Quantum Condensed Matter | More Science | ORNL
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Quantum Condensed Matter SHARE Quantum Condensed Matter Neutron scattering is a uniquely powerful probe for measuring the structure and dynamics of condensed matter. As such it is...
Quantum Condensed Matter | Neutron Science | ORNL
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Quantum Condensed Matter SHARE Quantum Condensed Matter Neutron scattering is a uniquely powerful probe for measuring the structure and dynamics of condensed matter. As such it is...
Color Glass Condensates in dense quark matter and quantum Hall states of gluons
Aiichi Iwazaki
2006-04-26T23:59:59.000Z
We apply the effective theory of color glass condensate to the analysis of gluon states in dense quark matter, in which the saturation region of gluons is also present. We find that in the region two point function of gluons shows algebraic long range order. The order is completely the same as the one gluons show in the dense quark matter, which form quantum Hall states. The order leads to the vanishing of massless gluon pole. We also find that the saturation region of gluons extends from small $x$ to even large $x\\lesssim 1$ in much dense quark matter. We point out a universality that the color glass condensate is a property of hadrons at high energy and of quark matter at high baryon density.
van der Torre, Leon
Master in Condensed Matter Physics Master académique #12;2 #12;3 Students at the University. Condensed matter physics is about explaining and predicting the relationship between the atomic, and broad education in the field of condensed matter physics · introduce you to current research topics
Shulman, Michael
2015-01-01T23:59:59.000Z
The American Physical Society (APS) March Meeting of condensed matter physics has grown to nearly 10,000 participants, comprises 23 individual APS groups, and even warrants its own hashtag (#apsmarch). Here we analyze the text and data from March Meeting abstracts of the past nine years and discuss trends in condensed matter physics over this time period. We find that in comparison to atomic, molecular, and optical physics, condensed matter changes rapidly, and that condensed matter appears to be moving increasingly toward subject matter that is traditionally in materials science and engineering.
Magnets & Magnet Condensed Matter Science
McQuade, D. Tyler
18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials Pressure 9 Metal to Insulator Transition on the N=0 Landau Level in Graphene 10 Evidence for Fractional Quantum Hall States in Suspended Bilayer and Trilayer Graphene 11 Fractional Quantum Hall Effect
Asymmetric condensed dark matter
Aguirre, Anthony
2015-01-01T23:59:59.000Z
We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate can be very light, $10^{-22}\\,{\\rm eV} \\lesssim m \\lesssim 10^2\\,{\\rm eV}$; the lower limit arises from constraints on small-scale structure formation, while the upper bound ensures that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of deco...
Xavier Busch
2014-11-06T23:59:59.000Z
The two main predictions of quantum field theory in curved space-time, namely Hawking radiation and cosmological pair production, have not been directly tested and involve ultra high energy configurations. As a consequence, they should be considered with caution. Using the analogy with condensed matter systems, their analogue versions could be tested in the lab. Moreover, the high energy behavior of these systems is known and involves dispersion and dissipation, which regulate the theory at short distances. When considering experiments which aim to test the above predictions, there will also be a competition between the stimulated emission from thermal noise and the spontaneous emission out of vacuum. In order to measure these effects, one should thus compute the consequences of UV dispersion and dissipation, and identify observables able to establish that the spontaneous emission took place. In this thesis, we first analyze the effects of dispersion and dissipation on both Hawking radiation and pair particle production. To get explicit results, we work in the context of de Sitter space. Using the extended symmetries of the theory in such a background, exact results are obtained. These are then transposed to the context of black holes using the correspondence between de Sitter space and the black hole near horizon region. To introduce dissipation, we consider an exactly solvable model producing any decay rate. We also study the quantum entanglement of the particles so produced. In a second part, we consider explicit condensed matter systems, namely Bose Einstein condensates and exciton-polariton systems. We analyze the effects of dissipation on entanglement produced by the dynamical Casimir effect. As a final step, we study the entanglement of Hawking radiation in the presence of dispersion for a generic analogue system.
Laser Driven Dynamic Loading of Condensed Matter
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Laser Driven Dynamic Loading of Condensed Matter Laser Driven Dynamic Loading of Condensed Matter Advanced diagnostics of experiments covering many orders of magnitude in strain...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey Inside the Complex andFOUR Los Alamos innovationsM MarchMaterials forMaterials/Condensed
Condensed Matter and Magnet Science
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41clothThe Bonneville Power Administration would like submit theNationalto CanadaResources This page ! ! ! !CMMS Condensed
Infinite statistics condensate as a model of dark matter
Ebadi, Zahra; Mirza, Behrouz [Department of Physics, Isfahan University of Technology, Isfahan, 84156–83111 (Iran, Islamic Republic of); Mohammadzadeh, Hosein, E-mail: z.ebadi@ph.iut.ac.ir, E-mail: b.mirza@cc.iut.ac.ir, E-mail: mohammadzadeh@uma.ac.ir [Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil (Iran, Islamic Republic of)
2013-11-01T23:59:59.000Z
In some models, dark matter is considered as a condensate bosonic system. In this paper, we prove that condensation is also possible for particles that obey infinite statistics and derive the critical condensation temperature. We argue that a condensed state of a gas of very weakly interacting particles obeying infinite statistics could be considered as a consistent model of dark matter.
Bulk viscosity in kaon condensed matter
Debarati Chatterjee; Debades Bandyopadhyay
2007-05-30T23:59:59.000Z
We investigate the effect of $K^-$ condensed matter on bulk viscosity and r-mode instability in neutron stars. The bulk viscosity coefficient due to the non-leptonic process $n \\rightleftharpoons p + K^-$ is studied here. In this connection, equations of state are constructed within the framework of relativistic field theoretical models where nucleon-nucleon and kaon-nucleon interactions are mediated by the exchange of scalar and vector mesons. We find that the bulk viscosity coefficient due to the non-leptonic weak process in the condensate is suppressed by several orders of magnitude. Consequently, kaon bulk viscosity may not damp the r-mode instability in neutron stars.
Solitonic axion condensates modeling dark matter halos
Castańeda Valle, David, E-mail: casvada@gmail.com; Mielke, Eckehard W., E-mail: ekke@xanum.uam.mx
2013-09-15T23:59:59.000Z
Instead of fluid type dark matter (DM), axion-like scalar fields with a periodic self-interaction or some truncations of it are analyzed as a model of galaxy halos. It is probed if such cold Bose–Einstein type condensates could provide a viable soliton type interpretation of the DM ‘bullets’ observed by means of gravitational lensing in merging galaxy clusters. We study solitary waves for two self-interacting potentials in the relativistic Klein–Gordon equation, mainly in lower dimensions, and visualize the approximately shape-invariant collisions of two ‘lump’ type solitons. -- Highlights: •An axion model of dark matter is considered. •Collision of axion type solitons are studied in a two dimensional toy model. •Relations to dark matter collisions in galaxy clusters are proposed.
Bose Einstein Condensation as Dark Energy and Dark Matter
Masako Nishiyama; Masa-aki Morita; Masahiro Morikawa
2004-03-24T23:59:59.000Z
We study a cosmological model in which the boson dark matter gradually condensates into dark energy. Negative pressure associated with the condensate yields the accelerated expansion of the Universe and the rapid collapse of the smallest scale fluctuations into many black holes, which become the seeds of the first galaxies. The cycle of gradual sedimentation and rapid collapse of condensate repeats many times and self-regularizes the ratio of dark energy and dark matter to be order one.
Critical temperature of antikaon condensation in nuclear matter
Sarmistha Banik; Walter Greiner; Debades Bandyopadhyay
2008-12-30T23:59:59.000Z
We investigate the critical temperature of Bose-Einstein condensation of $K^-$ mesons in neutron star matter. This is studied within the framework of relativistic field theoretical models at finite temperature where nucleon-nucleon and (anti)kaon-nucleon interactions are mediated by the exchange of mesons. The melting of the antikaon condensate is studied for different values of antikaon optical potential depths. We find that the critical temperature of antikaon condensation increases with baryon number density. Further it is noted that the critical temperature is lowered as antikaon optical potential becomes less attractive. We also construct the phase diagram of neutron star matter with $K^-$ condensate.
Yield Stress Materials in Soft Condensed Matter
Daniel Bonn; Jose Paredes; Morton M. Denn; Ludovic Berthier; Thibaut Divoux; Sébastien Manneville
2015-02-18T23:59:59.000Z
We present a comprehensive review of the physical behavior of yield stress materials in soft condensed matter, which encompasses a broad range of soft materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear response to an external mechanical forcing, which results from the existence of a finite force threshold for flow to occur, the yield stress. We discuss both the physical origin and the rheological consequences associated with this nonlinear behavior. We give an overview of the different experimental techniques developed to measure the yield stress. We discuss extensively the recent progress concerning a microscopic description of the flow dynamics of yield stress materials, emphasizing in particular the role played by relaxation timescales, the interplay between shear flow and aging behavior, the existence of inhomogeneous shear flows and shear bands, wall slip, and non-local effects in confined geometries. We finally review the status of modeling of the shear rheology of yield stress materials in the framework of continuum mechanics.
Sellner, Bernhard; Kathmann, Shawn M.
2014-11-14T23:59:59.000Z
Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. Electron holography is able to measure the variation of voltages in matter and modern supercomputers allow the calculation of quantum voltages with practically unlimited spatial and temporal resolution of bulk systems. Of particular interest is the Mean Inner Potential (Vo) - the spatial average of these voltages. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of Vo for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Furthermore, we predict Vo as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Modeling rough energy landscapes in defected condensed matter
Monasterio Velásquez, Paul Rene
2010-01-01T23:59:59.000Z
This dissertation is a computational and theoretical investigation of the behavior of defected condensed matter and its evolution over long time scales. The thesis provides original contributions to the methodology used ...
Quantum vacuum and dark matter
Dragan Slavkov Hajdukovic
2011-11-21T23:59:59.000Z
Recently, the gravitational polarization of the quantum vacuum was proposed as alternative to the dark matter paradigm. In the present paper we consider four benchmark measurements: the universality of the central surface density of galaxy dark matter haloes, the cored dark matter haloes in dwarf spheroidal galaxies, the non-existence of dark disks in spiral galaxies and distribution of dark matter after collision of clusters of galaxies (the Bullet cluster is a famous example). Only some of these phenomena (but not all of them) can (in principle) be explained by the dark matter and the theories of modified gravity. However, we argue that the framework of the gravitational polarization of the quantum vacuum allows the understanding of the totality of these phenomena.
CONDENSED MATTER THEORIST, MATERIALS SCIENCE DIVISION ARGONNE NATIONAL LABORATORY
6/29/11 CONDENSED MATTER THEORIST, MATERIALS SCIENCE DIVISION ARGONNE NATIONAL LABORATORY Argonne Division, preferably by e-mail (norman@anl.gov), otherwise by regular mail (MSD-223, Argonne National Lab, Argonne, IL 60439). Please use the subject line "CMT Search" in any e-mail correspondence. Argonne
Aspen Winter Conference on Unifying Themes in Condensed Matter
Aspen Winter Conference on Unifying Themes in Condensed Matter Mon Jan 12, 2009 Classical vs + poster presentations 8pm - 11pm Dinner at Aspen Meadows Tue Jan 13, 2009 Strong Correlation; Host: Subir Correlated Systems 7:35pm - 7:50pm Discussion + poster presentations 8pm - 11pm Dinner at Aspen Meadows Wed
Bose-Einstein Condensation of Dark Matter Axions
P. Sikivie; Q. Yang
2009-09-02T23:59:59.000Z
We show that cold dark matter axions thermalize and form a Bose-Einstein condensate. We obtain the axion state in a homogeneous and isotropic universe, and derive the equations governing small axion perturbations. Because they form a BEC, axions differ from ordinary cold dark matter in the non-linear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles.
Bose-Einstein Condensation of Dark Matter Axions
Sikivie, P.; Yang, Q. [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States)
2009-09-11T23:59:59.000Z
We show that cold dark matter axions thermalize and form a Bose-Einstein condensate (BEC). We obtain the axion state in a homogeneous and isotropic universe, and derive the equations governing small axion perturbations. Because they form a BEC, axions differ from ordinary cold dark matter in the nonlinear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles.
Measuring entanglement in condensed matter systems
M. Cramer; M. B. Plenio; H. Wunderlich
2010-09-15T23:59:59.000Z
We show how entanglement may be quantified in spin and cold atom many-body systems using standard experimental techniques only. The scheme requires no assumptions on the state in the laboratory and a lower bound to the entanglement can be read off directly from the scattering cross section of Neutrons deflected from solid state samples or the time-of-flight distribution of cold atoms in optical lattices, respectively. This removes a major obstacle which so far has prevented the direct and quantitative experimental study of genuine quantum correlations in many-body systems: The need for a full characterization of the state to quantify the entanglement contained in it. Instead, the scheme presented here relies solely on global measurements that are routinely performed and is versatile enough to accommodate systems and measurements different from the ones we exemplify in this work.
Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE
Allen, Roland E.
Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 #12;BOSE-EINSTEIN Statistics Intuitive picture of Bose-Einstein Condensation (BEC) Statistical mechanics of BECs Experimental techniques to achieve BEC. · What can we do with Bose-Einstein condensates? Coherence in the condensates Atom
Greenaway, Alan
Strategy for SUPA Condensed Matter and Material Physics Theme, 2012 Introduction Condensed Matter optics Energy/Photonics: photovoltaics, solid-state lighting and fuel-cells PALS: statistical mechanics the best students who are available on the UK, European, and world-wide markets. With this in mind
Quantum field theory for condensation of bosons and fermions
De Souza, Adriano N.; Filho, Victo S. [Laboratorio de Fisica Teorica e Computacional (LFTC), Universidade Cruzeiro do Sul, 01506-000, Sao Paulo (Brazil)
2013-03-25T23:59:59.000Z
In this brief review, we describe the formalism of the quantum field theory for the analysis of the condensation phenomenon in bosonic systems, by considering the cases widely verified in laboratory of trapped gases as condensate states, either with attractive or with repulsive two-body interactions. We review the mathematical formulation of the quantum field theory for many particles in the mean-field approximation, by adopting contact interaction potential. We also describe the phenomenon of condensation in the case of fermions or the degenerate Fermi gas, also verified in laboratory in the crossover BEC-BCS limit. We explain that such a phenomenon, equivalent to the bosonic condensation, can only occur if we consider the coupling of particles in pairs behaving like bosons, as occurs in the case of Cooper's pairs in superconductivity.
Quantum reflection of Bose-Einstein Condensates
Pasquini, Thomas A., Jr
2007-01-01T23:59:59.000Z
Recent developments in atom optics have brought Bose-Einstein condensates within 1 pm of solid surfaces where the atom-surface interactions can no longer be ignored. At long- range, the atom-surface interaction is described ...
Condensed matter physics IFF Scientific Report 2008 Nanoscale phase transitions in phase
Condensed matter physics · IFF Scientific Report 2008 7676 Nanoscale phase transitions in phase as rewritable me- dia (CD-RW, DVD-RW, DVD-RAM), but 2008 brought the announcement that Blu-ray Disc (BD supercomputers in Jülich to extend greatly #12;IFF Scientific Report 2008 · Condensed matter physics 77 the range
A Topological Framework for Local Structure Analysis in Condensed Matter
Lazar, Emanuel A; Srolovitz, David J
2015-01-01T23:59:59.000Z
Physical systems are frequently modeled as sets of points in space, each representing the position of an atom, molecule, or mesoscale particle. As many properties of such systems depend on the underlying ordering of their constituent particles, understanding that structure is a primary objective of condensed matter research. Although perfect crystals are fully described by a set of translation and basis vectors, real-world materials are never perfect, as thermal vibrations and defects introduce significant deviation from ideal order. Meanwhile, liquids and glasses present yet more complexity. A complete understanding of structure thus remains a central, open problem. Here we propose a unified mathematical framework, based on the topology of the Voronoi cell of a particle, for classifying local structure in ordered and disordered systems that is powerful and practical. We explain the underlying reason why this topological description of local structure is better suited for structural analysis than continuous d...
Atomic quantum corrals for Bose-Einstein condensates
Xiong Hongwei [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100190 (China); Wu Biao [Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100190 (China); International Center for Quantum Materials, Peking University, Beijing 100871 (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2010-11-15T23:59:59.000Z
We consider the dynamics of Bose-Einstein condensates in a corral-like potential. Compared to the electronic quantum corrals, the atomic quantum corrals have the advantages of allowing direct and convenient observation of the wave dynamics, together with adjustable interaction strength. Our numerical study shows that these advantages not only allow exploration of the rich dynamical structures in the density distribution but also make the corrals useful in many other aspects. In particular, the corrals for atoms can be arranged into a stadium shape for the experimental visualization of quantum chaos, which has been elusive with electronic quantum corrals. The density correlation is used to describe quantitatively the dynamical quantum chaos. Furthermore, we find that the interatomic interaction can greatly enhance the dynamical quantum chaos, for example, inducing a chaotic behavior even in circle-shaped corrals.
Condensation of Anyons in Frustrated Quantum Magnets
Cristian D. Batista; Rolando D. Somma
2012-08-12T23:59:59.000Z
We derive the exact ground space of a family of spin-1/2 Heisenberg chains with uniaxial exchange anisotropy (XXZ) and interactions between nearest and next-nearest-neighbor spins. The Hamiltonian family, H(Q), is parametrized by a single variable Q. By using a generalized Jordan-Wigner transformation that maps spins into anyons, we show that the exact ground states of H(Q) correspond to a condensation of anyons with statistical phase phi=-4Q. We also provide matrix-product state representations of some ground states that allow for the efficient computation of spin-spin correlation functions.
Yeh, Nai-Chang
Physics A Perspective of Frontiers in Modern Condensed Matter Physics Nai-Chang Yeh Department of Physics, California Institute of Technology, Pasadena, California 91125, USA Articles Modern condensed matter physics research frontiers in modern condensed matter physics without getting too much into the technical details
Effective Holographic Theories for low-temperature condensed matter systems
C. Charmousis; B. Goutéraux; B. S. Kim; E. Kiritsis; Rene Meyer
2010-09-30T23:59:59.000Z
The IR dynamics of effective holographic theories capturing the interplay between charge density and the leading relevant scalar operator at strong coupling are analyzed. Such theories are parameterized by two real exponents $(\\gamma,\\delta)$ that control the IR dynamics. By studying the thermodynamics, spectra and conductivities of several classes of charged dilatonic black hole solutions that include the charge density back reaction fully, the landscape of such theories in view of condensed matter applications is characterized. Several regions of the $(\\gamma,\\delta)$ plane can be excluded as the extremal solutions have unacceptable singularities. The classical solutions have generically zero entropy at zero temperature, except when $\\gamma=\\delta$ where the entropy at extremality is finite. The general scaling of DC resistivity with temperature at low temperature, and AC conductivity at low frequency and temperature across the whole $(\\gamma,\\delta)$ plane, is found. There is a codimension-one region where the DC resistivity is linear in the temperature. For massive carriers, it is shown that when the scalar operator is not the dilaton, the DC resistivity scales as the heat capacity (and entropy) for planar (3d) systems. Regions are identified where the theory at finite density is a Mott-like insulator at T=0. We also find that at low enough temperatures the entropy due to the charge carriers is generically larger than at zero charge density.
??Rubidium Bose-Einstein condensates : machine construction and quantum Zeno experiments
Streed, Erik William
2006-01-01T23:59:59.000Z
This thesis details construction of a new apparatus for the production of 87Rb Bose-Einstein condensates and a subsequent quantum Zeno effect experiment. An experimental apparatus for producing large Bose-Einstein condensates ...
Optical, electronic, and dynamical phenomena in the shock compression of condensed matter
Reed, Evan J. (Evan John), 1976-
2003-01-01T23:59:59.000Z
Despite the study of shock wave compression of condensed matter for over 100 years, scant progress has been made in understanding the microscopic details. This thesis explores microscopic phenomena in shock compression of ...
Role of fluctuations and defects in select condensed matter problems
Pressé, Steve, 1981-
2008-01-01T23:59:59.000Z
Defects and fluctuations dominate both static and dynamical properties of systems in the condensed phase. In this work, we focus on three such examples. Firstly, we model the effect of proton fluctuations on the rate of ...
Condensed Matter and Magnetic Science, MPA-CMMS: Materials Physics...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
& Transport Elastic Properties Optical Spectroscopy Quantum Magnetism Magnet Science & Engineering Thermal Physics Thermoacoustics Nonlinear Dynamics Correlated Electrons...
Cascading Quantum Light-Matter Interfaces
Mehdi Namazi; Thomas Mittiga; Connor Kupchak; Eden Figueroa
2015-03-10T23:59:59.000Z
The ability to interface multiple optical quantum devices is a key milestone towards the development of future quantum networks that are capable of sharing and processing quantum information encoded in light. One of the requirements for any node of these quantum networks will be cascadability, i.e. the ability to drive the input of a node using the output of another node. Here, we report the cascading of quantum light-matter interfaces by storing few-photon level pulses of light in warm vapor followed by the subsequent storage of the retrieved field onto a second ensemble. We demonstrate that even after the sequential storage, the final signal-to-background ratio can remain greater than 1 for weak pulses containing 8 input photons on average.
Novel ground states of Bose-condensed gases
Abo-Shaeer, Jamil R
2005-01-01T23:59:59.000Z
Bose-Einstein condensates (BEC) provide a novel tool for the study of macroscopic quantum phenomena and condensed matter systems. Two of the recent frontiers, quantized vortices and ultracold molecules, are the subject of ...
Radiation to atom quantum mapping by collective recoil in a BoseEinstein condensate
Paris, Matteo G. A.
Radiation to atom quantum mapping by collective recoil in a BoseEinstein condensate Matteo G a scheme to realize radiation to atom continuous variable quantum mapping, i.e., to teleport the quantum a novel scheme to realize radiation to atom quantum state mapping, Optics Communications 227 (2003) 349
Quantum Simulations for Dense Matter
Ceperley, David M
2010-06-07T23:59:59.000Z
High pressure systems are important, for example, to understand the interiors of giant planets (Jupiter and Saturn), for experiments at NIF (the National Ignition Facility at Livermore) related to inertially confined fusion and for other interests of DOE. In this project, we are developing innovative simulation methods (Quantum Monte Carlo methods) to allow more accurate calculation of properties of systems under extreme conditions of pressure and temperature. These methods can use the power of current day supercomputers made of very many processors, starting from the basic equations of physics to model quantum phenomena important at the microscopic scale. During the grant period, we have settled two important questions of the physics of hydrogen and helium under extreme conditions. We have found the pressures and temperatures when hydrogen and helium mix together; this is important to understand the difference of the interiors of the planets Jupiter and Saturn. Secondly, we have shown that there exists a sharp transition as a function of pressure between molecular and atomic liquid hydrogen at temperatures below 2000K. This prediction can be confirmed with high pressure experiments.
Galaxy phase-space density data exclude Bose-Einstein condensate Axion Dark Matter
H. J. de Vega; N. G. Sanchez
2014-11-18T23:59:59.000Z
Light scalars (as the axion) with mass m ~ 10^{-22} eV forming a Bose-Einstein condensate (BEC) exhibit a Jeans length in the kpc scale and were therefore proposed as dark matter (DM) candidates. Our treatment here is generic, independent of the particle physics model and applies to all DM BEC, in or out of equilibrium. Two observed quantities crucially constrain DM in an inescapable way: the average DM density rho_{DM} and the phase-space density Q. The observed values of rho_{DM} and Q in galaxies today constrain both the possibility to form a BEC and the DM mass m. These two constraints robustly exclude axion DM that decouples just after the QCD phase transition. Moreover, the value m ~ 10^{-22} eV can only be obtained with a number of ultrarelativistic degrees of freedom at decoupling in the trillions which is impossible for decoupling in the radiation dominated era. In addition, we find for the axion vacuum misalignment scenario that axions are produced strongly out of thermal equilibrium and that the axion mass in such scenario turns to be 17 orders of magnitude too large to reproduce the observed galactic structures. Moreover, we also consider inhomogenous gravitationally bounded BEC's supported by the bosonic quantum pressure independently of any particular particle physics scenario. For a typical size R ~ kpc and compact object masses M ~ 10^7 Msun they remarkably lead to the same particle mass m ~ 10^{-22} eV as the BEC free-streaming length. However, the phase-space density for the gravitationally bounded BEC's turns to be more than sixty orders of magnitude smaller than the galaxy observed values. We conclude that the BEC's and the axion cannot be the DM particle. However, an axion in the mili-eV scale may be a relevant source of dark energy through the zero point cosmological quantum fluctuations.
Yoo, S. J. Ben
OF QUANTUM FLUID WITH FRACTIONALLY CHARGED EXCITATIONS THE QUANTUM HALL EFFECT, FRACTIONAL CHARGE--THEORY 8 RESOLUTION NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY NMR SPECTROSCOPY (CURRO) #12;A Look at the Future Be Met? Solar cells, fuel cells,... What New Discoveries Await Us in the Nanoworld? Surface
Saskatchewan, University of
radiation to study new materials. The goal is the understanding of the electronic structure in orderThe Beamteam The Materials Research Group in Condensed Matter Physics at the University to design materials with novel electronic, optical, magnetic, photochemical and catalytic properties
Wave packet dynamics of the matter wave field of a Bose-Einstein condensate
C. Sudheesh; S. Lakshmibala; V. Balakrishnan
2004-08-11T23:59:59.000Z
We show in the framework of a tractable model that revivals and fractional revivals of wave packets afford clear signatures of the extent of departure from coherence and from Poisson statistics of the matter wave field in a Bose-Einstein condensate, or of a suitably chosen initial state of the radiation field propagating in a Kerr-like medium.
Condensed matter physics IFF Scientific Report 2009 Phase change memory materials: an
Condensed matter physics · IFF Scientific Report 2009 6464 Phase change memory materials: an update supercomputers. Phase change (PC) materials are familiar to us all as rewritable media (CD-RW, DVD-RW, DVD.70Te0.30) are also in common use, particularly in DVD-RW systems. We discuss alloys from both
Dynamics of quantum-classical hybrid systems: Effect of matter-wave pressure
Shen, J. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Huang, X. L. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029 (China); Yi, X. X. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Centre for Quantum Technologies and Department of Physics, National University of Singapore, Singapore 117543 (Singapore); Wu Chunfeng; Oh, C. H. [Centre for Quantum Technologies and Department of Physics, National University of Singapore, Singapore 117543 (Singapore)
2010-12-15T23:59:59.000Z
Radiation pressure affects the kinetics of a system exposed to radiation and it constitutes the basis of laser cooling. In this article, we study matter-wave pressure through examining the dynamics of a quantum-classical hybrid system. The quantum and classical subsystems are affected mutually via a changing boundary condition. Two systems, that is, an atom and a Bose-Einstein condensate (BEC), are considered as the quantum subsystems, while an oscillating wall is taken as the classical subsystem. We show that the classical subsystem would experience a force proportional to Q{sup -3} from the quantum atom, where Q denotes the distance between the two walls, whereas it acquires an additional force proportional to Q{sup -2} from the BEC due to the atom-atom interaction in the BEC. These forces can be understood as the matter-wave pressure.
Theory of the colossal Van-der-Waals binding in soft and hard condensed matter
Mladen Georgiev; Alexander Gochev; Jai Singh
2005-10-12T23:59:59.000Z
A simple theory is proposed for the dispersive molecular binding of unusually high magnitude due to an enhanced polarizability. Two alternative ways have so far been considered in the literature leading to the polarizability enhancement: (i) a vibronic energy level gap narrowing, as proposed by us with regard to a hypothetical exciton matter, and (ii) a giant electric dipole in a Rydberg state of constituent atoms, as proposed by Gilman with regard to an enigmatic substance building the ball lightning. We now combine the two mechanisms to obtain concrete expressions for the colossal binding energy. The problem is exemplified for a three-level system coupled to the umbrella mode of an ammonia molecule. Other possibilities for the design of enhanced-polarizability molecules are also discussed. The colossal Van-der-Waals binding is most likely to materialize in hard condensed matter and perhaps less so in soft condensed matter.
Quantum Corrections in Galileons from Matter Loops
Lavinia Heisenberg
2014-10-09T23:59:59.000Z
Galileon interactions represent a class of effective field theories that have received much attention since their inception. They can be treated in their own right as scalar field theories with a specific global shift and Galilean symmetry or as a descendant of a more fundamental theory like massive gravity. It is well known that the Galileon theories are stable under quantum corrections thanks to the non-renormalization theorem which is not due to the symmetry. We consider different covariant couplings of this Galileon scalar field with the matter field: the conformal coupling, the disformal coupling and the longitudinal coupling. We compute the one-loop quantum corrections to the Galileon interactions from the coupling to the external matter fields. In all the considered cases of covariant couplings we show that the terms generated by one-loop matter corrections not only renormalize the Galileon interactions but also give rise to higher order derivative ghost interactions. However, the renormalized version of the Galileon interactions as well as the new interactions come at a scale suppressed by the original classical coupling scale and hence are harmless within the regime of validity of the effective field theory.
Optical nanoscopy of transient states in condensed matter
Kuschewski, Frederik; Green, Bert; Bauer, Christian; Gensch, Michael; Eng, Lukas M
2015-01-01T23:59:59.000Z
Recently, the fundamental and nanoscale understanding of complex phenomena in materials research and the life sciences, witnessed considerable progress. However, elucidating the underlying mechanisms, governed by entangled degrees of freedom such as lattice, spin, orbit, and charge for solids or conformation, electric potentials, and ligands for proteins, has remained challenging. Techniques that allow for distinguishing between different contributions to these processes are hence urgently required. In this paper we demonstrate the application of scattering-type scanning near-field optical microscopy (s-SNOM) as a novel type of nano-probe for tracking transient states of matter. We introduce a sideband-demodulation technique that allows for probing exclusively the stimuli-induced change of near-field optical properties. We exemplify this development by inspecting the decay of an electron-hole plasma generated in SiGe thin films through near-infrared laser pulses. Our approach can universally be applied to opt...
Generalized Quantum Theory and Mathematical Foundations of Quantum Field Theory
Maroun, Michael Anthony
2013-01-01T23:59:59.000Z
The Unique Status of Condensed Matter Theory . . . . . . . .of a Satisfactory Theory . . . . . . . . . . . . BasicThe Generalized Quantum Theory The Postulates and Philosophy
Fidelity for the quantum evolution of a Bose-Einstein condensate Jie Liu,1,2
Li, Baowen
in the control, manipulation, and even future application of this newly formed matter. Dy- namical instability 3-Einstein condensate BEC and reveal its general property with a simple two-component BEC model. We find that, when The investigation of coherent manipulation of the quan- tum state of matter and light has provided insights
Axion Bose-Einstein Condensation: a model beyond Cold Dark Matter
Yang, Q
2010-01-01T23:59:59.000Z
Cold dark matter axions form a Bose-Einstein condensate if the axions thermalize. Recently, it was found that they do thermalize when the photon temperature reaches T ~ 100 eV(f/10^12GeV)^1/2 and that they continue to do so thereafter. We discuss the differences between axion BEC and CDM in the linear regime and the non-linear regime of evolution of density perturbations. We find that axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multi-poles.
Axion Bose-Einstein Condensation: a model beyond Cold Dark Matter
Q. Yang
2010-04-15T23:59:59.000Z
Cold dark matter axions form a Bose-Einstein condensate if the axions thermalize. Recently, it was found that they do thermalize when the photon temperature reaches T ~ 100 eV(f/10^12GeV)^1/2 and that they continue to do so thereafter. We discuss the differences between axion BEC and CDM in the linear regime and the non-linear regime of evolution of density perturbations. We find that axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multi-poles.
Axion Bose-Einstein Condensation: a model beyond Cold Dark Matter
Yang, Q. [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States)
2010-08-30T23:59:59.000Z
Cold dark matter axions form a Bose-Einstein condensate if the axions thermalize. Recently, it was found [1] that they do thermalize when the photon temperature reaches T{approx}100 eV(f/10{sup 12} GeV){sup 1/2} and that they continue to do so thereafter. We discuss the differences between axion BEC and CDM in the linear regime and the non-linear regime of evolution of density perturbations. We find that axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multi-poles.
Lattice Gauge Theory for Condensed Matter Physics: Ferromagnetic Superconductivity as its Example
Ikuo Ichinose; Tetsuo Matsui
2014-09-07T23:59:59.000Z
Recent theoretical studies of various strongly-correlated systems in condensed matter physics reveal that the lattice gauge theory(LGT) developed in high-energy physics is quite a useful tool to understand physics of these systems. Knowledges of LGT are to become a necessary item even for condensed matter physicists. In the first part of this paper, we present a concise review of LGT for the reader who wants to understand its basics for the first time. For illustration, we choose the abelian Higgs model, a typical and quite useful LGT, which is the lattice verison of the Ginzburg-Landau model interacting with a U(1) gauge field (vector potential). In the second part, we present an account of the recent progress in the study of ferromagnetic superconductivity (SC) as an example of application of LGT to topics in condensed matter physics, . As the ferromagnetism (FM) and SC are competing orders with each other, large fluctuations are expected to take place and therefore nonperturbative methods are required for theoretical investigation. After we introduce a LGT describing the FMSC, we study its phase diagram and topological excitations (vortices of Cooper pairs) by Monte-Carlo simulations.
Complex Langevin simulation of quantum vortex nucleation in the Bose-Einstein condensate
Tomoya Hayata; Arata Yamamoto
2014-11-19T23:59:59.000Z
The ab-initio simulation of quantum vortex nucleation in the Bose-Einstein condensate is performed by adopting the complex Langevin techniques. We simulate the two-component boson field theory at a finite chemical potential under rotation. In the superfluid phase, vortices are generated above a critical angular velocity and the circulation is clearly quantized even in the presence of quantum fluctuations.
Instability of Bose-Einstein condensation on quantum graphs under repulsive perturbations
Jens Bolte; Joachim Kerner
2014-11-26T23:59:59.000Z
In this Note we investigate Bose-Einstein condensation in interacting quantum many-particle systems on graphs. We extend previous results obtained for particles on an interval and show that even arbitrarily small repulsive two-particle interactions destroy a condensate in the non-interacting Bose gas. Our results also cover singular two-particle interactions, such as the well-known Lieb-Lininger model, in the thermodynamic limit.
The Big Bang quantum cosmology: The matter-energy production epoch
V. E. Kuzmichev; V. V. Kuzmichev
2008-04-30T23:59:59.000Z
The exactly solvable quantum model of the homogeneous, isotropic and closed universe in the matter-energy production epoch is considered. It is assumed that the universe is originally filled with a uniform scalar field and a perfect fluid which defines a reference frame. The stationary state spectrum and the wave functions of the quantum universe are calculated. In this model the matter-energy in the universe has a component in the form of a condensate of massive zero-momentum excitation quanta of oscillations of primordial scalar field. The mean value of the scale factor of the universe in a given state is connected with the mass of a condensate by a linear relation. The nucleation rate of the universe from the initial cosmological singularity point is calculated. It is demonstrated that the process of nucleation of the universe can have an exponential (explosive) nature. The evolution of the universe is described as transitions with non-zero probabilities between the states of the universe with different masses of a condensate.
Quantum radiations from exciton condensate in Electron-Hole Bilayer Systems
Jinwu Ye; T. Shi; Longhua Jiang; C. P. Sun
2009-07-10T23:59:59.000Z
Superfluid has been realized in Helium-4, Helium-3 and ultra-cold atoms. It has been widely used in making high-precision devices and also in cooling various systems. There have been extensive experimental search for possible exciton superfluid (ESF) in semiconductor electron-hole bilayer (EHBL) systems below liquid Helium temperature. However, exciton superfluid are meta-stable and will eventually decay through emitting photons. Here we study quantum nature of photons emitted from the excitonic superfluid (ESF) phase in the semiconductor EHBL and find that the light emitted from the excitonic superfluid has unique and unusual features not shared by any other atomic or condensed matter systems. We show that the emitted photons along the direction perpendicular to the layer are in a coherent state, those along all tilted directions are in a two modes squeezed state. We determine the two mode squeezing spectra, the angle resolved power spectrum, the line shapes of both the momentum distribution curve (MDC) and the energy distribution curve (EDC). From the two photon correlation functions, we find there are photon bunching, the photo-count statistics is super-Poissonian. We discuss how several important parameters such as the chemical potential, the exciton decay rate, the quasiparticle energy spectrum and the dipole-dipole interaction strength between the excitons in our theory can be extracted from the experimental data and comment on available experimental data on both EDC and MDC.
Experimental Condensed Matter Physics | U.S. DOE Office of Science (SC)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41clothThe Bonneville Power AdministrationHawaiiEnergy StorageDepartment ofLow Risk CloudExperimental Condensed Matter
Radiation to atom quantum mapping by collective recoil in Bose-Einstein condensate
Matteo G. A. Paris; Mary Cola; Nicola Piovella; Rodolfo Bonifacio
2003-02-20T23:59:59.000Z
We propose an experiment to realize radiation to atom continuous variable quantum mapping, i.e. to teleport the quantum state of a single mode radiation field onto the collective state of atoms with a given momentum out of a Bose-Einstein condensate. The atoms-radiation entanglement needed for the teleportation protocol is established through the interaction of a single mode with the condensate in presence of a strong far off-resonant pump laser, whereas the coherent atomic displacement is obtained by the same interaction with the radiation in a classical coherent field. In principle, verification of the protocol requires a joint measurement on the recoiling atoms and the condensate, however, a partial verification involving populations, i.e. diagonal matrix elements may be obtained through counting atoms experiments.
Quantum Haplodynamics, Dark Matter and Dark Energy
Harald Fritzsch; Joan Sola
2014-08-04T23:59:59.000Z
In quantum haplodynamics (QHD) the weak bosons, quarks and leptons are bound states of fundamental constituents, denoted as haplons. The confinement scale of the associated gauge group SU(2)_h is of the order of $\\Lambda_h\\simeq 0.3$ TeV. One scalar state has zero haplon number and is the resonance observed at the LHC. In addition, there exist new bound states of haplons with no counterpart in the SM, having a mass of the order of 0.5 TeV up to a few TeV. In particular, a neutral scalar state with haplon number 4 is stable and can provide the dark matter in the universe. The QHD, QCD and QED couplings can unify at the Planck scale. If this scale changes slowly with cosmic time, all of the fundamental couplings, the masses of the nucleons and of the DM particles, including the cosmological term (or vacuum energy density), will evolve with time. This could explain the dark energy of the universe.
Oshmyansky, A
2007-01-01T23:59:59.000Z
An alternative quantum field theory for gravity is proposed for low energies based on an attractive effect between contaminants in a Bose-Einstein Condensate rather than on particle exchange. In the ``contaminant in condensate effect," contaminants cause a potential in an otherwise uniform condensate, forcing the condensate between two contaminants to a higher energy state. The energy of the system decreases as the contaminants come closer together, causing an attractive force between contaminants. It is proposed that mass-energy may have a similar effect on Einstein's space-time field, and gravity is quantized by the same method by which the contaminant in condensate effect is quantized. The resulting theory is finite and, if a physical condensate is assumed to underly the system, predictive. However, the proposed theory has several flaws at high energies and is thus limited to low energies. Falsifiable predictions are given for the case that the Higgs condensate is assumed to be the condensate underlying gr...
Alexander Oshmyansky
2007-03-08T23:59:59.000Z
An alternative quantum field theory for gravity is proposed for low energies based on an attractive effect between contaminants in a Bose-Einstein Condensate rather than on particle exchange. In the ``contaminant in condensate effect," contaminants cause a potential in an otherwise uniform condensate, forcing the condensate between two contaminants to a higher energy state. The energy of the system decreases as the contaminants come closer together, causing an attractive force between contaminants. It is proposed that mass-energy may have a similar effect on Einstein's space-time field, and gravity is quantized by the same method by which the contaminant in condensate effect is quantized. The resulting theory is finite and, if a physical condensate is assumed to underly the system, predictive. However, the proposed theory has several flaws at high energies and is thus limited to low energies. Falsifiable predictions are given for the case that the Higgs condensate is assumed to be the condensate underlying gravity.
Bose-Einstein Condensation and Bose Glasses in an S = 1 Organo-metallic quantum magnet
Zapf, Vivien [Los Alamos National Laboratory
2012-06-01T23:59:59.000Z
I will speak about Bose-Einstein condensation (BEC) in quantum magnets, in particular the compound NiCl2-4SC(NH2)2. Here a magnetic field-induced quantum phase transition to XY antiferromagnetism can be mapped onto BEC of the spins. The tuning parameter for BEC transition is the magnetic field rather than the temperature. Some interesting phenomena arise, for example the fact that the mass of the bosons that condense can be strongly renormalized by quantum fluctuations. I will discuss the utility of this mapping for both understanding the nature of the quantum magnetism and testing the thermodynamic limit of Bose-Einstein Condensation. Furthermore we can dope the system in a clean and controlled way to create the long sought-after Bose Glass transition, which is the bosonic analogy of Anderson localization. I will present experiments and simulations showing evidence for a new scaling exponent, which finally makes contact between theory and experiments. Thus we take a small step towards the difficult problem of understanding the effect of disorder on bosonic wave functions.
Quantum Matter-Photonics Framework: Analyses of Chemical Conversion Processes
O. Tapia
2014-10-29T23:59:59.000Z
A quantum Matter-Photonics framework is adapted to help scrutinize chemical reaction mechanisms and used to explore a process mapped from chemical tree topological model. The chemical concept of bond knitting/breaking is reformulated via partitioned base sets leading to an abstract and general quantum presentation. Pivotal roles are assigned to entanglement, coherence,de-coherence and Feshbach resonance quantum states that permit apprehend gating states in conversion processes. A view from above in the state energy eigenvalue ladder, belonging to full system spectra complement the standard view from ground state. A full quantum physical view supporting chemical change obtains.
Janke, Wolfhard
Condensed Matter Physics 2009, Vol. 12, No 4, pp. 739752 Football fever: self-affirmation model, Germany Received July 22, 2009 The outcome of football games, as well as matches of most other popular football score data with the toolbox of mathematical statistics in order to separate deterministic from
Matter-wave interferometry with composite quantum objects
Markus Arndt; Nadine Dörre; Sandra Eibenberger; Philipp Haslinger; Jonas Rodewald; Klaus Hornberger; Stefan Nimmrichter; Marcel Mayor
2015-01-30T23:59:59.000Z
We discuss modern developments in quantum optics with organic molecules, clusters and nanoparticles -- in particular recent realizations of near-field matter-wave interferometry. A unified theoretical description in phase space allows us to describe quantum interferometry in position space and in the time domain on an equal footing. In order to establish matter-wave interferometers as a universal tool, which can accept and address a variety of nanoparticles, we elaborate on new quantum optical elements, such as diffraction gratings made of matter and light, as well as their absorptive and dispersive interaction with complex materials. We present Talbot-Lau interferometry (TLI), the Kapitza-Dirac-Talbot-Lau interferometer (KDTLI) and interferometry with pulsed optical gratings (OTIMA) as the most advanced devices to study the quantum wave nature of composite matter. These experiments define the current mass and complexity record in interferometric explorations of quantum macroscopicity and they open new avenues to quantum assisted metrology with applications in physical chemistry and biomolecular physics.
An informationally-complete unification of quantum spacetime and matter
Zeng-Bing Chen
2015-04-06T23:59:59.000Z
It was known long ago that quantum theory and general relativity, two pillars of modern physics, are in sharp conflict in their foundations. Their fundamental inconsistencies render a consistent theory of quantum gravity the most challenging problem in physics. Here we propose an informationally-complete quantum field theory (ICQFT), which describes elementary particles, their gauge fields and gravity as a trinity without the Hilbert-space inconsistency of Einstein's equation. We then argue that the ICQFT provides a coherent picture and conceptual framework of unifying matter and spacetime. The trinary field is characterized by dual entanglement and dual dynamics. Spacetime-matter entanglement allows us to give a natural explanation of the holographic principle, as well as two conjectures on black-hole states and on a possible candidate to dark matter/energy.
Temperature jump in degenerate quantum gases in the presence of a Bose - Einstein condensate
A. V. Latyshev; A. A. Yushkanov
2010-01-04T23:59:59.000Z
We construct a kinetic equation modeling the behavior of degenerate quantum Bose gases whose collision rate depends on the momentum of elementary excitations. We consider the case where the phonon component is the decisive factor in the elementary excitations. We analytically solve the half-space boundary value problem of the temperature jump at the boundary of the degenerate Bose gas in the presence of a Bose -- Einstein condensate.
Wang Dengshan [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); CEMA, Central University of Finance and Economics, Beijing 100081 (China); Hu Xinghua; Liu, W. M. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2010-08-15T23:59:59.000Z
We investigate the localized nonlinear matter waves in the two-component Bose-Einstein condensates with time- and space-modulated nonlinearities analytically and numerically. The similarity transformations are developed to solve the coupled Gross-Pitaevskii equations and two families of explicitly exact solutions are derived. Our results show that not only the attractive spatiotemporal inhomogeneous interactions but the repulsive ones support novel localized nonlinear matter waves in two-component Bose-Einstein condensates. The dynamics of these matter waves, including the breathing solitons, quasibreathing solitons, resonant solitons, and moving solitons, is discussed. We confirm the stability of the exact solutions by adding various initial stochastic noise and study the general cases of the interaction parameters numerically. We also provide the experimental parameters to produce these phenomena in future experiments.
Recent Applications of Small-angle Neutron Scattering in Strongly Interacting Soft-condensed Matter
Wignall, George D [ORNL; Melnichenko, Yuri B [ORNL
2005-01-01T23:59:59.000Z
Before the application of small-angle neutron scattering (SANS) to the study of polymer structure, chain conformation studies were limited to light and small-angle x-ray scattering techniques, usually conducted in dilute solution owing to the difficulties of separating the inter- and intrachain contributions to the structure. The unique role of neutron scattering in soft condensed matter arises from the difference in the coherent scattering length between deuterium (b{sub D} = 0.67 x 10{sup -12} cm) and hydrogen (b{sub H} = -0.37 x 10{sup -12} cm), which results in a marked difference in scattering power (contrast) between molecules synthesized from normal (hydrogeneous) and deuterated monomer units. Thus, deuterium labelling techniques may be used to 'stain' molecules and make them 'visible' in the condensed state and other crowded environments, such as concentrated solutions of overlapping chains. For over two decades, SANS has proved to be a powerful tool for studies of structure-property relationships in polymeric systems and has made it possible to extract unique information about their size, shape, conformational changes and molecular associations. These applications are now so numerous that an exhaustive review of the field is no longer practical, so the authors propose to focus on the use of SANS for studies of strongly interacting soft matter systems. This paper will therefore discuss basic theory and practical aspects of the technique and will attempt to explain the physics of scattering with the minimum of unnecessary detail and mathematical rigour. Examples will be given to demonstrate the power of SANS and to show how it has helped to unveil universal aspects of the behaviour of macromolecules in such apparently diverse systems as polymer solutions, blends, polyelectrolytes and supercritical mixtures. The aim of the authors is to aid potential users who have a general scientific background, but no specialist knowledge of scattering, to understand the potential of the technique and, if they so choose, to apply it to provide new information in areas of their own particular research interests.
Serena Cenatiempo; Alessandro Giuliani
2014-07-18T23:59:59.000Z
We present a renormalization group construction of a weakly interacting Bose gas at zero temperature in the two-dimensional continuum, both in the quantum critical regime and in the presence of a condensate fraction. The construction is performed within a rigorous renormalization group scheme, borrowed from the methods of constructive field theory, which allows us to derive explicit bounds on all the orders of renormalized perturbation theory. Our scheme allows us to construct the theory of the quantum critical point completely, both in the ultraviolet and in the infrared regimes, thus extending previous heuristic approaches to this phase. For the condensate phase, we solve completely the ultraviolet problem and we investigate in detail the infrared region, up to length scales of the order $(\\lambda^3 \\rho_0)^{-1/2}$ (here $\\lambda$ is the interaction strength and $\\rho_0$ the condensate density), which is the largest length scale at which the problem is perturbative in nature. We exhibit violations to the formal Ward Identities, due to the momentum cutoff used to regularize the theory, which suggest that previous proposals about the existence of a non-perturbative non-trivial fixed point for the infrared flow should be reconsidered.
Boothroyd, Andrew
Concepts of Neutron ScatteringConcepts of Neutron Scattering 66thth PSI Summer School on Condensed Andrew Boothroyd University of Oxford Basic features of neutron scattering Neutron diffraction Neutron on the lattice * * * #12;ScatteringScattering ``nuts and boltsnuts and bolts'' Neutrons, photons, electrons
Decoherence in a quantum harmonic oscillator monitored by a Bose-Einstein condensate
Brouard, S; Sokolovski, D
2010-01-01T23:59:59.000Z
We investigate the dynamics of a quantum oscillator, whose evolution is monitored by a Bose-Einstein condensate (BEC) trapped in a symmetric double well potential. It is demonstrated that the oscillator may experience various degrees of decoherence depending on the variable being measured and the state in which the BEC is prepared. These range from a `coherent' regime in which only the variances of the oscillator position and momentum are affected by measurement, to a slow (power law) or rapid (Gaussian) decoherence of the mean values themselves.
Matter Bounce Loop Quantum Cosmology from $F(R)$ Gravity
S. D. Odintsov; V. K. Oikonomou
2014-12-04T23:59:59.000Z
Using the reconstruction method, we investigate which $F(R)$ theories, with or without the presence of matter fluids, can produce the matter bounce scenario of holonomy corrected Loop Quantum Cosmology. We focus our study in two limits of the cosmic time, the large cosmic time limit and the small cosmic time limit. For the former, we found that, in the presence of non-interacting and non-relativistic matter, the $F(R)$ gravity that reproduces the late time limit of the matter bounce solution is actually the Einstein-Hilbert gravity plus a power law term. In the early time limit, since it corresponds to large spacetime curvatures, assuming that the Jordan frame is described by a general metric that when it is conformally transformed to the Einstein frame, produces an accelerating Friedmann-Robertson-Walker metric, we found explicitly the scalar field dependence on time. After demonstrating that the solution in the Einstein frame is indeed accelerating, we calculate the spectral index derived from the Einstein frame scalar-tensor counterpart theory of the $F(R)$ theory and compare it with the Planck experiment data. In order to implement the resulting picture, we embed the $F(R)$ gravity explicitly in a Loop Quantum Cosmology framework by introducing holonomy corrections to the $F(R)$ gravity. In this way, the resulting inflation picture corresponding to the $F(R)$ gravity can be corrected in order it coincides to some extent with the current experimental data.
Emergent quantum phases in a heteronuclear molecular Bose--Einstein condensate model
Melissa Duncan; Angela Foerster; Jon Links; Eduardo Mattei; Norman Oelkers; Arlei Prestes Tonel
2006-10-30T23:59:59.000Z
We study a three-mode Hamiltonian modelling a heteronuclear molecular Bose--Einstein condensate. Two modes are associated with two distinguishable atomic constituents, which can combine to form a molecule represented by the third mode. Beginning with a semi-classical analogue of the model, we conduct an analysis to determine the phase space fixed points of the system. Bifurcations of the fixed points naturally separate the coupling parameter space into different regions. Two distinct scenarios are found, dependent on whether the imbalance between the number operators for the atomic modes is zero or non-zero. This result suggests the ground-state properties of the model exhibit an unusual sensitivity on the atomic imbalance. We then test this finding for the quantum mechanical model. Specifically we use Bethe ansatz methods, ground-state expectation values, the character of the quantum dynamics, and ground-state wavefunction overlaps to clarify the nature of the ground-state phases. The character of the transition is smoothed due to quantum fluctuations, but we may nonetheless identify the emergence of a quantum phase boundary in the limit of zero atomic imbalance.
Nakai, Hiromi, E-mail: nakai@waseda.jp [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); ESICB, Kyoto University, Kyotodaigaku-Katsura, Kyoto 615-8520 (Japan); Ishikawa, Atsushi [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); ESICB, Kyoto University, Kyotodaigaku-Katsura, Kyoto 615-8520 (Japan)
2014-11-07T23:59:59.000Z
We propose a novel quantum chemical method, called the harmonic solvation model (HSM), for calculating thermochemical parameters in the condensed phase, particularly in the liquid phase. The HSM represents translational and rotational motions of a solute as vibrations interacting with a cavity wall of solvent molecules. As examples, the HSM and the ideal-gas model (IGM) were used for the standard formation reaction of liquid water, combustion reactions of liquid formic acid, methanol, and ethanol, vapor–liquid equilibration of water and ethanol, and dissolution of gaseous CO{sub 2} in water. The numerical results confirmed the reliability and applicability of the HSM. In particular, the temperature dependence of the Gibbs energy of liquid molecules was accurately reproduced by the HSM; for example, the boiling point of water was reasonably determined using the HSM, whereas the conventional IGM treatment failed to obtain a crossing of the two Gibbs energy curves for gaseous and liquid water.
Soft matter and fractional mathematics: insights into mesoscopic quantum and time-space structures
mesoscopic quantum mechanics and time-space structures governing "anomalous" behaviors of soft matter. Our and space. But the theory does not hold at the microscopic subatomic level, where quantum mechanics theory-known soft matter are polymers, colloids, emulsions, foams, living organisms, rubber, oil, soil, other porous
The matter bounce scenario in loop quantum cosmology
Wilson-Ewing, Edward, E-mail: wilson-ewing@cpt.univ-mrs.fr [Aix-Marseille Université, CNRS UMR 7332, CPT, 13288 Marseille (France)
2013-03-01T23:59:59.000Z
In the matter bounce scenario, a dust-dominated contracting space-time generates scale-invariant perturbations that, assuming a nonsingular bouncing cosmology, propagate to the expanding branch and set appropriate initial conditions for the radiation-dominated era. Since this scenario depends on the presence of a bounce, it seems appropriate to consider it in the context of loop quantum cosmology where a bouncing universe naturally arises. For a pressureless collapsing universe in loop quantum cosmology, the predicted power spectrum of the scalar perturbations after the bounce is scale-invariant and the tensor to scalar ratio is negligibly small. A slight red tilt can be given to the scale-invariance of the scalar perturbations by a scalar field whose equation of state is P = ???, where ? is a small positive number. Then, the power spectrum for tensor perturbations is also almost scale-invariant with the same red tilt as the scalar perturbations, and the tensor to scalar ratio is expected to be r ? 9 × 10{sup ?4}. Finally, for the predicted amplitude of the scalar perturbations to agree with observations, the critical density in loop quantum cosmology must be of the order ?{sub c} ? 10{sup ?9}?{sub Pl}.
Matter-enhanced transition probabilities in quantum field theory
Ishikawa, Kenzo, E-mail: ishikawa@particle.sci.hokudai.ac.jp; Tobita, Yutaka
2014-05-15T23:59:59.000Z
The relativistic quantum field theory is the unique theory that combines the relativity and quantum theory and is invariant under the Poincaré transformation. The ground state, vacuum, is singlet and one particle states are transformed as elements of irreducible representation of the group. The covariant one particles are momentum eigenstates expressed by plane waves and extended in space. Although the S-matrix defined with initial and final states of these states hold the symmetries and are applied to isolated states, out-going states for the amplitude of the event that they are detected at a finite-time interval T in experiments are expressed by microscopic states that they interact with, and are surrounded by matters in detectors and are not plane waves. These matter-induced effects modify the probabilities observed in realistic situations. The transition amplitudes and probabilities of the events are studied with the S-matrix, S[T], that satisfies the boundary condition at T. Using S[T], the finite-size corrections of the form of 1/T are found. The corrections to Fermi’s golden rule become larger than the original values in some situations for light particles. They break Lorentz invariance even in high energy region of short de Broglie wave lengths. -- Highlights: •S-matrix S[T] for the finite-time interval in relativistic field theory. •S[T] satisfies the boundary condition and gives correction of 1/T . •The large corrections for light particles breaks Lorentz invariance. •The corrections have implications to neutrino experiments.
Boyer, Edmond
Foreword Neutron and X-ray Scattering Techniques have proved so successful in condensed matter whose function is to develop and optimise the techniques appropriate to neutron scattering. Since other neutron and X-ray research centres have similar technical support groups, it was felt timely to unité
Quantum information approach to Bose-Einstein condensate of composite bosons
Su-Yong Lee; Jayne Thompson; Sadegh Raeisi; Pawel Kurzynski; Dagomir Kaszlikowski
2014-09-23T23:59:59.000Z
We consider composite bosons (cobosons) comprised of two elementary particles, fermions or bosons, in an entangled state. We study a model of Bose-Einstein condensation (BEC) for indistinguishable cobosons. We find that cobosons made of two entangled fermions behave in a predictable way, i.e., their condensate fraction and the transition temperature are increasing functions of their entanglement. Interestingly, cobosons made of two entangled bosons exhibit the opposite behaviour - their condensate fraction and the transition temperature are decreasing functions of entanglement.
Carl H. Gibson
2003-05-19T23:59:59.000Z
The first structures were proto-voids formed in the primordial plasma. Viscous and weak turbulence forces balanced gravitational forces when the scale of causal connection at time 30,000 years matched the viscous and turbulent Schwarz scales of hydro-gravitational theory (Gibson 1996). The photon viscosity allows only weak turbulence from the Reynolds number Re = 200, with fragmentation to give proto-supercluster voids, buoyancy forces, fossil vorticity turbulence, and strong sonic damping. The expanding, cooling, plasma continued fragmentation to proto-galaxy-mass with the density and rate-of-strain preserved as fossils of the weak turbulence and first structure. Turbulence fossilization by self-gravitational buoyancy explains the cosmic microwave background temperature fluctuations, not sonic oscillations in cold-dark-matter fragments. After plasma to gas transition at 300,000 years, gas fragmentation occurred within the proto-galaxies to form proto-globular-star-cluster (PGCs) clouds of small-planetary-mass primordial-fog-particles (PFPs). Dark PGC clumps of frozen PFPs persist as the inner-galaxy-halo dark matter, supporting Schild's 1996 quasar-microlensing interpretation. Non-baryonic dark matter diffused into the plasma proto-cluster-voids and later fragmented as outer-galaxy-halos at diffusive Schwarz scales, indicating light, weakly-collisional fluid particles (possibly neutrinos). Observations support the theory (Gibson and Schild 2003).
Understanding, constructing, and probing highly-entangled phases of quantum matter
Potter, Andrew C. (Andrew Cole)
2013-01-01T23:59:59.000Z
In this thesis, I explore three classes of quantum phases of matter that cannot be understood purely on the basis of symmetry, and can be regarded (to varying degrees) as having highly-entangled ground-states. The first ...
Quantum Field and Cosmic Field-Finite Geometrical Field Theory of Matter Motion Part Three
Jianhua Xiao
2005-12-20T23:59:59.000Z
This research establishes an operational measurement way to express the quantum field theory in a geometrical form. In four-dimensional spacetime continuum, the orthogonal rotation is defined. It forms two sets of equations: one set is geometrical equations, another set is the motion equations. The Lorentz transformation can be directly derived from the geometrical equations, and the proper time of general relativity is well expressed by time displacement field. By the motion equations, the typical time displacement field of matter motion is discussed. The research shows that the quantum field theory can be established based on the concept of orthogonal rotation. On this sense, the quantum matter motion in physics is viewed as the orthogonal rotation of spacetime continuum. In this paper, it shows that there are three typical quantum solutions. One is particle-like solution, one is generation-type solution, and one is pure wave type solution. For each typical solution, the force fields are different. Many features of quantum field can be well explained by this theoretic form. Finally, the general matter motion is discussed, the main conclusions are: (1). Geometrically, cosmic vacuum field can be described by the curvature spacetime; (2). The spatial deformation of planet is related with a planet electromagnetic field; (3). For electric charge less matter, the volume of matter will be expanding infinitely; (4).For strong electric charge matter, it shows that the volume of matter will be contracting infinitely.
Mukamel, Shaul
2015-01-01T23:59:59.000Z
by quantum light Shaul Mukamel* and Konstantin E. Dorfman Department of Chemistry, University of California with classical light and may be used for monitoring the properties of matter by novel types of spectroscopy field; the quantum light thus merely provides a novel gating window for the classical response functions
Dark matter and dark energy production in quantum model of the universe
V. E. Kuzmichev; V. V. Kuzmichev
2004-05-24T23:59:59.000Z
The quantum model of the homogeneous, isotropic, and spatially closed universe predicts an existence of two types of collective quantum states in the universe. The states of one type characterize a gravitational field, the others describe a matter (uniform scalar) field. In the first stage of the evolution of the universe a primordial scalar field evolves slowly into its vacuum-like state. In the second stage the scalar field oscillates about an equilibrium due to the quantum fluctuations. The universe is being filled with matter in the form of elementary quantum excitations of the vibrations of the scalar field. The separate quantum excitations are characterized by non-zero values of their energies (masses). Under the action of gravitational forces mainly these excitations decay into ordinary particles (baryons and leptons) and dark matter. The elementary quantum excitations of the vibrations of the scalar field which have not decayed up to now form dark energy. The numerical estimations lead to realistic values of both the matter density \\Omega_{M} = 0.29 (with the contributions from dark matter, \\Omega_{DM} = 0.25, and optically bright baryons, \\Omega_{stars} = 0.0025) and the dark energy density \\Omega_{X} = 0.71 if one takes that the mean energy ~ 10 GeV is released in decay of dark energy quantum and fixes baryonic component \\Omega_{B} = 0.04 according to observational data. The energy (mass) of dark energy quantum is equal to ~ 17 GeV and the energy > 2 x 10^{10} GeV is needed in order to detect it. Dark matter particle has the mass ~ 6 GeV. The Jeans mass for dark matter which is considered as a gas of such massive particles is equal to M_{J} ~ 10^{5} M_{\\odot}.
De Souza, J.C.C.; Pires, M.O.C., E-mail: jose.souza@ufabc.edu.br, E-mail: marcelo.pires@ufabc.edu.br [Centro de Cięncias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia 166, Santo André, SP, 09210-170 (Brazil)
2014-03-01T23:59:59.000Z
We show that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [6] trapped by a self-graviting potential [5], may be stable in the Thomas-Fermi approximation since appropriate choices for the dark matter particle mass and scattering length are made. The demonstration is performed by means of the calculation of the potential, kinetic and self-interaction energy terms of a galactic halo described by a Boehmer-Harko density profile. We discuss the validity of the Thomas-Fermi approximation for the halo system, and show that the kinetic energy contribution is indeed negligible.
Group field theory formulation of 3d quantum gravity coupled to matter fields
Daniele Oriti; James Ryan
2006-02-02T23:59:59.000Z
We present a new group field theory describing 3d Riemannian quantum gravity coupled to matter fields for any choice of spin and mass. The perturbative expansion of the partition function produces fat graphs colored with SU(2) algebraic data, from which one can reconstruct at once a 3-dimensional simplicial complex representing spacetime and its geometry, like in the Ponzano-Regge formulation of pure 3d quantum gravity, and the Feynman graphs for the matter fields. The model then assigns quantum amplitudes to these fat graphs given by spin foam models for gravity coupled to interacting massive spinning point particles, whose properties we discuss.
Chaotic Oscillations in Finite Quantum Systems: Trapped Bose-Einstein Condensates
Luca Salasnich
1999-06-22T23:59:59.000Z
We discuss the recently achieved Bose-Einstein condensation for alkali-metal atoms in magnetic traps. The theoretically predicted low-energy collective oscillations of the condensate have been experimentally confirmed by laser imaging techniques. We show by using Poincar\\`e sections that at higher energies non-linear effects appear and oscillations become chaotic. PACS 03.75.Fi, 05.30.Jp, 05.45.+b, 32.80.Pj
Exploring Classically Chaotic Potentials with a Matter Wave Quantum Probe
Gattobigio, G. L. [Laboratoire de Collisions Agregats Reactivite, CNRS UMR 5589, IRSAMC, Universite de Toulouse (UPS), 118 Route de Narbonne, 31062 Toulouse CEDEX 4 (France); Laboratoire Kastler Brossel, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France); Couvert, A. [Laboratoire Kastler Brossel, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France); Georgeot, B. [Laboratoire de Physique Theorique (IRSAMC), Universite de Toulouse (UPS), 31062 Toulouse (France); CNRS, LPT UMR5152 (IRSAMC), 31062 Toulouse (France); Guery-Odelin, D. [Laboratoire de Collisions Agregats Reactivite, CNRS UMR 5589, IRSAMC, Universite de Toulouse (UPS), 118 Route de Narbonne, 31062 Toulouse CEDEX 4 (France)
2011-12-16T23:59:59.000Z
We study an experimental setup in which a quantum probe, provided by a quasimonomode guided atom laser, interacts with a static localized attractive potential whose characteristic parameters are tunable. In this system, classical mechanics predicts a transition from regular to chaotic behavior as a result of the coupling between the different degrees of freedom. Our experimental results display a clear signature of this transition. On the basis of extensive numerical simulations, we discuss the quantum versus classical physics predictions in this context. This system opens new possibilities for investigating quantum scattering, provides a new testing ground for classical and quantum chaos, and enables us to revisit the quantum-classical correspondence.
Can Spacetime be a Condensate?
B. L. Hu
2005-05-21T23:59:59.000Z
We explore further the proposal that general relativity is the hydrodynamic limit of some fundamental theories of the microscopic structure of spacetime and matter, i.e., spacetime described by a differentiable manifold is an emergent entity and the metric or connection forms are collective variables valid only at the low energy, long wavelength limit of such micro-theories. In this view it is more relevant to find ways to deduce the microscopic ingredients of spacetime and matter from their macroscopic attributes than to find ways to quantize general relativity because it would only give us the equivalent of phonon physics, not the equivalents of atoms or quantum electrodyanmics. It may turn out that spacetime is merely a representation of collective state of matter in some limiting regime of interactions, which is the view expressed by Sakharov. In this talk, working within the conceptual framework of geometro-hydrodynamics, we suggest a new way to look at the nature of spacetime inspired by Bose-Einstein Condensate (BEC) physics. We ask the question whether spacetime could be a condensate, even without the knowledge of what the `atom of spacetime' is. We begin with a summary of the main themes for this new interpretation of cosmology and spacetime physics, and the `bottom-up' approach to quantum gravity. We then describe the `Bosenova' experiment of controlled collapse of a BEC and our cosmology-inspired interpretation of its results. We discuss the meaning of a condensate in different context. We explore how far this idea can sustain, its advantages and pitfalls, and its implications on the basic tenets of physics and existing programs of quantum gravity.
Bose-Einstein condensation as an alternative to inflation
Das, Saurya
2015-01-01T23:59:59.000Z
It was recently shown that gravitons with a very small mass should have formed a Bose-Einstein condensate in the very early Universe, whose density and quantum potential can account for the dark matter and dark energy in the Universe respectively. Here we show that the condensation can also naturally explain the observed large scale homogeneity and isotropy of the Universe. Furthermore gravitons continue to fall into their ground state within the condensate at every epoch, accounting for the observed flatness of space at cosmological distances scales. Finally, we argue that the density perturbations due to quantum fluctuations within the condensate give rise to a scale invariant spectrum. This therefore provides a viable alternative to inflation, which is not associated with the well-known problems associated with the latter.
Condensate-free superfluidity induced by frustrated proximity effect
Laflorencie, Nicolas
2010-01-01T23:59:59.000Z
Since the discovery of superfluidity in He4 and Landau's phenomenological theory, the relationship between Bose condensation and superfluidity has been intensely debated. He4 is known by now to be both superfluid and condensed at low temperature, and more generally, in dimension D \\geq 2, all superfluid bosonic models realized in experiments are condensed in their ground state. Recent examples include ultracold bosonic atoms trapped in an optical lattice or effective bosons describing magnetic excitations in quantum magnets. In this paper, it is shown that a 2D gas of bosons which is superfluid but not condensed at T=0 can be achieved by populating a layer through a frustrated proximity effect from a superfluid reservoir. This bosonic fluid is characterized by specific scaling laws and incommensurate correlations. This leads to several predictions for the quantum antiferromagnet BaCuSi2O6 (Han purple) in a magnetic field, a good candidate to realize this novel state of matter.
Building with Crystals of Light and Quantum Matter: From Clocks...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Understanding the behavior of interacting electrons in solids or liquids is at the heart of modern quantum science and necessary for technological advances. However, the...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) | SciTech Connect Journal Article: X-rayContract Documentsof ScienceIntroductionTechnologies |Students
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey Inside the Complex andFOUR Los Alamos innovationsM MarchMaterials for
Miley, George H. [University of Illinois Urbana-Champaign, NPL Associates 216 Talbot Laboratory 104 S. Wright St. Urbana, IL 61801 (United States); Hora, H. [Department of Theoretical Physics, University of New South Wales Sydney (Australia); Badziak, J.; Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Sheng Zhengming [Beijing National Laboratory for CondensedMatter Physics Institute of Physics Chinese Academy of ScienceBeijing 100080 (China); Zhang Jie [School of Computer Sciences, University of Western Sydney, Penrith (Australia); Osman, F. [China Academy of Engineering Physics, Mianyang (China); Zhang Weiyan [Institute of Applied Physics and Computational Mathematics, Beijing (China); Tuhe Xia [Institute of Physics, Academy of Science, Prague (Czech Republic)
2009-03-16T23:59:59.000Z
The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either 'direct' or 'in-direct x-ray driven' type target irradiation. Important new directions have opened for laser ICF in recent years following the development of 'chirped' lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of 'fast ignition (FI)' to achieve higher energy gains from target implosions. In a recent publication the authors showed that use of a modified type of FI, termed 'block ignition' (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter 'clusters' of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B{sup 11} with proton clusters imbedded. This then makes p-B{sup 11} fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B{sup 11} power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants using p-B{sup 11} have been discussed for such applications before, but prior designs face formidable physics/technology issues, largely overcome with the present approach.
Quantum Hall effect and Landau-level crossing of Dirac fermions in trilayer graphene
Taychatanapat, Thiti
The physics of Dirac fermions in condensed-matter systems has received extraordinary attention following the discoveries of two new types of quantum Hall effect in single-layer and bilayer graphene1, 2, 3. The electronic ...
M. Bienert; J. Flores; S. Yu. Kun; T. H. Seligman
2006-02-27T23:59:59.000Z
Thermalization in highly excited quantum many-body system does not necessarily mean a complete memory loss of the way the system was formed. This effect may pave a way for a quantum computing, with a large number of qubits $n\\simeq 100$--1000, far beyond the quantum chaos border. One of the manifestations of such a thermalized non-equilibrated matter is revealed by a strong asymmetry around 90$^\\circ $ c.m. of evaporating proton yield in the Bi($\\gamma$,p) photonuclear reaction. The effect is described in terms of anomalously slow cross symmetry phase relaxation in highly excited quantum many-body systems with exponentially large Hilbert space dimensions. In the above reaction this phase relaxation is about eight orders of magnitude slower than energy relaxation (thermalization).
Bienert, M; Kun, S Yu; Seligman, T H
2006-01-01T23:59:59.000Z
Thermalization in highly excited quantum many-body system does not necessarily mean a complete memory loss of the way the system was formed. This effect may pave a way for a quantum computing, with a large number of qubits $n\\simeq 100$--1000, far beyond the quantum chaos border. One of the manifestations of such a thermalized non-equilibrated matter is revealed by a strong asymmetry around 90$^\\circ $ c.m. of evaporating proton yield in the Bi($\\gamma$,p) photonuclear reaction. The effect is described in terms of anomalously slow cross symmetry phase relaxation in highly excited quantum many-body systems with exponentially large Hilbert space dimensions. In the above reaction this phase relaxation is about eight orders of magnitude slower than energy relaxation (thermalization).
RIKEN Center for Emergent Matter Science Strong Correlation Physics Division
Fukai, Tomoki
Condensate Research Team Superconducting Quantum Electronics Research Team Emergent Phenomena Observation Team Quantum Condensed Phases Research Team Superconducting Quantum Simulation Research Team Cross
Khan, Shabbir A
2013-01-01T23:59:59.000Z
Quantum plasma physics is a rapidly evolving research field with a very inter-disciplinary scope of potential applications, ranging from nano-scale science in condensed matter to the vast scales of astrophysical objects. The theoretical description of quantum plasmas relies on various approaches, microscopic or macroscopic, some of which have obvious relation to classical plasma models. The appropriate model should, in principle, incorporate the quantum mechanical effects such as diffraction, spin statistics and correlations, operative on the relevant scales. However, first-principle approaches such as quantum Monte Carlo and density functional theory or quantum-statistical methods such as quantum kinetic theory or non-equilibrium Green's functions require substantial theoretical and computational efforts. Therefore, for selected problems, alternative simpler methods have been put forward. In particular, the collective behavior of many-body systems is usually described within a self-consistent scheme of parti...
Mukamel, Shaul
Nonlinear spectroscopy with entangled photons: Manipulating quantum pathways of matter Oleksiy be selected by using nonclassical fields, through the entanglement of photon and material pathways, which scattering and two-photon-absorption pathways in a pump-probe experiment are separated by controlling
Condensed Matter Physics, 2011, Vol. 14, No 2, 23005: 112 DOI: 10.5488/CMP.14.23005
reversible heat engine, in 1824 Carnot [1] offered the mathematical model for an ideal heat engine which analogue of the Carnot cycle in microsystems. The operation of quantum heat engines that employ multi also be used as quantum thermodynamic engines [510]. The quantum analogue of the Carnot cycle requires
Condensed Matter Physics, 2011, Vol. 14, No 2, 23005: 1--12 DOI: 10.5488/CMP.14.23005
reversible heat engine, in 1824 Carnot [1] o#ered the mathematical model for an ideal heat engine which analogue of the Carnot cycle in microsystems. The operation of quantum heat engines that employ multi also be used as quantum thermodynamic engines [5--10]. The quantum analogue of the Carnot cycle
A molecular dynamics study of nuclear quantum effect on the diffusion of hydrogen in condensed phase
Nagashima, Hiroki; Tokumasu, Takashi [Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi (Japan); Tsuda, Shin-ichi [Shinshu University, 77-7 Minamibori, Nagano, Nagano (Japan); Tsuboi, Nobuyuki [Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka (Japan); Koshi, Mitsuo [Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama, Kanagawa (Japan); Hayashie, A. Koichi [AoyamaGakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa (Japan)
2014-10-06T23:59:59.000Z
In this paper, the quantum effect of hydrogen molecule on its diffusivity is analyzed using Molecular Dynamics (MD) method. The path integral centroid MD (CMD) method is applied for the reproduction method of time evolution of the molecules. The diffusion coefficient of liquid hydrogen is calculated using the Green-Kubo method. The simulation is performed at wide temperature region and the temperature dependence of the quantum effect of hydrogen molecule is addressed. The calculation results are compared with those of classical MD results. As a result, it is confirmed that the diffusivity of hydrogen molecule is changed depending on temperature by the quantum effect. It is clarified that this result can be explained that the dominant factor by quantum effect on the diffusivity of hydrogen changes from the swollening the potential to the shallowing the potential well around 30 K. Moreover, it is found that this tendency is related to the temperature dependency of the ratio of the quantum kinetic energy and classical kinetic energy.
Anderson, Paul R.
space Paul R. Anderson* Department of Physics, Wake Forest University, Winston-Salem, North Carolina the validity of the approximation used, provided the profile of the flow varies smoothly on scales compared fluctuations are converted into real on shell quanta. One quantum (the positive energy one) is emitted outside
Entanglement, Holography, and the Quantum Phases of Matter Sachdev, Subir
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,SeparationConnect Journal Article: Discrete phase(Technical Report) |Model (Journal Article) |Matter Sachdev,
Optical control of polariton condensation and dipolaritons in coupled quantum wells
Cristofolini, Peter
2015-03-03T23:59:59.000Z
of the photoluminescence, directly reveals most of the dynamics of the system (polariton flow velocities and directions) while a streak camera can record picosecond dynamics directly. The “digital” nature of quantum physics leaps to the eye from phase maps of polariton... excitation in a semiconductor with an associated energy, momentum, mass, spin and lifetime. Excitons are polarisable, meaning they interact with electromagnetic radiation. They are usu- ally excited optically and can decay under emission of a photon...
Matter pulse carving: Manipulating quantum wave packets via time-dependent absorption
Goussev, Arseni
2015-01-01T23:59:59.000Z
A pulse of matter waves may dramatically change its shape when traversing an absorbing barrier with time-dependent transparency. Here we show that this effect can be utilized for controlled manipulation of spatially-localized quantum states. In particular, in the context of atom-optics experiments, we explicitly demonstrate how the proposed approach can be used to generate spatially shifted, split, squeezed and cooled atomic wave packets. We expect our work to be useful in devising new interference experiments with atoms and molecules and, more generally, to enable new ways of coherent control of matter waves.
Quantum Treatment for Bose-Einstein Condensation in Non-Equilibrium Systems
H. Flayac; I. G. Savenko; M. Möttönen; T. Ala-Nissila
2015-03-29T23:59:59.000Z
We develop an approach based on stochastic quantum trajectories for an incoherently pumped system of interacting bosons relaxing their energy in a thermal reservoir. Our approach enables the study of the versatile coherence properties of the system. We apply the model to exciton polaritons in a semiconductor microcavity. Our results demonstrate the onset of macroscopic occupation in the lowest-energy mode accompanied by the establishment of both temporal and spatial coherence. We show that temporal coherence exhibits a transition from a thermal to coherent statistics and the spatial coherence reveals off-diagonal long-range order.
Alessandro Sergi
2009-07-11T23:59:59.000Z
A critical assessment of the recent developments of molecular biology is presented. The thesis that they do not lead to a conceptual understanding of life and biological systems is defended. Maturana and Varela's concept of autopoiesis is briefly sketched and its logical circularity avoided by postulating the existence of underlying {\\it living processes}, entailing amplification from the microscopic to the macroscopic scale, with increasing complexity in the passage from one scale to the other. Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces, is criticized. It is suggested that the correct interpretation of quantum dispersion forces (van der Waals, hydrogen bonding, and so on) as quantum coherence effects hints at the necessity of including long-ranged forces (or mechanisms for them) in condensed matter theories of biological processes. Some quantum effects in biology are reviewed and quantum mechanics is acknowledged as conceptually important to biology since without it most (if not all) of the biological structures and signalling processes would not even exist. Moreover, it is suggested that long-range quantum coherent dynamics, including electron polarization, may be invoked to explain signal amplification process in biological systems in general.
Periodically-driven quantum matter: the case of resonant modulations
N. Goldman; J. Dalibard; M. Aidelsburger; N. R. Cooper
2015-03-06T23:59:59.000Z
Quantum systems can show qualitatively new forms of behavior when they are driven by fast time-periodic modulations. In the limit of large driving frequency, the long-time dynamics of such systems can often be described by a time-independent effective Hamiltonian, which is generally identified through a perturbative treatment. Here, we present a general formalism that describes time-modulated physical systems, in which the driving frequency is large, but resonant with respect to energy spacings inherent to the system at rest. Such a situation is currently exploited in optical-lattice setups, where superlattice (or Wannier-Stark-ladder) potentials are resonantly modulated so as to control the tunneling matrix elements between lattice sites, offering a powerful method to generate artificial fluxes for cold-atom systems. The formalism developed in this work identifies the basic ingredients needed to generate interesting flux patterns and band structures using resonant modulations. Additionally, our approach allows for a simple description of the micro-motion underlying the dynamics; we illustrate its characteristics based on diverse dynamic-lattice configurations. It is shown that the impact of the micro-motion on physical observables strongly depends on the implemented scheme, suggesting that a theoretical description in terms of the effective Hamiltonian alone is generally not sufficient to capture the full time-evolution of the system.
Manifestations of quantum phase transitions in transport through nanosystems
Pustilnik, Michael
2014-08-28T23:59:59.000Z
The award led to several important new results in theory of interacting low-dimensional systems. The results are relevant for both traditional condensed matter systems, such as quantum wires and quantum spin chains, and for the relatively new field of ultra-cold atomic gases.
Diebold, Ulrike
2007-01-01T23:59:59.000Z
or fully spin-polarized 3d band. However, the unpolarized 4s band also crosses the Fermi level sputtering and annealing the surfaces in oxygen, even though our soft core photoemission data and low-energy Ltd Printed in the UK 1 #12;J. Phys.: Condens. Matter 19 (2007) 315207 C A Ventrice Jr et al 1
Kenji Fukushima
2014-10-01T23:59:59.000Z
We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.
A Quantum Cosmology: No Dark Matter, Dark Energy nor Accelerating Universe
Reginald T Cahill
2007-09-18T23:59:59.000Z
We show that modelling the universe as a pre-geometric system with emergent quantum modes, and then constructing the classical limit, we obtain a new account of space and gravity that goes beyond Newtonian gravity even in the non-relativistic limit. This account does not require dark matter to explain the spiral galaxy rotation curves, and explains as well the observed systematics of black hole masses in spherical star systems, the bore hole $g$ anomalies, gravitational lensing and so on. As well the dynamics has a Hubble expanding universe solution that gives an excellent parameter-free account of the supernovae and gamma-ray-burst red-shift data, without dark energy or dark matter. The Friedmann-Lema\\^{i}tre-Robertson-Walker (FLRW) metric is derived from this dynamics, but is shown not satisfy the General Relativity based Friedmann equations. It is noted that General Relativity dynamics only permits an expanding flat 3-space solution if the energy density in the pressure-less dust approximation is non-zero. As a consequence dark energy and dark matter are required in this cosmological model, and as well the prediction of a future exponential accelerating Hubble expansion. The FLRW $\\Lambda$CDM model data-based parameter values, $\\Omega_\\Lambda=0.73$, $\\Omega_{DM}=0.27$, are derived within the quantum cosmology model, but are shown to be merely artifacts of using the Friedmann equations in fitting the red-shift data.
Towards new states of matter with atoms and photons
QED = coupling between few material (atomic) and few electromagnetic degrees of freedom. Cavity atom-field quantum simulators. Hubbard models, spin models,... 2 #12;Motivation High control monitoring hybrid systems many- body systems beyond condensed matter paradigm models. 3 #12;Outline 1. Cavity QED in five
From the Cosmological Constant: Higgs Boson, Dark Matter, and Quantum Gravity Scales
James R. Bogan
2010-11-08T23:59:59.000Z
We suggest discovery targets for the Higgs boson, dark matter, and quantum gravity mass scales, motivated by the Dirac equation for the electron in deSitter space, and a sixth-order constraint between the electron QED parameters and the cosmological constant. We go on to show that this constraint can be viewed as a structural parameter of the electron, and leads naturally to a new cosmic horizon. A dual fourth-order constraint implies a second-order one, from which the electron neutrino mass is derived.
Zuelicke, U
2012-01-01T23:59:59.000Z
The most fundamental characteristics of a physical system can often be deduced from its behaviour under discrete symmetry transformations such as time reversal, parity and chirality. Here we review basic symmetry properties of the relativistic quantum theories for free electrons in (2+1)- and (1+1)-dimensional spacetime. Additional flavour degrees of freedom are necessary to properly define symmetry operations in (2+1) dimensions and are generally present in physical realisations of such systems, e.g., in single sheets of graphite. We find that there exist two possibilities for defining any flavour-coupling discrete symmetry operation of the two-flavour (2+1)-dimensional Dirac theory. Physical implications of this duplicity are discussed.
Coherent decay of Bose-Einstein condensates
Cragg, George E. (George Edwin), 1972-
2006-01-01T23:59:59.000Z
As the coldest form of matter known to exist, atomic Bose-Einstein condensates are unique forms of matter where the constituent atoms lose their individual identities, becoming absorbed into the cloud as a whole. Effectively, ...
Interferometry with Bose-Einstein Condensates in Microgravity
H. Müntinga; H. Ahlers; M. Krutzik; A. Wenzlawski; S. Arnold; D. Becker; K. Bongs; H. Dittus; H. Duncker; N. Gaaloul; C. Gherasim; E. Giese; C. Grzeschik; T. W. Hänsch; O. Hellmig; W. Herr; S. Herrmann; E. Kajari; S. Kleinert; C. Lämmerzahl; W. Lewoczko-Adamczyk; J. Malcolm; N. Meyer; R. Nolte; A. Peters; M. Popp; J. Reichel; A. Roura; J. Rudolph; M. Schiemangk; M. Schneider; S. T. Seidel; K. Sengstock; V. Tamma; T. Valenzuela; A. Vogel; R. Walser; T. Wendrich; P. Windpassinger; W. Zeller; T. van Zoest; W. Ertmer; W. P. Schleich; E. M. Rasel
2013-01-24T23:59:59.000Z
Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this paper we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far-field of a double-slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.
Interferometry with Bose-Einstein Condensates in Microgravity
Müntinga, H; Krutzik, M; Wenzlawski, A; Arnold, S; Becker, D; Bongs, K; Dittus, H; Duncker, H; Gaaloul, N; Gherasim, C; Giese, E; Grzeschik, C; Hänsch, T W; Hellmig, O; Herr, W; Herrmann, S; Kajari, E; Kleinert, S; Lämmerzahl, C; Lewoczko-Adamczyk, W; Malcolm, J; Meyer, N; Nolte, R; Peters, A; Popp, M; Reichel, J; Roura, A; Rudolph, J; Schiemangk, M; Schneider, M; Seidel, S T; Sengstock, K; Tamma, V; Valenzuela, T; Vogel, A; Walser, R; Wendrich, T; Windpassinger, P; Zeller, W; van Zoest, T; Ertmer, W; Schleich, W P; Rasel, E M
2013-01-01T23:59:59.000Z
Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this paper we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far-field of a double-slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.
Artificial light and quantum order in systems of screened dipoles Xiao-Gang Wen
Wen, Xiao-Gang
Artificial light and quantum order in systems of screened dipoles Xiao-Gang Wen Department discussed. The existence of artificial light (as well as artificial electron) in condensed matter systems a new kind of order - quantum order. To test this idea in experiments, we study systems of screened
Thomas Weinacht
2011-08-05T23:59:59.000Z
Quantum control of light and matter is the quest to steer a physical process to a desirable outcome, employing constructive and destructive interference. Three basic questions address feasibility of quantum control: (1) The problem of controllability, does a control field exist for a preset initial and target state; (2) Synthesis, constructively finding the field that leads to the target; and (3) Optimal Control Theory - optimizing the field that carries out this task. These continue to be the fundamental theoretical questions to be addressed in the conference. How to realize control fields in the laboratory is an ongoing challenge. This task is very diverse viewing the emergence of control scenarios ranging from attoseconds to microseconds. How do the experimental observations reflect on the theoretical framework? The typical arena of quantum control is an open environment where much of the control is indirect. How are control scenarios realized in dissipative open systems? Can new control opportunities emerge? Can one null decoherence effects? An ideal setting for control is ultracold matter. The initial and final state can be defined more precisely. Coherent control unifies many fields of physical science. A lesson learned in one field can reflect on another. Currently quantum information processing has emerged as a primary target of control where the key issue is controlling quantum gate operation. Modern nonlinear spectroscopy has emerged as another primary field. The challenge is to unravel the dynamics of molecular systems undergoing strong interactions with the environment. Quantum optics where non-classical fields are to be generated and employed. Finally, coherent control is the basis for quantum engineering. These issues will be under the limelight of the Gordon conference on Quantum Control of Light and Matter.
Lee, Julia C.; Xiang, Jingen; Ravel, Bruce; Kortright, Jeffrey B; Flanagan, Kathryn
2009-01-05T23:59:59.000Z
We present a newtechnique for determining the quantity and composition of dust in astrophysical environments using<6 keV X-rays.We argue that high-resolution X-ray spectra as enabled by the Chandra and XMM-Newton gratings should be considered a powerful and viable new resource for delving into a relatively unexplored regime for directlydetermining dust properties: composition, quantity, and distribution.We present initial cross section measurements of astrophysically likely iron-based dust candidates taken at the Lawrence Berkeley National Laboratory Advanced Light Source synchrotron beamline, as an illustrative tool for the formulation of our technique for determining the quantity and composition of interstellar dust with X-rays. (Cross sections for the materials presented here will be made available for astrophysical modeling in the near future.) Focused at the 700 eV Fe LIII and LII photoelectric edges, we discuss a technique for modeling dust properties in the soft X-rays using L-edge data to complement K-edge X-ray absorption fine structure analysis techniques discussed by Lee& Ravel. The paper is intended to be a techniques paper of interest and useful to both condensed matter experimentalists andastrophysicists. For the experimentalists, we offer a new prescription for normalizing relatively low signal-to-noise ratio L-edge cross section measurements. For astrophysics interests, we discuss the use of X-ray absorption spectra for determining dust composition in cold and ionized astrophysical environments and a new method for determining species-specific gas and dust ratios. Possible astrophysical applications of interest, including relevance to Sagittarius A*, are offered. Prospects for improving on this work in future X-ray missions with higher throughput and spectral resolution are also presented in the context of spectral resolution goals for gratings and calorimeters, for proposed and planned missions such as Astro-H and the International X-ray Observatory.
Viability of the matter bounce scenario in Loop Quantum Cosmology for general potentials
Jaume Haro; Jaume Amorós
2014-12-01T23:59:59.000Z
We consider the matter bounce scenario in Loop Quantum Cosmology (LQC) for physical potentials that at early times provide a nearly matter dominated Universe in the contracting phase, having a reheating mechanism in the expanding phase, i.e., being able to release the energy of the scalar field creating particles that thermalize in order to match with the hot Friedmann Universe, and finally at late times leading to the current cosmic acceleration. For these models, numerically solving the dynamical equations we have seen that the teleparallel version of LQC leads to theoretical results that fit well with current observational data. More precisely, in teleparallel LQC there is a set of solutions which leads to theoretical results that match correctly with last BICEP2 data, and there is another set whose theoretical results fit well with {\\it Planck's} experimental data. On the other hand, in holonomy corrected LQC the theoretical value of the tensor/scalar ratio is smaller than in teleparallel LQC, which means that there is always a set of solutions that matches with {\\it Planck's} data, but for some potentials BICEP2 experimental results disfavours holonomy corrected LQC.
Condensed Matter and Magnet Science
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
employee skills database Janoschek receives Wolfram-Prandl Prize Los Alamos researcher Marc Janoschek was honored recently for "his pioneering studies of the spin dynamics in...
Condensed Matter and Magnet Science
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
power and diagnostics (HV and HC) Suite of nondestructive pulsed magnets up to 100 tesla Thermoacoustics and fluid dynamics Transport, magnetism, and thermodynamic...
RIKEN Center for Emergent Matter Science Strong Correlation Physics Division
Fukai, Tomoki
Quantum Condencsed Matter Research Group Macroscopic Quantum Coherence Research Team Superconducting
3d Spinfoam Quantum Gravity: Matter as a Phase of the Group Field Theory
Winston Fairbairn; Etera R. Livine
2007-02-23T23:59:59.000Z
An effective field theory for matter coupled to three-dimensional quantum gravity was recently derived in the context of spinfoam models in hep-th/0512113. In this paper, we show how this relates to group field theories and generalized matrix models. In the first part, we realize that the effective field theory can be recasted as a matrix model where couplings between matrices of different sizes can occur. In a second part, we provide a family of classical solutions to the three-dimensional group field theory. By studying perturbations around these solutions, we generate the dynamics of the effective field theory. We identify a particular case which leads to the action of hep-th/0512113 for a massive field living in a flat non-commutative space-time. The most general solutions lead to field theories with non-linear redefinitions of the momentum which we propose to interpret as living on curved space-times. We conclude by discussing the possible extension to four-dimensional spinfoam models.
Non-linear hydrodynamics of axion dark matter: relative velocity effects and "quantum forces"
Marsh, David J E
2015-01-01T23:59:59.000Z
The non-linear hydrodynamic equations for axion/scalar field dark matter (DM) in the non-relativistic Madelung-Shcr\\"{o}dinger form are derived in a simple manner, including the effects of universal expansion and Hubble drag. The hydrodynamic equations are used to investigate the relative velocity between axion DM and baryons, and the moving-background perturbation theory (MBPT) derived. Axions massive enough to be all of the DM do not affect the coherence length of the relative velocity, but the MBPT equations are modified by the inclusion of the axion effective sound speed. These MBPT equations are necessary for accurately modelling the effects of axion DM on the formation of the first cosmic structures, and suggest that the 21cm power spectrum could improve constraints on axion mass by up to four orders of magnitude with respect to the current best constraints. A further application of these results uses the "quantum force" analogy to model scalar field gradient energy in a smoothed-particle hydrodynamics ...
Prabir Rudra
2012-11-09T23:59:59.000Z
In this work we have investigated the emergent scenario of the universe described by Loop quantum cosmology model, DGP brane model and Kaluza-Klein cosmology. Scalar field along with barotropic fluid as normal matter is considered as the matter content of the universe. In Loop quantum cosmology it is found that the emergent scenario is realized with the imposition of some conditions on the value of the density of normal matter in case of normal and phantom scalar field. This is a surprising result indeed considering the fact that scalar field is the dominating matter component. In case of Tachyonic field, emergent scenario is realized with some constraints on the value of $\\rho_{1}$ for both normal and phantom tachyon. In case of DGP brane-world realization of an emergent scenario is possible almost unconditionally for normal and phantom fields. Plots and table have been generated to testify this fact. In case of tachyonic field emergent scenario is realized with some constraints on $\\dot{H}$. In Kaluza-Klein cosmology emergent scenario is possible only for a closed universe in case of normal and phantom scalar field. For a tachyonic field realization of emergent universe is possible for all models(closed, open and flat).
Dark matter, Mach's ether and the QCD vacuum
Cohen-Tannoudji, Gilles
2015-01-01T23:59:59.000Z
Here is proposed the idea of linking the dark matter issue, (considered as a major problem of contemporary research in physics) with two other open theoretical questions, one, almost centenary about the existence of an unavoidable ether in general relativity agreeing with the Mach's principle, and one more recent about the properties of the quantum vacuum of the quantum field theory of strong interactions, QuantumChromodynamics (QCD). According to this idea, on the one hand, dark matter and dark energy that, according to the current standard model of cosmology represent about 95% of the universe content, can be considered as two distinct forms of the Mach's ether, and, on the other hand, dark matter, as a perfect fluid emerging from the QCD vacuum could be modeled as a Bose Einstein condensate.
Quantum Criticality and Black Holes
Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States
2009-09-01T23:59:59.000Z
I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.
Dynamics of Bose-Einstein Condensates
Benjamin Schlein
2007-04-05T23:59:59.000Z
We report on some recent results concerning the dynamics of Bose-Einstein condensates, obtained in a series of joint papers with L. Erdos and H.-T. Yau. Starting from many body quantum dynamics, we present a rigorous derivation of a cubic nonlinear Schroedinger equation known as the Gross-Pitaevskii equation for the time evolution of the condensate wave function.
Physicalism versus quantum mechanics
Stapp, Henry P; Theoretical Physics Group; Physics Division
2009-01-01T23:59:59.000Z
Foundations of Quantum Mechanics. (Princeton UniversityMind, Matter, and Quantum Mechanics, (Springer, Berlin & NewMindful Universe: Quantum Mechanics and the Participating
Martin Bojowald
2015-01-20T23:59:59.000Z
In quantum cosmology, one applies quantum physics to the whole universe. While no unique version and no completely well-defined theory is available yet, the framework gives rise to interesting conceptual, mathematical and physical questions. This review presents quantum cosmology in a new picture that tries to incorporate the importance of inhomogeneity: De-emphasizing the traditional minisuperspace view, the dynamics is rather formulated in terms of the interplay of many interacting "microscopic" degrees of freedom that describe the space-time geometry. There is thus a close relationship with more-established systems in condensed-matter and particle physics even while the large set of space-time symmetries (general covariance) requires some adaptations and new developments. These extensions of standard methods are needed both at the fundamental level and at the stage of evaluating the theory by effective descriptions.
The phase diagram of nuclear and quark matter at high baryon density
Kenji Fukushima; Chihiro Sasaki
2013-04-02T23:59:59.000Z
We review theoretical approaches to explore the phase diagram of nuclear and quark matter at high baryon density. We first look over the basic properties of quantum chromodynamics (QCD) and address how to describe various states of QCD matter. In our discussions on nuclear matter we cover the relativistic mean-field model, the chiral perturbation theory, and the approximation based on the large-Nc limit where Nc is the number of colors. We then explain the liquid-gas phase transition and the inhomogeneous meson condensation in nuclear matter with emphasis put on the relevance to quark matter. We commence the next part focused on quark matter with the bootstrap model and the Hagedorn temperature. Then we turn to properties associated with chiral symmetry and exposit theoretical descriptions of the chiral phase transition. There emerge some quark-matter counterparts of phenomena seen in nuclear matter such as the liquid-gas phase transition and the inhomogeneous structure of the chiral condensate. The third regime that is being recognized recently is what is called quarkyonic matter, which has both aspects of nuclear and quark matter. We closely elucidate the basic idea of quarkyonic matter in the large-Nc limit and its physics implications. Finally, we discuss some experimental indications for the QCD phase diagram and close the review with outlooks.
Fast quantum control and light-matter interactions at the 10,000 quanta level
J. Alonso; F. M. Leupold; Z. U. Soler; M. Fadel; M. Marinelli; B. C. Keitch; V. Negnevitsky; J. P. Home
2015-09-23T23:59:59.000Z
Fast control of quantum systems is essential in order to make use of quantum properties before they are degraded by decoherence. This is important for quantum-enhanced information processing, as well as for pushing quantum systems into macroscopic regimes at the boundary between quantum and classical physics. Bang-bang control attains the ultimate speed limit by making large changes to control fields on timescales much faster than the system can respond, however these methods are often challenging to implement experimentally. Here we demonstrate bang-bang control of a trapped-ion oscillator using nano-second switching of the trapping potentials. We perform controlled displacements which allow us to realize quantum states with up to 10,000 quanta of energy. We use these displaced states to verify the form of the ion-light interaction at high excitations which are far outside the usual regime of operation. These methods provide new possibilities for quantum-state manipulation and generation, alongside the potential for a significant increase in operational clock speed for ion-trap quantum information processing.
Miransky, Vladimir A
2015-01-01T23:59:59.000Z
A range of quantum field theoretical phenomena driven by external magnetic fields and their applications in relativistic systems and quasirelativistic condensed matter ones, such as graphene and Dirac/Weyl semimetals, are reviewed. We start by introducing the underlying physics of the magnetic catalysis. The dimensional reduction of the low-energy dynamics of relativistic fermions in an external magnetic field is explained and its role in catalyzing spontaneous symmetry breaking is emphasized. The general theoretical consideration is supplemented by the analysis of the magnetic catalysis in quantum electrodynamics, chromodynamics and quasirelativistic models relevant for condensed matter physics. By generalizing the ideas of the magnetic catalysis to the case of nonzero density and temperature, we argue that other interesting phenomena take place. The chiral magnetic and chiral separation effects are perhaps the most interesting among them. In addition to the general discussion of the physics underlying chira...
Fast quantum control and light-matter interactions at the 10,000 quanta level
Alonso, J; Soler, Z U; Fadel, M; Marinelli, M; Keitch, B C; Negnevitsky, V; Home, J P
2015-01-01T23:59:59.000Z
Fast control of quantum systems is essential in order to make use of quantum properties before they are degraded by decoherence. This is important for quantum-enhanced information processing, as well as for pushing quantum systems into macroscopic regimes at the boundary between quantum and classical physics. Bang-bang control attains the ultimate speed limit by making large changes to control fields on timescales much faster than the system can respond, however these methods are often challenging to implement experimentally. Here we demonstrate bang-bang control of a trapped-ion oscillator using nano-second switching of the trapping potentials. We perform controlled displacements which allow us to realize quantum states with up to 10,000 quanta of energy. We use these displaced states to verify the form of the ion-light interaction at high excitations which are far outside the usual regime of operation. These methods provide new possibilities for quantum-state manipulation and generation, alongside the poten...
Quantum Decay of the 'False Vacuum' and Pair Creation of Soliton Domain Walls
Miller, John H. Jr. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5005 (United States)
2011-03-28T23:59:59.000Z
Quantum decay of metastable states ('false vacua') has been proposed as a mechanism for bubble nucleation of new universes and phase transitions in the early universe. Experiments indicate the occurrence of false vacuum decay, within a region bounded by soliton domain walls that nucleate via quantum tunneling, in a highly anisotropic condensed matter system. This phenomenon provides a compelling example of false vacuum decay in the laboratory.
Towards continuous-wave regime teleportation for light matter quantum relay stations
Florian Kaiser; Amandine Issautier; Lutfi A. Ngah; Djeylan Aktas; Tom Delord; Sébastien Tanzilli
2014-12-24T23:59:59.000Z
We report a teleportation experiment involving narrowband entangled photons at 1560 nm and qubit photons at 795 nm emulated by faint laser pulses. A nonlinear difference frequency generation stage converts the 795 nm photons to 1560 nm in order to enable interference with one photon out of the pairs, i.e., at the same wavelength. The spectral bandwidth of all involved photons is of about 25 MHz, which is close to the emission bandwidth of emissive quantum memory devices, notably those based on ensembles of cold atoms and rare earth ions. This opens the route towards the realization of hybrid quantum nodes, i.e., combining quantum memories and entanglement-based quantum relays exploiting either a synchronized (pulsed) or asynchronous (continuous- wave) scenario.
Hyperon-Nucleon Interactions and the Composition of Dense Matter from Quantum Chromodynamics
Konstantinos Orginos, Silas Beane, Emmanuel Chang, Saul Cohen, Huey-Wen Lin, Tom Luu, Assumpta Parreno, Martin Savage, Andre Walker-Loud, William Detmold
2012-10-01T23:59:59.000Z
The low-energy n{Sigma}{sup -} interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase-shifts for this system are determined from a numerical evaluation of the QCD path integral using the technique of Lattice QCD. Our results, performed at a pion mass of m{sub {pi}} ~ 389 MeV in two large lattice volumes, and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The calculated interactions indicate that the strange quark plays an important role in dense matter.
Thermometry and cooling of a Bose-Einstein condensate to 0.02 times the critical temperature
Olf, Ryan; Marti, G Edward; MacRae, Andrew; Stamper-Kurn, Dan M
2015-01-01T23:59:59.000Z
Ultracold gases promise access to many-body quantum phenomena at convenient length and time scales. However, it is unclear whether the entropy of these gases is low enough to realize many phenomena relevant to condensed matter physics, such as quantum magnetism. Here we report reliable single-shot temperature measurements of a degenerate $^{87}$Rb gas by imaging the momentum distribution of thermalized magnons, which are spin excitations of the atomic gas. We record average temperatures as low as $0.022(1)_\\text{stat}(2)_\\text{sys}$ times the Bose-Einstein condensation temperature, indicating an entropy per particle, $S/N\\approx0.001\\, k_B$ at equilibrium, that is well below the critical entropy for antiferromagnetic ordering of a Bose-Hubbard system. The magnons themselves can reduce the temperature of the system by absorbing energy during thermalization and by enhancing evaporative cooling, allowing low-entropy gases to be produced within deep traps.
Quantum Field Theory & Gravity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of the universe and which has the same equation of state as that of the quantum vacuum. Gravitational Vacuum Condensate Stars Mottola and external collaborator Mazur have...
Yousef Ghazi-Tabatabai
2012-11-19T23:59:59.000Z
While Quantum Gravity remains elusive and Quantum Field Theory retains the interpretational difficulties of Quantum Mechanics, we have introduced an alternate approach to the unification of particles, fields, space and time, suggesting that the concept of matter as space without time provides a framework which unifies matter with spacetime and in which we anticipate the development of complete theories (ideally a single unified theory) describing observed 'particles, charges, fields and forces' solely with the geometry of our matter-space-time universe.
Hyperon-Nucleon Interactions and the Composition of Dense Nuclear Matter from Quantum Chromodynamics
Beane, S R; Cohen, S D; Detmold, W; Lin, H -W; Luu, T C; Orginos, K; Parreno, A; Savage, M J
2012-10-01T23:59:59.000Z
The low-energy neutron-{Sigma}{sup -} interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase shifts for this system are obtained from a numerical evaluation of the QCD path integral using the technique of Lattice QCD. Our calculations, performed at a pion mass of m{sub pi} ~ 389 MeV in two large lattice volumes, and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The interactions determined from QCD are consistent with those extracted from hyperon-nucleon experimental data within uncertainties, and strengthen theoretical arguments that the strange quark is a crucial component of dense nuclear matter.
Hyperon-Nucleon Interactions and the Composition of Dense Nuclear Matter from Quantum Chromodynamics
S. R. Beane; E. Chang; S. D. Cohen; W. Detmold; H. -W. Lin; T. C. Luu; K. Orginos; A. Parreno; M. J. Savage; A. Walker-Loud
2012-04-16T23:59:59.000Z
The low-energy neutron-Sigma^- interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase shifts for this system are obtained from a numerical evaluation of the QCD path integral using the technique of Lattice QCD. Our calculations, performed at a pion mass of m_pi ~ 389 MeV in two large lattice volumes, and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The interactions determined from QCD are consistent with those extracted from hyperon-nucleon experimental data within uncertainties, and strengthen theoretical arguments that the strange quark is a crucial component of dense nuclear matter.
Vladimir A. Miransky; Igor A. Shovkovy
2015-04-10T23:59:59.000Z
A range of quantum field theoretical phenomena driven by external magnetic fields and their applications in relativistic systems and quasirelativistic condensed matter ones, such as graphene and Dirac/Weyl semimetals, are reviewed. We start by introducing the underlying physics of the magnetic catalysis. The dimensional reduction of the low-energy dynamics of relativistic fermions in an external magnetic field is explained and its role in catalyzing spontaneous symmetry breaking is emphasized. The general theoretical consideration is supplemented by the analysis of the magnetic catalysis in quantum electrodynamics, chromodynamics and quasirelativistic models relevant for condensed matter physics. By generalizing the ideas of the magnetic catalysis to the case of nonzero density and temperature, we argue that other interesting phenomena take place. The chiral magnetic and chiral separation effects are perhaps the most interesting among them. In addition to the general discussion of the physics underlying chiral magnetic and separation effects, we also review their possible phenomenological implications in heavy-ion collisions and compact stars. We also discuss the application of the magnetic catalysis ideas for the description of the quantum Hall effect in monolayer and bilayer graphene, and conclude that the generalized magnetic catalysis, including both the magnetic catalysis condensates and the quantum Hall ferromagnetic ones, lies at the basis of this phenomenon. We also consider how an external magnetic field affects the underlying physics in a class of three-dimensional quasirelativistic condensed matter systems, Dirac semimetals. While at sufficiently low temperatures and zero density of charge carriers, such semimetals are expected to reveal the regime of the magnetic catalysis, the regime of Weyl semimetals with chiral asymmetry is realized at nonzero density...
Virendra Singh
2005-10-24T23:59:59.000Z
We review here the main contributions of Einstein to the quantum theory. To put them in perspective we first give an account of Physics as it was before him. It is followed by a brief account of the problem of black body radiation which provided the context for Planck to introduce the idea of quantum. Einstein's revolutionary paper of 1905 on light-quantum hypothesis is then described as well as an application of this idea to the photoelectric effect. We next take up a discussion of Einstein's other contributions to old quantum theory. These include (i) his theory of specific heat of solids, which was the first application of quantum theory to matter, (ii) his discovery of wave-particle duality for light and (iii) Einstein's A and B coefficients relating to the probabilities of emission and absorption of light by atomic systems and his discovery of radiation stimulated emission of light which provides the basis for laser action. We then describe Einstein's contribution to quantum statistics viz Bose-Einstein Statistics and his prediction of Bose-Einstein condensation of a boson gas. Einstein played a pivotal role in the discovery of Quantum mechanics and this is briefly mentioned. After 1925 Einstein's contributed mainly to the foundations of Quantum Mechanics. We choose to discuss here (i) his Ensemble (or Statistical) Interpretation of Quantum Mechanics and (ii) the discovery of Einstein-Podolsky-Rosen (EPR) correlations and the EPR theorem on the conflict between Einstein-Locality and the completeness of the formalism of Quantum Mechanics. We end with some comments on later developments.
Evolutionary games of condensates in coupled birth-death processes
Knebel, Johannes; Krueger, Torben; Frey, Erwin
2015-01-01T23:59:59.000Z
Condensation phenomena arise through a collective behaviour of particles. They are observed in both classical and quantum systems, ranging from the formation of traffic jams in mass transport models to the macroscopic occupation of the energetic ground state in ultra-cold bosonic gases (Bose-Einstein condensation). Recently, it has been shown that a driven and dissipative system of bosons may form multiple condensates. Which states become the condensates has, however, remained elusive thus far. The dynamics of this condensation are described by coupled birth-death processes, which also occur in evolutionary game theory. Here, we apply concepts from evolutionary game theory to explain the formation of multiple condensates in such driven-dissipative bosonic systems. We show that vanishing of relative entropy production determines their selection. The condensation proceeds exponentially fast, but the system never comes to rest. Instead, the occupation numbers of condensates may oscillate, as we demonstrate for a...
Sideband Cooling Micromechanical Motion to the Quantum Ground State
Teufel, J D; Li, Dale; Harlow, J H; Allman, M S; Cicak, K; Sirois, A J; Whittaker, J D; Lehnert, K W; Simmonds, R W
2011-01-01T23:59:59.000Z
The advent of laser cooling techniques revolutionized the study of many atomic-scale systems. This has fueled progress towards quantum computers by preparing trapped ions in their motional ground state, and generating new states of matter by achieving Bose-Einstein condensation of atomic vapors. Analogous cooling techniques provide a general and flexible method for preparing macroscopic objects in their motional ground state, bringing the powerful technology of micromechanics into the quantum regime. Cavity opto- or electro-mechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime, less than a single quantum of motion, has been elusive because sideband cooling has not sufficiently overwhelmed the coupling of mechanical systems to their hot environments. Here, we demonstrate sideband cooling of the motion of a micromechanical oscillator to the quantum ground state. Entering the quantum regime requires a large electromechanical inte...
Erken, Ozgur; Tam, Heywood; Yang, Qiaoli
2011-01-01T23:59:59.000Z
Cold dark matter axions thermalize through gravitational self-interactions and form a Bose-Einstein condensate when the photon temperature reaches approximately 500 eV. Axion Bose-Einstein condensation provides an opportunity to distinguish axions from the other dark matter candidates on the basis of observation. The rethermalization of axions that are about to fall in a galactic potential well causes them to acquire net overall rotation, whereas ordinary cold dark matter falls in with an irrotational velocity field. The inner caustics of galactic halos are different in the two cases.
Ozgur Erken; Pierre Sikivie; Heywood Tam; Qiaoli Yang
2011-11-16T23:59:59.000Z
Cold dark matter axions thermalize through gravitational self-interactions and form a Bose-Einstein condensate when the photon temperature reaches approximately 500 eV. Axion Bose-Einstein condensation provides an opportunity to distinguish axions from the other dark matter candidates on the basis of observation. The rethermalization of axions that are about to fall in a galactic potential well causes them to acquire net overall rotation, whereas ordinary cold dark matter falls in with an irrotational velocity field. The inner caustics of galactic halos are different in the two cases.
Quantum coherent states in cosmology
Houri Ziaeepour
2015-02-15T23:59:59.000Z
Coherent states consist of superposition of infinite number of particles and do not have a classical analogue. We study their evolution in a FLRW cosmology and show that only when full quantum corrections are considered, they may survive the expansion of the Universe and form a global condensate. This state of matter can be the origin of accelerating expansion of the Universe, generally called dark energy, and inflation in the early universe. Additionally, such a quantum pool may be the ultimate environment for decoherence at shorter distances. If dark energy is a quantum coherent state, its dominant contribution to the total energy of the Universe at present provides a low entropy state which may be necessary as an initial condition for a new Big Bang in the framework of bouncing cosmology models.
Sunandan Gangopadhyay; Anirban Saha; Swarup Saha
2014-09-11T23:59:59.000Z
The response of a test particle, both for the free case and under the harmonic oscillator potential, to circularly polarized gravitational waves is investigated in a noncommutative quantum mechanical setting. The system is quantized following the prescription in \\cite{ncgw1}. Standard algebraic techniques are then employed to solve the Hamiltonian of the system. The solutions, in both cases, show signatures of the coordinate noncommutativity. In the harmonic oscillator case, this signature plays a key role in altering the resonance point and the oscillation frequency of the system.
Model for energy transfer by coherent Fermi pressure fluctuations in quantum soft matter
Peterson, Mark A
2015-01-01T23:59:59.000Z
A 1-dimensional model for coherent quantum energy transfer through a complex of compressible boxes is investigated by numerical integration of the time-dependent Schr\\"odinger equation. Energy is communicated from one box to the next by the resonant fluctuating Fermi pressure of the electrons in each box pushing on the walls and doing work on adjacent boxes. Parameters are chosen similar to the chain molecules of typical light harvesting complexes. For some parameter choices the system is found to have an instability leading to self-induced coherent energy transfer transparency.
The phase diagram of nuclear and quark matter at high baryon density
Fukushima, Kenji
2013-01-01T23:59:59.000Z
We review theoretical approaches to explore the phase diagram of nuclear and quark matter at high baryon density. We first look over the basic properties of quantum chromodynamics (QCD) and address how to describe various states of QCD matter. In our discussions on nuclear matter we cover the relativistic mean-field model, the chiral perturbation theory, and the approximation based on the large-Nc limit where Nc is the number of colors. We then explain the liquid-gas phase transition and the inhomogeneous meson condensation in nuclear matter with emphasis put on the relevance to quark matter. We commence the next part focused on quark matter with the bootstrap model and the Hagedorn temperature. Then we turn to properties associated with chiral symmetry and exposit theoretical descriptions of the chiral phase transition. There emerge some quark-matter counterparts of phenomena seen in nuclear matter such as the liquid-gas phase transition and the inhomogeneous structure of the chiral condensate. The third reg...
Kun, S; Zhao, M H; Huang, M R
2013-01-01T23:59:59.000Z
The idea of a thermalized non-equilibrated state of matter offers a conceptually new understanding of the strong angular asymmetry. In this compact review we present some clarifications, corrections and further developments of the approach, and provide a brief account of results previously discussed but not reported in the literature. The cross symmetry compound nucleus $S$-matrix correlations are obtained (i) starting from the unitary $S$-matrix representation, (ii) by explicitly taking into account a process of energy equilibration, and (iii) without taking the thermodynamic limit of an infinite number of particles in the thermalized system. It is conjectured that the long phase memory is due to the exponentially small total spin off-diagonal resonance intensity correlations. This manifestly implies that the strong angular asymmetry intimately relates to extremely small deviations of the eigenfunction distribution from Gaussian law. The spin diagonal resonance intensity correlations determine a new time/ene...
Quantum Monte Carlo calculation of the equation of state of neutron matter
Gandolfi, S.; Illarionov, A. Yu.; Schmidt, K. E.; Pederiva, F.; Fantoni, S. [International School for Advanced Studies, SISSA Via Beirut 2/4 I-34014 Trieste (Italy) and INFN, Sezione di Trieste, Trieste (Italy); Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Dipartimento di Fisica dell'Universita di Trento, via Sommarive 14, I-38050 Povo, Trento (Italy) and INFN, Gruppo Collegato di Trento, Trento (Italy); International School for Advanced Studies, SISSA Via Beirut 2/4 I-34014 Trieste (Italy); INFN, Sezione di Trieste, Trieste, Italy and INFM DEMOCRITOS National Simulation Center, Via Beirut 2/4 I-34014 Trieste (Italy)
2009-05-15T23:59:59.000Z
We calculated the equation of state of neutron matter at zero temperature by means of the auxiliary field diffusion Monte Carlo (AFDMC) method combined with a fixed-phase approximation. The calculation of the energy was carried out by simulating up to 114 neutrons in a periodic box. Special attention was given to reducing finite-size effects at the energy evaluation by adding to the interaction the effect due to the truncation of the simulation box, and by performing several simulations using different numbers of neutrons. The finite-size effects due to kinetic energy were also checked by employing the twist-averaged boundary conditions. We considered a realistic nuclear Hamiltonian containing modern two- and three-body interactions of the Argonne and Urbana family. The equation of state can be used to compare and calibrate other many-body calculations and to predict properties of neutron stars.
E. Brezin; S. Hikami
1992-04-08T23:59:59.000Z
In the usual matrix-model approach to random discretized two-dimensional manifolds, one introduces n Ising spins on each cell, i.e. a discrete version of 2D quantum gravity coupled to matter with a central charge n/2. The matrix-model consists then of an integral over $2^{n}$ matrices, which we are unable to solve for $n>1$. However for a fixed genus we can expand in the cosmological constant g for arbitrary values of n, and a simple minded analysis of the series yields for n=0,1 and 2 the expected results for the exponent $\\gamma_{string}$ with an amazing precision given the small number of terms that we considered. We then proceed to larger values of n. Simple tests of universality are successfully applied; for instance we obtain the same exponents for n=3 or for one Ising model coupled to a one dimensional target space. The calculations are easily extended to states Potts models, through an integration over $q^{n}$ matrices. We see no sign of the tachyonic instability of the theory, but we have only considered genus zero at this stage.
Exact results in N=8 Chern-Simons-matter theories and quantum geometry
Santiago Codesido; Alba Grassi; Marcos Marino
2015-06-25T23:59:59.000Z
We show that, in ABJ(M) theories with N=8 supersymmetry, the non-perturbative sector of the partition function on the three-sphere simplifies drastically. Due to this simplification, we are able to write closed form expressions for the grand potential of these theories, which determines the full large N asymptotics. Moreover, we find explicit formulae for the generating functionals of their partition functions, for all values of the rank N of the gauge group: they involve Jacobi theta functions on the spectral curve associated to the planar limit. Exact quantization conditions for the spectral problem of the Fermi gas are then obtained from the vanishing of the theta function. We also show that the partition function, as a function of N, can be extended in a natural way to an entire function on the full complex plane, and we explore some possible consequences of this fact for the quantum geometry of M-theory and for putative de Sitter extensions.
Coherent spinor dynamics in a spin-1 Bose condensate
Loss, Daniel
, for example, a BoseEinstein condensate or a degenerate Fermi gas, the phase space accessible to low temperature. A hallmark of BoseEinstein condensation is the coherence between particles--every particle shares the same quantum wavefunction and phase. Although textbook discussions of BoseEinstein
Realization of Bose-Einstein condensation with Lithium-7 atoms
Yu, Yichao
2014-01-01T23:59:59.000Z
This thesis presents our work on developing and improving the techniques of trapping and cooling an ultra-cold cloud of Lithium-7 atoms and the realization of the Bose- Einstein condensate as a first step to study quantum ...
BF-theory in graphene: a route toward topological quantum computing?
Annalisa Marzuoli; Giandomenico Palumbo
2012-06-11T23:59:59.000Z
Besides the plenty of applications of graphene allotropes in condensed matter and nanotechnology, we argue that graphene sheets might be engineered to support room-temperature topological quantum processing of information. The argument is based on the possibility of modeling the monolayer graphene effective action by means of a 3d Topological Quantum Field Theory of BF-type able to sustain non-Abelian anyon dynamics. This feature is the basic requirement of recently proposed theoretical frameworks for fault-tolerant and decoherence protected quantum computation.
Time Reversal of Bose-Einstein Condensates
Martin, J.; Georgeot, B.; Shepelyansky, D. L. [Laboratoire de Physique Theorique, Universite de Toulouse III, CNRS, 31062 Toulouse (France)
2008-08-15T23:59:59.000Z
Using Gross-Pitaevskii equation, we study the time reversibility of Bose-Einstein condensates (BEC) in kicked optical lattices, showing that in the regime of quantum chaos, the dynamics can be inverted from explosion to collapse. The accuracy of time reversal decreases with the increase of atom interactions in BEC, until it is completely lost. Surprisingly, quantum chaos helps to restore time reversibility. These predictions can be tested with existing experimental setups.
S. Kun; Y. Li; M. H. Zhao; M. R. Huang
2013-07-17T23:59:59.000Z
The idea of a thermalized non-equilibrated state of matter offers a conceptually new understanding of the strong angular asymmetry. In this compact review we present some clarifications, corrections and further developments of the approach, and provide a brief account of results previously discussed but not reported in the literature. The cross symmetry compound nucleus $S$-matrix correlations are obtained (i) starting from the unitary $S$-matrix representation, (ii) by explicitly taking into account a process of energy equilibration, and (iii) without taking the thermodynamic limit of an infinite number of particles in the thermalized system. It is conjectured that the long phase memory is due to the exponentially small total spin off-diagonal resonance intensity correlations. This manifestly implies that the strong angular asymmetry intimately relates to extremely small deviations of the eigenfunction distribution from Gaussian law. The spin diagonal resonance intensity correlations determine a new time/energy scale for a validity of random matrix theory. Its definition does not involve overlaps of the many-body interacting configurations with shell model non-interacting states and thus is conceptually different from the physical meaning (inverse energy relaxation time) of the spreading widths introduced by Wigner. Exact Gaussian distribution of the resonance wave functions corresponds to the instantaneous phase relaxation. We invite the nuclear reaction community for the competition to describe, as the first challenge, the strong forward peaking in the typically evaporation part of the proton spectra. This is necessary to initiate revealing long-term misconduct in the heavily cross-disciplinary field, also important for nuclear industry applications.
Polymer Bose--Einstein Condensates
E. Castellanos; G. Chacon-Acosta
2013-01-22T23:59:59.000Z
In this work we analyze a non--interacting one dimensional polymer Bose--Einstein condensate in an harmonic trap within the semiclassical approximation. We use an effective Hamiltonian coming from the polymer quantization that arises in loop quantum gravity. We calculate the number of particles in order to obtain the critical temperature. The Bose--Einstein functions are replaced by series, whose high order terms are related to powers of the polymer length. It is shown that the condensation temperature presents a shift respect to the standard case, for small values of the polymer scale. In typical experimental conditions, it is possible to establish a bound for $\\lambda^{2}$ up to $ \\lesssim 10 ^{-16}$m$^2$. To improve this bound we should decrease the frequency of the trap and also decrease the number of particles.
Economical Condensing Turbines?
Dean, J. E.
1997-01-01T23:59:59.000Z
Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown and extraction/condensing. • Letdown turbines reduce the pressure of the incoming steam to one...
Quantum chaos and fluctuations in isolated nuclear-spin systems
Ludlow, J. A.; Sushkov, O. P. [School of Physics, University of New South Wales, Sydney 2052 (Australia)
2007-01-15T23:59:59.000Z
Using numerical simulations we investigate dynamical quantum chaos in isolated nuclear spin systems. We determine the structure of quantum states, investigate the validity of the Curie law for magnetic susceptibility and find the spectrum of magnetic noise. The spectrum is the same for positive and negative temperatures. The study is motivated by recent interest in condensed-matter experiments for searches of fundamental parity- and time-reversal-invariance violations. In these experiments nuclear spins are cooled down to microkelvin temperatures and are completely decoupled from their surroundings. A limitation on statistical sensitivity of the experiments arises from the magnetic noise.
Vortex reconnections in atomic condensates at finite temperature A. J. Allen1
Zuccher, Simone
superfluid turbu- lence, a phenomenon recently also reported in trapped atomic BoseEinstein condensates, vortex dynamics, quantum turbulence, Bose-Einstein condensates, Superfluid He In classical hydrodynamics 3 He and atomic BoseEinstein condensates (BECs) is currently debated. For example, one would like
Bose-Einstein Condensate general relativistic stars
P. H. Chavanis; T. Harko
2011-08-19T23:59:59.000Z
We analyze the possibility that due to their superfluid properties some compact astrophysical objects may contain a significant part of their matter in the form of a Bose-Einstein condensate. To study the condensate we use the Gross-Pitaevskii equation, with arbitrary non-linearity. By introducing the Madelung representation of the wave function, we formulate the dynamics of the system in terms of the continuity equation and of the hydrodynamic Euler equations. The non-relativistic and Newtonian Bose-Einstein gravitational condensate can be described as a gas, whose density and pressure are related by a barotropic equation of state. In the case of a condensate with quartic non-linearity, the equation of state is polytropic with index one. In the framework of the Thomas-Fermi approximation the structure of the Newtonian gravitational condensate is described by the Lane-Emden equation, which can be exactly solved. The case of the rotating condensate is also discussed. General relativistic configurations with quartic non-linearity are studied numerically with both non-relativistic and relativistic equations of state, and the maximum mass of the stable configuration is determined. Condensates with particle masses of the order of two neutron masses (Cooper pair) and scattering length of the order of 10-20 fm have maximum masses of the order of 2 M_sun, maximum central density of the order of 0.1-0.3 10^16 g/cm^3 and minimum radii in the range of 10-20 km. In this way we obtain a large class of stable astrophysical objects, whose basic astrophysical parameters (mass and radius) sensitively depend on the mass of the condensed particle, and on the scattering length. We also propose that the recently observed neutron stars with masses in the range of 2-2.4 M_sun are Bose-Einstein Condensate stars.
COLLOQUIUM: Environmental Condensed Matter Physics | Princeton Plasma
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirt DocumentationSitesWeather6 Shares of U.S. Buildings GenericSecurityPrinceton|PhysicsPhysics Lab
Phyics of Condensed Matter and Complex Systems
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (Million Cubic Feet)sets safety record |PersonalPhotos Browse By - Any -Solar Photovoltaics (PV)
Postdoctoral fellowship Computational condensed matter / materials physics
Montréal, Université de
, in particular first-principles electronic structure calculations, ab- initio (Car-Parrinello), tight of the following topics : semiconductor structure, dynamics and relaxation; glass structure and glass transition-binding, and semi-empirical (e.g., EAM, EMT) molecular dynamics, atomistic and kinetic Monte-Carlo simulations, etc
Condensed matter at high shock pressures
Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.
1985-07-12T23:59:59.000Z
Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N/sub 2/, CO, SiO/sub 2/-aerogel, H/sub 2/O, and C/sub 6/H/sub 6/. The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab.
Laser Driven Dynamic Loading of Condensed Matter
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey Inside the Complex and PowerfulJoseph A.Laboratory scientistValuesLargeLaser Driven Dynamic
University of Maryland Condensed Matter Theory Center
Scarola, Vito
mechanically screen Coulomb interaction Non-interacting ·Exact in two limits: } } Jain PRL `89 Yi,Fertig PRB Oscillates ·High Overlap Harju et al. PRL `02 Burkard et al. PRB `99 Hu,Das Sarma PRA `00 #12;Empirical Two-like"Noise) S1 S2 N N Nuclear flip-flop Manipulation/ Detection Khaetskii,Nazarov PRB '01 DeSousa,Das Sarma PRB
Efimov effect in quantum magnets
Yusuke Nishida; Yasuyuki Kato; Cristian D. Batista
2013-08-23T23:59:59.000Z
Physics is said to be universal when it emerges regardless of the underlying microscopic details. A prominent example is the Efimov effect, which predicts the emergence of an infinite tower of three-body bound states obeying discrete scale invariance when the particles interact resonantly. Because of its universality and peculiarity, the Efimov effect has been the subject of extensive research in chemical, atomic, nuclear and particle physics for decades. Here we employ an anisotropic Heisenberg model to show that collective excitations in quantum magnets (magnons) also exhibit the Efimov effect. We locate anisotropy-induced two-magnon resonances, compute binding energies of three magnons and find that they fit into the universal scaling law. We propose several approaches to experimentally realize the Efimov effect in quantum magnets, where the emergent Efimov states of magnons can be observed with commonly used spectroscopic measurements. Our study thus opens up new avenues for universal few-body physics in condensed matter systems.
TABLEOFCONTENTS Sign up for an online subscription at
Weston, Ken
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Graphene, Basic Superconductivity, Other Condensed Matter, Qubits & Quantum Entanglement, Quantum
Rekik, Najeh; Freedman, Holly; Hanna, Gabriel [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Hsieh, Chang-Yu [Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)
2013-04-14T23:59:59.000Z
We apply two approximate solutions of the quantum-classical Liouville equation (QCLE) in the mapping representation to the simulation of the laser-induced response of a quantum subsystem coupled to a classical environment. These solutions, known as the Poisson Bracket Mapping Equation (PBME) and the Forward-Backward (FB) trajectory solutions, involve simple algorithms in which the dynamics of both the quantum and classical degrees of freedom are described in terms of continuous variables, as opposed to standard surface-hopping solutions in which the classical degrees of freedom hop between potential energy surfaces dictated by the discrete adiabatic state of the quantum subsystem. The validity of these QCLE-based solutions is tested on a non-trivial electron transfer model involving more than two quantum states, a time-dependent Hamiltonian, strong subsystem-bath coupling, and an initial energy shift between the donor and acceptor states that depends on the strength of the subsystem-bath coupling. In particular, we calculate the time-dependent population of the photoexcited donor state in response to an ultrafast, on-resonance pump pulse in a three-state model of an electron transfer complex that is coupled asymmetrically to a bath of harmonic oscillators through the optically dark acceptor state. Within this approach, the three-state electron transfer complex is treated quantum mechanically, while the bath oscillators are treated classically. When compared to the more accurate QCLE-based surface-hopping solution and to the numerically exact quantum results, we find that the PBME solution is not capable of qualitatively capturing the population dynamics, whereas the FB solution is. However, when the subsystem-bath coupling is decreased (which also decreases the initial energy shift between the donor and acceptor states) or the initial shift is removed altogether, both the PBME and FB results agree better with the QCLE-based surface-hopping results. These findings highlight the challenges posed by various conditions such as a time-dependent external field, the strength of the subsystem-bath coupling, and the degree of asymmetry on the accuracy of the PBME and FB algorithms.
Colored condensates deep inside neutron stars
David Blaschke
2014-07-28T23:59:59.000Z
It is demonstrated how in the absence of solutions for QCD under conditions deep inside compact stars an equation of state can be obtained within a model that is built on the basic symmetries of the QCD Lagrangian, in particular chiral symmetry and color symmetry. While in the vacuum the chiral symmetry is spontaneously broken, it gets restored at high densities. Color symmetry, however, gets broken simultaneously by the formation of colorful diquark condensates. It is shown that a strong diquark condensate in cold dense quark matter is essential for supporting the possibility that such states could exist in the recently observed pulsars with masses of 2 $M_\\odot$.
Emergent gravitational dynamics in relativistic Bose--Einstein condensate
Alessio Belenchia; Stefano Liberati; Arif Mohd
2014-10-22T23:59:59.000Z
Analogue models of gravity have played a pivotal role in the past years by providing a test bench for many open issues in quantum field theory in curved spacetime such as the robustness of Hawking radiation and cosmological particle production. More recently, the same models have offered a valuable framework within which current ideas about the emergence of spacetime and its dynamics could be discussed via convenient toy models. In this context, we study here an analogue gravity system based on a relativistic Bose--Einstein condensate. We show that in a suitable limit this system provides not only an example of an emergent spacetime (with a massive and a massless relativistic fields propagating on it) but also that such spacetime is governed by an equation with geometric meaning that takes the familiar form of Nordstr{\\"o}m theory of gravitation. In this equation the gravitational field is sourced by the expectation value of the trace of the effective stress energy tensor of the quasiparticles while the Newton and cosmological constants are functions of the fundamental scales of the microscopic system. This is the first example of analogue gravity in which a Lorentz invariant, geometric theory of semiclassical gravity emerges from an underlying quantum theory of matter in flat spacetime.
A Continuous Source of Bose-Einstein Condensed Atoms
-Einstein condensate (BEC) is a macroscopic quantum system with analo- gies to superconductors, superfluids, and opti. In the optical domain, the leap from a pulsed ruby laser (3) to a more complex continuous wave (CW) helium beam from the typical phase-space density of laser cooling (10 6 ) into quantum degeneracy has been
Measurement-Based Quantum Computing with Valence-Bond-Solids
Leong Chuan Kwek; Zhaohui Wei; Bei Zeng
2011-11-22T23:59:59.000Z
Measurement-based quantum computing (MBQC) is a model of quantum computing that proceeds by sequential measurements of individual spins in an entangled resource state. However, it remains a challenge to produce efficiently such resource states. Would it be possible to generate these states by simply cooling a quantum many-body system to its ground state? Cluster states, the canonical resource states for MBQC, do not occur naturally as unique ground states of physical systems. This inherent hurdle has led to a significant effort to identify alternative resource states that appear as ground states in spin lattices. Recently, some interesting candidates have been identified with various valence-bond-solid (VBS) states. In this review, we provide a pedagogical introduction to recent progress regarding MBQC with VBS states as possible resource states. This study has led to an interesting interdisciplinary research area at the interface of quantum information science and condensed matter physics.
Measurement-Based Quantum Computing with Valence-Bond-Solids
Kwek, Leong Chuan; Zeng, Bei
2011-01-01T23:59:59.000Z
Measurement-based quantum computing (MBQC) is a model of quantum computing that proceeds by sequential measurements of individual spins in an entangled resource state. However, it remains a challenge to produce efficiently such resource states. Would it be possible to generate these states by simply cooling a quantum many-body system to its ground state? Cluster states, the canonical resource states for MBQC, do not occur naturally as unique ground states of physical systems. This inherent hurdle has led to a significant effort to identify alternative resource states that appear as ground states in spin lattices. Recently, some interesting candidates have been identified with various valence-bond-solid (VBS) states. In this review, we provide a pedagogical introduction to recent progress regarding MBQC with VBS states as possible resource states. This study has led to an interesting interdisciplinary research area at the interface of quantum information science and condensed matter physics.
Bhatia, P.; Kozman, T.
2004-01-01T23:59:59.000Z
supplied in the boiler is used and the remainder, about 25%, is still held by the condensed water. The heat required to raise the temperature of the makeup water at around 50 OF to the required temperature, is very costly. As most condensate return... condensate is returned, less makeup is required, hence saving on water and makeup water treatment costs. The high purity of the condensate allows for greater boiler cycles of concentration, thus reducing water and energy losses to blowdown. The high heat...
Conradson, Steven D.; Durakiewicz, Tomasz; Espinosa-Faller, Francisco J.; An, Yong Q.; Andersson , David; Bishop, Alan R.; Boland, Kevin S.; Bradley, Joseph A.; Byler, Darrin D.; Clark, David L.; Conradson, Dylan R.; Conradson, Leilani L.; Costello, Alison E.; Hess, Nancy J.; Lander, Gerard H.; Llobet, Anna; Martucci, Mary B.; de Leon, Jose M.; Nordlund, Dennis; Lezama-Pacheco, Juan S.; Proffen, Thomas E.; Rodriguez, George; Schwarz, Daniel E.; Seidler, Gerald T.; Taylor, Antoinette; Trugman, Stuart A.; Tyson, Trevor A.; Valdez, James A.
2013-09-23T23:59:59.000Z
The pinned charge defects in U4O9, and U3O7 that are the single phase fluoritestructured derivatives of UO2 have been characterized by U L3 EXAFS at 30, 100, and 200 K, xray and neutron pair distribution function analysis, O K edge XAS and non-resonant inelastic xray scattering, and Raman spectroscopy, while mobile charge defects were investigated by femtosecond time-resolved pump-probe laser spectroscopy on single crystal UO2 between 7 and 300 K. The results from all of these measurements show highly complex and anomalous behaviors, which we attribute to a charge-lattice instability in UO2 that most likely originates in the intersection of the ground U(IV) and a proximate uranyl-like excited state in a conic section, causing a breakdown of the Born-Oppenheimer approximation. Furthermore, the photoinduced quasiparticles undergo a gap-opening condensation between 50 and 60 K. Doped UO2 may therefore exhibit novel correlated electron physics that extends beyond that of the cuprate-manganite-pnictide family of compounds.
Bosonic condensation in a flat energy band
Baboux, F; Jacqmin, T; Biondi, M; Lemaître, A; Gratiet, L Le; Sagnes, I; Schmidt, S; Türeci, H E; Amo, A; Bloch, J
2015-01-01T23:59:59.000Z
Flat bands are non-dispersive energy bands made of fully degenerate quantum states. Such bands are expected to support emergent phenomena with extraordinary spatial and temporal structures, as they strongly enhance the effect of any perturbation induced by disorder, dissipation or interactions. However, flat bands usually appear at energies above the ground state, preventing their study in systems in thermodynamic equilibrium. Here we use cavity polaritons to circumvent this issue. We engineer a flat band in a frustrated lattice of micro-pillar optical cavities. By taking advantage of the non-hermiticity of our system, we achieve for the first time bosonic condensation in a flat band. This allows revealing the peculiar effect of disorder in such band: The condensate fragments into highly localized modes, reflecting the elementary eigenstates produced by geometric frustration. This non-hermitian engineering of a bosonic flat band condensate offers a novel approach to studying coherent phases of light and matte...
Measure Guideline: Evaporative Condensers
A. German, B. Dakin, and M. Hoeschele
2012-03-01T23:59:59.000Z
This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.
Electrohydrodynamically enhanced condensation heat transfer
Wawzyniak, Markus
1993-01-01T23:59:59.000Z
In a condenser the thickness of the liquid condensate film covering the cooled surface constitutes a resistance to the heat transfer. By establishing a non uniform electric field in the vicinity of the condensation surface the extraction of liquid...
THE COLOUR GLASS CONDENSATE: AN INTRODUCTION
IANCU,E.; LEONIDOV,A.; MCLERRAN,L.
2001-08-06T23:59:59.000Z
In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory.
Landau levels for discrete-time quantum walks in artificial magnetic fields
Pablo Arnault; Fabrice Debbasch
2014-12-14T23:59:59.000Z
A new family of 2D discrete-time quantum walks (DTQWs) is presented and shown to coincide, in the continuous limit, with the Dirac dynamics of a spin 1/2 fermion coupled to a constant and homogeneous magnetic field. Landau levels are constructed, not only in the continuous limit, but also for the DTQWs i.e. for finite non-vanishing values of the time- and position-steps. All results are supported by numerical simulations. The possibility of quantum simulation of condensed matter systems by DTQWs is also discussed.
Decay of Graviton Condensates and their Generalizations in Arbitrary Dimensions
Florian Kuhnel; Bo Sundborg
2014-09-30T23:59:59.000Z
Classicalons are self-bound classical field configurations, which include black holes in General Relativity. In quantum theory, they are described by condensates of many soft quanta. In this work, their decay properties are studied in arbitrary dimensions. It is found that generically the decays of other classicalons are enhanced compared to pure graviton condensates, ie. black holes. The evaporation of higher dimensional graviton condensates turns out to match Hawking radiation solely due to non-linearites captured by the classicalon picture. Although less stable than black holes, all self-bound condensates are shown to be stable in the limit of large mass. Like for black holes, the effective coupling always scales as the inverse of the number of constituents, indicating that these systems are at critical points of quantum phase transitions. Consequences for cosmology, astro- and collider physics are briefly discussed.
Non-Markovian dynamics in open quantum systems
Heinz-Peter Breuer; Elsi-Mari Laine; Jyrki Piilo; Bassano Vacchini
2015-05-06T23:59:59.000Z
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry and quantum information. In close analogy to a classical Markov process, the interaction of an open quantum system with a noisy environment is often modelled by a dynamical semigroup with a generator in Lindblad form, which describes a memoryless dynamics leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence and correlations. Here, recent results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of memory effects. The general theory is illustrated by a series of examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This article further explores the various physical sources of non-Markovian quantum dynamics, such as structured spectral densities, nonlocal correlations between environmental degrees of freedom and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments on the detection, quantification and control of non-Markovian quantum dynamics are also discussed.
Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.
1983-02-08T23:59:59.000Z
A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.
Sederquist, Richard A. (Newington, CT); Szydlowski, Donald F. (East Hartford, CT); Sawyer, Richard D. (Canton, CT)
1983-01-01T23:59:59.000Z
A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.
Steam Condensation Induced Waterhammer
Kirsner, W.
2000-01-01T23:59:59.000Z
The situation, then, 15 minutes before the Accident as Bobby readied to crack open the C-4 valve is as shown in Figure 3. Subcooled condensate filled the steam line on both sides of the C-4 valve as well as completely filling the H Line. High pressure... ofwaterharnrner. Opening C-4 slowly and incrementally should prevent steam or condensate from moving quickly and thus prevent a waterharnrner." This is wrong, dead wrong. High pressure steam in contact with subcooled condensate is dangerous. It's a recipe...
P. Sikivie
2009-09-04T23:59:59.000Z
The hypothesis of an `invisible' axion was made by Misha Shifman and others, approximately thirty years ago. It has turned out to be an unusually fruitful idea, crossing boundaries between particle physics, astrophysics and cosmology. An axion with mass of order $10^{-5}$ eV (with large uncertainties) is one of the leading candidates for the dark matter of the universe. It was found recently that dark matter axions thermalize and form a Bose-Einstein condensate (BEC). Because they form a BEC, axions differ from ordinary cold dark matter (CDM) in the non-linear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles. Because there is evidence for these phenomena, unexplained with ordinary CDM, an argument can be made that the dark matter is axions.
Finite-momentum condensation in a pumped microcavity
Brierley, R. T. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Eastham, P. R. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); School of Physics, Trinity College, Dublin 2 (Ireland)
2010-07-15T23:59:59.000Z
We calculate the absorption spectra of a semiconductor microcavity into which a nonequilibrium exciton population has been pumped. We predict strong peaks in the spectrum corresponding to collective modes analogous to the Cooper modes in superconductors and fermionic atomic gases. These modes can become unstable, leading to the formation of off-equilibrium quantum condensates. We calculate a phase diagram for condensation and show that the dominant instabilities can be at a finite momentum. Thus we predict the formation of inhomogeneous condensates, similar to Fulde-Ferrel-Larkin-Ovchinnikov states.
Identifying cosmological perturbations in group field theory condensates
Gielen, Steffen
2015-01-01T23:59:59.000Z
One proposal for deriving effective cosmological models from theories of quantum gravity is to view the former as a mean-field (hydrodynamic) description of the latter, which describes a universe formed by a 'condensate' of quanta of geometry. This idea has been successfully applied within the setting of group field theory (GFT), a quantum field theory of 'atoms of space' which can form such a condensate. We further clarify the interpretation of this mean-field approximation, and show how it can be used to obtain a semiclassical description of the GFT, in which the mean field encodes a classical statistical distribution of geometric data. In this sense, GFT condensates are quantum homogeneous geometries that also contain statistical information about cosmological inhomogeneities. We show in the isotropic case how this information can be extracted from geometric GFT observables and mapped to quantities of observational interest. Basic uncertainty relations of (non-commutative) Fourier transforms imply that thi...
Quantum Monte Carlo methods for nuclear physics
J. Carlson; S. Gandolfi; F. Pederiva; Steven C. Pieper; R. Schiavilla; K. E. Schmidt; R. B. Wiringa
2015-04-29T23:59:59.000Z
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.
Quantum Monte Carlo methods for nuclear physics
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Carlson, Joseph A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gandolfi, Stefano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pederiva, Francesco [Univ. of Trento (Italy); Pieper, Steven C. [Argonne National Lab. (ANL), Argonne, IL (United States); Schiavilla, Rocco [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States); Schmidt, K. E, [Arizona State Univ., Tempe, AZ (United States); Wiringa, Robert B. [Argonne National Lab. (ANL), Argonne, IL (United States)
2012-01-01T23:59:59.000Z
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.
Quantum Monte Carlo methods for nuclear physics
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.
2014-10-19T23:59:59.000Z
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore »interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less
Mechanism of dropwise condensation
Umur, Aydin
1963-01-01T23:59:59.000Z
From a study of surface phenomena, information is obtained about conditions under which net condensation can occur. An experimental examination of the surface, using an optical method capable of detecting thin films of ...
Measure Guideline: Evaporative Condensers
German, A.; Dakin, B.; Hoeschele, M.
2012-03-01T23:59:59.000Z
The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.
Current quark mass and nonzero-ness of chiral condensates in thermal Nambu-Jona-Lasinio model
Bang-Rong Zhou
2015-06-23T23:59:59.000Z
The effect that the current quark mass $M_0$ may result in nonzero-ness of chiral condensates is systematically reexamined and analyzed in a two-flavor Nambu-Jona-Lasinio model simulating Quantum Chromodynamics (QCD) at temperature $T$ and finite quark chemical potential $\\mu$ without and with electrical neutrality (EN) condition and at any $T$ and $\\mu$ without EN condition. By means of a quantitative investigation of the order parameter $m$, it is shown that a nonzero $M_0$ is bound to lead to nonzero quark-antiquark condensates throughout chiral phase transitions , no matter whether the order parameter $m$ varies discontinuously or continuously. In fact, a complete disappearance of the quark-antiquark condensates are proven to demand the non-physical and unrealistic conditions $\\mu \\,\\geq$ or $\\gg\\, \\sqrt{\\Lambda^2+M_0^2}$ if $T=0$ and finite, or $T\\to \\infty$ if $\\muness of the quark-antiquark condensates that leads to the appearance of a critical end point in the first order phase transition line and the crossover behavior at high $T$ and/or high $\\mu$ cases, rather than a possible tricritical point and a second order phase transition line. They also provide a basic reason for that one must consider the interplay between the chiral and diquark condensates in the research on color superconductor at zero $T$ and high $\\mu$ case. The research shows that how a source term of the Lagrangian (at present i.e. the current quark mass term) can greatly affect dynamical behavior of a physical system.
Quantum transport via evanescent waves in undoped graphene
M. I. Katsnelson
2011-01-13T23:59:59.000Z
Charge carriers in graphene are chiral quasiparticles ("massless Dirac fermions"). Graphene provides therefore an amazing opportunity to study subtle quantum relativistic effects in condensed matter experiment. Here I review a theory of one of these unusual features of graphene, a "pseudodiffusive" transport in the limit of zero charge carrier concentration, which is related to existence of zero-modes of the Dirac operator and to the Zitterbewegung of unltrarelativistic particles. A conformal mapping technique is a powerful mathematical tool to study these phenomena, as demonstrated here, using the Aharonov-Bohm effect in graphene rings with Corbino geometry as an example.
Quantum transport in ultracold atoms
Chih-Chun Chien; Sebastiano Peotta; Massimiliano Di Ventra
2015-04-11T23:59:59.000Z
Ultracold atoms confined by engineered magnetic or optical potentials are ideal systems for studying phenomena otherwise difficult to realize or probe in the solid state because their atomic interaction strength, number of species, density, and geometry can be independently controlled. This review focuses on quantum transport phenomena in atomic gases that mirror and oftentimes either better elucidate or show fundamental differences with those observed in mesoscopic and nanoscopic systems. We discuss significant progress in performing transport experiments in atomic gases, contrast similarities and differences between transport in cold atoms and in condensed matter systems, and survey inspiring theoretical predictions that are difficult to verify in conventional setups. These results further demonstrate the versatility offered by atomic systems in the study of nonequilibrium phenomena and their promise for novel applications.
Current quark mass and nonzero-ness of chiral condensates in thermal Nambu-Jona-Lasinio model
Zhou, Bang-Rong
2015-01-01T23:59:59.000Z
The effect that the current quark mass $M_0$ may result in nonzero-ness of chiral condensates is systematically reexamined and analyzed in a two-flavor Nambu-Jona-Lasinio model simulating Quantum Chromodynamics (QCD) at temperature $T$ and finite quark chemical potential $\\mu$ without and with electrical neutrality (EN) condition and at any $T$ and $\\mu$ without EN condition. By means of a quantitative investigation of the order parameter $m$, it is shown that a nonzero $M_0$ is bound to lead to nonzero quark-antiquark condensates throughout chiral phase transitions , no matter whether the order parameter $m$ varies discontinuously or continuously. In fact, a complete disappearance of the quark-antiquark condensates are proven to demand the non-physical and unrealistic conditions $\\mu \\,\\geq$ or $\\gg\\, \\sqrt{\\Lambda^2+M_0^2}$ if $T=0$ and finite, or $T\\to \\infty$ if $\\mu<\\sqrt{\\Lambda^2+M_0^2}$, where $\\Lambda$ is the 3D momentum cut of the loop integrals. Theoretically these results show that when $M_0$ i...
Progress in year 2002 1. Propagation of Bose-Einstein condensates in a magnetic waveguide
1 Progress in year 2002 1. Propagation of Bose-Einstein condensates in a magnetic waveguide Progress in the field of atom optics depends on developing improved sources of matter waves and advances source was to make sure that the new cooling cycle did not destroy the condensate held in the reservoir
BoseEinstein condensation of quasi-equilibrium magnons at room temperature under pumping
Demokritov, S.O.
BoseEinstein condensation of quasi-equilibrium magnons at room temperature under pumping S. O BoseEinstein condensation1,2 is one of the most fascinating phenomena predicted by quantum mechanics momentum (bosons), if the particle density exceeds a critical value. To achieve BoseEinstein conden
Steam Condensation Induced Waterhammer
Kirsner, W.
. This could have been sufficient to trigger the event. It depends on how much air has seeped into the system during cooling to suppress a collapse. As condensate continued to drain, steam advanced toward the H Line opening a second time again peaking... to the other mate rial passout. His first jump was too weak and he fell back onto the piping which by now was getting slip pery from condensing steam. Air temperature in the I Mr. Kirsner wrote the July 1995 HPAC article "What Caused the Steam System...
Strategies in Optimizing Condensate Return
Bloom, D.
2003-01-01T23:59:59.000Z
Optimizing condensate return for reuse as boiler feedwater is often a viable means of reducing fuel costs and improving boiler system efficiency. As more condensate is returned, less makeup is required and savings on water and water treatment costs...
F. Gelis; E. Iancu; J. Jalilian-Marian; R. Venugopalan
2010-02-01T23:59:59.000Z
We provide a broad overview of the theoretical status and phenomenological applications of the Color Glass Condensate effective field theory describing universal properties of saturated gluons in hadron wavefunctions that are extracted from deeply inelastic scattering and hadron-hadron collision experiments at high energies.
Bhatia, P.; Kozman, T.
2004-01-01T23:59:59.000Z
When steam transfers its heat in a manufacturing process or heat exchanger, it may revert to a liquid phase called condensate. This paper presents a method to help certain manufacturing and petro-chemical companies to save energy costs by returning their...
Maddox, James W. (Newport News, VA); Berger, David D. (Alexandria, VA)
1984-01-01T23:59:59.000Z
A condensate removal device is disclosed which incorporates a strainer in unit with an orifice. The strainer is cylindrical with its longitudinal axis transverse to that of the vapor conduit in which it is mounted. The orifice is positioned inside the strainer proximate the end which is remoter from the vapor conduit.
Economical Condensing Turbines?
Dean, J. E.
temperature and pressure and then condense the remainder of the steam. These units have the ability to load follow also. They are often used in concert with gas turbines to produce the balance of electrical power and to keep a electric self generator from...
Philosophy of Mind and the Problem of Free Will in the Light of Quantum Mechanics.
Stapp, Henry P
2008-01-01T23:59:59.000Z
Foundations of Quantum Mechanics. (Princeton UniversityMind, Matter, and Quantum Mechanics, (Springer, Berlin & NewMindful Universe: Quantum Mechanics and the Participating
DiracQ: A Quantum Many-Body Physics Package
John G. Wright; B. Sriram Shastry
2013-01-20T23:59:59.000Z
We present a software package DiracQ, for use in quantum many-body Physics. It is designed for helping with typical algebraic manipulations that arise in quantum Condensed Matter Physics and Nuclear Physics problems, and also in some subareas of Chemistry. DiracQ is invoked within a Mathematica session, and extends the symbolic capabilities of Mathematica by building in standard commutation and anticommutation rules for several objects relevant in many-body Physics. It enables the user to carry out computations such as evaluating the commutators of arbitrary combinations of spin, Bose and Fermi operators defined on a discrete lattice, or the position and momentum operators in the continuum. Some examples from popular systems, such as the Hubbard model, are provided to illustrate the capabilities of the package.
A measurable force driven by an excitonic condensate
Hakio?lu, T. [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Institute of Theoretical and Applied Physics, 48740 Turunç, Mu?la (Turkey); Özgün, Ege; Günay, Mehmet [Department of Physics, Bilkent University, 06800 Ankara (Turkey)
2014-04-21T23:59:59.000Z
Free energy signatures related to the measurement of an emergent force (?10{sup ?9}N) due to the exciton condensate (EC) in Double Quantum Wells are predicted and experiments are proposed to measure the effects. The EC-force is attractive and reminiscent of the Casimir force between two perfect metallic plates, but also distinctively different from it by its driving mechanism and dependence on the parameters of the condensate. The proposed experiments are based on a recent experimental work on a driven micromechanical oscillator. Conclusive observations of EC in recent experiments also provide a strong promise for the observation of the EC-force.
Exploring the quantum critical behaviour in a driven Tavis-Cummings circuit
M. Feng; Y. P. Zhong; T. Liu; L. L. Yan; W. L. Yang; J. Twamley; H. Wang
2015-05-25T23:59:59.000Z
Quantum phase transitions play an important role in many-body systems and have been a research focus in conventional condensed matter physics over the past few decades. Artificial atoms, such as superconducting qubits that can be individually manipulated, provide a new paradigm of realising and exploring quantum phase transitions by engineering an on-chip quantum simulator. Here we demonstrate experimentally the quantum critical behaviour in a highly-controllable superconducting circuit, consisting of four qubits coupled to a common resonator mode. By off-resonantly driving the system to renormalise the critical spin-field coupling strength, we have observed a four-qubit non-equilibrium quantum phase transition in a dynamical manner, i.e., we sweep the critical coupling strength over time and monitor the four-qubit scaled moments for a signature of a structural change of the system's eigenstates. Our observation of the non-equilibrium quantum phase transition, which is in good agreement with the driven Tavis-Cummings theory under decoherence, offers new experimental approaches towards exploring quantum phase transition related science, such as scaling behaviours, parity breaking and long-range quantum correlations.
Fermi-Einstein condensation in dense QCD-like theories
Kurt Langfeld; Andreas Wipf
2011-09-02T23:59:59.000Z
While pure Yang-Mills theory feature the centre symmetry, this symmetry is explicitly broken by the presence of dynamical matter. We study the impact of the centre symmetry in such QCD-like theories. In the analytically solvable Schwinger model, centre transitions take place even under extreme conditions, temperature and/or density, and we show that they are key to the solution of the Silver-Blaze problem. We then develop an effective SU(3) quark model which confines quarks by virtue of centre sector transitions. The phase diagram by confinement is obtained as a function of the temperature and the chemical potential. We show that at low temperatures and intermediate values for the chemical potential the centre dressed quarks undergo condensation due to Bose like statistics. This is the Fermi Einstein condensation. To corroborate the existence of centre sector transitions in gauge theories with matter, we study (at vanishing chemical potential) the interface tension in the three-dimensional Z2 gauge theory with Ising matter, the distribution of the Polyakov line in the four-dimensional SU(2)-Higgs model and devise a new type of order parameter which is designed to detect centre sector transitions. Our analytical and numerical findings lead us to conjecture a new state of cold, but dense matter in the hadronic phase for which Fermi Einstein condensation is realised.
Einstein-Podolsky-Rosen correlations from colliding Bose-Einstein condensates
Johannes Kofler; Mandip Singh; Maximilian Ebner; Michael Keller; Mateusz Kotyrba; Anton Zeilinger
2012-09-18T23:59:59.000Z
We propose an experiment which can demonstrate quantum correlations in a physical scenario as discussed in the seminal work of Einstein, Podolsky and Rosen. Momentum-entangled massive particles are produced via the four-wave mixing process of two colliding Bose-Einstein condensates. The particles' quantum correlations can be shown in a double double-slit experiment or via ghost interference.
The Quantum Spin Hall Effect: Theory and Experiment
Konig, Markus; Buhmann, Hartmut; Molenkamp, Laurens W.; /Wurzburg U.; Hughes, Taylor L.; /Stanford U., Phys. Dept.; Liu, Chao-Xing; /Tsinghua U., Beijing /Stanford U., Phys. Dept.; Qi, Xiao-Liang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19T23:59:59.000Z
The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Recently, a new class of topological insulators has been proposed. These topological insulators have an insulating gap in the bulk, but have topologically protected edge states due to the time reversal symmetry. In two dimensions the helical edge states give rise to the quantum spin Hall (QSH) effect, in the absence of any external magnetic field. Here we review a recent theory which predicts that the QSH state can be realized in HgTe/CdTe semiconductor quantum wells. By varying the thickness of the quantum well, the band structure changes from a normal to an 'inverted' type at a critical thickness d{sub c}. We present an analytical solution of the helical edge states and explicitly demonstrate their topological stability. We also review the recent experimental observation of the QSH state in HgTe/(Hg,Cd)Te quantum wells. We review both the fabrication of the sample and the experimental setup. For thin quantum wells with well width d{sub QW} < 6.3 nm, the insulating regime shows the conventional behavior of vanishingly small conductance at low temperature. However, for thicker quantum wells (d{sub QW} > 6.3 nm), the nominally insulating regime shows a plateau of residual conductance close to 2e{sup 2}/h. The residual conductance is independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance is destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, d{sub c} = 6.3 nm, is also independently determined from the occurrence of a magnetic field induced insulator to metal transition.
Observation of topological transitions in interacting quantum circuits
P. Roushan; C. Neill; Yu Chen; M. Kolodrubetz; C. Quintana; N. Leung; M. Fang; R. Barends; B. Campbell; Z. Chen; B. Chiaro; A. Dunsworth; E. Jeffrey; J. Kelly; A. Megrant; J. Mutus; P. O'Malley; D. Sank; A. Vainsencher; J. Wenner; T. White; A. Polkovnikov; A. N. Cleland; J. M. Martinis
2014-07-07T23:59:59.000Z
The discovery of topological phases in condensed matter systems has changed the modern conception of phases of matter. The global nature of topological ordering makes these phases robust and hence promising for applications. However, the non-locality of this ordering makes direct experimental studies an outstanding challenge, even in the simplest model topological systems, and interactions among the constituent particles adds to this challenge. Here we demonstrate a novel dynamical method to explore topological phases in both interacting and non-interacting systems, by employing the exquisite control afforded by state-of-the-art superconducting quantum circuits. We utilize this method to experimentally explore the well-known Haldane model of topological phase transitions by directly measuring the topological invariants of the system. We construct the topological phase diagram of this model and visualize the microscopic evolution of states across the phase transition, tasks whose experimental realizations have remained elusive. Furthermore, we developed a new qubit architecture that allows simultaneous control over every term in a two-qubit Hamiltonian, with which we extend our studies to an interacting Hamiltonian and discover the emergence of an interaction-induced topological phase. Our implementation, involving the measurement of both global and local textures of quantum systems, is close to the original idea of quantum simulation as envisioned by R. Feynman, where a controllable quantum system is used to investigate otherwise inaccessible quantum phenomena. This approach demonstrates the potential of superconducting qubits for quantum simulation and establishes a powerful platform for the study of topological phases in quantum systems.
Stabilization of a purely dipolar quantum gas against collapse
Loss, Daniel
2008; doi:10.1038/nphys887 Although the phenomenon of BoseEinstein condensation1 is a purely statistical effect that also appears in an ideal gas, the physics of BoseEinstein condensates (BECs, stabilizing a purely dipolar quantum gas. In the case of a homogeneous BoseEinstein condensate (BEC
Confinement Contains Condensates
Brodsky, Stanley J.; Roberts, Craig D.; Shrock, Robert; Tandy, Peter C.
2012-03-12T23:59:59.000Z
Dynamical chiral symmetry breaking and its connection to the generation of hadron masses has historically been viewed as a vacuum phenomenon. We argue that confinement makes such a position untenable. If quark-hadron duality is a reality in QCD, then condensates, those quantities that have commonly been viewed as constant empirical mass-scales that fill all spacetime, are instead wholly contained within hadrons; i.e., they are a property of hadrons themselves and expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We explain that this paradigm is consistent with empirical evidence, and incidentally expose misconceptions in a recent Comment.
Color Glass Condensate and Glasma
Francois Gelis
2010-09-06T23:59:59.000Z
In this talk, I review the Color Glass Condensate theory of gluon saturation, and its application to the early stages of heavy ion collisions.
Promising Technology: Condensing Gas Boilers
Broader source: Energy.gov [DOE]
Condensing boilers achieve higher efficiencies than conventional boilers by capturing the latent heat from water vapor contained in the flue gases.
Identifying cosmological perturbations in group field theory condensates
Steffen Gielen
2015-08-03T23:59:59.000Z
One proposal for deriving effective cosmological models from theories of quantum gravity is to view the former as a mean-field (hydrodynamic) description of the latter, which describes a universe formed by a 'condensate' of quanta of geometry. This idea has been successfully applied within the setting of group field theory (GFT), a quantum field theory of 'atoms of space' which can form such a condensate. We further clarify the interpretation of this mean-field approximation, and show how it can be used to obtain a semiclassical description of the GFT, in which the mean field encodes a classical statistical distribution of geometric data. In this sense, GFT condensates are quantum homogeneous geometries that also contain statistical information about cosmological inhomogeneities. We show in the isotropic case how this information can be extracted from geometric GFT observables and mapped to quantities of observational interest. Basic uncertainty relations of (non-commutative) Fourier transforms imply that this statistical description can only be compatible with the observed near-homogeneity of the Universe if the typical length scale associated to the distribution is much larger than the fundamental 'Planck' scale. As an example of effective cosmological equations derived from the GFT dynamics, we then use a simple approximation in one class of GFT models to derive the 'improved dynamics' prescription of holonomy corrections in loop quantum cosmology.
Adams, Allan
Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical and that do not have a simple description in terms of weakly interacting quasiparticles. Two systems that have recently ...
Schramm, D.N.
1992-03-01T23:59:59.000Z
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Schramm, D.N.
1992-03-01T23:59:59.000Z
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Quantum Mechanical Pressure Frank Rioux
Rioux, Frank
Quantum Mechanical Pressure Frank Rioux CSB|SJU Quantum mechanics is based on the concept of wave it to its quantum mechanical equivalent. 2 2 2 2 2 p h KE m m = = Because objects with wave-like properties" character of quantum mechanical kinetic energy is the ultimate basis for the stability of matter. It also
Condenser for photolithography system
Sweatt, William C.
2004-03-02T23:59:59.000Z
A condenser for a photolithography system, in which a mask image from a mask is projected onto a wafer through a camera having an entrance pupil, includes a source of propagating radiation, a first mirror illuminated by the radiation, a mirror array illuminated by the radiation reflected from said first mirror, and a second mirror illuminated by the radiation reflected from the array. The mirror array includes a plurality of micromirrors. Each of the micromirrors is selectively actuatable independently of each other. The first mirror and the second mirror are disposed such that the source is imaged onto a plane of the mask and the mirror array is imaged into the entrance pupil of the camera.
The Slicing Theory of Quantum Measurement: Derivation of Transient Many Worlds Behavior
Clifford Chafin
2015-03-01T23:59:59.000Z
An emergent theory of quantum measurement arises directly by considering the particular subset of many body wavefunctions that can be associated with classical condensed matter and its interaction with delocalized wavefunctions. This transfers questions of the "strangeness" of quantum mechanics from the wavefunction to the macroscopic material itself. An effectively many-worlds picture of measurement results for long times and induces a natural arrow of time. The challenging part is then justifying why our macroscopic world is dominated by such far-from-eigenstate matter. Condensing cold mesoscopic clusters provide a pathway to a partitioning of a highly correlated many body wavefunction to long lasting islands composed of classical-like bodies widely separated in Fock space. Low mass rapidly delocalizing matter that recombines with the solids "slice" the system into a set of nearby yet very weakly interacting subsystems weighted according to the Born statistics and yields a kind of many worlds picture but with the possibility of revived phase interference on iterative particle desorption, delocalization and readsorption. A proliferation of low energy photons competes with such a possibility. Causality problems associated with correlated quantum measurement are resolved and conserved quantities are preserved for the overall many body function despite their failure in each observer's bifurcating "slice-path." The necessity of such a state for a two state logic and reliable discrete state machine suggests that later stages of the universe's evolution will destroy the physical underpinnings required for consciousness and the arrow of time even without heat-death or atomic destruction. Some exotic possibilities outside the domain of usual quantum measurement are considered such as measurement with delocalized devices and revival of information from past measurements.
Condensation on Superhydrophobic Copper Oxide Nanostructures
Enright, Ryan
Condensation is an important process in both emerging and traditional power generation and water desalination technologies. Superhydrophobic nanostructures promise enhanced condensation heat transfer by reducing the ...
Condensation on superhydrophobic copper oxide nanostructures
Dou, Nicholas (Nicholas Gang)
2012-01-01T23:59:59.000Z
Condensation is an important process in many power generation and water desalination technologies. Superhydrophobic nanostructured surfaces have unique condensation properties that may enhance heat transfer through a ...
Ghost condensate model of flat rotation curves
V. V. Kiselev
2005-07-29T23:59:59.000Z
An effective action of ghost condensate with higher derivatives creates a source of gravity and mimics a dark matter in spiral galaxies. We present a spherically symmetric static solution of Einstein--Hilbert equations with the ghost condensate at large distances, where flat rotation curves are reproduced in leading order over small ratio of two energy scales characterizing constant temporal and spatial derivatives of ghost field: $\\mu_*^2$ and $\\mu_\\star^2$, respectively, with a hierarchy $\\mu_\\star\\ll \\mu_*$. We assume that a mechanism of hierarchy is provided by a global monopole in the center of galaxy. An estimate based on the solution and observed velocities of rotations in the asymptotic region of flatness, gives $\\mu_*\\sim 10^{19}$ GeV and the monopole scale in a GUT range $\\mu_\\star\\sim 10^{16}$ GeV, while a velocity of rotation $v_0$ is determined by the ratio: $ \\sqrt{2} v_0^2= \\mu_\\star^2/\\mu_*^2$. A critical acceleration is introduced and naturally evaluated of the order of Hubble rate, that represents the Milgrom's acceleration.
Mini Review Water-soluble quantum dots for biomedical applications
emission matrix (EEM) reveals that quantum dots always emit the same lights no matter what excita- tion wavelength
Condensate System Troubleshooting and Optimization
Jenkins, B. V.
1983-01-01T23:59:59.000Z
fuel is needed to convert it back to steam because 148 BTU's are in each pound of l80 0 F condensate. And finally, because it is water that the plant has already treated, (ion exchange processed, scale/corrosion treated, oxygen removed... heat transfer surfaces). The results of carbon dioxide corrosion include: expensive replacement of condensate piping reduced boiler tube life and, in cases, unexpected boiler shutdown and production losses. The net result is an economic Jutlay...
I. Stern
2014-03-21T23:59:59.000Z
Nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a $\\mu$eV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 $\\mu$eV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.
Stern, Ian P. [Department of Physics, Univerisity of Florida, Gainesville, FL 32611-8440 (United States); Collaboration: ADMX Collaboration; ADMX-HF Collaboration
2014-06-24T23:59:59.000Z
Nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a ?eV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 ?eV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.
Center for Nanophase Materials Sciences (CNMS) - Soft Condensed Matter
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm1 ofCategoricalDynamicTheory ofInstitute (NTI):CNMSDesign Core
Condensed Matter Theory 6 faculty,13 grads, 3 postdocs.
Duxbury, Phillip M.
and automotive sectors. Area 2 : Develop methods to see atoms inside nanoparticles. Nanostructure center 500 nm assembly -Training program in nanostructure characterization -Industrial partners for SBIR etc -Outreach
Systems Reiter, George 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23TribalInformation Access to Multimedia-based Science &function (Journal Article)Compton
Return Condensate to the Boiler | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Return Condensate to the Boiler Return Condensate to the Boiler This tip sheet on returning condensate to boilers provides how-to advice for improving industrial steam systems...
Heat transfer via dropwise condensation on hydrophobic microstructured surfaces
Ruleman, Karlen E. (Karlen Elizabeth)
2009-01-01T23:59:59.000Z
Dropwise condensation has the potential to greatly increase heat transfer rates. Heat transfer coefficients by dropwise condensation and film condensation on microstructured silicon chips were compared. Heat transfer ...
Condensed hydrogen for thermonuclear fusion
Kucheyev, S. O.; Hamza, A. V. [Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)
2010-11-15T23:59:59.000Z
Inertial confinement fusion (ICF) power, in either pure fusion or fission-fusion hybrid reactors, is a possible solution for future world's energy demands. Formation of uniform layers of a condensed hydrogen fuel in ICF targets has been a long standing materials physics challenge. Here, we review the progress in this field. After a brief discussion of the major ICF target designs and the basic properties of condensed hydrogens, we review both liquid and solid layering methods, physical mechanisms causing layer nonuniformity, growth of hydrogen single crystals, attempts to prepare amorphous and nanostructured hydrogens, and mechanical deformation behavior. Emphasis is given to current challenges defining future research areas in the field of condensed hydrogens for fusion energy applications.
Krotov, D. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Moscow State University, Department of Physics, Vorobjevy Gory, Moscow, 119899 (Russian Federation); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya, 25, Moscow, 117259 (Russian Federation); Rebbi, C. [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston Massachusetts 02215 (United States); Rubakov, V. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Zakharov, V. [Max-Planck Institut fuer Physik, Foeringer Ring 6, 80805, Munichn (Germany)
2005-02-15T23:59:59.000Z
In a recently proposed model of 'ghost condensation', spatially homogeneous states may mix, via tunneling, with inhomogeneous states which are somewhat similar to bubbles in the theory of false vacuum decay, the corresponding bubble nucleation rate being exponentially sensitive to the ultraviolet completion of the model. The conservation of energy and charge requires that the energy density is negative and the field is strongly unstable in a part of the nucleated bubble. Unlike in the theory of false vacuum decay, this region does not expand during subsequent real-time evolution. In the outer part, positive energy outgoing waves develop, which eventually form shocks. Behind the outgoing waves and away from the bubble center, the background settles down to its original value. The outcome of the entire process is thus a microscopic region of negative energy and strong field - 'hole in the ghost condensate' - plus a collection of outgoing waves (particles of the ghost condensate field) carrying away finite energy.
J. H. Field
2005-03-02T23:59:59.000Z
Feynman's laws of quantum dynamics are concisely stated, discussed in comparison with other formulations of quantum mechanics and applied to selected problems in the physical optics of photons and massive particles as well as flavour oscillations. The classical wave theory of light is derived from these laws for the case in which temporal variation of path amplitudes may be neglected, whereas specific experiments, sensitive to the temporal properties of path amplitudes, are suggested. The reflection coefficient of light from the surface of a transparent medium is found to be markedly different to that predicted by the classical Fresnel formula. Except for neutrino oscillations, good agreement is otherwise found with previous calculations of spatially dependent quantum interference effects.
A fluid mechanical explanation of dark matter
Carl H. Gibson
1999-04-22T23:59:59.000Z
Matter in the universe has become ``dark'' or ``missing'' through misconceptions about the fluid mechanics of gravitational structure formation. Gravitational condensation occurs on non-acoustic density nuclei at the largest Schwarz length scale L_{ST}, L_{SV}, L_{SM}, L_{SD} permitted by turbulence, viscous, or magnetic forces, or by the fluid diffusivity. Non-baryonic fluids have diffusivities larger (by factors of trillions or more) than baryonic (ordinary) fluids, and cannot condense to nucleate baryonic galaxy formation as is usually assumed. Baryonic fluids begin to condense in the plasma epoch at about 13,000 years after the big bang to form proto-superclusters, and form proto-galaxies by 300,000 years when the cooling plasma becomes neutral gas. Condensation occurs at small planetary masses to form ``primordial fog particles'' from nearly all of the primordial gas by the new theory, Gibson (1996), supporting the Schild (1996) conclusion from quasar Q0957+651A,B microlensing observations that the mass of the lens galaxy is dominated by ``rogue planets ... likely to be the missing mass''. Non-baryonic dark matter condenses on superclusters at scale L_{SD} to form massive super-halos.
Tripol condensate polishing - operational experience
Swainsbury, D. [Mission Energy Management Australia, Victoria (Australia)
1995-01-01T23:59:59.000Z
This paper gives a brief outline of the Mission Energy Management Australia Company who operate and maintain the Loy Yang B Power Station in the Latrobe Valley, Victoria, Australia. Details of the plant configuration, the water/steam circuit and cycle chemistry are discussed. The arrangement of the TRIPOL Condensate Polishing Plant and it`s operational modes are examined. Results of the first twelve months operation of the TRIPOL plant are detailed. Levels of crud removal during early commissioning phases employing the pre-filter are presented. Typical parameters achieved during a simulated condenser leak and an operational run beyond the ammonia break point are also documented.
Electrohydrodynamically enhanced condensation heat transfer
Wawzyniak, Markus
1993-01-01T23:59:59.000Z
kV (electrode ?1). . . .. . . . . . . Fig. 4. 3 Photograph of liquid bridging &om the helical wire to the condensation surface at 20 kV (electrode ?1) . Fig. 4. 4 Photograph removal of liquid at 20 kV (electrode ?1) . .. Fig. 4. 5 Electrode ?2.... Fig. 4. 6 Photograph of condensate reaching into the interelectrode gap liquid at 18 kV (electrode ?2) . . Fig. 4. 7 Photograph of stable liquid film at 20 kV (electrode ?2). . . . . Page . 17 . 21 . 27 28 29 . . . . . . . 29 31 32...
Atom loss from the $^{85}$Rb Bose-Einstein condensate by a Feshbach resonance
V. A. Yurovsky; A. Ben-Reuven
2003-08-22T23:59:59.000Z
Loss of atoms from a $^{85}$Rb condensate on passage through a Feshbach resonance is analyzed using the generalized parametric approximation that takes into account quantum many-body effects. These effects lead to a substantial increase of the losses. A better agreement with experiments is achieved, compared to predictions of mean-field theories. The method provides much insight into the quantum effects involved, and on the nature of entangled atom pairs produced by the loss.
Nuclear thermodynamics and the in-medium chiral condensate
Salvatore Fiorilla; Norbert Kaiser; Wolfram Weise
2012-04-19T23:59:59.000Z
The temperature dependence of the chiral condensate in isospin-symmetric nuclear matter at varying baryon density is investigated using thermal in-medium chiral effective field theory. This framework provides a realistic approach to the thermodynamics of the correlated nuclear many-body system and permits calculating systematically the pion-mass dependence of the free energy per particle. One- and two-pion exchange processes, $\\Delta(1232)$-isobar excitations, Pauli blocking corrections and three-body correlations are treated up to and including three loops in the expansion of the free energy density. It is found that nuclear matter remains in the Nambu-Goldstone phase with spontaneously broken chiral symmetry in the temperature range $T\\lesssim 100\\,$MeV and at baryon densities at least up to about twice the density of normal nuclear matter, $2\\rho_0 \\simeq 0.3\\, $fm$^{-3}$. Effects of the nuclear liquid-gas phase transition on the chiral condensate at low temperatures are also discussed.
Viability of the Matter Bounce Scenario
Jaume de Haro; Jaume Amorós
2014-11-27T23:59:59.000Z
It is shown that teleparallel $F({\\mathcal T})$ theories of gravity combined with Loop Quantum Cosmology support a Matter Bounce Scenario which is an alternative to the inflation scenario in the Big Bang paradigm. It is checked thatthese bouncing models provide theoretical data that fits well with the current observational data, allowing the viability of the Matter Bounce Scenario.
Joseph Silk
2010-01-08T23:59:59.000Z
One of the greatest mysteries in the cosmos is that it is mostly dark. Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe. I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.
Condensing Heat Exchangers Optimize Steam Boilers
Sullivan, B.; Sullivan, P. A.
1983-01-01T23:59:59.000Z
suspended particulate was about 70%. (This could be important on coal fired boiler applications) OTHER CONSIDERATIONS Condensate Disposal Experience on the existing installations indicates that condensate disposal will not pre sent any major problema...
Steering Bose-Einstein Condensates despite Time Symmetry Dario Poletti,1
Li, Baowen
Steering Bose-Einstein Condensates despite Time Symmetry Dario Poletti,1 Giuliano Benenti,2 with a three-mode model. These three-mode model results corroborate well with a many- body study over a time [610] and shows the importance of interaction in the coherent control of quantum tunneling between
Generalized coherent state representation of Bose-Einstein condensates V. Chernyak,1
Mukamel, Shaul
in supercooled trapped atoms has stimulated great interest in the theoretical description of the quantum state opera- tor products should be factorized in order to truncate the many-body hierarchy. The Gross of these treatments directly addresses the precise quan- tum state of BEC that consists of the condensate as well
Color Glass Condensate and its relation to HERA physics
Edmond Iancu
2009-01-08T23:59:59.000Z
I give a brief overview of the effective theory for the Color Glass Condensate, which is the high-density gluonic matter which controls high-energy scattering in QCD in the vicinity of the unitarity limit. I concentrate on fundamental phenomena, like gluon saturation, unitarization, and geometric scaling, and the way how these are encoded in the formalism. I emphasize the importance of the next-to-leading order corrections, especially the running of the coupling, for both conceptual and phenomenological issues. I survey the implications of the CGC theory for the HERA physics and its phenomenological applications based on saturation models.
The syllabus of the Course 624 Quantum Mechanics 2
The syllabus of the Course 624 Quantum Mechanics 2 Spring 2009. Instructor V.L. Pokrovsky. 1. Many-body quantum mechanics. Second quantization. Spin and statistics. Bose- Einstein condensation. 6's phase. Landau-Zener theory. Principal textbook: E. Merzbacher, Quantum Mechanics, 3-d edition, Wiley
Nonlinear manipulation and control of matter waves
E. V. Goldstein; M. G. Moore; P. Meystre
1999-06-23T23:59:59.000Z
This paper reviews some of our recent results in nonlinear atom optics. In addition to nonlinear wave-mixing between matter waves, we also discuss the dynamical interplay between optical and matter waves. This new paradigm, which is now within experimental reach, has the potential to impact a number of fields of physics, including the manipulation and applications of atomic coherence, and the preparation of quantum entanglement between microscopic and macroscopic systems. Possible applications include quantum information processing, matter-wave holography, and nanofabrication.
Quasi-Nambu-Goldstone Modes in Bose-Einstein Condensates
Uchino, Shun [Department of Physics, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033 (Japan); Kobayashi, Michikazu [Department of Basic Science, University of Tokyo, 3-8-1 Komaba, Tokyo 153-8902 (Japan); Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521 (Japan); Ueda, Masahito [Department of Physics, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033 (Japan); ERATO Macroscopic Quantum Project, JST, Tokyo 113-8656 (Japan)
2010-12-03T23:59:59.000Z
We show that quasi-Nambu-Goldstone (NG) modes, which play prominent roles in high energy physics but have been elusive experimentally, can be realized with atomic Bose-Einstein condensates. The quasi-NG modes emerge when the symmetry of a ground state is larger than that of the Hamiltonian. When they appear, the conventional vacuum manifold should be enlarged. Consequently, topological defects that are stable within the conventional vacuum manifold become unstable and decay by emitting the quasi-NG modes. Contrary to conventional wisdom, however, we show that the topological defects are stabilized by quantum fluctuations that make the quasi-NG modes massive, thereby suppressing their emission.
Scattering off the Color Glass Condensate
Mäntysaari, Heikki
2015-01-01T23:59:59.000Z
In this thesis the Color Glass Condensate (CGC) framework, which describes quantum chromodynamics (QCD) at high energy, is applied to various scattering processes. Higher order corrections to the CGC evolution equations, known as the BK and JIMWLK equations, are also considered. It is shown that the leading order CGC calculations describe the experimental data from electron-proton deep inelastic scattering (DIS), proton-proton and proton-nucleus collisions. The initial condition for the BK evolution equation is obtained by performing a fit to deep inelastic scattering data. The fit result is used as an input to calculations of single particle spectra and nuclear suppression in proton-proton and proton-nucleus collisions, which are shown to be in agreement with RHIC and LHC measurements. In particular, the importance of a proper description of the nuclear geometry consistently with the DIS data fits is emphasized, as it results in a nuclear suppression factor $R_{pA}$ which is consistent with the available exp...
Holographic Superconductors with Various Condensates
Gary T. Horowitz; Matthew M. Roberts
2008-11-04T23:59:59.000Z
We extend earlier treatments of holographic superconductors by studying cases where operators of different dimension condense in both 2+1 and 3+1 superconductors. We also compute a correlation length. We find surprising regularities in quantities such as $\\omega_g/T_c$ where $\\omega_g$ is the gap in the frequency dependent conductivity. In special cases, new bound states arise corresponding to vector normal modes of the dual near-extremal black holes.
Color Glass Condensate and Glasma
F. Gelis
2012-11-26T23:59:59.000Z
We review the Color Glass Condensate effective theory, that describes the gluon content of a high energy hadron or nucleus, in the saturation regime. The emphasis is put on applications to high energy heavy ion collisions. After describing initial state factorization, we discuss the Glasma phase, that precedes the formation of an equilibrated quark-gluon plasma. We end this review with a presentation of recent developments in the study of the isotropization and thermalization of the quark-gluon plasma.
Condensate System Troubleshooting and Optimization
Jenkins, B. V.
1983-01-01T23:59:59.000Z
because 148 BTU's are in each pound of l80 0 F condensate. And finally, because it is water that the plant has already treated, (ion exchange processed, scale/corrosion treated, oxygen removed and evaporated to produce steam) is represents a large... network, acid or chemical cleaning for he boiler, and a possible loss of plant pro u ction due to the unscheduled outage. Oxygen Also present in boiler feedwater, this as is removed by conventional mechanical a d chemical means. Mechanically...
Petroleum source rock potential of Mesozoic condensed section deposits in southwestern Alabama
Mancini, E.A; Tew, B.H.; Mink, R.M. (Univ. of Alabama, Tuscaloosa (United States))
1991-03-01T23:59:59.000Z
Because condensed section deposits in carbonates and siliclastics are generally fine-grained lithologies often containing relatively high concentrations of organic matter, these sediments have the potential to be petroleum source rocks if buried under conditions favorable for hydrocarbon generation. In the Mesozoic deposits of southwestern Alabama, only the Upper Jurassic Smackover carbonate mudstones of the condensed section of the LZAGC-4.1 cycle have realized their potential as hydrocarbon source rocks. These carbonate mudstones contain organic carbon concentrations of algal and amorphous kerogen of up to 1.7% and have thermal alteration indices of 2- to 3+. The Upper Cretaceous Tuscaloosa marine claystones of the condensed section of the UZAGC-2.5 cycle are rich (up to 2.9%) in herbaceous and amorphous organic matter but have not been subjected to burial conditions favorable for hydrocarbon generation. The Jurassic Pine Hill/Norphlet black shales of the condensed section of the LZAGC-3.1 cycle and the Upper Jurassic Haynesville carbonate mudstones of the condensed section of the LZAGC-4.2 cycle are low (0.1%) in organic carbon. Although condensed sections within depositional sequences should have the highest source rock potential, specific environmental, preservational, and/or burial history conditions within a particular basin will dictate whether or not the potential is realized as evidenced by the condensed sections of the Mesozoic depositional sequences in southwestern Alabama. Therefore, petroleum geologists can use sequence stratigraphy to identify potential source rocks; however, only through geochemical analyses can the quality of these potential source rocks be determined.
Non-Abelian condensates as alternative for dark energy
Gal'tsov, Dmitri V
2009-01-01T23:59:59.000Z
We review basic features of cosmological models with large-scale classical non-Abelian Yang-Mills (YM) condensates. There exists a unique SU(2) YM configuration (generalizable to larger gauge groups) compatible with homogeneity and isotropy of the three-space which is parameterized by a single scalar field. In the past various aspects of Einstein-Yang-Mills (EYM) cosmology were discussed in the context of the Early Universe. Due to conformal invariance, solvable EYM FRW models exist both on the classical and quantum levels. To develop the YM model for dark energy one has to find mechanisms of the conformal symmetry breaking. We discuss the Born-Infeld generalization and some phenomenological models motivated by quantum corrections exploring possibility of transient DE and phantom regimes.
Non-Abelian condensates as alternative for dark energy
Dmitri V. Gal'tsov
2008-12-31T23:59:59.000Z
We review basic features of cosmological models with large-scale classical non-Abelian Yang-Mills (YM) condensates. There exists a unique SU(2) YM configuration (generalizable to larger gauge groups) compatible with homogeneity and isotropy of the three-space which is parameterized by a single scalar field. In the past various aspects of Einstein-Yang-Mills (EYM) cosmology were discussed in the context of the Early Universe. Due to conformal invariance, solvable EYM FRW models exist both on the classical and quantum levels. To develop the YM model for dark energy one has to find mechanisms of the conformal symmetry breaking. We discuss the Born-Infeld generalization and some phenomenological models motivated by quantum corrections exploring possibility of transient DE and phantom regimes.
Confinement and screening in tachyonic matter
F. A. Brito; M. L. F. Freire; W. Serafim
2014-11-20T23:59:59.000Z
In this paper we consider confinement and screening of the electric field. We study the behavior of a static electric field coupled to a dielectric function with the intent of obtaining an electrical confinement similar to what happens with the field of gluons that bind quarks in hadronic matter. For this we use the phenomenon of `anti-screening' in a medium with exotic dielectric. We show that tachyon matter behaves like an exotic way whose associated dielectric function modifies the Maxwell's equations and affects the fields which results in confining and Coulombian-like potentials in three spatial dimensions. We note that the confining regime coincides with the tachyon condensation, which resembles the effect of confinement due to condensation of magnetic monopoles. The Coulombian-like regime is developed at large distance which is associated with {a screening phase
Bio-oil fractionation and condensation
Brown, Robert C; Jones, Samuel T; Pollard, Anthony
2013-07-02T23:59:59.000Z
A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.
Sandoval Rodriguez, Angelica Patricia
2002-01-01T23:59:59.000Z
If the reservoir pressure falls below the dewpoint pressure when producing a gas condensate reservoir, liquid dropout takes place in the reservoir. Liquid builds up in the near wellbore area causing what is known as a "condensate banking...
Non-singular bounce scenarios in loop quantum cosmology and the effective field description
Cai, Yi-Fu [Department of Physics, McGill University, Rue University, Montréal, QC H3A 2T8 (Canada); Wilson-Ewing, Edward, E-mail: yifucai@physics.mcgill.ca, E-mail: wilson-ewing@phys.lsu.edu [Department of Physics and Astronomy, Louisiana State University, Tower Drive, Baton Rouge, 70803 (United States)
2014-03-01T23:59:59.000Z
A non-singular bouncing cosmology is generically obtained in loop quantum cosmology due to non-perturbative quantum gravity effects. A similar picture can be achieved in standard general relativity in the presence of a scalar field with a non-standard kinetic term such that at high energy densities the field evolves into a ghost condensate and causes a non-singular bounce. During the bouncing phase, the perturbations can be stabilized by introducing a Horndeski operator. Taking the matter content to be a dust field and an ekpyrotic scalar field, we compare the dynamics in loop quantum cosmology and in a non-singular bouncing effective field model with a non-standard kinetic term at both the background and perturbative levels. We find that these two settings share many important properties, including the result that they both generate scale-invariant scalar perturbations. This shows that some quantum gravity effects of the very early universe may be mimicked by effective field models.
Optimization of condensing gas drive
Lofton, Larry Keith
1977-01-01T23:59:59.000Z
of computer model results. This was dona by simulating labora- tory tests where oil was displaced from a vertical sand pack with a gas that is very soluble in oil at low pressures. In order to simu- late the laboratory test it was necessary to develop PVT...OPTIMIZATION OF CONDENSING GAS DRIVE A Thesis by LARRY KEITH LOFTON Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1977 Major Subject: Petroleum...
Quantum random walks without walking
Manouchehri, K.; Wang, J. B. [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia)
2009-12-15T23:59:59.000Z
Quantum random walks have received much interest due to their nonintuitive dynamics, which may hold the key to a new generation of quantum algorithms. What remains a major challenge is a physical realization that is experimentally viable and not limited to special connectivity criteria. We present a scheme for walking on arbitrarily complex graphs, which can be realized using a variety of quantum systems such as a Bose-Einstein condensate trapped inside an optical lattice. This scheme is particularly elegant since the walker is not required to physically step between the nodes; only flipping coins is sufficient.
Ajay Patwardhan
2008-05-15T23:59:59.000Z
In unified field theory the cosmological model of the universe has supersymmetric fields. Supersymmetric particles as dark and normal matter in galaxy clusters have a phase separation. Dark matter in halos have a statistical physics equation of state. Neutralino particle gas with gravitation can have a collapse of dark matter lumps. A condensate phase due to boson creation by annhillation and exchange can occur at high densities. The collapse of the boson condensate, including neutralinos, into the Schwarzschild radius creates dark matter black holes. Microscopic dark matter black holes can evaporate with Hawking effect giving gamma ray bursts and create a spectrum of normal particles. The phase separation of normal and dark matter in galaxy clusters and inside galaxies is given by statistical physics.
Considerations When Selecting a Condensing Economizer | Department...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
More Documents & Publications Consider Installing a Condensing Economizer Steam System Survey Guide Improving Steam System Performance: A Sourcebook for Industry, Second Edition...
Gas condensate damage in hydraulically fractured wells
Adeyeye, Adedeji Ayoola
2004-09-30T23:59:59.000Z
by understanding the mechanics of liquid build-up. It also provides methodology for quantifying the condensate damage that impairs linear flow of gas into the hydraulic fracture....
Treatment of evaporator condensates by pervaporation
Blume, Ingo (Hengelq, NL); Baker, Richard W. (Palo Alto, CA)
1990-01-01T23:59:59.000Z
A pervaporation process for separating organic contaminants from evaporator condensate streams is disclosed. The process employs a permselective membrane that is selectively permeable to an organic component of the condensate. The process involves contacting the feed side of the membrane with a liquid condensate stream, and withdrawing from the permeate side a vapor enriched in the organic component. The driving force for the process is the in vapor pressure across the membrane. This difference may be provided for instance by maintaining a vacuum on the permeate side, or by condensing the permeate. The process offers a simple, economic alternative to other separation techniques.
3D Quantum Gravity and Effective Noncommutative Quantum Field Theory
Freidel, Laurent; Livine, Etera R. [Perimeter Institute, 31 Caroline Street, North Waterloo, Ontario N2L 2Y5, Canada, and Laboratoire de Physique, ENS Lyon, CNRS UMR 5672, 46 Allee d'Italie, 69364 Lyon Cedex 07 (France)
2006-06-09T23:59:59.000Z
We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a {kappa} deformation of the Poincare group.
Strong reactions in quantum super PDEs. III: Exotic quantum supergravity
Agostino Prástaro
2015-03-23T23:59:59.000Z
Following the previous two parts, of a work devoted to encode strong reaction dynamics in the A. Pr\\'astaro's algebraic topology of quantum super PDE's, nonlinear quantum propagators in the observed quantum super Yang-Mills PDE, $\\hat{(YM)}[i]$, are further characterized. In particular, nonlinear quantum propagators with non-zero defect quantum electric-charge, are interpreted as {\\em exotic-quantum supergravity} effects. As an application, the recently discovered bound-state called $Zc(3900)$, is obtained as a neutral quasi-particle, generated in a $Q$-quantum exotic supergravity process. {\\em Quantum entanglement} is justified by means of the algebraic topologic structure of nonlinear quantum propagators. Quantum Cheshire cats are considered as examples of quantum entanglements. Existence theorem for solutions of $\\hat{(YM)}[i]$ admitting negative local temperatures ({\\em quantum thermodynamic-exotic solutions}) is obtained too and related to quantum entanglement. Such exotic solutions are used to encode Universe at the Planck-epoch. It is proved that the Universe's expansion at the Planck epoch is justified by the fact that it is encoded by a nonlinear quantum propagator having thermodynamic quantum exotic components in its boundary. This effect produces also an increasing of energy in the Universe at the Einstein epoch: {\\em Planck-epoch-legacy} on the boundary of our Universe. This is the main source of the Universe's expansion and solves the problem of the non-apparent energy-matter ({\\em dark-energy-matter}) in the actual Universe. Breit-Wheeler-type processes have been proved in the framework of the Pr\\'astaro's algebraic topology of quantum super Yang-Mills PDEs. Numerical comparisons of nonlinear quantum propagators with Weinberg-Salam electroweak theory in Standard Model are given.
Chemical Potential Dependence of Chiral Quark Condensate in Dyson-Schwinger Equation Approach of QCD
Lei Chang; Huan Chen; Bin Wang; Wei Yuan; Yu-xin Liu
2006-11-06T23:59:59.000Z
We propose a chemical potential dependent effective gluon propagator and study the chiral quark condensate in strongly interacting matter in the framework of Dyson-Schwinger equation approach. The obtained results manifest that, as the effect of the chemical potential on the effective gluon propagator is taken into account, the chiral quark condensate decreases gradually with the increasing of the chemical potential if it is less than the critical value, and the condensate vanishes suddenly at the critical chemical potential. The inclusion of the chemical potential in the effective gluon propagator enhances the decreasing rate and decreases the critical chemical potential. It indicates that the chiral symmetry can be restored completely at a critical chemical potential and restored partially as the chemical potential is less than the critical value. If the effective gluon propagator is independent of the chemical potential, the chiral symmetry can only be restored suddenly but no gradual restoration.
Effects of the symmetry energy on the kaon condensates in the QMC Model
Prafulla K. Panda; Débora P. Menezes; Constança Providęncia
2013-11-12T23:59:59.000Z
In this work we investigate protoneutron star properties within a modified version of the quark coupling model (QMC) that incorporates a omega-rho interaction plus kaon condensed matter at finite temperature. Fixed entropy and trapped neutrinos are taken into account. Our results are compared with the ones obtained with the GM1 parametrization of the non-linear Walecka model for similar values of the symmetry energy slope. Contrary to GM1, within the QMC the formation of low mass black-holes during cooling are not probable. It is shown that the evolution of the protoneutron star may include the melting of the kaon condensate driven by the neutrino diffusion, followed by the formation of a second condensate after cooling. The signature of this complex proccess could be a neutrino signal followed by a gamma ray burst. We have seen that both models can, in general, describe very massive stars.
The Condensate from Torus Knots
A. Gorsky; A. Milekhin; N. Sopenko
2015-06-22T23:59:59.000Z
We discuss recently formulated instanton-torus knot duality in $\\Omega$-deformed 5D SQED on $\\mathbb{R}^4 \\times S^1$ focusing at the microscopic aspects of the condensate formation in the instanton ensemble. Using the chain of dualities and geometric transitions we embed the SQED with a surface defect into the $SU(2)$ SQCD with $N_f=4$ and identify the numbers $(n,m)$ of the torus $T_{n,m}$ knot as instanton charge and electric charge. The HOMFLY torus knot invariants in the fundamental representation provide entropic factor in the condensate of the massless flavor counting the degeneracy of the instanton--W-boson web with instanton and electric numbers $(n,m)$ but different spin and flavor content. Using the inverse geometrical transition we explain how our approach is related to the evaluation of the HOMFLY invariants in terms of Wilson loop in 3d CS theory. The reduction to 4D theory is briefly considered and some analogy with baryon vertex is conjectured.
Chih-Chun Chien; Massimiliano Di Ventra; Michael Zwolak
2014-07-30T23:59:59.000Z
We compare the Landauer, Kubo, and microcanonical [J. Phys. Cond. Matter {\\bf 16}, 8025 (2004)] approaches to quantum transport for the average current, the entanglement entropy and the semiclassical full-counting statistics (FCS). Our focus is on the applicability of these approaches to isolated quantum systems such as ultra-cold atoms in engineered optical potentials. For two lattices connected by a junction, we find that the current and particle number fluctuations from the microcanonical approach compare well with the values predicted by the Landauer formalism and FCS assuming a binomial distribution. However, we demonstrate that well-defined reservoirs (i.e., particles in Fermi-Dirac distributions) are not present for a substantial duration of the quasi-steady state. Thus, the Landauer assumption of reservoirs and/or inelastic effects is not necessary for establishing a quasi-steady state. Maintaining such a state indefinitely requires an infinite system, and in this limit well-defined Fermi-Dirac distributions can occur. A Kubo approach -- in the spirit of the microcanonical picture -- bridges the gap between the two formalisms, giving explicit analytical expressions for the formation of the steady state. The microcanonical formalism is designed for closed, finite-size quantum systems and is thus more suitable for studying particle dynamics in ultra-cold atoms. Our results highlight both the connection and differences with more traditional approaches to calculating transport properties in condensed matter systems, and will help guide the way to their simulations in cold-atom systems.
Scattering off the Color Glass Condensate
Heikki Mäntysaari
2015-06-24T23:59:59.000Z
In this thesis the Color Glass Condensate (CGC) framework, which describes quantum chromodynamics (QCD) at high energy, is applied to various scattering processes. Higher order corrections to the CGC evolution equations, known as the BK and JIMWLK equations, are also considered. It is shown that the leading order CGC calculations describe the experimental data from electron-proton deep inelastic scattering (DIS), proton-proton and proton-nucleus collisions. The initial condition for the BK evolution equation is obtained by performing a fit to deep inelastic scattering data. The fit result is used as an input to calculations of single particle spectra and nuclear suppression in proton-proton and proton-nucleus collisions, which are shown to be in agreement with RHIC and LHC measurements. In particular, the importance of a proper description of the nuclear geometry consistently with the DIS data fits is emphasized, as it results in a nuclear suppression factor $R_{pA}$ which is consistent with the available experimental data. In addition to single particle production, the correlations between two hadrons at forward rapidity are computed. The RHIC measurements are shown to be naturally explainable in the CGC framework, and the previous CGC calculations are improved by including the so called inelastic and double parton scattering contributions. This improvement is shown to be required in order to get results compatible with the experimentally measured correlations. Exclusive vector meson production, which can be a powerful tool to study the gluonic structure of nuclei at small Bjorken-$x$, is also considered. The cross sections are calculated within the CGC framework in the context of a future electron-ion collider. In particular, the cross section for incoherent diffractive vector meson production is derived and a centrality estimator for this process is proposed.
Anticipating Patentable Subject Matter
Burk, DL
2015-01-01T23:59:59.000Z
February 2013] PATENTABLE SUBJECT MATTER patentability—imports into patent law’s subject matter provisions theunder either novelty or subject matter. The proper question
Vacuum energy: quantum hydrodynamics vs quantum gravity
G. E. Volovik
2005-09-09T23:59:59.000Z
We compare quantum hydrodynamics and quantum gravity. They share many common features. In particular, both have quadratic divergences, and both lead to the problem of the vacuum energy, which in the quantum gravity transforms to the cosmological constant problem. We show that in quantum liquids the vacuum energy density is not determined by the quantum zero-point energy of the phonon modes. The energy density of the vacuum is much smaller and is determined by the classical macroscopic parameters of the liquid including the radius of the liquid droplet. In the same manner the cosmological constant is not determined by the zero-point energy of quantum fields. It is much smaller and is determined by the classical macroscopic parameters of the Universe dynamics: the Hubble radius, the Newton constant and the energy density of matter. The same may hold for the Higgs mass problem: the quadratically divergent quantum correction to the Higgs potential mass term is also cancelled by the microscopic (trans-Planckian) degrees of freedom due to thermodynamic stability of the whole quantum vacuum.
5.74 Introductory Quantum Mechanics II, Spring 2007
Tokmakoff, Andrei
Time-dependent quantum mechanics and spectroscopy. Topics covered include perturbation theory, two-level systems, light-matter interactions, relaxation in quantum systems, correlation functions and linear response theory, ...
5.74 Introductory Quantum Mechanics II, Spring 2003
Tokmakoff, Andrei
Time-dependent quantum mechanics and spectroscopy. Topics covered include perturbation theory, two-level systems, light-matter interactions, relaxation in quantum systems, correlation functions and linear response theory, ...
Dual condensate and QCD phase transition
Zhang Bo; Bruckmann, Falk [Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg (Germany); Fodor, Zoltan; Szabo, Kalman K. [Department of Physics, University of Wuppertal, Gaussstr. 20, D-42119 (Germany); Gattringer, Christof [Institut fuer Physik, Universitaet Graz, Universitaetsplatz 5, A-8010 Graz (Austria)
2011-05-23T23:59:59.000Z
The dual condensate is a new QCD phase transition order parameter, which connnects confinement and chiral symmetry breaking as different mass limits. We discuss the relation between the fermion spectrum at general boundary conditions and the dual condensate and show numerical results for the latter from unquenched SU(3) lattice configurations.
Parallel Condensing System As A Heat Sink For Power Plants
Akhtar, S. Z.
Conventional heat sink technologies of use the condenser/cooling tower arrangement or an air cooled condenser for condensing exhaust steam from steam turbines. Each of these two systems have certain advantages as well as disadvantages. This paper...
Parallel Condensing System As A Heat Sink For Power Plants
Akhtar, S. Z.
2001-01-01T23:59:59.000Z
Conventional heat sink technologies of use the condenser/cooling tower arrangement or an air cooled condenser for condensing exhaust steam from steam turbines. Each of these two systems have certain advantages as well as disadvantages. This paper...
Matter Field, Dark Matter and Dark Energy
Masayasu Tsuge
2009-03-24T23:59:59.000Z
A model concerning particle theory and cosmology is proposed. Matter field, dark matter and dark energy are created by an energy flow from space to primordial matter fields at the phase transition in the early universe.
Condensation on Slippery Asymmetric Bumps
Park, Kyoo-Chul; He, Neil; Aizenberg, Joanna
2015-01-01T23:59:59.000Z
Bumps are omnipresent from human skin to the geological structures on planets, which offer distinct advantages in numerous phenomena including structural color, drag reduction, and extreme wettability. Although the topographical parameters of bumps such as radius of curvature of convex regions significantly influence various phenomena including anti-reflective structures and contact time of impacting droplets, the effect of the detailed bump topography on growth and transport of condensates have not been clearly understood. Inspired by the millimetric bumps of the Namib Desert beetle, here we report the identified role of radius of curvature and width of bumps with homogeneous surface wettability in growth rate, coalescence and transport of water droplets. Further rational design of asymmetric convex topography and synergetic combination with slippery coating simultaneously enable self-transport, leading to unseen five-fold higher growth rate and an order of magnitude faster shedding time of droplets compared...
PUBLISHED ONLINE: 19 JUNE 2011 | DOI: 10.1038/NPHYS2012 Dynamical d-wave condensation of
Loss, Daniel
interacting particles. Prime examples are superfluidity in helium1 , atomic BoseEinstein condensation2 , s of excitonpolaritons are eight to nine orders of magnitude higher than those of atomic BoseEinstein in semiconductor quantum wells embedded in a planar microcavity structure. They behave as degenerate Bose gases
Artificial light and quantum order in systems of screened dipoles
Xiao-Gang Wen
2003-04-14T23:59:59.000Z
The origin of light is a unsolved mystery in nature. Recently, it was suggested that light may originate from a new kind of order - quantum order. To test this idea in experiments, we study systems of screened magnetic/electric dipoles in 2D and 3D lattices. We show that our models contain an artificial light -- a photon-like collective excitation. We discuss how to design realistic devices that realize our models. We show that the ``speed of light'' and the ``fine structure constant'' of the artificial light can be tuned in our models. The properties of artificial atoms (bound states of pairs of artificial charges) are also discussed. The existence of artificial light (as well as artificial electron) in condensed matter systems suggests that elementary particles, such as light and electron, may not be elementary. They may be collective excitations of quantum order in our vacuum. Our models further suggest that a gauge theory is a string-net theory in disguise. Light is a fluctuation of nets of large closed strings and charge is the end of open strings.
Parametric Resonance and Dark Matter Axion-Like Particles
Arza, Ariel; Gamboa, Jorge
2015-01-01T23:59:59.000Z
We study the local effects of an external time-dependent magnetic field on axion-like particles assuming they are all the dark matter of the universe. We find that under suitable conditions the amplitude of the dark matter field can resonate parametrically. The resonance depends on the velocity of the axion-like particles and scales quadratically with the strength} of the external magnetic field, $\\frac{\\rho}{\\rho_{DM}} \\sim {B_0}^3$. By considering typical experimental benchmark values, we find the resonance could amplify around two orders of magnitude the local energy density stored in the dark matter condensate.
Interferometry with correlated matter-waves
Oksana I. Streltsova; Alexej I. Streltsov
2014-12-12T23:59:59.000Z
Matter-wave interferometry of ultra-cold atoms with attractive interactions is studied at the full many-body level. First, we study how a coherent light-pulse applied to an initially-condensed solitonic system splits it into two matter-waves. The split system looses its coherence and develops correlations with time, and inevitably becomes fragmented due to inter-particle attractions. Next, we show that by re-colliding the sub-clouds constituting the split density together, along with a simultaneous application of the same laser-pulse, one creates three matter-waves propagating with different momenta. We demonstrate that the number of atoms in the sub-cloud with zero-momentum is directly proportional to the degree of fragmentation in the system. This interferometric-based protocol to discriminate, probe, and measure the fragmentation is general and can be applied to ultra-cold systems with attractive, repulsive, short- and long-range interactions.
Crystalline chiral condensates as a component of compact stars
Carignano, S; de la Incera, V; Paulucci, L
2015-01-01T23:59:59.000Z
We investigate the influence of spatially inhomogeneous chiral symmetry-breaking condensates in a magnetic field background on the equation of state for compact stellar objects. After building a hybrid star composed of nuclear and quark matter using the Maxwell construction, we find, by solving the Tolman-Oppenheimer-Volkoff equations for stellar equilibrium, that our equation of state supports stars with masses around 2 $M_\\odot$ for values of the magnetic field that are in accordance with those inferred from magnetar data. The inclusion of a weak vector interaction term in the quark part allows to reach 2 solar masses for relatively small central magnetic fields, making this composition a viable possibility for describing the internal degrees of freedom of this class of astrophysical objects.
Crystalline chiral condensates as a component of compact stars
S. Carignano; E. J. Ferrer; V. de la Incera; L. Paulucci
2015-05-19T23:59:59.000Z
We investigate the influence of spatially inhomogeneous chiral symmetry-breaking condensates in a magnetic field background on the equation of state for compact stellar objects. After building a hybrid star composed of nuclear and quark matter using the Maxwell construction, we find, by solving the Tolman-Oppenheimer-Volkoff equations for stellar equilibrium, that our equation of state supports stars with masses around 2 $M_\\odot$ for values of the magnetic field that are in accordance with those inferred from magnetar data. The inclusion of a weak vector interaction term in the quark part allows to reach 2 solar masses for relatively small central magnetic fields, making this composition a viable possibility for describing the internal degrees of freedom of this class of astrophysical objects.
Dynamical Casimir Effect in Quantum Information Processing
Giuliano Benenti; Antonio D'Arrigo; Stefano Siccardi; Giuliano Strini
2014-07-28T23:59:59.000Z
We demonstrate, in the regime of ultrastrong matter-field coupling, the strong connection between the dynamical Casimir effect (DCE) and the performance of quantum information protocols. Our results are illustrated by means of a realistic quantum communication channel and show that the DCE is a fundamental limit for quantum computation and communication and that novel schemes are required to implement ultrafast and reliable quantum gates. Strategies to partially counteract the DCE are also discussed.
Description of quantum effects in the condensed phase
Silbey, Robert
Recent experiments on light harvesting complexes have shown clear indication of coherent transport of excitations in these aggregates. We review the theoretical models that have been used to study energy transfer in molecular ...
A fluid mechanical explanation of dark matter
Gibson, C H
1999-01-01T23:59:59.000Z
Matter in the universe has become ``dark'' or ``missing'' through misconceptions about the fluid mechanics of gravitational structure formation. Gravitational condensation occurs on non-acoustic density nuclei at the largest Schwarz length scale L_{ST}, L_{SV}, L_{SM}, L_{SD} permitted by turbulence, viscous, or magnetic forces, or by the fluid diffusivity. Non-baryonic fluids have diffusivities larger (by factors of trillions or more) than baryonic (ordinary) fluids, and cannot condense to nucleate baryonic galaxy formation as is usually assumed. Baryonic fluids begin to condense in the plasma epoch at about 13,000 years after the big bang to form proto-superclusters, and form proto-galaxies by 300,000 years when the cooling plasma becomes neutral gas. Condensation occurs at small planetary masses to form ``primordial fog particles'' from nearly all of the primordial gas by the new theory, Gibson (1996), supporting the Schild (1996) conclusion from quasar Q0957+651A,B microlensing observations that the mass ...
Experimental signatures of cosmological neutrino condensation
Mofazzal Azam; Jitesh R. Bhatt; Utpal Sarkar
2010-11-02T23:59:59.000Z
Superfluid condensation of neutrinos of cosmological origin at a low enough temperature can provide simple and elegant solution to the problems of neutrino oscillations and the accelerated expansion of the universe. It would give rise to a late time cosmological constant of small magnitude and also generate tiny Majorana masses for the neutrinos as observed from their flavor oscillations. We show that carefully prepared beta decay experiments in the laboratory would carry signatures of such a condensation, and thus, it would be possible to either establish or rule out neutrino condensation of cosmological scale in laboratory experiments.
Dynamics of capillary condensation in aerogels
Nomura, R.; Miyashita, W.; Yoneyama, K.; Okuda, Y. [Department of Condensed Matter Physics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8551 (Japan)
2006-03-15T23:59:59.000Z
Dynamics of capillary condensation of liquid {sup 4}He in various density silica aerogels was investigated systematically. Interfaces were clearly visible when bulk liquid was rapidly sucked into the aerogel. Time evolution of the interface positions was consistent with the Washburn model and their effective pore radii were obtained. Condensation was a single step in a dense aerogel and two steps in a low density aerogel. Crossover between the two types of condensation was observed in an intermediate density aerogel. Variety of the dynamics may be the manifestation of the fractal nature of aerogels which had a wide range of distribution of pore radii.
Osmotic pressure of matter and vacuum energy
G. E. Volovik
2009-10-04T23:59:59.000Z
The walls of the box which contains matter represent a membrane that allows the relativistic quantum vacuum to pass but not matter. That is why the pressure of matter in the box may be considered as the analog of the osmotic pressure. However, we demonstrate that the osmotic pressure of matter is modified due to interaction of matter with vacuum. This interaction induces the nonzero negative vacuum pressure inside the box, as a result the measured osmotic pressure becomes smaller than the matter pressure. As distinct from the Casimir effect, this induced vacuum pressure is the bulk effect and does not depend on the size of the box. This effect dominates in the thermodynamic limit of the infinite volume of the box. Analog of this effect has been observed in the dilute solution of 3He in liquid 4He, where the superfluid 4He plays the role of the non-relativistic quantum vacuum, and 3He atoms play the role of matter.
A disoriented chiral condensate search at the Fermilab Tevatron
Convery, M.E.
1997-05-01T23:59:59.000Z
MiniMax (Fermilab T-864) was a small test/experiment at the Tevatron designed to search for disoriented chiral condensates (DCC) in the forward direction. Relativistic quantum field theory treats the vacuum as a medium, with bulk properties characterized by long-range order parameters. This has led to suggestions that regions of {open_quotes}disoriented vacuum{close_quotes} might be formed in high-energy collision processes. In particular, the approximate chiral symmetry of QCD could lead to regions of vacuum which have chiral order parameters disoriented to directions which have non-zero isospin, i.e. disoriented chiral condensates. A signature of DCC is the resulting distribution of the fraction of produced pions which are neutral. The MiniMax detector at the C0 collision region of the Tevatron was a telescope of 24 multi-wire proportional chambers (MWPC`s) with a lead converter behind the eighth MWPC, allowing the detection of charged particles and photon conversions in an acceptance approximately a circle of radius 0.6 in pseudorapidity-azimuthal-angle space, centered on pseudorapidity {eta} {approx} 4. An electromagnetic calorimeter was located behind the MWPC telescope, and hadronic calorimeters and scintillator were located in the upstream anti-proton direction to tag diffractive events.
Quantum Chaos & Quantum Computers
D. L. Shepelyansky
2000-06-15T23:59:59.000Z
The standard generic quantum computer model is studied analytically and numerically and the border for emergence of quantum chaos, induced by imperfections and residual inter-qubit couplings, is determined. This phenomenon appears in an isolated quantum computer without any external decoherence. The onset of quantum chaos leads to quantum computer hardware melting, strong quantum entropy growth and destruction of computer operability. The time scales for development of quantum chaos and ergodicity are determined. In spite the fact that this phenomenon is rather dangerous for quantum computing it is shown that the quantum chaos border for inter-qubit coupling is exponentially larger than the energy level spacing between quantum computer eigenstates and drops only linearly with the number of qubits n. As a result the ideal multi-qubit structure of the computer remains rather robust against imperfections. This opens a broad parameter region for a possible realization of quantum computer. The obtained results are related to the recent studies of quantum chaos in such many-body systems as nuclei, complex atoms and molecules, finite Fermi systems and quantum spin glass shards which are also reviewed in the paper.
Chaotic dynamics in a periodically driven spin-1 condensate
Cheng Jing [Department of Physics, South China University of Technology, Guangzhou 510640 (China); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China)
2010-02-15T23:59:59.000Z
We use periodically modulated magnetic fields to drive spin-1 Bose-Einstein condensates (BECs) and study the corresponding spin-mixing dynamics. