National Library of Energy BETA

Sample records for quick links hydrogen

  1. ARM - Quick Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links Related Links ISDAC Home AAF Home AVP Aircraft Instrumentation, October 14-16, 2008 ARM Data Discovery Browse Data Post-Campaign Data Sets Flight Summary Table (PDF, 440K) ISDAC Wiki Mission Summary Journal Deployment Resources NSA Site ARM Data Plots Quick Links Experiment Planning ISDAC Proposal Abstract Full Proposal (pdf, 1,735K) Science Questions Science Overview Document for ISDAC (pdf, 525K) ISDAC Flight Planning Document (PDF, 216K) Collaborations Logistics Measurements &

  2. Quick Links to Featured Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quick Links to Featured Reports Quick Links to Featured Reports Quick Links to Featured Reports The Office of Electricity Delivery and Energy Reliability (OE) leads the Department of Energy's efforts to ensure a resilient, reliable, and flexible electricity system. OE accomplishes this mission through research, partnerships, facilitation, modeling and analytics, and emergency preparedness. Below is a sampling of the wide range of OE's reports, fact sheets, case studies, and other materials.

  3. Alternative Fuels Data Center: Hydrogen Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Related Links to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Related Links on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Related Links on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Google Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Delicious Rank Alternative Fuels Data Center: Hydrogen Related Links on

  4. Hydrogen Delivery Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery Related Links Hydrogen Delivery Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded hydrogen delivery activities, research plans and roadmaps, models and tools, and additional related links. DOE-Funded Hydrogen Delivery Activities Each year, hydrogen and fuel cell projects funded by DOE's Hydrogen and Fuel Cells Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. View posters and

  5. Hydrogen Production Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Related Links Hydrogen Production Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded hydrogen production activities, research plans and roadmaps, models and tools, and additional related links. DOE-Funded Hydrogen Production Activities Each year, hydrogen and fuel cell projects funded by DOE's Hydrogen and Fuel Cells Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. View posters and

  6. Hydrogen Storage Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Links Hydrogen Storage Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded hydrogen storage activities, research plans and roadmaps, models and tools, and additional related links. DOE-Funded Hydrogen Storage Activities Each year, hydrogen and fuel cell projects funded by DOE's Hydrogen and Fuel Cells Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. View posters and presentations from the latest

  7. Quick Compare

    Energy Science and Technology Software Center (OSTI)

    2000-01-10

    Quick Compare is a computer software application that helps a user quickly evaluate alternatives based on criteria and decide on a preferred alternative. The software leads a user through a simple process of defining alternatives and criteria. Then, one person or a group can score the alternatives based on the criteria. The results are immediately displayed in an easy-to-understand graphical output.

  8. Quick Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quick Facts Quick Facts Print The Advanced Light Source (ALS) is located in Berkeley, California. The original building, situated in the East Bay hills overlooking San Francisco Bay, was completed in 1942. Designed by Arthur Brown, Jr. (designer of the Coit Tower in San Francisco), the domed structure was built to house Berkeley Lab's namesake E. O. Lawrence's 184-inch cyclotron, an advanced version of his first cyclotron for which he received the Nobel Prize in Physics in 1939. Today, the

  9. Quick Reference

    Energy Savers [EERE]

    Quick Reference 2016 Annual Planning Summary (APS) User's Guide 1, 2 PART 1 OFFICE Enter the office preparing this APS. NEPA REVIEWS Select one of two responses. SITE-WIDE Select one of three responses. DOCUMENT NUMBER & TITLE Enter the DOE NEPA identification number if available, e.g., DOE/EIS-XXXX. If no document number has been assigned, enter N/A. Also enter the document title. Text is limited to 350 characters. PART 2 TYPE Select the type of document using the dropdown menu. STATUS

  10. Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Useful Links BIOSYNC: Structural Biology Synchrotron Users Organization X-ray Anomalous Scattering Going MAD at CHESS Protein Data Bank Protein Data Bank Search International Union of Crystallography American Crystallographic Association Crystallography 101 Teaching Crystallography Periodic Table Periodic Table and X-ray Properties X-ray data booklet Merohedral crystal twinning server Software Links CCP4 MOSFLM HKL Research, Inc. homepage Solve/Resolve The O-files - Useful reference to the O

  11. Holly Quick | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Holly Quick About Us Holly Quick - Space and Naval Warfare Systems Center, Atlantic Public Affairs Most Recent Inspiring Girls to Explore STEM Careers in Charleston, SC July 29...

  12. Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links: CAMD's SAXS beamline sister page By Derek Dorman General Reference: Glatter and Kratky Small Angle X-ray Scattering Book (subject to the permission letter and terms of use) SAXS Presentation by Jianhua Li SAXS Presentation by John Pople Dr. Brian Grady's Polymer Characterization Group SAXS page Jun, Y., Waychunas, G. "Molecular-Level Investigations of Nucleation Mechanisms and Kinetics of Formation of Environmental Nanoparticles" Poster SAXS Analysis/Simulation: Paul Scherrer

  13. Quick stop device

    DOE Patents [OSTI]

    Hipwell, Roger L. (35 Hounds Ditch La., Duxbury, MA 02332); Hazelton, Andrew J. (3877 Army St., San Francisco, CA 94131)

    1996-01-01

    A quick stop device for abruptly interrupting the cutting of a workpiece by a cutter is disclosed. The quick stop device employs an outer housing connected to an inner workpiece holder by at least one shear pin. The outer housing includes an appropriate shank designed to be received in the spindle of a machine, such as a machine tool. A cutter, such as a drill bit, is mounted in a stationary position and the workpiece, mounted to the workpiece holder, is rotated during engagement with the cutter. A trigger system includes at least one spring loaded punch disposed for movement into engagement with the workpiece holder to abruptly stop rotation of the workpiece holder. This action shears the shear pin and permits continued rotation of the spindle and outer housing without substantially disturbing the chip root formed during cutting.

  14. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search TODO: Add description Related Links List of Companies in Hydrogen Sector List of Hydrogen Incentives Hydrogen Energy Data Book Retrieved from...

  15. Headquarters Security Quick Reference Book

    Broader source: Energy.gov [DOE]

    This quick reference book provides an overview of Department of Energy (DOE) Headquarters (HQ) security programs.

  16. Quick release engine cylinder

    DOE Patents [OSTI]

    Sunnarborg, Duane A.

    2000-01-01

    A quick release engine cylinder allows optical access to an essentially unaltered combustion chamber, is suitable for use with actual combustion processes, and is amenable to rapid and repeated disassembly and cleaning. A cylinder member, adapted to constrain a piston to a defined path through the cylinder member, sealingly engages a cylinder head to provide a production-like combustion chamber. A support member mounts with the cylinder member. The support-to-cylinder mounting allows two relationships therebetween. In the first mounting relationship, the support engages the cylinder member and restrains the cylinder against the head. In the second mounting relationship, the cylinder member can pass through the support member, moving away from the head and providing access to the piston-top and head.

  17. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  18. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  19. QuickPEP Tool Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    QuickPEP Tool Demonstration Riyaz Papar, PE, CEM Director, Energy Assets & Optimization Hudson Technologies Company William Orthwein, CEM US Department of Energy February 26, 2009 Agenda * Introduction * Plant Energy Profiling * QuickPEP Demonstration * New features in Quick 2.0 * Wrap Up * There are different levels of Plant Energy Profiling - 10,000 ft level - Overall Plant * Phone interview * 1-day plant walkthrough * Using QuickPEP - 1,000 ft level - System level * Gap Analysis

  20. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  1. Quick Facts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quick Facts Quick Facts Quick Facts Financial Data From the SEPA 2013 Annual Report: Total Revenues = $312 million (includes Corps of Engineers' revenues) Total Capital Investment = $2.6 billion (Term of repayment is 50 years from on-line date of each project.) Cumulative Investment Repaid = $871 million Cumulative Interest Paid on Investments = $1.9 billion Contact Information Administrator: Kenneth E. Legg Headquarters: 1166 Athens Tech Road Elberton, GA 30635-6711 Telephone: 706-213-3800 FAX:

  2. Headquarters Security Quick Reference Book Headquarters Security Quick Reference Book

    Office of Environmental Management (EM)

    Headquarters Security Quick Reference Book Headquarters Security Quick Reference Book ACRONYMS BAO Building Access Only CMPC Classified Matter Protection and Control CUI Controlled Unclassified Information FACTS Foreign Access Central Tracking System DOE Department of Energy E.O. Executive Order FOCI Foreign Ownership, Control or Influence FOIA Freedom of Information Act HSPD Homeland Security Presidential Directive HSS Office of Health, Safety and Security HQ Headquarters HQFMSP HQ Facilities

  3. Quick Guide: Power Purchase Agreements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quick Guide: Power Purchase Agreements Quick Guide: Power Purchase Agreements Fact sheet explains on-site renewable power purchase agreements (PPAs) and includes which questions to ask when evaluating a PPA for a federal renewable energy project. Note: This fact sheet includes outdated references to Executive Order (E.O.) 13423 and E.O. 13514, which were revoked by E.O. 13693. It also includes several outdated links to online resources. An update of this fact sheet is forthcoming. PDF icon

  4. NPS Quick Reference Guide | Open Energy Information

    Open Energy Info (EERE)

    Quick Reference Guide Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NPS Quick Reference GuideLegal Abstract NPS Quick Reference...

  5. Quick-change filter cartridge

    DOE Patents [OSTI]

    Rodgers, John C. (Santa Fe, NM); McFarland, Andrew R. (College Station, TX); Ortiz, Carlos A. (Bryan, TX)

    1995-01-01

    A quick-change filter cartridge. In sampling systems for measurement of airborne materials, a filter element is introduced into the sampled airstream such that the aerosol constituents are removed and deposited on the filter. Fragile sampling media often require support in order to prevent rupture during sampling, and careful mounting and sealing to prevent misalignment, tearing, or creasing which would allow the sampled air to bypass the filter. Additionally, handling of filter elements may introduce cross-contamination or exposure of operators to toxic materials. Moreover, it is desirable to enable the preloading of filter media into quick-change cartridges in clean laboratory environments, thereby simplifying and expediting the filter-changing process in the field. The quick-change filter cartridge of the present invention permits the application of a variety of filter media in many types of instruments and may also be used in automated systems. The cartridge includes a base through which a vacuum can be applied to draw air through the filter medium which is located on a porous filter support and held there by means of a cap which forms an airtight seal with the base. The base is also adapted for receiving absorbing media so that both particulates and gas-phase samples may be trapped for investigation, the latter downstream of the aerosol filter.

  6. Emergency Responder Radioactive Material Quick Reference Sheet

    Broader source: Energy.gov [DOE]

    Transportation Emergency Preparedness Program (TEPP) Emergency Responder Radioactive Material Quick Reference Sheet

  7. Quick Links | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Print Text Size: A A A FeedbackShare Page Portfolio Analysis and Management System (PAMS) - A Web-based system for managing Proposals and Reviews submitted to the DOE Office of ...

  8. Demand Response Quick Assessment Tool

    Energy Science and Technology Software Center (OSTI)

    2008-12-01

    DRQAT (Demand Response Quick Assessment Tool) is the tool for assessing demand response saving potentials for large commercial buildings. This tool is based on EnergyPlus simulations of prototypical buildings and HVAC equipment. The opportunities for demand reduction and cost savings with building demand responsive controls vary tremendously with building type and location. The assessment tools will predict the energy and demand savings, the economic savings, and the thermal comfor impact for various demand responsive strategies.more » Users of the tools will be asked to enter the basic building information such as types, square footage, building envelope, orientation, utility schedule, etc. The assessment tools will then use the prototypical simulation models to calculate the energy and demand reduction potential under certain demand responsive strategies, such as precooling, zonal temperature set up, and chilled water loop and air loop set points adjustment.« less

  9. Quick-connect coupler for remote manipulation

    DOE Patents [OSTI]

    Dobbins, James C. (Idaho Falls, ID)

    1990-01-01

    An adaptor for a single-point attachment, push-to-connect/pull-to-disconnect, quick-connect fluid coupler which enables the coupler to be remotely manipulated.

  10. Emergency Responder Radioactive Material Quick Reference Sheet

    Broader source: Energy.gov [DOE]

    This job aid is a quick reference to assist emergency responders in identifying preliminary safety precautions that should be taken during the initial response phase after arrival at the scene of...

  11. Alternative Fuels Data Center: Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on

  12. Federal Energy and Water Management Awards: Nomination Quick...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nomination Quick Reference Federal Energy and Water Management Awards: Nomination Quick Reference Document offers a checklist of items needed to complete a nomination for the 2016 ...

  13. Quick-setting concrete and a method for making quick-setting concrete

    DOE Patents [OSTI]

    Wagh, Arun S. (Joliet, IL); Singh, Dileep (Westmont, IL); Pullockaran, Jose D. (Trenton, NJ); Knox, Lerry (Glen Ellyn, IL)

    1997-01-01

    A method for producing quick setting concrete is provided comprising hydrng a concrete dry mixture with carbonate solution to create a slurry, and allowing the slurry to cure. The invention also provides for a quick setting concrete having a predetermined proportion of CaCO.sub.3 of between 5 and 23 weight percent of the entire concrete mixture, and whereby the concrete has a compression strength of approximately 4,000 pounds per square inch (psi) within 24 hours after pouring.

  14. QuickPEP Tool Demonstration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    QuickPEP Tool Demonstration QuickPEP Tool Demonstration This presentation introduces the QuickPEP Tool for plant energy profiling. PDF icon QuickPEP Tool Demonstration (February 26, 2009) More Documents & Publications AMO Software Tools Webinars Better Plants Pre-In-Plant Training Webinars

  15. Quick-sealing design for radiological containment

    DOE Patents [OSTI]

    Rampolia, Donald S.; Speer, Elmer

    1990-01-01

    A quick-sealing assembly and method for forming an adhesive seal on opposite sides of a mechanical seal for a flexible containment bag of the type used for working with radioactively contaminated objects. The assembly includes an elongated mechanical fastener having opposing engaging members affixed at a predetermined distance from each of the elongated edges, with an adhesive layer formed between the mechanical fastener and the elongated edge such that upon engagement of the mechanical fastener and adhesive layers to opposing containment fabric, a neat triple hermetic seal is formed.

  16. Quick-sealing design for radiological containment

    DOE Patents [OSTI]

    Rampolla, Donald S.; Speer, Elmer

    1991-01-01

    A quick-sealing assembly and method for forming an adhesive seal on opposite sides of a mechanical seal for a flexible containment bag of the type used for working with radioactively contaminated objects. The assembly includes an elongated mechanical fastener having opposing engaging members affixed at a predetermined distance from each of the elongated edges, with an adhesive layer formed between the mechanical fastener and the elongated edge such that upon engagement of the mechanical fastener and adhesive layers to opposing containment fabric, a neat triple hermetic seal is formed.

  17. Hydrogen Financial Analysis Scenario Tool (H2FAST)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H2FAST National Renewable Energy Laboratory The Hydrogen Financial Analysis Scenario Tool, H2FAST, provides a quick and convenient in-depth financial analysis for hydrogen fueling ...

  18. Quick-setting concrete and a method for making quick-setting concrete

    DOE Patents [OSTI]

    Wagh, A.S.; Singh, D.; Pullockaran, J.D.; Knox, L.

    1997-04-29

    A method for producing quick setting concrete is provided comprising mixing a concrete dry mixture with carbonate solution to create a slurry, and allowing the slurry to cure. The invention also provides for a quick setting concrete having a predetermined proportion of CaCO{sub 3} of between 5 and 23 weight percent of the entire concrete mixture, and whereby the concrete has a compression strength of approximately 4,000 pounds per square inch (psi) within 24 hours after pouring. 2 figs.

  19. ACAA fly ash basics: quick reference card

    SciTech Connect (OSTI)

    2006-07-01

    Fly ash is a fine powdery material created when coal is burned to generate electricity. Before escaping into the environment via the utility stacks, the ash is collected and may be stored for beneficial uses or disposed of, if necessary. The use of fly ash provides environmental benefits, such as the conservation of natural resources, the reduction of greenhouse gas emissions and eliminating the needed for ash disposal in landfills. It is also a valuable mineral resource that is used in construction and manufacturing. Fly ash is used in the production of Portland cement, concrete, mortars and stuccos, manufactured aggregates along with various agricultural applications. As mineral filler, fly ash can be used for paints, shingles, carpet backing, plastics, metal castings and other purposes. This quick reference card is intended to provide the reader basic source, identification and composition, information specifically related to fly ash.

  20. Energy Literacy Quick Start Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quick Start Guide Energy Literacy Quick Start Guide Energy Literacy Quick Start Guide Want to teach about energy but don't know where to start? Our Quick Start Guide will help you take information from the Energy Literacy framework and apply it to your unique classroom--whether you teach physics, environmental science, or even social studies! The guide answers some of your basic questions, such as how Energy Literacy aligns to the Next Generation Science Standards, or where to find fun

  1. TRUPACT-III Quick Facts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRUPACT-III Quick Facts TRUPACT-III Quick Facts Please see below for TRUPACT-III fact sheet. PDF icon TRUPACT-III Quick Facts More Documents & Publications U.S. Department of Energy Building Energy Data Exchange Specification WPN 02-6: Weatherization Activities and Federal Lead-Based Paint Regulations EIS-0026-SA-06: Supplement Analysis

  2. External Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    External Links External Links This page contains links to web sites and pages having to do with the Federal Energy Technology Network, Department of Energy, and Energy related ...

  3. Federal Energy and Water Management Awards: Nomination Quick Reference |

    Office of Environmental Management (EM)

    Department of Energy Nomination Quick Reference Federal Energy and Water Management Awards: Nomination Quick Reference Document offers a checklist of items needed to complete a nomination for the 2016 Federal Energy and Water Management Awards. PDF icon Download the 2016 Nomination Quick Reference fact sheet. More Documents & Publications Federal Energy and Water Management Awards: Frequently Asked Questions Criteria and Guidelines for the Federal Energy and Water Management Awards The

  4. Translation-Coupling Cassette for Quickly and Reliably Monitoring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Translation-Coupling Cassette for Quickly and Reliably Monitoring Protein Translation in Host Cells Inventors: Brian Pfleger, Daniel Mendez Perez Great Lakes Bioenergy Research...

