Quantum random number generation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Zhang, Zhen; Qi, Bing
2016-06-28
Here, quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at amoreÂ Â» high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.Â«Â less
Quantum random number generator
Pooser, Raphael C.
2016-05-10
A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.
Quantum Statistical Testing of a Quantum Random Number Generator
Humble, Travis S
2014-01-01
The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the opera- tion of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.
The Charge Conjugation Quantum Number in Multiquark Systems
Stancu, Fl.
2008-08-29
We discuss the charge conjugation quantum number for tetraquarks or meson-meson molecules, seen as possible interpretations of the newly found XYZ charmonium-like resonances.
Quantum chaos for exact and broken K quantum number in the interacting-boson model
Paar, V.; Vorkapic, D. (Prirodoslovno-matematicki fakultet, University of Zagreb, 41000 Zagreb, Yugoslavia (YU))
1990-05-01
We show that the exact {ital K} quantum number in the SU(3) limit of the interacting-boson model has a strong effect on the fluctuation properties: Pure sequences of a single {ital K} value have {Delta}{sub 3} statistic close to the Gaussian overlap ensemble prediction while mixed sequences with combined {ital K} values are removed far from the Gaussian overlap ensemble because of {ital K} degeneracy, exceeding even the Poisson-ensemble prediction. Applying the extended interacting boson model to the realistic case of {sup 164}Er nucleus, we have demonstrated that weak breaking of the {ital K} quantum number introduces a very rapid change in fluctuation properties towards those of a pure sequence.
Random Number Generation for Petascale Quantum Monte Carlo
Ashok Srinivasan
2010-03-16
The quality of random number generators can affect the results of Monte Carlo computations, especially when a large number of random numbers are consumed. Furthermore, correlations present between different random number streams in a parallel computation can further affect the results. The SPRNG software, which the author had developed earlier, has pseudo-random number generators (PRNGs) capable of producing large numbers of streams with large periods. However, they had been empirically tested on only thousand streams earlier. In the work summarized here, we tested the SPRNG generators with over a hundred thousand streams, involving over 10^14 random numbers per test, on some tests. We also tested the popular Mersenne Twister. We believe that these are the largest tests of PRNGs, both in terms of the numbers of streams tested and the number of random numbers tested. We observed defects in some of these generators, including the Mersenne Twister, while a few generators appeared to perform well. We also corrected an error in the implementation of one of the SPRNG generators.
Level repulsion, nuclear chaos, and conserved quantum numbers
Garrett, J.D.
1993-12-01
A statistical analysis of the distribution of level spacings for states with the same spin and parity is described in which the average spacing is calculated for the total ensemble. Though the resulting distribution of level spacings for states of deformed nuclei with Z = 62 - 75 and A = 155 - 185 is the closest to that of a Poisson distribution yet obtained for nuclear levels, significant deviations are observed for small level spacings. Many, but not all, of the very closely-spaced levels have K-values differing by several units. The analysis of level spacings in {sup 157}Ho indicate that considerable caution should be excerised when drawing conclusions from such an analysis for a single deformed nucleus, since the sizable number of spacings that can be obtained from a few rotational bands are not all independent.
Multi-bit quantum random number generation by measuring positions of arrival photons
Yan, Qiurong; Zhao, Baosheng; Liao, Qinghong; Zhou, Nanrun
2014-10-15
We report upon the realization of a novel multi-bit optical quantum random number generator by continuously measuring the arrival positions of photon emitted from a LED using MCP-based WSA photon counting imaging detector. A spatial encoding method is proposed to extract multi-bits random number from the position coordinates of each detected photon. The randomness of bits sequence relies on the intrinsic randomness of the quantum physical processes of photonic emission and subsequent photoelectric conversion. A prototype has been built and the random bit generation rate could reach 8 Mbit/s, with random bit generation efficiency of 16 bits per detected photon. FPGA implementation of Huffman coding is proposed to reduce the bias of raw extracted random bits. The random numbers passed all tests for physical random number generator.
Nie, You-Qi; Zhang, Jun Pan, Jian-Wei; Zhang, Hong-Fei; Wang, Jian; Zhang, Zhen; Ma, Xiongfeng
2014-02-03
We present a practical high-speed quantum random number generator, where the timing of single-photon detection relative to an external time reference is measured as the raw data. The bias of the raw data can be substantially reduced compared with the previous realizations. The raw random bit rate of our generator can reach 109 Mbps. We develop a model for the generator and evaluate the min-entropy of the raw data. Toeplitz matrix hashing is applied for randomness extraction, after which the final random bits are able to pass the standard randomness tests.
High-speed quantum-random number generation by continuous measurement of arrival time of photons
Yan, Qiurong; Zhao, Baosheng; Hua, Zhang; Liao, Qinghong; Yang, Hao
2015-07-15
We demonstrate a novel high speed and multi-bit optical quantum random number generator by continuously measuring arrival time of photons with a common starting point. To obtain the unbiased and post-processing free random bits, the measured photon arrival time is converted into the sum of integral multiple of a fixed period and a phase time. Theoretical and experimental results show that the phase time is an independent and uniform random variable. A random bit extraction method by encoding the phase time is proposed. An experimental setup has been built and the unbiased random bit generation rate could reach 128 Mb/s, with random bit generation efficiency of 8 bits per detected photon. The random numbers passed all tests in the statistical test suite.
Fluctuations of the number of particles within a given volume in cold quantum gases
Astrakharchik, G. E.; Combescot, R.; Pitaevskii, L. P.
2007-12-15
In ultracold gases many experiments use atom imaging as a basic observable. The resulting image is averaged over a number of realizations and mostly only this average is used. Only recently the noise has been measured to extract physical information. In the present paper we investigate the quantum noise arising in these gases at zero temperature. We restrict ourselves to the homogeneous situation and study the fluctuations in particle number found within a given volume in the gas, and more specifically inside a sphere of radius R. We show that zero-temperature fluctuations are not extensive and the leading term scales with sphere radius R as R{sup 2} ln R (or ln R) in three- (or one-) dimensional systems. We calculate systematically the next term beyond this leading order. We consider first the generic case of a compressible superfluid. Then we investigate the whole Bose-Einstein-condensation (BEC) -BCS crossover, and in particular the limiting cases of the weakly interacting Bose gas and of the free Fermi gas.
Suzuki, Kosuke Takubo, Shota; Kato, Tadashi; Yamazoe, Masatoshi; Hoshi, Kazushi; Sakurai, Hiroshi; Homma, Yoshiya; Itou, Masayoshi; Sakurai, Yoshiharu
2014-08-18
A spin specific magnetic hysteresis (SSMH) curve and an orbital specific magnetic hysteresis (OSMH) curve are obtained for Fe/Au/Fe/MgO multilayers by magnetic Compton scattering and SQUID magnetometer measurements. The SSMH curve with each contribution of magnetic quantum number |m|â€‰=â€‰0, 1, and 2 states is obtained by decomposition analyses of magnetic Compton profiles. Residual magnetization is observed for the SSMH curve with magnetic quantum number |m|â€‰=â€‰0, 2 and the OSMH curve. Although the SQUID magnetometer measurements do not show perpendicular magnetic anisotropy (PMA) in the present Fe/Au/Fe/MgO multilayer film, the SSMH curve with magnetic quantum number |m|â€‰=â€‰0, 2 and OSMH curve show switching behaviors of PMA.
Kaiser, Uwe; Jimenez de Aberasturi, Dorleta; Vázquez-González, Margarita; Carrillo-Carrion, Carolina; Niebling, Tobias; Parak, Wofgang J.; Heimbrodt, Wolfram
2015-01-14
Semiconductor quantum dots functionalized with organic dye molecules are important tools for biological sensor applications. Energy transfer between the quantum dot and the attached dyes can be utilized for sensing. Though important, the determination of the real number of dye molecules attached per quantum dot is rather difficult. In this work, a method will be presented to determine the number of ATTO-590 dye molecules attached to CdSe/ZnS quantum dots based on time resolved spectral analysis. The energy transfer from the excited quantum dot to the attached ATTO-590 dye leads to a reduced lifetime of the quantum dot's excitons. The higher the concentration of dye molecules, the shorter the excitonic lifetime becomes. However, the number of dye molecules attached per quantum dot will vary. Therefore, for correctly explaining the decay of the luminescence upon photoexcitation of the quantum dot, it is necessary to take into account the distribution of the number of dyes attached per quantum dot. A Poisson distribution of the ATTO-590 dye molecules not only leads to excellent agreement between experimental and theoretical decay curves but also additionally yields the average number of dye molecules attached per quantum dot. In this way, the number of dyes per quantum dot can be conveniently determined.
Zobov, V. E. Lundin, A. A.
2006-12-15
The time evolution of multispin correlations (the growth of the number of correlated spins as a function of time) can be observed directly using the multiple-quantum nuclear magnetic resonance spectroscopy of solids. A quantity related to this number, namely, the second moment
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Benioff, Paul
2009-01-01
TmoreÂ Â» his work is based on the field of reference frames based on quantum representations of real and complex numbers described in other work. Here frame domains are expanded to include space and time lattices. Strings of qukits are described as hybrid systems as they are both mathematical and physical systems. As mathematical systems they represent numbers. As physical systems in each frame the strings have a discrete Schrodinger dynamics on the lattices.he frame field has an iterative structure such that the contents of a stage j frame have images in a stage j - 1 (parent) frame. A discussion of parent frame images includes the proposal that points of stage j frame lattices have images as hybrid systems in parent frames.he resulting association of energy with images of lattice point locations, as hybrid systems states, is discussed. Representations and images of other physical systems in the different frames are also described.Â«Â less
Orbital-exchange and fractional quantum number excitations in an f-electron metal Yb2Pt2Pb
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
L. S. Wu; Zaliznyak, I. A.; Gannon, W. J.; Tsvelik, A. M.; Brockmann, M.; Caux, J. -S.; Kim, M. S.; Qiu, Y.; Copley, J. R. D.; Ehlers, G.; et al
2016-06-03
Exotic quantum states and fractionalized magnetic excitations, such as spinons in one-dimensional chains, are generally expected to occur in 3d transition metal systems with spin 1/2. Our neutron-scattering experiments on the 4f-electron metal Yb2Pt2Pb overturn this conventional wisdom. We observe broad magnetic continuum dispersing in only one direction, which indicates that the underlying elementary excitations are spinons carrying fractional spin-1/2. These spinons are the emergent quantum dynamics of the anisotropic, orbital-dominated Yb moments. Owing to their unusual origin, only longitudinal spin fluctuations are measurable, whereas the transverse excitations such as spin waves are virtually invisible to magnetic neutron scattering. Furthermore,moreÂ Â» the proliferation of these orbital-spinons strips the electrons of their orbital identity, resulting in charge-orbital separation.Â«Â less
Finite groups and quantum physics
Kornyak, V. V.
2013-02-15
Concepts of quantum theory are considered from the constructive 'finite' point of view. The introduction of a continuum or other actual infinities in physics destroys constructiveness without any need for them in describing empirical observations. It is shown that quantum behavior is a natural consequence of symmetries of dynamical systems. The underlying reason is that it is impossible in principle to trace the identity of indistinguishable objects in their evolution-only information about invariant statements and values concerning such objects is available. General mathematical arguments indicate that any quantum dynamics is reducible to a sequence of permutations. Quantum phenomena, such as interference, arise in invariant subspaces of permutation representations of the symmetry group of a dynamical system. Observable quantities can be expressed in terms of permutation invariants. It is shown that nonconstructive number systems, such as complex numbers, are not needed for describing quantum phenomena. It is sufficient to employ cyclotomic numbers-a minimal extension of natural numbers that is appropriate for quantum mechanics. The use of finite groups in physics, which underlies the present approach, has an additional motivation. Numerous experiments and observations in the particle physics suggest the importance of finite groups of relatively small orders in some fundamental processes. The origin of these groups is unclear within the currently accepted theories-in particular, within the Standard Model.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A TA-53 TOUR FORM/RADIOLOGICAL LOG (Send completed form to MS H831) _____________ _____________________________ _________________________________ Tour Date Purpose of Tour or Tour Title Start Time and Approximate Duration ___________________________ ______________ _______________________ _________________ Tour Point of Contact/Requestor Z# (if applicable) Organization/Phone Number Signature Locations Visited: (Check all that apply, and list any others not shown. Prior approval must be obtained
Efficient self-consistent quantum transport simulator for quantum...
Office of Scientific and Technical Information (OSTI)
Journal Article: Efficient self-consistent quantum transport simulator for quantum ... DOE Contract Number: DE-AC04-94AL85000 Resource Type: Journal Article Resource Relation: ...
Santa Fe New Mexican: For cybersecurity, in quantum encryption...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
For cybersecurity, in quantum encryption we trust Santa Fe New Mexican: For cybersecurity, in quantum encryption we trust Los Alamos physicists developed a quantum random number...
Quantum histories without contrary inferences
Losada, Marcelo; Laura, Roberto
2014-12-15
In the consistent histories formulation of quantum theory it was shown that it is possible to retrodict contrary properties. We show that this problem do not appear in our formalism of generalized contexts for quantum histories. - Highlights: • We prove ordinary quantum mechanics has no contrary properties. • Contrary properties in consistent histories are reviewed. • We prove generalized contexts for quantum histories have no contrary properties.
