National Library of Energy BETA

Sample records for quantum fuel systems

  1. Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report Url JumpTechnology JumpPrueba 1VenturePzeroLLC JumpEnergy

  2. Flex Fuel Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flex Fuel Vehicle Systems * Bosch FFV Project Structure and Partners * Purpose of Work - Project Highlights * Barriers - Existing Flex Fuel Systems and Problems * Approach - Bosch...

  3. Quantum information science and complex quantum systems

    E-Print Network [OSTI]

    Michael A. Nielsen

    2002-10-01

    What makes quantum information science a science? This paper explores the idea that quantum information science may offer a powerful approach to the study of complex quantum systems.

  4. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  5. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Cupertino, CA)

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  6. Fuel injector system

    DOE Patents [OSTI]

    Hsu, Bertrand D. (Erie, PA); Leonard, Gary L. (Schenctady, NY)

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  7. Dual Tank Fuel System

    DOE Patents [OSTI]

    Wagner, Richard William (Albion, NY); Burkhard, James Frank (Churchville, NY); Dauer, Kenneth John (Avon, NY)

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  8. Fuel control system

    SciTech Connect (OSTI)

    Detweiler, C.A.

    1980-12-30

    A fuel control system for a turbocharged engine having fuel delivered to the carburetor under the control of a vacuum operated device which is under the further control of a device sensing pressures upstream and downstream of the turbo charger compressor and delivering a vacuum signal to the fuel control device in proportion to the manifold pressure even though the latter pressure may be a positive pressure.

  9. Secondary fuel delivery system

    DOE Patents [OSTI]

    Parker, David M. (Oviedo, FL); Cai, Weidong (Oviedo, FL); Garan, Daniel W. (Orlando, FL); Harris, Arthur J. (Orlando, FL)

    2010-02-23

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  10. Fuel cell system combustor

    DOE Patents [OSTI]

    Pettit, William Henry (Rochester, NY)

    2001-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  11. Fuel cell system

    DOE Patents [OSTI]

    Early, Jack (Perth Amboy, NJ); Kaufman, Arthur (West Orange, NJ); Stawsky, Alfred (Teaneck, NJ)

    1982-01-01

    A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

  12. Diesel engine fuel systems

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  13. Diesel engine fuel systems

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  14. Sandia National Laboratories: Quantum Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of thePrograms:Mode Stirred ChamberReuseQuantum Systems

  15. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  16. Magmatic "Quantum-Like" Systems

    E-Print Network [OSTI]

    Elemer E Rosinger

    2008-12-16

    Quantum computation has suggested, among others, the consideration of "non-quantum" systems which in certain respects may behave "quantum-like". Here, what algebraically appears to be the most general possible known setup, namely, of {\\it magmas} is used in order to construct "quantum-like" systems. The resulting magmatic composition of systems has as a well known particular case the tensor products.

  17. On Quantum Integrable Systems

    SciTech Connect (OSTI)

    Danilov, Viatcheslav; /Oak Ridge; Nagaitsev, Sergei; /Fermilab

    2011-11-01

    Many quantum integrable systems are obtained using an accelerator physics technique known as Ermakov (or normalized variables) transformation. This technique was used to create classical nonlinear integrable lattices for accelerators and nonlinear integrable plasma traps. Now, all classical results are carried over to a nonrelativistic quantum case. In this paper we have described an extension of the Ermakov-like transformation to the Schroedinger and Pauli equations. It is shown that these newly found transformations create a vast variety of time dependent quantum equations that can be solved in analytic functions, or, at least, can be reduced to time-independent ones.

  18. Fuel Cell Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Systems Fuel Cell Systems The design of fuel cell systems is complex, and can vary significantly depending upon fuel cell type and application. However, several basic...

  19. Fuel cell gas management system

    DOE Patents [OSTI]

    DuBose, Ronald Arthur (Marietta, GA)

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  20. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  1. Compliant fuel cell system

    DOE Patents [OSTI]

    Bourgeois, Richard Scott (Albany, NY); Gudlavalleti, Sauri (Albany, NY)

    2009-12-15

    A fuel cell assembly comprising at least one metallic component, at least one ceramic component and a structure disposed between the metallic component and the ceramic component. The structure is configured to have a lower stiffness compared to at least one of the metallic component and the ceramic component, to accommodate a difference in strain between the metallic component and the ceramic component of the fuel cell assembly.

  2. Quasiperiodically kicked quantum systems

    SciTech Connect (OSTI)

    Milonni, P.W.; Ackerhalt, J.R.; Goggin, M.E.

    1987-02-15

    We consider a two-state system kicked quasiperiodically by an external force. When the two kicking frequencies assumed for the force are incommensurate, there can be quantum chaos in the sense that (a) the autocorrelation function of the state vector decays, (b) the power spectrum of the state vector is broadband, and (c) the motion on the Bloch sphere is ergodic. The time evolution of the state vector is nevertheless dynamically stable in the sense that memory of the initial state is retained. We also consider briefly the kicked quantum rotator and find, in agreement with Shepelyansky (Physica 8D, 208 (1983)), that the quantum localization effect is greatly weakened by the presence of two incommensurate driving frequencies.

  3. DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System...

    Broader source: Energy.gov (indexed) [DOE]

    the cost of automotive polymer electrolyte membrane (PEM) fuel cell systems. DOE Hydrogen and Fuel Cells Program Record 14012 More Documents & Publications DOE Fuel Cell...

  4. Automated fuel pin loading system

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Brown, William F. (West Richland, WA); Steffen, Jim M. (Richland, WA)

    1985-01-01

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inserted as a batch prior to welding of end caps by one of two disclosed welding systems.

  5. Ambient pressure fuel cell system

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM)

    2000-01-01

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  6. Fuel Pumping System And Method

    DOE Patents [OSTI]

    Shafer, Scott F. (Morton, IL); Wang, Lifeng (Normal, IL)

    2005-12-13

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  7. Fuel pumping system and method

    DOE Patents [OSTI]

    Shafer, Scott F. (Morton, IL); Wang, Lifeng (Normal, IL) ,

    2006-12-19

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  8. Stationary States of Dissipative Quantum Systems

    E-Print Network [OSTI]

    Vasily E. Tarasov

    2011-07-29

    In this Letter we consider stationary states of dissipative quantum systems. We discuss stationary states of dissipative quantum systems, which coincide with stationary states of Hamiltonian quantum systems. Dissipative quantum systems with pure stationary states of linear harmonic oscillator are suggested. We discuss bifurcations of stationary states for dissipative quantum systems which are quantum analogs of classical dynamical bifurcations.

  9. Fuel cell system with interconnect

    DOE Patents [OSTI]

    Goettler, Richard; Liu, Zhien

    2015-08-11

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  10. Fuel cell system with interconnect

    SciTech Connect (OSTI)

    Liu, Zhien; Goettler, Richard

    2015-09-29

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  11. Fuel cell system with interconnect

    DOE Patents [OSTI]

    Goettler, Richard; Liu, Zhien

    2015-03-10

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  12. Quantum information science as an approach to complex quantum systems

    E-Print Network [OSTI]

    Michael A. Nielsen

    2002-08-13

    What makes quantum information science a science? These notes explore the idea that quantum information science may offer a powerful approach to the study of complex quantum systems. We discuss how to quantify complexity in quantum systems, and argue that there are two qualitatively different types of complex quantum system. We also explore ways of understanding complex quantum dynamics by quantifying the strength of a quantum dynamical operation as a physical resource. This is the text for a talk at the ``Sixth International Conference on Quantum Communication, Measurement and Computing'', held at MIT, July 2002. Viewgraphs for the talk may be found at http://www.qinfo.org/talks/.

  13. Scalable cavity quantum electrodynamics system for quantum computing

    E-Print Network [OSTI]

    Mohammad Hasan Aram; Sina Khorasani

    2015-07-18

    We introduce a new scalable cavity quantum electrodynamics platform which can be used for quantum computing. This system is composed of coupled photonic crystal (PC) cavities which their modes lie on a Dirac cone in the whole super crystal band structure. Quantum information is stored in quantum dots that are positioned inside the cavities. We show if there is just one quantum dot in the system, energy as photon is exchanged between the quantum dot and the Dirac modes sinusoidally. Meanwhile the quantum dot becomes entangled with Dirac modes. If we insert more quantum dots into the system, they also become entangled with each other.

  14. Quantum technologies with hybrid systems

    E-Print Network [OSTI]

    G. Kurizki; P. Bertet; Y. Kubo; K. Mølmer; D. Petrosyan; P. Rabl; J. Schmiedmayer

    2015-04-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for information processing, secure communication and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multi-tasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and the challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  15. Compressed gas fuel storage system

    DOE Patents [OSTI]

    Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  16. Design package for fuel retrieval system fuel handling tool modification

    SciTech Connect (OSTI)

    TEDESCHI, D.J.

    1998-11-09

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  17. Design package for fuel retrieval system fuel handling tool modification

    SciTech Connect (OSTI)

    TEDESCHI, D.J.

    1999-03-17

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  18. Design Package for Fuel Retrieval System Fuel Handling Tool Modification

    SciTech Connect (OSTI)

    TEDESCHI, D.J.

    2000-03-27

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  19. Fuel cell powered irrigation system

    SciTech Connect (OSTI)

    Jacobi, E.F.; Madden, M.R.

    1982-01-12

    Set out herein is a fuel cell power plant for use with irrigation systems wherein the fuel cell is utilized to generate electric current to drive a pump motor. This pump motor drives a first water pump which receives water for distribution through a traveling irrigation system, the output of the first pump first conveyed into a condenser heat exchanger connected to a steam engine or turbine cycle. The fuel cell itself is contained within a boiler assembly and the heat of production of the electric power is used to generate steam which is sent to the steam engine. In the course of cooling the condenser gases of the steam engine the irrigating water is passed through a second pump driven by the steam engine and it is through this second pump that the pressure is raised sufficiently to allow for the necessary spraying fans. To improve the condenser efficiency part of the condensate or the ullage thereof is connected to one of the spray heads on the irrigation system in a venturi nozzle which thereby lowers the back pressure thereof. The lower portion of the condenser or the liquid part thereof is fed back through yet another condenser pump to the boiler to be regenerated into steam.

  20. Simulation of open quantum systems

    E-Print Network [OSTI]

    Florian Mintert; Eric J. Heller

    2008-03-27

    We present an approach for the semiclassical treatment of open quantum systems. An expansion into localized states allows restriction of a simulation to a fraction of the environment that is located within a predefined vicinity of the system. Adding and dropping environmental particles during the simulation yields an effective reduction of the size of the system that is being treated.

  1. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  2. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  3. Low Energy Quantum System Simulation

    E-Print Network [OSTI]

    Peter Cho; Karl Berggren

    2003-10-26

    A numerical method for solving Schrodinger's equation based upon a Baker-Campbell-Hausdorff (BCH) expansion of the time evolution operator is presented herein. The technique manifestly preserves wavefunction norm, and it can be applied to problems in any number of spatial dimensions. We also identify a particular dimensionless ratio of potential to kinetic energies as a key coupling constant. This coupling establishes characteristic length and time scales for a large class of low energy quantum states, and it guides the choice of step sizes in numerical work. Using the BCH method in conjunction with an imaginary time rotation, we compute low energy eigenstates for several quantum systems coupled to non-trivial background potentials. The approach is subsequently applied to the study of 1D propagating wave packets and 2D bound state time development. Failures of classical expectations uncovered by simulations of these simple systems help develop quantum intuition. Finally, we investigate the response of a Superconducting Quantum Interference Device (SQUID) to a time dependent potential. We discuss how to engineer the potential's energy and time scales so that the SQUID acts as a quantum NOT gate. The notional simulation we present for this gate provides useful insight into the design of one candidate building block for a quantum computer.

  4. Analysis of Fuel Cell Systems Rangan Banerjee

    E-Print Network [OSTI]

    Banerjee, Rangan

    Analysis of Fuel Cell Systems Rangan Banerjee Energy Systems Engineering IIT Bombay Lecture in CEP Course on `Fuel Cell' at IIT 14th November 2007 #12;Overview of Talk Energy Crisis ­ Motivation for fuel biological Hydrogen Gasification Fermentation Cracking + Shift Reaction Fuel Cell #12;ENERGY FLOW DIAGRAM

  5. Fuel Cycle System Analysis Handbook

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; Dirk Gombert; Edward A. Hoffman; Gretchen E. Matthern; Kent A. Williams

    2009-06-01

    This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some of the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic uncertainty diagrams, which show at a glance combined uncertainty information, section 9.2 has a new set of simpler graphs that show the impact on fuel cycle costs for once through, 1-tier, and 2-tier scenarios as a function of key input parameters.

  6. Fuel Cell Systems Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency and Renewable Energy Office of Transportation Technologies TRANSPORTATION FUEL CELL POWER SYSTEMS TRANSPORTATION FUEL CELL POWER SYSTEMS A C K N O W L E D G E M E N T...

  7. Fuel quality issues in stationary fuel cell systems.

    SciTech Connect (OSTI)

    Papadias, D.; Ahmed, S.; Kumar, R.

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough, component sizing, and utility needs. These data, along with process efficiency results from the model, were subsequently used to calculate the cost of electricity. Sensitivity analyses were conducted to correlate the concentrations of key impurities in the fuel gas feedstock to the cost of electricity.

  8. Hybrid quantum-classical models as constrained quantum systems

    E-Print Network [OSTI]

    M. Radonjic; S. Prvanovic; N. Buric

    2012-06-07

    Constrained Hamiltonian description of the classical limit is utilized in order to derive consistent dynamical equations for hybrid quantum-classical systems. Starting with a compound quantum system in the Hamiltonian formulation conditions for classical behavior are imposed on one of its subsystems and the corresponding hybrid dynamical equations are derived. The presented formalism suggests that the hybrid systems have properties that are not exhausted by those of quantum and classical systems.

  9. Fuel-cell engine stream conditioning system

    DOE Patents [OSTI]

    DuBose, Ronald Arthur (Marietta, GA)

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  10. Low Temperature Catalyst for Fuel Injection System

    Broader source: Energy.gov [DOE]

    A low temperature oxidation catalyst applied to a DOC and DPF combined with a unique fuel injection system remove soot from a diesel exhaust system.

  11. Quantum Indeterminacy of Cosmic Systems

    SciTech Connect (OSTI)

    Hogan, Craig J.

    2013-12-30

    It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.

  12. System identification for passive linear quantum systems

    E-Print Network [OSTI]

    Madalin Guta; Naoki Yamamoto

    2014-08-27

    System identification is a key enabling component for the implementation of quantum technologies, including quantum control. In this paper, we consider the class of passive linear input-output systems, and investigate several basic questions: (1) which parameters can be identified? (2) Given sufficient input-output data, how do we reconstruct system parameters? (3) How can we optimize the estimation precision by preparing appropriate input states and performing measurements on the output? We show that minimal systems can be identified up to a unitary transformation on the modes, and systems satisfying a Hamiltonian connectivity condition called "infecting" are completely identifiable. We propose a frequency domain design based on a Fisher information criterion, for optimizing the estimation precision for coherent input state. As a consequence of the unitarity of the transfer function, we show that the Heisenberg limit with respect to the input energy can be achieved using non-classical input states.

  13. Universal quantum computation in integrable systems

    E-Print Network [OSTI]

    Seth Lloyd; Simone Montangero

    2014-08-03

    Quantized integrable systems can be made to perform universal quantum computation by the application of a global time-varying control. The action-angle variables of the integrable system function as qubits or qudits, which can be coupled selectively by the global control to induce universal quantum logic gates. By contrast, chaotic quantum systems, even if controllable, do not generically allow quantum computation under global control.

  14. Fuel-Flexible Microturbine and Gasifier System

    SciTech Connect (OSTI)

    2009-12-01

    This factsheet describes a project that will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel consumption and carbon dioxide emissions.

  15. Quantum Fuel with Multilevel Atomic Coherence for Ultrahigh Specific Work in a Photonic Carnot Engine

    E-Print Network [OSTI]

    Deniz Türkpençe; Özgür E. Müstecapl?o?lu

    2015-03-05

    We investigate scaling of work output and efficiency of a photonic Carnot engine with the number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by [M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther, Science {\\bf 299}, 862 (2003)], to the case of $N+1$ level atoms with $N$ coherent lower levels. Deriving a multilevel mesoscopic master equation for the system, we evaluate the harvested work by the engine, and its efficiency. We find that efficiency and extracted work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. Besides, we examine the dependence of cavity loss on the number of atomic levels and find that multilevel phaseonium fuel can be utilized to beat the decoherence due to cavity loss. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.

  16. Quantum Fuel with Multilevel Atomic Coherence for Ultrahigh Specific Work in a Photonic Carnot Engine

    E-Print Network [OSTI]

    Deniz Türkpençe; Özgür E. Müstecapl?o?lu

    2015-08-28

    We investigate scaling of work and efficiency of a photonic Carnot engine with the number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by [M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther, Science 299, 862 (2003)], to the case of N+1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse grained master equation to evaluate the work and efficiency, analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.

  17. Quantum Fuel with Multilevel Atomic Coherence for Ultrahigh Specific Work in a Photonic Carnot Engine

    E-Print Network [OSTI]

    Deniz Türkpençe; Özgür E. Müstecapl?o?lu

    2015-10-08

    We investigate scaling of work and efficiency of a photonic Carnot engine with the number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by [M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther, Science {\\bf 299}, 862 (2003)], to the case of $N+1$ level atoms with $N$ coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse grained master equation to evaluate the work and efficiency, analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.

  18. The Onsite Fuel Cell Cogeneration System 

    E-Print Network [OSTI]

    Woods, R. R.; Cuttica, J. J.; Trimble, K. A.

    1986-01-01

    CELL COGENERATION SYSTEM R. Root Woods, John J. Cuttica and Karen A. Trimble Gas Research Institute, Chicago, Illinois ABSTRACT This paper describes the experiences and results of the major field test of forty-six 40kW onsite fuel cell power... acid onsite fuel cell power plants, the gas industry, in cooperation with International Fuel Cells Corporation (formerly the Power Systems Division of United Technologies Corporation), has demonstrated in extensive field tests that onsite fuel cell...

  19. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    Optimization of Fuel Cell System Operating Conditions forOptimization of Fuel Cell System Operating Conditions forOptimization of Fuel Cell System Operating Conditions for

  20. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in...

  1. Super-radiance and open quantum systems

    SciTech Connect (OSTI)

    Volya, Alexander [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States); Zelevinsky, Vladimir [NSCL, Michigan State University, East Lansing, MI 48824-1321 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2005-07-08

    Quantum wires, loosely bound nuclei, molecules in chemical reactions and exotic narrow pentaquark states are different examples of open quantum mesoscopic systems. The coupling with and through continuum is their common feature. We discuss general properties of quantum systems in the regime of strong continuum coupling, when the mechanism of Dicke super-radiance changes intrinsic dynamics, signatures of quantum chaos, lifetime of unstable states and reaction cross sections. The examples are shown for various areas of mesoscopic physics.

  2. Automated Fuel Dispensing System Form Instructions

    E-Print Network [OSTI]

    Marques, Oge

    Automated Fuel Dispensing System Form Instructions If additional forms are necessary to provide(s) are hired and will be obtaining fuel, an Add Driver Form MUST be submitted for entry into the web database and/or diesel fuel to operate. Note: When a new vehicle, golf cart (gasoline), etc., is placed

  3. Fuel cell stack monitoring and system control

    DOE Patents [OSTI]

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-02-17

    A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell.

  4. Advanced Fuel Cell Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLCAdema Technologies IncFuel Cell Systems Jump to:

  5. Alternative Fuel Systems Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All HomeAlphakat GmbHNepal:DevelopmentFuel Systems Ltd

  6. PEM fuel cell monitoring system

    DOE Patents [OSTI]

    Meltser, M.A.; Grot, S.A.

    1998-06-09

    Method and apparatus are disclosed for monitoring the performance of H{sub 2}--O{sub 2} PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H{sub 2} sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken. 2 figs.

  7. PEM fuel cell monitoring system

    DOE Patents [OSTI]

    Meltser, Mark Alexander (Pittsford, NY); Grot, Stephen Andreas (West Henrietta, NY)

    1998-01-01

    Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.

  8. An analysis of distributed solar fuel systems

    E-Print Network [OSTI]

    Thomas, Alex, S.M. Massachusetts Institute of Technology

    2012-01-01

    While solar fuel systems offer tremendous potential to address global clean energy needs, most existing analyses have focused on the feasibility of large centralized systems and applications. Not much research exists on ...

  9. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, Romesh (Naperville, IL); Ahmed, Shabbir (Evanston, IL); Krumpelt, Michael (Naperville, IL); Myles, Kevin M. (Downers Grove, IL)

    1993-01-01

    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  10. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1993-09-28

    A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

  11. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect (OSTI)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  12. ITER Ion Cyclotron Heating and Fueling Systems

    SciTech Connect (OSTI)

    Rasmussen, D.A.; Baylor, L.R.; Combs, S.K.; Fredd, E.; Goulding, R.H.; Hosea, J.; Swain, D.W.

    2005-04-15

    The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.

  13. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    R.M. Moore, PEM Fuel Cell System Optimization, ProceedingsInterface of the fuel cell system optimization model Fig. 5hydrogen fuel cell vehicle; optimization model; simulation *

  14. Hybrid two fuel system nozzle with a bypass connecting the two fuel systems

    DOE Patents [OSTI]

    Varatharajan, Balachandar (Cincinnati, OH); Ziminsky, Willy Steve (Simpsonville, SC); Yilmaz, Ertan (Albany, NY); Lacy, Benjamin (Greer, SC); Zuo, Baifang (Simpsonville, SC); York, William David (Greer, SC)

    2012-05-29

    A hybrid fuel combustion nozzle for use with natural gas, syngas, or other types of fuels. The hybrid fuel combustion nozzle may include a natural gas system with a number of swozzle vanes and a syngas system with a number of co-annular fuel tubes.

  15. Applications of Feedback Control in Quantum Systems

    E-Print Network [OSTI]

    Kurt Jacobs

    2006-05-02

    We give an introduction to feedback control in quantum systems, as well as an overview of the variety of applications which have been explored to date. This introductory review is aimed primarily at control theorists unfamiliar with quantum mechanics, but should also be useful to quantum physicists interested in applications of feedback control. We explain how feedback in quantum systems differs from that in traditional classical systems, and how in certain cases the results from modern optimal control theory can be applied directly to quantum systems. In addition to noise reduction and stabilization, an important application of feedback in quantum systems is adaptive measurement, and we discuss the various applications of adaptive measurements. We finish by describing specific examples of the application of feedback control to cooling and state-preparation in nano-electro-mechanical systems and single trapped atoms.

  16. Thermodynamics of weakly measured quantum systems

    E-Print Network [OSTI]

    Jose Joaquin Alonso; Eric Lutz; Alessandro Romito

    2015-08-03

    We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superpositions of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.

  17. Bio Fuel Systems BFS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBentMichigan:Greece)DaddyInformationSystems

  18. Quantum Friction: Cooling Quantum Systems with Unitary Time Evolution

    E-Print Network [OSTI]

    Aurel Bulgac; Michael McNeil Forbes; Kenneth J. Roche; Gabriel Wlaz?owski

    2013-05-29

    We introduce a type of quantum dissipation -- local quantum friction -- by adding to the Hamiltonian a local potential that breaks time-reversal invariance so as to cool the system. Unlike the Kossakowski-Lindblad master equation, local quantum friction directly effects unitary evolution of the wavefunctions rather than the density matrix: it may thus be used to cool fermionic many-body systems with thousands of wavefunctions that must remain orthogonal. In addition to providing an efficient way to simulate quantum dissipation and non-equilibrium dynamics, local quantum friction coupled with adiabatic state preparation significantly speeds up many-body simulations, making the solution of the time-dependent Schr\\"odinger equation significantly simpler than the solution of its stationary counterpart.

  19. Optimal Lyapunov-based quantum control for quantum systems

    E-Print Network [OSTI]

    S. C. Hou; M. A. Khan; Daoyi Dong; Ian R. Petersen; X. X. Yi

    2012-09-15

    Quantum Lyapunov control was developed in order to transform a quantum system from arbitrary initial states to a target state. The idea is to find control fields that steer the Lyapunov function to zero as $t\\rightarrow \\infty$, meanwhile the quantum system is driven to the target state. In order to shorten the time required to reach the target state, we propose two designs to optimize Lyapunov control in this paper. The first design makes the Lyapunov function decrease as fast as possible with a constraint on the total power of control fields, and the second design has the same purpose but with a constraint on each control field. Examples of a three-level system demonstrate that the evolution time for Lyapunov control can be significantly shortened, especially when high control fidelity is required. Besides, this optimal Lyapunov-based quantum control is robust against uncertainties in the free Hamiltonian and decoherence in the system compared to conventional Lyapunov control.

  20. Quantum Coherence Effects in Novel Quantum Optical Systems 

    E-Print Network [OSTI]

    Sete, Eyob Alebachew

    2012-10-19

    Optical response of an active medium can substantially be modified when coherent superpositions of states are excited, that is, when systems display quantum coherence and interference. This has led to fascinating applications in atomic and molecular...

  1. Fuel cell stack monitoring and system control

    DOE Patents [OSTI]

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2005-01-25

    A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell. Other polarization curves may be generated and used for fuel cell stack monitoring based on different operating pressures, temperatures, hydrogen quantities.

  2. Sparse Control of Quantum Systems

    E-Print Network [OSTI]

    Gero Friesecke; Felix Henneke; Karl Kunisch

    2015-07-02

    A new class of cost functionals for optimal control of quantum systems which produces controls which are sparse in frequency and smooth in time is proposed. This is achieved by penalizing a suitable time-frequency representation of the control field, rather than the control field itself, and by employing norms which are of $L^1$ or measure form with respect to frequency but smooth with respect to time. A mathematical framework is developed which yields existence of optimal controls and necessary optimality conditions of the resulting nonsmooth, nonconvex optimization problem. The framework covers the important systems of physical interest, including (infinite-dimensional) Schr\\"odinger dynamics on multiple potential energy surfaces as arising in laser control of chemical reactions. Numerical simulations demonstrate that the optimal controls, unlike those obtained with the usual $L^2$ or $H^1$ costs, concentrate on just a few frequencies, even in the infinite-dimensional case of laser-controlled chemical reactions.

  3. Carbonate fuel cell system with thermally integrated gasification

    DOE Patents [OSTI]

    Steinfeld, George (Southbury, CT); Meyers, Steven J. (Huntington Beach, CA); Lee, Arthur (Fishkill, NY)

    1996-01-01

    A fuel cell system employing a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell.

  4. Fuel cell system with coolant flow reversal

    DOE Patents [OSTI]

    Kothmann, Richard E. (Pittsburgh, PA)

    1986-01-01

    Method and apparatus for cooling electrochemical fuel cell system components. Periodic reversal of the direction of flow of cooling fluid through a fuel cell stack provides greater uniformity and cell operational temperatures. Flow direction through a recirculating coolant fluid circuit is reversed through a two position valve, without requiring modulation of the pumping component.

  5. Miniature fuel-cell system complete with on-demand fuel and oxidant supply

    E-Print Network [OSTI]

    Hur, JI; Kim, CJ

    2015-01-01

    a complete (i.e. , full, standalone) fuel- cell system whenair-breathing fuel- cell system within the full system. Therealize the full capability of the current fuel-cell system

  6. Small Fuel Cell Systems with Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing R&D Workshop Renaissance Hotel, Washington, DC August 11-12, 2011 Small Fuel Cell Systems with Hydrogen Storage Ned T. Stetson, Ph.D. Team Lead, Hydrogen Storage...

  7. Fuel control system for a carburetor

    SciTech Connect (OSTI)

    Herd, W.H. Jr.; Hensen, J.W.

    1987-05-05

    A fuel control system is described for a carburetor having a housing defining a throat through which air and fuel are drawn. The carburetor has pivotally positionable venturi plates disposed in the throat of the carburetor; a reservoir; nozzle bar; and fuel supply connected in fluid-flow relation. The fuel control system comprises: a primary restrictor, the restrictor defining a passage of predetermined cross-sectional area. The restrictor leading to a conduit connects the reservoir, primary restrictor and nozzle bar in fluid-flow relation; a primary adjustable jet has a screw-threadable adjustment member that controls the amount of fuel that is provided from the adjustable jet to the carburetor nozzle bar. The adjustment member has a conical forward end which engages a peripheral seat defining an annular flow passage when the adjustment member is displaced from the seat. A secondary restrictor connects in fluid-flow relation between the reservoir and the nozzle bar.

  8. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System...

    Office of Environmental Management (EM)

    Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 Program record 14014 from...

  9. Dual mode fuel injection system and fuel injector for same

    DOE Patents [OSTI]

    Lawrence, Keith E.; Tian, Ye

    2005-09-20

    A fuel injection system has the ability to produce two different spray patterns depending on the positioning of a needle control valve member. Positioning of the needle control valve member determines which of the two needle control chambers are placed in a low pressure condition. First and second needle valve members have closing hydraulic surfaces exposed to fluid pressure in the two needle control chambers. The injector preferably includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by the first and second needle valve members.

  10. Joint system quantum descriptions arising from local quantumness

    E-Print Network [OSTI]

    Tom Cooney; Marius Junge; Miguel Navascues; David Perez-Garcia; Ignacio Villanueva

    2012-05-18

    Bipartite correlations generated by non-signalling physical systems that admit a finite-dimensional local quantum description cannot exceed the quantum limits, i.e., they can always be interpreted as distant measurements of a bipartite quantum state. Here we consider the effect of dropping the assumption of finite dimensionality. Remarkably, we find that the same result holds provided that we relax the tensor structure of space-like separated measurements to mere commutativity. We argue why an extension of this result to tensor representations seems unlikely.

  11. Dispersive Quantum Systems: a class of isolated non-time reversal quantum systems

    E-Print Network [OSTI]

    Lúcio Fassarella

    2011-09-02

    A "dispersive quantum system" is a quantum system which is both isolated and non-time reversal invariant. This article presents precise definitions for those concepts and also a characterization of dispersive quantum systems within the class of completely positive Markovian quantum systems in finite dimension (through a homogeneous linear equation for the non-Hamiltonian part of the system's Liouvillian). To set the framework, the basic features of quantum mechanics are reviewed focusing on time evolution and also on the theory of completely positive Markovian quantum systems, including Kossakowski-Lindblad's standard form for Liouvillians. After those general considerations, I present a simple example of dispersive two-level quantum system and apply that to describe neutrino oscillation.

  12. Miniature fuel-cell system complete with on-demand fuel and oxidant supply

    E-Print Network [OSTI]

    Hur, JI; Kim, CJ

    2015-01-01

    methanol fuel cells for portable applications," J. Powerlimited the application of the miniature fuel-cell system,

  13. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect (OSTI)

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA) developed the Renewable Fuels Standard (RFS) under the Energy Policy Act of 2005. The RFS specifies targets for the amount of renewable fuel to be blended into petroleum based transportation fuels. The goal is to blend 36 billion gallons of renewable fuels into transportation fuels by 2022 (9 billion gallons were blended in 2008). The RFS also requires that the renewable fuels emit fewer greenhouse gasses than the petroleum fuels replaced. Thus the goal of the EPA is to have a more fuel efficient national fleet, less dependent on petroleum based fuels. The limit to the implementation of certain technologies employed was the requirement to run the developed powertrain on gasoline with minimal performance degradation. The addition of ethanol to gasoline fuels improves the fuels octane rating and increases the fuels evaporative cooling. Both of these fuel property enhancements make gasoline / ethanol blends more suitable than straight gasoline for use in downsized engines or engines with increased compression ratio. The use of engine downsizing and high compression ratios as well as direct injection (DI), dual independent cam phasing, external EGR, and downspeeding were fundamental to the fuel economy improvements targeted in this project. The developed powertrain specification utilized the MAHLE DI3 gasoline downsizing research engine. It was a turbocharged, intercooled, DI engine with dual independent cam phasing utilizing a compression ratio of 11.25 : 1 and a 15% reduction in final drive ratio. When compared to a gasoline fuelled 2.2L Ecotec engine in a Chevrolet HHR, vehicle drive cycle predictions indicate that the optimized powertrain operating on E85 would result in a reduced volume based drive cycle fuel economy penalty of 6% compared to an approximately 30% penalty for current technology engines.

  14. Quasiprobability distributions in open quantum systems: spin-qubit systems

    E-Print Network [OSTI]

    Kishore Thapliyal; Subhashish Banerjee; Anirban Pathak; S. Omkar; V. Ravishankar

    2015-04-08

    Quasiprobability distributions (QDs) in open quantum systems are investigated for $SU(2)$, spin like systems, having relevance to quantum optics and information. In this work, effect of both quantum non-demolition (QND) and dissipative open quantum systems, on the evolution of a number of spin QDs are investigated. Specifically, compact analytic expressions for the $W$, $P$, $Q$, and $F$ functions are obtained for some interesting single, two and three qubit states, undergoing general open system evolutions. Further, corresponding QDs are reported for an N qubit Dicke model and a spin-1 system. The existence of nonclassical characteristics are observed in all the systems investigated here. The study leads to a clear understanding of quantum to classical transition in a host of realistic physical scenarios. Variation of the amount of nonclassicality observed in the quantum systems, studied here,are also investigated using nonclassical volume.

  15. Miniature fuel-cell system complete with on-demand fuel and oxidant supply

    E-Print Network [OSTI]

    Hur, JI; Kim, CJ

    2015-01-01

    scale direct methanol fuel cell development,” Energy, vol.flow-based microfluidic fuel cell," J. Am. Chem. Soc. , vol.membraneless microchannel fuel cell system with open circuit

  16. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    and cost [ 1]. Fuel cell applications in automobiles arete d M fuel cell systems for vehicle applications, Journalof the fuel cell for vehicle applications. The air supply

  17. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    simulation tool for hydrogen fuel cell vehicles, Journal ofApplication on Direct Hydrogen Fuel Cell Vehicles, 2008. Accell system for direct hydrogen fuel cell vehicles Fig. 3

  18. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paperof automotive PEM fuel cell stacks, SAE 2000 (paper numberParasitic Loads in Fuel Cell Vehicles, International Journal

  19. Fuel Flexible Turbine System (FFTS) Program

    SciTech Connect (OSTI)

    2012-12-31

    In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone?s lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector was tested in a C65 engine operating on 100% hydrogen and with the redesigned combustion liner - Combustion Liner Design A - installed. The results were promising for the FFTS program as the system was able to burn 100% hydrogen fuel without flashback while maintaining good combustion performance. While initial results have been demonstrated the feasibility of this program, further research is needed to determine whether these results will be repeated with FFTS-4 injectors installed in all injector ports and over a wide range of operating conditions and fuel variations.

  20. Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a Vehicle

  1. Coal slurry fuel supply and purge system

    DOE Patents [OSTI]

    McDowell, Robert E. (Fairview, PA); Basic, Steven L. (Hornell, NY); Smith, Russel M. (North East, PA)

    1994-01-01

    A coal slurry fuel supply and purge system for a locomotive engines is disclosed which includes a slurry recirculation path, a stand-by path for circulating slurry during idle or states of the engine when slurry fuel in not required by the engine, and an engine header fluid path connected to the stand-by path, for supplying and purging slurry fuel to and from fuel injectors. A controller controls the actuation of valves to facilitate supply and purge of slurry to and from the fuel injectors. A method for supplying and purging coal slurry in a compression ignition engine is disclosed which includes controlling fluid flow devices and valves in a plurality of fluid paths to facilitate continuous slurry recirculation and supply and purge of or slurry based on the operating state of the engine.

  2. Horizontal modular dry irradiated fuel storage system

    DOE Patents [OSTI]

    Fischer, Larry E. (Los Gatos, CA); McInnes, Ian D. (San Jose, CA); Massey, John V. (San Jose, CA)

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  3. Fuel Retrieval System (FRS) Design Verification

    SciTech Connect (OSTI)

    YANOCHKO, R.M.

    2000-01-27

    This document was prepared as part of an independent review to explain design verification activities already completed, and to define the remaining design verification actions for the Fuel Retrieval System. The Fuel Retrieval Subproject was established as part of the Spent Nuclear Fuel Project (SNF Project) to retrieve and repackage the SNF located in the K Basins. The Fuel Retrieval System (FRS) construction work is complete in the KW Basin, and start-up testing is underway Design modifications and construction planning are also underway for the KE Basin. An independent review of the design verification process as applied to the K Basin projects was initiated in support of preparation for the SNF Project operational readiness review (ORR).

  4. Upgraded HFIR Fuel Element Welding System

    SciTech Connect (OSTI)

    Sease, John D [ORNL

    2010-02-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  5. Water injected fuel cell system compressor

    DOE Patents [OSTI]

    Siepierski, James S. (Williamsville, NY); Moore, Barbara S. (Victor, NY); Hoch, Martin Monroe (Webster, NY)

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  6. Fuel Retrieval System Design Verification Report

    SciTech Connect (OSTI)

    GROTH, B.D.

    2000-04-11

    The Fuel Retrieval Subproject was established as part of the Spent Nuclear Fuel Project (SNF Project) to retrieve and repackage the SNF located in the K Basins. The Fuel Retrieval System (FRS) construction work is complete in the KW Basin, and start-up testing is underway. Design modifications and construction planning are also underway for the KE Basin. An independent review of the design verification process as applied to the K Basin projects was initiated in support of preparation for the SNF Project operational readiness review (ORR). A Design Verification Status Questionnaire, Table 1, is included which addresses Corrective Action SNF-EG-MA-EG-20000060, Item No.9 (Miller 2000).

  7. Fuel cell using a hydrogen generation system

    DOE Patents [OSTI]

    Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  8. Sliding mode control of quantum systems

    E-Print Network [OSTI]

    Daoyi Dong; Ian R. Petersen

    2009-10-31

    This paper proposes a new robust control method for quantum systems with uncertainties involving sliding mode control (SMC). Sliding mode control is a widely used approach in classical control theory and industrial applications. We show that SMC is also a useful method for robust control of quantum systems. In this paper, we define two specific classes of sliding modes (i.e., eigenstates and state subspaces) and propose two novel methods combining unitary control and periodic projective measurements for the design of quantum sliding mode control systems. Two examples including a two-level system and a three-level system are presented to demonstrate the proposed SMC method. One of main features of the proposed method is that the designed control laws can guarantee desired control performance in the presence of uncertainties in the system Hamiltonian. This sliding mode control approach provides a useful control theoretic tool for robust quantum information processing with uncertainties.

  9. Software-defined Quantum Communication Systems

    E-Print Network [OSTI]

    Travis S. Humble; Ronald J. Sadlier

    2014-10-20

    Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to evaluate proposed capabilities. We apply the paradigm of software-defined communication for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communication terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the super-dense coding protocol as an example, we describe implementations of both the transmitter and receiver, and we present results from numerical simulations of the behavior. We conclude that software-defined quantum communication provides a robust framework in which to explore the large design space offered by this new regime of communication.

  10. Galilei invariant technique for quantum system description

    SciTech Connect (OSTI)

    Kamuntavi?ius, Gintautas P.

    2014-04-15

    Problems with quantum systems models, violating Galilei invariance are examined. The method for arbitrary non-relativistic quantum system Galilei invariant wave function construction, applying a modified basis where center-of-mass excitations have been removed before Hamiltonian matrix diagonalization, is developed. For identical fermion system, the Galilei invariant wave function can be obtained while applying conventional antisymmetrization methods of wave functions, dependent on single particle spatial variables.

  11. Fossil fuel combined cycle power system

    DOE Patents [OSTI]

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  12. System and method for injecting fuel

    DOE Patents [OSTI]

    Uhm, Jong Ho; Johnson, Thomas Edward

    2012-12-04

    According to various embodiments, a system includes a staggered multi-nozzle assembly. The staggered multi-nozzle assembly includes a first fuel nozzle having a first axis and a first flow path extending to a first downstream end portion, wherein the first fuel nozzle has a first non-circular perimeter at the first downstream end portion. The staggered multi-nozzle assembly also includes a second fuel nozzle having a second axis and a second flow path extending to a second downstream end portion, wherein the first and second downstream end portions are axially offset from one another relative to the first and second axes. The staggered multi-nozzle assembly further includes a cap member disposed circumferentially about at least the first and second fuel nozzles to assemble the staggered multi-nozzle assembly.

  13. Charge and momentum in quantum electromechanical systems

    E-Print Network [OSTI]

    Bennett, Steven D.

    Charge and momentum in quantum electromechanical systems Steven D. Bennett Deptartment of Physics properties of the dot. For weak electromechanical coupling, we find an effective temperature-dependent level

  14. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    ip t Table 3 Vehicle and fuel cell system parameters (Casekg) Electric Motor (kW) Fuel Cell Stack and Auxiliaries Max.An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paper

  15. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    H. Peng, Control of Fuel Cell Power Systems, Springer, 2004.May 2002, pp.3117-3122. te d M fuel cell systems for vehicleHutchenreuther, Control of a Fuel Cell Air Supply Module (

  16. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy 1 DOEEnergy 2Integratedin Gas

  17. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect (OSTI)

    Hakan Yilmaz; Mark Christie; Anna Stefanopoulou

    2010-12-31

    The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.

  18. Combination of Diesel fuel system architectures and Ceria-based...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications...

  19. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Lean Gasoline System Development for Fuel Efficient Small Car Lean Gasoline System Development for Fuel Efficient Small Car Vehicle Technologies...

  20. Improved System Performance and Reduced Cost of a Fuel Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement Improved System Performance and Reduced Cost of a Fuel Reformer, LNT,...

  1. National Template: Stationary & Portable Fuel Cell Systems (Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Template: Stationary & Portable Fuel Cell Systems (Fact Sheet), NREL (National Renewable Energy Laboratory) National Template: Stationary & Portable Fuel Cell Systems (Fact Sheet),...

  2. Microfluidic fuel cell systems with embedded materials and structures...

    Office of Scientific and Technical Information (OSTI)

    Microfluidic fuel cell systems with embedded materials and structures and method thereof Citation Details In-Document Search Title: Microfluidic fuel cell systems with embedded...

  3. Solid Oxide Fuel Cell Systems PVL Line

    SciTech Connect (OSTI)

    Susan Shearer - Stark State College; Gregory Rush - Rolls-Royce Fuel Cell Systems

    2012-05-01

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability to test fuel cell components at a scale and under conditions that can be accurately extrapolated to full system performance. This requires specially designed equipment that replicates the pressure (up to 6.5 bara), temperature (about 910 C), anode and cathode gas compositions, flows and power generation density of the full scale design. The SBTS fuel cell anode gas is produced through the reaction of pipeline natural gas with a mixture of steam, CO2, and O2 in a catalytic partial oxidation (CPOX) reactor. Production of the fuel cell anode gas in this manner provides the capability to test a fuel cell with varying anode gas compositions ranging from traditional reformed natural gas to a coal-syngas surrogate fuel. Stark State College and RRFCS have a history of collaboration. This is based upon SSCAs commitment to provide students with skills for advanced energy industries, and RRFCS need for a workforce that is skilled in high temperature fuel cell development and testing. A key to this approach is the access of students to unique SOFC test and evaluation equipment. This equipment is designed and developed by RRFCS, with the participation of SSC interns. In the near-term, the equipment will be used by RRFCS for technology development. When this stage is completed, and RRFCS has moved to commercial products, SSC will utilize this equipment for workforce training. The RRFCS fuel cell design is based upon a unique ceramic substrate architecture in which a porous, flat substrate (tube) provides the support structure for a network of solid oxide fuel cells that are electrically connected in series. These tubes are grouped into a {approx}350-tube repeat configuration, called a stack/block. Stack/block testing, performed at system conditions, provides data that can be confidently scaled to full scale performance. This is the basis for the specially designed and developed test equipment that is required for advancing and accelerating the RRFCS SOFC power system development program. All contract DE-EE0003229 objectives were achieved and deliverables completed during the peri

  4. Open quantum systems with loss and gain

    E-Print Network [OSTI]

    Hichem Eleuch; Ingrid Rotter

    2015-04-13

    We consider different properties of small open quantum systems coupled to an environment and described by a non-Hermitian Hamilton operator. Of special interest is the non-analytical behavior of the eigenvalues in the vicinity of singular points, the so-called exceptional points (EPs), at which the eigenvalues of two states coalesce and the corresponding eigenfunctions are linearly dependent from one another. The phases of the eigenfunctions are not rigid in approaching an EP and providing therewith the possibility to put information from the environment into the system. All characteristic properties of non-Hermitian quantum systems hold true not only for natural open quantum systems that suffer loss due to their embedding into the continuum of scattering wavefunctions. They appear also in systems coupled to different layers some of which provide gain to the system. Thereby gain and loss, respectively, may be fixed inside every layer, i.e. characteristic of it.

  5. Superconducting Circuitry for Quantum Electromechanical Systems

    E-Print Network [OSTI]

    Matthew D. LaHaye; Francisco Rouxinol; Yu Hao; Seung-Bo Shim; Elinor K. Irish

    2015-04-11

    Superconducting systems have a long history of use in experiments that push the frontiers of mechanical sensing. This includes both applied and fundamental research, which at present day ranges from quantum computing research and efforts to explore Planck-scale physics to fundamental studies on the nature of motion and the quantum limits on our ability to measure it. In this paper, we first provide a short history of the role of superconducting circuitry and devices in mechanical sensing, focusing primarily on efforts in the last decade to push the study of quantum mechanics to include motion on the scale of human-made structures. This background sets the stage for the remainder of the paper, which focuses on the development of quantum electromechanical systems (QEMS) that incorporate superconducting quantum bits (qubits), superconducting transmission line resonators and flexural nanomechanical elements. In addition to providing the motivation and relevant background on the physical behavior of these systems, we discuss our recent efforts to develop a particular type of QEMS that is based upon the Cooper-pair box (CPB) and superconducting coplanar waveguide (CPW) cavities, a system which has the potential to serve as a testbed for studying the quantum properties of motion in engineered systems.

  6. Universal simulation of Markovian open quantum systems

    E-Print Network [OSTI]

    Ryan Sweke; Ilya Sinayskiy; Denis Bernard; Francesco Petruccione

    2015-07-02

    We consider the problem of constructing a "universal set" of Markovian processes, such that any Markovian open quantum system, described by a one-parameter semigroup of quantum channels, can be simulated through sequential simulations of processes from the universal set. In particular, for quantum systems of dimension $d$, we explicitly construct a universal set of semigroup generators, parametrized by $d^2-3$ continuous parameters, and prove that a necessary and sufficient condition for the dynamical simulation of a $d$ dimensional Markovian quantum system is the ability to implement a) quantum channels from the semigroups generated by elements of the universal set of generators, and b) unitary operations on the system. Furthermore, we provide an explicit algorithm for simulating the dynamics of a Markovian open quantum system using this universal set of generators, and show that it is efficient, with respect to this universal set, when the number of distinct Lindblad operators (representing physical dissipation processes) scales polynomially with respect to the number of subsystems.

  7. Investigation of Fuel Cell System Performance and Operation: A Fuel Cell as a Practical

    E-Print Network [OSTI]

    Investigation of Fuel Cell System Performance and Operation: A Fuel Cell as a Practical Distributed of Fuel Cell System Performance and Operation: A Fuel Cell as a Practical Distributed Generator George Research Center program. This report is of work done under the PSERC project "Investigation of Fuel Cell

  8. Fuel Processing for Portable Power Fuel Cell Systems: Preferential Oxidation in

    E-Print Network [OSTI]

    Besser, Ronald S.

    NJ Center for Microchemical Systems #12;Fuel Cells: Applications & Power Ranges 100 101 102 103 104Fuel Processing for Portable Power Fuel Cell Systems: Preferential Oxidation in Microchannel 105 106 107 FUEL CELL Power (Watts) Ship Service Fuel Cell Taken from Robert Nowak DARPA #12;Can

  9. Candidate Fuels for Vehicle Fuel Cell Power Systems

    E-Print Network [OSTI]

    · Energy security · Energy use reduction · Greenhouse gas (GHG) and other emissions reductions · Other engine vehicle, HEV = hybrid (battery/ICE) electric vehicle, NG SR = natural gas steam reformer price premium · Subsidies/taxes · Supply chain (natural gas, materials) · Fuel economy · FCV and fueling

  10. Quantum Mechanics Studies of Fuel Cell Catalysts and Proton Conducting Ceramics

    E-Print Network [OSTI]

    Winfree, Erik

    Quantum Mechanics Studies of Fuel Cell Catalysts and Proton Conducting Ceramics with Validation) fuel-cell subgroup director, Dr. Boris. V Merinov, for his extensive help in progress discussion mechanics (QM) studies aimed at improving the performance of hydrogen fuel cells. This led to predictions

  11. Dual nozzle single pump fuel injection system

    SciTech Connect (OSTI)

    Gonzalez, C.

    1992-02-25

    This patent describes an improvement in a fuel injection system in a stratified charge hybrid internal combustion engine including a main combustion chamber, a precombustion chamber connected with the main chamber, fuel injectors in the main combustion chamber and precombustion chamber which open at higher and lower pressure levels respectively to sequentially inject fuel into the prechamber and the main chamber, timed spark ignition means in the prechamber for ignition of the fuel-air mixture therein, and an engine driven and timed fuel injection pump having a variable output capacity that varies with power level position, the injection pump is supplied by a low pressure charging pump. The improvement comprises: a shuttle valve including a bore therein; a shuttle spool means positioned within the bore defining a prechamber supply chamber on one side thereof and a spool activation chamber on the opposite side thereof the spool means having a first and second position; biasing means urging the spool towards it first position with the spool actuation chamber at its minimum volume; first conduit means connecting charging pressure to the prechamber supply camber in the first position oil the spool means; second conduit means connecting the injection pump to spool actuation chamber; third conduit means connecting the spool actuating chamber with the main injector; forth conduit means connecting the prechamber supply chamber with the prechamber injector; the initial charge from the injection pump actuates the spool means from its fir to its second position.

  12. Fuel system pressure control improves NGV performance

    SciTech Connect (OSTI)

    Heenan, J.S.

    1996-09-01

    The use of natural gas as a transportation fuel can offer: emissions and environmental benefits; energy diversity and security. Current reports suggest there are about 1,000,000 natural gas vehicles (NGV) operating around the world. One key component of NGV systems is the pressure regulator. Without accurate pressure regulation it is difficult, and costly, to obtain low emissions and good performance benefits from NGV. The paper discusses a precision, NGV, pressure regulator for fuel injection applications. Critical features of any regulator are flow and pressure output (P{sub out}) error. P{sub out} errors include droop, creep and hysteresis. Fuel injector inlet pressures vary depending on the system design approach. Normally fuel injector inlet pressures vary between 1.7 to 17 bar. Additional topics of discussion include heat exchanger control, using manifold absolute pressure (MAP) to bias the regulator and the effects of undersized inlet and outlet fittings and hoses. Also supplied are comparative emissions test results for one and two-stage regulators. The paper concludes that precision pressure regulation is a cost-effective method to obtain low emissions and good performance.

  13. Nonlinear effect on quantum control for two-level systems

    E-Print Network [OSTI]

    W. Wang; J. Shen; X. X. Yi

    2009-06-05

    The traditional quantum control theory focuses on linear quantum system. Here we show the effect of nonlinearity on quantum control of a two-level system, we find that the nonlinearity can change the controllability of quantum system. Furthermore, we demonstrate that the Lyapunov control can be used to overcome this uncontrollability induced by the nonlinear effect.

  14. Level shift operators for open quantum systems

    E-Print Network [OSTI]

    Marco Merkli

    2006-01-07

    Level shift operators describe the second order displacement of eigenvalues under perturbation. They play a central role in resonance theory and ergodic theory of open quantum systems at positive temperatures. We exhibit intrinsic properties of level shift operators, properties which stem from the structure of open quantum systems at positive temperatures and which are common to all such systems. They determine the geometry of resonances bifurcating from eigenvalues of positive temperature Hamiltonians and they relate the Gibbs state, the kernel of level shift operators, and zero energy resonances. We show that degeneracy of energy levels of the small part of the open quantum system causes the Fermi Golden Rule Condition to be violated and we analyze ergodic properties of such systems.

  15. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...

    Broader source: Energy.gov (indexed) [DOE]

    Cell Comparison of Distributed Power Generation Technologies Fuel-Cycle Energy and Emissions Analysis with the GREET Model Full Fuel-Cycle Comparison of Forklift Propulsion Systems...

  16. Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives

    Broader source: Energy.gov [DOE]

    A bench-top engine testing system was used to fast screen the efficiency of fuel additives or fuel blends on NOx reduction

  17. Fuel cycle optimization of thorium and uranium fueled PWR systems

    E-Print Network [OSTI]

    Garel, Keith Courtnay

    1977-01-01

    The burnup neutronics of uniform PWR lattices are examined with respect to reduction of uranium ore requirements with an emphasis on variation of the fuel-to-moderator ratio

  18. DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System...

    Broader source: Energy.gov (indexed) [DOE]

    Results from the analysis were communicated to the FCT Office at the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation 3 and at a meeting of the...

  19. Landfill Gas Fueled HCCI Demonstration System

    E-Print Network [OSTI]

    Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

    2006-01-01

    is reached, the engine operates on propane fuel forpropane- fueled homogeneous charge compression ignition engine:while the engine operates steadily on propane as fuel (

  20. Quantum field theory of relic nonequilibrium systems

    E-Print Network [OSTI]

    Nicolas G. Underwood; Antony Valentini

    2014-11-14

    In terms of the de Broglie-Bohm pilot-wave formulation of quantum theory, we develop field-theoretical models of quantum nonequilibrium systems which could exist today as relics from the very early universe. We consider relic excited states generated by inflaton decay, as well as relic vacuum modes, for particle species that decoupled close to the Planck temperature. Simple estimates suggest that, at least in principle, quantum nonequilibrium could survive to the present day for some relic systems. The main focus of this paper is to describe the behaviour of such systems in terms of field theory, with the aim of understanding how relic quantum nonequilibrium might manifest experimentally. We show by explicit calculation that simple perturbative couplings will transfer quantum nonequilibrium from one field to another (for example from the inflaton field to its decay products). We also show that fields in a state of quantum nonequilibrium will generate anomalous spectra for standard energy measurements. Possible connections to current astrophysical observations are briefly addressed.

  1. Scattering Theory for Open Quantum Systems

    E-Print Network [OSTI]

    J. Behrndt; M. M. Malamud; H. Neidhardt

    2006-10-31

    Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator $A_D$ in a Hilbert space $\\sH$ is used to describe an open quantum system. In this case the minimal self-adjoint dilation $\\widetilde K$ of $A_D$ can be regarded as the Hamiltonian of a closed system which contains the open system $\\{A_D,\\sH\\}$, but since $\\widetilde K$ is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family $\\{A(\\mu)\\}$ of maximal dissipative operators depending on energy $\\mu$, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single Pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schr\\"{o}dinger-Poisson systems.

  2. Incoherent Control of Locally Controllable Quantum Systems

    E-Print Network [OSTI]

    Daoyi Dong; Chenbin Zhang; Herschel Rabitz; Alexander Pechen; Tzyh-Jong Tarn

    2008-10-21

    An incoherent control scheme for state control of locally controllable quantum systems is proposed. This scheme includes three steps: (1) amplitude amplification of the initial state by a suitable unitary transformation, (2) projective measurement on the amplified state, and (3) final optimization by a unitary controlled transformation. The first step increases the amplitudes of some desired eigenstates and the corresponding probability of observing these eigenstates, the second step projects, with high probability, the amplified state into a desired eigenstate, and the last step steers this eigenstate into the target state. Within this scheme, two control algorithms are presented for two classes of quantum systems. As an example, the incoherent control scheme is applied to the control of a hydrogen atom by an external field. The results support the suggestion that projective measurements can serve as an effective control and local controllability information can be used to design control laws for quantum systems. Thus, this scheme establishes a subtle connection between control design and controllability analysis of quantum systems and provides an effective engineering approach for controlling quantum systems with partial controllability information.

  3. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

    2013-08-13

    A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  4. Fuel handling system for a nuclear reactor

    DOE Patents [OSTI]

    Saiveau, James G. (Hickory Hills, IL); Kann, William J. (Park Ridge, IL); Burelbach, James P. (Glen Ellyn, IL)

    1986-01-01

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  5. Solid oxide fuel cell power system development

    SciTech Connect (OSTI)

    Kerr, Rick; Wall, Mark; Sullivan, Neal

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  6. Pneumatic direct cylinder fuel injection system

    SciTech Connect (OSTI)

    Reinke, P.E.

    1988-09-20

    This patent describes a pneumatic direct cylinder fuel injection system for use in an internal combustion engine of the type having an engine block means with an air induction means for supplying induction air to cylinders in the engine block means, with each cylinder having a piston reciprocable therein so as to define a combustion chamber which includes a stratified charge chamber as a portion thereof, the system including a plurality of pneumatic injectors, with the pneumatic injector being supported by the engine block means in position to discharge an air/fuel mixture into an associate stratified charge chamber, each of the pneumatic injectors including a body means terminating at one end thereof in a nozzle body, a bore means through the body means and the nozzle body, a valve seat encircling the bore means at the outboard free end of the nozzle body, the opposite end of the bore means being connectable to a source of air at a predetermined pressure, a poppet valve operatively positioned in the bore means. The poppet value includes a head movable between an open position and closed position relative to the valve seat and a stem extending from the head and defining with the bore means an air passage, control means operatively associated with the poppet valve to normally maintain the poppet valve in the closed position and being operative to permit movement of the poppet valve to the open position and, an electromagnetic fuel injector operatively positioned in the body means for injecting pressurized fuel into the air passage upstream of the head of the poppet valve in terms of the direction of air flow through the air passage during a compression stroke of the piston in the associate cylinder, the arrangement being such that when the compression pressure reaches a predetermined pressure the poppet valve will be moved to the valve closed position.

  7. Carbonate fuel cell system with thermally integrated gasification

    DOE Patents [OSTI]

    Steinfeld, G.; Meyers, S.J.; Lee, A.

    1996-09-10

    A fuel cell system is described which employs a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell. 2 figs.

  8. Combustor nozzle for a fuel-flexible combustion system

    DOE Patents [OSTI]

    Haynes, Joel Meier (Niskayuna, NY); Mosbacher, David Matthew (Cohoes, NY); Janssen, Jonathan Sebastian (Troy, NY); Iyer, Venkatraman Ananthakrishnan (Mason, OH)

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  9. Indirect quantum control for finite-dimensional coupled systems

    E-Print Network [OSTI]

    J. Nie; H. C. Fu; X. X. Yi

    2009-07-12

    We present a new analysis on the quantum control for a quantum system coupled to a quantum probe. This analysis is based on the coherent control for the quantum system and a hyperthesis that the probe can be prepared in specified initial states. The results show that a quantum system can be manipulated by probe state-dependent coherent control. In this sense, the present analysis provides a new control scheme which combines the coherent control and state preparation technology.

  10. Fuel Cell System Improvement for Model-Based Diagnosis Analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Fuel Cell System Improvement for Model-Based Diagnosis Analysis Philippe Fiani & Michel Batteux of a model of a fuel cell system, in order to make it usable for model- based diagnosis methods. A fuel cell for the fuel cell stack but also for the system environment. In this paper, we present an adapted library which

  11. Microchannel High-Temperature Recuperator for Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heat recuperator for a high-temperature fuel cell system. This technology increases the efficiency of fuel cells and improves their performance in distributed energy...

  12. Microchannel High-Temperature Recuperator for Fuel Cell Systems...

    Broader source: Energy.gov (indexed) [DOE]

    developed an efficient, microchannel-based waste heat recuperator for a high-temperature fuel cell system. This technology increases the efficiency of fuel cells and improves...

  13. Heisenberg picture approach to the stability of quantum Markov systems

    SciTech Connect (OSTI)

    Pan, Yu, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au; Miao, Zibo, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au [Research School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); Amini, Hadis, E-mail: nhamini@stanford.edu [Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305 (United States); Gough, John, E-mail: jug@aber.ac.uk [Institute of Mathematics and Physics, Aberystwyth University, SY23 3BZ Wales (United Kingdom); Ugrinovskii, Valery, E-mail: v.ugrinovskii@gmail.com [School of Engineering and Information Technology, University of New South Wales at ADFA, Canberra, ACT 2600 (Australia); James, Matthew R., E-mail: matthew.james@anu.edu.au [ARC Centre for Quantum Computation and Communication Technology, Research School of Engineering, Australian National University, Canberra, ACT 0200 (Australia)

    2014-06-15

    Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.

  14. Quons in a Quantum Dissipative System

    E-Print Network [OSTI]

    Lee, Taejin

    2015-01-01

    String theory proves to be an imperative tool to explore the critical behavior of the quantum dissipative system. We discuss the quantum particles moving in two dimensions, in the presence of a uniform magnetic field, subject to a periodic potential and a dissipative force, which are described by the dissipative Wannier-Azbel-Hofstadter (DWAH) model. Using string theory formulation of the model, we find that the elementary excitations of the system at the generic points of the off-critical regions, in the zero temperature limit are quons, which satisfy q-deformed statistics.