  5. ATRC Neutron Detector Testing Quick Look Report

    SciTech Connect (OSTI)

    Troy C. Unruh; Benjamin M. Chase; Joy L. Rempe

    2013-08-01

    As part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program, a joint Idaho State University (ISU) / French Alternative Energies and Atomic Energy Commission (CEA) / Idaho National Laboratory (INL) project was initiated in FY-10 to investigate the feasibility of using neutron sensors to provide online measurements of the neutron flux and fission reaction rate in the ATR Critical Facility (ATRC). A second objective was to provide initial neutron spectrum and flux distribution information for physics modeling and code validation using neutron activation based techniques in ATRC as well as ATR during depressurized operations. Detailed activation spectrometry measurements were made in the flux traps and in selected fuel elements, along with standard fission rate distribution measurements at selected core locations. These measurements provide additional calibration data for the real-time sensors of interest as well as provide benchmark neutronics data that will be useful for the ATR Life Extension Program (LEP) Computational Methods and V&V Upgrade project. As part of this effort, techniques developed by Prof. George Imel will be applied by Idaho State University (ISU) for assessing the performance of various flux detectors to develop detailed procedures for initial and follow-on calibrations of these sensors. In addition to comparing data obtained from each type of detector, calculations will be performed to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. The neutron detectors required for this project were provided to team participants at no cost. Activation detectors (foils and wires) from an existing, well-characterized INL inventory were employed. Furthermore, as part of an on-going ATR NSUF international cooperation, the CEA sent INL three miniature fission chambers (one for detecting fast flux and two for detecting thermal flux) with associated electronics for assessment. In addition, Prof. Imel, ISU, has access to an inventory of Self-Powered Neutron Detectors (SPNDs) with a range of response times as well as Back-to-Back (BTB) fission chambers from prior research he conducted at the Transient REActor Test Facility (TREAT) facility and Neutron RADiography (NRAD) reactors. Finally, SPNDs from the National Atomic Energy Commission of Argentina (CNEA) were provided in connection with the INL effort to upgrade ATR computational methods and V&V protocols that are underway as part of the ATR LEP. Work during fiscal year 2010 (FY10) focussed on design and construction of Experiment Guide Tubes (EGTs) for positioning the flux detectors in the ATRC N-16 locations as well as obtaining ATRC staff concurrence for the detector evaluations. Initial evaluations with CEA researchers were also started in FY10 but were cut short due to reactor reliability issues. Reactor availability issues caused experimental work to be delayed during FY11/12. In FY13, work resumed; and evaluations were completed. The objective of this "Quick Look" report is to summarize experimental activities performed from April 4, 2013 through May 16, 2013.

  6. Fuel Cell Technologies Office: Plans, Implementation, and Results

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Codes & Standards Education Systems Analysis Plans,...

  7. Ligand iron catalysts for selective hydrogenation

    DOE Patents [OSTI]

    Casey, Charles P. (Madison, WI); Guan, Hairong (Cincinnati, OH)

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  8. HELPFUL LINKS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helpful Links HELPFUL LINKS Caution: Many of the links listed below are outside of the DOE Idaho Operations Office, (DOE-ID) Internet site and are not under our control. They have been provided as a convenience to you. DOE-ID is not responsible for the content of linked sites or any link contained in those sites. It is up to the individual user to protect themselves and to take adequate precaution against possible damages resulting from linked sites. Science.gov Communications Page Defense

  9. Department-wide Quick Reaction Work Order System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1981-03-12

    To describe the new Department Wide Quick Reaction Work Order System, to establish the criteria and procedures for its use, and to identify responsibilities for managing and operating the system.

  10. Perovskite solar technology shows quick energy returns | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perovskite solar technology shows quick energy returns By Payal Marathe * July 17, 2015 Tweet EmailPrint Solar panels are an investment-not only in terms of money, but also energy. ...

  11. Fuel Cells Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells » Fuel Cells Related Links Fuel Cells Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded fuel cell activities, research plans and roadmaps, partnerships, and additional related links. DOE-Funded Fuel Cell Activities Each year, hydrogen and fuel cell projects funded by DOE's Hydrogen and Fuel Cells Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. View posters and presentations from the

  12. Quick, Efficient Film Deposition for Nanomaterials - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Quick, Efficient Film Deposition for Nanomaterials Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication Quick, Efficient Film Deposition for Nanomaterials (900 KB) Technology Marketing SummaryResearchers at ORNL developed a process for manufacturing a thin film from a layer of particles, as well as complex three dimensional devices. The nanomaterials are

  13. EERE Program Management Quick Reference Guide | Department of Energy

    Office of Environmental Management (EM)

    Quick Reference Guide EERE Program Management Quick Reference Guide Provides information on the EERE program management structure, program and project management roles/responsibilities, and sequence of activities in the program management cycle; also introduces EERE management concepts and tools. PDF icon pmquick_ref_guide.pdf More Documents & Publications EERE Program Management Guide - Chapter 2 EERE Program Management Guide - Chapter 4 EERE Program Management Guide - Chapter 5

  14. Control method for high-pressure hydrogen vehicle fueling station dispensers

    DOE Patents [OSTI]

    Kountz, Kenneth John; Kriha, Kenneth Robert; Liss, William E.

    2006-06-13

    A method for quick filling a vehicle hydrogen storage vessel with hydrogen, the key component of which is an algorithm used to control the fill process, which interacts with the hydrogen dispensing apparatus to determine the vehicle hydrogen storage vessel capacity.

  15. Hydrogen sensor

    DOE Patents [OSTI]

    Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  16. Training Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Courses NERSC Training Accounts Request Form Training Links OSF HPC Seminars Software Policies User Surveys NERSC Users Group User Announcements Help Staff Blogs Request...

  17. PARENT Quick Blind Round-Robin Test Report

    SciTech Connect (OSTI)

    Braatz, Brett G.; Heasler, Patrick G.; Meyer, Ryan M.

    2014-09-30

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) whose goal is to investigate the effectiveness of current and novel nondestructive examination procedures and techniques to find flaws in nickel-alloy welds and base materials. This is to be done by conducting a series of open and blind international round-robin tests on a set of piping components that include large-bore dissimilar metal welds, small-bore dissimilar metal welds, and bottom-mounted instrumentation penetration welds. The blind testing is being conducted in two segments, one is called Quick-Blind and the other is called Blind. The Quick-Blind testing and destructive analysis of the test blocks has been completed. This report describes the four Quick-Blind test blocks used, summarizes their destructive analysis, gives an overview of the nondestructive evaluation (NDE) techniques applied, provides an analysis inspection data, and presents the conclusions drawn.

  18. Hydrogenation apparatus

    DOE Patents [OSTI]

    Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  19. Links - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Links Surplus Equipment Bolin Marketing Group | www.bmgsurplus.com Counties of the SRSCRO Region Aiken County | www.aikencounty.net Allendale County | www.allendalecounty.com Barnwell County | www.barnwellcounty.sc.gov Columbia County | www.columbiacountyga.gov Richmond County | www.augustaga.gov Chambers of Commerce Aiken SC | www.aikenchamber.net Augusta, GA | www.augustagausa.com Barnwell, SC | www.barnwellcountychamber.org Columbia County, GA | www.columbiacountychamber.com North

  20. Energy Literacy Framework A Quick Start Guide for Educators

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Framework A Quick Start Guide for Educators Energy - it's everywhere! When you turn on the lights, listen to the radio, heat your home, fuel your car, or use a computer, you are using energy. Energy is crucial to every- thing we do and experience. Understanding energy can help us make better informed decisions about our homes, communities, and our nation. If you are new to energy education, then the following answers to questions about Energy Literacy will help you get started. Start thinking

  1. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle

  2. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on

  3. Alternative Fuels Data Center: Hydrogen Laws and Incentives

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Hydrogen Laws and Incentives on Delicious Rank Alternative Fuels Data Center:

  4. Alternative Fuels Data Center: Hydrogen Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank

  5. Hydrogen Safety

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

  6. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  7. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Hydrogen is an energy carrier, not an energy source-hydrogen stores and delivers energy in a usable form, but it must be produced from hydrogen- containing compounds. Hydrogen can be produced using diverse, domestic resources including fossil fuels, such as natural gas and coal (preferentially with carbon capture, utilization, and storage); biomass grown from renewable, non-food crops; or using nuclear energy and renewable energy sources, such as wind, solar, geothermal, and

  8. Hydrogenation apparatus

    DOE Patents [OSTI]

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  9. Quick setting water-compatible furfuryl alcohol polymer concretes

    DOE Patents [OSTI]

    Sugama, Toshifumi (Ridge, NY); Kukacka, Lawrence E. (Port Jefferson, NY); Horn, William H. (Brookhaven, NY)

    1982-11-30

    A novel quick setting polymer concrete composite comprising a furfuryl alcohol monomer, an aggregate containing a maximum of 8% by weight water, and about 1-10% trichlorotoluene initiator and about 20-80% powdered metal salt promoter, such as zinc chloride, based on the weight of said monomer, to initiate and promote polymerization of said monomer in the presence of said aggregate, within 1 hour after mixing at a temperature of -20.degree. C. to 40.degree. C., to produce a polymer concrete having a 1 hour compressive strength greater than 2000 psi.

  10. NREL: Hydrogen and Fuel Cells Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Archives - 2015 December 21, 2015 NREL Research Advances Hydrogen Production Efforts Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) have made advances toward affordable photoelectrochemical (PEC) production of hydrogen. December 4, 2015 From the EERE Blog: Colorado Joins the Hydrogen and Fuel Cells Race The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE) recently posted a blog about how the state of Colorado is quickly gaining

  11. Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    home / Related Links Institute for Laser Science Applications The Institute for Laser Science Applications (ILSA) facilitates access for students and faculty to LLNL laser experimental facilities in order to support training and research for university students and faculty in research areas important to the Department of Energy (DOE) in high energy density (HED) science with lasers. National Ignition Facility The National Ignition Facility (NIF) is the world's largest and most energetic laser

  12. Relevant Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relevant Links **Light Source Facilities Around the World** Advanced Materials Research Institiute(AMRI), UNO Area Hotels Chase Suite Hotel Baton Rouge Extended Stay America Holiday Inn South Baton Rouge Marriott Residence Inns Wyndham Garden Gulf Coast Protein Crystallography Consortium Health Physics Society Institute for Micromanufacturing, LA Tech University Interactions.org - Particle Physics News and Resources International Nuclear Information System (INIS) Light Sources.org The Louisiana

  13. NREL: Hydrogen and Fuel Cells Research - Wind-to-Hydrogen Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind-to-Hydrogen Project Photo of person in hard hat working on equipment in a laboratory setting. NREL engineer inspects hydrogen-producing electrolyzer system at the National Wind Technology Center. Photo by Greg Martin, NREL Formed in partnership with Xcel Energy, NREL's wind-to-hydrogen (Wind2H2) demonstration project links wind turbines and photovoltaic (PV) arrays to electrolyzer stacks, which pass the generated electricity through water to split it into hydrogen and oxygen. The resulting

  14. Hydrogen Scenarios

    Broader source: Energy.gov [DOE]

    Presentation by Frances Wood of OnLocation Inc. at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007

  15. Hydrogen Liquefaction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Internationally 4-7 European Installations 4-6 Japanese Installations India Program ESA French Guiana (South America) 4 Satisfies ASME J-2719 (hydrogen ...

  16. Alternative Fuels Data Center: Federal Laws and Incentives for Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Federal Laws and Incentives for Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Hydrogen on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives

  17. Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel to someone by E-mail Share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Facebook Tweet about Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Twitter Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Google Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable

  18. V-020: Apple QuickTime Multiple Flaws Let Remote Users Execute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Apple QuickTime Multiple Flaws Let Remote Users Execute Arbitrary Code V-020: Apple QuickTime Multiple Flaws Let Remote Users Execute Arbitrary Code November 9, 2012 - 6:00am...

  19. Fact #778: May 6, 2013 Vehicles per Thousand Persons Rising Quickly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Persons Rising Quickly in China and India Fact 778: May 6, 2013 Vehicles per Thousand Persons Rising Quickly in China and India The number of vehicles per thousand persons ...

  20. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  1. Storing Hydrogen

    SciTech Connect (OSTI)

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2010-05-31

    Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  2. Hydrogen program overview

    SciTech Connect (OSTI)

    Gronich, S.

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  3. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen...

  4. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search <-- Back to Hydrogen Gateway Technical Reference for Hydrogen Compatibility of Materials KIA FCEV SUNRISE MG 7955 6 7.jpg Guidance on materials...

  5. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  6. Programs Streamline Process, Add Customers More Quickly After Implementing Evaluation Recommendations

    Broader source: Energy.gov [DOE]

    This document, from Hydro-Quebec / Empower Programs, outlines how "Programs Streamline Process, Add Customers More Quickly After Implementing Evaluation Recommendations."

  7. U-170: Apple QuickTime Multiple Flaws Let Remote Users Execute Arbitrary Code

    Broader source: Energy.gov [DOE]

    Multiple vulnerabilities were reported in Apple QuickTime. A remote user can cause arbitrary code to be executed on the target user's system.

  8. Hydrogen and Fuel Cell Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education » For Students & Educators » Higher Education » Hydrogen and Fuel Cell Programs Hydrogen and Fuel Cell Programs The links below provide information about colleges and universities that offer courses and other activities related to hydrogen and fuel cells. Many of these institutions have departments, centers, laboratories, and instructors dedicated to hydrogen and fuel cell research. Colleges and Universities with Fuel Cell-Specific Courses or Research Programs - Fuel Cell 2000's

  9. Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Example Layout (Text Version) Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) to someone by E-mail Share Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Facebook Tweet about Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Twitter Bookmark Alternative Fuels Data Center:

  10. Hydrogen Production: Photobiological

    Broader source: Energy.gov [DOE]

    The photobiological hydrogen production process uses microorganisms and sunlight to turn water, and sometimes organic matter, into hydrogen.

  11. Hydrogen Technology Validation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

  12. AlumniLink

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AlumniLink Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues submit AlumniLink Bi-monthly publication...

  13. Hydrogen scavengers

    DOE Patents [OSTI]

    Carroll, David W. (Los Alamos, NM); Salazar, Kenneth V. (Espanola, NM); Trkula, Mitchell (Los Alamos, NM); Sandoval, Cynthia W. (Los Alamos, NM)

    2002-01-01

    There has been invented a codeposition process for fabricating hydrogen scavengers. First, a .pi.-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the .pi.-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.

  14. ARM Quick-looks Database for North Slope Alaska (NSA) sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stamnes, Knut [NSA Site Scientist

    From these pages one can monitor parts of the data acquisition process and access daily data visualizations from the different instruments. These data visualizations are produced in near real time automatically and are called Quick-Looks (QLs). The quick-looks contains unofficial data of unknown quality. Once data is released one can obtain the full data-set from any instrument available, and along with that, a statement about the data quality from the ARM archive. The database provides Quick-looks for the Barrow ACRF site (NSA C1), the Atqasuk ACRF site (NSA C2), or the SHEBA ice campaign of 1997 and 1998. As of 12-17-08, the database had more than 528,000 quick-looks available as data figures and data plots. No password is required for Quick-look access. (Specialized Interface)

  15. Energy Efficiency Links

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Efficiency Organizations Energy Efficiency Organizations Release Date: October 1999 Last Updated: Septembert 2009 EIA Links Disclaimer: These pages contain hypertext links...

  16. Links - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links Berkeley Lab Links: Nuclear Science Division Berkeley Lab Berkeley Lab Guest House Berkeley Lab Cafeteria Jobs at Berkeley Lab Today at Berkeley Lab Health and Safety Manual...

  17. Apparatus for separating and recovering hydrogen isotopes

    DOE Patents [OSTI]

    Heung, Leung K. (Aiken, SC)

    1994-01-01

    An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.

  18. Make the most of catalytic hydrogenations

    SciTech Connect (OSTI)

    Landert, J.P.; Scubla, T. [Biazzi S.A., Chailly-Montreux (Switzerland)

    1995-03-01

    Liquid-phase catalytic hydrogenation is one of the most useful and versatile reactions available for organic synthesis. Because it is environmentally clean, it has replaced other reduction processes, such as the Bechamp reaction, and zinc and sulfide reductions. Moreover, the economics are favorable, provided that raw materials free of catalyst poisons are used. The hydrogenation reaction is very selective with appropriate catalysts and can often be carried out without a solvent. Applications include reduction of unsaturated carbon compounds to saturated derivatives (for example, in vegetable-oil processing), carbonyl compounds to alcohols (such as sorbitol), and nitrocompounds to amines. the reactions are usually run in batch reactors to rapidly reach complete conversion and allow quick change-over of products. The paper describes the basics of hydrogenation; steering clear of process hazards; scale-up and optimization; and system design in practice.

  19. Hydrogen Sensor Testing, Hydrogen Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-11-01

    Factsheet describing the hydrogen sensor testing laboratory at the National Renewable Energy Laboratory.

  20. Chemical Hydrogen Storage Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Troy A. Semelsberger Los Alamos National Laboratory Hydrogen Storage Summit Jan 27-29, 2015 Denver, CO Chemical Hydrogen Storage Materials 2 Objectives 1. Assess chemical hydrogen storage materials that can exceed 700 bar compressed hydrogen tanks 2. Status (state-of-the-art) of chemical hydrogen storage materials 3. Identify key material characteristics 4. Identify obstacles, challenges and risks for the successful deployment of chemical hydrogen materials in a practical on-board hydrogen

  1. Hydrogen detector

    DOE Patents [OSTI]

    Kanegae, Naomichi (Mito, JP); Ikemoto, Ichiro (Mito, JP)

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  2. Generic TriBITS PRoject, Build, Test, and Install Quick Reference Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generic TriBITS PRoject, Build, Test, and Install Quick Reference Guide Ross Bartlett Oak Ridge National Laboratory CASL-U-2014-0075-000-a CASL-U-2014-0075-000-a Generic TriBITS PRoject, Build, Test, and Install Quick Reference Guide Author: Roscoe A. Bartlett Contact: bartlett.roscoe@gmail.com Abstract This document is generated from the generic template body docu- ment TribitsBuildQickRefBody.rst and provides a general project- independent quick reference on how to configure, build, test, and

  3. Fuel Cell Technologies Manufacturing Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing » Fuel Cell Technologies Manufacturing Related Links Fuel Cell Technologies Manufacturing Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded fuel cell technologies manufacturing activities, other EERE and federal manufacturing activities and initiatives, research plans and roadmaps, workshops, and additional related links. DOE-Funded Fuel Cell Technologies Manufacturing Activities Each year, hydrogen and fuel cell projects funded by

  4. Website Policies / Important Links | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Website Policies / Important Links Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  5. Website Policies / Important Links | DOEpatents

    Office of Scientific and Technical Information (OSTI)

    Website Policies / Important Links Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  6. Website Policies / Important Links | sciencecinema

    Office of Scientific and Technical Information (OSTI)

    Website Policies / Important Links Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  7. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & ...

  8. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen ...

  9. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The hydrogen ...

  10. Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrogen Vehicles and Fuels in China Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Presentation given by Jinyang Zheng of ...

  11. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay ...

  12. Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems...