Aihara, Taketo; Fukuyama, Atsuhiko; Ikari, Tetsuo; Suzuki, Hidetoshi; Fujii, Hiromasa; Nakano, Yoshiaki; Sugiyama, Masakazu
2015-02-28
Three non-destructive methodologies, namely, surface photovoltage (SPV), photoluminescence, and piezoelectric photothermal (PPT) spectroscopies, were adopted to detect the thermal carrier escape from quantum well (QW) and radiative and non-radiative carrier recombinations, respectively, in strain-balanced InGaAs/GaAsP multiple-quantum-well (MQW)-inserted GaAs p-i-n solar cell structure samples. Although the optical absorbance signal intensity was proportional to the number of QW stack, the signal intensities of the SPV and PPT methods decreased at high number of stack. To explain the temperature dependency of these signal intensities, we proposed a model that considers the three carrier dynamics: the thermal escape from the QW, and the non-radiative and radiative carrier recombinations within the QW. From the fitting procedures, it was estimated that the activation energies of the thermal escape Î”E{sub barr} and non-radiative recombination Î”E{sub NR} were 68 and 29â€‰meV, respectively, for a 30-stacked MQW sample. The estimated Î”E{sub barr} value agreed well with the difference between the first electron subband and the top of the potential barrier in the conduction band. We found that Î”E{sub barr} remained constant at approximately 70â€‰meV even with increasing QW stack number. However, the Î”E{sub NR} value monotonically increased with the increase in the number of stack. Since this implies that non-radiative recombination becomes improbable as the number of stack increases, we found that the radiative recombination probability for electrons photoexcited within the QW increased at a large number of QW stack. Additional processes of escaping and recapturing of carriers at neighboring QW were discussed. As a result, the combination of the three non-destructive methodologies provided us new insights for optimizing the MQW components to further improve the cell performance.
Suppression of quantum chaos in a quantum computer hardware
Lages, J.; Shepelyansky, D. L. [Laboratoire de Physique Theorique, UMR 5152 du CNRS, Universite Paul Sabatier, 31062 Toulouse Cedex 4 (France)
2006-08-15
We present numerical and analytical studies of a quantum computer proposed by the Yamamoto group in Phys. Rev. Lett. 89, 017901 (2002). The stable and quantum chaos regimes in the quantum computer hardware are identified as a function of magnetic field gradient and dipole-dipole couplings between qubits on a square lattice. It is shown that a strong magnetic field gradient leads to suppression of quantum chaos.
Final Rulemaking, 10 CFR Part 1021, with Amendments Shown In Tracked Changes
Broader source: Energy.gov [DOE]
This document presents the final rule as issued September 27, 2011, amendments shown with changes trackedÂ (additions in blue, deletions in red). Categorical exclusions are listed in Appendices A...
Residential Energy-Efficiency Equipment Shown to be a Good Investment...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. Residential Energy-Efficiency Equipment Shown to be a Good ...
DOE Takes Action to Stop the Sales of Air-Con Air Conditioner Models Shown
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
to Violate Federal Energy Efficiency Appliance Standards | Department of Energy Action to Stop the Sales of Air-Con Air Conditioner Models Shown to Violate Federal Energy Efficiency Appliance Standards DOE Takes Action to Stop the Sales of Air-Con Air Conditioner Models Shown to Violate Federal Energy Efficiency Appliance Standards September 23, 2010 - 12:00am Addthis Washington, DC - The Department of Energy announced today that it has taken action against Air-Con, International, requiring
Audenaert, Koenraad M. R.
2014-11-15
In this paper, we study the quantum generalisation of the skew divergence, which is a dissimilarity measure between distributions introduced by Lee in the context of natural language processing. We provide an in-depth study of the quantum skew divergence, including its relation to other state distinguishability measures. Finally, we present a number of important applications: new continuity inequalities for the quantum Jensen-Shannon divergence and the Holevo information, and a new and short proof of Bravyi's Small Incremental Mixing conjecture.
QCAD simulation and optimization of semiconductor double quantum dots
Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina; Muller, Richard Partain; Salinger, Andrew Gerhard; Young, Ralph Watson
2013-12-01
We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltages in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Quantum Institute Quantum Institute A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. Contact Leader Malcolm Boshier (505) 665-8892 Email Two of LANL's most successful quantum technology initiatives: quantum cryptography and the race for quantum computer The area of quantum information, science, and technology is rapidly evolving, with important applications in the areas of quantum
Selectivity in multiple quantum nuclear magnetic resonance
Warren, W.S.
1980-11-01
The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.
Quantum aspects of a moving magnetic quadrupole moment interacting with an electric field
Fonseca, I. C.; Bakke, K.
2015-06-15
The quantum dynamics of a moving particle with a magnetic quadrupole moment that interacts with electric and magnetic fields is introduced. By dealing with the interaction between an electric field and the magnetic quadrupole moment, it is shown that an analogue of the Coulomb potential can be generated and bound state solutions can be obtained. Besides, the influence of the Coulomb-type potential on the harmonic oscillator is investigated, where bound state solutions to both repulsive and attractive Coulomb-type potentials are achieved and the arising of a quantum effect characterized by the dependence of the harmonic oscillator frequency on the quantum numbers of the system is discussed.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
3023307 Name: Madeleine Brown Organization: nJa Address: --- -------- -------- -- Country: Phone Number: United States Fax Number: n/a E-mail: --- -------- --------_._------ --- Reasonably Describe Records Description: Please send me a copy of the emails and records relating to the decision to allow the underage son of Bill Gates to tour Hanford in June 2010. Please also send the emails and records that justify the Department of Energy to prevent other minors from visiting B Reactor. Optional
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
1074438 Name: Gayle Cooper Organization: nla Address: _ Country: United States Phone Number: Fax Number: nla E-mail: . ~===--------- Reasonably Describe Records Description: Information pertaining to the Department of Energy's cost estimate for reinstating pension benefit service years to the Enterprise Company (ENCO) employees who are active plan participants in the Hanford Site Pension Plan. This cost estimate was an outcome of the DOE's Worker Town Hall Meetings held on September 17-18, 2009.
Stapp, Henry
2011-11-10
Robert Griffiths has recently addressed, within the framework of a ‘consistent quantum theory’ (CQT) that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues, on the basis of his examination of certain arguments that claim to demonstrate the existence of such nonlocal influences, that such influences do not exist. However, his examination was restricted mainly to hidden-variable-based arguments that include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. One cannot logically prove properties of a system by attributing to the system properties alien to that system. Hence Griffiths’ rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his ‘consistent quantum theory’ shows that the cited proof is valid within that restrictive framework. This necessary existence, within the ‘consistent’ framework, of long range essentially instantaneous influences refutes the claim made by Griffiths that his ‘consistent’ framework is superior to the orthodox quantum theory of von Neumann because it does not entail instantaneous influences. An added section responds to Griffiths’ reply, which cites a litany of ambiguities that seem to restrict, devastatingly, the scope of his CQT formalism, apparently to buttress his claim that my use of that formalism to validate the nonlocality theorem is flawed. But the vagaries that he cites do
Concurrence of quasipure quantum states
Mintert, Florian; Buchleitner, Andreas
2005-07-15
We derive an analytic approximation for the concurrence of weakly mixed bipartite quantum states--typical objects in state of the art experiments. This approximation is shown to be a lower bound of the concurrence of arbitrary states.
Physical interpretation of Jeans instability in quantum plasmas
Akbari-Moghanjoughi, M.
2014-08-15
In this paper, we use the quantum hydrodynamics and its hydrostatic limit to investigate the newly posed problem of Jeans instability in quantum plasmas from a different point of view in connection with the well-known Chandrasekhar mass-limit on highly collapsed degenerate stellar configurations. It is shown that the hydrodynamic stability of a spherically symmetric uniform quantum plasma with a given fixed mass is achieved by increase in its mass-density or decrease in the radius under the action of gravity. It is also remarked that for masses beyond the limiting Jeans-mass, the plasma becomes completely unstable and the gravitational collapse would proceed forever. This limiting mass is found to depend strongly on the composition of the quantum plasma and the atomic-number of the constituent ions, where it is observed that heavier elements rather destabilize the quantum plasma hydrodynamically. It is also shown that the Chandrasekhar mass-limit for white dwarf stars can be directly obtained from the hydrostatic limit of our model.
Nonclassical imaging for a quantum search of trapped ions
Agarwal, G.S.; Ariunbold, G.O.; Zanthier, J. von; Walther, H.
2004-12-01
We discuss a simple search problem which can be pursued with different methods, either on a classical or on a quantum basis. The system is represented by a chain of trapped ions. The ion to be searched for is a member of that chain, consisting, however, of an isotopic species different from the others. It is shown that classical imaging may lead to the final result as fast as quantum imaging. However, for the discussed case the quantum method gives more flexibility and higher precision when the number of ions considered in the chain increases. In addition, interferences are observable even when the distances between the ions are smaller than half a wavelength of the incident light.
Super-radiance and open quantum systems
Volya, Alexander [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States); Zelevinsky, Vladimir [NSCL, Michigan State University, East Lansing, MI 48824-1321 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)
2005-07-08
Quantum wires, loosely bound nuclei, molecules in chemical reactions and exotic narrow pentaquark states are different examples of open quantum mesoscopic systems. The coupling with and through continuum is their common feature. We discuss general properties of quantum systems in the regime of strong continuum coupling, when the mechanism of Dicke super-radiance changes intrinsic dynamics, signatures of quantum chaos, lifetime of unstable states and reaction cross sections. The examples are shown for various areas of mesoscopic physics.
Nuclear Scission and Quantum Localization (Journal Article) ...
Office of Scientific and Technical Information (OSTI)
Nuclear Scission and Quantum Localization Citation Details ... 1183533 Report Number(s): LLNL-JRNL-473099 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Journal Article ...
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.
2016-07-06
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantummoreÂ Â» regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. As a result, the proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.Â«Â less
PERTURBATION APPROACH FOR QUANTUM COMPUTATION
G. P. BERMAN; D. I. KAMENEV; V. I. TSIFRINOVICH
2001-04-01
We discuss how to simulate errors in the implementation of simple quantum logic operations in a nuclear spin quantum computer with many qubits, using radio-frequency pulses. We verify our perturbation approach using the exact solutions for relatively small (L = 10) number of qubits.
Science on the Hill: For cybersecurity, in quantum encryption we trust
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
5 Â» For cybersecurity, in quantum encryption we trust For cybersecurity, in quantum encryption we trust Los Alamos physicists developed a quantum random number generator and communication system that exploits quantum physics to improve cybersecurity. September 13, 2015 Los Alamos physicists developed a quantum random number generator and a quantum communication system, both of which exploit the weird and immutable laws of quantum physics to improve cybersecurity. Los Alamos National Laboratory,
Flambaum, V.V.; Izrailev, F.M. [School of Physics, University of New South Wales, Sydney 2052 (Australia)] [School of Physics, University of New South Wales, Sydney 2052 (Australia)
1997-01-01
A method is developed for calculation of single-particle occupation numbers in finite Fermi systems of interacting particles. It is more accurate than the canonical distribution method and gives the Fermi-Dirac distribution in the limit of large number of particles. It is shown that statistical effects of the interaction are absorbed by an increase of the effective temperature. Criteria for quantum chaos and statistical equilibrium are considered. All results are confirmed by numerical experiments in the two-body random interaction model. {copyright} {ital 1997} {ital The American Physical Society}
Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma
Niknam, A. R.; Rastbood, E.; Bafandeh, F.; Khorashadizadeh, S. M.
2014-04-15
The modulational instability of right-hand circularly polarized electromagnetic electron cyclotron (CPEM-EC) wave in a magnetized quantum plasma is studied taking into account the collisional effects. Employing quantum hydrodynamic and nonlinear Schrödinger equations, the dispersion relation of modulated CPEM-EC wave in a collisional plasma has been derived. It is found that this wave is unstable in such a plasma system and the growth rate of the associated instability depends on various parameters such as electron Fermi temperature, plasma number density, collision frequency, and modulation wavenumber. It is shown that while the increase of collision frequency leads to increase of the growth rate of instability, especially at large wavenumber limit, the increase of plasma number density results in more stable modulated CPEM-EC wave. It is also found that in contrast to collisionless plasma in which modulational instability is restricted to small wavenumbers, in collisional plasma, the interval of instability occurrence can be extended to a large domain.
Continuous-time quantum walks on star graphs
Salimi, S.
2009-06-15
In this paper, we investigate continuous-time quantum walk on star graphs. It is shown that quantum central limit theorem for a continuous-time quantum walk on star graphs for N-fold star power graph, which are invariant under the quantum component of adjacency matrix, converges to continuous-time quantum walk on K{sub 2} graphs (complete graph with two vertices) and the probability of observing walk tends to the uniform distribution.
Quantum interference within the complex quantum Hamilton-Jacobi formalism
Chou, Chia-Chun; Sanz, Angel S.; Miret-Artes, Salvador; Wyatt, Robert E.