  15. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    SciTech Connect (OSTI)

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2}) that simulates the composition of the coal syngas. At 800 C, the stack achieved a power density of 1176 W, which represents the largest power level demonstrated for CO in the literature. Although the FB-DCFC performance results obtained in this project were definitely encouraging and promising for practical applications, DCFC approaches pose significant technical challenges that are specific to the particular DCFC scheme employed. Long term impact of coal contaminants, particularly sulfur, on the stability of cell components and cell performance is a critically important issue. Effective current collection in large area cells is another challenge. Lack of kinetic information on the Boudouard reactivity of wide ranging solid fuels, including various coals and biomass, necessitates empirical determination of such reaction parameters that will slow down development efforts. Scale up issues will also pose challenges during development of practical FB-DCFC prototypes for testing and validation. To overcome some of the more fundamental problems, initiation of federal support for DCFC is critically important for advancing and developing this exciting and promising technology for third generation electricity generation from coal, biomass and other solid fuels including waste.

  16. Quantum Dynamics of Nonlinear Cavity Systems

    E-Print Network [OSTI]

    Paul D. Nation

    2010-09-16

    We investigate the quantum dynamics of three different configurations of nonlinear cavity systems. To begin, we carry out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector comprised of a SQUID with a mechanically compliant loop segment. The SQUID is approximated by a nonlinear current-dependent inductor, inducing a flux tunable nonlinear Duffing term in the cavity equation of motion. Expressions are derived for the detector signal and noise response where it is found that a soft-spring Duffing self-interaction enables a closer approach to the displacement detection standard quantum limit, as well as cooling closer to the ground state. Next, we make use of a superconducting transmission line formed from an array of dc-SQUIDs for investigating analogue Hawking radiation. Biasing the array with a space-time varying flux modifies the propagation velocity of the transmission line, leading to an effective metric with a horizon. This setup allows for quantum effects such as backreaction and analogue space-time fluctuations on the Hawking process. Finally, we look at a quantum parametric amplifier with dynamical pump mode, viewed as a zero-dimensional model of Hawking radiation from an evaporating black hole. The conditions are derived under which the spectrum of particles generated from vacuum fluctuations deviates from the thermal spectrum predicted for the conventional parametric amplifier. We find that significant deviation occurs once the pump mode (black hole) has released nearly half of its initial energy in the signal (Hawking radiation) and idler (in-falling particle) modes. As a model of black hole dynamics, this finding lends support to the view that late-time Hawking radiation contains information about the quantum state of the black hole and is entangled with the black hole's quantum gravitational degrees of freedom.

  17. Alternative Fuels Data Center: Transportation System Efficiency

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More placesNaturalState InformationTools

  18. NSF-CBMS Conference on Quantum Spin SystemsNSF-CBMS Conference on Quantum Spin SystemsNSF-CBMS Conference on Quantum Spin SystemsNSF-CBMS Conference on Quantum Spin SystemsNSF-CBMS Conference on Quantum Spin Systems Principal Lecturer: Bruno Nachtergaele

    E-Print Network [OSTI]

    Jung, Paul

    NSF-CBMS Conference on Quantum Spin SystemsNSF-CBMS Conference on Quantum Spin SystemsNSF-CBMS Conference on Quantum Spin SystemsNSF-CBMS Conference on Quantum Spin SystemsNSF-CBMS Conference on QuantumUniversity of Alabama at Birmingham June 16­20, 2014 Conference organizers: Paul Jung Shannon Starr Gunter Stolz Invited

  19. Quantum-mechanical aspects of classically chaotic driven systems

    SciTech Connect (OSTI)

    Milonni, P.W.; Ackerhalt, J.R.; Goggin, M.E.

    1987-01-01

    This paper treats atoms and molecules in laser fields as periodically driven quantum systems. The paper concludes by determining that stochastic excitation is possible in quantum systems with quasiperiodic driving. 17 refs. (JDH)

  20. Quantum Phase Transitions in a Finite System

    E-Print Network [OSTI]

    A. Leviatan

    2006-12-05

    A general procedure for studying finite-N effects in quantum phase transitions of finite systems is presented and applied to the critical-point dynamics of nuclei undergoing a shape-phase transition of second-order (continuous), and of first-order with an arbitrary barrier.

  1. Quantum chaos and thermalization in gapped systems

    SciTech Connect (OSTI)

    Rigol, Marcos [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Santos, Lea F. [Department of Physics, Yeshiva University, New York, New York 10016 (United States)

    2010-07-15

    We investigate the onset of thermalization and quantum chaos in finite one-dimensional gapped systems of hard-core bosons. Integrability in these systems is broken by next-nearest-neighbor repulsive interactions, which also generate a superfluid to insulator transition. By employing full exact diagonalization, we study chaos indicators and few-body observables. We show that with increasing system size, chaotic behavior is seen over a broader range of parameters and, in particular, deeper into the insulating phase. Concomitantly, we observe that, as the system size increases, the eigenstate thermalization hypothesis extends its range of validity inside the insulating phase and is accompanied by the thermalization of the system.

  2. Fuel cell system with combustor-heated reformer

    DOE Patents [OSTI]

    Pettit, William Henry (Rochester, NY)

    2000-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  3. Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Hybrid Fuel Cell / Gas Turbine Systems Auxiliary Power Unit Abstract Recent interest in fuel cell fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical performance with experimental data is presented to demonstrate model validity. Introduction Fuel cell

  4. Advanced coal-fueled gas turbine systems

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  5. Single module pressurized fuel cell turbine generator system

    DOE Patents [OSTI]

    George, Raymond A. (Pittsburgh, PA); Veyo, Stephen E. (Murrysville, PA); Dederer, Jeffrey T. (Valencia, PA)

    2001-01-01

    A pressurized fuel cell system (10), operates within a common pressure vessel (12) where the system contains fuel cells (22), a turbine (26) and a generator (98) where preferably, associated oxidant inlet valve (52), fuel inlet valve (56) and fuel cell exhaust valve (42) are outside the pressure vessel.

  6. Flex Fuel Vehicle Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14,EnergyFinancingWIPPFixed Monthly1 DOE Hydrogen

  7. Thermodynamics of quantum systems under dynamical control

    E-Print Network [OSTI]

    D. Gelbwaser-Klimovsky; Wolfgang Niedenzu; Gershon Kurizki

    2015-03-04

    In this review the debated rapport between thermodynamics and quantum mechanics is addressed in the framework of the theory of periodically-driven/controlled quantum-thermodynamic machines. The basic model studied here is that of a two-level system (TLS), whose energy is periodically modulated while the system is coupled to thermal baths. When the modulation interval is short compared to the bath memory time, the system-bath correlations are affected, thereby causing cooling or heating of the TLS, depending on the interval. In steady state, a periodically-modulated TLS coupled to two distinct baths constitutes the simplest quantum heat machine (QHM) that may operate as either an engine or a refrigerator, depending on the modulation rate. We find their efficiency and power-output bounds and the conditions for attaining these bounds. An extension of this model to multilevel systems shows that the QHM power output can be boosted by the multilevel degeneracy. These results are used to scrutinize basic thermodynamic principles: (i) Externally-driven/modulated QHMs may attain the Carnot efficiency bound, but when the driving is done by a quantum device ("piston"), the efficiency strongly depends on its initial quantum state. Such dependence has been unknown thus far. (ii) The refrigeration rate effected by QHMs does not vanish as the temperature approaches absolute zero for certain quantized baths, e.g., magnons, thous challenging Nernst's unattainability principle. (iii) System-bath correlations allow more work extraction under periodic control than that expected from the Szilard-Landauer principle, provided the period is in the non-Markovian domain. Thus, dynamically-controlled QHMs may benefit from hitherto unexploited thermodynamic resources.

  8. Multi-stage fuel cell system method and apparatus

    DOE Patents [OSTI]

    George, Thomas J. (Morgantown, WV); Smith, William C. (Morgantown, WV)

    2000-01-01

    A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

  9. Alternative descriptions and bipartite compound quantum systems

    E-Print Network [OSTI]

    G. Scolarici; L. Solombrino

    2008-11-10

    We analyze some features of alternative Hermitian and quasi-Hermitian quantum descriptions of simple and bipartite compound systems. We show that alternative descriptions of two interacting subsystems are possible if and only if the metric operator of the compound system can be obtained as tensor product of positive operators on component spaces. Some examples also show that such property could be strictly connected with symmetry properties of the non-Hermitian Hamiltonian.

  10. Module 5: Fuel Cell Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This course covers the systems required to operate a fuel cell engine, the components and functionality of each fuel cell system fcm05r0.pdf More Documents & Publications Module 7:...

  11. Quantum cryptographic system with reduced data loss

    DOE Patents [OSTI]

    Lo, H.K.; Chau, H.F.

    1998-03-24

    A secure method for distributing a random cryptographic key with reduced data loss is disclosed. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically. 23 figs.

  12. Quantum cryptographic system with reduced data loss

    DOE Patents [OSTI]

    Lo, Hoi-Kwong (1309, Low Block, Lei Moon House Ap Lei Chau Estate, Hong Kong, HK); Chau, Hoi Fung (Flat C, 42nd Floor, Tower 1, University Heights 23 Pokfield Road, Pokfulam, Hong Kong, HK)

    1998-01-01

    A secure method for distributing a random cryptographic key with reduced data loss. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically.

  13. Measure of Quantum Macroscopicity for Arbitrary Spin Systems and Quantum Phase Transition as a Genuine Macroscopic Quantum Phenomenon

    E-Print Network [OSTI]

    Minsu Kang; Chang-Woo Lee; Jeongho Bang; Seung-Woo Lee; Chae-Yeun Park; Hyunseok Jeong

    2015-10-10

    We propose a general and computable measure of quantum macroscopicity for arbitrary spin states by quantifying interference fringes in phase space. It effectively discriminates genuine macroscopic quantum effects from mere accumulations of microscopic quantum effects in large systems. The measure is applied to several examples and it is found to be consistent with some previous proposals. In particular, we investigate many-body spin systems undergoing the quantum phase transition (QPT) and the QPT turns out to be a genuine macroscopic quantum phenomenon. Our result suggests that a macroscopic quantum superposition of an extremely large size may appear during the QPT.

  14. Impact of Biodiesel on Fuel System Component Durability

    SciTech Connect (OSTI)

    Terry, B.

    2005-09-01

    A study of the effects of biodiesel blends on fuel system components and the physical characteristics of elastomer materials.

  15. Transportation Services Fueling Operation Transportation Services has installed a software system that will facilitate fueling of

    E-Print Network [OSTI]

    Transportation Services Fueling Operation Transportation Services has installed a software system that will facilitate fueling of vehicles. Operational changes are being made to facilitate the transition into this system. All University vehicles that wish to fuel at UH M noa Transportation Services will be required

  16. Landfill Gas Fueled HCCI Demonstration System

    E-Print Network [OSTI]

    Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

    2006-01-01

    Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,”USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

  17. Landfill Gas Fueled HCCI Demonstration System

    E-Print Network [OSTI]

    Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

    2006-01-01

    chemical- kinetic model of propane HCCI combustion,” SAEof a four-cylinder 1.9 l propane- fueled homogeneous chargethe fuel line can use propane from a tank and NG from the

  18. Landfill Gas Fueled HCCI Demonstration System

    E-Print Network [OSTI]

    Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

    2006-01-01

    operations with natural gas: Fuel composition implications,”of Natural gas testing LANDFILL GAS COMPOSITION Tapping into

  19. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact Sheet 2014 Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact...

  20. Fuel Cell/Gas Turbine System Performance Studies

    Office of Scientific and Technical Information (OSTI)

    and the topping natural gassolid oxide fuel cell combined cycle (NG-SOFCCC) novel power plant systems were earlier introduced as high efficient systems. METC developed these...

  1. Fuel Processor Enabled NOx Adsorber Aftertreatment System for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions...

  2. Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements...

  3. Fuel Cell Power Model for CHHP System Economics and Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model for CHHP System Economics and Performance Analysis Fuel Cell Power Model for CHHP System Economics and Performance Analysis Presented at the Renewable Hydrogen Workshop, Nov....

  4. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    and Optimization of PEMFC Systems and its Application onExchange Membrane fuel cell (PEMFC) technology for use inExchange Membrane fuel cell (PEMFC) technology for use in

  5. How Quantum Computers Fail: Quantum Codes, Correlations in Physical Systems, and Noise Accumulation

    E-Print Network [OSTI]

    Kalai, Gil

    How Quantum Computers Fail: Quantum Codes, Correlations in Physical Systems, and Noise Accumulation, much of modern cryptography, as well as security in computer systems for finance and commerce are based Dedicated to the memory of Itamar Pitowsky Abstract The feasibility of computationally superior quantum

  6. Fuel Systems Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLCNorthIdaho:FroniusFruitdale,FryeBioLLCFuel

  7. Greasecar Vegetable Fuel Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectricHydro Electric Co PGrayson Rural

  8. Fuel Cell Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » ProgramPolicySenateFlyer, TitleGrantCell AnimationCells

  9. Protection of quantum information and optimal singlet conversion through higher dimensional quantum systems and environment monitoring

    E-Print Network [OSTI]

    E. Mascarenhas; B. Marques; D. Cavalcanti; M. Terra Cunha; M. Fran\\cca Santos

    2010-04-12

    We study how to protect quantum information in quantum systems subjected to local dissipation. We show that combining the use of three-level systems, environment monitoring, and local feedback can fully and deterministically protect any available quantum information, including entanglement initially shared by different parties. These results can represent a gain in resources and/or distances in quantum communication protocols such as quantum repeaters and teleportation as well as time for quantum memories. Finally, we show that monitoring local environments physically implements the optimum singlet conversion protocol, essential for classical entanglement percolation.

  10. Open Quantum Systems at Low Temperature

    E-Print Network [OSTI]

    Johan F. Triana

    2015-08-25

    It is known that the origin of the deviations from standard thermodynamics proceed from the strong coupling to the bath. Here, it is shown that these deviations are related to the power spectrum of the bath. Specifically, it is shown that the system thermal-equilibrium-state cannot be characterized by the canonical Boltzmann's distribution in quantum mechanics. This is because the uncertainty principle imposed a lower bound of the dispersion of the total energy of the system that is dominated by the spectral density of the bath. However, in the classical case, for a wide class of systems that interact via central forces with pairwise-self-interacting environment, the system thermal equilibrium state is exactly characterized by the canonical Boltzmann distribution. As a consequence of this analysis and taking into account all energy scales in the system and reservoir interaction, an effective coupling to the environment is introduced. Sample computations in different regimes predicted by this effective coupling are shown. Specifically, in the strong coupling effective regime, the system exhibits deviations from standard thermodynamics and in the weak coupling effective regime, quantum features such as stationary entanglement are possible at high temperatures. Moreover, it is known that the spectrum of thermal baths depends on the non-Markovian character. Hence, non-Markovian interactions have a important role in the thermal equilibrium state of physical systems. For example, in quantum optomechanics is looked up to cool the mechanical system through an auxiliary system which generally is a cavity. This cooling process takes into account the non-Markovian interaction and as it is shown here, it is more effective than if we use only the Markovian approximation in the equation of motion for the different modes.

  11. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish (Pittsford, NY); Haltiner, Jr., Karl J (Fairport, NY); Weissman, Jeffrey G. (West Henrietta, NY)

    2012-03-06

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  12. Open quantum systems and Random Matrix Theory

    E-Print Network [OSTI]

    Declan Mulhall

    2015-01-09

    A simple model for open quantum systems is analyzed with Random Matrix Theory. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the $\\Delta_3(L)$ statistic, width distribution and level spacing are examined as a function of the strength of this coupling. A super-radiant transition is observed, and it is seen that as it is formed, the level spacing and $\\Delta_3(L)$ statistic exhibit the signatures of missed levels.

  13. QUANTUM CHAOS USING DELTA KICKED SYSTEMS VIJAYASHANKAR RAMAREDDY

    E-Print Network [OSTI]

    Summy, Gil

    QUANTUM CHAOS USING DELTA KICKED SYSTEMS By VIJAYASHANKAR RAMAREDDY Bachelor of Science Bangalore December, 2008 #12;QUANTUM CHAOS USING DELTA KICKED SYSTEMS Dissertation Approved: iii #12;ACKNOWLEDGMENTS a memorable experi- ence. v #12;TABLE OF CONTENTS Chapter Page 1 Introduction 1 1.1 Quantum Chaos

  14. Quantum chaos and sensitivity to system parameters

    SciTech Connect (OSTI)

    Bhanot, G.V. (Institute for Advanced Study, Princeton, NJ (United States)); Parikh, J.C.; Sheorey, V.B. (Physical Research Lab., Navrangpura (India)); Pandey, A. (Jawaharlal Nehru Univ., New Delhi (India) Univ. of Rochester, NY (United States))

    1990-01-01

    The authors study the eigenfunctions and eigenvalues of the Hamiltonian H=p[sup 2][sub x]+p[sup 2][sub y]+x[sup 4]+y[sup 4]+[alpha]x[sup 2]y[sup 2] in the classically chaotic regime. It is shown that the overlap of wavefunctions at neighboring [alpha] values provides a sensitive measure to demonstrate the onset of chaos in quantum systems.

  15. Classical and quantum chaos in atomic systems

    SciTech Connect (OSTI)

    Delande, D.; Buchleitner, A. [Universite Pierre et Marie Curie, Paris (France)

    1994-12-31

    Atomic systems played a major role in the birth and growth of quantum mechanics. One central idea was to relate the well-known classical motion of the electron of a hydrogen atom--an ellipsis around the nucleus--to the experimentally observed quantization of the energy levels. This is the aim of the Bohr and Bohr-Sommerfeld models. These simple semiclassical models were unable to make any reliable prediction on the energy spectrum of the next simplest atom, helium. Because of the great success of quantum mechanics, the problem of correspondence between the classical and the quantal dynamics has not received much attention in the last 60 years. The fundamental question is (Gutzwiller, 1990). How can classical mechanics be understood as a limiting case within quantum mechanics? For systems with time-independent one-dimensional dynamics like the harmonic oscillator and the hydrogen atom, the correspondence is well understood. The restriction to such simple cases creates the erroneous impression that the classical behavior of simple systems is entirely comprehensible and easily described. During the last 20 years it has been recognized that this in not true and that a complex behavior can be obtained from simple equations of motion. This usually happens when the motion is chaotic, that is, unpredictable on a long time scale although perfectly deterministic (Henon, 1983). A major problem is that of understanding how the regular or chaotic behavior of the classical system is manifest in its quantum properties, especially in the semiclassical limit. 53 refs., 15 figs., 1 tab.

  16. Randomized control of open quantum systems

    E-Print Network [OSTI]

    Lorenza Viola

    2006-01-16

    The problem of open-loop dynamical control of generic open quantum systems is addressed. In particular, I focus on the task of effectively switching off environmental couplings responsible for unwanted decoherence and dissipation effects. After revisiting the standard framework for dynamical decoupling via deterministic controls, I describe a different approach whereby the controller intentionally acquires a random component. An explicit error bound on worst-case performance of stochastic decoupling is presented.

  17. Economical ontological models for discrete quantum systems

    E-Print Network [OSTI]

    Ernesto F. Galvao

    2009-07-10

    I use the recently proposed framework of ontological models [Harrigan et al., arXiv:0709.1149v2] to obtain economical models for results of tomographically complete sets of measurements on finite-dimensional quantum systems. I describe a procedure that simplifies the models by decreasing the number of necessary ontic states, and present an explicit model with just 33 ontic states for a qutrit.

  18. Evolution of quantum correlations in a two-atom system

    E-Print Network [OSTI]

    Ryszard Tana?

    2012-10-22

    We discuss the evolution of quantum correlations for a system of two two-level atoms interacting with a common reservoir. The Markovian master equation is used to describe the evolution of various measures of quantum correlations.

  19. Summer School Diagnostics and Prognostics of Fuel Cell Systems

    E-Print Network [OSTI]

    Jeanjean, Louis

    ANR PROPICE Summer School Diagnostics and Prognostics of Fuel Cell Systems 01-04 July 2014, FCLAB, Belfort, France https://propice.ens2m.fr/ecole-diag-pron-PAC.html Motivations and objectives Fuel Cell, particularly by increasing their limited lifespan. Indeed, Proton Exchange Membrane Fuel Cell systems (PEMFC

  20. Valve for fuel pin loading system

    DOE Patents [OSTI]

    Christiansen, D.W.

    1984-01-01

    A cyclone valve surrounds a wall opening through which cladding is projected. An axial valve inlet surrounds the cladding. Air is drawn through the inlet by a cyclone stream within the valve. An inflatable seal is included to physically engage a fuel pin subassembly during loading of fuel pellets.

  1. Valve for fuel pin loading system

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA)

    1985-01-01

    A cyclone valve surrounds a wall opening through which cladding is projected. An axial valve inlet surrounds the cladding. Air is drawn through the inlet by a cyclone stream within the valve. An inflatable seal is included to physically engage a fuel pin subassembly during loading of fuel pellets.

  2. Upper quantum Lyapunov Exponent and Anosov relations for quantum systems driven by a classical flow

    E-Print Network [OSTI]

    O. Sapin; H. R. Jauslin; S. Weigert

    2005-10-27

    We generalize the definition of quantum Anosov properties and the related Lyapunov exponents to the case of quantum systems driven by a classical flow, i.e. skew-product systems. We show that the skew Anosov properties can be interpreted as regular Anosov properties in an enlarged Hilbert space, in the framework of a generalized Floquet theory. This extension allows us to describe the hyperbolicity properties of almost-periodic quantum parametric oscillators and we show that their upper Lyapunov exponents are positive and equal to the Lyapunov exponent of the corresponding classical parametric oscillators. As second example, we show that the configurational quantum cat system satisfies quantum Anosov properties.

  3. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    SciTech Connect (OSTI)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  4. Teaching the Environment to Control Quantum Systems

    E-Print Network [OSTI]

    Alexander Pechen; Herschel Rabitz

    2006-09-12

    A non-equilibrium, generally time-dependent, environment whose form is deduced by optimal learning control is shown to provide a means for incoherent manipulation of quantum systems. Incoherent control by the environment (ICE) can serve to steer a system from an initial state to a target state, either mixed or in some cases pure, by exploiting dissipative dynamics. Implementing ICE with either incoherent radiation or a gas as the control is explicitly considered, and the environmental control is characterized by its distribution function. Simulated learning control experiments are performed with simple illustrations to find the shape of the optimal non-equilibrium distribution function that best affects the posed dynamical objectives.

  5. Controlled air injection for a fuel cell system

    DOE Patents [OSTI]

    Fronk, Matthew H. (Honeove Falls, NY)

    2002-01-01

    A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

  6. Controlled air injection for a fuel cell system

    DOE Patents [OSTI]

    Fronk, Matthew H.

    2003-06-10

    A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

  7. Development of fuel processors for transportation and stationary fuel cell systems

    SciTech Connect (OSTI)

    Mitchell, W.L.; Bentley, J.M.; Thijssen, J.H.J. [Arthur D. Little, Inc., Cambridge, MA (United States)

    1996-12-31

    Five years of development effort at Arthur D. Little have resulted in a family of low-cost, small-scale fuel processor designs which have been optimized for multiple fuels, applications, and fuel cell technologies. The development activities discussed in this paper involve Arthur D. Little`s proprietary catalytic partial oxidation fuel processor technology. This technology is inherently compact and fuel-flexible, and has been shown to have system efficiencies comparable to steam reformers when integrated properly with a wide range of fuel cell types.

  8. DPF -"Hydrated EGR" Fuel Saver System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications GreenPower Trap Water-Muffler System GreenPowerTM Trap-Muffler System Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGR System for...

  9. Energy concentration in composite quantum systems

    SciTech Connect (OSTI)

    Kurcz, Andreas; Beige, Almut; Capolupo, Antonio; Vitiello, Giuseppe; Del Giudice, Emilio

    2010-06-15

    The spontaneous emission of photons from optical cavities and from trapped atoms has been studied extensively in the framework of quantum optics. Theoretical predictions based on the rotating wave approximation (RWA) are, in general, in very good agreement with experimental findings. However, current experiments aim at combining better and better cavities with large numbers of tightly confined atoms. Here we predict an energy concentrating mechanism in the behavior of such a composite quantum system which cannot be described by the RWA. Its result is the continuous leakage of photons through the cavity mirrors, even in the absence of external driving. We conclude with a discussion of the predicted phenomenon in the context of thermodynamics.

  10. Rapid scanning system for fuel drawers

    DOE Patents [OSTI]

    Caldwell, John T. (Los Alamos, NM); Fehlau, Paul E. (Los Alamos, NM); France, Stephen W. (Los Alamos, NM)

    1981-01-01

    A nondestructive method for uniqely distinguishing among and quantifying the mass of individual fuel plates in situ in fuel drawers utilized in nuclear reactors is described. The method is both rapid and passive, eliminating the personnel hazard of the commonly used irradiation techniques which require that the analysis be performed in proximity to an intense neutron source such as a reactor. In the present technique, only normally decaying nuclei are observed. This allows the analysis to be performed anywhere. This feature, combined with rapid scanning of a given fuel drawer (in approximately 30 s), and the computer data analysis allows the processing of large numbers of fuel drawers efficiently in the event of a loss alert.

  11. Quantum systems related to root systems and radial parts of Laplace operators

    E-Print Network [OSTI]

    M. A. Olshanetsky; A. M. Perelomov

    2002-03-18

    The relation between quantum systems associated to root systems and radial parts of Laplace operators on symmetric spaces is established. From this it follows the complete integrability of some quantum systems.

  12. Three-wheel air turbocompressor for PEM fuel cell systems

    DOE Patents [OSTI]

    Rehg, Tim; Gee, Mark; Emerson, Terence P.; Ferrall, Joe; Sokolov, Pavel

    2003-08-19

    A fuel cell system comprises a compressor and a fuel processor downstream of the compressor. A fuel cell stack is in communication with the fuel processor and compressor. A combustor is downstream of the fuel cell stack. First and second turbines are downstream of the fuel processor and in parallel flow communication with one another. A distribution valve is in communication with the first and second turbines. The first and second turbines are mechanically engaged to the compressor. A bypass valve is intermediate the compressor and the second turbine, with the bypass valve enabling a compressed gas from the compressor to bypass the fuel processor.

  13. Reduced Operator Approximation for Modelling Open Quantum Systems

    E-Print Network [OSTI]

    Agnieszka Werpachowska

    2015-08-05

    We present the Reduced Operator Approximation: a simple, physically transparent and computationally efficient method of modelling open quantum systems. It employs the Heisenberg picture of the quantum dynamics, which allows us to focus on the system degrees of freedom in a natural and easy way. We describe different variants of the method, low- and high-order in the system-bath interaction operators, defining them for either general quantum harmonic oscillator baths or specialising them for independent baths with Lorentzian spectral densities. Its wide applicability is demonstrated on the examples of systems coupled to different baths (with varying system-bath interaction strength and bath memory length), and compared with the exact pseudomode and the popular quantum state diffusion approach. The method captures the decoherence of the system interacting with the bath, while conserving the total energy. Our results suggest that quantum coherence effects persist in open quantum systems for much longer times than previously thought.

  14. Quantum Random Access Codes using Single $d$-level Systems

    E-Print Network [OSTI]

    Armin Tavakoli; Alley Hameedi; Breno Marques; Mohamed Bourennane

    2015-04-30

    Random access codes (RACs) are used by a party to despite limited communication access an arbitrary subset of information held by another party. Quantum resources are known to enable RACs that break classical limitations. Here, we study quantum and classical RACs with high-level communication. We derive average performances of classical RACs and present families of high-level quantum RACs. Our results show that high-level quantum systems can significantly increase the advantage of quantum RACs over the classical counterparts. We demonstrate our findings in an experimental realization of a quantum RAC with four-level communication.

  15. Energy and time in open quantum systems

    E-Print Network [OSTI]

    H. Eleuch; I. Rotter

    2015-06-02

    The eigenvalues of a non-Hermitian Hamilton operator are complex and provide not only the energies but also the lifetimes of the states of the system. They show non-analytical changes under the influence of singular (exceptional) points. The eigenfunctions are biorthogonal, characterized quantitatively by the so-called phase rigidity, which is reduced near to exceptional points. Numerical studies show the influence of these singular points on the dynamics of open quantum systems. When two states are neighboring in energy or lifetime, they cause a stabilization of the system which is irreversible; change the time behavior of the system; and create local structures that can be described well by a Hermitian Hamilton operator. In these structures, the relation between time and energy is hidden.

  16. Specific heat anomalies of open quantum systems

    E-Print Network [OSTI]

    Gert-Ludwig Ingold; Peter Hänggi; Peter Talkner

    2009-05-21

    The evaluation of the specific heat of an open, damped quantum system is a subtle issue. One possible route is based on the thermodynamic partition function which is the ratio of the partition functions of system plus bath and of the bath alone. For the free damped particle it has been shown, however, that the ensuing specific heat may become negative for appropriately chosen environments. Being an open system this quantity then naturally must be interpreted as the change of the specific heat obtained as the difference between the specific heat of the heat bath coupled to the system degrees of freedom and the specific heat of the bath alone. While this difference may become negative, the involved specific heats themselves are always positive; thus, the known thermodynamic stability criteria are perfectly guaranteed. For a damped quantum harmonic oscillator, instead of negative values, under appropriate conditions one can observe a dip in the difference of specific heats as a function of temperature. Stylized minimal models containing a single oscillator heat bath are employed to elucidate the occurrence of the anomalous temperature dependence of the corresponding specific heat values. Moreover, we comment on the consequences for the interpretation of the density of states based on the thermal partitionfunction.

  17. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    SciTech Connect (OSTI)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  18. MAT656 --Topics in Dynamical Systems: Introduction to Quantum Chaos

    E-Print Network [OSTI]

    Sutherland, Scott

    MAT656 -- Topics in Dynamical Systems: Introduction to Quantum Chaos Spring 2011 Shimon Brooks MWF mainly on simpler "toy models" of quantum chaos, that capture many of the ideas, without much conventions and notations! · Quantum Chaos: a Brief First Visit, by Stephan De Bi`evre. Good intro- ductory

  19. Novel Fuel Cells for Coal Based Systems

    SciTech Connect (OSTI)

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  20. Preparing ground states of quantum many-body systems on a quantum computer

    E-Print Network [OSTI]

    David Poulin; Pawel Wocjan

    2008-09-16

    Preparing the ground state of a system of interacting classical particles is an NP-hard problem. Thus, there is in general no better algorithm to solve this problem than exhaustively going through all N configurations of the system to determine the one with lowest energy, requiring a running time proportional to N. A quantum computer, if it could be built, could solve this problem in time sqrt(N). Here, we present a powerful extension of this result to the case of interacting quantum particles, demonstrating that a quantum computer can prepare the ground state of a quantum system as efficiently as it does for classical systems.

