c}, can be scaled to make a hydrodynamic system either actually or potentially converge to its Galerkin truncation. The former case acquires convergence to the truncation at a finite wavenumber k{sub G}; the latter realizes as the wavenumber grows to infinity. Intermittency reduction and vitiation of extended self-similarity (ESS) in the partially thermalized regime of turbulence are confirmed and clarified. Onsager's pictures of intermittent versus nonintermittent flows are visualized from thermalized numerical fields, showing cleanly spotty versus mistily uniform properties, the latter of which destroys self-organization and so the ESS property.

  4. Corrosiveness of wet residential building thermal insulation---Mechanisms and evaluation of electrochemical methods for assessing corrosion behavior

    SciTech Connect (OSTI)

    Stansbury, E.E. [Stansbury (E.E.), Knoxville, TN (United States)

    1991-10-01T23:59:59.000Z

    An evaluation has been made of the corrosiveness of selected wet residential building thermal insulation materials in contact with low carbon steel. Investigations were conducted both in wet insulations and in filtered leachates from insulations derived from thirteen cellulosic, three mineral fiber and four foam products. Potentiodynamic polarization measurements are reported from which the overall corrosion response was assessed and then the techniques of Tafel and polarization resistance analysis applied to estimate corrosion rates. Corrosion rates were also estimated electrochemically using a direct reading instrument which performs the rate calculation based on the polarization resistance principle. Direct determinations of corrosion rate were based on weight loss measurements.

  5. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, Chin-Fu (Albany, CA); Doughty, Christine A. (Berkeley, CA)

    1985-01-01T23:59:59.000Z

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  6. W-320 Project thermal modeling

    SciTech Connect (OSTI)

    Sathyanarayana, K., Fluor Daniel Hanford

    1997-03-18T23:59:59.000Z

    This report summarizes the results of thermal analysis performed to provide a technical basis in support of Project W-320 to retrieve by sluicing the sludge in Tank 241-C-106 and to transfer into Tank 241-AY-102. Prior theraml evaluations in support of Project W-320 safety analysis assumed the availability of 2000 to 3000 CFM, as provided by Tank Farm Operations, for tank floor cooling channels from the secondary ventilation system. As this flow availability has no technical basis, a detailed Tank 241-AY-102 secondary ventilation and floor coating channel flow model was developed and analysis was performed. The results of the analysis show that only about 150 cfm flow is in floor cooLing channels. Tank 241-AY-102 thermal evaluation was performed to determine the necessary cooling flow for floor cooling channels using W-030 primary ventilation system for different quantities of Tank 241-C-106 sludge transfer into Tank 241-AY-102. These sludge transfers meet different options for the project along with minimum required modification of the ventilation system. Also the results of analysis for the amount of sludge transfer using the current system is presented. The effect of sludge fluffing factor, heat generation rate and its distribution between supernatant and sludge in Tank 241-AY-102 on the amount of sludge transfer from Tank 241-C-106 were evaluated and the results are discussed. Also transient thermal analysis was performed to estimate the time to reach the steady state. For a 2 feet sludge transfer, about 3 months time will be requirad to reach steady state. Therefore, for the purpose of process control, a detailed transient thermal analysis using GOTH Computer Code will be required to determine transient response of the sludge in Tank 241-AY-102. Process control considerations are also discussed to eliminate the potential for a steam bump during retrieval and storage in Tanks 241-C-106 and 241-AY-102 respectively.

  7. High-Q operation of SRF cavities: The potential impact of thermocurrents on the RF surface resistance

    E-Print Network [OSTI]

    Vogt, J -M; Knobloch, J

    2015-01-01T23:59:59.000Z

    For many new accelerator applications, superconducting radio frequency (SRF) systems are the enabling technology. In particular for CW applications, much effort is being expended to minimize the power dissipation (surface resistance) of niobium cavities. Starting in 2009, we suggested a means of reducing the residual resistance by performing a thermal cycle [1], a procedure of warming up a cavity after initial cooldown to about 20K and cooling it down again. In subsequent studies [2], this technique was used to manipulate the residual resistance by more than a factor of 2. It was postulated that thermocurrents during cooldown generate additional trapped magnetic flux that impacts the cavity quality factor. Here, we present a more extensive study that includes measurements of two additional passband modes and that confirms the effect. In this paper, we also discuss simulations that support the claim. While the layout of the cavity LHe tank system is cylindrically symmetric, we show that the temperature depende...