2010-10-15
Quantum interference is investigated within the complex quantum Hamilton-Jacobi formalism. As shown in a previous work [Phys. Rev. Lett. 102 (2009) 250401], complex quantum trajectories display helical wrapping around stagnation tubes and hyperbolic deflection near vortical tubes, these structures being prominent features of quantum caves in space-time Argand plots. Here, we further analyze the divergence and vorticity of the quantum momentum function along streamlines near poles, showing the intricacy of the complex dynamics. Nevertheless, despite this behavior, we show that the appearance of the well-known interference features (on the real axis) can be easily understood in terms of the rotation of the nodal line in the complex plane. This offers a unified description of interference as well as an elegant and practical method to compute the lifetime for interference features, defined in terms of the average wrapping time, i.e., considering such features as a resonant process.
Gevorgyan, T. V. [Institute for Physical Research, National Academy of Sciences, Ashtarak-2, 0203 Ashtarak (Armenia); Shahinyan, A. R. [Yerevan State University, A. Manoogian 1, 0025 Yerevan (Armenia); Kryuchkyan, G. Yu. [Institute for Physical Research, National Academy of Sciences, Ashtarak-2, 0203 Ashtarak (Armenia); Yerevan State University, A. Manoogian 1, 0025 Yerevan (Armenia)
2009-05-15
We show that quantum-interference phenomena can be realized for the dissipative nonlinear systems exhibiting hysteresis-cycle behavior and quantum chaos. Such results are obtained for a driven dissipative nonlinear oscillator with time-dependent parameters and take place for the regimes of long time intervals exceeding dissipation time and for macroscopic levels of oscillatory excitation numbers. Two schemas of time modulation, (i) periodic variation in the strength of the {chi}(3) nonlinearity; (ii) periodic modulation of the amplitude of the driving force, are considered. These effects are obtained within the framework of phase-space quantum distributions. It is demonstrated that the Wigner functions of oscillatory mode in both bistable and chaotic regimes acquire negative values and interference patterns in parts of phase-space due to appropriately time modulation of the oscillatory nonlinear dynamics. It is also shown that the time modulation of the oscillatory parameters essentially improves the degree of sub-Poissonian statistics of excitation numbers.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... Quantum Optics HomeEnergy ResearchEFRCsSolid-State Lighting Science EFRCQuantum Optics ...
Maunz, Peter Lukas Wilhelm; Sterk, Jonathan David; Lobser, Daniel; Parekh, Ojas D.; Ryan-Anderson, Ciaran
2016-01-01
In recent years, advanced network analytics have become increasingly important to na- tional security with applications ranging from cyber security to detection and disruption of ter- rorist networks. While classical computing solutions have received considerable investment, the development of quantum algorithms to address problems, such as data mining of attributed relational graphs, is a largely unexplored space. Recent theoretical work has shown that quan- tum algorithms for graph analysis can be more efficient than their classical counterparts. Here, we have implemented a trapped-ion-based two-qubit quantum information proces- sor to address these goals. Building on Sandia's microfabricated silicon surface ion traps, we have designed, realized and characterized a quantum information processor using the hyperfine qubits encoded in two 171 Yb + ions. We have implemented single qubit gates using resonant microwave radiation and have employed Gate set tomography (GST) to characterize the quan- tum process. For the first time, we were able to prove that the quantum process surpasses the fault tolerance thresholds of some quantum codes by demonstrating a diamond norm distance of less than 1 . 9 x 10 [?] 4 . We used Raman transitions in order to manipulate the trapped ions' motion and realize two-qubit gates. We characterized the implemented motion sensitive and insensitive single qubit processes and achieved a maximal process infidelity of 6 . 5 x 10 [?] 5 . We implemented the two-qubit gate proposed by Molmer and Sorensen and achieved a fidelity of more than 97 . 7%.
Office of Scientific and Technical Information (OSTI)
| OSTI, US Dept of Energy Office of Scientific and Technical Information 499px-Aquatint_of_a_Doctor_in_divinity_at_the_University_of_Oxford,_shown_wearing_convocation_dress
Karpman-Washimi magnetization with electron-exchange effects in quantum plasmas
Hong, Woo-Pyo; Jamil, M.; Rasheed, A.; Jung, Young-Dae
2015-07-15
The influence of quantum electron-exchange on the Karpman-Washimi ponderomotive magnetization is investigated in quantum plasmas. The ponderomotive magnetization and the total radiation power due to the non-stationary Karpman-Washimi interaction related to the time-varying field intensity are obtained as functions of the de Broglie wave length, Debye length, and electron-exchange parameter. The result shows that the electron-exchange effect enhances the cyclotron frequency due to the ponderomotive interactions in quantum plasmas. It is also shown that the electron-exchange effect on the Karpman-Washimi magnetization increases with increasing wave number. In addition, the Karpman-Washimi magnetization and the total radiation power increase with an increase in the ratio of the Debye length to the de Broglie wave length. In streaming quantum plasmas, it is shown that the electron-exchange effect enhances the ponderomotive magnetization below the resonant wave number and, however, suppresses the ponderomotive magnetization above the resonant wave number. The variation of the Karpman-Washimi magnetization and the radiation power due to the variation of the electron-exchange effect and plasma parameters is also discussed.
EL-Labany, S. K.; El-Mahgoub, M. G.; EL-Shamy, E. F.
2012-06-15
The interaction between two planar and nonplanar (cylindrical and spherical) quantum electron acoustic solitary waves (QEASWs) in quantum dense electron-ion plasmas has been studied. The extended Poincare-Lighthill-Kuo method is used to obtain planar and nonplanar phase shifts after the interaction of the two QEASWs. The change of phase shifts and trajectories for QEASWs due to the effect of the different geometries, the quantum corrections of diffraction, and the cold electron-to-hot electron number density ratio are discussed. It is shown that the interaction of the QEASWs in planar geometry, cylindrical geometry, and spherical geometry are different. The present investigation may be beneficial to understand the interaction between two planar and nonplanar QEASWs that may occur in the quantum plasmas found in laser-produced plasmas as well as in astrophysical plasmas.
Truly Random Number Generator Promises Stronger Encryption Across All
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Devices, Cloud Truly Random Number Generator Promises Stronger Encryption Across All Devices, Cloud Truly Random Number Generator Promises Stronger Encryption Across All Devices, Cloud Whitewood Encryption Systems, launched in summer 2015, introduces NetRandom, providing truly random quantum encryption. March 4, 2016 Random Number Generator Whitewood Encryption Systems, launched in summer 2015, introduces NetRandom, providing truly random quantum encryption. They were awarded a third patent
Experimental quantum multimeter and one-qubit fingerprinting
Du Jiangfeng; Zou Ping; Peng Xinhua; Oi, Daniel K. L.; Ekert, Artur; Kwek, L. C.; Oh, C. H.
2006-10-15
There has been much recent effort to realize quantum devices in many different physical systems. Among them, nuclear magnetic resonance (NMR) has been the first to demonstrate nontrivial quantum algorithms with small numbers of qubits and hence is a prototype for the key ingredients needed to build quantum computers. An important building block in many quantum applications is the scattering circuit, which can be used as a quantum multimeter to perform various quantum information processing tasks directly without recourse to quantum tomography. We implement in NMR a three-qubit version of the multimeter and also demonstrate a single-qubit fingerprinting.
Phase space quantum mechanics - Direct
Nasiri, S.; Sobouti, Y.; Taati, F.
2006-09-15
Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.
Quantum Field Theory & Gravity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Quantum Field Theory & Gravity Quantum Field Theory & Gravity Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email Quantum Field Theory and Gravity at Los Alamos The HEP effort at Los Alamos in this area is actively pursing a number of questions in this area. What is the final state of complete gravitational collapse? What happens at the event horizon? What is dark energy? How did the
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Quantum ESPRESSOPWscf Quantum ESPRESSOPWscf Description Quantum ESPRESSO is an integrated suite of computer codes for electronic structure calculations and materials modeling at...
Large-amplitude solitons in gravitationally balanced quantum plasmas
Akbari-Moghanjoughi, M.
2014-08-15
Using the quantum fluid model for self-gravitating quantum plasmas with the Bernoulli pseudopotential method and taking into account the relativistic degeneracy effect, it is shown that gravity-induced large-amplitude density rarefaction solitons can exist in gravitationally balanced quantum plasmas. These nonlinear solitons are generated due to the force imbalance between the gravity and the quantum fluid pressure via local density perturbations, similar to that on shallow waters. It is found that both the fluid mass-density and the atomic-number of the constituent ions have significant effect on the amplitude and width of these solitonic profiles. Existence of a large-scale gravity-induced solitonic activities on neutron-star surface, for instance, can be a possible explanation for the recently proposed resonant shattering mechanism [D. Tsang et al., Phys. Rev. Lett. 108, 011102 (2012)] causing the intense short gamma ray burst phenomenon, in which release of â‰ƒ10{sup 46}â€“10{sup 47} ergs would be possible from the surface. The resonant shattering of the crust in a neutron star has been previously attributed to the crust-core interface mode and the tidal surface tensions. We believe that current model can be a more natural explanation for the energy liberation by solitonic activities on the neutron star surfaces, without a requirement for external mergers like other neutron stars or black holes for the crustal shatter.
Authentication Protocol using Quantum Superposition States
Kanamori, Yoshito; Yoo, Seong-Moo; Gregory, Don A.; Sheldon, Frederick T
2009-01-01
When it became known that quantum computers could break the RSA (named for its creators - Rivest, Shamir, and Adleman) encryption algorithm within a polynomial-time, quantum cryptography began to be actively studied. Other classical cryptographic algorithms are only secure when malicious users do not have sufficient computational power to break security within a practical amount of time. Recently, many quantum authentication protocols sharing quantum entangled particles between communicators have been proposed, providing unconditional security. An issue caused by sharing quantum entangled particles is that it may not be simple to apply these protocols to authenticate a specific user in a group of many users. An authentication protocol using quantum superposition states instead of quantum entangled particles is proposed. The random number shared between a sender and a receiver can be used for classical encryption after the authentication has succeeded. The proposed protocol can be implemented with the current technologies we introduce in this paper.
Quantum technology and its applications
Boshier, Malcolm; Berkeland, Dana; Govindan, Tr; Abo - Shaeer, Jamil
2010-12-10
Quantum states of matter can be exploited as high performance sensors for measuring time, gravity, rotation, and electromagnetic fields, and quantum states of light provide powerful new tools for imaging and communication. Much attention is being paid to the ultimate limits of this quantum technology. For example, it has already been shown that exotic quantum states can be used to measure or image with higher precision or higher resolution or lower radiated power than any conventional technologies, and proof-of-principle experiments demonstrating measurement precision below the standard quantum limit (shot noise) are just starting to appear. However, quantum technologies have another powerful advantage beyond pure sensing performance that may turn out to be more important in practical applications: the potential for building devices with lower size/weight/power (SWaP) and cost requirements than existing instruments. The organizers of Quantum Technology Applications Workshop (QTAW) have several goals: (1) Bring together sponsors, researchers, engineers and end users to help build a stronger quantum technology community; (2) Identify how quantum systems might improve the performance of practical devices in the near- to mid-term; and (3) Identify applications for which more long term investment is necessary to realize improved performance for realistic applications. To realize these goals, the QTAW II workshop included fifty scientists, engineers, managers and sponsors from academia, national laboratories, government and the private-sector. The agenda included twelve presentations, a panel discussion, several breaks for informal exchanges, and a written survey of participants. Topics included photon sources, optics and detectors, squeezed light, matter waves, atomic clocks and atom magnetometry. Corresponding applications included communication, imaging, optical interferometry, navigation, gravimetry, geodesy, biomagnetism, and explosives detection. Participants
Lincoln, Don
2014-10-24
The laws of quantum mechanics and relativity are quite perplexing however it is when the two theories are merged that things get really confusing. This combined theory predicts that empty space isn’t empty at all – it’s a seething and bubbling cauldron of matter and antimatter particles springing into existence before disappearing back into nothingness. Scientists call this complicated state of affairs “quantum foam.” In this video, Fermilab’s Dr. Don Lincoln discusses this mind-bending idea and sketches some of the experiments that have convinced scientists that this crazy prediction is actually true.
Quantum Indeterminacy of Cosmic Systems
Hogan, Craig J.
2013-12-30
It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.
Hioe, W. ); Goto, E. )
1991-01-01
The quantum flux parametron (QFP) is an offspring of the parametron, an early flux-based logic device, and the Josephson junction. It is a single flux quantum device that works completely in the superconductive mode. While it has the speed of other Josephson devices that work on switching between the voltage and superconductive modes, its power is about one thousand times less. Hence, it promises to be an attractive alternative to both transistors and other Josephson devices. This book reports the latest research results on QFP applications as a logic device. In particular, a number of auxiliary circuits and a new logic gate are proposed for improving the device margin. Samples of these circuits and logic gate have been fabricated.
Number | Open Energy Information
Property:NumOfPlants Property:NumProdWells Property:NumRepWells Property:Number of Color Cameras Property:Number of Devices Deployed Property:Number of Plants included in...
Electrical resistivity as quantum chaos
Laughlin, R.B.
1987-08-01
The physics of quantum transport is re-examined as a problem in quantum chaos. It is proposed that the ''random potential'' in which electrons in dirty metals move is not random at all, but rather any potential inducing the electron motion to be chaotic. The Liapunov characteristic exponent of classical electron motion in this potential is identified with the collision rate l/tau appearing in Ohm's law. A field theory for chaotic systems, analogous to that used to describe dirty metals, is developed and used to investigate the quantum Sinai billiard problem. It is shown that a noninteracting degenerate electron gas moving in this potential exhibits Drude conductivity in the limit h-bar ..-->.. 0. 15 refs., 4 figs.
Controlled quantum-state transfer in a spin chain
Gong, Jiangbin [Department of Physics and Center for Computational Science and Engineering, National University of Singapore, 117542 (Singapore); Brumer, Paul [Chemical Physics Theory Group and Center for Quantum Information and Quantum Control, University of Toronto, Toronto M5S 3H6 (Canada)
2007-03-15
Control of the transfer of quantum information encoded in quantum wave packets moving along a spin chain is demonstrated. Specifically, based on a relationship with control in a paradigm of quantum chaos, it is shown that wave packets with slow dispersion can automatically emerge from a class of initial superposition states involving only a few spins, and that arbitrary unspecified traveling wave packets can be nondestructively stopped and later relaunched with perfection. The results establish an interesting application of quantum chaos studies in quantum information science.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Quantum Optics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
NSR Key Number Retrieval Pease enter key in the box Submit
Heavy pair production currents with general quantum numbers in...
Office of Scientific and Technical Information (OSTI)
Authors: Hoang, Andre H. ; Ruiz-Femenia, Pedro 1 + Show Author Affiliations Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Munich ...
Lattice Quantum Chromodynamics
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Lattice Quantum Chromodynamics Lattice Quantum Chromodynamics QCD-BU.jpg Key Challenges: Although the QCD theory has been extensively tested at at high energies, at low energies or...
Quantum interference in polyenes
Tsuji, Yuta; Hoffmann, Roald; Movassagh, Ramis; Datta, Supriyo
2014-12-14
The explicit form of the zeroth Green's function in the Hückel model, approximated by the negative of the inverse of the Hückel matrix, has direct quantum interference consequences for molecular conductance. We derive a set of rules for transmission between two electrodes attached to a polyene, when the molecule is extended by an even number of carbons at either end (transmission unchanged) or by an odd number of carbons at both ends (transmission turned on or annihilated). These prescriptions for the occurrence of quantum interference lead to an unexpected consequence for switches which realize such extension through electrocyclic reactions: for some specific attachment modes the chemically closed ring will be the ON position of the switch. Normally the signs of the entries of the Green's function matrix are assumed to have no physical significance; however, we show that the signs may have observable consequences. In particular, in the case of multiple probe attachments – if coherence in probe connections can be arranged – in some cases new destructive interference results, while in others one may have constructive interference. One such case may already exist in the literature.
Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors
Ameen, Tarek A.; El-Batawy, Yasser M.; Abouelsaood, A. A.
2014-02-14
A generalized drift-diffusion model for the calculation of both the quantum dot filling profile and the dark current of quantum dot infrared photodetectors is proposed. The confined electrons inside the quantum dots produce a space-charge potential barrier between the two contacts, which controls the quantum dot filling and limits the dark current in the device. The results of the model reasonably agree with a published experimental work. It is found that increasing either the doping level or the temperature results in an exponential increase of the dark current. The quantum dot filling turns out to be nonuniform, with a dot near the contacts containing more electrons than one in the middle of the device where the dot occupation approximately equals the number of doping atoms per dot, which means that quantum dots away from contacts will be nearly unoccupied if the active region is undoped.
Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space
Zhang, Weimin (Department of Physics, FM-15, University of Washington, Seattle, WA (USA) Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA (USA)); Feng, D.H.; Yuan, Jianmin (Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA (USA))
1990-12-15
Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper (Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)), a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group {ital G-script} and in one of its unitary irreducible-representation carrier spaces {ital h-german}{sub {Lambda}}, the quantum phase space is a 2{ital M}{sub {Lambda}}-dimensional topological space, where {ital M}{sub {Lambda}} is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space {ital G-script}/{ital H-script} via the unitary exponential mapping of the elementary excitation operator subspace of {ital g-script} (algebra of {ital G-script}), where {ital H-script} ({contained in}{ital G-script}) is the maximal stability subgroup of a fixed state in {ital h-german}{sub {Lambda}}. The phase-space representation of the system is realized on {ital G-script}/{ital H-script}, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.
Electronic structure and correlated wave functions of a few electron quantum dots
Sako, Tokuei; Ishida, Hiroshi; Fujikawa, Kazuo
2015-01-22
The energy spectra and wave functions of a few electrons confined by a quasi-one-dimensional harmonic and anharmonic potentials have been studied by using a full configuration interaction method employing a Cartesian anisotropic Gaussian basis set. The energy spectra are classified into three regimes of the strength of confinement, namely, large, medium and small. The polyad quantum number defined by a total number of nodes in the wave functions is shown to be a key ingredient to interpret the energy spectra for the whole range of the confinement strength. The nodal pattern of the wave functions exhibits normal modes for the harmonic confining potential, indicating collective motions of electrons. These normal modes are shown to undergo a transition to local modes for an anharmonic potential with large anharmonicity.
Effect of noise on time-dependent quantum chaos
Ott, E.; Antonsen T.M. Jr.; Hanson, J.D.
1984-12-03
The dynamics of a time-dependent quantum system can be qualitatively different from that of its classical counterpart when the latter is chaotic. It is shown that small noise can strongly alter this situation.
Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies...
Fuel Systems Technologies Worldwide Inc Quantum Technologies Jump to: navigation, search Name: Quantum Fuel Systems Technologies Worldwide Inc (Quantum Technologies) Place: Irvine,...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Not Magic...Quantum 1663 Los Alamos science and technology magazine Latest Issue:July 2016 past issues All Issues Â» submit Not Magic...Quantum A nascent commercial quantum computer has arrived at Los Alamos and may solve certain problems with such astonishing speed that it would be like pulling answers out of a hat. July 21, 2016 commercial quantum-computer processor The world's first commercial quantum-computer processor is smaller than a wristwatch and can evaluate more possibilities
Quantum crystallographic charge density of urea
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Wall, Michael E.
2016-07-01
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamoreÂ Â» is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.Â«Â less
Towards bulk based preconditioning for quantum dotcomputations
Dongarra, Jack; Langou, Julien; Tomov, Stanimire; Channing,Andrew; Marques, Osni; Vomel, Christof; Wang, Lin-Wang
2006-05-25
This article describes how to accelerate the convergence of Preconditioned Conjugate Gradient (PCG) type eigensolvers for the computation of several states around the band gap of colloidal quantum dots. Our new approach uses the Hamiltonian from the bulk materials constituent for the quantum dot to design an efficient preconditioner for the folded spectrum PCG method. The technique described shows promising results when applied to CdSe quantum dot model problems. We show a decrease in the number of iteration steps by at least a factor of 4 compared to the previously used diagonal preconditioner.
Resonator-quantum well infrared photodetectors
Choi, K. K. Sun, J.; Olver, K.; Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A.
2013-11-11
We applied a recent electromagnetic model to design the resonator-quantum well infrared photodetector (R-QWIP). In this design, we used an array of rings as diffractive elements to diffract normal incident light into parallel propagation and used the pixel volume as a resonator to intensify the diffracted light. With a proper pixel size, the detector resonates at certain optical wavelengths and thus yields a high quantum efficiency (QE). To test this detector concept, we fabricated a number of R-QWIPs with different quantum well materials and detector geometries. The experimental result agrees satisfactorily with the prediction, and the highest QE achieved is 71%.
Naked singularities and quantum gravity
Harada, Tomohiro; Iguchi, Hideo; Nakao, Ken-ichi; Singh, T. P.; Tanaka, Takahiro; Vaz, Cenalo
2001-08-15
There are known models of spherical gravitational collapse in which the collapse ends in a naked shell-focusing singularity for some initial data. If a massless scalar field is quantized on the classical background provided by such a star, it is found that the outgoing quantum flux of the scalar field diverges in the approach to the Cauchy horizon. We argue that the semiclassical approximation (i.e., quantum field theory on a classical curved background) used in these analyses ceases to be valid about one Planck time before the epoch of naked singularity formation, because by then the curvature in the central region of the star reaches the Planck scale. It is shown that during the epoch in which the semiclassical approximation is valid, the total emitted energy is about one Planck unit, and is not divergent. We also argue that back reaction in this model does not become important so long as gravity can be treated classically. It follows that the further evolution of the star will be determined by quantum gravitational effects, and without invoking quantum gravity it is not possible to say whether the star radiates away on a short time scale or settles down into a black hole state.
New York Natural Gas Number of Commercial Consumers (Number of...
Annual Energy Outlook [U.S. Energy Information Administration (EIA)]
Commercial Consumers (Number of Elements) New York Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New York Number of Natural Gas ...
New Mexico Natural Gas Number of Commercial Consumers (Number...
Gasoline and Diesel Fuel Update (EIA)
Commercial Consumers (Number of Elements) New Mexico Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New Mexico Number of Natural ...
North Dakota Natural Gas Number of Commercial Consumers (Number...
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers North Dakota Number of Natural ...
Single particle in quantum gravity and Braunstein-Ghosh-Severini entropy of a spin network
Rovelli, Carlo; Vidotto, Francesca
2010-02-15
Passerini and Severini have recently shown that the Braunstein-Ghosh-Severini (BGS) entropy S{sub {Gamma}}=-Tr[{rho}{sub {Gamma}}log{rho}{sub {Gamma}}] of a certain density matrix {rho}{sub {Gamma}} naturally associated to a graph {Gamma}, is maximized, among all graphs with a fixed number of links and nodes, by regular graphs. We ask if this result can play a role in quantum gravity, and be related to the apparent regularity of the physical geometry of space. We show that in loop quantum gravity the matrix {rho}{sub {Gamma}} is precisely the Hamiltonian operator (suitably normalized) of a nonrelativistic quantum particle interacting with the quantum gravitational field, if we restrict elementary area and volume eigenvalues to a fixed value. This operator provides a spectral characterization of the physical geometry, and can be interpreted as a state describing the spectral information about the geometry available when geometry is measured by its physical interaction with matter. It is then tempting to interpret its BGS entropy S{sub {Gamma}} as a genuine physical entropy: we discuss the appeal and the difficulties of this interpretation.
Effect of carrier dynamics and temperature on two-state lasing in semiconductor quantum dot lasers
Korenev, V. V. Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.
2013-10-15
It is analytically shown that the both the charge carrier dynamics in quantum dots and their capture into the quantum dots from the matrix material have a significant effect on two-state lasing phenomenon in quantum dot lasers. In particular, the consideration of desynchronization in electron and hole capture into quantum dots allows one to describe the quenching of ground-state lasing observed at high injection currents both qualitatevely and quantitatively. At the same time, an analysis of the charge carrier dynamics in a single quantum dot allowed us to describe the temperature dependences of the emission power via the ground- and excited-state optical transitions of quantum dots.
Reliable quantum communication over a quantum relay channel
Gyongyosi, Laszlo; Imre, Sandor
2014-12-04
We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.
Quantum optics. Gravity meets quantum physics
Adams, Bernhard W.
2015-02-27
Albert Einsteinâ€™s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.
Nelson, R.N.
1985-05-01
This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.
Harsij, Zeynab Mirza, Behrouz
2014-12-15
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved.
Khan, T.A.; Baum, J.W.; Beckman, M.C.
1993-10-01
This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.
Huang, Liang; Lai Yingcheng; Ferry, David K.; Goodnick, Stephen M.; Akis, Richard
2009-07-31
The concentrations of wave functions about classical periodic orbits, or quantum scars, are a fundamental phenomenon in physics. An open question is whether scarring can occur in relativistic quantum systems. To address this question, we investigate confinements made of graphene whose classical dynamics are chaotic and find unequivocal evidence of relativistic quantum scars. The scarred states can lead to strong conductance fluctuations in the corresponding open quantum dots via the mechanism of resonant transmission.
Bilinear covariants and spinor fields duality in quantum Clifford algebras
Ab?amowicz, Rafa?; Gonçalves, Icaro; Rocha, Roldão da
2014-10-15
Classification of quantum spinor fields according to quantum bilinear covariants is introduced in a context of quantum Clifford algebras on Minkowski spacetime. Once the bilinear covariants are expressed in terms of algebraic spinor fields, the duality between spinor and quantum spinor fields can be discussed. Thus, by endowing the underlying spacetime with an arbitrary bilinear form with an antisymmetric part in addition to a symmetric spacetime metric, quantum algebraic spinor fields and deformed bilinear covariants can be constructed. They are thus compared to the classical (non quantum) ones. Classes of quantum spinor fields classes are introduced and compared with Lounesto's spinor field classification. A physical interpretation of the deformed parts and the underlying Z-grading is proposed. The existence of an arbitrary bilinear form endowing the spacetime already has been explored in the literature in the context of quantum gravity [S. W. Hawking, “The unpredictability of quantum gravity,” Commun. Math. Phys. 87, 395 (1982)]. Here, it is shown further to play a prominent role in the structure of Dirac, Weyl, and Majorana spinor fields, besides the most general flagpoles and flag-dipoles. We introduce a new duality between the standard and the quantum spinor fields, by showing that when Clifford algebras over vector spaces endowed with an arbitrary bilinear form are taken into account, a mixture among the classes does occur. Consequently, novel features regarding the spinor fields can be derived.
Document Details Document Number
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Document Details Document Number Date of Document Document Title/Description [Links below to each document] D195066340 Not listed. N/A REVISIONS IN STRATIGRAPHIC NOMENCLATURE OF COLUMBIA RIVER BASALT GROUP D196000240 Not listed. N/A EPA DENIAL OF LINER LEACHATE COLLECTION SYSTEM REQUIREMENTS D196005916 Not listed. N/A LATE CENOZOIC STRATIGRAPHY AND TECTONIC EVOLUTION WITHIN SUBSIDING BASIN SOUTH CENTRAL WASHINGTON D196025993 RHO-BWI-ST-14 N/A SUPRABASALT SEDIMENTS OF COLD CREEK SYNCLINE AREA
Slow phase relaxation as a route to quantum computing beyond the quantum chaos border
Flores, J.; Seligman, T.H. [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico); Kun, S.Yu. [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico); Centre for Nonlinear Physics, RSPhysSE, ANU, Canberra ACT 0200 (Australia); Department of Theoretical Physics, RSPhysSE, ANU, Canberra ACT 0200 (Australia)
2005-07-01
We reveal that phase memory can be much longer than energy relaxation in systems with exponentially large dimensions of Hilbert space; this finding is documented by 50 years of nuclear experiments, though the information is somewhat hidden. For quantum computers Hilbert spaces of dimension 2{sup 100} or larger will be typical and therefore this effect may contribute significantly to reduce the problems of scaling of quantum computers to a useful number of qubits.
Scalable optical quantum computer
Manykin, E A; Mel'nichenko, E V [Institute for Superconductivity and Solid-State Physics, Russian Research Centre 'Kurchatov Institute', Moscow (Russian Federation)
2014-12-31
A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)
Quantum corrections to conductivity under conditions of the integer quantum Hall effect
Greshnov, A. A.
2012-06-15
Quantum corrections to the conductivity of a two-dimensional electron gas under conditions of the integer quantum Hall effect have been studied. It is shown that violation of the one-parameter scaling under conditions of quantizing magnetic fields, {omega}{sub c}{tau} Much-Greater-Than 1, occurs at a level of the perturbation theory. The results of diagrammatic calculation of the quantum correction are in agreement with the numerical dependences of the peaks in the longitudinal conductivity on the effective size of the sample, in contrast to earlier calculations based on the unitary nonlinear {sigma}-model. Due to this, consideration of Landau quantization represents a criterion for correct description of the quantum Hall effect.
CONTROL OF NON-RESONANT EFFECTS IN A NUCLERA SPIN QUANTUM COMPUTER...
Office of Scientific and Technical Information (OSTI)
COMPUTER WITH A LARGE NUMBER OF QUBITS G. BERMAN; ET AL 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 99 GENERAL AND MISCELLANEOUSMATHEMATICS, COMPUTING, AND...
Nonlinear Phenomenology from Quantum Mechanics: Soliton in a Lattice
Javanainen, Juha; Shrestha, Uttam
2008-10-24
We study a soliton in an optical lattice holding bosonic atoms quantum mechanically using both an exact numerical solution and quantum Monte Carlo simulations. The computation of the state is combined with an explicit account of the measurements of the numbers of the atoms at the lattice sites. In particular, importance sampling in the quantum Monte Carlo method arguably produces faithful simulations of individual experiments. Even though the quantum state is invariant under lattice translations, an experiment may show a noisy version of the localized classical soliton.
Deviation from the Knudsen law on quantum gases
Babac, Gulru
2014-12-09
Gas flow in micro/nano scale systems has been generally studied for the Maxwell gases. In the limits of very low temperature and very confined domains, the Maxwellian approximation can break down and the quantum character of the gases becomes important. In these cases, Knudsen law, which is one of the important equations to analyze rarefied gas flows is invalid and should be reanalyzed for quantum gases. In this work, the availability of quantum gas conditions in the high Knudsen number cases is discussed and Knudsen law is analyzed for quantum gases.
Association of scattering matrices in quantum networks
Almeida, F.A.G.; Macêdo, A.M.S.
2013-06-15
Algorithms based on operations that associate scattering matrices in series or in parallel (analogous to impedance association in a classical circuit) are developed here. We exemplify their application by calculating the total scattering matrix of several types of quantum networks, such as star graphs and a chain of chaotic quantum dots, obtaining results with good agreement with the literature. Through a computational-time analysis we compare the efficiency of two algorithms for the simulation of a chain of chaotic quantum dots based on series association operations of (i) two-by-two centers and (ii) three-by-three ones. Empirical results point out that the algorithm (ii) is more efficient than (i) for small number of open scattering channels. A direct counting of floating point operations justifies quantitatively the superiority of the algorithm (i) for large number of open scattering channels.
Modular redundant number systems
1998-05-31
With the increased use of public key cryptography, faster modular multiplication has become an important cryptographic issue. Almost all public key cryptography, including most elliptic curve systems, use modular multiplication. Modular multiplication, particularly for the large public key modulii, is very slow. Increasing the speed of modular multiplication is almost synonymous with increasing the speed of public key cryptography. There are two parts to modular multiplication: multiplication and modular reduction. Though there are fast methods for multiplying and fast methods for doing modular reduction, they do not mix well. Most fast techniques require integers to be in a special form. These special forms are not related and converting from one form to another is more costly than using the standard techniques. To this date it has been better to use the fast modular reduction technique coupled with standard multiplication. Standard modular reduction is much more costly than standard multiplication. Fast modular reduction (Montgomery`s method) reduces the reduction cost to approximately that of a standard multiply. Of the fast multiplication techniques, the redundant number system technique (RNS) is one of the most popular. It is simple, converting a large convolution (multiply) into many smaller independent ones. Not only do redundant number systems increase speed, but the independent parts allow for parallelization. RNS form implies working modulo another constant. Depending on the relationship between these two constants; reduction OR division may be possible, but not both. This paper describes a new technique using ideas from both Montgomery`s method and RNS. It avoids the formula problem and allows fast reduction and multiplication. Since RNS form is used throughout, it also allows the entire process to be parallelized.
Angular dependence of light trapping in In{sub 0.3}Ga{sub 0.7}As/GaAs quantum-well solar cells
Li, X. H.; Li, P. C.; Yu, E. T.; Hu, D. Z.; Schaadt, D. M.
2014-01-28
The dependence of light trapping effects in In{sub 0.3}Ga{sub 0.7}As/GaAs quantum-well solar cells on wavelength and incident angle is experimentally characterized and analyzed. Separation of active device layers from their epitaxial growth substrate enables integration of thin-film semiconductor device layers with nanostructured metal/dielectric rear contacts to increase optical absorption via coupling to both Fabry-Perot resonances and guided lateral propagation modes in the semiconductor. The roles of Fabry-Perot resonances and coupling to guided modes are analyzed via photocurrent response measurements and numerical modeling for light incident at angles of 0° (normal incidence) to 30° off normal. Light trapping enables external quantum efficiency at long wavelengths as high as 2.9% per quantum well to be achieved experimentally, substantially exceeding the ?1% per quantum well level typically observed. Increased long wavelength quantum efficiency is shown in experimental measurements to persist with increasing angle of incidence and is explained as a consequence of the large number of guided modes available in the device structure.
Collective decoherence of the superpositional entangled states in the quantum Shor algorithm
Berman, G.P.; Kamenev, D.I.; Tsifrinovich, V. I.
2005-03-01
We consider collective decoherence for the quantum Shor algorithm. A quantum computer which interacts with its environment is modeled by a spin-1/2 chain interacting with harmonic oscillators at a given temperature. We calculate the nondiagonal matrix elements of the density matrix which are important for implementation of the quantum Shor algorithm, and study the decay rate and the Lamb phase shift for these elements. It is shown that the probability of superdecoherence in the quantum Shor algorithm is extremely small. The conditions for preserving quantum entanglement are formulated.
Virginia Natural Gas Number of Residential Consumers (Number...
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...
Utah Natural Gas Number of Industrial Consumers (Number of Elements...
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...
Wisconsin Natural Gas Number of Industrial Consumers (Number...
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...
Virginia Natural Gas Number of Commercial Consumers (Number of...
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...
Utah Natural Gas Number of Residential Consumers (Number of Elements...
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...
Vermont Natural Gas Number of Residential Consumers (Number of...
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...
Utah Natural Gas Number of Commercial Consumers (Number of Elements...
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...
Virginia Natural Gas Number of Industrial Consumers (Number of...
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...
West Virginia Natural Gas Number of Industrial Consumers (Number...
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...
Wisconsin Natural Gas Number of Residential Consumers (Number...
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...
Vermont Natural Gas Number of Commercial Consumers (Number of...
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...
West Virginia Natural Gas Number of Commercial Consumers (Number...
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) West Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...
Washington Natural Gas Number of Commercial Consumers (Number...
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) Washington Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...
Washington Natural Gas Number of Residential Consumers (Number...
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) Washington Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...
Washington Natural Gas Number of Industrial Consumers (Number...
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...
Wisconsin Natural Gas Number of Commercial Consumers (Number...
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...
Vermont Natural Gas Number of Industrial Consumers (Number of...
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...
West Virginia Natural Gas Number of Residential Consumers (Number...
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) West Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...
New York Natural Gas Number of Residential Consumers (Number...
Annual Energy Outlook [U.S. Energy Information Administration (EIA)]
Residential Consumers (Number of Elements) New York Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...
New Mexico Natural Gas Number of Residential Consumers (Number...
Gasoline and Diesel Fuel Update (EIA)
Residential Consumers (Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...
New Jersey Natural Gas Number of Residential Consumers (Number...
Gasoline and Diesel Fuel Update (EIA)
Residential Consumers (Number of Elements) New Jersey Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...
New Hampshire Natural Gas Number of Commercial Consumers (Number...
Gasoline and Diesel Fuel Update (EIA)
Commercial Consumers (Number of Elements) New Hampshire Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...
New Hampshire Natural Gas Number of Industrial Consumers (Number...
Gasoline and Diesel Fuel Update (EIA)
Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...
New Hampshire Natural Gas Number of Residential Consumers (Number...
Annual Energy Outlook [U.S. Energy Information Administration (EIA)]
Residential Consumers (Number of Elements) New Hampshire Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...
New Mexico Natural Gas Number of Industrial Consumers (Number...
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...
North Carolina Natural Gas Number of Residential Consumers (Number...
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...
North Carolina Natural Gas Number of Industrial Consumers (Number...
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...
North Dakota Natural Gas Number of Industrial Consumers (Number...
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...
North Dakota Natural Gas Number of Residential Consumers (Number...
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...
North Carolina Natural Gas Number of Commercial Consumers (Number...
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...
Quantum dense key distribution
Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.
2004-03-01
This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.
Optimized multiparty quantum clock synchronization
Ben-Av, Radel; Exman, Iaakov
2011-07-15
A multiparty protocol for distributed quantum clock synchronization has been claimed to provide universal limits on the clock accuracy, viz., that accuracy monotonically decreases with the number n of party members. But this is only true for synchronization when one limits oneself to W states. This work shows that the usage of Z (Symmetric Dicke) states, a generalization of W states, results in improved accuracy, having a maximum when Left-Floor n/2 Right-Floor of its members have their qubits with a |1> eigenstate.
Los Alamos researchers unravel the mystery of quantum dot blinking
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Researchers unravel the mystery of quantum dot blinking Los Alamos researchers unravel the mystery of quantum dot blinking Most exciting is that the Los Alamos researchers have shown that blinking can be controlled and even completely suppressed electrochemically. November 9, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy
On the correspondence between quantum and classical variational principles
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ruiz, D. E.; Dodin, I. Y.
2015-06-10
Here, classical variational principles can be deduced from quantum variational principles via formal reparameterization of the latter. It is shown that such reparameterization is possible without invoking any assumptions other than classicality and without appealing to dynamical equations. As examples, first principle variational formulations of classical point-particle and cold-fluid motion are derived from their quantum counterparts for Schrodinger, Pauli, and Klein-Gordon particles.
Quantum simulations of strongly coupled quark-gluon plasma
Filinov, V. S.; Ivanov, Yu. B.; Bonitz, M.; Levashov, P. R.; Fortov, V. E.
2012-06-15
A strongly coupled quark-gluon plasma (QGP) of heavy constituent quasi-particles is studied by a path-integral Monte-Carlo method. This approach is a quantum generalization of the classical molecular dynamics by Gelman, Shuryak, and Zahed. It is shown that this method is able to reproduce the QCD lattice equation of state. The results indicate that the QGP reveals liquid-like rather than gaslike properties. Quantum effects turned out to be of prime importance in these simulations.
'Giant' Nanocrystal Quantum Dots
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... 'Giant' Nanocrystal Quantum Dots HomeEnergy ResearchEFRCsSolid-State Lighting Science ...
Heller, E.J. (Los Alamos National Lab., Albuquerque, NM); Davis, M.J.
1982-06-10
This paper reviews some of the opinions on quantum chaos put forth at the 1981 American Conference on Theoretical Chemistry and presents evidence to support the author's point of view. The degree of correspondence between classical and quantum onset and extent of chaos differs markedly according to the definition adopted for quantum chaos. At one extreme, a quantum generalization of the classical Kolmolgorov entropy which give zero entrophy for quantum systems with a discrete spectrum regardless of the classical properties, was a suitable foundation for the definition of quantum chaos. At the other, the quantum phase space definition shows generally excellent correspondence to the classical phase space measures. The authors preferred this approach. Another point of controversy is the question of whether the spectrum of energy levels (or its variation with some parameter of the Hamiltonian) is enough to characterize the quantum chaos (or lack of it), or whether more information is needed (i.e., eigenfunctions). The authors conclude that one does not want to rely upon eigenvalues alone to characterize the degree of chaos in the quantum dynamics.
Interferometric tests of Planckian quantum geometry models
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Kwon, Ohkyung; Hogan, Craig J.
2016-04-19
The effect of Planck scale quantum geometrical effects on measurements with interferometers is estimated with standard physics, and with a variety of proposed extensions. It is shown that effects are negligible in standard field theory with canonically quantized gravity. Statistical noise levels are estimated in a variety of proposals for nonstandard metric fluctuations, and these alternatives are constrained using upper bounds on stochastic metric fluctuations from LIGO. Idealized models of several interferometer system architectures are used to predict signal noise spectra in a quantum geometry that cannot be described by a fluctuating metric, in which position noise arises from holographicmoreÂ Â» bounds on directional information. Lastly, predictions in this case are shown to be close to current and projected experimental bounds.Â«Â less
Semi-device-independent random-number expansion without entanglement
Li Hongwei; Yin Zhenqiang; Wu Yuchun; Zou Xubo; Wang Shuang; Chen Wei; Guo Guangcan; Han Zhengfu
2011-09-15
By testing the classical correlation violation between two systems, true random numbers can be generated and certified without applying classical statistical method. In this work, we propose a true random-number expansion protocol without entanglement, where the randomness can be guaranteed only by the two-dimensional quantum witness violation. Furthermore, we only assume that the dimensionality of the system used in the protocol has a tight bound, and the whole protocol can be regarded as a semi-device-independent black-box scenario. Compared with the device-independent random-number expansion protocol based on entanglement, our protocol is much easier to implement and test.
Quantum Monte Carlo methods and lithium cluster properties. [Atomic clusters
Owen, R.K.
1990-12-01
Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) (0.1981), 0.1895(9) (0.1874(4)), 0.1530(34) (0.1599(73)), 0.1664(37) (0.1724(110)), 0.1613(43) (0.1675(110)) Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) (0.0203(12)), 0.0188(10) (0.0220(21)), 0.0247(8) (0.0310(12)), 0.0253(8) (0.0351(8)) Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.
Quantum Monte Carlo methods and lithium cluster properties
Owen, R.K.
1990-12-01
Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) [0.1981], 0.1895(9) [0.1874(4)], 0.1530(34) [0.1599(73)], 0.1664(37) [0.1724(110)], 0.1613(43) [0.1675(110)] Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) [0.0203(12)], 0.0188(10) [0.0220(21)], 0.0247(8) [0.0310(12)], 0.0253(8) [0.0351(8)] Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.
Measurement-only topological quantum computation via anyonic...
Office of Scientific and Technical Information (OSTI)
Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ANYONS; HALL EFFECT; INTERFEROMETRY; QUANTUM COMPUTERS; QUANTUM MECHANICS; QUANTUM TELEPORTATION; TOPOLOGY; ...
Quantum chaos and sensitivity to system parameters
Bhanot, G.V. (Institute for Advanced Study, Princeton, NJ (United States)); Parikh, J.C.; Sheorey, V.B. (Physical Research Lab., Navrangpura (India)); Pandey, A. (Jawaharlal Nehru Univ., New Delhi (India) Univ. of Rochester, NY (United States))
1990-01-01
The authors study the eigenfunctions and eigenvalues of the Hamiltonian H=p[sup 2][sub x]+p[sup 2][sub y]+x[sup 4]+y[sup 4]+[alpha]x[sup 2]y[sup 2] in the classically chaotic regime. It is shown that the overlap of wavefunctions at neighboring [alpha] values provides a sensitive measure to demonstrate the onset of chaos in quantum systems.
Quantum optics with single nanodiamonds flying over gold films: Towards a Robust quantum plasmonics
Mollet, O.; Drezet, A.; Huant, S.
2013-12-04
A nanodiamond (ND) hosting nitrogen-vacancy (NV) color centers is attached on the apex of an optical tip for near-field microscopy. Its fluorescence is used to launch surface plasmon-polaritons (SPPs) in a thin polycrystalline gold film. It is shown that the quantum nature of the initial source of light is preserved after conversion to SPPs. This opens the way to a deterministic quantum plasmonics, where single SPPs can be injected at well-defined positions in a plasmonic device produced by top-down approaches.
Quantum physics and human values
Stapp, H.P.
1989-09-01
This report discusses the following concepts: the quantum conception of nature; the quantum conception of man; and the impact upon human values. (LSP).
Stránský, Pavel; Macek, Michal; Cejnar, Pavel
2014-06-15
Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. -- Highlights: •ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. •ESQPTs related to non-analytical evolutions of classical phase–space properties. •ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. •ESQPT signatures identified in smoothened density and flow of energy spectrum. •ESQPTs shown to induce a new type of thermodynamic anomalies.
Vukmirovic, Nenad; Wang, Lin-Wang
2009-11-10
This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.
2015-11-04
Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that withmoreÂ Â» a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.Â«Â less
Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.
2015-11-04
Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that with a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.
Adiabatic quantum optimization for associative memory recall
Seddiqi, Hadayat; Humble, Travis S.
2014-12-22
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Adiabatic quantum optimization for associative memory recall
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Seddiqi, Hadayat; Humble, Travis S.
2014-12-22
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmoreÂ Â» in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.Â«Â less
Quantum cryptographic system with reduced data loss
Lo, Hoi-Kwong; Chau, Hoi Fung
1998-01-01
A secure method for distributing a random cryptographic key with reduced data loss. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically.
Quantum cryptographic system with reduced data loss
Lo, H.K.; Chau, H.F.
1998-03-24
A secure method for distributing a random cryptographic key with reduced data loss is disclosed. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically. 23 figs.
Quantum discord with weak measurements
Singh, Uttam Pati, Arun Kumar
2014-04-15
Weak measurements cause small change to quantum states, thereby opening up the possibility of new ways of manipulating and controlling quantum systems. We ask, can weak measurements reveal more quantum correlation in a composite quantum state? We prove that the weak measurement induced quantum discord, called as the “super quantum discord”, is always larger than the quantum discord captured by the strong measurement. Moreover, we prove the monotonicity of the super quantum discord as a function of the measurement strength and in the limit of strong projective measurement the super quantum discord becomes the normal quantum discord. We find that unlike the normal discord, for pure entangled states, the super quantum discord can exceed the quantum entanglement. Our results provide new insights on the nature of quantum correlation and suggest that the notion of quantum correlation is not only observer dependent but also depends on how weakly one perturbs the composite system. We illustrate the key results for pure as well as mixed entangled states. -- Highlights: •Introduced the role of weak measurements in quantifying quantum correlation. •We have introduced the notion of the super quantum discord (SQD). •For pure entangled state, we show that the SQD exceeds the entanglement entropy. •This shows that quantum correlation depends not only on observer but also on measurement strength.
Acceleration of positrons by a relativistic electron beam in the presence of quantum effects
Niknam, A. R.; Aki, H.; Khorashadizadeh, S. M.
2013-09-15
Using the quantum magnetohydrodynamic model and obtaining the dispersion relation of the Cherenkov and cyclotron waves, the acceleration of positrons by a relativistic electron beam is investigated. The Cherenkov and cyclotron acceleration mechanisms of positrons are compared together. It is shown that growth rate and, therefore, the acceleration of positrons can be increased in the presence of quantum effects.
Office of Legacy Management (LM)
engaged in the production of thorium compounds. The purpose of the trip vas to: l 1. Learn the type of chemical processes employed in the thorium industry (thorium nitrate). 2. ...
Direct measure of quantum correlation
Yu, Chang-shui [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Zhao, Haiqing [School of Science, Dalian Jiaotong University, Dalian 116028 (China)
2011-12-15
The quantumness of the correlation known as quantum correlation is usually measured by quantum discord. So far various quantum discords can be roughly understood as indirect measure by some special discrepancy of two quantities. We present a direct measure of quantum correlation by revealing the difference between the structures of classically and quantum correlated states. Our measure explicitly includes the contributions of the inseparability and local nonorthogonality of the eigenvectors of a density matrix. Besides its relatively easy computability, our measure can provide a unified understanding of quantum correlation of all the present versions.
Spherically symmetric quantum horizons
Bojowald, Martin; Swiderski, Rafal
2005-04-15
Isolated horizon conditions specialized to spherical symmetry can be imposed directly at the quantum level. This answers several questions concerning horizon degrees of freedom, which are seen to be related to orientation, and its fluctuations at the kinematical as well as dynamical level. In particular, in the absence of scalar or fermionic matter the horizon area is an approximate quantum observable. Including different kinds of matter fields allows to probe several aspects of the Hamiltonian constraint of quantum geometry that are important in inhomogeneous situations.
The promise of quantum simulation
Muller, Richard P.; Blume-Kohout, Robin
2015-07-21
In this study, quantum simulations promise to be one of the primary applications of quantum computers, should one be constructed. This article briefly summarizes the history of quantum simulation in light of the recent result of Wang and co-workers, demonstrating calculation of the ground and excited states for a HeH^{+} molecule, and concludes with a discussion of why this and other recent progress in the field suggest that quantum simulations of quantum chemistry have a bright future.
The promise of quantum simulation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Muller, Richard P.; Blume-Kohout, Robin
2015-07-21
In this study, quantum simulations promise to be one of the primary applications of quantum computers, should one be constructed. This article briefly summarizes the history of quantum simulation in light of the recent result of Wang and co-workers, demonstrating calculation of the ground and excited states for a HeH+ molecule, and concludes with a discussion of why this and other recent progress in the field suggest that quantum simulations of quantum chemistry have a bright future.
CdSe/ZnSe quantum dot with a single Mn{sup 2+} ion—A new system for a single spin manipulation
Smole?ski, T.
2015-03-21
We present a magneto-optical study of individual self-assembled CdSe/ZnSe quantum dots doped with single Mn{sup 2+} ions. Properties of the studied dots are analyzed analogously to more explored system of Mn-doped CdTe/ZnTe dots. Characteristic sixfold splitting of the neutral exciton emission line as well as its evolution in the magnetic field are described using a spin Hamiltonian model. Dynamics of both exciton recombination and Mn{sup 2+} spin relaxation are extracted from a series of time-resolved experiments. Presence of a single dopant is shown not to affect the average excitonic lifetime measured for a number of nonmagnetic and Mn-doped dots. On the other hand, non-resonant pumping is demonstrated to depolarize the Mn{sup 2+} spin in a quantum dot placed in external magnetic field. This effect is utilized to determine the ion spin relaxation time in the dark.
Plasmon modes of metallic nanowires including quantum nonlocal effects
Moradi, Afshin
2015-03-15
The properties of electrostatic surface and bulk plasmon modes of cylindrical metallic nanowires are investigated, using the quantum hydrodynamic theory of plasmon excitation which allows an analytical study of quantum tunneling effects through the Bohm potential term. New dispersion relations are obtained for each type of mode and their differences with previous treatments based on the standard hydrodynamic model are analyzed in detail. Numerical results show by considering the quantum effects, as the value of wave number increases, the surface modes are slightly red-shifted first and then blue-shifted while the bulk modes are blue-shifted.
Quantum effects in electron beam pumped GaAs
Yahia, M. E.; National Institute of Laser Enhanced Sciences , Cairo University ; Azzouz, I. M.; Moslem, W. M.
2013-08-19
Propagation of waves in nano-sized GaAs semiconductor induced by electron beam are investigated. A dispersion relation is derived by using quantum hydrodynamics equations including the electrons and holes quantum recoil effects, exchange-correlation potentials, and degenerate pressures. It is found that the propagating modes are instable and strongly depend on the electron beam parameters, as well as the quantum recoil effects and degenerate pressures. The instability region shrinks with the increase of the semiconductor number density. The instability arises because of the energetic electron beam produces electron-hole pairs, which do not keep in phase with the electrostatic potential arising from the pair plasma.
Castagnoli, G. )
1991-08-10
This paper reports that current conceptions of quantum mechanical computers inherit from conventional digital machines two apparently interacting features, machine imperfection and temporal development of the computational process. On account of machine imperfection, the process would become ideally reversible only in the limiting case of zero speed. Therefore the process is irreversible in practice and cannot be considered to be a fundamental quantum one. By giving up classical features and using a linear, reversible and non-sequential representation of the computational process - not realizable in classical machines - the process can be identified with the mathematical form of a quantum steady state. This form of steady quantum computation would seem to have an important bearing on the notion of cognition.
Nanotubes open new path toward quantum information technologies
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Nanotubes open new path toward quantum information Nanotubes open new path toward quantum information technologies In optical communication, critical information ranging from a credit card number to national security data is transmitted in streams of laser pulses. September 3, 2015 A solitary oxygen dopant (red sphere) covalently attached to the sidewall of the carbon nanotube (gray) can generate single photons (red) at room temperature when excited by laser pulses (green). A solitary oxygen
Effective quantum dynamics of interacting systems with inhomogeneous coupling
Lopez, C. E.; Retamal, J. C.; Christ, H.; Solano, E.
2007-03-15
We study the quantum dynamics of a single mode (particle) interacting inhomogeneously with a large number of particles and introduce an effective approach to find the accessible Hilbert space, where the dynamics takes place. Two relevant examples are given: the inhomogeneous Tavis-Cummings model (e.g., N atomic qubits coupled to a single cavity mode, or to a motional mode in trapped ions) and the inhomogeneous coupling of an electron spin to N nuclear spins in a quantum dot.
Hybrid Rotaxanes: Interlocked Structures for Quantum Computing...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
based on molecular magnets that may make them suitable as qubits for quantum computers. Chemistry Aids Quantum Computing Quantum bits or qubits are the fundamental...
Lee, Sang-Bong
1993-09-01
Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.
Quantum phase transitions in Bose-Fermi systems
Petrellis, D.; Leviatan, A.; Iachello, F.
2011-04-15
Research Highlights: > We study quantum phase transitions in a system of N bosons and a single-j fermion. > Classical order parameters and correlation diagrams of quantum levels are determined. > The odd fermion strongly influences the location and nature of the phase transition. > Experimental evidence for the U(5)-SU(3) transition in odd-even nuclei is presented. - Abstract: Quantum phase transitions in a system of N bosons with angular momentum L = 0, 2 (s, d) and a single fermion with angular momentum j are investigated both classically and quantum mechanically. It is shown that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially the critical value of the control parameter at which the phase transition occurs. Experimental evidence for the U(5)-SU(3) (spherical to axially-deformed) transition in odd-even nuclei is presented.
Quantum dot conjugates in a sub-micrometer fluidic channel
Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.
2008-07-29
A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.
Quantum dot conjugates in a sub-micrometer fluidic channel
Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.
2010-04-13
A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.
Quantum tunneling resonant electron transfer process in Lorentzian plasmas
Hong, Woo-Pyo; Jung, Young-Dae
2014-08-15
The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunneling resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed.
Properties of reactive oxygen species by quantum Monte Carlo
Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo
2014-07-07
The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N{sup 3} ? N{sup 4}, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.
Turbocharging Quantum Tomography.
Blume-Kohout, Robin J; Gamble, John King,; Nielsen, Erik; Maunz, Peter Lukas Wilhelm; Scholten, Travis L.; Rudinger, Kenneth Michael
2015-01-01
Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography su %7C ers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more e %7C ectively detect and characterize quantum noise using carefully tailored ensembles of input states.
Entanglement versus relaxation and decoherence in a quantum algorithm for quantum chaos
Bettelli, S.; Shepelyansky, D.L. [Laboratoire de Physique Quantique, UMR 5626 du CNRS, Universite Paul Sabatier, 31062 Toulouse Cedex 4 (France)
2003-05-01
We study analytically and numerically the behavior of the concurrence (a measure of the entanglement of formation) of a pair of qubits in a quantum computer operating an efficient algorithm for quantum chaos. Our results show that in an ideal algorithm the entanglement decays exponentially with the diffusive relaxation rate induced by classical chaos. This decay reaches a residual level which drops exponentially with increasing number of qubits n{sub q}. Decoherence destroys the residual entanglement with a rate exponential in n{sub q}.
Full counting statistics as a probe of quantum coherence in a side-coupled double quantum dot system
Xue, Hai-Bin
2013-12-15
We study theoretically the full counting statistics of electron transport through side-coupled double quantum dot (QD) based on an efficient particle-number-resolved master equation. It is demonstrated that the high-order cumulants of transport current are more sensitive to the quantum coherence than the average current, which can be used to probe the quantum coherence of the considered double QD system. Especially, quantum coherence plays a crucial role in determining whether the super-Poissonian noise occurs in the weak inter-dot hopping coupling regime depending on the corresponding QD-lead coupling, and the corresponding values of super-Poissonian noise can be relatively enhanced when considering the spins of conduction electrons. Moreover, this super-Poissonian noise bias range depends on the singly-occupied eigenstates of the system, which thus suggests a tunable super-Poissonian noise device. The occurrence-mechanism of super-Poissonian noise can be understood in terms of the interplay of quantum coherence and effective competition between fast-and-slow transport channels. -- Highlights: •The FCS can be used to probe the quantum coherence of side-coupled double QD system. •Probing quantum coherence using FCS may permit experimental tests in the near future. •The current noise characteristics depend on the quantum coherence of this QD system. •The super-Poissonian noise can be enhanced when considering conduction electron spin. •The side-coupled double QD system suggests a tunable super-Poissonian noise device.
Alaska Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of Natural
Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Number of Natural Gas Industrial
Piezoelectric effect in InAs/InP quantum rod nanowires grown on silicon substrate
Anufriev, Roman; Chauvin, Nicolas Bru-Chevallier, Catherine; Khmissi, Hammadi; Naji, Khalid; Gendry, Michel; Patriarche, Gilles
2014-05-05
We report on the evidence of a strain-induced piezoelectric field in wurtzite InAs/InP quantum rod nanowires. This electric field, caused by the lattice mismatch between InAs and InP, results in the quantum confined Stark effect and, as a consequence, affects the optical properties of the nanowire heterostructure. It is shown that the piezoelectric field can be screened by photogenerated carriers or removed by increasing temperature. Moreover, a dependence of the piezoelectric field on the quantum rod diameter is observed in agreement with simulations of wurtzite InAs/InP quantum rod nanowire heterostructures.
Electron states in semiconductor quantum dots
Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.
2014-11-28
In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications.
Order dependence of the profile of the intensities of multiple-quantum coherences
Lundin, A. A.; Zobov, V. E.
2015-05-15
A modification of the widespread phenomenological model theory of multiple-quantum (MQ) nuclear magnetic resonance spectra of a single cluster of correlated spins has been developed. In contrast to the mentioned theory, the size distribution of such clusters has been consistently taken into account. To obtain the distribution, solutions for the amplitudes of the expansion in the complete set of orthogonal operators are used. Expressions specifying the dependence of the profile of the intensities of MQ coherences on their number n (order) have been obtained. The total form of the dependence has been evaluated by means of the numerical implementation of the resulting expressions. The asymptotic expressions for large n values (wings of the spectrum) have been obtained analytically by the saddle-point method. It has been shown that the dependence under study has a Gaussian central part and exponential wings. The results obtained are in agreement with the previous calculations for some model systems and existing experimental data.
ARM - Measurement - Particle number concentration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Particle number concentration The number of particles present in any given volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those
Total Number of Operable Refineries
U.S. Energy Information Administration (EIA) Indexed Site
Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge
Note on quantum Minkowski space
Bentalha, Z.; Tahiri, M.
2008-09-15
In this work, some interesting details about quantum Minkowski space and quantum Lorentz group structures are revealed. The task is accomplished by generalizing an approach adopted in a previous work where quantum rotation group and quantum Euclidean space structures have been investigated. The generalized method is based on a mapping relating the q-spinors (precisely the tensor product of dotted and undotted fondamental q-spinors) to Minkowski q-vectors. As a result of this mapping, the quantum analog of Minkowski space is constructed (with a definite metric). Also, the matrix representation of the quantum Lorentz group is determined together with its corresponding q-deformed orthogonality relation.
Khorashadizadeh, S. M. Taheri Boroujeni, S.; Niknam, A. R.
2015-11-15
In this paper, we have investigated the nonlinear interaction between high-frequency surface plasmons and low-frequency ion oscillations in a semi-bounded collisional quantum plasma. By coupling the nonlinear Schrodinger equation and quantum hydrodynamic model, and taking into account the ponderomotive force, the dispersion equation is obtained. By solving this equation, it is shown that there is a modulational instability in the system, and collisions and quantum forces play significant roles on this instability. The quantum tunneling increases the phase and group velocities of the modulated waves and collisions increase the growth rate of the modulational instability. It is also shown that the effect of quantum forces and collisions is more significant in high modulated wavenumber regions.
Compendium of Experimental Cetane Numbers
Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.
2014-08-01
This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.
Comparison of the attempts of quantum discord and quantum entanglement...
Office of Scientific and Technical Information (OSTI)
Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 1A7 (Canada) Publication Date: 2011-03-15 OSTI Identifier: ...
Quantum computations with atoms in optical lattices: Marker qubits and molecular interactions
Calarco, T.; Dorner, U.; Zoller, P.; Julienne, P.S.; Williams, C.J.
2004-07-01
We develop a scheme for quantum computation with neutral atoms, based on the concept of 'marker' atoms, i.e., auxiliary atoms that can be efficiently transported in state-independent periodic external traps to operate quantum gates between physically distant qubits. This allows for relaxing a number of experimental constraints for quantum computation with neutral atoms in microscopic potential, including single-atom laser addressability. We discuss the advantages of this approach in a concrete physical scenario involving molecular interactions.
Nevada Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93 98 100 1990's 100 113 114 117 119 120 121 93 93 109 2000's 90 90 96 97 179 192 207 220 189 192 2010's 184 177 177 195 218 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016
Maine Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 73 73 74 1990's 80 81 80 66 89 74 87 81 110 108 2000's 178 233 66 65 69 69 73 76 82 85 2010's 94 102 108 120 126 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring
Montana Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:
Wyoming Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 190 200 230 1990's 284 228 244 194 135 126 170 194 317 314 2000's 308 295 877 179 121 127 133 133 155 130 2010's 120 123 127 132 131 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:
Arizona Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:
Delaware Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:
Florida Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 575 552 460 1990's 452 377 388 433 481 515 517 561 574 573 2000's 520 518 451 421 398 432 475 467 449 607 2010's 581 630 507 528 520 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:
Idaho Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:
Rhode Island Natural Gas Number of Industrial Consumers (Number of
U.S. Energy Information Administration (EIA) Indexed Site
Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release
South Dakota Natural Gas Number of Industrial Consumers (Number of
U.S. Energy Information Administration (EIA) Indexed Site
Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016
Discontinuous Methods for Accurate, Massively Parallel Quantum...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Investigator for Discontinuous Methods for Accurate, Massively Parallel Quantum Molecular Dynamics. Discontinuous Methods for Accurate, Massively Parallel Quantum...
CDSS: Dr. Hensinger on Quantum Computing
Broader source: Energy.gov [DOE]
Dr. Winfried Hensinger â€“ Professor of Quantum Technologies, Ion Quantum Technology Group, Department of Physics and Astronomy, University of Sussex
Quantum Solar | Open Energy Information
Solar Jump to: navigation, search Name: Quantum Solar Place: Santa Fe, New Mexico Zip: 87507 Product: New Mexico-based PV cell technology company. References: Quantum Solar1 This...
Quasiperiodically kicked quantum systems
Milonni, P.W.; Ackerhalt, J.R.; Goggin, M.E.
1987-02-15
We consider a two-state system kicked quasiperiodically by an external force. When the two kicking frequencies assumed for the force are incommensurate, there can be quantum chaos in the sense that (a) the autocorrelation function of the state vector decays, (b) the power spectrum of the state vector is broadband, and (c) the motion on the Bloch sphere is ergodic. The time evolution of the state vector is nevertheless dynamically stable in the sense that memory of the initial state is retained. We also consider briefly the kicked quantum rotator and find, in agreement with Shepelyansky (Physica 8D, 208 (1983)), that the quantum localization effect is greatly weakened by the presence of two incommensurate driving frequencies.
Sandia National Laboratories: Quantum Systems
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Quantum Systems Sensors Sandia leverages quantum mechanics to enable exquisite metrology devices, such as inertial sensors and frequency standards that go beyond the capabilities of conventional methods Custom Solutions Quantum Sensing We are leveraging quantum mechanics to enable sensors that go beyond the capabilities of conventional methods. Using the quantized states of matter, it is possible to build exquisite metrology devices such as frequency standards and inertial sensors. Our efforts
Authentication of quantum messages.
Barnum, Howard; CrÃ©peau, Jean-Claude; Gottesman, D.; Smith, A.; Tapp, Alan
2001-01-01
Authentication is a well-studied area of classical cryptography: a sender A and a receiver B sharing a classical private key want to exchange a classical message with the guarantee that the message has not been modified or replaced by a dishonest party with control of the communication line. In this paper we study the authentication of messages composed of quantum states. We give a formal definition of authentication in the quantum setting. Assuming A and B have access to an insecure quantum channel and share a private, classical random key, we provide a non-interactive scheme that both enables A to encrypt and authenticate (with unconditional security) an m qubit message by encoding it into m + s qubits, where the probability decreases exponentially in the security parameter s. The scheme requires a private key of size 2m + O(s). To achieve this, we give a highly efficient protocol for testing the purity of shared EPR pairs. It has long been known that learning information about a general quantum state will necessarily disturb it. We refine this result to show that such a disturbance can be done with few side effects, allowing it to circumvent cryptographic protections. Consequently, any scheme to authenticate quantum messages must also encrypt them. In contrast, no such constraint exists classically: authentication and encryption are independent tasks, and one can authenticate a message while leaving it publicly readable. This reasoning has two important consequences: On one hand, it allows us to give a lower bound of 2m key bits for authenticating m qubits, which makes our protocol asymptotically optimal. On the other hand, we use it to show that digitally signing quantum states is impossible, even with only computational security.
Quantum states for quantum processes: A toy model for ammonia inversion spectra
Arteca, Gustavo A. [Departement de Chimie et Biochimie and Biomolecular Sciences Programme, Laurentian University, Ramsey Lake Road, Sudbury, Ontario, Canada P3E 2C6 (Canada); Department of Physical Chemistry, Uppsala University, A ring ngstroemlaboratoriet, Box 259, S-751 05 Uppsala (Sweden); Tapia, O. [Department of Physical Chemistry, Uppsala University, A ring ngstroemlaboratoriet, Box 259, S-751 05 Uppsala (Sweden)
2011-07-15
Chemical transformations are viewed here as quantum processes modulated by external fields, that is, as shifts in reactant to product amplitudes within a quantum state represented by a linear (coherent) superposition of electronuclear basis functions; their electronic quantum numbers identify the ''chemical species.'' This basis set can be mapped from attractors built from a unique electronic configurational space that is invariant with respect to the nuclear geometry. In turn, the quantum numbers that label these basis functions and the semiclassical potentials for the electronic attractors may be used to derive reaction coordinates to monitor progress as a function of the applied field. A generalization of Feynman's three-state model for the ammonia inversion process illustrates the scheme; to enforce symmetry for the entire inversion process model and ensure invariance with respect to nuclear configurations, the three attractors and their basis functions are computed with a grid of fixed floating Gaussian functions. The external-field modulation of the effective inversion barrier is discussed within this conceptual approach. This analysis brings the descriptions of chemical processes near modern technologies that employ molecules to encode information by means of confinement and external fields.
Quantum positron acoustic waves
Metref, Hassina; Tribeche, Mouloud
2014-12-15
Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.
Efetov, K.B. [Max-Planck Institut fuer Physik komplexer Systeme, Heisenbergstrasse 1, 70569 Stuttgart (Germany)] [Max-Planck Institut fuer Physik komplexer Systeme, Heisenbergstrasse 1, 70569 Stuttgart (Germany); [L.D. Landau Institute for Theoretical Physics, Moscow (Russia)
1997-07-01
Quantum disordered problems with a direction (imaginary vector potential) are discussed and mapped onto a supermatrix {sigma} model. It is argued that the 0D version of the {sigma} model may describe a broad class of phenomena that can be called directed quantum chaos. It is demonstrated by explicit calculations that these problems are equivalent to those of random asymmetric or non-Hermitian matrices. A joint probability of complex eigenvalues is obtained. The fraction of states with real eigenvalues proves to be always finite for time reversal invariant systems. {copyright} {ital 1997} {ital The American Physical Society}
Jahan K, Luhluh Boda, Aalu; Chatterjee, Ashok
2015-05-15
The problem of an exciton trapped in a three dimensional Gaussian quantum dot is studied in the presence of an external magnetic field. A variational method is employed to obtain the ground state energy of the exciton as a function of the quantum dot size, the confinement strength and the magnetic field. It is also shown that the variation of the size of the exciton with the radius of the quantum dot.
Controlling quantum dot energies using submonolayer bandstructure engineering
Yu, L.; Law, S.; Wasserman, D.; Jung, D.; Lee, M. L.; Shen, J.; Cha, J. J.
2014-08-25
We demonstrate control of energy states in epitaxially-grown quantum dot structures formed by stacked submonolayer InAs depositions via engineering of the internal bandstructure of the dots. Transmission electron microscopy of the stacked sub-monolayer regions shows compositional inhomogeneity, indicative of the presence of quantum dots. The quantum dot ground state is manipulated not only by the number of deposited InAs layers, but also by control of the thickness and material composition of the spacing layers between submonolayer InAs depositions. In this manner, we demonstrate the ability to shift the quantum dot ground state energy at 77?K from 1.38?eV to 1.88?eV. The results presented offer a potential avenue towards enhanced control of dot energies for a variety of optoelectronic applications.
Toward protocols for quantum-ensured privacy and secure voting
Bonanome, Marianna; Buzek, Vladimir; Ziman, Mario; Hillery, Mark
2011-08-15
We present a number of schemes that use quantum mechanics to preserve privacy, in particular, we show that entangled quantum states can be useful in maintaining privacy. We further develop our original proposal [see M. Hillery, M. Ziman, V. Buzek, and M. Bielikova, Phys. Lett. A 349, 75 (2006)] for protecting privacy in voting, and examine its security under certain types of attacks, in particular dishonest voters and external eavesdroppers. A variation of these quantum-based schemes can be used for multiparty function evaluation. We consider functions corresponding to group multiplication of N group elements, with each element chosen by a different party. We show how quantum mechanics can be useful in maintaining the privacy of the choices group elements.
Departmental Business Instrument Numbering System
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2005-01-27
The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.
Departmental Business Instrument Numbering System
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2000-12-05
To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.
Nebraska Natural Gas Number of Commercial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) Nebraska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,707 61,365 60,377 1990's 60,405 60,947 61,319 60,599 62,045 61,275 61,117 51,661 63,819 53,943 2000's 55,194 55,692 56,560 55,999 57,087 57,389 56,548 55,761 58,160 56,454 2010's 56,246 56,553 56,608 58,005 57,191 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid
Nebraska Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 675 684 702 1990's 712 718 696 718 766 2,432 2,234 11,553 10,673 10,342 2000's 10,161 10,504 9,156 9,022 8,463 7,973 7,697 7,668 11,627 7,863 2010's 7,912 7,955 8,160 8,495 8,791 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company
Nebraska Natural Gas Number of Residential Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) Nebraska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400,218 403,657 406,723 1990's 407,094 413,354 418,611 413,358 428,201 427,720 439,931 444,970 523,790 460,173 2000's 475,673 476,275 487,332 492,451 497,391 501,279 499,504 494,005 512,013 512,551 2010's 510,776 514,481 515,338 527,397 522,408 - = No Data Reported; -- = Not Applicable; NA = Not
Nevada Natural Gas Number of Commercial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) Nevada Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18,294 18,921 19,924 1990's 20,694 22,124 22,799 23,207 24,521 25,593 26,613 27,629 29,030 30,521 2000's 31,789 32,782 33,877 34,590 35,792 37,093 38,546 40,128 41,098 41,303 2010's 40,801 40,944 41,192 41,710 42,338 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid
Nevada Natural Gas Number of Residential Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,422 219,981 236,237 1990's 256,119 283,307 295,714 305,099 336,353 364,112 393,783 426,221 458,737 490,029 2000's 520,233 550,850 580,319 610,756 648,551 688,058 726,772 750,570 758,315 760,391 2010's 764,435 772,880 782,759 794,150 808,970 - = No Data Reported; -- = Not Applicable; NA = Not
Ohio Natural Gas Number of Commercial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,601 219,257 225,347 1990's 233,075 236,519 237,861 240,684 245,190 250,223 259,663 254,991 258,076 266,102 2000's 269,561 269,327 271,160 271,203 272,445 277,767 270,552 272,555 272,899 270,596 2010's 268,346 268,647 267,793 269,081 269,758 - = No Data Reported; -- = Not Applicable; NA = Not
Ohio Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,929 8,163 8,356 1990's 8,301 8,479 8,573 8,678 8,655 8,650 8,672 7,779 8,112 8,136 2000's 8,267 8,515 8,111 8,098 7,899 8,328 6,929 6,858 6,806 6,712 2010's 6,571 6,482 6,381 6,554 6,526 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual
Ohio Natural Gas Number of Residential Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,648,972 2,678,838 2,714,839 1990's 2,766,912 2,801,716 2,826,713 2,867,959 2,921,536 2,967,375 2,994,891 3,041,948 3,050,960 3,111,108 2000's 3,178,840 3,195,584 3,208,466 3,225,908 3,250,068 3,272,307 3,263,062 3,273,791 3,262,716 3,253,184 2010's 3,240,619 3,236,160 3,244,274 3,271,074 3,283,869 -
Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid
Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,063 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual
Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 - = No Data Reported; -- = Not Applicable; NA = Not
Oregon Natural Gas Number of Commercial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) Oregon Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,967 41,998 43,997 1990's 47,175 55,374 50,251 51,910 53,700 55,409 57,613 60,419 63,085 65,034 2000's 66,893 68,098 69,150 74,515 71,762 73,520 74,683 80,998 76,868 76,893 2010's 77,370 77,822 78,237 79,276 80,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid
Oregon Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 676 1,034 738 1990's 699 787 740 696 765 791 799 704 695 718 2000's 717 821 842 926 907 1,118 1,060 1,136 1,075 1,051 2010's 1,053 1,066 1,076 1,085 1,099 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016
Oregon Natural Gas Number of Residential Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) Oregon Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 280,670 288,066 302,156 1990's 326,177 376,166 354,256 371,151 391,845 411,465 433,638 456,960 477,796 502,000 2000's 523,952 542,799 563,744 625,398 595,495 626,685 647,635 664,455 674,421 675,582 2010's 682,737 688,681 693,507 700,211 707,010 - = No Data Reported; -- = Not Applicable; NA = Not
Pennsylvania Natural Gas Number of Commercial Consumers (Number of
U.S. Energy Information Administration (EIA) Indexed Site
Elements) Commercial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,901 172,615 178,545 1990's 186,772 191,103 193,863 198,299 206,812 209,245 214,340 215,057 216,519 223,732 2000's 228,037 225,911 226,957 227,708 231,051 233,132 231,540 234,597 233,462 233,334 2010's 233,751 233,588 235,049 237,922 239,681 - = No Data Reported; -- = Not
Pennsylvania Natural Gas Number of Industrial Consumers (Number of
U.S. Energy Information Administration (EIA) Indexed Site
Elements) Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,089 6,070 6,023 1990's 6,238 6,344 6,496 6,407 6,388 6,328 6,441 6,492 6,736 7,080 2000's 6,330 6,159 5,880 5,577 5,726 5,577 5,241 4,868 4,772 4,745 2010's 4,624 5,007 5,066 5,024 5,084 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid
Pennsylvania Natural Gas Number of Residential Consumers (Number of
U.S. Energy Information Administration (EIA) Indexed Site
Elements) Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,237,877 2,271,801 2,291,242 1990's 2,311,795 2,333,377 2,363,575 2,386,249 2,393,053 2,413,715 2,431,909 2,452,524 2,493,639 2,486,704 2000's 2,519,794 2,542,724 2,559,024 2,572,584 2,591,458 2,600,574 2,605,782 2,620,755 2,631,340 2,635,886 2010's 2,646,211 2,667,392 2,678,547
Alabama Natural Gas Number of Commercial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to
Alabama Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual
Alabama Natural Gas Number of Residential Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not
Indiana Natural Gas Number of Commercial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) Indiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 116,571 119,458 122,803 1990's 124,919 128,223 129,973 131,925 134,336 137,162 139,097 140,515 141,307 145,631 2000's 148,411 148,830 150,092 151,586 151,943 159,649 154,322 155,885 157,223 155,615 2010's 156,557 161,293 158,213 158,965 159,596 - = No Data Reported; -- = Not Applicable; NA = Not
Indiana Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,497 5,696 6,196 1990's 6,439 6,393 6,358 6,508 6,314 6,250 6,586 6,920 6,635 19,069 2000's 10,866 9,778 10,139 8,913 5,368 5,823 5,350 5,427 5,294 5,190 2010's 5,145 5,338 5,204 5,178 5,098 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual
Indiana Natural Gas Number of Residential Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) Indiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,250,476 1,275,401 1,306,747 1990's 1,327,772 1,358,640 1,377,023 1,402,770 1,438,483 1,463,640 1,489,647 1,509,142 1,531,914 1,570,253 2000's 1,604,456 1,613,373 1,657,640 1,644,715 1,588,738 1,707,195 1,661,186 1,677,857 1,678,158 1,662,663 2010's 1,669,026 1,707,148 1,673,132 1,681,841 1,693,267
Iowa Natural Gas Number of Commercial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) Iowa Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 80,797 81,294 82,549 1990's 83,047 84,387 85,325 86,452 86,918 88,585 89,663 90,643 91,300 92,306 2000's 93,836 95,485 96,496 96,712 97,274 97,767 97,823 97,979 98,144 98,416 2010's 98,396 98,541 99,113 99,017 99,182 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid
Iowa Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual
Iowa Natural Gas Number of Residential Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 690,532 689,655 701,687 1990's 706,842 716,088 729,081 740,722 750,678 760,848 771,109 780,746 790,162 799,015 2000's 812,323 818,313 824,218 832,230 839,415 850,095 858,915 865,553 872,980 875,781 2010's 879,713 883,733 892,123 895,414 900,420 - = No Data Reported; -- = Not Applicable; NA = Not
Kansas Natural Gas Number of Commercial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) Kansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,934 83,810 85,143 1990's 85,539 86,874 86,840 87,735 86,457 88,163 89,168 85,018 89,654 86,003 2000's 87,007 86,592 87,397 88,030 86,640 85,634 85,686 85,376 84,703 84,715 2010's 84,446 84,874 84,673 84,969 85,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid
Kansas Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual
Kansas Natural Gas Number of Residential Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 725,676 733,101 731,792 1990's 747,081 753,839 762,545 777,658 773,357 797,524 804,213 811,975 841,843 824,803 2000's 833,662 836,486 843,353 850,464 855,272 856,761 862,203 858,304 853,125 855,454 2010's 853,842 854,730 854,800 858,572 861,092 - = No Data Reported; -- = Not Applicable; NA = Not
Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid
Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 1,780 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual
Kentucky Natural Gas Number of Residential Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 760,131 - = No Data Reported; -- = Not Applicable; NA = Not
Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to
Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,617 1,503 1,531 1990's 1,504 1,469 1,452 1,592 1,737 1,383 1,444 1,406 1,380 1,397 2000's 1,318 1,440 1,357 1,291 1,460 1,086 962 945 988 954 2010's 942 920 963 916 883 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.