    Open Energy Info (EERE)

    Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name: Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place:...

  13. Mechanochemical hydrogenation of coal

    DOE Patents [OSTI]

    Yang, Ralph T. (Tonawanda, NY); Smol, Robert (East Patchogue, NY); Farber, Gerald (Elmont, NY); Naphtali, Leonard M. (Washington, DC)

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  14. Technical Support Document: 50% Energy Savings for Quick-Service Restaurants

    SciTech Connect (OSTI)

    Zhang, Jian; Schrock, D. W.; Fisher, D. R.; Livchak, A.; Zabrowski, D. A.; Athalye, Rahul A.; Liu, Bing

    2010-09-30

    Document describing PNNL's project to develop a package of energy efficiency measures that demonstrate the feasibility of achieving a 50% energy savings for quick-service restaurants with a simple payback of 5 years or less.

  15. CTP Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    CTP Hydrogen Jump to: navigation, search Name: CTP Hydrogen Place: Westborough, Massachusetts Zip: 1581 Sector: Hydro, Hydrogen Product: CTP Hydrogen is an early stage company...

  16. Hand-Held Analyzer Quickly Detects Buried Human Remains - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Early Stage R&D Early Stage R&D Advanced Materials Advanced Materials Find More Like This Return to Search Hand-Held Analyzer Quickly Detects Buried Human Remains Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryA lightweight hand-held analyzer invented by ORNL researchers uses visual and auditory cues to quickly alert investigators to the presence of buried human remains. The Lightweight Analyzer for Buried Remains And Decomposition

  17. Why Hydrogen? Hydrogen from Diverse Domestic Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Diverse Domestic Resources Hydrogen from Diverse Domestic Resources Distributed Generation Transportation HIGH EFFICIENCY HIGH EFFICIENCY & RELIABILITY & RELIABILITY ZERONEAR...

  18. Helpful Links - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helpful Links Helpful Links Helpful Links Hanford Staff Directory Hanford Site Wide Programs Energy Employees Occupational Illness Compensation Hanford Workers Compensation Projects & Facilities HERO PHOENIX Hanford Meteorological Station Definitions Abbreviations and Acronyms Visitor Control and Site Access Visitor Hanford Computer Access Request Helpful Links Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Contact Us Do you have a question? Contact Hanford

  19. Hydrogen Sensor Workshop

    Broader source: Energy.gov [DOE]

    On June 8, 2011, the Department of Energy's National Renewable Energy Laboratory hosted a hydrogen sensors workshop to survey emerging fuel cell and hydrogen infrastructure applications that...

  20. Hydrogen Threshold Cost Calculation

    Broader source: Energy.gov [DOE]

    DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and assumptions used to calculate that threshold cost.

  1. Hydrogen Storage Challenges

    Broader source: Energy.gov [DOE]

    For transportation, the overarching technical challenge for hydrogen storage is how to store the amount of hydrogen required for a conventional driving range (>300 miles) within the vehicular...

  2. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search Hydrogen Companies Loading map... "format":"googlemaps3","type":"SATELLITE","types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","limit":1000,"o...

  3. Hydrogen Delivery Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Pathway," International Journal of Hydrogen Energy, 34 ... Chemical Economics Handbook. July 2010, http:chemical.ihs.comCEHPublicReports743.5000. 25 Hydrogen ...

  4. Hydrogen Safety Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or otherwise restricted information. Project ID: scs07weiner PNNL-SA-65397 2 IEA HIA Task 19 Working Group Hydrogen Safety Training Props Hydrogen Safety Panel Incident...

  5. Quick Reference

    Broader source: Energy.gov (indexed) [DOE]

    Reference 2015 Annual Planning Summary (APS) User's Guide 1, 2 PART 1 OFFICE Enter the office preparing this APS. NEPA REVIEWS Select one of two responses. SITE-WIDE EISs Select...

  6. Careers in Hydrogen and Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education » Careers in Hydrogen and Fuel Cells Careers in Hydrogen and Fuel Cells The resources below link to job boards and listings on fuel cell company websites. Fuel Cell Employment Resources: Fuel Cells 2000 provides links to fuel cell job listings and career and educational resources. This site also includes articles about careers in the fuel cell industry. Energy Careers and Jobs: DOE's Office of Energy Efficiency and Renewable Energy offers resources for people interested in careers in

  7. Hydrogen delivery technology roadmap

    SciTech Connect (OSTI)

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  8. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  9. Hydrogen Compatibility of Materials

    Broader source: Energy.gov [DOE]

    Presentation slides from the Energy Department webinar, Hydrogen Compatibility of Materials, held August 13, 2013.

  10. Composition for absorbing hydrogen

    DOE Patents [OSTI]

    Heung, Leung K. (Aiken, SC); Wicks, George G. (Aiken, SC); Enz, Glenn L. (N. Augusta, SC)

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  11. Composition for absorbing hydrogen

    DOE Patents [OSTI]

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  12. QuickSite{sup SM}, the Argonne expedited site characterization methodology,

    SciTech Connect (OSTI)

    Burton, J.C.; Meyer, W.T.

    1997-09-01

    Expedited site characterization (ESC), developed by Argonne National Laboratory, is an interactive, integrated process emphasizing the use of existing data of sufficient quality, multiple complementary characterization methods, and on-site decision making to optimize site investigations. The Argonne ESC is the basis for the provisional ESC standard of the ASTM (American Society for Testing and Materials). QuickSite{sup SM} is the implementation package developed by Argonne to facilitate ESC of sites contaminated with hazardous wastes. At various sites, Argonne has successfully implemented QuickSite{sup SM} and demonstrated the technical superiority of the ESC process over traditional methodologies guided by statistics and random-sampling approaches. For example, in a QuickSite{sup SM} characterization of a perched aquifer at the Pantex Plant in Texas, past data and geochemical analyses of existing wells were used to develop a model for recharge and contaminant movement. With the model as a guide, closure was achieved with minimal field work.

  13. Fact #778: May 6, 2013 Vehicles per Thousand Persons Rising Quickly in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    China and India | Department of Energy 8: May 6, 2013 Vehicles per Thousand Persons Rising Quickly in China and India Fact #778: May 6, 2013 Vehicles per Thousand Persons Rising Quickly in China and India The number of vehicles per thousand persons in China grew by nearly 200% from 2005 to 2011, from 23.46 in 2005 to 69.95 in 2011. India's vehicle per thousand persons grew by 84% in the same time frame, from 11.04 in 2005 to 20.28 in 2011. For comparison, the U.S. in 2011 had about 800

  14. Phishing Is As Quick As Clicking One Click Too Many | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phishing Is As Quick As Clicking One Click Too Many Phishing Is As Quick As Clicking One Click Too Many February 6, 2015 - 12:59pm Addthis There are all sorts of impersonators working to obtain our personal information. Phishing is a malicious attempt to collect personal and/or financial information for illegal purposes by masquerading as an email from a trustworthy entity. Phishing has proven to be an effective method of attack in that its success is dependent on the awareness of the user.

  15. Quick Fix Gives Mars Rover's ChemCam Sharper Vision | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Quick Fix Gives Mars Rover's ChemCam Sharper Vision Quick Fix Gives Mars Rover's ChemCam Sharper Vision June 12, 2015 - 3:08pm Addthis This self-portrait of NASA's Curiosity Mars rover shows the vehicle at the "Mojave" site on Mount Sharp, combining dozens of images taken in January 2015. The circle visible at the top of the rover's mast is part of the ChemCam instrument developed in part by Los Alamos National Laboratory. | Photo courtesy of NASA/JPL-Caltech/MSSS This

  16. Related Links - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links Hanford Advisory Board Convening Report SSAB Guidance Memorandum of Understanding Membership Nomination and Appointment Process Operating Ground Rules Calendars Advice and Responses Full Board Meeting Information Committee Meeting Information Outgoing Board Correspondence Key Board Products and Special Reports HAB Annual Report HAB and Committee Lists Points of Contact Related Links Related Links Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size

  17. Helpful Links - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helpful Links Freedom of Information and Privacy Act DOE Headquarters FOIA Web Page A Citizen's Guide to the FOIA and Privacy Act Making a Privacy Act Request Freedom of Information Act, 5 U.S.C. Freedom of Information Act Regulations Privacy Act Regulations DOE Public Reading Room PNNL Technical Library Electronic FOIA Reading Room Freedom of Information Act & Privacy Act Contacts Records Previously Disclosed Helpful Links FOIA Home FOIA Portal Helpful Links Email Email Page | Print Print

  18. Macro-System Model for Hydrogen Energy Systems Analysis in Transportation: Preprint

    SciTech Connect (OSTI)

    Diakov, V.; Ruth, M.; Sa, T. J.; Goldsby, M. E.

    2012-06-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  19. Hydrogen Macro System Model User Guide, Version 1.2.1

    SciTech Connect (OSTI)

    Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.; Genung, K.; Hoseley, R.; Smith, A.; Yuzugullu, E.

    2009-07-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  20. Nuclear Data Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links to Useful Online Nuclear Physics Journals Important Online Resources Science Direct ... Elsevier Physics Online: Nuclear Physics A, B, Physics Repots, Physics Letters B and more. ...

  1. Links (pbl/contracts)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementation Links to related sites Regional Dialogue Transmission Regional Dialogue issues Team ASC Methodology 2012 BPA Rate Case Page content last modified on: April 06, 2010...

  2. Related Links - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links Tri-Party Agreement The Agreement Announcements List of Approved Changes TPA Project Manager's Lists Modifications for Public Comment Data Management MP-14 WIDS...

  3. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  4. Hydrogen Power Inc formerly Hydrogen Power International and...

    Open Energy Info (EERE)

    Power Inc formerly Hydrogen Power International and Equitex Inc Jump to: navigation, search Name: Hydrogen Power, Inc. (formerly Hydrogen Power International and Equitex Inc.)...

  5. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and ... Presentation by 03-Babu for the DOE Hydrogen Pipeline R&D Project Review Meeting held ...

  6. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE...

  7. Development of quick repairing technique for ceramic burner in hot stove of blast furnace

    SciTech Connect (OSTI)

    Kondo, Atsushi; Doura, Kouji; Nakamura, Hirofumi

    1997-12-31

    Refractories of ceramic burner in hot stoves at Wakayama No. 4 blast furnace were damaged. There are only three hot stoves, so repairing must be done in a short. Therefore, a quick repairing technique for ceramic burners has been developed, and two ceramic burners were repaired in just 48 hours.

  8. Correct implementation of the Argonne QuickSite{sup SM} process for preremedial site investigations

    SciTech Connect (OSTI)

    Burton, J.C.; Walker, J.L.

    1997-10-01

    Expedited site characterization (ESC), developed by Argonne National Laboratory, is an interactive, integrated process emphasizing the use of existing data of sufficient quality, multiple complementary characterization methods, and on-site decision making to optimize environmental site investigations. The Argonne ESC is the basis for the provisional ESC standard guide of the ASTM (American Society for Testing and Materials). QuickSite{sup SM} is the implementation package developed by Argonne to facilitate ESC of sites contaminated with hazardous wastes. At various sites, Argonne has successfully implemented QuickSite{sup SM} and demonstrated the technical superiority of the ESC process over traditional methodologies guided by statistics and random-sampling approaches. A key feature in the success of QuickSite{sup SM} investigations is achieving an understanding of the subsurface geologic and hydrogeologic controls and processes at a site before extensive sampling efforts begin. The QuickSite{sup SM} investigation at the Tustin Marine Corps Air Station (MCAS) in California will be used to illustrate the importance of understanding these potential controls in minimizing sampling activities and correctly predicting potential contaminant migration patterns for risk assessment.

  9. Guide to Preparing SAND Reports and other communication products : quick reference guide.

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    This Quick Reference Guide supplements the more complete Guide to Preparing SAND Reports and Other Communication Products. It provides limited guidance on how to prepare SAND Reports at Sandia National Laboratories. Users are directed to the in-depth guide for explanations of processes.

  10. WIPP - Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links Categories Project Participants TRU Waste Sites Oversight Other Related Links Project Participants US Department of Energy - Albuquerque Operations Office US Department of Energy - Headquarters Nuclear Waste Partnership LLC Los Alamos National Laboratory Sandia National Laboratories Portage - Carlsbad Field Office Technical Assistance Contractor Skylla Engineering SM Stoller Corporation L&M Technologies, Inc. Transuranic Back to top Waste Sites Argonne National Laboratory

  11. Hydrogen & Our Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Program www.hydrogen.energy.gov Hydrogen & Our Energy Future  | HydrOgEn & Our EnErgy FuturE U.S. Department of Energy Hydrogen Program www.hydrogen.energy.gov u.S. department of Energy |  www.hydrogen.energy.gov Hydrogen & Our Energy Future Contents Introduction ................................................... p.1 Hydrogen - An Overview ................................... p.3 Production ..................................................... p.5 Delivery

  12. Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaseous Hydrogen » Hydrogen Pipelines Hydrogen Pipelines Photo of a hydrogen pipeline. Gaseous hydrogen can be transported through pipelines much the way natural gas is today. Approximately 1,500 miles of hydrogen pipelines are currently operating in the United States. Owned by merchant hydrogen producers, these pipelines are located where large hydrogen users, such as petroleum refineries and chemical plants, are concentrated such as the Gulf Coast region. Transporting gaseous hydrogen via

  13. Linking Ion Solvation and Lithium Battery Electrolyte Properties |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Linking Ion Solvation and Lithium Battery Electrolyte Properties Linking Ion Solvation and Lithium Battery Electrolyte Properties 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es043_henderson_2010_p.pdf More Documents & Publications Inexpensive, Nonfluorinated (or Partially Fluorinated) Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes

  14. ARM - Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links Related Links TWP-ICE Home Tropical Western Pacific Home ARM Data Discovery Browse Data Post-Experiment Data Sets Weather Summary (pdf, 6M) New York Workshop Presentations Experiment Planning TWP-ICE Proposal Abstract Detailed Experiment Description Science Plan (pdf, 1M) Operations Plan (pdf, 321K) Maps Contact Info Related Links Daily Report Report Archives Press Media Coverage TWP-ICE Fact Sheet (pdf, 211K) Press Releases TWP-ICE Images ARM flickr site <=""

  15. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  16. Hydrogen Storage- Basics

    Broader source: Energy.gov [DOE]

    Storing enough hydrogen on-board a vehicle to achieve a driving range of greater than 300 miles is a significant challenge. On a weight basis, hydrogen has nearly three times the energy content of...

  17. Hydrogen Program Overview

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

  18. Hydrogen Safety Knowledge Tools

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Partners Best Practices - LANL, SNL, NREL, NASA, Hydrogen Safety Panel, and IEA HIA Tasks 19 and 22 Incident Reporting - NASA and Hydrogen Safety Panel 3 Objectives H2...

  19. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  20. National hydrogen energy roadmap

    SciTech Connect (OSTI)

    None, None

    2002-11-01

    This roadmap provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development.

  1. Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Hydrogen December 22, 2015 The three reports released by the Energy Department highlight continued strength, progress and innovation in the U.S. fuel cell hydrogen technologies market. Energy Department Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth The Energy Department released three new reports today showcasing strong growth across the U.S. fuel cell and hydrogen technologies market - continuing America's leadership in clean energy innovation and

  2. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao (Yorktown, VA)

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  3. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  4. Page 11, Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 of 11 Previous Page Links Information for Employees & In-Processing DOE Order 3792.3 - Drug-Free Federal Workplace Testing http:www.archives.govfederal-registercodification...

  5. Nuclear Data Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links to Other Useful Sites Online Journals Institutions and Programs Related to Nuclear Physics U.S. Nuclear Data Program: All evaluated nuclear data supported by the U.S. ...

  6. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than todays lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  7. Hydrogen separation process

    DOE Patents [OSTI]

    Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  8. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced ...

  9. Major Projects with Quick Starts & Jobs Creation Office of Clean Coal

    Energy Savers [EERE]

    Major Projects with Quick Starts & Jobs Creation Office of Clean Coal Summary of Projects and Job Creation The following table outlines the near-term possibilities for projects that capture and sequester carbon from coal-based systems. The potential jobs associated with these activities are listed along with likely construction and operation dates. Since the funding is primarily for construction and associated activities, a rough estimate of 30 job years per $1 million dollars expended was

  10. Programs Streamline Process, Add Customers More Quickly After Implementing Evaluation Recommendations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Empower Programs Hydro-Québec 
 
 November 2009 Case Study Series-Demonstrating Value of Program Evaluation 
 Programs Streamline Process, Add Customers More Quickly After Implementing Evaluation Recommendations A 2006 evaluation helped Hydro-Québec's Empower Programs increase customer satisfaction and use staff time more efficiently by streamlining the programs' application process. The programs achieved this by establishing a plan of action to implement the evaluation's

  11. Renewable Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Renewable Hydrogen Welcoming presentations at the Delivering Renewable Hydrogen Workshop: A Focus on Near-Term Applications, Nov. 16, 2009, Palm Springs, CA PDF icon renewable_hydrogen_workshop_nov16_remick.pdf More Documents & Publications National Hydrogen Learning Demonstration Status CoolCab Truck Thermal Load Reduction Hydrogen Transmission and Distribution Workshop

  12. An In-situ Tensile Test Apparatus for Polymers in High Pressure Hydrogen

    SciTech Connect (OSTI)

    Alvine, Kyle J.; Kafentzis, Tyler A.; Pitman, Stan G.; Johnson, Kenneth I.; Skorski, Daniel C.; Tucker, Joseph C.; Roosendaal, Timothy J.; Dahl, Michael E.

    2014-10-10

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex-situ measurements of mechanical properties problematic. Designing in-situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials like Nd. Here we detail the design and operation of a solenoid based in-situ tensile tester under high-pressure hydrogen environments up to 5,000 psi. Modulus data from high-density polyethylene (HDPE) samples tested under high-pressure hydrogen are also reported as compared to baseline measurements taken in air.

  13. An in situ tensile test apparatus for polymers in high pressure hydrogen

    SciTech Connect (OSTI)

    Alvine, K. J. Kafentzis, T. A.; Pitman, S. G.; Johnson, K. I.; Skorski, D.; Tucker, J. C.; Roosendaal, T. J.; Dahl, M. E.

    2014-10-15

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials such as Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up to 42 MPa (6000 psi). Modulus data from high-density polyethylene samples tested under high-pressure hydrogen at 35 MPa (5000 psi) are also reported as compared to baseline measurements taken in air.

  14. MAJOR CONFORMED CONTRACTS LINKS Site/Project Contract Link Idaho

    Office of Environmental Management (EM)

    MAJOR CONFORMED CONTRACTS LINKS SiteProject Contract Link Idaho Idaho Cleanup Project http:www.id.doe.govdoeidICPContractICPContract.htm Advance Mixed Waste Treatment http:...

  15. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

  16. Hydrogen permeability and Integrity of hydrogen transfer pipelines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline R&D Project Review Meeting held January 5th and 6th, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. PDF icon 03_babu_transfer.pdf More Documents & Publications Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Proceedings of the 2005 Hydrogen Pipeline

  17. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  18. Assessing Steel Pipeline and Weld Susceptibility to Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Hydrogen permeability and Integrity of hydrogen transfer pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen...

  19. Handbook for quick cost estimates. A method for developing quick approximate estimates of costs for generic actions for nuclear power plants

    SciTech Connect (OSTI)

    Ball, J.R.

    1986-04-01

    This document is a supplement to a ''Handbook for Cost Estimating'' (NUREG/CR-3971) and provides specific guidance for developing ''quick'' approximate estimates of the cost of implementing generic regulatory requirements for nuclear power plants. A method is presented for relating the known construction costs for new nuclear power plants (as contained in the Energy Economic Data Base) to the cost of performing similar work, on a back-fit basis, at existing plants. Cost factors are presented to account for variations in such important cost areas as construction labor productivity, engineering and quality assurance, replacement energy, reworking of existing features, and regional variations in the cost of materials and labor. Other cost categories addressed in this handbook include those for changes in plant operating personnel and plant documents, licensee costs, NRC costs, and costs for other government agencies. Data sheets, worksheets, and appropriate cost algorithms are included to guide the user through preparation of rough estimates. A sample estimate is prepared using the method and the estimating tools provided.

  20. AlumniLink: May 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Join our highlighted LinkedIn discussion Join our highlighted LinkedIn discussion Descartes Labs is using deep learning technology developed at LANL to help us better...

  1. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel (Aiken, SC)

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  2. Dispersion of Hydrogen Clouds

    SciTech Connect (OSTI)

    Michael R. Swain; Eric S. Grilliot; Matthew N. Swain

    2000-06-30

    The following is the presentation of a simplification of the Hydrogen Risk Assessment Method previously developed at the University of Miami. It has been found that for simple enclosures, hydrogen leaks can be simulated with helium leaks to predict the concentrations of hydrogen gas produced. The highest concentrations of hydrogen occur near the ceiling after the initial transients disappear. For the geometries tested, hydrogen concentrations equal helium concentrations for the conditions of greatest concern (near the ceiling after transients disappear). The data supporting this conclusion is presented along with a comparison of hydrogen, LPG, and gasoline leakage from a vehicle parked in a single car garage. A short video was made from the vehicle fuel leakage data.

  3. Hydrogenation of carbonaceous materials

    DOE Patents [OSTI]

    Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

    1980-01-01

    A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

  4. Pressure-Induced Hydrogen Bond Symmetrization in Iron Oxyhydroxide (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Pressure-Induced Hydrogen Bond Symmetrization in Iron Oxyhydroxide Citation Details In-Document Search Title: Pressure-Induced Hydrogen Bond Symmetrization in Iron Oxyhydroxide Authors: Xu, Weiming ; Greenberg, Eran ; Rozenberg, Gregory Kh. ; Pasternak, Moshe P. ; Bykova, Elena ; Boffa-Ballaran, Tiziana ; Dubrovinsky, Leonid ; Prakapenka, Vitali ; Hanfland, Michael ; Vekilova, Olga Yu. ; Simak, Sergei I. ; Abrikosov, Igor A. [1] ; Link) [2] ;

  5. Bioelectrocatalysis of hydrogen oxidation/production by hydrogenases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioelectrocatalysis of hydrogen oxidation/production by hydrogenases Authors: Jones, A.K., McIntosh, C.L., Dutta, A., Kwan, P., Roy, S., Yang, S. Title: Bioelectrocatalysis of hydrogen oxidation/production by hydrogenases Source: In: Enzymatic fuel cells: From fundamentals to applications. Edited by H. Luckarift, G. Johnson and P. Attanasov, Wiley-VCH, Weinheim, Germany Year: 2013 Volume: in press Pages: ABSTRACT: Date of online publication: Link online: http://solarfuel.clas.asu.edu/

  6. Hawaii Renewable Hydrogen Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Program State & Regional Initiatives Webinar 14 October 2009 Mitch Ewan Hydrogen Systems Program Manager Hawaii Natural Energy Institute Chenoa Farnsworth Partner Kolohala Holdings, LLP Overview * Hawaii's Energy Situation * Mitch Ewan * Hawaii Power Park Project * Mitch Ewan * The Renewables-to-Hydrogen Fund * Chenoa Farnsworth Hawaii - Most Petroleum Dependent State Petroleum dependence for electricity - top six states Highest Electricity Prices in U.S. Hawaii and US

  7. National hydrogen energy roadmap

    SciTech Connect (OSTI)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  8. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  9. Hydrogen Contamination Detector Workshop

    Broader source: Energy.gov [DOE]

    Workshop report, agenda, and presentations from the Hydrogen Contamination Detector Workshop hosted by SAE International on June 12, 2014, in Troy, Michigan. Sponsored by the U.S. Department of Energy (DOE) Fuel Cell Technologies Office, the workshop was held to gather individual input from key stakeholders about suitable technologies and research and development (R&D) gaps and needs for hydrogen contamination detectors at hydrogen refueling stations.

  10. NREL: Learning - Hydrogen Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen does not exist freely in nature: it is only produced from other sources of energy, so it is often referred to as an energy carrier, that is, an efficient way to store and transport energy. Hydrogen can be made directly from fossil fuels or biomass, or it can be produced by passing electricity through water, breaking

  11. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  12. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  13. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  14. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y. Simon (Lakewood, CO); Deb, Satyen K. (Boulder, CO)

    1990-01-01

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.

  15. Hydrogen Industrial Trucks

    Office of Energy Efficiency and Renewable Energy (EERE)

    Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  16. HYDROGEN TO THE HIGHWAYS

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  17. Hydrogen Generator Appliance

    Broader source: Energy.gov [DOE]

    Presentation by Gus Block, Nuvera Fuel Cells, at the Natural Gas and Hydrogen Infrastructure Opportunities Workshop held October 18-19, 2011, in Lemont, Illinois.

  18. Hydrogen Delivery and Fueling

    SciTech Connect (OSTI)

    2015-09-09

    This MP3 provides an overview of how hydrogen is delivered from the point of production to where it is used.

  19. Hydrogen purification system

    DOE Patents [OSTI]

    Golben, Peter Mark

    2010-06-15

    The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

  20. Hydrogen Safety Knowledge Tools

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  1. Renewable Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Remick, R. J.

    2009-11-16

    Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

  2. President's Hydrogen Fuel Initiative

    Broader source: Energy.gov [DOE]

    Hydrogen Infrastructure and Fuel Cell Technologies put on an Accelerated Schedule. President Bush commits a total $1.7 billion over first 5 years

  3. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, J.C.; Brehm, W.F.

    1980-02-08

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  4. California Hydrogen Infrastructure Project

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  5. Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization

    SciTech Connect (OSTI)

    Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

    2011-03-28

    Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low cost and accompanied by improved mechanical and thermal stability.

  6. California Hydrogen Infrastructure Project | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Infrastructure Project Jump to: navigation, search Name: California Hydrogen Infrastructure Project Place: California Sector: Hydro, Hydrogen Product: String...

  7. Massachusetts Hydrogen Coalition | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Coalition Jump to: navigation, search Logo: Massachusetts Hydrogen Coalition Name: Massachusetts Hydrogen Coalition Address: 100 Cummings Center Place: Beverly,...

  8. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  9. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  10. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Harrah, Larry A. (Albuquerque, NM); Mead, Keith E. (Peralta, NM); Smith, Henry M. (Overland Park, KS)

    1983-01-01

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  11. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  12. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  13. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  14. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines

    Broader source: Energy.gov [DOE]

    Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline

  15. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  16. Green Hydrogen Company | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Company Jump to: navigation, search Logo: Green Hydrogen Company Name: Green Hydrogen Company Abbreviation: GH2 Address: Green Hydrogen Company, Head Office, 9...

  17. Safe Hydrogen LLC | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen LLC Jump to: navigation, search Name: Safe Hydrogen LLC Place: Lexington, Massachusetts Sector: Hydro, Hydrogen Product: Focused on hydrogen storage, through a 'slurry' of...

  18. Hydrogen Car Co | Open Energy Information

    Open Energy Info (EERE)

    Car Co Jump to: navigation, search Name: Hydrogen Car Co Place: Los Angeles, California Zip: 90036 Sector: Hydro, Hydrogen Product: The Hydrogen Car Company produces hydrogen...

  19. The Hydrogen Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: The Hydrogen Company Abbreviation: HydroGen Address: The Hydrogen Company, HydroGen Engineering and Consulting, Head Office, 9...

  20. Sandia Energy - Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Project Home Transportation Energy Hydrogen Market Transformation Maritime Hydrogen & SF-BREEZE Maritime Hydrogen Fuel Cell Project Maritime Hydrogen Fuel Cell...

  1. CAMD Nanofabrication Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research :: Publications :: Infrastructure :: Links :: Nanofabrication Facility in News Nano 50TM Awards: The Nano 50TM Awards, presented by Nanotech Briefs magazine, recognize the top 50 technologies, products and innovators that have significantly impacted, or are expected to impact, the state of the art in nanotechnology. "The winners of the Nano 50 awards are the best of the best - the innovative people and technologies that will continue to move nanotechnology to key mainstream

  2. News Links | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Media NEWS LINKS JLab Mourns Loss of Dr. Brad Tippens, Dept. of Energy (March 16, 2011, A Message from Dr. Timothy Hallman, DOE) Jefferson Lab: Laser gun to eventually shoot down missiles (February 21, 2011, Daily Press) Navy Breaks World Record With Futuristic Free-Electron Laser (February 20, 2011, FOX News.com) Unexpectedly, Navy's Superlaser Blasts Away a Record (February 18, 2011, Wired) Two locals named among Virginia's outstanding scientists (January 26, 2011, The Virginian-Pilot)

  3. Final phase I report and phase II work plan : QuickSite{reg_sign} investigation, Centralia, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.

    2003-03-01

    The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), formerly operated a grain storage facility approximately 1,100 ft north of Centralia (Figure 1.2). The CCC/USDA operated this facility from 1949 until 1971. None of the CCC/USDA structures remain. Two additional grain storage facilities currently exist in and near Centralia: the Nemaha County Co-op, approximately 4,000 ft south of the former CCC/USDA facility, and a private grain storage facility near the Don Morris residence, 3,500 ft north of the former CCC/USDA facility. Prior to 1986, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the grain storage industry to preserve grain. In April 1998, the Kansas Department of Health and Environment (KDHE) sampled the domestic well at the Don Morris residence near Centralia (Figure 1.2) as part of the CCC/USDA Private Well Sampling Program, which was initiated to determine whether carbon tetrachloride was present in domestic wells located near former CCC/USDA grain storage facilities in Kansas. Carbon tetrachloride was detected in the Morris well at 19.3 mg/L and confirmed at 25.4 mg/L, both concentrations above the maximum contaminant level (MCL) of 5 mg/L for carbon tetrachloride in drinking water. On the basis of the detection of carbon tetrachloride in the Morris well, the KDHE in August-September 1998 conducted preliminary investigations at the former CCC/USDA facility. For the details of previous investigations in the area and a summary of their findings, see the QuickSite{reg_sign} Phase I Work Plan for Centralia (Argonne 2002a). Because the KDHE found carbon tetrachloride at the former CCC/USDA facility at Centralia that might, in part, be linked to historical use of carbon tetrachloride-based grain fumigants at the facility, the CCC/USDA is conducting an environmental site investigation at Centralia. However, the KDHE established in 1998 that the probable groundwater flow direction at the former CCC/USDA facility is not toward the Morris well, and thus the former facility is not responsible for the carbon tetrachloride measured in that well. The town of Centralia and all residents near the former CCC/USDA facility currently obtain their water from Rural Water District No.3 (RWD 3). Therefore, these local residents are not drinking and using contaminated groundwater. The investigation at Centralia is being performed by the Environmental Research Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. At these facilities, Argonne is applying its QuickSite environmental site characterization methodology. QuickSite is Argonne's proprietary implementation system for the expedited site characterization (ESC) process. Argonne's Environmental Research Division developed the ESC process to optimize preremedial site characterization work at hazardous waste sites by obtaining and then applying a thorough understanding of a site's geology, hydrogeology, and hydrogeochemistry (e.g., Burton 1994). This approach is fundamental to successful site characterization because the geology and hydrogeology of a site largely govern the mobility and fate of contaminants there. Argonne's ESC process has been used successfully at a number of former CCC/USDA facilities in Kansas and Nebraska and has been adopted by the American Society for Testing and Materials (ASTM 1998) as standard practice for environmental site characterization. This report documents the findings of the Phase I activities at Centralia. Section 1 provides a brief history of the area and the QuickSite process, a summary of the geologic/hydrogeologic model, objectives of the Phase I investigation, and a brief description of the sections contained in this report. Section 2 describes the investigative methods used during the Phase I investigation. Section 3 presents all of the data obtained during the investigation. Section 4 describes the interpretation of the pertinent data used to meet the technical objectives of the investigation, including the contaminant migration pathways in soil and groundwater. A summary of the findings is also provided in Section 4. Section 5 presents the conclusions of the investigation relative to the technical objectives and outlines recommendations for Phase II. To streamline the reporting process, materials from the Work Plan (Argonne 2002a) and relevant sections of the Master Work Plan (Argonne 2002b) are not repeated in detail in this report. Consequently, these documents must also be consulted to obtain the complete details of the Phase I investigative program.

  4. Balanced link for dry coal extrusion pumps

    DOE Patents [OSTI]

    Bebejian, Maral

    2013-10-22

    A link which defines a link body that includes a multiple of link plates integral with a link body, the link body disposed at least partially forward of a forward edge of the multiple of link plates.

  5. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage & Transportation | Department of Energy Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA PDF icon renewable_hydrogen_workshop_nov16_ramsden.pdf More Documents & Publications Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis

  6. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOE Patents [OSTI]

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  7. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  8. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  9. Website Policies / Important Links | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Website Policies / Important Links Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  10. Website Policies / Important Links | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Website Policies / Important Links Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  11. Hydrogen Fuel Quality

    SciTech Connect (OSTI)

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  12. Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 A report showing a comparative scooping economic analysis of 19 pathways for ...

  13. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines

    Broader source: Energy.gov [DOE]

    Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines.

  14. Why Hydrogen? Hydrogen from Diverse Domestic Resources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of FreedomCAR & Fuels PartnershipDOE Delivery Program President's Hydrogen Fuel Initiative Hydrogen Posture Plan: An Integrated Research, Development and...

  15. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60-42773 February 2009 Hydrogen Resource Assessment Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power Anelia Milbrandt and Margaret Mann National Renewable Energy...

  16. Renewable Resources for Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2010-05-03

    This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

  17. Hydrogen Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Hydrogen Resources Hydrogen can be produced from diverse, domestic resources. Currently, most hydrogen is produced from fossil fuels, specifically natural gas. Electricity-from the grid or from renewable sources such as wind, solar, geothermal, or biomass-is also currently used to produce hydrogen. In the longer term, solar energy and biomass can be used more directly to generate hydrogen. Natural Gas and Other Fossil Fuels Fossil fuels can be reformed to release the hydrogen from

  18. Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Hydrogen Storage The Fuel Cell Technologies Office (FCTO) is developing onboard automotive hydrogen storage systems that allow for a driving range of more than 300 miles while meeting cost, safety, and performance requirements. Why Study Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies in applications including stationary power, portable power, and transportation. Hydrogen has the highest energy per mass of any

  19. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). Its made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  20. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItÆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  1. Hydrogen Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Hydrogen Energy Place: Surrey, England, United Kingdom Zip: KT13 0NY Sector: Carbon, Hydro, Hydrogen Product: Surrey-based BP subsidiary...

  2. Hydrogen Ventures | Open Energy Information

    Open Energy Info (EERE)

    Ventures Jump to: navigation, search Logo: Hydrogen Ventures Name: Hydrogen Ventures Address: 1219 N. Studabaker Road Place: Long Beach, California Zip: 90811 Region: Southern CA...

  3. Hydrogen Production Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... hydrogen control to assure public safety and address ... pathway," International Journal of Hydrogen Energy 34 ... Texas: Center for Energy Economics, 2004), http:...

  4. Extremely weak hydrogen flames

    SciTech Connect (OSTI)

    Lecoustre, V.R.; Sunderland, P.B. [Department of Fire Protection Engineering, University of Maryland, College Park, MD 20742 (United States); Chao, B.H. [Department of Mechanical Engineering, University of Hawaii, Honolulu, HI 96822 (United States); Axelbaum, R.L. [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2010-11-15

    Hydrogen jet diffusion flames were observed near their quenching limits. These involved downward laminar flow of hydrogen from a stainless steel hypodermic tube with an inside diameter of 0.15 mm. Near their quenching limits these flames had hydrogen flow rates of 3.9 and 2.1 {mu}g/s in air and oxygen, respectively. Assuming complete combustion, the associated heat release rates are 0.46 and 0.25 W. To the authors' knowledge, these are the weakest self-sustaining steady flames ever observed. (author)

  5. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, Frederick T. (Livermore, CA)

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  6. Thermochemical method for producing hydrogen from hydrogen sulfide

    SciTech Connect (OSTI)

    Herrington, D.R.

    1984-02-21

    Hydrogen is produced from hydrogen sulfide by a 3-step, thermochemical process comprising: (a) contacting hydrogen sulfide with carbon dioxide to form carbonyl sulfide and water, (b) contacting the carbonyl sulfide produced in (a) with oxygen to form carbon monoxide and sulfur dioxide, and (c) contacting the carbon monoxide produced in (b) with water to form carbon dioxide and hydrogen.

  7. Links | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    About Us / Our Locations / Albuquerque Complex / Federal Asian Pacific American Council - New Mexico Chapter Albuquerque, NM / Links Links "Promoting Equal Opportunity and Cultural Diversity for APAs in Government" FAPAC, Washington DC

  8. Advancing the Hydrogen Safety Knowledge Base

    SciTech Connect (OSTI)

    Weiner, Steven C.

    2014-12-01

    A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

  9. Links - MST - UW Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links UW Madison Madison Symmetric Torus Links MST HomeGraduate Student InformationLinksTourControl and Auxiliary SystemsPhysics TopicsDeviceResearch MissionMST People mst logo CPLA Home Directory Publications Links Internal University of Wisconsin Physics Department Research funding includes support from: Department of Energy National Science Foundation Other Reversed Field Pinch Experiments around the world: RFX-mod in Padua, Italy Extrap-T2R in Stockhom, Sweden RELAX at Kyoto Institute of

  10. The Hydrogen Connection

    SciTech Connect (OSTI)

    Barilo, Nick F.

    2014-05-01

    As the world seeks to identify alternative energy sources, hydrogen and fuel cell technologies will offer a broad range of benefits for the environment, the economy and energy security.

  11. Biological Hydrogen Production Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Biological Hydrogen Production Workshop on September 24–25, 2013, in Golden, Colorado. The workshop...

  12. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cell technology academic program at Florida Institute of Technology in Melbourne, Florida. Design and Development of an Advanced Hydrogen Storage System using Novel Materials ? E. Stefanakos, University of South Florida The goal of this project was to design and develop novel conducting polymeric nanomaterials for on-board hydrogen storage. The project approach was to examine synthesis of polyaniline solid state hydrogen storage materials. Advanced HiFoil ? Bipolar Plates ? J. Braun, M. Fuchs, EnerFuel, Inc. The goal of this project was to provide a durable, low cost bipolar plate for high temperature proton exchange membrane fuel cells. The project results produced a durable, low cost bipolar plate with very high in-plane thermal conductivity.

  13. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  14. National Hydrogen Energy Roadmap

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy developme

  15. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  16. Hydrogen Fuel Cell Demonstration ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brothers, Ltd., at their facility in the Port of Honolulu. The pilot hydrogen fuel cell unit will be used in place of a diesel generator currently used to provide power for...

  17. Hydrogen Production: Coal Gasification

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically through the process of coal gasification with carbon capture, utilization, and storage.

  18. Beryllium Related Links - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links About Us Beryllium Program Beryllium Program Points of Contact Beryllium Facilities & Areas Beryllium Program Information Hanford CBDPP Committee Beryllium FAQs Beryllium Related Links Hanford Beryllium Awareness Group (BAG) Program Performance Assessments Beryllium Program Feedback Beryllium Health Advocates Primary Contractors/Employers Medical Testing and Surveillance Facilities General Resources Beryllium Related Links Email Email Page | Print Print Page |Text Increase Font

  19. Hydrogen recovery process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

    2000-01-01

    A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

  20. Hydrogen Compatibility of Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compatibility of Materials August 13, 2013 DOE EERE Fuel Cell Technologies Office Webinar Chris San Marchi Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 SAND2013-6278P 2 Webinar Objectives * Provide context for hydrogen embrittlement and hydrogen

  1. Hydrogen Equipment Certification Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment Certification Guide U.S. Department of Energy Fuel Cell Technologies Office December 10 th , 2015 Presenter: Nick Barilo Pacific Northwest National Laboratory (PNNL) Hydrogen Safety Program Manager DOE Host: Will James - DOE Fuel Cell Technologies Office 2 | Fuel Cell Technologies Office eere.energy.gov Question and Answer * Please type your questions into the question box 2 / / Hydrogen Equipment Certification Guide: Introduction and Kickoff for the Stakeholder Review Nick Barilo PNNL

  2. Method of producing hydrogen

    DOE Patents [OSTI]

    Bingham, Dennis N.; Klingler, Kerry M.; Wilding, Bruce M.; Zollinger, William T.

    2006-12-26

    A method of producing hydrogen is disclosed and which includes providing a first composition; providing a second composition; reacting the first and second compositions together to produce a chemical hydride; providing a liquid and reacting the chemical hydride with the liquid in a manner to produce a high pressure hydrogen gas and a byproduct which includes the first composition; and reusing the first composition formed as a byproduct in a subsequent chemical reaction to form additional chemical hydride.

  3. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  4. Safetygram Gaseous Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is a colorless, odorless, tasteless, highly flammable gas. It is also the lightestweight gas. Since hydrogen is noncorrosive, special materials of construction are not usually required. The American Society of Mechanical Engineers (ASME) code and the American National Standards Institute (ANSI) Pressure Piping code specify vessel and piping design requirements for the pressures and temperatures involved. Applicable Dangerous Goods regulations specify requirements for vessels used for transportation.

  5. Cryogenic hydrogen release research.

    SciTech Connect (OSTI)

    LaFleur, Angela Christine

    2015-12-01

    The objective of this project was to devolop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. The necessary infrastructure has been specified and laboratory modifications are currently underway. Once complete, experiments from this platform will be used to develop and validate models that inform codes and standards which specify protection criteria for unintended releases from liquid hydrogen storage, transport, and delivery infrastructure.

  6. Multilevel DC link inverter

    DOE Patents [OSTI]

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  7. A-Z Link

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A-Z Index A B C D E F G H I J K L M N O P Q R S T V W Y Z Filter by alpha... A B C D E F G H I J K L M N O P Q R S T U V W Y Z This index page includes links to websites throughout Berkeley Lab. Click on a letter above to see an alphabetized list of items. Or, use the form to the right to search the titles in this index by keyword. Ways to Find Things at LBL: 1. Use or Search the A-Z Index (this page) 2. Use search.lbl.gov powered by Google. 3. Use DS The Directory of both People and

  8. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production and Delivery Learn how NREL is developing and advancing a number of pathways to renewable hydrogen production. Text Version Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen

  9. Hydrogen Material Compatibility for Hydrogen ICE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Compatibility for Hydrogen ICE Hydrogen Material Compatibility for Hydrogen ICE 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pm_04_smith.pdf More Documents & Publications Hydrogen Materials Compatibility for the H-ICE Engine Friction Reduction Through Surface Finish and Coatings Low-Friction Hard Coatings

  10. DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Readiness Workshop | Department of Energy and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop Presentation by Sunita Satyapal, U.S. Department of Energy Fuel Cell Technologies Program Manager, at the Hydrogen Infrastructure Market Readiness Workshop, February 16, 2011, in Washington, D.C. PDF icon DOE Hydrogen and Fuel Cell Overview More Documents & Publications DOE

  11. Examining hydrogen transitions.

    SciTech Connect (OSTI)

    Plotkin, S. E.; Energy Systems

    2007-03-01

    This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

  12. Hydrogen Distribution and Delivery Infrastructure

    SciTech Connect (OSTI)

    2008-11-01

    This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challenges to delivering hydrogen for use as a widespread energy carrier, and the research goals for hydrogen delivery.

  13. Hydrogen Delivery Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  14. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  15. Hydrogen-filled RF Cavities for Muon Beam Cooling

    SciTech Connect (OSTI)

    CHARLES, Ankenbrandt

    2009-04-17

    Ionization cooling requires low-Z energy absorbers immersed in a strong magnetic field and high-gradient, large-aperture RF cavities to be able to cool a muon beam as quickly as the short muon lifetime requires. RF cavities that operate in vacuum are vulnerable to dark-current- generated breakdown, which is exacerbated by strong magnetic fields, and they require extra safety windows that degrade cooling, to separate RF regions from hydrogen energy absorbers. RF cavities pressurized with dense hydrogen gas will be developed that use the same gas volume to provide the energy absorber and the RF acceleration needed for ionization cooling. The breakdown suppression by the dense gas will allow the cavities to operate in strong magnetic fields. Measurements of the operation of such a cavity will be made as functions of external magnetic field and charged particle beam intensity and compared with models to understand the characteristics of this technology and to develop mitigating strategies if necessary.

  16. Hydrogen storage and generation system

    DOE Patents [OSTI]

    Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  17. Hydrogen Delivery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Hydrogen Delivery A viable hydrogen infrastructure requires that hydrogen be able to be delivered from where it's produced to the point of end-use, such as a dispenser at a refueling station or stationary power site. Infrastructure includes the pipelines, trucks, storage facilities, compressors, and dispensers involved in the process of delivering fuel. Delivery technology for hydrogen infrastructure is currently available commercially, and several U.S. companies deliver bulk hydrogen

  18. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel ...

  19. Quick evaluation of multiple geostatistical models using upscaling with coarse grids: A practical study

    SciTech Connect (OSTI)

    Lemouzy, P.

    1997-08-01

    In field delineation phase, uncertainty in hydrocarbon reservoir descriptions is large. To quickly examine the impact of this uncertainty on production performance, it is necessary to evaluate a large number of descriptions in relation to possible production methods (well spacing, injection rate, etc.). The method of using coarse upscaled models was first proposed by Ballin. Unlike other methods (connectivity analysis, tracer simulations), it considers parameters such as PVT, well management, etc. After a detailed review of upscaling issues, applications to water-injection cases (either with balance or imbalance of production, with or without aquifer) and to depletion of an oil reservoir with aquifer coning are presented. Much more important than the method of permeability upscaling far from wells, the need of correct upscaling of numerical well representation is pointed out Methods are proposed to accurately represent fluids volumes in coarse models. Simple methods to upscale relative permeabilities, and methods to efficiently correct numerical dispersion are proposed. Good results are obtained for water injection. The coarse upscaling method allows the performance of sensitivity analyses on model parameters at a much lower CPU cost than comprehensive simulations. Models representing extreme behaviors can be easily distinguished. For depletion of an oil reservoir showing aquifer coning, however, the method did not work property. It is our opinion that further research is required for upscaling close to wells. We therefore recombined this method for practical use in the case of water injection.

  20. Hydrogen Financial Analysis Scenario Tool (H2FAST). Web Tool User's Manual

    SciTech Connect (OSTI)

    Bush, B.; Penev, M.; Melaina, M.; Zuboy, J.

    2015-05-11

    The Hydrogen Financial Analysis Scenario Tool (H2FAST) provides a quick and convenient indepth financial analysis for hydrogen fueling stations. This manual describes how to use the H2FAST web tool, which is one of three H2FAST formats developed by the National Renewable Energy Laboratory (NREL). Although all of the formats are based on the same financial computations and conform to generally accepted accounting principles (FASAB 2014, Investopedia 2014), each format provides a different level of complexity and user interactivity.

  1. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, John P. (Boulder, CO); Way, J. Douglas (Boulder, CO)

    1997-01-01

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2. s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  2. Hydrogen-Selective Membrane

    DOE Patents [OSTI]

    Collins, John P. (Boulder, CO); Way, J. Douglas (Boulder, CO)

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  3. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  4. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1997-07-29

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  5. Hydrogen production from carbonaceous material

    DOE Patents [OSTI]

    Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

    2004-09-14

    Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

  6. Protective link for superconducting coil

    DOE Patents [OSTI]

    Umans, Stephen D. (Belmont, MA)

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  7. Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Algal Biofuels » Related Links Related Links The links below provide useful algae resources and are organized by categories. Beyond this page, learn more about BETO's Algae Program R&D by visiting the Information Resources page. Events Algal Biofuels Strategy Workshops Annual Biomass Conference Office-Attended Conferences Funding Opportunity Announcements and Awards Advances in Algal Biomass Yield Award Innovative Pilot Award Targeted Algal Biofuels and

  8. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  9. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  10. Hydrogen Storage System Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Challenges Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles October 29 th , 2015 Mike Veenstra Ford Research & Advanced Engineering Production fuel cell vehicles are being produced or planned by every major automotive OEM Toyota Honda Hyundai (credit: SA / ANL) Customer Expectations Driving Range Refueling Time Cargo Space Vehicle Weight Durability Cost Safety 0.0 2.0 4.0 6.0 8.0 10.0 Gasoline Hydrogen (700 bar) Natural

  11. The hydrogen hybrid option

    SciTech Connect (OSTI)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  12. Hydrogen production from microbial strains

    DOE Patents [OSTI]

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  13. Hydrogen Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Hydrogen Production Hydrogen Production Hydrogen is the simplest element on earth-it consists of only one proton and one electron-and it is an energy carrier, not an energy source. Hydrogen can store and deliver usable energy, but it doesn't typically exist by itself in nature and must be produced from compounds that contain it. WHY STUDY HYDROGEN PRODUCTION Hydrogen can be used in fuel cells to generate power using a chemical reaction rather than combustion, producing only water and

  14. A Note on the Reaction of Hydrogen and Plutonium

    SciTech Connect (OSTI)

    Noone, Bailey C

    2012-08-15

    Plutonium hydride has many practical and experimental purposes. The reaction of plutonium and hydrogen has interesting characteristics, which will be explored in the following analysis. Plutonium is a radioactive actinide metal that emits alpha particles. When plutonium metal is exposed to air, the plutonium oxides and hydrides, and the volume increases. PuH{sub 2} and Pu{sub 2}O{sub 3} are the products. Hydrogen is a catalyst for plutonium's corrosion in air. The reaction can take place at room temperature because it is fairly insensitive to temperature. Plutonium hydride, or PuH{sub 2}, is black and metallic. After PuH{sub 2} is formed, it quickly flakes off and burns. The reaction of hydrogen and plutonium is described as pyrophoric because the product will spontaneously ignite when oxygen is present. This tendency must be considered in the storage of metal plutonium. The reaction is characterized as reversible and nonstoichiometric. The reaction goes as such: Pu + H{sub 2} {yields} PuH{sub 2}. When PuH{sub 2} is formed, the hydrogen/plutonium ratio is between 2 and 2.75 (approximately). As more hydrogen is added to the system, the ratio increases. When the ratio exceeds 2.75, PuH{sub 3} begins to form along with PuH{sub 2}. Once the ratio surpasses 2.9, only PuH{sub 3} remains. The volume of the plutonium sample increases because of the added hydrogen and the change in crystal structure which the sample undergoes. As more hydrogen is added to a system of metal plutonium, the crystal structure evolves. Plutonium has a crystal structure classified as monoclinic. A monoclinic crystal structure appears to be a rectangular prism. When plutonium reacts with hydrogen, the product PuH{sub 2}, becomes a fluorite structure. It can also be described as a face centered cubic structure. PuH{sub 3} forms a hexagonal crystal structure. As plutonium evolves from metal plutonium to plutonium hydride to plutonium trihydride, the crystal structure evolves from monoclinic to fluorite to hexagonal. This change in crystal structure as a result of adding hydrogen is a shared characteristic with other actinide elements. Americium is isostructural with plutonium because they both form cubic dihyrides and hexagonal trihydrides. Reacting hydrogen with plutonium has the practical application of separating plutonium from other materials that don't react as well with hydrogen. When plutonium is placed in a chamber where there is very little oxygen, it can react with hydrogen without igniting. The hydrogen plutonium reaction can then be reversed, thus regaining the separated plutonium. Another application of this reaction is that it can be used to predict how plutonium reacts with other substances. Deuterium and tritium are two isotopes of hydrogen that are of interest. They are known to react likewise to hydrogen because they have similar properties. The reaction of plutonium and isotopes of hydrogen can prove to be very informative.

  15. Regional Consumer Hydrogen Demand and Optimal Hydrogen Refueling Station Siting

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2008-04-01

    Using a GIS approach to spatially analyze key attributes affecting hydrogen market transformation, this study proposes hypothetical hydrogen refueling station locations in select subregions to demonstrate a method for determining station locations based on geographic criteria.

  16. 2nd International Hydrogen Infrastructure Challenges Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE Introduction to SAE Hydrogen Fueling Standardization Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling...

  17. Florida Hydrogen Initiative Inc | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Initiative Inc Jump to: navigation, search Name: Florida Hydrogen Initiative Inc Place: Florida Sector: Hydro, Hydrogen Product: Provides grants to aid the development of...

  18. Air Liquide Hydrogen Energy | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Energy Jump to: navigation, search Logo: Air Liquide Hydrogen Energy Name: Air Liquide Hydrogen Energy Address: 6, Rue Cognacq-Jay Place: Paris, France Zip: 75321 Sector:...

  19. Hydrogen Solar Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Ltd Jump to: navigation, search Name: Hydrogen Solar Ltd Place: Guildford, United Kingdom Zip: GU2 7YG Sector: Hydro, Hydrogen, Solar Product: Hydrogen Solar Ltd is...

  20. National Hydrogen Association | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Association Jump to: navigation, search Name: National Hydrogen Association Place: Washington, Washington, DC Zip: 20036 Sector: Hydro, Hydrogen Product: The source for...

  1. Highline Hydrogen Hybrids | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Hybrids Jump to: navigation, search Name: Highline Hydrogen Hybrids Place: farmington, Arkansas Zip: 72730-1500 Sector: Hydro, Hydrogen, Vehicles Product: US-based...

  2. Chevron Hydrogen Company LLC | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Company LLC Jump to: navigation, search Name: Chevron Hydrogen Company LLC Place: California Sector: Hydro, Hydrogen Product: California-based, subsidairy of Chevron...

  3. The London Hydrogen Partnership | Open Energy Information

    Open Energy Info (EERE)

    London Hydrogen Partnership Jump to: navigation, search Name: The London Hydrogen Partnership Place: London, United Kingdom Zip: SE1 2AA Sector: Hydro, Hydrogen Product: The London...

  4. Hunterston Hydrogen Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hunterston Hydrogen Ltd Jump to: navigation, search Name: Hunterston Hydrogen Ltd Place: Anglesey, United Kingdom Zip: LL65 4RJ Sector: Hydro, Hydrogen, Wind energy Product:...

  5. German Hydrogen Association DWV | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Association DWV Jump to: navigation, search Name: German Hydrogen Association (DWV) Place: Berlin, Germany Zip: 12205 Sector: Hydro, Hydrogen Product: String...

  6. Hydrogen Engine Center HEC | Open Energy Information

    Open Energy Info (EERE)

    Engine Center HEC Jump to: navigation, search Name: Hydrogen Engine Center (HEC) Place: Algona, Iowa Zip: IA 50511 Sector: Hydro, Hydrogen Product: The Hydrogen Engine Center (HEC)...

  7. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

  8. Hydrogen & Our Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Future Hydrogen & Our Energy Future DOE overview of hydrogen fuel initiative and hydrogen production, delivery and storate hydrogenenergyfutureweb.pdf More Documents &...

  9. Ultrafine Hydrogen Storage Powders - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Ultrafine Hydrogen Storage Powders Ames Laboratory Contact AMES ...

  10. Hydrogen Electrochemical Energy Storage Device - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Hydrogen Electrochemical ...

  11. Hydrogen Safety Sensors Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards Issues related to Hydrogen Gas Detection Systems, NFPA 52 Hydrogen Sensor Placement Requirements, and the Committee Draft of the ISO TC197 WG13 on Hydrogen Detectors. ...

  12. NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage Storing hydrogen for renewable energy technologies can be challenging, especially for intermittent resources such as solar and wind. Whether for stationary, portable, or transportation applications, cost-effective, high-density energy storage is necessary for enabling the technologies that can change our energy future and reduce greenhouse gas emissions. Hydrogen can play an important role in transforming our energy future if hydrogen storage technologies are improved. With

  13. Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality Results | Department of Energy Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon scs_05_rockward.pdf More Documents & Publications Effects of Impurities on Fuel Cell Performance and

  14. NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation System Component Validation NREL's hydrogen system component validation studies focus on improving the reliability of compressors and other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric vehicles and material handling equipment. NREL's technology validation team is collaborating with industry to test and validate the commercial readiness of hydrogen system

  15. NREL: Hydrogen and Fuel Cells Research - Pathways to Renewable Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video (Text Version) Pathways to Renewable Hydrogen Video (Text Version) Below is the text version of the Pathways to Renewable Hydrogen video. Voiceover: It is the most plentiful element in the universe and it's a key component in the suite of renewable options needed as we transition to a cleaner, more secure energy strategy. Keith Wipke: Hydrogen is a really important part of the portfolio of our energy in this country. Voiceover: In nature hydrogen is combined with other elements but,

  16. Electron-stimulated reactions in layered CO/H2O films: Hydrogen atom diffusion and the sequential hydrogenation of CO to methanol

    SciTech Connect (OSTI)

    Petrik, Nikolay G.; Monckton, Rhiannon J.; Koehler, Sven; Kimmel, Gregory A.

    2014-05-28

    Low-energy (100 eV) electron-stimulated reactions in layered H2O/CO/H2O ices are investigated. For CO trapped within approximately 50 ML of the vacuum interface in the amorphous solid water (ASW) films, both oxidation and reduction reactions are observed. However for CO buried more deeply in the film, only the reduction of CO to methanol is observed. Experiments with layered films of H2O and D2O show that the hydrogen atoms participating in the reduction of the buried CO originate in region from ~10 40 ML below the surface of the ASW films and subsequently diffuse through the film. For deeply buried CO layers, the CO reduction reactions quickly increase with temperature above ~60 K. We present a simple chemical kinetic model that treats the diffusion of hydrogen atoms in the ASW and sequential hydrogenation of the CO to methanol that accounts for the observations.

  17. Hydrogen isotope separation

    DOE Patents [OSTI]

    Bartlit, John R. (Los Alamos, NM); Denton, William H. (Abingdon, GB3); Sherman, Robert H. (Los Alamos, NM)

    1982-01-01

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  18. Resistive hydrogen sensing element

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN)

    2000-01-01

    Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

  19. Detroit Commuter Hydrogen Project

    SciTech Connect (OSTI)

    Brooks, Jerry; Prebo, Brendan

    2010-07-31

    This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.

  20. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a “real-world” retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation’s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products’ Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user’s fueling experience.

  1. Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Links Related Links Since there are an abundance of bioenergy-related websites, we have organized them into the following categories to facilitate your search: Federal Federal Laboratories Partners of the Biomass Initiative Congressional Contacts States Academic and Private Sector Research Programs Trade Organizations Nonprofit Organizations International Organizations Legislative Updates & Online Forums Other Resources Federal DOE EERE International Activities DOE EERE Vehicle

  2. Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Related Links Related Links These resources provide more information about hydropower and marine hydrokinetic technologies, as well as current research and programs in this field. Information about marine and hydrokinetic resources, government activities and research, water power associations and organizations, learning activities, and homeowner resources are available here. Marine and Hydrokinetic Resources Federal agencies that are involved in marine and hydrokinetic

  3. Hydrogen Storage Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  4. Hydrogen Distribution and Delivery Infrastructure

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challen

  5. High-Pressure Hydrogen Tanks

    Broader source: Energy.gov [DOE]

    Presentation on High-Pressure Hydrogen Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  6. Hydrogen Delivery Infrastructure Options Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

  7. Oxidation resistant organic hydrogen getters

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA); Buffleben, George M. (Tracy, CA)

    2008-09-09

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  8. Hydrogen Production: Photoelectrochemical Water Splitting

    Broader source: Energy.gov [DOE]

    In photoelectrochemical (PEC) water splitting, hydrogen is produced from water using sunlight and specialized semiconductors called photoelectrochemical materials, which use light energy to directly dissociate water molecules into hydrogen and oxygen.

  9. Hydrogen Materials Advanced Research Consortium

    Broader source: Energy.gov [DOE]

    An overview of the organization and scientific activities of the Hydrogen Materials—Advanced Research Consortium (HyMARC).

  10. Hydrogen Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Hydrogen Analysis Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program. PDF icon 6_h2a_mann.pdf More Documents & Publications H2A Delivery Models and Results H2A Delivery Components Model and Analysis Hydrogen Delivery Analysis Plus Meeting: DTT, STT, HPTT, Other Analysts, Invited Guests

  11. Hydrogen Storage Materials Database Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech Team Lead Fuel Cell Technologies Program U.S. Department of Energy 12/13/2011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database Background * The Hydrogen Storage Materials Database was built to retain information from DOE Hydrogen Storage funded research and make these data more accessible. *

  12. Hydrogen storage gets new hope

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen storage gets new hope Hydrogen storage gets new hope A new method for "recycling" hydrogen-containing fuel materials could open the door to economically viable hydrogen-based vehicles. September 1, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos

  13. Hydrogen Storage Materials Database Demonstration

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Storage Materials Database Demonstration" held December 13, 2011.

  14. National Hydrogen Learning Demonstration Status

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Program webinar "National Hydrogen Learning Demonstration Status" held February 6, 2012.

  15. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, John B. L. (Naperville, IL); Gorski, Anthony J. (Woodridge, IL); Daniels, Edward J. (Oak Lawn, IL)

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  16. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  17. HydroGen | Open Energy Information

    Open Energy Info (EERE)

    HydroGen Jump to: navigation, search Logo: HydroGen Name: HydroGen Address: Head Office, 9 GreenMeadows Place: Cardiff, Wales Country: United Kingdom Sector: Hydro, Hydrogen,...

  18. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop: Agenda and Objectives Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop:...

  19. A Photosynthetic Hydrogel for Catalytic Hydrogen Production ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production...

  20. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Broader source: Energy.gov (indexed) [DOE]

    tv03veenstra.pdf More Documents & Publications Technology Validation Controlled Hydrogen Fleet & Infrastructure Analysis HYDROGEN TO THE HIGHWAYS...

  1. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project...

  2. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Photoelectrochemical (PEC) Hydrogen Production Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production This report documents the engineering and cost...

  3. Novel Hydrogen Carriers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery » Novel Hydrogen Carriers Novel Hydrogen Carriers Hydrogen carriers store hydrogen in some other chemical state rather than as free hydrogen molecules. Additional research and analyses are underway to investigate novel liquid or solid hydrogen carriers for use in delivery. Carriers are a unique way to deliver hydrogen by hydriding a chemical compound at the site of production and then dehydriding it either at the point of delivery or once it is onboard the fuel cell vehicle.

  4. Liquid Hydrogen Delivery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery » Liquid Hydrogen Delivery Liquid Hydrogen Delivery Hydrogen is most commonly transported and delivered as a liquid when high-volume transport is needed in the absence of pipelines. To liquefy hydrogen it must be cooled to cryogenic temperatures through a liquefaction process. Trucks transporting liquid hydrogen are referred to as liquid tankers. Liquefaction Gaseous hydrogen is liquefied by cooling it to below -253°C (-423°F). Once hydrogen is liquefied it can be stored at

  5. Solid evacuated microspheres of hydrogen

    DOE Patents [OSTI]

    Turnbull, Robert J. (Urbana, IL); Foster, Christopher A. (Champaign, IL); Hendricks, Charles D. (Livermore, CA)

    1982-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  6. LTS Related Links - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links About Us LTS Home Page LTS Project Management LTS Transition and Timeline LTS Execution LTS Background LTS Information Management LTS Fact Sheets / Briefings LTS In The News LTS Related Links LTS Contact Us LTS Related Links Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Hanford Site Cleanup Completion Framework (DOE/RL 2009-10) (PDF) Hanford Long-Term Stewardship Program Plan (DOE/RL 2010-35) (PDF) DOE-EM LTS Site Legacy Management CERCLA 5 Year

  7. Hydrogen Storage Fact Sheet | Department of Energy

    Energy Savers [EERE]

    Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. PDF icon Hydrogen Storage More Documents & Publications US DRIVE Hydrogen Storage Technical Team Roadmap Hydrogen & Our Energy Future Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials

  8. Thermochemical production of hydrogen

    DOE Patents [OSTI]

    Dreyfuss, Robert M.

    1976-07-13

    A thermochemical reaction cycle for the generation of hydrogen from water comprising the following sequence of reactions wherein M represents a metal and Z represents a metalloid selected from the arsenic-antimony-bismuth and selenium-tellurium subgroups of the periodic system: 2MO + Z + SO.sub.2 .fwdarw. MZ + MSO.sub.4 (1) mz + h.sub.2 so.sub.4 .fwdarw. mso.sub.4 + h.sub.2 z (2) 2mso.sub.4 .fwdarw. 2mo + so.sub.2 + so.sub.3 + 1/20.sub.2 (3) h.sub.2 z .fwdarw. z + h.sub.2 (4) h.sub.2 o + so.sub.3 .fwdarw. h.sub.2 so.sub.4 (5) the net reaction is the decomposition of water into hydrogen and oxygen.

  9. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  10. advanced hydrogen storage materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrogen storage materials - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  11. National Hydrogen Learning Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Keith Wipke, Sam Sprik, Jennifer Kurtz, Todd Ramsden, Chris Ainscough, Genevieve Saur February 6, 2012 DOE's Informational Webinar Series National Hydrogen Learning Demonstration Status This presentation does not contain any proprietary, confidential, or otherwise restricted information NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC v8 National Renewable Energy Laboratory 2

  12. Hydrogen Generation for Refineries

    Office of Environmental Management (EM)

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MEETING May 5-6, 2014 DE-FG02-08ER85135 Hydrogen Generation for Refineries DOE Phase II SBIR Dr. Girish Srinivas P.I. gsrinivas@tda.com 303-940-2321 Dr. Steven Gebhard, P.E. Dr. Robert Copeland Mr. Jeff Martin TDA Research Inc. 1 This presentation does not contain any proprietary, confidential, or otherwise restricted information This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Overview *

  13. Coal liquefaction and hydrogenation

    DOE Patents [OSTI]

    Schindler, Harvey D.

    1985-01-01

    The coal liquefaction process disclosed uses three stages. The first stage is a liquefaction. The second and third stages are hydrogenation stages at different temperatures and in parallel or in series. One stage is within 650.degree.-795.degree. F. and optimizes solvent production. The other stage is within 800.degree.-840.degree. F. and optimizes the C.sub.5 -850.degree. F. product.

  14. Polymer formulations for gettering hydrogen

    DOE Patents [OSTI]

    Shepodd, T.J.; Whinnery, L.L.

    1998-11-17

    A novel composition is described comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen. 1 fig.

  15. Polymer formulations for gettering hydrogen

    DOE Patents [OSTI]

    Shepodd, Timothy Jon (Livermore, CA); Whinnery, LeRoy L. (Livermore, CA)

    1998-11-17

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  16. Polymer system for gettering hydrogen

    DOE Patents [OSTI]

    Shepodd, Timothy Jon (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Whinnery, LeRoy L. (4929 Julie St., Livermore, Alameda County, CA 94550)

    2000-01-01

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  17. A method for quick assessment of CO2 storage capacity in closedand semi-closed saline formations

    SciTech Connect (OSTI)

    Zhou, Q.; Birkholzer, J.; Tsang, C.F.; Rutqvist, J.

    2008-02-10

    Saline aquifers of high permeability bounded by overlying/underlying seals may be surrounded laterally by low-permeability zones, possibly caused by natural heterogeneity and/or faulting. Carbon dioxide (CO{sub 2}) injection into and storage in such 'closed' systems with impervious seals, or 'semi-closed' systems with nonideal (low-permeability) seals, is different from that in 'open' systems, from which the displaced brine can easily escape laterally. In closed or semi-closed systems, the pressure buildup caused by continuous industrial-scale CO{sub 2} injection may have a limiting effect on CO{sub 2} storage capacity, because geomechanical damage caused by overpressure needs to be avoided. In this research, a simple analytical method was developed for the quick assessment of the CO{sub 2} storage capacity in such closed and semi-closed systems. This quick-assessment method is based on the fact that native brine (of an equivalent volume) displaced by the cumulative injected CO{sub 2} occupies additional pore volume within the storage formation and the seals, provided by pore and brine compressibility in response to pressure buildup. With nonideal seals, brine may also leak through the seals into overlying/underlying formations. The quick-assessment method calculates these brine displacement contributions in response to an estimated average pressure buildup in the storage reservoir. The CO{sub 2} storage capacity and the transient domain-averaged pressure buildup estimated through the quick-assessment method were compared with the 'true' values obtained using detailed numerical simulations of CO{sub 2} and brine transport in a two-dimensional radial system. The good agreement indicates that the proposed method can produce reasonable approximations for storage-formation-seal systems of various geometric and hydrogeological properties.

  18. Links | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Field Offices / Welcome to the NNSA Production Office / Links Links NNSA HQ National Nuclear Security Administration Advanced Simulation & Computing NNSA Graduate Program NNSA Small Business Program Office of Defense Nuclear Nonproliferation Field Offices NNSA Albuquerque Complex Kansas City Field Office Livermore Field Office Los Alamos Field Office Naval Reactors Idaho Branch Office Nevada Field Office Sandia Field Office DOE Oak Ridge Sites Oak Ridge Office Oak Ridge National Laboratory

  19. Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Links Related Links The Advanced Manufacturing Office (AMO) aligns its activities with recommendations from the President and his advisors, while drawing insights from industrial experts and research institutions. Learn more about national priorities for manufacturing from these influential reports. White House Reports National Network for Manufacturing Innovation: A Preliminary Design, Executive Office of the President (EOP), National Science and Technology Council (NSTC), January 2013.

  20. Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Related Links Related Links These resources provide more information about wind energy research within the United States and abroad. Consumer and research-oriented resources and wind energy-oriented associations and educational resources are available here. Research Laboratories Research laboratories in the United States and throughout the world that are involved in wind energy research. U.S. Department of Energy National Laboratories National Renewable Energy

  1. Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Links Related Links Private, public, and nonprofit organizations around the country offer a wide range of courses and other services to help you either improve your current skills or learn new ones. The sites featured here can help you find courses of specific interest as well as other information about training requirements for certain energy jobs. DOE Related Advanced Manufacturing Office: Training Find training sessions in your area and learn how to save energy in your manufacturing

  2. Khovanov homology of graph-links

    SciTech Connect (OSTI)

    Nikonov, Igor M

    2012-08-31

    Graph-links arise as the intersection graphs of turning chord diagrams of links. Speaking informally, graph-links provide a combinatorial description of links up to mutations. Many link invariants can be reformulated in the language of graph-links. Khovanov homology, a well-known and useful knot invariant, is defined for graph-links in this paper (in the case of the ground field of characteristic two). Bibliography: 14 titles.

  3. Alternative Fuels Data Center: Biodiesel Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Biodiesel Related Links to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Related Links on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Related Links on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Related Links on Google Bookmark Alternative Fuels Data Center: Biodiesel Related Links on Delicious Rank Alternative Fuels Data Center: Biodiesel Related Links

  4. Alternative Fuels Data Center: Ethanol Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol Related Links to someone by E-mail Share Alternative Fuels Data Center: Ethanol Related Links on Facebook Tweet about Alternative Fuels Data Center: Ethanol Related Links on Twitter Bookmark Alternative Fuels Data Center: Ethanol Related Links on Google Bookmark Alternative Fuels Data Center: Ethanol Related Links on Delicious Rank Alternative Fuels Data Center: Ethanol Related Links on Digg Find

  5. Alternative Fuels Data Center: Propane Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Related Links to someone by E-mail Share Alternative Fuels Data Center: Propane Related Links on Facebook Tweet about Alternative Fuels Data Center: Propane Related Links on Twitter Bookmark Alternative Fuels Data Center: Propane Related Links on Google Bookmark Alternative Fuels Data Center: Propane Related Links on Delicious Rank Alternative Fuels Data Center: Propane Related Links on Digg Find

  6. Alternative Fuels Data Center: Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Related Links to someone by E-mail Share Alternative Fuels Data Center: Related Links on Facebook Tweet about Alternative Fuels Data Center: Related Links on Twitter Bookmark Alternative Fuels Data Center: Related Links on Google Bookmark Alternative Fuels Data Center: Related Links on Delicious Rank Alternative Fuels Data Center: Related Links on Digg Find More places to share Alternative Fuels Data

  7. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  8. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Fueling Infrastructure Analysis As the market grows for hydrogen fuel cell electric vehicles, so does the need for a comprehensive hydrogen fueling infrastructure. NREL's technology validation team is analyzing the availability and performance of existing hydrogen fueling stations, benchmarking the current status, and providing feedback related to capacity, utilization, station build time, maintenance, fueling, and geographic coverage. Overview Composite Data Products Publications

  9. NREL: Hydrogen and Fuel Cells Research - Hydrogen Infrastructure Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Research Facility Hydrogen Infrastructure Testing and Research Facility Text Version The Hydrogen Infrastructure Testing and Research Facility (HITRF) at NREL's Energy Systems Integration Facility (ESIF) consists of hydrogen storage, compression, and dispensing capabilities for fuel cell vehicle fueling and component testing. The HITRF is the first facility of its kind in Colorado and will be available to industry for use in research and development activities. In addition to fueling

  10. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production Cost Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Cost Analysis NREL analyzed the cost of hydrogen production via wind-based water electrolysis at 42 potential sites in 11 states across the nation. This analysis included centralized plants producing the Department of Energy (DOE) target of 50,000 kg of hydrogen per day, using both wind and grid electricity. The use of wind and grid electricity can be balanced either by power or cost, including or excluding the purchase of peak summer electricity. Current wind incentives-such

  11. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage ...

  12. NREL: Hydrogen and Fuel Cells Research - Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Basics Photo of vehicle filling up at renewable hydrogen fueling station. NREL's hydrogen fueling station dispenses hydrogen produced via renewable electrolysis. Photo by Dennis Schroeder, NREL NREL researchers are working to unlock the potential of hydrogen as a fuel and to advance fuel cell technologies for automobiles, equipment, and buildings. View the Hydrogen Program video on NREL's YouTube channel to learn more about the basics of NREL's hydrogen and fuel cell

  13. Hydrogen Pipeline Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline Working Group Hydrogen Pipeline Working Group The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and reliability of hydrogen pipelines. Participants represent organizations conducting hydrogen pipeline research for the Department of Energy to better understand and minimize hydrogen embrittlement and to identify improved and new materials for hydrogen pipelines. Hydrogen Pipeline Working Group Workshops: September 25-26,

  14. Hydrogen Storage - Current Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage - Current Technology Hydrogen Storage - Current Technology Hydrogen storage is a significant challenge for the development and viability of hydrogen-powered vehicles. On-board hydrogen storage in the range of approximately 5-13 kg is required to enable a driving range of greater than 300 miles for the full platform of light-duty automotive vehicles using fuel cell power plants. Hydrogen Storage Technologies Current on-board hydrogen storage approaches involve compressed hydrogen gas

  15. Alternative Fuels Data Center: Hydrogen Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Basics to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Basics on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Basics on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Basics on Google Bookmark Alternative Fuels Data Center: Hydrogen Basics on Delicious Rank Alternative Fuels Data Center: Hydrogen Basics on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Basics on AddThis.com... More in this section... Hydrogen Basics Production

  16. Liquid Hydrogen Absorber for MICE

    SciTech Connect (OSTI)

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  17. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  18. Hydrogen Technologies Safety Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Technologies Safety Guide C. Rivkin, R. Burgess, and W. Buttner National Renewable Energy Laboratory Technical Report NREL/TP-5400-60948 January 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable

  19. hydrogen | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrogen Why Coal to Hydrogen Syngas derived from most high pressure gasification processes already contains a significant amount of hydrogen (H2), which can be increased through water gas shift (WGS) and be readily separated into a pure H2 product meeting industry product quality standards. There are several conventional H2 separation processes, but modern installations preferentially choose pressure swing adsorption (PSA), which is a well-proven technology offering high availability and low

  20. Complex hydrides for hydrogen storage

    DOE Patents [OSTI]

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  1. Hydrogen Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable

  2. Links

    Broader source: Energy.gov [DOE]

    More Legal Research ResourcesEnergy Law NetLegal Citation Style GuideNuclear Regulatory LegislationOpen CRSPublic Library of LawTreatiesU.S. Code Classification TablesU.S. Congressional Documents...

  3. Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Sites National Nanotechnology Initiative Nano Technology Industries Advanced Materials Research Institute Institute of Physics Max-Planck Institute for Kohlenforschung The institute of nanotechnology Nanotechnology Now Nanotechnology - Education Nanojournals Chancellor's Distinguished Lectureship Series Patent Analytics and Patent Searching

  4. Hydrogen embrittlement of structural steels.

    SciTech Connect (OSTI)

    Somerday, Brian P.

    2010-06-01

    Carbon-manganese steels are candidates for the structural materials in hydrogen gas pipelines, however it is well known that these steels are susceptible to hydrogen embrittlement. Decades of research and industrial experience have established that hydrogen embrittlement compromises the structural integrity of steel components. This experience has also helped identify the failure modes that can operate in hydrogen containment structures. As a result, there are tangible ideas for managing hydrogen embrittement in steels and quantifying safety margins for steel hydrogen containment structures. For example, fatigue crack growth aided by hydrogen embrittlement is a key failure mode for steel hydrogen containment structures subjected to pressure cycling. Applying appropriate structural integrity models coupled with measurement of relevant material properties allows quantification of safety margins against fatigue crack growth in hydrogen containment structures. Furthermore, application of these structural integrity models is aided by the development of micromechanics models, which provide important insights such as the hydrogen distribution near defects in steel structures. The principal objective of this project is to enable application of structural integrity models to steel hydrogen pipelines. The new American Society of Mechanical Engineers (ASME) B31.12 design code for hydrogen pipelines includes a fracture mechanics-based design option, which requires material property inputs such as the threshold for rapid cracking and fatigue crack growth rate under cyclic loading. Thus, one focus of this project is to measure the rapid-cracking thresholds and fatigue crack growth rates of line pipe steels in high-pressure hydrogen gas. These properties must be measured for the base materials but more importantly for the welds, which are likely to be most vulnerable to hydrogen embrittlement. The measured properties can be evaluated by predicting the performance of the pipeline using a relevant structural integrity model, such as that in ASME B31.12. A second objective of this project is to enable development of micromechanics models of hydrogen embrittlement in pipeline steels. The focus of this effort is to establish physical models of hydrogen embrittlement in line pipe steels using evidence from analytical techniques such as electron microscopy. These physical models then serve as the framework for developing sophisticated finite-element models, which can provide quantitative insight into the micromechanical state near defects. Understanding the micromechanics of defects can ensure that structural integrity models are applied accurately and conservatively.

  5. High Pressure Hydrogen Tank Manufacturing

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  6. Hydrogen Embrittlement in Pipeline Steels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - BM Fatigue-probably, yes - Other properties or tests needed? Applied Chemicals & Materials Division Material Measurement Laboratory EXTERNAL CHALLENGES * Hydrogen degradation of ...

  7. hydrogen | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    hydrogen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  8. Hydrogen fracture toughness tester completion

    SciTech Connect (OSTI)

    Morgan, Michael J.

    2015-09-30

    The Hydrogen Fracture Toughness Tester (HFTT) is a mechanical testing machine designed for conducting fracture mechanics tests on materials in high-pressure hydrogen gas. The tester is needed for evaluating the effects of hydrogen on the cracking properties of tritium reservoir materials. It consists of an Instron Model 8862 Electromechanical Test Frame; an Autoclave Engineering Pressure Vessel, an Electric Potential Drop Crack Length Measurement System, associated computer control and data acquisition systems, and a high-pressure hydrogen gas manifold and handling system.

  9. Catalyzed borohydrides for hydrogen storage

    DOE Patents [OSTI]

    Au, Ming (Augusta, GA)

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  10. Hydrogen Equipment Certification Guide Webinar

    Broader source: Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Equipment Certification Guide" held on December 10, 2015.

  11. Hydrogen Technology Research at SRNL

    SciTech Connect (OSTI)

    Danko, E.

    2011-02-13

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

  12. Hydrogen Knowledge and Opinions Assessment

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  13. Hydrogen Safety: First Responder Education

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  14. ElectraLink | Open Energy Information

    Open Energy Info (EERE)

    ElectraLink Jump to: navigation, search Name: ElectraLink Place: London, United Kingdom Product: London-based ElectraLink specialises in technology to communicate data between the...

  15. Solar Hydrogen Production

    SciTech Connect (OSTI)

    Koval, C.; Sutin, N.; Turner, J.

    1996-09-01

    This panel addressed different methods for the photoassisted dissociation of water into its component parts, hydrogen and oxygen. Systems considered include PV-electrolysis, photoelectrochemical cells, and transition-metal based microheterogeneous and homogeneous systems. While none of the systems for water splitting appear economically viable at the present time, the panel identified areas of basic research that could increase the overall efficiency and decrease the costs. Common to all the areas considered was the underlying belief that the water-to-hydrogen half reaction is reasonably well characterized, while the four-electron oxidation of water-to-oxygen is less well understood and represents a significant energy loss. For electrolysis, research in electrocatalysis to reduce overvoltage losses was identified as a key area for increased efficiency. Non-noble metal catalysts and less expensive components would reduce capital costs. While potentially offering higher efficiencies and lower costs, photoelectrochemical-based direct conversion systems undergo corrosion reactions and often have poor energetics for the water reaction. Research is needed to understand the factors that control the interfacial energetics and the photoinduced corrosion. Multi-photon devices were identified as promising systems for high efficiency conversion.

  16. Hydrogen iodide decomposition

    DOE Patents [OSTI]

    O'Keefe, Dennis R. (San Diego, CA); Norman, John H. (San Diego, CA)

    1983-01-01

    Liquid hydrogen iodide is decomposed to form hydrogen and iodine in the presence of water using a soluble catalyst. Decomposition is carried out at a temperature between about 350.degree. K. and about 525.degree. K. and at a corresponding pressure between about 25 and about 300 atmospheres in the presence of an aqueous solution which acts as a carrier for the homogeneous catalyst. Various halides of the platinum group metals, particularly Pd, Rh and Pt, are used, particularly the chlorides and iodides which exhibit good solubility. After separation of the H.sub.2, the stream from the decomposer is countercurrently extracted with nearly dry HI to remove I.sub.2. The wet phase contains most of the catalyst and is recycled directly to the decomposition step. The catalyst in the remaining almost dry HI-I.sub.2 phase is then extracted into a wet phase which is also recycled. The catalyst-free HI-I.sub.2 phase is finally distilled to separate the HI and I.sub.2. The HI is recycled to the reactor; the I.sub.2 is returned to a reactor operating in accordance with the Bunsen equation to create more HI.

  17. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

  18. Alternative Fuels Data Center: Electricity Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity Related Links to someone by E-mail Share Alternative Fuels Data Center: Electricity Related Links on Facebook Tweet about Alternative Fuels Data Center: Electricity Related Links on Twitter Bookmark Alternative Fuels Data Center: Electricity Related Links on Google Bookmark Alternative Fuels Data Center: Electricity Related Links on Delicious Rank Alternative Fuels Data Center: Electricity

  19. The hydrogenation of acetylene catalyzed by palladium: Hydrogen pressure dependence

    SciTech Connect (OSTI)

    Molero, H.; Bartlett, B.F.; Tysoe, W.T.

    1999-01-01

    The kinetics of acetylene hydrogenation catalyzed by a clean palladium foil at high pressures are measured and yield an activation energy of 9.6 {+-} 0.1 kcal/mol when using hydrogen. The rate exhibits a deuterium isotope effect such that the reaction activation energy is 9.0 {+-} 0.2 kcal/mol for reaction with deuterium. The hydrogen pressure reaction order is 1.04 {+-} 0.02 at 300 K with an acetylene pressure of 100 Torr and the acetylene order is {minus}0.66 at 300 K and with a hydrogen pressure of 100 Torr. These reaction kinetics closely mimic those of supported model catalysts. In addition, it is found that the rate of benzene formation is accelerated by the addition of hydrogen to the reaction mixture. This is rationalized by proposing that hydrogen enhances the coverage of acetylene under catalytic conditions. This notion can be used to successfully calculate the hydrogen pressure dependence for acetylene hydrogenation as a function of temperature, a value which varies between {approximately}1.05 and 1.3 as the temperature changes from 300 to 380 K. Possible origins for this effect are discussed.

  20. Hydrogen Demand and Resource Analysis (HyDRA) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cost and availability, hydrogen production potential, hydrogen production cost, resource consumption, hydrogen demand, infrastructure, and results from integration with other...

  1. Useful Links - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQ Useful Links Useful Links Detailed campus map with CEFRC summer school buildings highlighted (NEW) Schedule of Events (NEW) Campus Map with CEFRC-specific buildings...

  2. BizLink Technology | Open Energy Information

    Open Energy Info (EERE)

    BizLink Technology Jump to: navigation, search Name: BizLink Technology Place: Fremont, California Zip: 94538 Sector: Solar Product: California-based manufacturer of solar modules,...

  3. Help:Linked images | Open Energy Information

    Open Energy Info (EERE)

    Linked images Redirect page Jump to: navigation, search REDIRECT Manual:Linked images Retrieved from "http:en.openei.orgwindex.php?titleHelp:Linkedimages&oldid58478" ...

  4. Related Links | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Livermore Field Office / Related Links Related Links NNSA FOIA DOE/NNSA Telephone Directory U.S. Department of Energy Lawrence Livermore National Laboratory

  5. Hawaii Hydrogen Energy Park | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hawaii Hydrogen Energy Park Hawaii Hydrogen Energy Park 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon tv_09_rocheleau.pdf More Documents & Publications Hawaii Renewable Hydrogen Program CX-002955: Categorical Exclusion Determination Supporting a Hawaii Hydrogen Economy

  6. Hydrogen Compatible Materials Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compatible Materials Workshop Hydrogen Compatible Materials Workshop Summary of the Hydrogen Compatible Materials Workshop held November, 3, 2010, at Sandia National Laboratories in Livermore, California. Summary includes the workshop agenda, an overview of the morning presentations, a discussion of the afternoon meeting, and a list of participants. PDF icon Hydrogen Compatible Materials Workshop More Documents & Publications Hydrogen Compatibility of Materials Hydrogen Transmission and

  7. Hydrogen Pipeline Discussion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Discussion Hydrogen Pipeline Discussion ASTM T.G. G1.06.08 Goals and Workshop, May 17, 2005. Formed on November 11, 2004. Identify major laboratory facilities and capabilities. PDF icon hpwgw_discission_zawierucha.pdf More Documents & Publications Hydrogen permeability and Integrity of hydrogen transfer pipelines Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop Hydrogen Compatibility of Materials

  8. Hydrogen Release Behavior | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Release Behavior Hydrogen Release Behavior 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon scs_06_moen.pdf More Documents & Publications US DRIVE Hydrogen Codes and Standards Technical Team Roadmap Hydrogen.PDF Safetygram Gaseous Hydrogen

  9. Hydrogen Safety Panel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Panel Hydrogen Safety Panel 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon scs_07_weiner.pdf More Documents & Publications Hydrogen Safety: First Responder Education Hydrogen Safety Knowledge Tools NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells

  10. Nuclear Hydrogen R&D Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Hydrogen R&D Plan March 2004 Nuclear Hydrogen R&D Plan March 2004 Department Of Energy Office of Nuclear Energy, Science and Technology CONTENTS 1. Hydrogen and The Role of Nuclear Energy ................................................................................. 1-1 1.1 The DOE Hydrogen Program ........................................................................................... 1-2 1.2 Energy Sources for Hydrogen - The Nuclear Connection

  11. Hydrogen purifier module with membrane support

    DOE Patents [OSTI]

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  12. Metal salt catalysts for enhancing hydrogen spillover

    SciTech Connect (OSTI)

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  13. BP and Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BP and Hydrogen Pipelines BP and Hydrogen Pipelines BP Environmental Commitment: Green corporate philosophy and senior management commitment PDF icon hpwgw_bp_yoho.pdf More Documents & Publications Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop EIS-0018: Final Environmental Impact Statement Hydrogen permeability and Integrity of hydrogen transfer pipelines

  14. Hydrogen Production Fact Sheet | Department of Energy

    Energy Savers [EERE]

    Production Fact Sheet Hydrogen Production Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen production. PDF icon Hydrogen Production More Documents & Publications Hydrogen Production Technical Team Roadmap US DRIVE Hydrogen Production Technical Team Roadmap FTA - SunLine Transit Agency - Final Report

  15. Hydrogen Sensor Workshop Agenda | Department of Energy

    Office of Environmental Management (EM)

    Sensor Workshop Agenda Hydrogen Sensor Workshop Agenda Agenda for the Hydrogen Sensor Workshop held June 8, 2011, in Chicago, Illinois.The workshop was hosted by the U.S. Department of Energy's National Renewable Energy Laboratory. PDF icon Hydrogen Sensor Workshop Agenda More Documents & Publications Hydrogen Codes and Standards and Permitting Hydrogen Safety Sensors 2012 Smart Grid Peer Review

  16. 2014 Hydrogen Student Design Contest to Design Drop-In Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Hydrogen Student Design Contest to Design Drop-In Hydrogen Fueling Station 2014 Hydrogen Student Design Contest to Design Drop-In Hydrogen Fueling Station December 16, 2013 - ...

  17. Hydrogen and OUr Energy Future

    SciTech Connect (OSTI)

    Rick Tidball; Stu Knoke

    2009-03-01

    In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

  18. Infinity Fuel Cell and Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search Name: Infinity Fuel Cell and Hydrogen Place: Suffield, Connecticut Zip: 6078 Sector: Hydro, Hydrogen Product: A team of fuel cell, hydrogen and...

  19. Hydrogen Production: Natural Gas Reforming

    Broader source: Energy.gov [DOE]

    Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This is an important technology pathway for near-term hydrogen production.

  20. A nanosized hydrogen generator | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxygen in H2O to produce free hydrogen. The commercial separation process uses natural gas to react with superheated steam to strip away hydrogen atoms producing hydrogen fuel,...

  1. Template:Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search This is the Hydrogen template. It is used to embed a custom Hydrogen banner, typically across the top of the page, which features a unique blue...

  2. High capacity hydrogen storage nanocomposite materials

    DOE Patents [OSTI]

    Zidan, Ragaiy; Wellons, Matthew S

    2015-02-03

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  3. Hydrogen Mitigation Strategy of the APR1400 Nuclear Power Plant for a Hypothetical Station Blackout Accident

    SciTech Connect (OSTI)

    Kim, Jongtae; Hong, Seong-Wan; Kim, Sang-Baik; Kim, Hee-Dong [Korea Atomic Energy Research Institute (Korea, Republic of)

    2005-06-15

    In order to analyze the hydrogen distribution during a hypothetical station blackout accident in the Korean next-generation Advanced Power Reactor 1400 (APR1400) containment, the three-dimensional computational fluid dynamics code GASFLOW was used. The source of the hydrogen and steam for the GASFLOW analysis was obtained from a MAAP calculation. The discharged water, steam, and hydrogen from the pressurizer are released into the water of the in-containment refueling water storage tank (IRWST). Most of the discharged steam is condensed in the IRWST water because of its subcooling, and dry hydrogen is released into the free volume of the IRWST; finally, it goes out to the annular compartment above the IRWST through the vent holes. From the GASFLOW analysis, it was found that the gas mixture in the IRWST becomes quickly nonflammable by oxygen starvation but the hydrogen is accumulated in the annular compartment because of the narrow ventilation gap between the operating deck and containment wall when the igniters installed in the IRWST are not operated. When the igniters installed in the APR1400 were turned on, a short period of burning occurred in the IRWST, and then the flame was extinguished by the oxygen starvation in the IRWST. The unburned hydrogen was released into the annular compartment and went up to the dome because no igniters are installed around the annular compartment in the base design of the APR1400. From this result, it could be concluded that the control of the hydrogen concentration is difficult for the base design. In this study design modifications are proposed and evaluated with GASFLOW in view of the hydrogen mitigation strategy.

  4. NREL: Transportation Research - Transportation and Hydrogen Newsletter:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Technology Hydrogen and Fuel Cell Technology This is the May 2015 issue of the Transportation and Hydrogen Newsletter. May 28, 2015 Photo of a car refueling at a hydrogen dispensing station. DOE's H2FIRST project focuses on accelerating the acceptance of hydrogen infrastructure. Photo by John De La Rosa, NREL 33660 New H2FIRST Reports Detail Hydrogen Station Designs, Contaminant Detection Two new reports have been published by NREL and Sandia National Laboratories

  5. Hydrogen Delivery Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Hydrogen Delivery Roadmap The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen. PDF icon hdtt_roadmap_june2013.pdf More Documents & Publications US DRIVE Hydrogen Delivery Technical Team Roadmap Delivery Tech

  6. Gaseous Hydrogen Delivery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Gaseous Hydrogen Delivery Gaseous hydrogen is most commonly delivered either by trucks or through pipelines. Because gaseous hydrogen is typically produced at relatively low pressures (20-30 bar), it must be compressed prior to transport. Learn more about gaseous hydrogen compression. Trucks that haul gaseous hydrogen are called tube trailers. Gaseous hydrogen is compressed to pressures of 180 bar (~2,600 psig) or higher into long cylinders which are stacked on the trailer that the

  7. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydrogen & Fuel Cells » Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver

  8. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Fuels » Hydrogen Fuel Basics Hydrogen Fuel Basics August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the

  9. Hydrogen Tube Trailers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery » Gaseous Hydrogen » Hydrogen Tube Trailers Hydrogen Tube Trailers Trucks that haul gaseous hydrogen are called tube trailers. Gaseous hydrogen is compressed to pressures of 180 bar (~2,600 psig) or higher into long cylinders that are stacked on a trailer that the truck hauls. This gives the appearance of long tubes, hence the name tube trailer. Tube trailers are currently limited to pressures of 250 bar by U.S. Department of Transportation (DOT) regulations. Steel tube

  10. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  11. Major Conformed Contract Links | Department of Energy

    Energy Savers [EERE]

    Conformed Contract Links Major Conformed Contract Links Links to conformed copies of EM's major contracts. PDF icon Major Conformed Contract Links More Documents & Publications DOE Facility Management Contracts DOE_site_facility_mgt_contracts_Internet_Posting_3-21-11(1).pdf DOE site facility mgt contracts Internet Posting 5-2-11.xlsx

  12. California National Guard Sustainability Planning, Hydrogen Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Guard Sustainability Planning, Hydrogen Fuel Goals California National Guard Sustainability Planning, Hydrogen Fuel Goals Overview of California Guard Army Facilities, ANG ...

  13. Potential Strategies for Integrating Solar Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar Potential Strategies for Integrating Solar Hydrogen Production and ...

  14. Combinatorial Approaches for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Materials R&D Workshop Hydrogen Storage Lab PI Workshop: HyMARC and NREL-Led Characterization Effort Combinatorial Approach for Hydrogen Storage Materials...

  15. Autofermentative Biological Hydrogen Production by Cyanobacteria...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Hydrogen Production by Cyanobacteria Presentation by Charles Dismukes, Rutgers University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at...

  16. Maximizing Light Utilization Efficiency and Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon iih1melis.pdf More Documents & Publications Webinar: Photosynthesis for Hydrogen and Fuels Production Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 ...

  17. National Hydrogen Storage Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Hydrogen Storage Project National Hydrogen Storage Project In July 2003, the Department of Energy (DOE) issued a "Grand Challenge" to the global scientific community for...

  18. AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures PDF icon HICEV ...

  19. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    is a promising renewable energy technology for generation of hydrogen for use in the future hydrogen economy. PEC systems use solar photons to generate a voltage in an...

  20. Dense, layered membranes for hydrogen separation

    DOE Patents [OSTI]

    Roark, Shane E.; MacKay, Richard; Mundschau, Michael V.

    2006-02-21

    This invention provides hydrogen-permeable membranes for separation of hydrogen from hydrogen-containing gases. The membranes are multi-layer having a central hydrogen-permeable layer with one or more catalyst layers, barrier layers, and/or protective layers. The invention also relates to membrane reactors employing the hydrogen-permeable membranes of the invention and to methods for separation of hydrogen from a hydrogen-containing gas using the membranes and reactors. The reactors of this invention can be combined with additional reactor systems for direct use of the separated hydrogen.

  1. Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities Workshop Agenda Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda Agenda for the Natural Gas and Hydrogen Infrastructure Opportunities Workshop...

  2. Final Report - Hydrogen Delivery Infrastructure Options Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report - Hydrogen Delivery Infrastructure Options Analysis Final Report - Hydrogen Delivery Infrastructure Options Analysis This report, by the Nexant team, documents an in-depth...

  3. Materials Solutions for Hydrogen Delivery in Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Overall goal of the project is to develop materials technologies that would enable minimizing the problem of hydrogen embrittlement associated with the high-pressure transport of hydrogen

  4. High-Pressure Hydrogen Tank Testing

    Broader source: Energy.gov [DOE]

    Many types of compressed hydrogen tanks have been certified worldwide and demonstrated in several prototype fuel cell vehicles. The following information discusses high-pressure hydrogen tank...

  5. Hydrogenation of Dislocation-Limited Heteroepitaxial Silicon...

    Office of Scientific and Technical Information (OSTI)

    Hydrogenation of Dislocation-Limited Heteroepitaxial Silicon Solar Cells: Preprint Bolen, M. L.; Grover, S.; Teplin, C. W.; Bobela, D.; Branz, H. M.; Stradins, P. 08 HYDROGEN; 14...

  6. International Hydrogen Infrastructure Challenges Workshop Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - NOW, NEDO, and DOE Webinar Slides More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling...

  7. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and ... U.S. Department of Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program FY ...

  8. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report The Department of Energy's Hydrogen, Fuel Cells and ...

  9. Hydrogen Delivery Infrastructure Analysis, Options and Trade...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review ... DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project Review Meeting ...

  10. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Citation Details In-Document Search Title: Controlled Hydrogen Fleet and Infrastructure...

  11. American Hydrogen Corporation | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Corporation Jump to: navigation, search Name: American Hydrogen Corporation Address: OU Innovation Center, 340 W State St. Unit 40 Place: Athens, Ohio Zip: 45701 Sector:...

  12. Hydrogen Fuel Initiative | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Fuel Initiative Jump to: navigation, search Contents 1 Introduction 2 Cost 3 Hydrogen Production Strategy 4 Objectives 5 Manufacturing Challenges 6 References Introduction...

  13. 2013 Biological Hydrogen Production Workshop Summary Report ...

    Broader source: Energy.gov (indexed) [DOE]

    summary report for the 2013 Biological Hydrogen Production Workshop. bioh2workshopfinalreport.pdf More Documents & Publications The Hydrogen Program at NREL: A Brief Overview...

  14. An Introduction to the Hydrogen Program

    SciTech Connect (OSTI)

    2015-09-09

    This MP3 provides an overview of the Hydrogen Program and the benefits and challenges to the widespread use of hydrogen and fuel cells.

  15. Where's the Hydrogen Economy? | Open Energy Information

    Open Energy Info (EERE)

    Where's the Hydrogen Economy? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Where's the Hydrogen Economy? AgencyCompany Organization: Canada Library of Parliament...

  16. Molecular catalytic hydrogenation of aromatic hydrocarbons and...

    Office of Scientific and Technical Information (OSTI)

    hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids. Citation Details In-Document Search Title: Molecular catalytic hydrogenation of aromatic hydrocarbons and...

  17. Transportation and Stationary Power Integration with Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Hydrogen and Fuel Cell Technology in Connecticut Transportation and Stationary Power Integration with Hydrogen and Fuel Cell Technology in Connecticut Overview of strengths, ...

  18. Hawaii Renewable Hydrogen Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Program Hawaii Renewable Hydrogen Program Presented at the State and Regional Initiatives Webinar, October 14, 2009 PDF icon hawaiirenewablehydrogenprogram....

  19. NREL Dedicates Advanced Hydrogen Fueling Station | Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy...

  20. Renewable Hydrogen Production from Biological Systems

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Production from Biological Systems Matthew Posewitz Colorado School of Mines DOE Biological Hydrogen Production Workshop September 24 th , 2013 H 2 production PSIIPSI...

  1. Hydrogen for Energy Storage Analysis Overview (Presentation)

    SciTech Connect (OSTI)

    Steward, D. M.; Ramsden, T.; Harrison, K.

    2010-06-01

    Overview of hydrogen for energy storage analysis presented at the National Hydrogen Association Conference & Expo, May 3-6, 2010, Long Beach, CA.

  2. Hydrogen Fuel Cells and Electric Forklift Trucks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Assumptions * Average battery change time 10 minutes - Includes occasional queue * Range of hydrogen fill time 2 - 4 minutes - If hydrogen fill rate 0.4 kgmin * ...

  3. Hydrogenases and Barriers for Biotechnological Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Barriers for Biotechnological Hydrogen Production Technologies Presentation by John Peters, Montana State University, at the Biological Hydrogen Production Workshop held...

  4. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect (OSTI)

    2004-07-01

    Energy-Efficient Catalytic Hydrogenation Reactions. Hydrogenation reactions are very versatile and account for 10% to 20% of all reactions in the pharmaceutical industry.

  5. Prediction of Novel Hydrogen Storage Reactions

    Broader source: Energy.gov [DOE]

    This presentation on the Prediction of Novel Hydrogen Storage Reactions was given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006.

  6. AlumniLink: June 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit IN THIS ISSUE New science Neutrons provide new insights into human cell behavior Physics and biology intersect in breakthroughs Metallic glass could make your next cell phone harder to break Lab researcher works to rearrange the atoms in metals Alumni spotlight Shadi Dayeh: UCSD Former postdoc now an Associate Professor with the Jacobs School of Engineering at the UC

  7. AlumniLink: November 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit IN THIS ISSUE New Science Climate, Earth system project draws on science powerhouses Three climate change drivers and corresponding questions for project's initial phase Collaboration drives achievement in protein structure research By tracking down how bacterial defense systems work, the scientists can potentially fight infectious diseases and genetic disorders Secure

  8. AlumniLink: September 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit IN THIS ISSUE New science Probing Fukushima with cosmic rays should speed cleanup Could reduce the time required for clean up Scientists uncover combustion mechanism to better predict warming by wildfires Scientists have uncovered key attributes of so-called "brown carbon" from wildfires High-performance computer system installed at Los Alamos National

  9. Network as Discovery Instrument: A Quick-Start Guide (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Bell, Gregory [Berkeley Lab

    2013-03-01

    Gregory Bell of Berkeley Lab on "Network as discovery instrument: a Quick-Start Guide" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, Calif.

  10. Join our highlighted LinkedIn discussion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Join our highlighted LinkedIn discussion Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Join our highlighted LinkedIn discussion What experiences have alumni had in software releases and deployments at different institutions? March 1, 2015 Robert Jilek Robert Jilek Contact Linda Anderman Email alumni LinkedIn Join us for a variety of discussions on the Lab's LinkedIn Alumni page What experiences have alumni had in

  11. Join our highlighted LinkedIn discussion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Join our highlighted LinkedIn discussion Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Join our highlighted LinkedIn discussion Congratulations to LANL's Claudia Mora for being selected president elect of the Geological Society of America! July 1, 2015 Claudia Mora Claudia Mora Contact Linda Anderman Email alumni LinkedIn Join us for a variety of discussions on the Lab's LinkedIn Alumni page Congratulations to

  12. Hydrogen-storing hydride complexes

    DOE Patents [OSTI]

    Srinivasan, Sesha S.; Niemann, Michael U.; Goswami, D. Yogi; Stefanakos, Elias K.

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  13. Technical Analysis of Hydrogen Production

    SciTech Connect (OSTI)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  14. Solar hydrogen for urban trucks

    SciTech Connect (OSTI)

    Provenzano, J.: Scott, P.B.; Zweig, R.

    1997-12-31

    The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

  15. SciTech Connect: Website Policies / Important Links

    Office of Scientific and Technical Information (OSTI)

    Website Policies / Important Links Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  16. Insight into hydrogenation of graphene: Effect of hydrogen plasma chemistry

    SciTech Connect (OSTI)

    Felten, A.; Nittler, L.; Pireaux, J.-J.; McManus, D.; Rice, C.; Casiraghi, C.

    2014-11-03

    Plasma hydrogenation of graphene has been proposed as a tool to modify the properties of graphene. However, hydrogen plasma is a complex system and controlled hydrogenation of graphene suffers from a lack of understanding of the plasma chemistry. Here, we correlate the modifications induced on monolayer graphene studied by Raman spectroscopy with the hydrogen ions energy distributions obtained by mass spectrometry. We measure the energy distribution of H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +} ions for different plasma conditions showing that their energy strongly depends on the sample position, pressure, and plasma power and can reach values as high as 45?eV. Based on these measurements, we speculate that under specific plasma parameters, protons should possess enough energy to penetrate the graphene sheet. Therefore, a graphene membrane could become, under certain conditions, transparent to both protons and electrons.

  17. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fuel Cell Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Learning Demonstration Fuel Cell Electric Vehicle Learning Demonstration Delve deeper into real-world performance data with our Interactive Composite Data Product demo Graphical thumbnail of the Interactive Composite Data Product demo map. Learn More Subscribe to the biannual Fuel Cell and Hydrogen Technology Validation newsletter, which highlights recent technology validation activities at NREL. Initiated in 2004, DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and

  18. Related Links | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    External link (SIAM) Institute of Electrical & Electronics Engineers External link (IEEE) Top500 External link Association for Computing Machinery External link Computing...

  19. Fiber optic hydrogen sensor

    DOE Patents [OSTI]

    Buchanan, Bruce R.; Prather, William S.

    1992-01-01

    An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

  20. Fiber optic hydrogen sensor

    DOE Patents [OSTI]

    Buchanan, B.R.; Prather, W.S.

    1991-01-01

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  1. Fiber optic hydrogen sensor

    DOE Patents [OSTI]

    Buchanan, B.R.; Prather, W.S.

    1992-10-06

    An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.

  2. Guidelineless system for riser entry/reentry that permits quick release of a riser column from a subsea installation

    SciTech Connect (OSTI)

    McConaughy, R.C.; Wright, J.W.

    1983-08-23

    A guidelineless riser entry/reentry system is disclosed which permits a safe and quick release of riser column from a subsea installation. The system includes two guide funnels mounted on opposite sides of the subsea installation at the upper end thereof for the purpose of engaging respective telescopic posts mounted at the lower end of the riser column. With the posts in an extended position the riser may be appropriately maneuvered to position the posts in their respective guide funnels. This way, the riser is properly positioned on and orientated with respect to the subsea installation. The riser may then be disconnected or connected to the subsea installation and the posts moved into retracted position so that the riser may be rapidly removed from the subsea installation.

  3. Hydrogen Production: Fundamentals and Case Study Summaries (Presentation)

    SciTech Connect (OSTI)

    Harrison, K.; Remick, R.; Hoskin, A.; Martin, G.

    2010-05-19

    This presentation summarizes hydrogen production fundamentals and case studies, including hydrogen to wind case studies.

  4. Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cell Expo | Department of Energy 6th International Hydrogen and Fuel Cell Expo Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo This presentation by DOE's Sunita Satyapal was given at the 6th International Hydrogen and Fuel Cell Expo on March 3, 2010. PDF icon Overview of Hydrogen and Fuel Cell Activities More Documents & Publications Hydrogen and Fuel Cells Program Overview: Hydrogen and Fuel Cells 2011 International Conference Fuel

  5. U.S. DOE Hydrogen and Fuel Cell Activities: 2010 International Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel and Pressure Vessel Forum | Department of Energy DOE Hydrogen and Fuel Cell Activities: 2010 International Hydrogen Fuel and Pressure Vessel Forum U.S. DOE Hydrogen and Fuel Cell Activities: 2010 International Hydrogen Fuel and Pressure Vessel Forum Presentation at the International Hydrogen Fuel and Pressure Vessel Forum on September 27-29, 2010, in Beijing, China. PDF icon U.S. DOE Hydrogen and Fuel Cell Activities More Documents & Publications DOE Hydrogen and Fuel Cell Overview:

  6. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay Keller of Sandia National Laboratories at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 PDF icon cng_h2_workshop_2_keller.pdf More Documents & Publications US DRIVE Hydrogen Codes and Standards Technical Team Roadmap Hydrogen Release Behavior Workshop Notes from

  7. Hydrogen Technology Education Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document outlines activities for educating key target audiences, as suggested by workshop participants. Held December 4-5, 2002, the Hydrogen Technology Education Workshop kicked off a new educat

  8. National Hydrogen Vision Meeting Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document provides presentations and summaries of the notes from the National Hydrogen Vision Meeting''s facilitated breakout sessions. The Vision Meeting, which took place November 15-16, 2001, k

  9. Production of hydrogen from alcohols

    DOE Patents [OSTI]

    Deluga, Gregg A. (St. Paul, MN); Schmidt, Lanny D. (Minneapolis, MN)

    2007-08-14

    A process for producing hydrogen from ethanol or other alcohols. The alcohol, optionally in combination with water, is contacted with a catalyst comprising rhodium. The overall process is preferably carried out under autothermal conditions.

  10. Compressed/Liquid Hydrogen Tanks

    Broader source: Energy.gov [DOE]

    Currently, DOE's physical hydrogen storage R&D focuses on the development of high-pressure (10,000 psi) composite tanks, cryo-compressed tanks, conformable tanks, and other advanced concepts...

  11. Status of Hydrogen Storage Technologies

    Broader source: Energy.gov [DOE]

    The current status in terms of weight, volume, and cost of various hydrogen storage technologies is shown below. These values are estimates from storage system developers and the R&D community...

  12. Negative hydrogen ion production mechanisms

    SciTech Connect (OSTI)

    Bacal, M.; Wada, M.

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  13. DOE Hydrogen & Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    t t 1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U S D f E Overview U.S....

  14. Hydrogen Systems Analysis Workshop (SAW)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy sponsored a Hydrogen Systems Analysis Workshop (SAW) in Washington, DC, July 28-29, 2004. Attendees included government officials, analysts, and managers from DOE, the...

  15. Hydrogen Production: Thermochemical Water Splitting

    Broader source: Energy.gov [DOE]

    Thermochemical water splitting uses high temperatures—from concentrated solar power or from the waste heat of nuclear power reactions—and chemical reactions to produce hydrogen and oxygen from water.

  16. 2002 Hydrogen Program Review Meeting

    Broader source: Energy.gov [DOE]

    The U.S. DOE Hydrogen Program, the Fuel Cells for Transportation Program, and the Fuels for Fuel Cells Program held their inaugural combined Annual Program/Lab R&D Review May 6–10, 2002, in...

  17. Wind Electrolysis: Hydrogen Cost Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolysis: Hydrogen Cost Optimization Genevieve Saur and Todd Ramsden Technical Report NREL/TP-5600-50408 May 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Wind Electrolysis: Hydrogen Cost Optimization Genevieve Saur, Todd

  18. Hydrogen Storage Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Technologies Roadmap May Hydrogen Storage Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies -BP America, Chevron Corporation, Phillips 66

  19. Electrolysis - Hydrogen - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Find More Like This Return to Search Electrolysis - Hydrogen Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL has invented a process that leverages nuclear technology in combination with various carbon sources to produce synthetic gases for refinement into synthetic transportation fuels/chemicals. Using solid-state electrolysis, water is decomposed to hydrogen and oxygen in one process, while carbon dioxide is

  20. Hydrogen Production Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Hydrogen Production Technical Team Roadmap identifies research pathways leading to hydrogen production technologies that produce near-zero net greenhouse gas (GHG) emissions from highly efficient and diverse renewable energy sources. This roadmap focuses on initial development of the technologies, identifies their gaps and barriers, and describes activities by various U.S. Department of Energy (DOE) offices to address the key issues and challenges.