  8. Thermality of the Hawking flux

    E-Print Network [OSTI]

    Matt Visser

    2015-02-09T23:59:59.000Z

    Is the Hawking flux "thermal"? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word "thermal". The original 1850's notions of thermality --- based on classical thermodynamic reasoning applied to idealized "black bodies" or "lamp black surfaces" --- when supplemented by specific basic quantum ideas from the early 1900's, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but "without" any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, and quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lump of coal), is only "approximately" Planck-shaped over a bounded frequency range. Standard physics (phase space and adiabaticity effects) explicitly bound the frequency range over which the Hawking flux is "approximately" Planck-shaped from both above and below --- the Hawking flux is certainly not exactly Planckian, and there is no compelling physics reason to assume the Hawking photons are uncorrelated.

  9. Geology, resistivity, and hydrochemistry of the Ojo Caliente hot springs area, northern New Mexico

    SciTech Connect (OSTI)

    Stix, J.; Pearson, C.; Vuataz, F.; Goff, F.; East, J.; Hoffers, B.

    1982-01-01T23:59:59.000Z

    Geothermal fluids of the Ojo Caliente area discharge from a northeast trending normal fault that juxtaposes Precambrian metarhyolite and Tertiary sediments. An electrical resistivity survey shows that the fluids emerge from the fault and flow as a plume of thermal water into cold aquifers east of the fault. Geochemistry of fluids indicates a maximum reservoir temperature at depth of 80/sup 0/C with no suggestion of high temperature isotopic exchange between water and reservoir rocks. From this data, it is believed that the Ojo Caliente system is suitable only for small-scale direct use geothermal applications.

  10. Confirmation of the seismic resistance of nuclear power plant equipment after assembly

    SciTech Connect (OSTI)

    Kaznovsky, P. S.; Kaznovsky, A. P.; Saakov, E. S.; Ryasnyj, S. I. [JSC 'Atomtehenergo' (Russian Federation)

    2013-05-15T23:59:59.000Z

    It is shown that the natural frequencies and damping decrements of nuclear power plant equipment can only be determined experimentally and directly at the power generation units (reactors) of nuclear power plants under real disassembly conditions for the equipment, piping network, thermal insulation, etc. A computational experimental method is described in which the natural frequencies and damping decrements are determined in the field and the seismic resistance is reevaluated using these values. This method is the basis of the standards document 'Methods for confirming the dynamic characteristics of systems and components of the generating units of nuclear power plants which are important for safety' prepared and introduced in 2012.

  11. Method of protecting surfaces from abrasion and abrasion resistant articles of manufacture

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1988-06-09T23:59:59.000Z

    Surfaces of fabricated structures are protected from damage by impacting particulates by a coating of hard material formed as a mass of thin flexible filaments having root ends secured to the surface and free portions which can flex and overlap to form a resilient cushioning mat which resembles hair or fur. The filamentary coating covers the underlying surface with hard abrasion resistance material while also being compliant and capable of local accommodation to particle impacts. The coating can also function as thermal and/or acoustical insulation and has a friction reducing effect. 11 figs.

  12. Thermal wake/vessel detection technique

    DOE Patents [OSTI]

    Roskovensky, John K. (Albuquerque, NM); Nandy, Prabal (Albuquerque, NM); Post, Brian N (Albuquerque, NM)

    2012-01-10T23:59:59.000Z

    A computer-automated method for detecting a vessel in water based on an image of a portion of Earth includes generating a thermal anomaly mask. The thermal anomaly mask flags each pixel of the image initially deemed to be a wake pixel based on a comparison of a thermal value of each pixel against other thermal values of other pixels localized about each pixel. Contiguous pixels flagged by the thermal anomaly mask are grouped into pixel clusters. A shape of each of the pixel clusters is analyzed to determine whether each of the pixel clusters represents a possible vessel detection event. The possible vessel detection events are represented visually within the image.

  13. Thermal conductivity of sputtered amorphous Ge films

    SciTech Connect (OSTI)

    Zhan, Tianzhuo; Xu, Yibin; Goto, Masahiro; Tanaka, Yoshihisa; Kato, Ryozo; Sasaki, Michiko; Kagawa, Yutaka [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)] [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2014-02-15T23:59:59.000Z

    We measured the thermal conductivity of amorphous Ge films prepared by magnetron sputtering. The thermal conductivity was significantly higher than the value predicted by the minimum thermal conductivity model and increased with deposition temperature. We found that variations in sound velocity and Ge film density were not the main factors in the high thermal conductivity. Fast Fourier transform patterns of transmission electron micrographs revealed that short-range order in the Ge films was responsible for their high thermal conductivity. The results provide experimental evidences to understand the underlying nature of the variation of phonon mean free path in amorphous solids.

  14. Impact Resistance of Stitched Composites and Metacomposites ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact Resistance of Stitched Composites and Metacomposites Apr 07 2015 10:00 AM - 11:00 AM Dr. K. T. Tan, Assistant Professor, Dept of Mechanical Engrng, University of Akron,...

  15. Genomic analysis of hepatic insulin resistance

    E-Print Network [OSTI]

    Raab, R. Michael

    2006-01-01T23:59:59.000Z

    Type II Diabetes mellitus is a genetically complex disease characterized by insulin resistance in peripheral tissues, which results in simultaneous hyperglycemia and hyperinsulinemia. Because of the prevalence of type II ...

  16. P-Glycoprotein Structure and Chemotherapy Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The protein, called P-glycoprotein, or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help...

  17. High Temperature Oxidation Resistance and Surface Electrical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Filtered Arc Cr-Al-N Abstract: The requirements for low cost and high-tempurater corrosion resistance for bipolar interconnect plates in solid oxide fuel cell (SOFC) stacks...

  18. Engineered Surfaces to Resist Corrosion and Wear

    E-Print Network [OSTI]

    New South Wales, University of

    MATS4007 Engineered Surfaces to Resist Corrosion and Wear Course Outline Session 2, 2014 School.................................................................................................4 Part III Corrosion and Control) LG07 Lecturer 28 Jul 1 Introduction to friction and wear JH Introduction to corrosion SC 4 Aug 2

  19. Bayesian estimation of resistivities from seismic velocities 

    E-Print Network [OSTI]

    Werthmüller, Dieter

    2014-06-30T23:59:59.000Z

    I address the problem of finding a background model for the estimation of resistivities in the earth from controlled-source electromagnetic (CSEM) data by using seismic data and well logs as constraints. Estimation of ...

  20. Stray thermal influences in zinc fixed-point cells

    SciTech Connect (OSTI)

    Rudtsch, S.; Aulich, A.; Monte, C. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany)] [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany)

    2013-09-11T23:59:59.000Z

    The influence of thermal effects is a major uncertainty contribution to the calibration of Standard Platinum Resistance Thermometers (SPRTs) in fixed-point cells. Axial heat losses strongly depend on the fixed-point temperature, constructional details of cells and SPRTs and the resulting heat transfer between cell, thermometer, furnace and environment. At the zinc point contributions by heat conduction and thermal radiation must be considered. Although the measurement of temperature gradients in the re-entrant well of a fixed-point cell provides very important information about the influence of axial heat losses, further investigations are required for a reliable estimate of the resulting uncertainty contribution. It is shown that specific modifications of a zinc fixed-point cell, following generally accepted principles, may result in systematic deviations of the measured fixed-point temperatures larger than typically stated in the uncertainty budget of National Metrology Institutes (NMIs). The underlying heat transport processes are investigated and the consequences for the construction of zinc cells are discussed.

  1. Diesel particulate filter with zoned resistive heater

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-03-08T23:59:59.000Z

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  2. Thermal conductivity of Er{sup +3}:Y{sub 2}O{sub 3} films grown by atomic layer deposition

    SciTech Connect (OSTI)

    Raeisi Fard, Hafez; Hess, Andrew; Pashayi, Kamyar; Borca-Tasciuc, Theodorian, E-mail: borcat@rpi.edu [Mechanical, Aerospace and Nuclear Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)] [Mechanical, Aerospace and Nuclear Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Becker, Nicholas; Proslier, Thomas; Pellin, Michael [Material Sciences Division, Argonne National Laboratory 9700 S. Cass Avenue, Lemont, Illinois 60439 (United States)] [Material Sciences Division, Argonne National Laboratory 9700 S. Cass Avenue, Lemont, Illinois 60439 (United States)

    2013-11-04T23:59:59.000Z

    Cross-plane thermal conductivity of 800, 458, and 110?nm erbium-doped crystalline yttria (Er{sup +3}:Y{sub 2}O{sub 3}) films deposited via atomic layer deposition was measured using the 3? method at room temperature. Thermal conductivity results show 16-fold increase in thermal conductivity from 0.49?W m{sup ?1}K{sup ?1} to 8?W m{sup ?1}K{sup ?1} upon post deposition annealing, partially due to the suppression of the number of the -OH/H{sub 2}O bonds in the films after annealing. Thermal conductivity of the annealed film was ?70% lower than undoped bulk single crystal yttria. The cumulative interface thermal resistivity of substrate-Er{sup +3}:Y{sub 2}O{sub 3}-metal heater was determined to be ?2.5?×?10{sup ?8} m{sup 2} K/W.

  3. Response of SiC/SiC to Transient Thermal Conditions: A Review

    SciTech Connect (OSTI)

    Jones, Russell H.

    2001-06-30T23:59:59.000Z

    The database on thermal shock behavior of SiC/SiC composites is very limited. The existing data suggests continuous fiber ceramic matrix composites, such as SiC/SiC, exhibit very good thermal shock characteristics but most data was obtained for -Delta T conditions as a result of quenching from an elevated temperature. Thermal shock in a fusion energy system will result from plasma discharge and will result in a +Delta T. One study was reported for SiC/SiC composites given a +Delta T with no loss in strength following 25 cycles at a heating rate of 1700 degrees C/s. Monolithic SiC failed in 1.5 cycles at a heating rate of 1400 degrees C/s. Thermal fatigue test results also suggest that SiC/SiC composites will exhibit little or no degradation for 100's of cycles. It was estimated that radiation could, in an extreme case, cause a reduction in the thermal shock performance from a calculated Delta Tc of 957K to about 300K if the fiber strength is reduced by 50%. Newer composites with greater radiation resistance should have a much smaller change in the Delta Tc.

  4. Benchmarking kinetic calculations of resistive wall mode stability

    SciTech Connect (OSTI)

    Berkery, J. W.; Sabbagh, S. A. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)] [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Liu, Y. Q. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)] [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Wang, Z. R.; Logan, N. C.; Park, J.-K.; Manickam, J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-05-15T23:59:59.000Z

    Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predicting RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic Resistive Spectrum—Kinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)], Modification to Ideal Stability by Kinetic effects (MISK) [B. Hu et al., Phys. Plasmas 12, 057301 (2005)], and Perturbed Equilibrium Nonambipolar Transport (PENT) [N. Logan et al., Phys. Plasmas 20, 122507 (2013)] codes for two Solov'ev analytical equilibria and a projected ITER equilibrium has demonstrated good agreement between the codes. The important particle frequencies, the frequency resonance energy integral in which they are used, the marginally stable eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally consistent between the codes. The most important kinetic effect at low rotation is the resonance between the mode rotation and the trapped thermal particle's precession drift, and MARS-K, MISK, and PENT show good agreement in this term. The different ways the rational surface contribution was treated historically in the codes is identified as a source of disagreement in the bounce and transit resonance terms at higher plasma rotation. Calculations from all of the codes support the present understanding that RWM stability can be increased by kinetic effects at low rotation through precession drift resonance and at high rotation by bounce and transit resonances, while intermediate rotation can remain susceptible to instability. The applicability of benchmarked kinetic stability calculations to experimental results is demonstrated by the prediction of MISK calculations of near marginal growth rates for experimental marginal stability points from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)].

  5. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01T23:59:59.000Z

    CALIFORNIA, SAN DIEGO Recycling of Wasted Energy : ThermalOF THE DISSERTATION Recycling of Wasted Energy : Thermal to

  6. Thermal Performance of Phase Change Wallboard for Residential Cooling Application

    E-Print Network [OSTI]

    Feustel, H.E.

    2011-01-01T23:59:59.000Z

    the discharge of thermal energy storage without releasingto low-energy cooling sources. Large thermal storage devices

  7. Metal resistance sequences and transgenic plants

    DOE Patents [OSTI]

    Meagher, Richard Brian (Athens, GA); Summers, Anne O. (Athens, GA); Rugh, Clayton L. (Athens, GA)

    1999-10-12T23:59:59.000Z

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  8. Investigations of the small-scale thermal behavior of sol-gel thermites.

    SciTech Connect (OSTI)

    Warren, Mial E.; Farrow, Matthew; Tappan, Alexander Smith

    2009-02-01T23:59:59.000Z

    Sol-gel thermites, formulated from nanoporous oxides and dispersed fuel particles, may provide materials useful for small-scale, intense thermal sources, but understanding the factors affecting performance is critical prior to use. Work was conducted on understanding the synthesis conditions, thermal treatments, and additives that lead to different performance characteristics in iron oxide sol-gel thermites. Additionally, the safety properties of sol-gel thermites were investigated, especially those related to air sensitivity. Sol-gel thermites were synthesized using a variety of different techniques and there appear to be many viable routes to relatively equivalent thermites. These thermites were subjected to several different thermal treatments under argon in a differential scanning calorimeter, and it was shown that a 65 C hold for up to 200 minutes was effective for the removal of residual solvent, thus preventing boiling during the final thermal activation step. Vacuum-drying prior to this heating was shown to be even more effective at removing residual solvent. The addition of aluminum and molybdenum trioxide (MoO{sub 3}) reduced the total heat release per unit mass upon exposure to air, probably due to a decrease in the amount of reduced iron oxide species in the thermite. For the thermal activation step of heat treatment, three different temperatures were investigated. Thermal activation at 200 C resulted in increased ignition sensitivity over thermal activation at 232 C, and thermal activation at 300 C resulted in non-ignitable material. Non-sol-gel iron oxide did not exhibit any of the air-sensitivity observed in sol-gel iron oxide. In the DSC experiments, no bulk ignition of sol-gel thermites was observed upon exposure to air after thermal activation in argon; however ignition did occur when the material was heated in air after thermal treatment. In larger-scale experiments, up to a few hundred milligrams, no ignition was observed upon exposure to air after thermal activation in vacuum; however ignition by resistively-heated tungsten wire was possible. Thin films of thermite were fabricated using a dispersed mixture of aluminum and iron oxide particles, but ignition and propagation of these films was difficult. The only ignition and propagation observed was in a preheated sample.

  9. Nanoscale thermal transport. II. 2003–2012

    SciTech Connect (OSTI)

    Cahill, David G., E-mail: d-cahill@illinois.edu; Braun, Paul V. [Department of Materials Science and Engineering and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Chen, Gang [Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139 (United States); Clarke, David R. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Fan, Shanhui [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Goodson, Kenneth E. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Keblinski, Pawel [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); King, William P. [Department of Mechanical Sciences and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Mahan, Gerald D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States); Majumdar, Arun [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Maris, Humphrey J. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainseville, Florida 32611 (United States); Pop, Eric [Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Shi, Li [Department of Mechanical Engineering, University of Texas, Autin, Texas 78712 (United States)

    2014-03-15T23:59:59.000Z

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ?1?nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10?nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

  10. Thermal annealing of laser damage precursors on fused silica surfaces

    SciTech Connect (OSTI)

    Shen, N; Miller, P E; Bude, J D; Laurence, T A; Suratwala, T I; Steele, W A; Feit, M D; Wang, L L

    2012-03-19T23:59:59.000Z

    Previous studies have identified two significant precursors of laser damage on fused silica surfaces at fluenes below {approx} 35 J/cm{sup 2}, photoactive impurities in the polishing layer and surface fractures. In the present work, isothermal heating is studied as a means of remediating the highly absorptive, defect structure associated with surface fractures. A series of Vickers indentations were applied to silica surfaces at loads between 0.5N and 10N creating fracture networks between {approx} 10{micro}m and {approx} 50{micro}m in diameter. The indentations were characterized prior to and following thermal annealing under various times and temperature conditions using confocal time-resolved photo-luminescence (CTP) imaging, and R/1 optical damage testing with 3ns, 355nm laser pulses. Significant improvements in the damage thresholds, together with corresponding reductions in CTP intensity, were observed at temperatures well below the glass transition temperature (T{sub g}). For example, the damage threshold on 05.N indentations which typically initiates at fluences <8 J/cm{sup 2} could be improved >35 J/cm{sup 2} through the use of a {approx} 750 C thermal treatment. Larger fracture networks required longer or higher temperature treatment to achieve similar results. At an annealing temperature > 1100 C, optical microscopy indicates morphological changes in some of the fracture structure of indentations, although remnants of the original fracture and significant deformation was still observed after thermal annealing. This study demonstrates the potential of using isothermal annealing as a means of improving the laser damage resistance of fused silica optical components. Similarly, it provides a means of further understanding the physics associated with optical damage and related mitigation processes.

  11. Neutronic and thermal calculation of blanket for high power operating condition of fusion reactor

    SciTech Connect (OSTI)

    Sagawa, H.; Shimakawa, S.; Kuroda, T. [Oarai Research Establishement of JAERI, Ibaraki (Japan)] [and others

    1994-12-31T23:59:59.000Z

    Internal (breeding region) structures of ceramic breeder blanket to accommodate high power operating conditions such as a DEMO reactor have been investigated. The conditions considered here are the maximum neutron wall load of 2.8 MW/m{sup 2} at outboard midplane corresponding to a fusion power of 3.0 GW and the coolant temperature of 200{degrees}C. Structure of a blanket is based on the layered pebble bed concept, which has been proposed by Japan since the ITER CDA. Lithium oxide with 50% enriched {sup 6}Li is used in a shape of small spherical pebbles which are filled in a 316SS can avoid its compatibility issue with Be. Beryllium around the breeder can is filled also in a shape of spherical pebbles which works not only as a neutron multiplier but also as a thermal resistant layer to maintain breeder temperature for effective in-situ tritium recovery. Diameters and packing fractions of both pebbles are {<=} 1 mm and 65%, respectively. A layer of block Be between cooling panels is introduced as a neutron multiplier (not as the thermal resistant layer) to enhance tritium breeding performance. Inlet temperature of water coolant is 200{degrees}C to meet the high temperature conditioning requirement to the first wall which is one of walls of the blanket vessel. Neutronics calculations have been carried out by one-dimensional transport code, and thermal calculations have also been carried out by one-dimensional slab code.

  12. Majorana braiding with thermal noise

    E-Print Network [OSTI]

    Fabio L. Pedrocchi; David P. DiVincenzo

    2015-05-14T23:59:59.000Z

    We investigate the self-correcting properties of a network of Majorana wires, in the form of a trijunction, in contact with a parity-preserving thermal environment. As opposed to the case where Majoranas are immobile, braiding Majoranas within a trijunction introduces dangerous error processes that we identify. Such errors prevent the lifetime of the memory from increasing with the size of the system. We confirm our predictions with Monte Carlo simulations. Our findings put a fundamental restriction on the feasibility of this specific quantum computing architecture.

  13. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, C.F.; Doughty, C.A.

    1984-02-24T23:59:59.000Z

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  14. Thermal Fluctuations and Rubber Elasticity

    E-Print Network [OSTI]

    Xiangjun Xing; Paul M. Goldbart; Leo Radzihovsky

    2006-09-21T23:59:59.000Z

    The effects of thermal elastic fluctuations in rubber materials are examined. It is shown that, due to an interplay with the incompressibility constraint, these fluctuations qualitatively modify the large-deformation stress-strain relation, compared to that of classical rubber elasticity. To leading order, this mechanism provides a simple and generic explanation for the peak structure of Mooney-Rivlin stress-strain relation, and shows a good agreement with experiments. It also leads to the prediction of a phonon correlation function that depends on the external deformation.

  15. Neutrino Physics with Thermal Detectors

    SciTech Connect (OSTI)

    Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

    2009-11-09T23:59:59.000Z

    The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

  16. Thermal leptogenesis and the gravitino problem in the Asaka-Yanagida axion/axino dark matter scenario

    SciTech Connect (OSTI)

    Baer, Howard; Lessa, Andre [Dept. of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Kraml, Sabine [Laboratoire de Physique Subatomique et de Cosmologie, UJF Grenoble 1, CNRS/IN2P3, INPG, 53 Avenue des Martyrs, F-38026 Grenoble (France); Sekmen, Sezen, E-mail: baer@nhn.ou.edu, E-mail: sabine.kraml@lpsc.in2p3.fr, E-mail: lessa.a.p@gmail.com, E-mail: sezen.sekmen@cern.ch [Dept. of Physics, Florida State University, Tallahassee, FL 32306 (United States)

    2011-04-01T23:59:59.000Z

    A successful implementation of thermal leptogenesis requires the re-heat temperature after inflation T{sub R} to exceed ? 2 × 10{sup 9} GeV. Such a high T{sub R} value typically leads to an overproduction of gravitinos in the early universe, which will cause conflicts, mainly with BBN constraints. Asaka and Yanagida (AY) have proposed that these two issues can be reconciled in the context of the Peccei-Quinn augmented MSSM (PQMSSM) if one adopts a mass hierarchy m(sparticle) > m(gravitino)>m(axino), with m(axino) ? keV. In this case, sparticle decays bypass the gravitino, and decay more quickly to the axino LSP, thus avoiding the BBN constraints. In addition, thermally produced gravitinos decay inertly to axion+axino, also avoiding BBN constraints. We calculate the relic abundance of mixed axion/axino dark matter in the AY scenario, and investigate under what conditions a value of T{sub R} sufficient for thermal leptogenesis can be generated. A high value of PQ breaking scale f{sub a} is needed to suppress overproduction of axinos, while a small vacuum misalignment angle ?{sub i} is needed to suppress overproduction of axions. The large value of f{sub a} results in late decaying neutralinos. We show that, to avoid BBN constraints, the AY scenario requires a rather low thermal abundance of neutralinos, while higher values of neutralino mass also help. We combine these constraint calculations along with entropy production from late decaying saxions, and find the saxion needs to be typically at least several times heavier than the gravitino. A successful implementation of the AY scenario suggests that LHC should discover a spectrum of SUSY particles consistent with weak scale supergravity; that the apparent neutralino abundance is low; that an axion direct detection signal (probably with m{sub a} in the sub-?eV range) may be possible, but no direct or indirect signals for WIMP dark matter should be observed.

  17. Jones et al. Canada's lithospheric resistivity Page 1 The electrical resistivity of Canada's lithosphere and correlation

    E-Print Network [OSTI]

    Jones, Alan G.

    Jones et al. Canada's lithospheric resistivity Page 1 The electrical resistivity of Canada and Jessica E. Spratt1,7 1: Geological Survey of Canada, 615 Booth St., Ottawa, ON, K1A 0E9, Canada. 2: Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada. Email: ij

  18. PLANT RESISTANCE Field and Storage Testing Bt Potatoes for Resistance to Potato

    E-Print Network [OSTI]

    Douches, David S.

    PLANT RESISTANCE Field and Storage Testing Bt Potatoes for Resistance to Potato Tuberworm Lansing, MI 48824 J. Econ. Entomol. 97(4): 1425Ð1431 (2004) ABSTRACT Potato tuberworm, Phthorimaea operculella (Zeller), is the most serious insect pest of potatoes worldwide. The introduction of the Bacillus

  19. PLANT RESISTANCE Evaluation of Natural and Engineered Resistance Mechanisms in Potato

    E-Print Network [OSTI]

    Douches, David S.

    PLANT RESISTANCE Evaluation of Natural and Engineered Resistance Mechanisms in Potato Against Colorado Potato Beetle in a No-Choice Field Study SUSANNAH G. COOPER,1 DAVID S. DOUCHES,1,2 JOSEPH J. COOMBS,1 AND EDWARD J. GRAFIUS3 J. Econ. Entomol. 100(2): 573Ð579 (2007) ABSTRACT The Colorado potato

  20. PLANT RESISTANCE A Test of Taxonomic Predictivity: Resistance to the Colorado Potato

    E-Print Network [OSTI]

    Spooner, David

    PLANT RESISTANCE A Test of Taxonomic Predictivity: Resistance to the Colorado Potato Beetle in Wild Relatives of Cultivated Potato S. H. JANSKY,1 R. SIMON,2 AND D. M. SPOONER3 J. Econ. Entomol. 102(1): 422Ð431 (2009) ABSTRACT Wild relatives of potato offer a tremendous germplasm resource for breeders