  1. Approximation of Reachable Set for Coherently Controlled Open Quantum Systems: Application to Quantum State Engineering

    E-Print Network [OSTI]

    Jun Li; Dawei Lu; Zhihuang Luo; Raymond Laflamme; Xinhua Peng; Jiangfeng Du

    2015-08-04

    Precisely characterizing and controlling realistic open quantum systems is one of the most challenging and exciting frontiers in quantum sciences and technologies. In this Letter, we present methods of approximately computing reachable sets for coherently controlled dissipative systems, which is very useful for assessing control performances. We apply this to a two-qubit nuclear magnetic resonance spin system and implement some tasks of quantum control in open systems at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudo-pure states. Our work shows interesting and promising applications of environment-assisted quantum dynamics.

  2. Modular Dynamical Semigroups for Quantum Dissipative Systems

    E-Print Network [OSTI]

    David Taj; Hans Christian Öttinger

    2015-03-10

    We introduce a class of Markovian quantum master equations, able to describe the dissipative dynamics of a quantum system weakly coupled to one or several heat baths. The dissipative structure is driven by an entropic operator, the so called modular Hamiltonian, which makes it nonlinear. The generated Modular Dynamical Semigroup (MDS) is not, in general, a Quantum Dynamical Semigroup (QDS), whose dynamics is of the popular Lindblad type. The MDS has a robust thermodynamic structure, which guarantees for the positivity of the time evolved state, the correct steady state properties, the positivity of the entropy production, a positive Onsager matrix and Onsager symmetry relations (arising from Green-Kubo formulas). We show that the celebrated Davies generator, obtained through the Born and the secular approximations, generates a MDS. By unravelling the modular structure of the former, we provide a different and genuinely nonlinear MDS, not of QDS type, which is free from the severe spectral restrictions of the Davies generator, while still being supported by a weak coupling limit argument. With respect to the latter, the present work is a substantial extension of \\cite{Ottinger2011_GEO,Ottinger2010_TLS_DHO}

  3. Non-Markovian dynamics in open quantum systems

    E-Print Network [OSTI]

    Heinz-Peter Breuer; Elsi-Mari Laine; Jyrki Piilo; Bassano Vacchini

    2015-05-06

    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry and quantum information. In close analogy to a classical Markov process, the interaction of an open quantum system with a noisy environment is often modelled by a dynamical semigroup with a generator in Lindblad form, which describes a memoryless dynamics leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence and correlations. Here, recent results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of memory effects. The general theory is illustrated by a series of examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This article further explores the various physical sources of non-Markovian quantum dynamics, such as structured spectral densities, nonlocal correlations between environmental degrees of freedom and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments on the detection, quantification and control of non-Markovian quantum dynamics are also discussed.

  4. Quality Guidelines for Energy System Studies: Fuel Pricing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Fuel Prices for Selected Feedstocks in NETL Studies Quality Guidelines for Energy System Studies November 2012 Disclaimer This report was prepared as an account of work...

  5. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    and individual summaries of the models and tools used for systems analysis of hydrogen and fuel cells. View the Overview Fact Sheet and Individual Summaries Overview Fact...

  6. Microchannel High-Temperature Recuperator for Fuel Cell Systems

    SciTech Connect (OSTI)

    2010-02-01

    This factsheet describes a research project whose goal is to build an efficient, microchannel-based waste heat recuperator for a high-temperature fuel cell system.

  7. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063smith2011o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

  8. Webinar: Automotive and MHE Fuel Cell System Cost Analysis

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Automotive and MHE Fuel Cell System Cost Analysis, originally presented on April 16, 2013.

  9. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2002-07-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

  10. Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen

    DOE Patents [OSTI]

    Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

    1986-01-28

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  11. SULFUR REMOVAL FROM PIPE LINE NATURAL GAS FUEL: APPLICATION TO FUEL CELL POWER GENERATION SYSTEMS

    SciTech Connect (OSTI)

    King, David L.; Birnbaum, Jerome C.; Singh, Prabhakar

    2003-11-21

    Pipeline natural gas is being considered as the fuel of choice for utilization in fuel cell-based distributed generation systems because of its abundant supply and the existing supply infrastructure (1). For effective utilization in fuel cells, pipeline gas requires efficient removal of sulfur impurities (naturally occurring sulfur compounds or sulfur bearing odorants) to prevent the electrical performance degradation of the fuel cell system. Sulfur odorants such as thiols and sulfides are added to pipeline natural gas and to LPG to ensure safe handling during transportation and utilization. The odorants allow the detection of minute gas line leaks, thereby minimizing the potential for explosions or fires.

  12. Towards the theory of control in observable quantum systems

    E-Print Network [OSTI]

    V P Belavkin

    2004-08-02

    An operational description of the controlled Markov dynamics of quantum-mechanical system is introduced. The feedback control strategies with regard to the dynamical reduction of quantum states in the course of quantum real-time measurements are discribed in terms of quantum filtering of these states. The concept of sufficient coordinates for the description of the a posteriori quantum states from a given class is introduced, and it is proved that they form a classical Markov process with values in either state operators or state vector space. The general problem of optimal control of a quantum-mechanical system is discussed and the corresponding Bellman equation in the space of sufficient coordinates is derived. The results are illustrated in the example of control of the semigroup dynamics of a quantum system that is instantaneously observed at discrete times and evolves between measurement times according to the Schroedinger equation.

  13. Method for operating a combustor in a fuel cell system

    DOE Patents [OSTI]

    Clingerman, Bruce J. (Palmyra, NY); Mowery, Kenneth D. (Noblesville, IN)

    2002-01-01

    In one aspect, the invention provides a method of operating a combustor to heat a fuel processor to a desired temperature in a fuel cell system, wherein the fuel processor generates hydrogen (H.sub.2) from a hydrocarbon for reaction within a fuel cell to generate electricity. More particularly, the invention provides a method and select system design features which cooperate to provide a start up mode of operation and a smooth transition from start-up of the combustor and fuel processor to a running mode.

  14. Interim report spent nuclear fuel retrieval system fuel handling development testing

    SciTech Connect (OSTI)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  15. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    SciTech Connect (OSTI)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  16. Small Fuel Cell Systems with Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 »DigitalanDepartment of EnergySmall Fuel Cell Systems

  17. Direct methanol fuel cell and system

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM)

    2004-10-26

    A fuel cell having an anode and a cathode and a polymer electrolyte membrane located between anode and cathode gas diffusion backings uses a methanol vapor fuel supply. A permeable polymer electrolyte membrane having a permeability effective to sustain a carbon dioxide flux equivalent to at least 10 mA/cm.sup.2 provides for removal of carbon dioxide produced at the anode by reaction of methanol with water. Another aspect of the present invention includes a superabsorpent polymer material placed in proximity to the anode gas diffusion backing to hold liquid methanol or liquid methanol solution without wetting the anode gas diffusion backing so that methanol vapor from the liquid methanol or liquid methanol-water solution is supplied to the membrane.

  18. Systems impacts of spent fuel disassembly alternatives

    SciTech Connect (OSTI)

    Not Available

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables.

  19. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    SciTech Connect (OSTI)

    Paul A. Demkowicz; David V. Laug; Dawn M. Scates; Edward L. Reber; Lyle G. Roybal; John B. Walter; Jason M. Harp; Robert N. Morris

    2012-10-01

    The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 degrees C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated fission gas monitoring system, as well as preliminary system calibration results.

  20. Fuel cell based battery-less ups system 

    E-Print Network [OSTI]

    Venkatagiri Chellappan, Mirunalini

    2008-10-10

    factor during development of these systems is the requirement that they remain environment-friendly. This cannot be realized using the conventional systems as they use batteries and/or engine generators. Among various viable technologies, fuel cells have...

  1. Design of gasifiers to optimize fuel cell systems

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The objective of this project is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. (VC)

  2. Quantum Hall systems Representation theory of vertex operator algebras Applications The end Quantum Hall states and the representation

    E-Print Network [OSTI]

    Huang, Yi-Zhi

    Quantum Hall systems Representation theory of vertex operator algebras Applications The end Quantum Science, CAS #12;Quantum Hall systems Representation theory of vertex operator algebras Applications to a fundamental conjecture #12;Quantum Hall systems Representation theory of vertex operator algebras Applications

  3. Quantum Hall systems Representation theory of vertex operator algebras Applications The end Quantum Hall states and the representation

    E-Print Network [OSTI]

    Huang, Yi-Zhi

    Quantum Hall systems Representation theory of vertex operator algebras Applications The end Quantum;Quantum Hall systems Representation theory of vertex operator algebras Applications The end Outline 1 An approach to a fundamental conjecture #12;Quantum Hall systems Representation theory of vertex operator

  4. APPLICATION OF CERAMICS TO HIGH PRESSURE FUEL SYSTEMS

    SciTech Connect (OSTI)

    Mandler, Jr., William F.

    2000-08-20

    Diesel fuel systems are facing increased demands as engines with reduced emissions are developed. Injection pressures have increased to provide finer atomization of fuel for more efficient combustion, Figure 1. This increases the mechanical loads on the system and requires tighter clearances between plungers and bores to prevent leakage. At the same time, fuel lubricity has decreased as a byproduct of reducing the sulfur levels in fuel. Contamination of fuel by water and debris is an ever-present problem. For oil-lubricated fuel system components, increased soot loading in the oil results in increased wear rates. Additionally, engine manufacturers are lengthening warranty periods for engines and systems. This combination of factors requires the development of new materials to counteract the harsher tribological environment.

  5. Model of U3Si2 Fuel System using BISON Fuel Code

    SciTech Connect (OSTI)

    K. E. Metzger; T. W. Knight; R. L. Williamson

    2014-04-01

    This research considers the proposed advanced fuel system: U3Si2 combined with an advanced cladding. U3Si2 has a number of advantageous thermophysical properties, which motivate its use as an accident tolerant fuel. This preliminary model evaluates the behavior of U3Si2 using available thermophysical data to predict the cladding-fuel pellet temperature and stress using the fuel performance code: BISON. The preliminary results obtained from the U3Si2 fuel model describe the mechanism of Pellet-Clad Mechanical Interaction for this system while more extensive testing including creep testing of U3Si2 is planned for improved understanding of thermophysical properties for predicting fuel performance.

  6. SPEAR fuel reliability code system. General description. [PWR; BWR

    SciTech Connect (OSTI)

    Christensen, R.

    1980-03-01

    A general description is presented for the SPEAR fuel reliability code system. Included is a discussion of the methodology employed and the structure of the code system, as well as discussion of the major components: the data preparation routines, the mechanistic fuel performance model, the mechanistic cladding failure model, and the statistical failure model.

  7. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOE Patents [OSTI]

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  8. Quantum chaos in systems with ray splitting

    SciTech Connect (OSTI)

    Couchman, L. (Acoustics Division, Naval Research Laboratory, Washington, D.C. 20375 (United States)); Ott, E.; Antonsen, T.M. Jr. (Laboratory for Plasma Research, Department of Electrical Engineering, Department of Physics, University of Maryland, College Park, Maryland 20742 (United States))

    1992-11-15

    We consider wave systems in which rays split on reflection from sharp boundaries. Examples include the Schroedinger equation with the potential changing discontinuously across a surface, electromagnetic waves in a region with a discontinuous dielectric constant, elastic media with a clamped or free boundary, etc. By introducing a Monte Carlo treatment of the rays, it is possible to define chaotic rays via the standard Lyapunov number criterion. Numerical implementation of the Monte Carlo ray technique is carried out for the example of elastic media, and is utilized to investigate the extent to which these systems are globally ergodic. It is suggested that results from previous extensive work on quantum chaos without ray splitting can be extended to these ray splitting problems. In particular, we indicate a generalization of the Gutzwiller trace formula to cover ray splitting.

  9. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    H. Peng, Control of Fuel Cell Power Systems, Springer, 2004.without changing the cell power at a given voltage. ThePower (kW) Gross Power (kW) Number of Cells Cell Area (cm2)

  10. Spent nuclear fuel retrieval system fuel handling development testing. Final report

    SciTech Connect (OSTI)

    Jackson, D.R.; Meeuwsen, P.V.

    1997-09-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin, clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge), remove the contents from the canisters and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. This report describes fuel handling development testing performed from May 1, 1997 through the end of August 1997. Testing during this period was mainly focused on performance of a Schilling Robotic Systems` Conan manipulator used to simulate a custom designed version, labeled Konan, being fabricated for K-Basin deployment. In addition to the manipulator, the camera viewing system, process table layout, and fuel handling processes were evaluated. The Conan test manipulator was installed and fully functional for testing in early 1997. Formal testing began May 1. The purposes of fuel handling development testing were to provide proof of concept and criteria, optimize equipment layout, initialize the process definition, and identify special needs/tools and required design changes to support development of the performance specification. The test program was set up to accomplish these objectives through cold (non-radiological) development testing using simulated and prototype equipment.

  11. Method for operating a combustor in a fuel cell system

    DOE Patents [OSTI]

    Chalfant, Robert W. (West Henrietta, NY); Clingerman, Bruce J. (Palmyra, NY)

    2002-01-01

    A method of operating a combustor to heat a fuel processor in a fuel cell system, in which the fuel processor generates a hydrogen-rich stream a portion of which is consumed in a fuel cell stack and a portion of which is discharged from the fuel cell stack and supplied to the combustor, and wherein first and second streams are supplied to the combustor, the first stream being a hydrocarbon fuel stream and the second stream consisting of said hydrogen-rich stream, the method comprising the steps of monitoring the temperature of the fuel processor; regulating the quantity of the first stream to the combustor according to the temperature of the fuel processor; and comparing said quantity of said first stream to a predetermined value or range of predetermined values.

  12. Decoherence-free quantum information in Markovian systems

    E-Print Network [OSTI]

    Manas K. Patra; Peter G. Brooke

    2008-08-12

    Decoherence in Markovian systems can result indirectly from the action of a system Hamiltonian which is usually fixed and unavoidable. Here, we show that in general in Markovian systems, because of the system Hamiltonian, quantum information decoheres. We give conditions for the system Hamiltonian that must be satisfied if coherence is to be preserved. Finally, we show how to construct robust subspaces for quantum information processing.

  13. System for fuel rod removal from a reactor module

    DOE Patents [OSTI]

    Matchett, Richard L. (Bethel Park, PA); Roof, David R. (North Huntingdon, PA); Kikta, Thomas J. (Pittsburgh, PA); Wilczynski, Rosemarie (McKees Rocks, PA); Nilsen, Roy J. (Pittsburgh, PA); Bacvinskas, William S. (Bethel Park, PA); Fodor, George (Pittsburgh, PA)

    1990-01-01

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system.

  14. System for fuel rod removal from a reactor module

    DOE Patents [OSTI]

    Matchett, R.L.; Fodor, G.; Kikta, T.J.; Bacvinsicas, W.S.; Roof, D.R.; Nilsen, R.J.; Wilczynski, R.

    1988-07-28

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system. 7 figs.

  15. A natural-gas fuel processor for a residential fuel cell system.

    SciTech Connect (OSTI)

    Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.; Japan Institute of Energy

    2009-03-01

    A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor--namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor--were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing {approx} 48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

  16. On nonlinear evolution and supraluminal communication between finite quantum systems

    E-Print Network [OSTI]

    M. Ferrero; D. Salgado; J. L. Sanchez-Gomez

    2005-01-18

    We revise the 'no-signaling' condition for the supraluminal communication between two spatially separated finite quantum systems of arbitrary dimensions, thus generalizing a similar preceding approach for two-qubits: non-linear evolution does not necessarily imply the possibility of supraluminal communication between any sort of finite quantum systems.

  17. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  18. Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space

    SciTech Connect (OSTI)

    Zhang, Weimin (Department of Physics, FM-15, University of Washington, Seattle, WA (USA) Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA (USA)); Feng, D.H.; Yuan, Jianmin (Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA (USA))

    1990-12-15

    Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper (Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)), a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group {ital G-script} and in one of its unitary irreducible-representation carrier spaces {ital h-german}{sub {Lambda}}, the quantum phase space is a 2{ital M}{sub {Lambda}}-dimensional topological space, where {ital M}{sub {Lambda}} is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space {ital G-script}/{ital H-script} via the unitary exponential mapping of the elementary excitation operator subspace of {ital g-script} (algebra of {ital G-script}), where {ital H-script} ({contained in}{ital G-script}) is the maximal stability subgroup of a fixed state in {ital h-german}{sub {Lambda}}. The phase-space representation of the system is realized on {ital G-script}/{ital H-script}, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.

  19. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  20. Energy transmutation in nonequilibrium quantum systems

    E-Print Network [OSTI]

    Mihail Mintchev; Luca Santoni; Paul Sorba

    2014-12-19

    We investigate the particle and heat transport in quantum junctions with the geometry of star graphs. The system is in a nonequilibrium steady state, characterized by the different temperatures and chemical potentials of the heat reservoirs connected to the edges of the graph. We explore the Landauer-Buettiker state and its orbit under parity and time reversal transformations. Both particle number and total energy are conserved in these states. However the heat and chemical potential energy are in general not separately conserved, which gives origin to a basic process of energy transmutation among them. We study both directions of this process in detail, introducing appropriate efficiency coefficients. For scale invariant interactions in the junction our results are exact and explicit. They cover the whole parameter space and take into account all nonlinear effects. The energy transmutation depends on the particle statistics.

  1. Quantum many-body systems out of equilibrium

    E-Print Network [OSTI]

    J. Eisert; M. Friesdorf; C. Gogolin

    2014-08-21

    Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instances of quantum simulations. This article provides an overview on the progress in understanding dynamical equilibration and thermalisation of closed quantum many-body systems out of equilibrium due to quenches, ramps and periodic driving. It also addresses topics such as the eigenstate thermalisation hypothesis, typicality, transport, many-body localisation, universality near phase transitions, and prospects for quantum simulations.

  2. Fuel Cell Systems AnalysisFuel Cell Systems Analysis R. K. Ahluwalia, X. Wang, and R. Kumar

    E-Print Network [OSTI]

    Condensate Fan Pump #12;FC Systems for Hybrid VehiclesFC Systems for Hybrid Vehicles Requirement Approach FCS System Benchmarking D. Heat Utilization H. Start-up Time I. Fuel Processor Start-up/Transient Operation K. 2003 Jan. 2003 Oct. 2002 Date Evaluate FC systems for combined heat and power. Propose and analyze FC

  3. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

  4. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People`s Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  5. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People's Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  6. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    for fuel cell systems for vehicle applications, Journal ofuse in fuel cell vehicles and other applications has beenin automotive applications, the fuel cell systems has to be

  7. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    operating conditions. Direct Hydrogen Fuel Cell System Modelconditions for a direct hydrogen fuel cell system Table 1simulation tool for hydrogen fuel cell vehicles, Journal of

  8. Hacking commercial quantum cryptography systems by tailored bright illumination

    E-Print Network [OSTI]

    Lydersen, Lars; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim; 10.1038/NPHOTON.2010.214

    2010-01-01

    The peculiar properties of quantum mechanics allow two remote parties to grow a private, secret key, even if the eavesdropper can do anything permitted by the laws of nature. In quantum key distribution (QKD) the parties exchange non-orthogonal or entangled quantum states to generate quantum correlated classical data. Consequently, QKD implementations always rely on detectors to measure the relevant quantum property of the signal states. However, practical detectors are not only sensitive to quantum states. Here we show how an eavesdropper can exploit such deviations from the ideal behaviour: We demonstrate experimentally how the detectors in two commercially available QKD systems can be fully remote controlled using specially tailored bright illumination. This makes it possible to acquire the full secret key without leaving any trace; we propose an eavesdropping apparatus built of off-the-shelf components. The loophole is likely to be present in most QKD systems using avalanche photo diodes (APDs) to detect ...

  9. Design package Lazy Susan for the fuel retrieval system

    SciTech Connect (OSTI)

    TEDESCHI, D.J.

    1998-11-09

    This is a design package that contains the details for a Lazy Susan style small tool for the Fuel Retrieval System. The Lazy Susan tool is used to help rotate an MCO Fuel Basket when loading it. This document contains requirements, development design information, tests and test reports that pertain to the production of Lazy Susan small tool.

  10. Design package lazy susan for the fuel retrieval system

    SciTech Connect (OSTI)

    TEDESCHI, D.J.

    1999-09-10

    This is a design package that contains the details for a Lazy Susan style small tool for the Fuel Retrieval System. The Lazy Susan tool is used to help rotate an MCO Fuel Basket when loading it. This document contains requirements, development design information, tests and test reports that pertain to the production of Lazy Susan small tool.

  11. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt.% additive of all viscosity and lubricity additives tested here to even approach the lower limit of the ASTM diesel fuel viscosity requirement. To treat neat DME sufficiently to make DME comply with the ASTM diesel fuel viscosity requirement would require a viscosity additive with 10{sup 45} cSt viscosity, which is not possible with current additive technologies.

  12. Integral reactor system and method for fuel cells

    DOE Patents [OSTI]

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  13. Solid oxide fuel cell steam reforming power system

    DOE Patents [OSTI]

    Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

    2013-03-12

    The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

  14. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOE Patents [OSTI]

    Sopchak, David A. (Livermore, CA); Morse, Jeffrey D. (Martinez, CA); Upadhye, Ravindra S. (Pleasanton, CA); Kotovsky, Jack (Oakland, CA); Graff, Robert T. (Modesto, CA)

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  15. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOE Patents [OSTI]

    Sopchak, David A. (Livermore, CA); Morse, Jeffrey D. (Martinez, CA); Upadhye, Ravindra S. (Pleasanton, CA); Kotovsky, Jack (Oakland, CA); Graff, Robert T. (Modesto, CA)

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  16. Quantum Interference Induced Photon Blockade in a Coupled Single Quantum Dot-Cavity System

    E-Print Network [OSTI]

    Jing Tang; Weidong Geng; Xiulai Xu

    2015-03-18

    We propose an experimental scheme to implement a strong photon blockade with a single quantum dot coupled to a nanocavity. The photon blockade effect can be tremendously enhanced by driving the cavity and the quantum dot simultaneously with two classical laser fields. This enhancement of photon blockade is ascribed to the quantum interference effect to avoid two-photon excitation of the cavity field. Comparing with Jaynes-Cummings model, the second-order correlation function at zero time delay $g^{(2)}(0)$ in our scheme can be reduced by two orders of magnitude and the system sustains a large intracavity photon number. A red (blue) cavity-light detuning asymmetry for photon quantum statistics with bunching or antibunching characteristics is also observed. The photon blockade effect has a controllable flexibility by tuning the relative phase between the two pumping laser fields and the Rabi coupling strength between the quantum dot and the pumping field. Moreover, the photon blockade scheme based on quantum interference mechanism does not require a strong coupling strength between the cavity and the quantum dot, even with the pure dephasing of the system. This simple proposal provides an effective way for potential applications in solid state quantum computation and quantum information processing.

  17. Quantum filter for a class of non-Markovian quantum systems

    E-Print Network [OSTI]

    Shibei Xue; Matthew R. James; Alireza Shabani; Valery Ugrinovskii; Ian R. Petersen

    2015-04-11

    In this paper we present a Markovian representation approach to constructing quantum filters for a class of non-Markovian quantum systems disturbed by Lorenztian noise. An ancillary system is introduced to convert white noise into Lorentzian noise which is injected into a principal system via a direct interaction. The resulting dynamics of the principal system are non-Markovian, which are driven by the Lorentzian noise. By probing the principal system, a quantum filter for the augmented system can be derived from standard theory, where the conditional state of the principal system can be obtained by tracing out the ancillary system. An example is provided to illustrate the non-Markovian dynamics of the principal system.

  18. Engine control system having fuel-based adjustment

    DOE Patents [OSTI]

    Willi, Martin L. (Dunlap, IL); Fiveland, Scott B. (Metamora, IL); Montgomery, David T. (Edelstein, IL); Gong, Weidong (Dunlap, IL)

    2011-03-15

    A control system for an engine having a cylinder is disclosed having an engine valve configured to affect a fluid flow of the cylinder, an actuator configured to move the engine valve, and an in-cylinder sensor configured to generate a signal indicative of a characteristic of fuel entering the cylinder. The control system also has a controller in communication with the actuator and the sensor. The controller is configured to determine the characteristic of the fuel based on the signal and selectively regulate the actuator to adjust a timing of the engine valve based on the characteristic of the fuel.

  19. Effect of Fuel Cell System Contaminants on the Pt Catalyst

    SciTech Connect (OSTI)

    Wang, H.; Christ, J.; Macomber, C. S.; O'Neill, K.; Neyerlin, K. C.; O'Leary, K. A.; Reid, R.; Lakshmanan, B.; Das, M.; Ohashi, M.; Van Zee, J. W.; Dinh, H. N.

    2012-01-01

    The cost of the balance of plant (BOP) fuel cell system has increased in importance with recent decreases in fuel cell stack cost. In order to lower the cost of the BOP system, low cost but relatively clean components must be used. Selection of these materials requires an understanding of potential materials and the contaminants that evolve from them, which have been shown to affect the performance and durability of fuel cells. The present work evaluates the influence of leachable constituents from prospective materials and model compounds on the electrochemical performance of a platinum catalyst.

  20. Design package test weights for fuel retrieval system (OCRWM)

    SciTech Connect (OSTI)

    TEDESCHI, D.J.

    1999-10-26

    This is a design package that documents the development of test weights used in the Spent Nuclear Fuels subproject Fuel Retrieval System. The K Basins Spent Nuclear Fuel (SNF) project consists of the safe retrieval, preparation, and repackaging of the spent fuel stored at the K East (KE) and K West (KW) Basins for interim safe storage in the Canister Storage Building (CSB). Multi-Canister Overpack (MCO) scrap baskets and fuel baskets will be loaded and weighed under water. The equipment used to weigh the loaded fuel baskets requires daily calibration checks, using test weights traceable to National Institute of Standards Testing (NIST) standards. The test weights have been designated as OCRWM related in accordance with HNF-SD-SNF-RF'T-007 (McCormack).

  1. Optimal control of population transfer in Markovian open quantum systems

    E-Print Network [OSTI]

    Wei Cui; Zairong Xi; Yu Pan

    2010-04-27

    There has long been interest to control the transfer of population between specified quantum states. Recent work has optimized the control law for closed system population transfer by using a gradient ascent pulse engineer- ing algorithm [1]. Here, a spin-boson model consisting of two-level atoms which interact with the dissipative environment, is investigated. With opti- mal control, the quantum system can invert the populations of the quantum logic states. The temperature plays an important role in controlling popula- tion transfer. At low temperatures the control has active performance, while at high temperatures it has less erect. We also analyze the decoherence be- havior of open quantum systems with optimal population transfer control, and we find that these controls can prolong the coherence time. We hope that active optimal control can help quantum solid-state-based engineering.

  2. Quantum entanglement of unitary operators on bi-partite systems

    E-Print Network [OSTI]

    X. Wang; P. Zanardi

    2002-07-01

    We study the entanglement of unitary operators on $d_1\\times d_2$ quantum systems. This quantity is closely related to the entangling power of the associated quantum evolutions. The entanglement of a class of unitary operators is quantified by the concept of concurrence.

  3. Pole placement design for quantum systems via coherent observers

    E-Print Network [OSTI]

    Zibo Miao; Matthew R. James; Valery A. Ugrinovskii

    2015-09-17

    We previously extended Luenberger's approach for observer design to the quantum case, and developed a class of coherent observers which tracks linear quantum stochastic systems in the sense of mean values. In light of the fact that the Luenberger observer is commonly and successfully applied in classical control, it is interesting to investigate the role of coherent observers in quantum feedback. As the first step in exploring observer-based coherent control, in this paper we study pole-placement techniques for quantum systems using coherent observers, and in such a fashion, poles of a closed-loop quantum system can be relocated at any desired locations. In comparison to classical feedback control design incorporating the Luenberger observer, here direct coupling between a quantum plant and the observer-based controller are allowed to enable a greater degree of freedom for the design of controller parameters. A separation principle is presented, and we show how to design the observer and feedback independently to be consistent with the laws of quantum mechanics. The proposed scheme is applicable to coherent feedback control of quantum systems, especially when the transient dynamic response is of interest, and this issue is illustrated in an example.

  4. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  5. Adaptive hybrid optimal quantum control for imprecisely characterized systems

    E-Print Network [OSTI]

    D. J. Egger; F. K. Wilhelm

    2014-06-24

    Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the its input variables, the quantum system's parameters. We show how to overcome this by Adaptive Hybrid Optimal Control (Ad-HOC). This protocol combines open- and closed-loop optimal by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity measure with a gradient-free method. For typical settings in solid-state quantum information processing, Ad-Hoc enhances gate fidelities by an order of magnitude hence making optimal control theory applicable and useful.

  6. The Quantum-Classical Transition in Nonlinear Dynamical Systems

    E-Print Network [OSTI]

    Salman Habib; Kurt Jacobs; Hideo Mabuchi; Robert Ryne; Kosuke Shizume; Bala Sundaram

    2000-10-26

    Viewed as approximations to quantum mechanics, classical evolutions can violate the positive-semidefiniteness of the density matrix. The nature of this violation suggests a classification of dynamical systems based on classical-quantum correspondence; we show that this can be used to identify when environmental interaction (decoherence) will be unsuccessful in inducing the quantum-classical transition. In particular, the late-time Wigner function can become positive without any corresponding approach to classical dynamics. In the light of these results, we emphasize key issues relevant for experiments studying the quantum-classical transition.

  7. Fourier Synthesis Methods for Control of Inhomogeneous Quantum Systems

    E-Print Network [OSTI]

    Brent Pryor; Navin Khaneja

    2007-05-17

    Finding control laws (pulse sequences) that can compensate for dispersions in parameters which govern the evolution of a quantum system is an important problem in the fields of coherent spectroscopy, imaging, and quantum information processing. The use of composite pulse techniques for such tasks has a long and widely known history. In this paper, we introduce the method of Fourier synthesis control law design for compensating dispersions in quantum system dynamics. We focus on system models arising in NMR spectroscopy and NMR imaging applications.

  8. Asymptotically Optimal Quantum Circuits for d-Level Systems

    SciTech Connect (OSTI)

    Bullock, Stephen S. [Mathematical and Computational Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8910 (United States); O'Leary, Dianne P. [Mathematical and Computational Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8910 (United States); Department of Computer Science and UMIACS, University of Maryland, College Park, Maryland 20742 (United States); Brennen, Gavin K. [Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8420 (United States)

    2005-06-17

    Scalability of a quantum computation requires that the information be processed on multiple subsystems. However, it is unclear how the complexity of a quantum algorithm, quantified by the number of entangling gates, depends on the subsystem size. We examine the quantum circuit complexity for exactly universal computation on many d-level systems (qudits). Both a lower bound and a constructive upper bound on the number of two-qudit gates result, proving a sharp asymptotic of {theta}(d{sup 2n}) gates. This closes the complexity question for all d-level systems (d finite). The optimal asymptotic applies to systems with locality constraints, e.g., nearest neighbor interactions.

  9. Natural Light Harvesting Systems: Unraveling the quantum puzzles

    E-Print Network [OSTI]

    A. Thilagam

    2014-11-23

    In natural light harvesting systems, the sequential quantum events of photon absorption by specialized biological antenna complexes, charge separation, exciton formation and energy transfer to localized reaction centers culminates in the conversion of solar to chemical energy. A notable feature in these processes is the exceptionally high efficiencies ($>$ 95\\%) at which excitation is transferred from the illuminated protein complex site to the reaction centers. The high speeds of excitation propagation within a system of interwoven biomolecular network structures, is yet to be replicated in artificial light harvesting complexes. A clue to unraveling the quantum puzzles of nature may lie in the observations of long lived coherences lasting several picoseconds in the electronic spectra of photosynthetic complexes which occurs even in noisy environmental baths. The exact nature of the association between the high energy propagation rates and strength of quantum coherences remains largely unsolved. This review presents recent developments in quantum theories, and links information-theoretic aspects with photosynthetic light-harvesting processes in biomolecular systems. There is examination of various attempts to pinpoint the processes that underpin coherence features arising from the light harvesting activities of biomolecular systems, with particular emphasis on the effects that factors such non-Markovianity, zeno mechanisms, teleportation, quantum predictability and the role of multipartite states have on the quantum dynamics of biomolecular systems. A discussion of how quantum thermodynamical principles and agent-based modeling and simulation approaches can improve our understanding of natural photosynthetic systems is included.

  10. Thermal and quantum noise in active systems

    E-Print Network [OSTI]

    Jean-Michel Courty; Francesca Grassia; Serge Reynaud

    2001-10-03

    We present a quantum network approach to the treatment of thermal and quantum fluctuations in measurement devices. The measurement is described as a scattering process of input fluctuations towards output ones. We present the results obtained with this method for the treatment of a cold damped capacitive accelerometer.

  11. A portable power system using PEM fuel cells

    SciTech Connect (OSTI)

    Long, E.

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  12. The next generation of oxy-fuel boiler systems

    SciTech Connect (OSTI)

    Ochs, Thomas L.; Gross, Alex; Patrick, Brian; Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

    2005-01-01

    Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

  13. Cost Analysis of Fuel Cell Systems for Transportation

    E-Print Network [OSTI]

    /FreedomCar guidelines. Packaging (Piping, Electrical, .....) Start-up Power (battery); Anode Tailgas Burner Included in DOE PEMFC System Analyzed Fuel Tank · Power Conditioning · Electric Motor · Electric Drive Train · Regenerative Braking System (Battery) Managers (Controllers and Sensors) Air Thermal Water Safety Other: · AC

  14. Expert system for surveillance and diagnosis of breach fuel elements

    DOE Patents [OSTI]

    Gross, K.C.

    1988-01-21

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil area of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor. 2 figs.

  15. Expert system for surveillance and diagnosis of breach fuel elements

    DOE Patents [OSTI]

    Gross, Kenny C. (Lemont, IL)

    1989-01-01

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil areas of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor.

  16. Full fuel-cycle comparison of forklift propulsion systems.

    SciTech Connect (OSTI)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  17. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect (OSTI)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  18. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    SciTech Connect (OSTI)

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  19. Quantum integrable systems. Quantitative methods in biology

    E-Print Network [OSTI]

    Giovanni Feverati

    2011-01-19

    Quantum integrable systems have very strong mathematical properties that allow an exact description of their energetic spectrum. From the Bethe equations, I formulate the Baxter "T-Q" relation, that is the starting point of two complementary approaches based on nonlinear integral equations. The first one is known as thermodynamic Bethe ansatz, the second one as Kl\\"umper-Batchelor-Pearce-Destri- de Vega. I show the steps toward the derivation of the equations for some of the models concerned. I study the infrared and ultraviolet limits and discuss the numerical approach. Higher rank integrals of motion can be obtained, so gaining some control on the eigenvectors. After, I discuss the Hubbard model in relation to the N = 4 supersymmetric gauge theory. The Hubbard model describes hopping electrons on a lattice. In the second part, I present an evolutionary model based on Turing machines. The goal is to describe aspects of the real biological evolution, or Darwinism, by letting evolve populations of algorithms. Particularly, with this model one can study the mutual transformation of coding/non coding parts in a genome or the presence of an error threshold. The assembly of oligomeric proteins is an important phenomenon which interests the majority of proteins in a cell. I participated to the creation of the project "Gemini" which has for purpose the investigation of the structural data of the interfaces of such proteins. The objective is to differentiate the role of amino acids and determine the presence of patterns characterizing certain geometries.

  20. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2008 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update This report estimates fuel cell system cost for systems...

  1. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2007 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update This report estimates fuel cell system cost for systems...

  2. Solid fuel combustion system for gas turbine engine

    DOE Patents [OSTI]

    Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  3. Staged venting of fuel cell system during rapid shutdown

    DOE Patents [OSTI]

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-09-14

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  4. Staged venting of fuel cell system during rapid shutdown

    DOE Patents [OSTI]

    Clingerman, Bruce J. (Palmyra, NY); Doan, Tien M. (Columbia, MD); Keskula, Donald H. (Webster, NY)

    2002-01-01

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  5. Driven harmonic oscillator as a quantum simulator for open systems

    E-Print Network [OSTI]

    Jyrki Piilo; Sabrina Maniscalco

    2006-10-03

    We show theoretically how a driven harmonic oscillator can be used as a quantum simulator for non-Markovian damped harmonic oscillator. In the general framework, the results demonstrate the possibility to use a closed system as a simulator for open quantum systems. The quantum simulator is based on sets of controlled drives of the closed harmonic oscillator with appropriately tailored electric field pulses. The non-Markovian dynamics of the damped harmonic oscillator is obtained by using the information about the spectral density of the open system when averaging over the drives of the closed oscillator. We consider single trapped ions as a specific physical implementation of the simulator, and we show how the simulator approach reveals new physical insight into the open system dynamics, e.g. the characteristic quantum mechanical non-Markovian oscillatory behavior of the energy of the damped oscillator, usually obtained by the non-Lindblad-type master equation, can have a simple semiclassical interpretation.

  6. Microchemical systems for the synthesis of nanostructures : quantum dots

    E-Print Network [OSTI]

    Baek, Jinyoung

    2012-01-01

    We have developed a continuous multi-stage high-temperature and high-pressure microfluidic system. High-pressure conditions enabled the use low molecular weight solvents that have previously not been available for quantum ...

  7. Quantum gates, sensors, and systems with trapped ions

    E-Print Network [OSTI]

    Wang, Shannon Xuanyue

    2012-01-01

    Quantum information science promises a host of new and useful applications in communication, simulation, and computational algorithms. Trapped atomic ions are one of the leading physical systems with potential to implement ...

  8. Fault-Tolerant Quantum Computation with Higher-Dimensional Systems

    E-Print Network [OSTI]

    Daniel Gottesman

    1998-02-02

    Instead of a quantum computer where the fundamental units are 2-dimensional qubits, we can consider a quantum computer made up of d-dimensional systems. There is a straightforward generalization of the class of stabilizer codes to d-dimensional systems, and I will discuss the theory of fault-tolerant computation using such codes. I prove that universal fault-tolerant computation is possible with any higher-dimensional stabilizer code for prime d.

  9. Enhanced Accident Tolerant Fuels for LWRS - A Preliminary Systems Analysis

    SciTech Connect (OSTI)

    Gilles Youinou; R. Sonat Sen

    2013-09-01

    The severe accident at Fukushima Daiichi nuclear plants illustrates the need for continuous improvements through developing and implementing technologies that contribute to safe, reliable and cost-effective operation of the nuclear fleet. Development of enhanced accident tolerant fuel contributes to this effort. These fuels, in comparison with the standard zircaloy – UO2 system currently used by the LWR industry, should be designed such that they tolerate loss of active cooling in the core for a longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, and design-basis events. This report presents a preliminary systems analysis related to most of these concepts. The potential impacts of these innovative LWR fuels on the front-end of the fuel cycle, on the reactor operation and on the back-end of the fuel cycle are succinctly described without having the pretension of being exhaustive. Since the design of these various concepts is still a work in progress, this analysis can only be preliminary and could be updated as the designs converge on their respective final version.

  10. Wave-Packet Revivals for Quantum Systems with Nondegenerate Energies

    E-Print Network [OSTI]

    Robert Bluhm; Alan Kostelecky; Bogdan Tudose

    1996-09-26

    The revival structure of wave packets is examined for quantum systems having energies that depend on two nondegenerate quantum numbers. For such systems, the evolution of the wave packet is controlled by two classical periods and three revival times. These wave packets exhibit quantum beats in the initial motion as well as new types of long-term revivals. The issue of whether fractional revivals can form is addressed. We present an analytical proof showing that at certain times equal to rational fractions of the revival times the wave packet can reform as a sum of subsidiary waves and that both conventional and new types of fractional revivals can occur.

  11. Tampering detection system using quantum-mechanical systems

    DOE Patents [OSTI]

    Humble, Travis S. (Knoxville, TN); Bennink, Ryan S. (Knoxville, TN); Grice, Warren P. (Oak Ridge, TN)

    2011-12-13

    The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.

  12. An Electromotive Force Measurement System for Alloy Fuels

    SciTech Connect (OSTI)

    Changhu Xing; Colby Jensen; Heng Ban; Robert Mariani; J. Rory Kennedy

    2010-11-01

    The development of advanced nuclear fuels requires a better understanding of the transmutation and micro-structural evolution of the materials. Alloy fuels have the advantage of high thermal conductivity and improved characteristics in fuel-cladding chemical reaction. However, information on thermodynamic and thermophysical properties is limited. The objective of this project is to design and build an experimental system to measure the thermodynamic properties of solid materials from which the understanding of their phase change can be determined. The apparatus was used to measure the electromotive force (EMF) of several materials in order to calibrate and test the system. The EMF of chromel was measured from 100°C to 800°C and compared with theoretical values. Additionally, the EMF measurement of Ni-Fe alloy was performed and compared with the Ni-Fe phase diagram. The prototype system is to be modified eventually and used in a radioactive hot-cell in the future.

  13. Fuel cycle analysis of once-through nuclear systems.

    SciTech Connect (OSTI)

    Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

    2010-08-10

    Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium (LEU) fuels. Examples of systems in this class include the small modular reactors being considered internationally; e.g. 4S [Tsuboi 2009], Hyperion Power Module [Deal 2010], ARC-100 [Wade 2010], and SSTAR [Smith 2008]. (2) Systems for Resource Utilization - In recent years, interest has developed in the use of advanced nuclear designs for the effective utilization of fuel resources. Systems under this class have generally utilized the breed and burn concept in which fissile material is bred and used in situ in the reactor core. Due to the favorable breeding that is possible with fast neutrons, these systems have tended to be fast spectrum systems. In the once-through concepts (as opposed to the traditional multirecycle approach typically considered for fast reactors), an ignition (or starter) zone contains driver fuel which is fissile material. This zone is designed to last a long time period to allow the breeding of sufficient fissile material in the adjoining blanket zone. The blanket zone is initially made of fertile depleted uranium fuel. This zone could also be made of fertile thorium fuel or recovered uranium from fuel reprocessing or natural uranium. However, given the bulk of depleted uranium and the potentially large inventory of recovered uranium, it is unlikely that the use of thorium is required in the near term in the U.S. Following the breeding of plutonium or fissile U-233 in the blanket, this zone or assembly then carries a larger fraction of the power generation in the reactor. These systems tend to also have a long cycle length (or core life) and they could be with or without fuel shuffling. When fuel is shuffled, the incoming fuel is generally depleted uranium (or thorium) fuel. In any case, fuel is burned once and then discharged. Examples of systems in this class include the CANDLE concept [Sekimoto 2001], the traveling wave reactor (TWR) concept of TerraPower [Ellis 2010], the ultra-long life fast reactor (ULFR) by ANL [Kim 2010], and the BNL fast mixed spectrum reactor (FMSR) concept [Fisher 1979]. (3) Thermal systems for resource extensio

  14. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  15. NUHOMS modular spent-fuel storage system: Performance testing

    SciTech Connect (OSTI)

    Strope, L.A.; McKinnon, M.A. ); Dyksterhouse, D.J.; McLean, J.C. )

    1990-09-01

    This report documents the results of a heat transfer and shielding performance evaluation of the NUTECH HOrizontal MOdular Storage (NUHOMS{reg sign}) System utilized by the Carolina Power and Light Co. (CP L) in an Independent Spent Fuel Storage Installation (ISFSI) licensed by the US Nuclear Regulatory Commission (NRC). The ISFSI is located at CP L's H. B. Robinson Nuclear Plant (HBR) near Hartsville, South Carolina. The demonstration included testing of three modules, first with electric heaters and then with spent fuel. The results indicated that the system was conservatively designed, with all heat transfer and shielding design criteria easily met. 5 refs., 45 figs., 9 tabs.

  16. Coherent-information analysis of quantum channels in simple quantum systems B. A. Grishanin and V. N. Zadkov*

    E-Print Network [OSTI]

    Zadkov, Victor

    Coherent-information analysis of quantum channels in simple quantum systems B. A. Grishanin and V concept to an analysis of the quantum information exchange between two systems, which in general may have University, 119899 Moscow, Russia Received 18 January 2000; published 10 August 2000 The coherent-information

  17. Contexts, Systems and Modalities: a new ontology for quantum mechanics

    E-Print Network [OSTI]

    Alexia Auffèves; Philippe Grangier

    2015-01-23

    In this article we present a possible way to make usual quantum mechanics fully compatible with physical realism, defined as the statement that the goal of physics is to study entities of the natural world, existing independently from any particular observer's perception, and obeying universal and intelligible rules. Rather than elaborating on the quantum formalism itself, we propose to modify the quantum ontology, by requiring that physical properties are attributed jointly to the system, and to the context in which it is embedded. In combination with a quantization principle, this non-classical definition of physical reality sheds new light on counter-intuitive features of quantum mechanics such as the origin of probabilities, non-locality, and the quantum-classical boundary.

  18. Cluster state quantum computation for many-level systems

    E-Print Network [OSTI]

    William Hall

    2006-06-08

    The cluster state model for quantum computation [Phys. Rev. Lett. 86, 5188] outlines a scheme that allows one to use measurement on a large set of entangled quantum systems in what is known as a cluster state to undertake quantum computations. The model itself and many works dedicated to it involve using entangled qubits. In this paper we consider the issue of using entangled qudits instead. We present a complete framework for cluster state quantum computation using qudits, which not only contains the features of the original qubit model but also contains the new idea of adaptive computation: via a change in the classical computation that helps to correct the errors that are inherent in the model, the implemented quantum computation can be changed. This feature arises through the extra degrees of freedom that appear when using qudits. Finally, for prime dimensions, we give a very explicit description of the model, making use of mutually unbiased bases.

  19. Coherent versus measurement feedback: Linear systems theory for quantum information

    E-Print Network [OSTI]

    Naoki Yamamoto

    2014-10-10

    To control a quantum system via feedback, we generally have two options in choosing control scheme. One is the coherent feedback, which feeds the output field of the system, through a fully quantum device, back to manipulate the system without involving any measurement process. The other one is the measurement-based feedback, which measures the output field and performs a real-time manipulation on the system based on the measurement results. Both schemes have advantages/disadvantages, depending on the system and the control goal, hence their comparison in several situation is important. This paper considers a general open linear quantum system with the following specific control goals; back-action evasion (BAE), generation of a quantum non-demolished (QND) variable, and generation of a decoherence-free subsystem (DFS), all of which have important roles in quantum information science. Then some no-go theorems are proven, clarifying that those goals cannot be achieved by any measurement-based feedback control. On the other hand it is shown that, for each control goal, there exists a coherent feedback controller accomplishing the task. The key idea to obtain all the results is system theoretic characterizations of BAE, QND, and DFS in terms of controllability and observability properties or transfer functions of linear systems, which are consistent with their standard definitions.

  20. Combustion system for hybrid solar fossil fuel receiver

    DOE Patents [OSTI]

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  1. System for controlling the operating temperature of a fuel cell

    DOE Patents [OSTI]

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  2. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    SciTech Connect (OSTI)

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  3. High temperature fuel/emitter system for advanced thermionic fuel elements

    SciTech Connect (OSTI)

    Moeller, Helen H.; Bremser, Albert H.; Gontar, Alexander; Fiviesky, Evgeny

    1997-01-10

    Specialists in space applications are currently focusing on bimodal power systems designed to provide both electric power and thermal propulsion (Kennedy, 1994 and Houts, 1995). Our work showed that thermionics is a viable technology for nuclear bimodal power systems. We demonstrated that materials for a thermionic fuel-emitter combination capable of performing at operating temperatures of 2473 K are not only possible but available. The objective of this work, funded by the US Department of Energy, Office of Space and Defense Power Systems, was to evaluate the compatibility of fuel material consisting of an uranium carbide/tantalum carbide solid solution with an emitter material consisting of a monocrystalline tungsten-niobium alloy. The uranium loading of the fuel material was 70 mole% uranium carbide. The program was successfully accomplished by a B and W/SIA LUTCH team. Its workscope was integrated with tasks being performed at both Babcock and Wilcox, Lynchburg Research Center, Lynchburg, Virginia, and SIA LUTCH, Podolsk, Russia. Samples were fabricated by LUTCH and seven thermal tests were performed in a hydrogen atmosphere. The first preliminary test was performed at 2273 K by LUTCH, and the remaining six tests were performed At B and W. Three tests were performed at 2273 K, two at 2373 K, and the final test at 2473 K. The results showed that the fuel and emitter materials were compatible in the presence of hydrogen. No evidence of liquid formation, dissolution of the uranium carbide from the uranium carbide/tantalum carbide solid solution, or diffusion of the uranium into the monocrystalline tungsten alloy was observed. Among the highlights of the program was the successful export of the fuel samples from Russia and their import into the US by commercial transport. This paper will discuss the technical aspects of this work.

  4. The entropy power inequality for quantum systems

    E-Print Network [OSTI]

    Robert Koenig; Graeme Smith

    2014-02-20

    When two independent analog signals, X and Y are added together giving Z=X+Y, the entropy of Z, H(Z), is not a simple function of the entropies H(X) and H(Y), but rather depends on the details of X and Y's distributions. Nevertheless, the entropy power inequality (EPI), which states that exp [2H(Z)] \\geq exp[2H(X)] + exp[2H(Y)], gives a very tight restriction on the entropy of Z. This inequality has found many applications in information theory and statistics. The quantum analogue of adding two random variables is the combination of two independent bosonic modes at a beam splitter. The purpose of this work is to give a detailed outline of the proof of two separate generalizations of the entropy power inequality to the quantum regime. Our proofs are similar in spirit to standard classical proofs of the EPI, but some new quantities and ideas are needed in the quantum setting. Specifically, we find a new quantum de Bruijin identity relating entropy production under diffusion to a divergence-based quantum Fisher information. Furthermore, this Fisher information exhibits certain convexity properties in the context of beam splitters.

  5. Building logical qubits in a superconducting quantum computing system

    E-Print Network [OSTI]

    Jay M. Gambetta; Jerry M. Chow; Matthias Steffen

    2015-10-15

    The technological world is in the midst of a quantum computing and quantum information revolution. Since Richard Feynman's famous "plenty of room at the bottom" lecture, hinting at the notion of novel devices employing quantum mechanics, the quantum information community has taken gigantic strides in understanding the potential applications of a quantum computer and laid the foundational requirements for building one. We believe that the next significant step will be to demonstrate a quantum memory, in which a system of interacting qubits stores an encoded logical qubit state longer than the incorporated parts. Here, we describe the important route towards a logical memory with superconducting qubits, employing a rotated version of the surface code. The current status of technology with regards to interconnected superconducting-qubit networks will be described and near-term areas of focus to improve devices will be identified. Overall, the progress in this exciting field has been astounding, but we are at an important turning point where it will be critical to incorporate engineering solutions with quantum architectural considerations, laying the foundation towards scalable fault-tolerant quantum computers in the near future.

  6. Systems for the Intermodal Routing of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Peterson, Steven K; Liu, Cheng

    2015-01-01

    The safe and secure movement of spent nuclear fuel from shutdown and active reactor facilities to intermediate or long term storage sites may, in some instances, require the use of several modes of transportation to accomplish the move. To that end, a fully operable multi-modal routing system is being developed within Oak Ridge National Laboratory s (ORNL) WebTRAGIS (Transportation Routing Analysis Geographic Information System). This study aims to provide an overview of multi-modal routing, the existing state of the TRAGIS networks, the source data needs, and the requirements for developing structural relationships between various modes to create a suitable system for modeling the transport of spent nuclear fuel via a multimodal network. Modern transportation systems are comprised of interconnected, yet separate, modal networks. Efficient transportation networks rely upon the smooth transfer of cargoes at junction points that serve as connectors between modes. A key logistical impediment to the shipment of spent nuclear fuel is the absence of identified or designated transfer locations between transport modes. Understanding the potential network impacts on intermodal transportation of spent nuclear fuel is vital for planning transportation routes from origin to destination. By identifying key locations where modes intersect, routing decisions can be made to prioritize cost savings, optimize transport times and minimize potential risks to the population and environment. In order to facilitate such a process, ORNL began the development of a base intermodal network and associated routing code. The network was developed using previous intermodal networks and information from publicly available data sources to construct a database of potential intermodal transfer locations with likely capability to handle spent nuclear fuel casks. The coding development focused on modifying the existing WebTRAGIS routing code to accommodate intermodal transfers and the selection of prioritization constraints and modifiers to determine route selection. The limitations of the current model and future directions for development are discussed, including the current state of information on possible intermodal transfer locations for spent fuel.

  7. Diesel fuel burner for diesel emissions control system

    DOE Patents [OSTI]

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  8. Mechatronics in Fuel Cell Systems Anna G. Stefanopoulou

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Mechatronics in Fuel Cell Systems Anna G. Stefanopoulou Mechanical Engineering Department, Univ challenges and opportunities in the mechatronics field. In this paper we highlight important design issues and pose problems that require mechatronics solutions. We start by presenting the design process of a toy

  9. Exotic Freezing of Response in Quantum Many-Body System

    E-Print Network [OSTI]

    Arnab Das

    2010-11-01

    We show that when a quantum many-body system is subjected to coherent periodic driving, the response may exhibit exotic freezing behavior in high driving frequency ($\\omega$) regime. In a periodically driven classical thermodynamic system, freezing at high $\\omega$ occurs when $1/\\omega$ is much smaller than the characteristic relaxation time of the system, and hence the freezing always increases there as $\\omega$ is increased. Here, in the contrary, we see surprising non-monotonic freezing behavior of the response with $\\omega$, showing curious peak-valley structure. Quite interestingly, the entire system tends to freeze almost absolutely (the freezing peaks) when driven with a certain combination of driving parameters values (amplitude and $\\omega$) due to coherent suppression of dynamics of the quantum many-body modes, which has no classical analog. We demonstrate this new freezing phenomenon analytically (supported by large-scale numerics) for a general class of integrable quantum spin systems.

  10. Heat-exchange statistics in driven open quantum systems

    E-Print Network [OSTI]

    S. Gasparinetti; P. Solinas; A. Braggio; M. Sassetti

    2014-07-29

    As the dimensions of physical systems approach the nanoscale, the laws of thermodynamics must be reconsidered due to the increased importance of fluctuations and quantum effects. While the statistical mechanics of small classical systems is relatively well understood, the quantum case still poses challenges. Here we set up a formalism that allows to calculate the full probability distribution of energy exchanges between a periodically driven quantum system and a thermalized heat reservoir. The formalism combines Floquet theory with a generalized master equation approach. For a driven two-level system and in the long-time limit, we obtain a universal expression for the distribution, providing clear physical insight into the exchanged energy quanta. We illustrate our approach in two analytically solvable cases and discuss the differences in the corresponding distributions. Our predictions could be directly tested in a variety of systems, including optical cavities and solid-state devices.

  11. An efficient finite element method applied to quantum billiard systems

    E-Print Network [OSTI]

    Woo-Sik Son; Sunghwan Rim; Chil-Min Kim

    2009-02-25

    An efficient finite element method (FEM) for calculating eigenvalues and eigenfunctions of quantum billiard systems is presented. We consider the FEM based on triangular $C_1$ continuity quartic interpolation. Various shapes of quantum billiards including an integrable unit circle are treated. The numerical results show that the applied method provides accurate set of eigenvalues exceeding a thousand levels for any shape of quantum billiards on a personal computer. Comparison with the results from the FEM based on well-known $C_0$ continuity quadratic interpolation proves the efficiency of the method.

  12. Quantum phase transitions in Bose-Fermi systems

    SciTech Connect (OSTI)

    Petrellis, D.; Leviatan, A.; Iachello, F.

    2011-04-15

    Research Highlights: > We study quantum phase transitions in a system of N bosons and a single-j fermion. > Classical order parameters and correlation diagrams of quantum levels are determined. > The odd fermion strongly influences the location and nature of the phase transition. > Experimental evidence for the U(5)-SU(3) transition in odd-even nuclei is presented. - Abstract: Quantum phase transitions in a system of N bosons with angular momentum L = 0, 2 (s, d) and a single fermion with angular momentum j are investigated both classically and quantum mechanically. It is shown that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially the critical value of the control parameter at which the phase transition occurs. Experimental evidence for the U(5)-SU(3) (spherical to axially-deformed) transition in odd-even nuclei is presented.

  13. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  14. Scavenging quantum information: Multiple observations of quantum systems

    E-Print Network [OSTI]

    Peter Rapcan; John Calsamiglia; Ramon Munoz-Tapia; Emilio Bagan; Vladimir Buzek

    2011-05-26

    Given an unknown state of a qudit that has already been measured optimally, can one still extract any information about the original unknown state? Clearly, after a maximally informative measurement, the state of the system `collapses' into a post-measurement state from which the {\\em{same}} observer cannot obtain further information about the original state of the system. However, the system still encodes a significant amount of information about the original preparation for a second observer who is unaware of the actions of the first one. We study how a series of independent observers can obtain, or scavenge, information about the unknown state of a system (quantified by the fidelity) when they sequentially measure it. We give closed-form expressions for the estimation fidelity, when one or several qudits are available to carry information about the single-qudit state, and study the `classical' limit when an arbitrarily large number of observers can obtain (nearly) complete information on the system. In addition to the case where all observers perform most informative measurements we study the scenario where a finite number of observers estimate the state with equal fidelity,regardless of their position in the measurement sequence; and the scenario where all observers use identical measurement apparata (up to a mutually unknown orientation) chosen so that a particular observer's estimation fidelity is maximized.

  15. Controlling quantum systems by embedded dynamical decoupling schemes

    E-Print Network [OSTI]

    Oliver Kern; Gernot Alber

    2005-06-05

    A dynamical decoupling method is presented which is based on embedding a deterministic decoupling scheme into a stochastic one. This way it is possible to combine the advantages of both methods and to increase the suppression of undesired perturbations of quantum systems significantly even for long interaction times. As a first application the stabilization of a quantum memory is discussed which is perturbed by one-and two-qubit interactions.

  16. The Signals and Systems Approach to Quantum Computation

    E-Print Network [OSTI]

    H. Gopalkrishna Gadiyar; K. M. Sangeeta Maini; R. Padma; H. S. Sharatchandra

    2003-05-13

    In this note we point out the fact that the proper conceptual setting of quantum computation is the theory of Linear Time Invariant systems. To convince readers of the utility of the approach, we introduce a new model of computation based on the orthogonal group. This makes the link to traditional electronics engineering clear. We conjecture that the speed up achieved in quantum computation is at the cost of increased circuit complexity.

  17. Miniature fuel-cell system complete with on-demand fuel and oxidant supply

    E-Print Network [OSTI]

    Hur, JI; Kim, CJ

    2015-01-01

    scale direct methanol fuel cell development,” Energy, vol.flow-based microfluidic fuel cell," J. Am. Chem. Soc. , vol.electrolyte membrane fuel cell design," J. Power Sources,

  18. Miniature fuel-cell system complete with on-demand fuel and oxidant supply

    E-Print Network [OSTI]

    Hur, JI; Kim, CJ

    2015-01-01

    direct formic acid fuel cell," J. Power Sources, vol. 128,Direct formic acid fuel cells," J. Power Sources, vol. 111,acid microfabricated fuel cells," J. Power Sources, vol.

  19. Miniature fuel-cell system complete with on-demand fuel and oxidant supply

    E-Print Network [OSTI]

    Hur, JI; Kim, CJ

    2015-01-01

    breathing direct formic acid fuel cell," J. Power Sources,Barnrad, "Direct formic acid fuel cells," J. Power Sources,formic acid microfabricated fuel cells," J. Power Sources,

  20. Extending and Characterizing Fuel Flexibility in Small-Scale Power Systems

    E-Print Network [OSTI]

    McCoy, Christopher David

    2013-01-01

    Fuel Flexibility in Small Scale Power Systems – Chapter 1 – Introduction dual-Fuel Flexibility in Small Scale Power Systems – Chapter 2 – Theory Figure 56: a dual

  1. System Losses Study - FIT (Fuel-cycle Integration and Tradeoffs)

    SciTech Connect (OSTI)

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert S. Cherry; Denia Djokic; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros

    2010-09-01

    This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was “the number of nines” – how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum “losses” of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of “losses” itself changed from the loss of TRU into waste to a generic definition that a “loss” is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred – asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R&D needs, and gaining new insights. The FIT model has been a forcing function, helping the team in this endeavor. Models don’t like “TBD” as an input, forcing us to make assumptions and see if they matter. A major addition in FY 2010 was exploratory analysis of “modified open fuel” cycles, employing “minimum fuel treatment” as opposed to full aqueous or electrochemical separation treatment. This increased complexity in our analysis and analytical tool development because equilibrium conditions do not appear sustainable in minimum fuel treatment cases, as was assumed in FY 2009 work with conventional aqueous and electrochemical separation. It is no longer reasonable to assume an equilibrium situation exists in all cases.

  2. Lean Gasoline System Development for Fuel Efficient Small Cars

    SciTech Connect (OSTI)

    2013-08-30

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  3. Methods, systems, and devices for deep desulfurization of fuel gases

    DOE Patents [OSTI]

    Li, Liyu (Richland, WA); King, David L. (Richland, WA); Liu, Jun (Richland, WA); Huo, Qisheng (Richland, WA)

    2012-04-17

    A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.

  4. Thermal Quantum Speed Limit for Classical-Driving Open Systems

    E-Print Network [OSTI]

    Wenjiong Wu; Kai Yan; Xiang Hao

    2015-10-21

    Quantum speed limit (QSL) time for open systems driven by classical fields is studied in the presence of thermal bosonic environments. The decoherence process is quantitatively described by the time-convolutionless master equation. The evolution speed of an open system is related not only to the strength of driving classical field but also to the environmental temperature. The energy-state population plays a key role in the thermal QSL. Comparing with the zero-temperature reservoir, we predict that the structural reservoir at low temperatures may contribute to the acceleration of quantum decoherence. The manifest oscillation of QSL time takes on under the circumstance of classical driving fields. We also investigate the scaling property of QSL time for multi-particle noninteracting entangled systems. It is demonstrated that entanglement of open systems can be considered as one resource for improving the potential capacity of thermal quantum speedup.

  5. Fluctuations of work in nearly adiabatically driven open quantum systems

    E-Print Network [OSTI]

    S. Suomela; J. Salmilehto; I. G. Savenko; T. Ala-Nissila; M. Möttönen

    2015-03-27

    We extend the quantum jump method to nearly adiabatically driven open quantum systems in a way that allows for an accurate account of the external driving in the system-environment interaction. Using this framework, we construct the corresponding trajectory-dependent work performed on the system and derive the integral fluctuation theorem and the Jarzynski equality for nearly adiabatic driving. We show that such identities hold as long as the stochastic dynamics and work variable are consistently defined. We numerically study the emerging work statistics for a two-level quantum system and find that the conventional diabatic approximation is unable to capture some prominent features arising from driving such as the continuity of the probability density of work. Our results reveal the necessity of using accurate expressions for the drive-dressed heat exchange in future experiments probing jump time distributions.

  6. Information theory of quantum systems with some hydrogenic applications

    E-Print Network [OSTI]

    J. S. Dehesa; D. Manzano; P. S. Sánchez-Moreno; R. J. Yáñez

    2010-09-14

    The information-theoretic representation of quantum systems, which complements the familiar energy description of the density-functional and wave-function-based theories, is here discussed. According to it, the internal disorder of the quantum-mechanical non-relativistic systems can be quantified by various single (Fisher information, Shannon entropy) and composite (e.g. Cramer-Rao, LMC shape and Fisher-Shannon complexity) functionals of the Schr\\"odinger probability density. First, we examine these concepts and its application to quantum systems with central potentials. Then, we calculate these measures for hydrogenic systems, emphasizing their predictive power for various physical phenomena. Finally, some recent open problems are pointed out.

  7. Work extraction and thermodynamics for individual quantum systems

    E-Print Network [OSTI]

    Paul Skrzypczyk; Anthony J. Short; Sandu Popescu

    2014-09-26

    Thermodynamics is traditionally concerned with systems comprised of a large number of particles. Here we present a framework for extending thermodynamics to individual quantum systems, including explicitly a thermal bath and work-storage device (essentially a `weight' that can be raised or lowered). We prove that the second law of thermodynamics holds in our framework, and give a simple protocol to extract the optimal amount of work from the system, equal to its change in free energy. Our results apply to any quantum system in an arbitrary initial state, in particular including non-equilibrium situations. The optimal protocol is essentially reversible, similar to classical Carnot cycles, and indeed, we show that it can be used it to construct a quantum Carnot engine.

  8. Back-Up/ Peak Shaving Fuel Cell System

    SciTech Connect (OSTI)

    Staudt, Rhonda L.

    2008-05-28

    This Final Report covers the work executed by Plug Power from 8/11/03 – 10/31/07 statement of work for Topic 2: advancing the state of the art of fuel cell technology with the development of a new generation of commercially viable, stationary, Back-up/Peak-Shaving fuel cell systems, the GenCore II. The Program cost was $7.2 M with the Department of Energy share being $3.6M and Plug Power’s share being $3.6 M. The Program started in August of 2003 and was scheduled to end in January of 2006. The actual program end date was October of 2007. A no cost extension was grated. The Department of Energy barriers addressed as part of this program are: Technical Barriers for Distributed Generation Systems: o Durability o Power Electronics o Start up time Technical Barriers for Fuel Cell Components: o Stack Material and Manufacturing Cost o Durability o Thermal and water management Background The next generation GenCore backup fuel cell system to be designed, developed and tested by Plug Power under the program is the first, mass-manufacturable design implementation of Plug Power’s GenCore architected platform targeted for battery and small generator replacement applications in the telecommunications, broadband and UPS markets. The next generation GenCore will be a standalone, H2 in-DC-out system. In designing the next generation GenCore specifically for the telecommunications market, Plug Power is teaming with BellSouth Telecommunications, Inc., a leading industry end user. The final next generation GenCore system is expected to represent a market-entry, mass-manufacturable and economically viable design. The technology will incorporate: • A cost-reduced, polymer electrolyte membrane (PEM) fuel cell stack tailored to hydrogen fuel use • An advanced electrical energy storage system • A modular, scalable power conditioning system tailored to market requirements • A scaled-down, cost-reduced balance of plant (BOP) • Network Equipment Building Standards (NEBS), UL and CE certifications.

  9. Non-equilibrium thermodynamics approach to open quantum systems

    E-Print Network [OSTI]

    Vitalii Semin; Francesco Petruccione

    2014-11-11

    Open quantum systems are studied from the thermodynamical point of view unifying the principle of maximum informational entropy and the hypothesis of relaxation times hierarchy. The result of the unification is a non-Markovian and local in time master equation that provides a direct connection of dynamical and thermodynamical properties of open quantum systems. The power of the approach is illustrated with the application to the damped harmonic oscillator and the damped driven two-level system resulting in analytical expressions for the non-Markovian and non-equilibrium entropy and inverse temperature.

  10. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    SciTech Connect (OSTI)

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.; Powell, Michael R.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ¢/kWh, well within the price of commercial and residential retail prices at the national level (9.9-10¢/kWh and 11-12 ¢/kWh, respectively). With an additional 5 ¢/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.

  11. Miniature fuel-cell system complete with on-demand fuel and oxidant supply

    E-Print Network [OSTI]

    Hur, JI; Kim, CJ

    2015-01-01

    Valdez, “High-energy portable fuel cell power sources,” Thethe skies with fuel cell power,” Fuel Cells Bulletin, vol.is closed to draw the power, fuel- cell reaction begins to

  12. Quantum Chaos in a Yang-Mills-Higgs System

    E-Print Network [OSTI]

    Luca Salasnich

    1997-06-12

    We study the energy fluctuations of a spatially homogeneous SU(2) Yang-Mills-Higgs system. In particular, we analyze the nearest-neighbour spacing distribution which shows a Wigner-Poisson transition by increasing the value of the Higgs field in the vacuum. This transition is a clear quantum signature of the classical chaos-order transition of the system.

  13. The quantum systems control and the optimal control theory

    E-Print Network [OSTI]

    V. F. Krotov

    2008-05-22

    Mathematical theory of the quantum systems control is based on some ideas of the optimal control theory. These ideas are developed here as applied to these systems. The results obtained meet the deficiencies in the basis and algorithms of the control synthesis and expand the application of these methods.

  14. Coherent states of non-Hermitian quantum systems

    E-Print Network [OSTI]

    B. Roy; P. Roy

    2006-06-21

    We use the Gazeau-Klauder formalism to construct coherent states of non-Hermitian quantum systems. In particular we use this formalism to construct coherent state of a PT symmetric system. We also discuss construction of coherent states following Klauder's minimal prescription.

  15. Naval Spent Nuclear Fuel disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Naval Spent Nuclear Fuel Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers/waste packages are loaded and sealed in the surface waste handling facilities, transferred underground through the access drifts using a rail mounted transporter, and emplaced in emplacement drifts. The Naval Spent Nuclear Fuel Disposal Container System provides long term confinement of the naval spent nuclear fuel (SNF) placed within the disposal containers, and withstands the loading, transfer, emplacement, and retrieval operations. The Naval Spent Nuclear Fuel Disposal Container System provides containment of waste for a designated period of time and limits radionuclide release thereafter. The waste package maintains the waste in a designated configuration, withstands maximum credible handling and rockfall loads, limits the waste form temperature after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Each naval SNF disposal container will hold a single naval SNF canister. There will be approximately 300 naval SNF canisters, composed of long and short canisters. The disposal container will include outer and inner cylinder walls and lids. An exterior label will provide a means by which to identify a disposal container and its contents. Different materials will be selected for the waste package inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and the natural barrier will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel while the outer cylinder and outer cylinder lids will be made of high-nickel alloy.

  16. SECA Coal-Based Systems - FuelCell Energy, Inc.

    SciTech Connect (OSTI)

    Ayagh, Hossein

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ?25 kW SOFC stack tower incorporating multiple stack building blocks of scaled-up cells, suitable for integration into a large-scale fuel cell power module. Activities in Phase II also included the development of the baseline system, factory cost estimate for the baseline plant’s power block, and conceptual design of a natural gas fueled sub-MW system to be used for testing and verification of the fuel cell stacks in a system environment. The specific objective for Phase III was the validation of the performance and robustness of stacks and scaled stack arrays suitable for use in large-scale power generation systems such as an IGFC with reliable, fail-safe operation being of paramount importance. The work culminated in the verification tests of a 60 kW SOFC stack module in a power plant facility. This final technical report summarizes the progress made during the project period. Significant progress was made in the areas of cell and stack technology development, stack module design, sub-scale module tests, Baseline Power Plant system development and Proof-of- Concept Module unit design. The development of this technology will significantly advance the nation’s energy security and independence interests while simultaneously addressing environmental concerns, including greenhouse gas emissions and water usage.

  17. Hydrogen atom as a quantum-classical hybrid system

    E-Print Network [OSTI]

    Fei Zhan; Biao Wu

    2013-02-15

    Hydrogen atom is studied as a quantum-classical hybrid system, where the proton is treated as a classical object while the electron is regarded as a quantum object. We use a well known mean-field approach to describe this hybrid hydrogen atom; the resulting dynamics for the electron and the proton is compared to their full quantum dynamics. The electron dynamics in the hybrid description is found to be only marginally different from its full quantum counterpart. The situation is very different for the proton: in the hybrid description, the proton behaves like a free particle; in the fully quantum description, the wave packet center of the proton orbits around the center of mass. Furthermore, we find that the failure to describe the proton dynamics properly can be regarded as a manifestation of the fact that there is no conservation of momentum in the mean-field hybrid approach. We expect that such a failure is a common feature for all existing approaches for quantum-classical hybrid systems of Born-Oppenheimer type.

  18. Fluorescence from a quantum dot and metallic nanosphere hybrid system

    SciTech Connect (OSTI)

    Schindel, Daniel G. [Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, R3B 2E9 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7 (Canada)

    2014-03-31

    We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

  19. fuel

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR/%2Afissile4/%2A en

  20. Time evolution of open quantum many-body systems

    E-Print Network [OSTI]

    Vincent R. Overbeck; Hendrik Weimer

    2015-10-09

    We establish a generic method to analyze the time evolution of open quantum many-body systems. Our approach is based on a variational integration of the quantum master equation describing the dynamics and naturally connects to a variational principle for its nonequilibrium steady state. We successfully apply our variational method to study dissipative Rydberg gases, finding excellent quantitative agreement with small-scale simulations of the full quantum master equation. We observe that correlations related to non-Markovian behavior play a significant role during the relaxation dynamics towards the steady state. We further quantify this non-Markovianity and find it to be closely connected to an information-theoretical measure of quantum and classical correlations.

  1. Time evolution of open quantum many-body systems

    E-Print Network [OSTI]

    Overbeck, Vincent R

    2015-01-01

    We establish a generic method to analyze the time evolution of open quantum many-body systems. Our approach is based on a variational integration of the quantum master equation describing the dynamics and naturally connects to a variational principle for its nonequilibrium steady state. We successfully apply our variational method to study dissipative Rydberg gases, finding excellent quantitative agreement with small-scale simulations of the full quantum master equation. We observe that correlations related to non-Markovian behavior play a significant role during the relaxation dynamics towards the steady state. We further quantify this non-Markovianity and find it to be closely connected to an information-theoretical measure of quantum and classical correlations.

  2. GCtool for fuel cell systems design and analysis : user documentation.

    SciTech Connect (OSTI)

    Ahluwalia, R.K.; Geyer, H.K.

    1999-01-15

    GCtool is a comprehensive system design and analysis tool for fuel cell and other power systems. A user can analyze any configuration of component modules and flows under steady-state or dynamic conditions. Component models can be arbitrarily complex in modeling sophistication and new models can be added easily by the user. GCtool also treats arbitrary system constraints over part or all of the system, including the specification of nonlinear objective functions to be minimized subject to nonlinear, equality or inequality constraints. This document describes the essential features of the interpreted language and the window-based GCtool environment. The system components incorporated into GCtool include a gas flow mixer, splitier, heater, compressor, gas turbine, heat exchanger, pump, pipe, diffuser, nozzle, steam drum, feed water heater, combustor, chemical reactor, condenser, fuel cells (proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate), shaft, generator, motor, and methanol steam reformer. Several examples of system analysis at various levels of complexity are presented. Also given are instructions for generating two- and three-dimensional plots of data and the details of interfacing new models to GCtool.

  3. Controllable quantum information network with a superconducting system

    SciTech Connect (OSTI)

    Zhang, Feng-yang, E-mail: zhangfy@mail.dlut.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Liu, Bao [Beijing Computational Science Research Center (CSRC), Beijing 100084 (China); Chen, Zi-hong [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Wu, Song-lin [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Song, He-shan [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2014-07-15

    We propose a controllable and scalable architecture for quantum information processing using a superconducting system network, which is composed of current-biased Josephson junctions (CBJJs) as tunable couplers between the two superconducting transmission line resonators (TLRs), each coupling to multiple superconducting qubits (SQs). We explicitly demonstrate that the entangled state, the phase gate, and the information transfer between any two selected SQs can be implemented, respectively. Lastly, numerical simulation shows that our scheme is robust against the decoherence of the system. -- Highlights: •An architecture for quantum information processing is proposed. •The quantum information transfer between any two selected SQs is implemented. •This proposal is robust against the decoherence of the system. •This architecture can be fabricated on a chip down to the micrometer scale.

  4. Secret Sharing with a Single d-level Quantum System

    E-Print Network [OSTI]

    Armin Tavakoli; Isabelle Herbauts; Marek Zukowski; Mohamed Bourennane

    2015-06-15

    We give an example of a wide class of problems for which quantum information protocols based on multi-system entanglement can be mapped into much simpler ones involving one system. Secret sharing is a cryptographic primitive which plays a central role in various secure multiparty computation tasks and management of keys in cryptography. In secret sharing protocols, a classical message is divided into shares given to recipient parties in such a way that some number of parties need to collaborate in order to reconstruct the message. Quantum protocols for the task commonly rely on multi-partite GHZ entanglement. We present a multiparty secret sharing protocol which requires only sequential communication of a single quantum d-level system (for any prime d). It has huge advantages in scalabilility and can be realized with the state of the art technology. n be realized with the state of the art technology.

  5. Quantum Chaos in a Yang--Mills--Higgs System Luca Salasnich 1

    E-Print Network [OSTI]

    Quantum Chaos in a Yang--Mills--Higgs System Luca Salasnich 1 Dipartimento di Matematica Pura ed to quantum chaos, i.e. the study of properties of quantum systems which are classically chaotic 9 theory 13) . In this paper we study quantum chaos in a field--theory schematic model. We analyze

  6. Firm eyes savings from tires-to-fuel system

    SciTech Connect (OSTI)

    Barber, J.

    1983-01-31

    A $600,000 pyrolysis system to convert tire scraps into methane will eliminate a tire retreading company's landfill and boiler fuel costs and achieve a five-year payback. The process also yields steel belts, fibers, and carbon black byproducts that can be sold for additional revenue. Heat from the hot exhaust gases will be recycled to the combustion chamber. A 10% federal energy tax credit and a 10% investment tax credit lowered the capital costs for $480,000. (DCK)

  7. Quantum Interference Induced Photon Blockade in a Coupled Single Quantum Dot-Cavity System

    E-Print Network [OSTI]

    Tang, Jing; Xu, Xiulai

    2015-01-01

    We propose an experimental scheme to implement a strong photon blockade with a single quantum dot coupled to a nanocavity. The photon blockade effect can be tremendously enhanced by driving the cavity and the quantum dot simultaneously with two classical laser fields. This enhancement of photon blockade is ascribed to the quantum interference effect to avoid two-photon excitation of the cavity field. Comparing with Jaynes-Cummings model, the second-order correlation function at zero time delay $g^{(2)}(0)$ in our scheme can be reduced by two orders of magnitude and the system sustains a large intracavity photon number. A red (blue) cavity-light detuning asymmetry for photon quantum statistics with bunching or antibunching characteristics is also observed. The photon blockade effect has a controllable flexibility by tuning the relative phase between the two pumping laser fields and the Rabi coupling strength between the quantum dot and the pumping field. Moreover, the photon blockade scheme based on quantum in...

  8. Engine control system having fuel-based timing

    DOE Patents [OSTI]

    Willi, Martin L. (Dunlap, IL); Fiveland, Scott B. (Metamora, IL); Montgomery, David T. (Edelstein, IL); Gong, Weidong (Dunlap, IL)

    2012-04-03

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a sensor configured to generate a signal indicative of an amount of an air/fuel mixture remaining within the cylinder after completion of a first combustion event and a controller in communication with the actuator and the sensor. The controller may be configured to compare the amount with a desired amount, and to selectively regulate the actuator to adjust a timing of the engine valve associated with a subsequent combustion event based on the comparison.

  9. Optimized pulse sequences for suppressing unwanted transitions in quantum systems

    E-Print Network [OSTI]

    C. A. Schroeder; G. S. Agarwal

    2010-10-25

    We investigate the nature of the pulse sequence so that unwanted transitions in quantum systems can be inhibited optimally. For this purpose we show that the sequence of pulses proposed by Uhrig [Phys. Rev. Lett. \\textbf{98}, 100504 (2007)] in the context of inhibition of environmental dephasing effects is optimal. We derive exact results for inhibiting the transitions and confirm the results numerically. We posit a very significant improvement by usage of the Uhrig sequence over an equidistant sequence in decoupling a quantum system from unwanted transitions. The physics of inhibition is the destructive interference between transition amplitudes before and after each pulse.

  10. Optimized pulse sequences for suppressing unwanted transitions in quantum systems

    SciTech Connect (OSTI)

    Schroeder, C. A.; Agarwal, G. S. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St. Norman, Oklahoma 73019 (United States); Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States)

    2011-01-15

    We investigate the nature of the pulse sequence so that unwanted transitions in quantum systems can be inhibited optimally. For this purpose we show that the sequence of pulses proposed by Uhrig [Phys. Rev. Lett. 98, 100504 (2007)] in the context of inhibition of environmental dephasing effects is optimal. We derive exact results for inhibiting the transitions and confirm the results numerically. We posit a very significant improvement by usage of the Uhrig sequence over an equidistant sequence in decoupling a quantum system from unwanted transitions. The physics of inhibition is the destructive interference between transition amplitudes before and after each pulse.

  11. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    SciTech Connect (OSTI)

    D.R. Jackson; G.R. Kiebel

    1999-08-24

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

  12. Air System Management for Fuel Cell Vehicle Applications

    E-Print Network [OSTI]

    Cunningham, Joshua M

    2001-01-01

    variations of a typical fuel cell application where the peakunder development for fuel cell applications. Several of theDOE for vehicular fuel cell applications. Arthur D. Little:

  13. Fuel-Flexible Microturbine and Gasifier System for Combined Heat...

    Broader source: Energy.gov (indexed) [DOE]

    fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel consumption and carbon dioxide emissions. Fuel-Flexible Microturbine and Gasifier...

  14. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuelDepartmentUnveiled

  15. Fuel-Induced System Responses The Role Unconventional Fuels May Play in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuelDepartmentUnveiledof|Altering

  16. Alternative Fuels Data Center: Equipment Options for E85 Fueling Systems

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender Pump Dispensers to someoneElectricity Research

  17. Hacking commercial quantum cryptography systems by tailored bright illumination

    E-Print Network [OSTI]

    Lars Lydersen; Carlos Wiechers; Christoffer Wittmann; Dominique Elser; Johannes Skaar; Vadim Makarov

    2011-03-04

    The peculiar properties of quantum mechanics allow two remote parties to communicate a private, secret key, which is protected from eavesdropping by the laws of physics. So-called quantum key distribution (QKD) implementations always rely on detectors to measure the relevant quantum property of single photons. Here we demonstrate experimentally that the detectors in two commercially available QKD systems can be fully remote-controlled using specially tailored bright illumination. This makes it possible to tracelessly acquire the full secret key; we propose an eavesdropping apparatus built of off-the-shelf components. The loophole is likely to be present in most QKD systems using avalanche photodiodes to detect single photons. We believe that our findings are crucial for strengthening the security of practical QKD, by identifying and patching technological deficiencies.

  18. A term-rewriting system for computer quantum algebra

    E-Print Network [OSTI]

    J. J. Hudson

    2008-09-25

    Existing computer algebra packages do not fully support quantum mechanics calculations in Dirac's notation. I present the foundation for building such support: a mathematical system for the symbolic manipulation of expressions used in the invariant formalism of quantum mechanics. I first describe the essential mathematical features of the Hilbert-space invariant formalism. This is followed by a formal characterisation of all possible algebraic expressions in this formalism. This characterisation is provided in the form of a set of terms. Rewrite rules over this set of terms are then developed that correspond to allowed manipulations of the algebraic expressions. This approach is contrasted with current attempts to build invariant quantum mechanics calculations into computer algebra systems.

  19. Fuel

    SciTech Connect (OSTI)

    NONE

    1999-10-01

    Two subjects are covered in this section. They are: (1) Health effects of possible contamination at Paducah Gaseous Diffusion Plant to be studied; and (2) DOE agrees on test of MOX fuel in Canada.

  20. Resource analysis of the quantum linear system algorithm

    E-Print Network [OSTI]

    Artur Scherer; Benoît Valiron; Siun-Chuon Mau; Scott Alexander; Eric van den Berg; Thomas E. Chapuran

    2015-05-25

    We provide a detailed estimate for the logical resource requirements of the quantum linear system algorithm (QLSA) [Phys. Rev. Lett. 103, 150502 (2009)] including the recently described generalization [Phys. Rev. Lett. 110, 250504 (2013)]. Our resource estimates are based on the standard quantum-circuit model of quantum computation; they comprise circuit width, circuit depth, the number of qubits and ancilla qubits employed, and the overall number of elementary quantum gate operations as well as more specific gate counts for each elementary fault-tolerant gate from the standard set {X, Y, Z, H, S, T, CNOT}. To perform these estimates, we used an approach that combines manual analysis with automated estimates generated via the Quipper quantum programming language and compiler. Our estimates pertain to the example problem size N=332,020,680 beyond which, according to a crude big-O complexity comparison, QLSA is expected to run faster than the best known classical linear-system solving algorithm. For this problem size, a desired calculation accuracy 0.01 requires an approximate circuit width 340 and circuit depth of order $10^{25}$ if oracle costs are excluded, and a circuit width and depth of order $10^8$ and $10^{29}$, respectively, if oracle costs are included, indicating that the commonly ignored oracle resources are considerable. In addition to providing detailed logical resource estimates, it is also the purpose of this paper to demonstrate explicitly how these impressively large numbers arise with an actual circuit implementation of a quantum algorithm. While our estimates may prove to be conservative as more efficient advanced quantum-computation techniques are developed, they nevertheless provide a valid baseline for research targeting a reduction of the resource requirements, implying that a reduction by many orders of magnitude is necessary for the algorithm to become practical.

  1. Tests of prototype salt stripper system for IFR fuel cycle

    SciTech Connect (OSTI)

    Carls, E.L.; Blaskovitz, R.J.; Johnson, T.R. [Argonne National Lab., IL (United States); Ogata, T. [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1993-09-01

    One of the waste treatment steps for the on-site reprocessing of spent fuel from the Integral Fast Reactor fuel cycles is stripping of the electrolyte salt used in the electrorefining process. This involves the chemical reduction of the actinides and rare earth chlorides forming metals which then dissolve in a cadmium pool. To develop the equipment for this step, a prototype salt stripper system has been installed in an engineering scale argon-filled glovebox. Pumping trails were successful in transferring 90 kg of LiCl-KCl salt containing uranium and rare earth metal chlorides at 500{degree}C from an electrorefiner to the stripper vessel at a pumping rate of about 5 L/min. The freeze seal solder connectors which were used to join sections of the pump and transfer line performed well. Stripping tests have commenced employing an inverted cup charging device to introduce a Cd-15 wt % Li alloy reductant to the stripper vessel.

  2. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Janice Thomas

    2010-05-31

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  3. A Quantum Version of The Spectral Decomposition Theorem of Dynamical Systems, Quantum Chaos Hierarchy: Ergodic, Mixing and Exact

    E-Print Network [OSTI]

    Ignacio Gomez; Mario Castagnino

    2014-11-09

    In this paper we study Spectral Decomposition Theorem [1] and translate it to quantum language by means of the Wigner transform. We obtain a quantum version of Spectral Decomposition Theorem (QSDT) which enables us to achieve three distinct goals: First, to rank Quantum Ergodic Hierarchy levels [2,3]. Second, to analyze the classical limit in quantum ergodic systems and quantum mixing systems. And third, and maybe most important feature, to find a relevant and simple connection between the first three levels of quantum ergodic hierarchy (ergodic, exact and mixing) and quantum spectrum. Finally, we illustrate the physical relevance of QSDT applying it to two examples: Microwave billiards [4,5] and a phenomenological Gamow model type [6,7].

  4. Quantization of classical integrable systems. Part I: quasi-integrable quantum systems

    E-Print Network [OSTI]

    M. Marino; N. N. Nekhoroshev

    2010-01-26

    We propose in this work a concept of integrability for quantum systems, which corresponds to the concept of noncommutative integrability for systems in classical mechanics. We determine a condition for quantum operators which can be a suitable replacement for the condition of functional independence for functions on the classical phase space. This condition is based on the properties of the main parts of the operators with respect to the momenta. We are led in this way to the definition of what we call a "quasi-integrable quantum system". This concept will be further developed in a series of following papers.

  5. Level shift operators for open quantum systems Marco Merkli

    E-Print Network [OSTI]

    ;ematiques, Universit#19;e de Montr#19;eal Succursale centre-ville, Montr#19;eal Canada, QC, H3C 3J7 January temperature Hamiltonians and they relate the Gibbs state, the kernel of level shift operators, and zero energy resonances. We show that degeneracy of energy levels of the small part of the open quantum system causes

  6. Steady-state solution methods for open quantum optical systems

    E-Print Network [OSTI]

    P. D. Nation

    2015-04-25

    We discuss the numerical solution methods available when solving for the steady-state density matrix of a time-independent open quantum optical system, where the system operators are expressed in a suitable basis representation as sparse matrices. In particular, we focus on the difficulties posed by the non-Hermitian structure of the Lindblad super operator, and the numerical techniques designed to mitigate these pitfalls. In addition, we introduce a doubly iterative inverse-power method that can give reduced memory and runtime requirements in situations where other iterative methods are limited due to poor bandwidth and profile reduction. The relevant methods are demonstrated on several prototypical quantum optical systems where it is found that iterative methods based on iLU factorization using reverse Cuthill-Mckee ordering tend to outperform other solution techniques in terms of both memory consumption and runtime as the size of the underlying Hilbert space increases. For eigenvalue solving, Krylov iterations using the stabilized bi-conjugate gradient method outperform generalized minimal residual methods. In contrast, minimal residual methods work best for solvers based on direct LU decomposition. This work serves as a guide for solving the steady-state density matrix of an arbitrary quantum optical system, and points to several avenues of future research that will extend the applicability of these classical algorithms in absence of a quantum computer.

  7. Fuel Quality Issues in Stationary Fuel Cell Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuelDepartment of1FuelQualityIssues in

  8. How state preparation can affect a quantum experiment: Quantum process tomography for open systems

    SciTech Connect (OSTI)

    Kuah, Aik-meng; Modi, Kavan; Rodriguez-Rosario, Cesar A.; Sudarshan, E. C. G. [Center for Complex Quantum Systems, University of Texas at Austin, Austin, Texas 78712 (United States)

    2007-10-15

    We study the effects of the preparation of input states in a quantum tomography experiment. We show that maps arising from a quantum process tomography experiment (called process maps) differ from the well-known dynamical maps. The difference between the two is due to the preparation procedure that is necessary for any quantum experiment. We study two preparation procedures: stochastic preparation and preparation by measurements. The stochastic preparation procedure yields process maps that are linear, while the preparations using von Neumann measurements lead to nonlinear processes and can only be consistently described by a bilinear process map. A process tomography recipe is derived for preparation by measurement for qubits. The difference between the two methods is analyzed in terms of a quantum process tomography experiment. A verification protocol is proposed to differentiate between linear processes and bilinear processes. We also emphasize that the preparation procedure will have a nontrivial effect for any quantum experiment in which the system of interest interacts with its environment.

  9. A transverse Hamiltonian variational technique for open quantum stochastic systems and its application to coherent quantum control

    E-Print Network [OSTI]

    Igor G. Vladimirov

    2015-06-15

    This paper is concerned with variational methods for nonlinear open quantum systems with Markovian dynamics governed by Hudson-Parthasarathy quantum stochastic differential equations. The latter are driven by quantum Wiener processes of the external boson fields and are specified by the system Hamiltonian and system-field coupling operators. We consider the system response to perturbations of these energy operators and introduce a transverse Hamiltonian which encodes their propagation through the unitary system-field evolution. This provides a tool for the infinitesimal perturbation analysis and development of optimality conditions for coherent quantum control problems. We apply the transverse Hamiltonian technique to a mean square optimal filtering problem for a measurement-free cascade connection of quantum systems.

  10. Classical information storage in an $n$-level quantum system

    E-Print Network [OSTI]

    Péter E. Frenkel; Mihály Weiner

    2014-12-04

    A game is played by a team of two --- say Alice and Bob --- in which the value of a random variable $x$ is revealed to Alice only, who cannot freely communicate with Bob. Instead, she is given a quantum $n$-level system, respectively a classical $n$-state system, which she can put in possession of Bob in any state she wishes. We evaluate how successfully they managed to store and recover the value of $x$ in the used system by requiring Bob to specify a value $z$ and giving a reward of value $ f(x,z)$ to the team. We show that whatever the probability distribution of $x$ and the reward function $f$ are, when using a quantum $n$-level system, the maximum expected reward obtainable with the best possible team strategy is equal to that obtainable with the use of a classical $n$-state system. The proof relies on mixed discriminants of positive matrices and --- perhaps surprisingly --- an application of the Supply--Demand Theorem for bipartite graphs. As a corollary, we get an infinite set of new, dimension dependent inequalities regarding positive operator valued measures and density operators on complex $n$-space. As a further corollary, we see that the greatest value, with respect to a given distribution of $x$, of the mutual information $I(x;z)$ that is obtainable using an $n$-level quantum system equals the analogous maximum for a classical $n$-state system.

  11. Thermal analysis for fuel handling system for sodium cooled reactor considering minor actinide-bearing metal fuel.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The Advanced Burner Reactor (ABR) is one of the components of the Global Nuclear Energy Partnership (GNEP) used to close the fuel cycle. ABR is a sodium-cooled fast reactor that is used to consume transuranic elements resulting from the reprocessing of light water reactor spent nuclear fuel. ABR-1000 [1000 MW(thermal)] is a fast reactor concept created at Argonne National Laboratory to be used as a reference concept for various future trade-offs. ABR-1000 meets the GNEP goals although it uses what is considered base sodium fast reactor technology for its systems and components. One of the considerations of any fast reactor plant concept is the ability to perform fuel-handling operations with new and spent fast reactor fuel. The transmutation fuel proposed as the ABR fuel has a very little experience base, and thus, this paper investigates a fuel-handling concept and potential issues of handling fast reactor fuel containing minor actinides. In this study, two thermal analyses supporting a conceptual design study on the ABR-1000 fuel-handling system were carried out. One analysis investigated passive dry spent fuel storage, and the other analysis investigated a fresh fuel shipping cask. Passive dry storage can be made suitable for the ABR-1000 spent fuel storage with sodium-bonded metal fuel. The thermal analysis shows that spent fast reactor fuel with a decay heat of 2 kW or less can be stored passively in a helium atmosphere. The 2-kW value seems to be a reasonable and practical level, and a combination of reasonably-sized in-sodium storage followed by passive dry storage could be a candidate for spent fuel storage for the next-generation sodium-cooled reactor with sodium-bonded metal fuel. Requirements for the shipping casks for minor actinide-bearing fuel with a high decay heat level are also discussed in this paper. The shipping cask for fresh sodium-cooled-reactor fuel should be a dry type to reduce the reaction between residual moisture on fresh fuel and the sodium coolant. The cladding temperature requirement is maintained below the creep temperature limit to avoid any damage before core installation. The thermal analysis shows that a helium gas-filled cask can accommodate ABR-1000 fresh minor actinide-bearing fuel with 700-W decay heat. The above analysis results revealed the overall requirement for minor actinide-bearing metal fuel handling. The information is thought to be helpful in the design of the ABR-1000 and future sodium-cooled-reactor fuel-handling system.

  12. Quantum chaos and fluctuations in isolated nuclear-spin systems

    SciTech Connect (OSTI)

    Ludlow, J. A.; Sushkov, O. P. [School of Physics, University of New South Wales, Sydney 2052 (Australia)

    2007-01-15

    Using numerical simulations we investigate dynamical quantum chaos in isolated nuclear spin systems. We determine the structure of quantum states, investigate the validity of the Curie law for magnetic susceptibility and find the spectrum of magnetic noise. The spectrum is the same for positive and negative temperatures. The study is motivated by recent interest in condensed-matter experiments for searches of fundamental parity- and time-reversal-invariance violations. In these experiments nuclear spins are cooled down to microkelvin temperatures and are completely decoupled from their surroundings. A limitation on statistical sensitivity of the experiments arises from the magnetic noise.

  13. The Energy Cost of Controlling Mesoscopic Quantum Systems

    E-Print Network [OSTI]

    Jordan Horowitz; Kurt Jacobs

    2015-09-03

    We determine the minimum energy required to control the evolution of any mesoscopic quantum system in the presence of arbitrary Markovian noise processes. This result provides the mesoscopic equivalent of the fundamental cost of refrigeration, sets the minimum power consumption of mesoscopic devices that operate out of equilibrium, and allows one to calculate the efficiency of any control protocol, whether it be open-loop or feedback control. As examples we calculate the energy cost of maintaining a qubit in the ground state, the efficiency of resolved-sideband cooling of nano-mechanical resonators, and discuss the energy cost of quantum information processing.

  14. Alternative Fuels Data Center: Status Update: E85 Dispenser System

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlenderBusiness Case for E85 Fuel

  15. Fuel injection and mixing systems having piezoelectric elements and methods of using the same

    DOE Patents [OSTI]

    Mao, Chien-Pei (Clive, IA); Short, John (Norwalk, IA); Klemm, Jim (Des Moines, IA); Abbott, Royce (Des Moines, IA); Overman, Nick (West Des Moines, IA); Pack, Spencer (Urbandale, IA); Winebrenner, Audra (Des Moines, IA)

    2011-12-13

    A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.

  16. The pointer basis and the feedback stabilization of quantum systems

    E-Print Network [OSTI]

    L. Li; A. Chia; H. M. Wiseman

    2014-11-19

    The dynamics for an open quantum system can be `unravelled' in infinitely many ways, depending on how the environment is monitored, yielding different sorts of conditioned states, evolving stochastically. In the case of ideal monitoring these states are pure, and the set of states for a given monitoring forms a basis (which is overcomplete in general) for the system. It has been argued elsewhere [D. Atkins et al., Europhys. Lett. 69, 163 (2005)] that the `pointer basis' as introduced by Zurek and Paz [Phys. Rev. Lett 70, 1187(1993)], should be identified with the unravelling-induced basis which decoheres most slowly. Here we show the applicability of this concept of pointer basis to the problem of state stabilization for quantum systems. In particular we prove that for linear Gaussian quantum systems, if the feedback control is assumed to be strong compared to the decoherence of the pointer basis, then the system can be stabilized in one of the pointer basis states with a fidelity close to one (the infidelity varies inversely with the control strength). Moreover, if the aim of the feedback is to maximize the fidelity of the unconditioned system state with a pure state that is one of its conditioned states, then the optimal unravelling for stabilizing the system in this way is that which induces the pointer basis for the conditioned states. We illustrate these results with a model system: quantum Brownian motion. We show that even if the feedback control strength is comparable to the decoherence, the optimal unravelling still induces a basis very close to the pointer basis. However if the feedback control is weak compared to the decoherence, this is not the case.

  17. Analysis of Lyapunov Method for Control of Quantum Systems

    E-Print Network [OSTI]

    Xiaoting Wang; Sonia G. Schirmer

    2008-05-19

    We present a detailed analysis of the convergence properties of Lyapunov control for finite-dimensional quantum systems based on the application of the LaSalle invariance principle and stability analysis from dynamical systems and control theory. For a certain class of ideal Hamiltonians, convergence results are derived both pure-state and mixed-state control, and the effectiveness of the method for more realistic Hamiltonians is discussed.

  18. Performance Spec. for Fuel Drying and Canister Inerting System for PWR Core 2 Blanket Fuel Assemblies Stored within Shipping Port Spent Fuel Canisters

    SciTech Connect (OSTI)

    JOHNSON, D.M.

    2000-03-14

    This specification establishes the performance requirements and basic design requirements imposed on the fuel drying and canister inerting system for Shippingport Pressurized Water Reactor (PWR) Core 2 blanket fuel assemblies (BFAs) stored within Shippingport spent fuel (SSFCs) canisters (fuel drying and canister inerting system). This fuel drying and canister inerting system is a component of the U.S. Department of Energy, Richland Operations Office (RL) Spent Nuclear Fuels Project at the Hanford Site. The fuel drying and canister inerting system provides for removing water and establishing an inert environment for Shippingport PWR Core 2 BFAs stored within SSFCs. A policy established by the U.S. Department of Energy (DOE) states that new SNF facilities (this is interpreted to include structures, systems and components) shall achieve nuclear safety equivalence to comparable U.S. Nuclear Regulatory Commission (NRC)-licensed facilities. This will be accomplished in part by applying appropriate NRC requirements for comparable NRC-licensed facilities to the fuel drying and canister inerting system, in addition to applicable DOE regulations and orders.

  19. Evaluation of unthrottled combustion system options for light duty applications with future syncrude derived fuels. Alternative Fuels Utilization Program

    SciTech Connect (OSTI)

    Needham, J. R.; Cooper, B. M.; Norris-Jones, S. R.

    1982-12-01

    An experimental program examining the interaction between several fuel and light duty automotive engine combinations is detailed. Combustion systems addressed covered indirect and direct injection diesel and spark ignited stratified charge. Fuels primarily covered D2, naphtha and intermediate broadcut blends. Low ignition quality diesel fuels were also evaluated. The results indicate the baseline fuel tolerance of each combustion system and enable characteristics of the systems to be compared. Performance, gaseous and particulate emissions aspects were assessed. The data obtained assists in the selection of candidate combustion systems for potential future fuels. Performance and environmental penalties as appropriate are highlighted relative to the individual candidates. Areas of further work for increased understanding are also reviewed.

  20. Quantum control of dissipative systems: Exact solutions Jianshu Cao, Michael Messina, and Kent R. Wilson

    E-Print Network [OSTI]

    Cao, Jianshu

    Quantum control of dissipative systems: Exact solutions Jianshu Cao, Michael Messina, and Kent R of Physics. S0021-9606 97 51103-2 I. INTRODUCTION: QUANTUM CONTROL OF DISSIPATIVE SYSTEMS Recent theoretical exploration of quantum control of more complicated and realistic systems, such as polyatomic molecules

  1. Separability and ground state factorization in quantum spin systems

    E-Print Network [OSTI]

    Giampaolo, S M; Illuminati, F

    2009-01-01

    We investigate the existence and the properties of fully separable (fully factorized) ground states in quantum spin systems. Exploiting techniques of quantum information and entanglement theory we extend a recently introduced method and construct a general, self-contained theory of ground state factorization in frustration-free quantum spin models defined on lattices in any spatial dimension and for interactions of arbitrary range. We show that, quite generally, non exactly solvable models in external field admit exact, fully factorized ground state solutions. Unentangled ground states occur at finite values of the Hamiltonian parameters satisfying well defined balancing conditions between external fields and interaction strengths. These conditions are analytically determined together with the type of magnetic orderings compatible with factorization and the corresponding values of the fundamental observables such as energy and magnetization. The method is applied to a series of examples of increasing complexi...

  2. Characterization of decohering quantum systems: Machine learning approach

    E-Print Network [OSTI]

    Markku P. V. Stenberg; Oliver Köhn; Frank K. Wilhelm

    2015-10-19

    Adaptive data collection and analysis, where data are being fed back to update the measurement settings, can greatly increase speed, precision, and reliability of the characterization of quantum systems. However, decoherence tends to make adaptive characterization difficult. As an example, we consider two coupled discrete quantum systems. When one of the systems can be controlled and measured, the standard method to characterize another, with an unknown frequency $\\omega_{\\rm r}$, is swap spectroscopy. Here, adapting measurements can provide estimates whose error decreases exponentially in the number of measurement shots rather than as a power law in conventional swap spectroscopy. However, when the decoherence time is so short that an excitation oscillating between the two systems can only undergo less than a few tens of vacuum Rabi oscillations, this approach can be marred by a severe limit on accuracy unless carefully designed. We adopt machine learning techniques to search for efficient policies for the characterization of decohering quantum systems. We find, for instance, that when the system undergoes more than 2 Rabi oscillations during its relaxation time $T_1$, $O(10^3)$ measurement shots are sufficient to reduce the squared error of the Bayesian initial prior of the unknown frequency $\\omega_{\\rm r}$ by a factor $O(10^4)$ or larger. We also develop policies optimized for extreme initial parameter uncertainty and for the presence of imperfections in the readout.

  3. Quantum metrology in Lipkin-Meshkov-Glick critical systems

    E-Print Network [OSTI]

    Giulio Salvatori; Antonio Mandarino; Matteo G. A. Paris

    2015-04-01

    The Lipkin-Meshkov-Glick (LMG) model describes critical systems with interaction beyond the first-neighbor approximation. Here we address the characterization of LMG systems, i.e. the estimation of anisotropy, and show how criticality may be exploited to improve precision. In particular, we provide exact results for the Quantum Fisher Information of small-size LMG chains made of $N=2, 3$ and $4$ lattice sites and analyze the same quantity in the thermodynamical limit by means of a zero-th order approximation of the system Hamiltonian. We then show that the ultimate bounds to precision may be achieved by tuning the external field and by measuring the total magnetization of the system. We also address the use of LMG systems as quantum thermometers and show that: i) precision is governed by the gap between the lowest energy levels of the systems, ii) field-dependent level crossing provides a resource to extend the operating range of the quantum thermometer.

  4. Entanglement and Quantum Information Transfer in Arrays of Interacting Quantum Systems

    E-Print Network [OSTI]

    Martina Avellino

    2009-09-03

    This thesis examines some of the more fundamental requirements of a successful quantum computation, namely the ability to transmit quantum information with maximum efficiency, and the creation of entanglement. I focus specifically on neutron entanglement, showing that the spins of two or more distinct neutrons can be measurably entangled by forward-scattering from an isotropic medium. The interpretation of `time' in scattering experiments is also discussed. I present a simple treatment based on the Heisenberg S-matrix, from which it emerges that in certain situations the quantum-mechanical time parameter appearing in the effective time-evolution operator for the spin system has an intuitive physical interpretation. The final part of the thesis deals with quantum information transfer in arrays of permanently coupled dipolar systems. It is shown that spin chains with dipolar couplings offer high fidelity long-distance state transmission, but transfer times in unmodulated chains are unfeasibly long. Possible optimization methods are discussed, concluding with a review of recent achievements in this field.

  5. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits theSunShot Prize:4FuelModel | Department of

  6. Fuel cell system shutdown with anode pressure control

    DOE Patents [OSTI]

    Clingerman, Bruce J. (Palmyra, NY); Doan, Tien M. (Columbia, MD); Keskula, Donald H. (Webster, NY)

    2002-01-01

    A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.

  7. Fuel transfer system ALARA design review - Project A.15

    SciTech Connect (OSTI)

    KUEBERTH, L.R.

    2001-11-12

    One mission of the Spent Nuclear Fuel (SNF) Project is to move the SNF from the K Basins in the Hanford 100K Area to an interim dry storage at the Canister Storage Building (CSB) in the Hanford 200 East Area. The Fuel Transfer System (FTS) is a subproject that will move the SNF from the 105K East (KE) Facility to the 105K West (KW) Facility. The SNF will be treated for shipment to the Cold Vacuum Drying (CVD) facility at the KW Basin. The SNF canisters will be loaded underwater into a Shielded Transfer Cask (STC) in the KE Basin. The fully loaded STC will be brought out of the water and placed into a Cask Transfer Overpack (CTO) by the STC Straddle Carrier. As the STC is removed from the water, it will be washed down with demineralized water by an manual rinse system. The CTO with the STC inside will be placed on a transport trailer and transferred to the KW Basin as an intra-facility transfer. The CTO will be unloaded from the shipping trailer at the KW Basin and the STC will be removed from the CTO. The STC will then be lowered into the KW Basin water and the fuel will be removed. The SNF will then be processed for shipment to the CVD. As soon as all of the fuel has been removed from the STC, the cask will be removed from the KW Basin water and placed into the CTO. The CTO will again be placed on the trailer for transport back to the KE Basin where the entire cycle will be repeated approximately 400 times. This document records the As Low As Reasonably Achievable (ALARA) findings and design recommendations/requirements by the SNF Project noted during the Final Design Review of the STC, CTO, STC Transfer System, Annexes and Roadways for support of FTS. This document is structured so that all statements that include the word ''shall'' represent design features that have been or will be implemented within the project scope. Statements that include the words ''should'' or ''recommend'' represent ALARA design features to be evaluated for future implementation.

  8. Combined cycle phosphoric acid fuel cell electric power system

    SciTech Connect (OSTI)

    Mollot, D.J.; Micheli, P.L.

    1995-12-31

    By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

  9. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    SciTech Connect (OSTI)

    Rich Chartrand

    2011-08-31

    A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer. Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the efficiency and reducing costs of PEMFC based power systems using LPG fuel and continues to makes steps towards meeting DOE's targets. Plug Power would like to thank DOE for their support of this program.

  10. N=2 supersymmetric gauge theories and quantum integrable systems

    E-Print Network [OSTI]

    Yuan Luo; Meng-Chwan Tan; Junya Yagi

    2014-04-01

    We study N=2 supersymmetric gauge theories on the product of a two-sphere and a cylinder. We show that the low-energy dynamics of a BPS sector of such a theory is described by a quantum integrable system, with the Planck constant set by the inverse of the radius of the sphere. If the sphere is replaced with a hemisphere, then our system reduces to an integrable system of the type studied by Nekrasov and Shatashvili. In this case we establish a correspondence between the effective prepotential of the gauge theory and the Yang-Yang function of the integrable system.

  11. Analysis of Lyapunov Control for Hamiltonian Quantum Systems

    E-Print Network [OSTI]

    Xiaoting Wang; Sonia Schirmer

    2008-05-19

    We present detailed analysis of the convergence properties and effectiveness of Lyapunov control design for bilinear Hamiltonian quantum systems based on the application of LaSalle's invariance principle and stability analysis from dynamical systems and control theory. For a certain class of Hamiltonians, strong convergence results can be obtained for both pure and mixed state systems. The control Hamiltonians for realistic physical systems, however, generally do not fall in this class. It is shown that the effectiveness of Lyapunov control design in this case is significantly diminished.

  12. Miniature fuel-cell system complete with on-demand fuel and oxidant supply

    E-Print Network [OSTI]

    Hur, JI; Kim, CJ

    2015-01-01

    A, consisting of a fuel cartridge and a fuel channel, isB is an oxygen supply cartridge, which supplies oxygenmanner. The O 2 -supply cartridge was developed to solve the

  13. Open-System Adiabatic Quantum Annealing Bob Lucas USC - Lockheed Martin Quantum Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access toOctober 1996Technologies /June 2011June 2015Open-System Adiabatic

  14. Efficient estimation of resonant coupling between quantum systems

    E-Print Network [OSTI]

    Markku P. V. Stenberg; Yuval R. Sanders; Frank K. Wilhelm

    2014-11-04

    We present an efficient method for the characterization of two coupled discrete quantum systems, one of which can be controlled and measured. For two systems with transition frequencies $\\omega_q$, $\\omega_r$, and coupling strength $g$ we show how to obtain estimates of $g$ and $\\omega_r$ whose error decreases exponentially in the number of measurement shots rather than as a power law expected in simple approaches. Our algorithm can thereby identify $g$ and $\\omega_r$ simultaneously with high precision in a few hundred measurement shots. This is achieved by adapting measurement settings upon data as it is collected. We also introduce a method to eliminate erroneous estimates with small overhead. Our algorithm is robust against the presence of relaxation and typical noise. Our results are applicable to many candidate technologies for quantum computation, in particular, for the characterization of spurious two-level systems in superconducting qubits or stripline resonators.

  15. The Role of Quantum Vacuum Forces in Microelectromechanical Systems

    E-Print Network [OSTI]

    G. Jordan Maclay

    2006-08-22

    The presence of boundary surfaces in the vacuum alters the ground state of the quantized electromagnetic field and can lead to the appearance of vacuum forces. In the last decade, landmark measurements of the vacuum stress between conducting uncharged parallel plates (Casimir force) have been made. Recently the first micromachined MEMS (microelectromechanical system) device was fabricated that utilizes the Casimir force between parallel plates. The force dependence allows the device to serve as a highly sensitive position sensor. The are many other examples of quantum vacuum forces and effects besides the well known parallel plate Casimir force. Here we discuss potential roles of quantum vacuum forces and effects in MEMS systems and other systems. With the growing capability in nanofabrication, some of the roles may be actualized in the future. Because of the computational complexity, no theoretical results are yet available for a number of potentially interesting geometries and we can only speculate.

  16. The Jahn-Teller instability in dissipative quantum electromechanical systems

    E-Print Network [OSTI]

    Charles P. Meaney; Tim Duty; Ross H. McKenzie; Gerard J. Milburn

    2009-03-16

    We consider the steady states of a harmonic oscillator coupled so strongly to a two-level system (a qubit) that the rotating wave approximation cannot be made. The Hamiltonian version of this model is known as the $E\\otimes\\beta$ Jahn-Teller model. The semiclassical version of this system exhibits a fixed point bifurcation, which in the quantum model leads to a ground state with substantial entanglement between the oscillator and the qubit. We show that the dynamical bifurcation survives in a dissipative quantum description of the system, amidst an even richer bifurcation structure. We propose two experimental implementations of this model based on superconducting cavities: a parametrically driven nonlinear nanomechanical resonator coupled capacitively to a coplanar microwave cavity and a superconducting junction in the central conductor of a coplanar waveguide.

  17. The Role of Quantum Vacuum Forces in Microelectromechanical Systems

    E-Print Network [OSTI]

    MacLay, G J

    2006-01-01

    The presence of boundary surfaces in the vacuum alters the ground state of the quantized electromagnetic field and can lead to the appearance of vacuum forces. In the last decade, landmark measurements of the vacuum stress between conducting uncharged parallel plates (Casimir force) have been made. Recently the first micromachined MEMS (microelectromechanical system) device was fabricated that utilizes the Casimir force between parallel plates. The force dependence allows the device to serve as a highly sensitive position sensor. The are many other examples of quantum vacuum forces and effects besides the well known parallel plate Casimir force. Here we discuss potential roles of quantum vacuum forces and effects in MEMS systems and other systems. With the growing capability in nanofabrication, some of the roles may be actualized in the future. Because of the computational complexity, no theoretical results are yet available for a number of potentially interesting geometries and we can only speculate.

  18. Microchannel High-Temperature Recuperator for Fuel Cell Systems

    Broader source: Energy.gov [DOE]

    Fuel cells are electrochemical devices that produce electricity without combustion. Due to their high efficiency and minimal emissions, fuel cells are an attractive option for distributed power...

  19. Nanocrystalline cerium oxide materials for solid fuel cell systems

    SciTech Connect (OSTI)

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  20. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Broader source: Energy.gov (indexed) [DOE]

    safe, reliable, efficient, and low-emission operation across a broad range of fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas. Displacing...

  1. Stabilizing Open Quantum Systems by Markovian Reservoir Engineering

    E-Print Network [OSTI]

    S. G. Schirmer; Xiaoting Wang

    2010-06-09

    We study open quantum systems whose evolution is governed by a master equation of Kossakowski-Gorini-Sudarshan-Lindblad type and give a characterization of the convex set of steady states of such systems based on the generalized Bloch representation. It is shown that an isolated steady state of the Bloch equation cannot be a center, i.e., that the existence of a unique steady state implies attractivity and global asymptotic stability. Necessary and sufficient conditions for the existence of a unique steady state are derived and applied to different physical models including two- and four-level atoms, (truncated) harmonic oscillators, composite and decomposable systems. It is shown how these criteria could be exploited in principle for quantum reservoir engineeing via coherent control and direct feedback to stabilize the system to a desired steady state. We also discuss the question of limit points of the dynamics. Despite the non-existence of isolated centers, open quantum systems can have nontrivial invariant sets. These invariant sets are center manifolds that arise when the Bloch superoperator has purely imaginary eigenvalues and are closely related to decoherence-free subspaces.

  2. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    In the original fuel cell optimization model [11], only theIn the original fuel cell optimization model, only the dryof the fuel cell system and optimization of the operating

  3. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    H. Peng, Control of Fuel Cell Power Systems, Springer, 2004an arbitrary size (power) fuel cell. Finally, the model ison the rated fuel cell stack power. The rated stack power is

  4. Quantum Hacking: Experimental demonstration of time-shift attack against practical quantum key distribution systems

    E-Print Network [OSTI]

    Yi Zhao; Chi-Hang Fred Fung; Bing Qi; Christine Chen; Hoi-Kwong Lo

    2011-04-01

    Quantum key distribution (QKD) systems can send signals over more than 100 km standard optical fiber and are widely believed to be secure. Here, we show experimentally for the first time a technologically feasible attack, namely the time-shift attack, against a commercial QKD system. Our result shows that, contrary to popular belief, an eavesdropper, Eve, has a non-negligible probability (~4%) to break the security of the system. Eve's success is due to the well-known detection efficiency loophole in the experimental testing of Bell inequalities. Therefore, the detection efficiency loophole plays a key role not only in fundamental physics, but also in technological applications such as QKD.

  5. Information propagation in a quantum system. Examples of open spin-1/2 chains

    E-Print Network [OSTI]

    A. I. Zenchuk

    2012-02-23

    If the information is encoded into the state of the subsystem $S$ of a quantum system initially (at $t=0$), then it becomes distributed over the whole quantum system at $t>0$ due to the quantum interactions. Consequently, this information, in general, can be extracted, either completely or partially, from any subsystem of a quantum system. {We suggest a method of extraction of information, which is based on the polarization measurements on the receiver $R$}.

  6. Control assembly for controlling a fuel cell system during shutdown and restart

    DOE Patents [OSTI]

    Venkataraman, Ramki; Berntsen, George; Carlson, Glenn L.; Farooque, Mohammad; Beachy, Dan; Peterhans, Stefan; Bischoff, Manfred

    2010-06-15

    A fuel cell system and method in which the fuel cell system receives and an input oxidant gas and an input fuel gas, and in which a fuel processing assembly is provided and is adapted to at least humidify the input fuel gas which is to be supplied to the anode of the fuel cell of the system whose cathode receives the oxidant input gas via an anode oxidizing assembly which is adapted to couple the output of the anode of the fuel cell to the inlet of the cathode of the fuel cell during normal operation, shutdown and restart of the fuel cell system, and in which a control assembly is further provided and is adapted to respond to shutdown of the fuel cell system during which input fuel gas and input oxidant gas cease to be received by the fuel cell system, the control assembly being further adapted to, when the fuel cell system is shut down: control the fuel cell system so as to enable a purging gas to be able to flow through the fuel processing assembly to remove humidified fuel gas from the processing assembly and to enable a purging gas to be able to flow through the anode of the fuel cell.

  7. A Thermal Model to Evaluate Sub-Freezing Startup for a Direct Hydrogen Hybrid Fuel Cell Vehicle Polymer Electrolyte Fuel Cell Stack and System

    E-Print Network [OSTI]

    Sundaresan, Meena

    2004-01-01

    fuel cell electric power generation system below the freezingthe fuel cell stack and system during the sub-freezingbelow the freezing point of water the fuel cell must be

  8. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    SciTech Connect (OSTI)

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  9. Control of the transient behaviour of polymer electrolyte membrane fuel cell systems

    E-Print Network [OSTI]

    Grujicic, Mica

    , Michigan, USA Abstract: The transient behaviour of a polymer electrolyte membrane fuel cell (PEMFC) system by a vehicle powered by the fuel cell system. The PEMFC system analysed consists of air and fuel supply the transient behaviour of the PEMFC system with respect to maintaining the necessary level of the oxygen

  10. Quantum Hacking on Continuous-Variable Quantum Key Distribution System using a Wavelength Attack

    E-Print Network [OSTI]

    Jing-Zheng Huang; Christian Weedbrook; Zhen-Qiang Yin; Shuang Wang; Hong-Wei Li; Wei Chen; Guang-Can Guo; Zheng-Fu Han

    2013-07-24

    The security proofs of continuous-variable quantum key distribution are based on the assumptions that the eavesdropper can neither act on the local oscillator nor control Bob's beam splitter. These assumptions may be invalid in practice due to potential imperfections in the implementations of such protocols. In this paper, we consider the problem of transmitting the local oscillator in a public channel and propose a wavelength attack which can allow the eavesdropper to control the intensity transmission of Bob's beam splitter by switching the wavelength of the input light. Specifically we target continuous-variable quantum key distribution systems that use the heterodyne detection protocol using either direct or reverse reconciliation. Our attack is proved to be feasible and renders all of the final key shared between the legitimate parties insecure, even if they have monitored the intensity of the local oscillator. To prevent our attack on commercial systems, a simple wavelength filter should be added before performing the monitoring detection.

  11. Optimal state encoding for quantum walks and quantum communication over spin systems

    E-Print Network [OSTI]

    Henry L. Haselgrove

    2004-05-12

    Recent work has shown that a simple chain of interacting spins can be used as a medium for high-fidelity quantum communication. We describe a scheme for quantum communication using a spin system that conserves z-spin, but otherwise is arbitrary. The sender and receiver are assumed to directly control several spins each, with the sender encoding the message state onto the larger state-space of her control spins. We show how to find the encoding that maximises the fidelity of communication, using a simple method based on the singular-value decomposition. Also, we show that this solution can be used to increase communication fidelity in a rather different circumstance: where no encoding of initial states is used, but where the sender and receiver control exactly two spins each and vary the interactions on those spins over time. The methods presented are computationally efficient, and numerical examples are given for systems having up to 300 spins.

  12. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect (OSTI)

    2000-10-12

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in the emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Multiple boiling water reactor (BWR) and pressurized water reactor (PWR) disposal container designs are needed to accommodate the expected range of spent fuel assemblies and provide long-term confinement of the commercial SNF. The disposal container will include outer and inner cylinder walls, outer cylinder lids (two on the top, one on the bottom), inner cylinder lids (one on the top, one on the bottom), and an internal metallic basket structure. Exterior labels will provide a means by which to identify the disposal container and its contents. The two metal cylinders, in combination with the cladding, Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lid will be made of high-nickel alloy. The basket will assist criticality control, provide structural support, and improve heat transfer. The Uncanistered SNF Disposal Container System interfaces with the emplacement drift environment and internal waste by transferring heat from the SNF to the external environment and by protecting the SFN assemblies and their contents from damage/degradation by the external environment. The system also interfaces with the SFN by limiting access of moderator and oxidizing agents of the SFN. The waste package interfaces with the Emplacement Drift System's emplacement drift pallets upon which the wasted packages are placed. The disposal container interfaces with the Assembly Transfer System, Waste Emplacement/Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and retrieval of the disposal container/waste package.

  13. Quantum diffusion dynamics in nonlinear systems: A modified kicked-rotor model

    SciTech Connect (OSTI)

    Gong Jiangbin [Department of Physics and Centre of Computational Science and Engineering, National University of Singapore, 117542 (Singapore); Wang Jiao [Temasek Laboratories and Beijing-Hong Kong-Singapore Joint Center for Nonlinear and Complex Systems (Singapore), National University of Singapore, 117542 (Singapore)

    2007-09-15

    Using a simple method analogous to a quantum rephasing technique, a simple modification to a paradigm of classical and quantum chaos is proposed. The interesting quantum maps thus obtained display remarkably rich quantum dynamics. Emphasis is placed on the destruction of dynamical localization without breaking periodicity, unbounded quantum anomalous diffusion in integrable systems, and transient dynamical localization. Experimental realizations of this work are also discussed.

  14. Air System Management for Fuel Cell Vehicle Applications

    E-Print Network [OSTI]

    Cunningham, Joshua M

    2001-01-01

    fuel cell applications. Wankel Compressor: An additionalsimilar to that of the Wankel rotary engine. This technology

  15. The thermodynamic cost of driving quantum systems by their boundaries

    E-Print Network [OSTI]

    Felipe Barra

    2015-10-22

    The laws of thermodynamics put limits to the efficiencies of thermal machines. Analogues of these laws are now established for quantum engines weakly and passively coupled to the environment providing a framework to find improvements to their performance. Systems whose interaction with the environment is actively controlled do not fall in that framework. Here we consider systems actively and locally coupled to the environment, evolving with a so-called boundary-driven Lindblad equation. Starting from a unitary description of the system plus the environment we simultaneously obtain the Lindblad equation and the appropriate expressions for heat, work and entropy-production of the system extending the framework for the analysis of new, and some already proposed, quantum heat engines. We illustrate our findings in spin 1/2 chains and explain why an XX chain coupled in this way to a single heat bath relaxes to thermodynamic-equilibrium while and XY chain does not. Additionally, we show that an XX chain coupled to a left and a right heat baths behaves as a quantum engine, a heater or refrigerator depending on the parameters, with efficiencies bounded by Carnot efficiencies.

  16. Well-to-wheels analysis of fuel-cell vehicle/fuel systems.

    SciTech Connect (OSTI)

    Wang, M.

    2002-01-22

    Major automobile companies worldwide are undertaking vigorous research and development efforts aimed at developing fuel-cell vehicles (FCVs). Proton membrane exchange (PEM)-based FCVs require hydrogen (H{sub 2}) as the fuel-cell (FC) fuel. Because production and distribution infrastructure for H{sub 2} off board FCVs as a transportation fuel does not exist yet, researchers are developing FCVs that can use hydrocarbon fuels, such as methanol (MeOH) and gasoline, for onboard production of H{sub 2} via fuel processors. Direct H{sub 2} FCVs have no vehicular emissions, while FCVs powered by hydrocarbon fuels have near-zero emissions of criteria pollutants and some carbon dioxide (CO{sub 2}) emissions. However, production of H{sub 2} can generate a large amount of emissions and suffer significant energy losses. A complete evaluation of the energy and emission impacts of FCVs requires an analysis of energy use and emissions during all stages, from energy feedstock wells to vehicle wheels--a so-called ''well-to-wheels'' (WTW) analysis. This paper focuses on FCVs powered by several transportation fuels. Gasoline vehicles (GVs) equipped with internal combustion engines (ICEs) are the baseline technology to which FCVs are compared. Table 1 lists the 13 fuel pathways included in this study. Petroleum-to-gasoline (with 30-ppm sulfur [S] content) is the baseline fuel pathway for GVs.

  17. International Technical Conference on Coal Utilization & Fuel Systems Clearwater (FL), USA, March 4-7, 2002

    E-Print Network [OSTI]

    Zevenhoven, Ron

    is slowly shifting its fuel consumption to renewable fuels like wood and waste-derived fuels, there still27th International Technical Conference on Coal Utilization & Fuel Systems Clearwater (FL), USA of the greenhouse gas CO2 from flue gases from fossil fuel-fired power plants and utilities may be accomplished

  18. Adaptive Model Predictive Control of the Hybrid Dynamics of a Fuel Cell System.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Adaptive Model Predictive Control of the Hybrid Dynamics of a Fuel Cell System. M. Fiacchini, T operation of a fuel cell system is presented. The aim of the control design is to guarantee that the oxygen control to a fuel cell plant is presented. The fuel cell, located in the laboratory of the Department

  19. Solid-Oxide Fuel Cell Stack System Identification and Control A Systematic Recipe

    E-Print Network [OSTI]

    Sanandaji, Borhan M.

    Solid-Oxide Fuel Cell Stack System Identification and Control A Systematic Recipe Borhan M. Sanandaji, Tyrone L. Vincent, Andrew Colclasure, and Robert J. Kee Colorado Fuel Cell Center (CFCC) Division of Engineering Colorado School of Mines, Golden, CO 80401 USA Solid-Oxide Fuel Cell (MIMO) Systems Are... fuel

  20. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident.

  1. Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems

    SciTech Connect (OSTI)

    Leigh R. Martin

    2014-09-01

    This document was prepared to meet FCR&D level 3 milestone M3FT-14IN0304022, “Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems.” This work was carried out under the auspices of the Thermodynamics and Kinetics FCR&D work package. This document reports preliminary work in support of determining the thermodynamic parameters for the ALSEP process. The ALSEP process is a mixed extractant system comprised of a cation exchanger 2-ethylhexyl-phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and a neutral solvating extractant N,N,N’,N’-tetraoctyldiglycolamide (TODGA). The extractant combination produces complex organic phase chemistry that is challenging for traditional measurement techniques. To neutralize the complexity, temperature dependent solvent extraction experiments were conducted with neat TODGA and scaled down concentrations of the ALSEP formulation to determine the enthalpies of extraction for the two conditions. A full set of thermodynamic data for Eu, Am, and Cm extraction by TODGA from 3.0 M HNO3 is reported. These data are compared to previous extraction results from a 1.0 M HNO3 aqueous medium, and a short discussion of the mixed HEH[EHP]/TODGA system results is offered.

  2. Hydrogen-Fueled Vehicle Safety Systems Animation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill FinancingDepartmentDatabase| Department of Energy

  3. Kettering University Center for Fuel Cell Systems Powertrain Integration |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,NewKeithDelaware:DLR

  4. Materials for High Pressure Fuel Injection Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report ManagementMarineLaboratory: FocusGo/No-Go2|Design091 DOE

  5. National Template: Stationary & Portable Fuel Cell Systems (Fact Sheet),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentrating Solar PowerParks CleanSafetyNREL (National

  6. Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1ActivityfromWorkshop:

  7. Integrated Tool Development for Used Fuel Disposition Natural System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL8-02 InspectionCONFERENCEChampionsControlProduction

  8. Intergovernmental Stationary Fuel Cell System Demonstration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL8-02DepartmentInterconnection1705 Loan10Energy

  9. Alternative linear structures for classical and quantum systems

    E-Print Network [OSTI]

    E. Ercolessi; A. Ibort; G. Marmo; G. Morandi

    2007-06-12

    The possibility of deforming the (associative or Lie) product to obtain alternative descriptions for a given classical or quantum system has been considered in many papers. Here we discuss the possibility of obtaining some novel alternative descriptions by changing the linear structure instead. In particular we show how it is possible to construct alternative linear structures on the tangent bundle TQ of some classical configuration space Q that can be considered as "adapted" to the given dynamical system. This fact opens the possibility to use the Weyl scheme to quantize the system in different non equivalent ways, "evading", so to speak, the von Neumann uniqueness theorem.

  10. Control Landscapes for Observable Preparation with Open Quantum Systems

    E-Print Network [OSTI]

    Rebing Wu; Alexander Pechen; Herschel Rabitz; Michael Hsieh; Benjamin Tsou

    2007-08-16

    A quantum control landscape is defined as the observable as a function(al) of the system control variables. Such landscapes were introduced to provide a basis to understand the increasing number of successful experiments controlling quantum dynamics phenomena. This paper extends the concept to encompass the broader context of the environment having an influence. For the case that the open system dynamics are fully controllable, it is shown that the control landscape for open systems can be lifted to the analysis of an equivalent auxiliary landscape of a closed composite system that contains the environmental interactions. This inherent connection can be analyzed to provide relevant information about the topology of the original open system landscape. Application to the optimization of an observable expectation value reveals the same landscape simplicity observed in former studies on closed systems. In particular, no false sub-optimal traps exist in the system control landscape when seeking to optimize an observable, even in the presence of complex environments. Moreover, a quantitative study of the control landscape of a system interacting with a thermal environment shows that the enhanced controllability attainable with open dynamics significantly broadens the range of the achievable observable values over the control landscape.

  11. Full counting statistics as a probe of quantum coherence in a side-coupled double quantum dot system

    SciTech Connect (OSTI)

    Xue, Hai-Bin

    2013-12-15

    We study theoretically the full counting statistics of electron transport through side-coupled double quantum dot (QD) based on an efficient particle-number-resolved master equation. It is demonstrated that the high-order cumulants of transport current are more sensitive to the quantum coherence than the average current, which can be used to probe the quantum coherence of the considered double QD system. Especially, quantum coherence plays a crucial role in determining whether the super-Poissonian noise occurs in the weak inter-dot hopping coupling regime depending on the corresponding QD-lead coupling, and the corresponding values of super-Poissonian noise can be relatively enhanced when considering the spins of conduction electrons. Moreover, this super-Poissonian noise bias range depends on the singly-occupied eigenstates of the system, which thus suggests a tunable super-Poissonian noise device. The occurrence-mechanism of super-Poissonian noise can be understood in terms of the interplay of quantum coherence and effective competition between fast-and-slow transport channels. -- Highlights: •The FCS can be used to probe the quantum coherence of side-coupled double QD system. •Probing quantum coherence using FCS may permit experimental tests in the near future. •The current noise characteristics depend on the quantum coherence of this QD system. •The super-Poissonian noise can be enhanced when considering conduction electron spin. •The side-coupled double QD system suggests a tunable super-Poissonian noise device.

  12. Quantum Control of Many-Body Systems by the Density

    E-Print Network [OSTI]

    S. E. B. Nielsen; M. Ruggenthaler; R. van Leeuwen

    2014-12-11

    In this work we focus on a recently introduced method [1] to construct the external potential $v$ that, for a given initial state, produces a prescribed time-dependent density in an interacting quantum many-body system. We show how this method can also be used to perform flexible and efficient quantum control. The simple interpretation of the density (the amount of electrons per volume) allows us to use our physical intuition to consider interesting control problems and to easily restrict the search space in optimization problems. The method's origin in time-dependent density-functional theory makes studies of large systems possible. We further discuss the generalization of the method to higher dimensions and its numerical implementation in great detail. We also present several examples to illustrate the flexibility, and to confirm that the scheme is efficient and stable even for large and rapid density variations irrespective of the initial state and interactions.

  13. Anti-Zeno Effect for Quantum Transport in Disordered Systems

    E-Print Network [OSTI]

    Keisuke Fujii; Katsuji Yamamoto

    2010-10-21

    We demonstrate that repeated measurements in disordered systems can induce quantum anti-Zeno effect under certain condition to enhance quantum transport. The enhancement of energy transfer is really exhibited with a simple model under repeated measurements. The optimal measurement interval for the anti-Zeno effect and the maximal efficiency of energy transfer are specified in terms of the relevant physical parameters. Since the environment acts as frequent measurements on the system, the decoherence-induced energy transfer, which has been discussed recently for photosynthetic complexes, may be interpreted in terms of the anti-Zeno effect. We further find an interesting phenomenon, where local decoherence or repeated measurements may even promote entanglement generation between the non-local sites.

  14. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost -

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About UsEnergyofSoftware EngineeringofCleanDoes Not4.Headquarters Earth2014 |

  15. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom theHighI _ _ ORNL-6161Annual

  16. DOE Fuel Cell Technologies Office Record 14014: Fuel Cell System Cost - 2014

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal Aviation Professional Awards More14 Date: September

  17. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal Aviation Professional| Department ofEvaluation42014 |

  18. A Micro-Computer-Based Fuel Optimization System Utilizing In-Situ Measurement of Carbon Monoxide 

    E-Print Network [OSTI]

    DeVivo, D. G.

    1980-01-01

    A microcomputer-based control system utilizing a distributed intelligence architecture has been developed to control combustion in hydrocarbon fuel-fired boilers and heaters to significantly reduce fuel usage. The system incorporates a unique flue...

  19. An Overview of NREL's Online Data Tool for Fuel Cell System-Derived...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Overview of NREL's Online Data Tool for Fuel Cell System-Derived Contaminants An Overview of NREL's Online Data Tool for Fuel Cell System-Derived Contaminants Download...

  20. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Broader source: Energy.gov (indexed) [DOE]

    reports on the status of mass production cost estimation for direct hydrogen PEM fuel cell systems. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for...

  1. Solid Oxide Fuel Cell System (SOFC) Technology R&D Needs (Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System (SOFC) Technology R&D Needs (Presentation) Solid Oxide Fuel Cell System (SOFC) Technology R&D Needs (Presentation) Presented at the DOE Fuel Cell Pre-Solicitation Workshop...

  2. Variational functions in degenerate open quantum systems

    SciTech Connect (OSTI)

    Jakob, Matthias; Stenholm, Stig [Laser Physics and Quantum Optics, Royal Institute of Technology (KTH), Alba Nova, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden)

    2004-04-01

    We have derived a Lyapunov functional for a degenerate open atomic system. This functional develops monotonically towards its stationary state. The open system is described by a Lindblad-type master equation. For the construction of the variational functional it is necessary that the Lindblad operator can be diagonalized. Since the generator of motion is non-Hermitian, diagonalization is, in general, only possible if the eigenvalues are nondegenerate. In this paper, we propose that in a physical system the biorthogonal eigenbasis of the Lindblad operator remains complete even when degeneracy is present. Thus diagonalization of the Lindblad operator, and consequently the construction of the variational functional, is still possible. We discuss the reasons and illustrate the theory of the variational functional for a driven {lambda}-type three-level atom with degenerate ground state. The degeneracy has interesting effects on the variational functional in the steady state with respect to its interpretation as an entropic quantity. In case of the driven three-level atom, the dark state turns out to be an isentropic state.

  3. Materials issues in solid oxide fuel cell systems

    SciTech Connect (OSTI)

    Ziomek-Moroz, M.

    2007-03-02

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). The presence of carbon oxides in the fuel can cause significant performance problems resulting in decreasing the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC below ~800 ºC may allow less expensive metallic materials to be used for interconnects. This presentation provides insight on the material performance of ferritic steels in fuels containing carbon oxides and seeks to quantify the extent of possible degradation due to carbon species in the gas stream.

  4. Semi-groups and time operators for quantum unstable systems

    E-Print Network [OSTI]

    Maurice Courbage

    2004-10-11

    We use spectral projections of time operator in the Liouville space for simple quantum scattering systems in order to define a space of unstable particle states evolving under a contractive semi-group. This space includes purely exponentially decaying states that correspond to complex eigenvalues of this semi-group. The construction provides a probabilistic interpretation of the resonant states characterized in terms of the Hardy class.

  5. Automotive and MHE Fuel Cell System Cost Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research atDepartmentAuditsDepartment of(TEG)of Energy1

  6. Fuel Cell Systems Annual Progress Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel Cell Seminar & EnergyAnnual

  7. Fuel Cell Systems for Portable, Backup, and UPS Applications | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel Cell Seminar & EnergyAnnualof

  8. Full Fuel-Cycle Comparison of Forklift Propulsion Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy gdr.openei.org Geothermal DataFuels|23 Full

  9. Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank

    Office of Energy Efficiency and Renewable Energy (EERE)

    Case study covering Compact Membrane Systems, Inc. and its membrane vapor processor that recovers fuel vapors from gasoline refueling.

  10. Energy density matrix formalism for interacting quantum systems: a quantum Monte Carlo study

    SciTech Connect (OSTI)

    Krogel, Jaron T; Kim, Jeongnim; Reboredo, Fernando A

    2014-01-01

    We develop an energy density matrix that parallels the one-body reduced density matrix (1RDM) for many-body quantum systems. Just as the density matrix gives access to the number density and occupation numbers, the energy density matrix yields the energy density and orbital occupation energies. The eigenvectors of the matrix provide a natural orbital partitioning of the energy density while the eigenvalues comprise a single particle energy spectrum obeying a total energy sum rule. For mean-field systems the energy density matrix recovers the exact spectrum. When correlation becomes important, the occupation energies resemble quasiparticle energies in some respects. We explore the occupation energy spectrum for the finite 3D homogeneous electron gas in the metallic regime and an isolated oxygen atom with ground state quantum Monte Carlo techniques imple- mented in the QMCPACK simulation code. The occupation energy spectrum for the homogeneous electron gas can be described by an effective mass below the Fermi level. Above the Fermi level evanescent behavior in the occupation energies is observed in similar fashion to the occupation numbers of the 1RDM. A direct comparison with total energy differences demonstrates a quantita- tive connection between the occupation energies and electron addition and removal energies for the electron gas. For the oxygen atom, the association between the ground state occupation energies and particle addition and removal energies becomes only qualitative. The energy density matrix provides a new avenue for describing energetics with quantum Monte Carlo methods which have traditionally been limited to total energies.

  11. Entanglement Routers via Wireless Quantum Network Based on Arbitrary Two Qubit Systems

    E-Print Network [OSTI]

    N. Metwally

    2014-05-02

    A wireless quantum network is generated between multi-hop, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two qubit systems randomly. Different types of wireless quantum bridges are generated between the non-connected nodes. The efficiency of these wireless quantum bridges to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful wireless quantum bridges are used as quantum channels. It is shown that, by increasing the efficiency of the sources which emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol.

  12. Hazard analysis of compressed natural gas fueling systems and fueling procedures used at retail gasoline service stations. Final report

    SciTech Connect (OSTI)

    NONE

    1995-04-28

    An evaluation of the hazards associated with operations of a typical compressed natural gas (CNG) fueling station is presented. The evaluation includes identification of a typical CNG fueling system; a comparison of the typical system with ANSI/NFPA (American National Standards Institute/National Fire Protection Association) Standard 52, Compressed Natural Gas (CNG) Vehicular Fuel System, requirements; a review of CNG industry safety experience as identified in current literature; hazard identification of potential internal (CNG system-specific causes) and external (interface of co-located causes) events leading to potential accidents; and an analysis of potential accident scenarios as determined from the hazard evaluation. The study considers CNG dispensing equipment and associated equipment, including the compressor station, storate vessels, and fill pressure sensing system.

  13. Energy Content of Quantum Systems and the Alleged Collapse of the Wavefunction

    E-Print Network [OSTI]

    Peter J. Riggs

    2009-10-15

    It is shown that within a quantum system, the wave field has a (potential) energy content that can be exchanged with quantum particles. Energy conservation in quantum systems holds if potential energy is correctly taken to be a field attribute. From this perspective, a transfer of energy occurs on measurement from the wave field to a quantum particle and this provides a physical explanation of what is commonly referred to as the collapse of the wavefunction.

  14. FUEL CELL SYSTEM ECONOMICS: COMPARING THE COSTS OF GENERATING POWER WITH STATIONARY

    E-Print Network [OSTI]

    Kammen, Daniel M.

    , University of California, 4152 Etcheverry Hall, Berkeley, CA 94720, USA Abstract This investigation examines the economics of producing electricity from proton-exchange membrane (PEM) fuel cell systems under various of natural gas, electricity prices, fuel cell and reformer system costs, and fuel cell system durability

  15. Aalborg Universitet Thermal modeling and temperature control of a PEM fuel cell system for forklift

    E-Print Network [OSTI]

    Berning, Torsten

    Aalborg Universitet Thermal modeling and temperature control of a PEM fuel cell system for forklift., & Mortensen, H. H. (2014). Thermal modeling and temperature control of a PEM fuel cell system for forklift.aau.dk on: juli 07, 2015 #12;Thermal modeling and temperature control of a PEM fuel cell system for forklift

  16. Aalborg Universitet Performance of hybrid quad generation system consisting of solid oxide fuel cell

    E-Print Network [OSTI]

    Liso, Vincenzo

    ., & Liso, V. (2013). Performance of hybrid quad generation system consisting of solid oxide fuel cell oxide fuel cell system and absorption heat pump Irene Albacete Cachorroa ,Iulia Maria DarabanaAalborg Universitet Performance of hybrid quad generation system consisting of solid oxide fuel

  17. Lean Gasoline System Development for Fuel Efficient Small Car

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Microfluidic fuel cell systems with embedded materials and structures and

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) |(Patent) |monitoring.(Patent) |

  19. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    and Optimization of PEMFC Systems and its Application toand Optimization of PEMFC Systems and its Application onExchange Membrane fuel cell (PEMFC) technology for use in

  20. Nonlinear Dynamics of Quantum Systems and Soliton Theory

    E-Print Network [OSTI]

    Eldad Bettelheim; Alexander G. Abanov; Paul Wiegmann

    2006-10-26

    We show that space-time evolution of one-dimensional fermionic systems is described by nonlinear equations of soliton theory. We identify a space-time dependence of a matrix element of fermionic systems related to the {\\it Orthogonality Catastrophe} or {boundary states} with the $\\tau$-function of the modified KP-hierarchy. The established relation allows to apply the apparatus of soliton theory to the study of non-linear aspects of quantum dynamics. We also describe a {\\it bosonization in momentum space} - a representation of a fermion operator by a Bose field in the presence of a boundary state.

  1. Golden Fuel Systems formerly Greasel Conversions Inc | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia: Energy Resources JumpGoldbeck Solar GmbH

  2. Materials for High Pressure Fuel Injection Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report ManagementMarineLaboratory: FocusGo/No-Go2|Design091 DOE0 DOE

  3. Materials for High Pressure Fuel Injection Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report ManagementMarineLaboratory: FocusGo/No-Go2|Design091 DOE0

  4. Rolls Royce Fuel Cell Systems Ltd RRFCS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEast Jump to:Ridgway,RochesterMissouri: EnergyRolls

  5. Stationary and Portable Fuel Cell Systems Codes and Standards Citations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of Energy 1 DOE HydrogenDepartment of Energy and

  6. Lean Gasoline System Development for Fuel Efficient Small Car | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean Energys o u t h e a s t ethe Nation andof

  7. Lean Gasoline System Development for Fuel Efficient Small Car | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean Energys o u t h e a s t ethe Nation

  8. Development of Reversible Fuel Cell Systems at Proton Energy | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy 1EnergyTroughBatteriesNOxNOT|of

  9. Energy Department Highlights Commissioning of Innovative Fuel Cell System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesy of theSolarDepartmentEnergy ProjectEnergyat U.S.

  10. NREL: Energy Systems Integration Facility - Fuel Distribution Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12Working with Us ...Your teamAwardsFuel

  11. Open quantum system approach to single-molecule spectroscopy

    E-Print Network [OSTI]

    Adrian A. Budini

    2009-02-23

    In this paper, single-molecule spectroscopy experiments based on continuous laser excitation are characterized through an open quantum system approach. The evolution of the fluorophore system follows from an effective Hamiltonian microscopic dynamic where its characteristic parameters, i.e., its electric dipole, transition frequency, and Rabi frequency, as well as the quantization of the background electromagnetic field and their mutual interaction, are defined in an extended Hilbert space associated to the different configurational states of the local nano-environment. After tracing out the electromagnetic field and the configurational states, the fluorophore density matrix is written in terms of a Lindblad rate equation. Observables associated to the scattered laser field, like optical spectrum, intensity-intensity correlation, and photon-counting statistics, are obtained from a quantum-electrodynamic calculation also based on the effective microscopic dynamic. In contrast with stochastic models, this approach allows to describe in a unified way both the full quantum nature of the scattered laser field as well as the classical nature of the environment fluctuations. By analyzing different processes such as spectral diffusion, lifetime fluctuations, and light assisted processes, we exemplify the power of the present approach.

  12. Separability and ground state factorization in quantum spin systems

    E-Print Network [OSTI]

    S. M. Giampaolo; G. Adesso; F. Illuminati

    2009-06-04

    We investigate the existence and the properties of fully separable (fully factorized) ground states in quantum spin systems. Exploiting techniques of quantum information and entanglement theory we extend a recently introduced method and construct a general, self-contained theory of ground state factorization in frustration free quantum spin models defined on lattices in any spatial dimension and for interactions of arbitrary range. We show that, quite generally, non exactly solvable translationally invariant models in presence of an external uniform magnetic field can admit exact, fully factorized ground state solutions. Unentangled ground states occur at finite values of the Hamiltonian parameters satisfying well defined balancing conditions between the applied field and the interaction strengths. These conditions are analytically determined together with the type of magnetic orderings compatible with factorization and the corresponding values of the fundamental observables such as energy and magnetization. The method is applied to a series of examples of increasing complexity, including translationally-invariant models with short, long, and infinite ranges of interaction, as well as systems with spatial anisotropies, in low and higher dimensions. We also illustrate how the general method, besides yielding a large series of novel exact results for complex models in any dimension, recovers, as particular cases, the results previously achieved on simple models in low dimensions exploiting direct methods based on factorized mean-field ansatz.

  13. Quantum speed-up transition in open system dynamics

    E-Print Network [OSTI]

    Xiang Hao; Wenjiong Wu

    2015-10-20

    The rate of the trace distance is used to evaluate quantum speed-up for arbitrary mixed states. Compared with some present methods, the approach based on trace distance can provide an optimal bound to the speed of the evolution. The dynamical transition from no speed-up region to speed-up region takes on in the spontaneous decay of an two-level atom with detuning. The evolution is characteristic of the alternating behavior between quantum speed-up and speed-down in the strong system-reservoir coupling regime. Under the o?ff-resonance condition, the dynamical evolution can be accelerated for short previous times and then decelerated to a normal process either in the weak or strong coupling regime. From the time-energy uncertainty relation, we demonstrate that the potential capacity for quantum speed-up evolution is closely related to the energy flow-back from the reservoir to the system. The negative decay rate for short time intervals leads to the speed-up process where the photons previously emitted by the atom are reabsorbed at a later time. The values of the spontaneous decay rate becomes positive after a long enough time, which results in the normal evolution with no speed-up potential.

  14. Quantum tomography meets dynamical systems and bifurcations theory

    SciTech Connect (OSTI)

    Goyeneche, D.; Torre, A. C. de la

    2014-06-01

    A powerful tool for studying geometrical problems in Hilbert spaces is developed. We demonstrate the convergence and robustness of our method in every dimension by considering dynamical systems theory. This method provides numerical solutions to hard problems involving many coupled nonlinear equations in low and high dimensions (e.g., quantum tomography problem, existence and classification of Pauli partners, mutually unbiased bases, complex Hadamard matrices, equiangular tight frames, etc.). Additionally, this tool can be used to find analytical solutions and also to implicitly prove the existence of solutions. Here, we develop the theory for the quantum pure state tomography problem in finite dimensions but this approach is straightforwardly extended to the rest of the problems. We prove that solutions are always attractive fixed points of a nonlinear operator explicitly given. As an application, we show that the statistics collected from three random orthonormal bases is enough to reconstruct pure states from experimental (noisy) data in every dimension d ? 32.

  15. Fidelity spectrum and phase transitions of quantum systems

    SciTech Connect (OSTI)

    Sacramento, P. D.; Vieira, V. R. [Departamento de Fisica and CFIF, Instituto Superior Tecnico, TU Lisbon, Avenida Rovisco Pais, P-1049-001 Lisboa (Portugal); Paunkovic, N. [SQIG-Instituto de Telecomunicacoes, IST, TU Lisbon, Avenida Rovisco Pais, P-1049-001 Lisboa (Portugal)

    2011-12-15

    Quantum fidelity between two density matrices F({rho}{sub 1},{rho}{sub 2}) is usually defined as the trace of the operator F={radical}({radical}({rho}{sub 1}){rho}{sub 2}{radical}({rho}{sub 1})). We study the logarithmic spectrum of this operator, which we denote by the fidelity spectrum, in the cases of the XX spin chain in a magnetic field, a magnetic impurity inserted in a conventional superconductor, and a bulk superconductor at finite temperature. When the density matrices are equal, {rho}{sub 1}={rho}{sub 2}, the fidelity spectrum reduces to the entanglement spectrum. We find that the fidelity spectrum can be a useful tool in giving a detailed characterization of the different phases of many-body quantum systems.

  16. Extended space expectation values in quantum dynamical system evolutions

    SciTech Connect (OSTI)

    Demiralp, Metin

    2014-10-06

    The time variant power series expansion for the expectation value of a given quantum dynamical operator is well-known and well-investigated issue in quantum dynamics. However, depending on the operator and Hamiltonian singularities this expansion either may not exist or may not converge for all time instances except the beginning of the evolution. This work focuses on this issue and seeks certain cures for the negativities. We work in the extended space obtained by adding all images of the initial wave function under the system Hamiltonian’s positive integer powers. This requires the introduction of certain appropriately defined weight operators. The resulting better convergence in the temporal power series urges us to call the new defined entities “extended space expectation values” even though they are constructed over certain weight operators and are somehow pseudo expectation values.

  17. Advanced Materials for PEM-Based Fuel Cell Systems

    SciTech Connect (OSTI)

    James E. McGrath; Donald G. Baird; Michael von Spakovsky

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in herein.

  18. Advanced Materials for PEM-Based Fuel Cell Systems

    SciTech Connect (OSTI)

    James E. McGrath

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 �������������������������������°C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in this final report.

  19. Description of Transmutation Library for Fuel Cycle System Analyses

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Edward A. Hoffman

    2010-08-01

    This report documents the Transmutation Library that is used in Fuel Cycle System Analyses. This version replaces the 2008 version.[Piet2008] The Transmutation Library has the following objectives: • Assemble past and future transmutation cases for system analyses. • For each case, assemble descriptive information such as where the case was documented, the purpose of the calculation, the codes used, source of feed material, transmutation parameters, and the name of files that contain raw or source data. • Group chemical elements so that masses in separation and waste processes as calculated in dynamic simulations or spreadsheets reflect current thinking of those processes. For example, the CsSr waste form option actually includes all Group 1A and 2A elements. • Provide mass fractions at input (charge) and output (discharge) for each case. • Eliminate the need for either “fission product other” or “actinide other” while conserving mass. Assessments of waste and separation cannot use “fission product other” or “actinide other” as their chemical behavior is undefined. • Catalog other isotope-specific information in one place, e.g., heat and dose conversion factors for individual isotopes. • Describe the correlations for how input and output compositions change as a function of UOX burnup (for LWR UOX fuel) or fast reactor (FR) transuranic (TRU) conversion ratio (CR) for either FR-metal or FR-oxide. This document therefore includes the following sections: • Explanation of the data set information, i.e., the data that describes each case. In no case are all of the data presented in the Library included in previous documents. In assembling the Library, we return to raw data files to extract the case and isotopic data, into the specified format. • Explanation of which isotopes and elements are tracked. For example, the transition metals are tracked via the following: two Zr isotopes, Zr-other, Tc99, Tc-other, two Mo-Ru-Rh-Pd isotopes, Mo-Ru-Rh-Pd-other, four other specific TM isotopes, and TM-other. Mo-Ru-Rh-Pd are separated because their content constrains the loading of waste in glass, so we have to know the mass of those elements independent of others. • Rules for collapsing long lists of isotopes (~1000) to the 81 items in the library. For each tracked isotope, we define which short-lived isotopes’ mass (at t=0) is included with the mass of the tracked isotope at t=0, which short-lived radioactive progeny must be accounted for when the tracked isotope decays, and to which of the other 80 items the mass of the tracked isotope goes when it decays. • Explanation of where raw data files can be found on the fuel cycle data portal. • Explanation of generic cross section sets • Explanation of isotope-specific parameters such as heat and dose conversion factors • Explanation of the LWR UOX burnup and FR TRU CR correlations.

  20. Is measurement-based feedback still better for quantum control systems?

    E-Print Network [OSTI]

    Guo, Lei

    Is measurement-based feedback still better for quantum control systems? Bo Qi , Lei Guo Key Laboratory of Systems and Control, ISS, Academy of Mathematics and Systems Science, Chinese Academy feedback control of quantum systems: Is measurement-based feedback control still better than open- loop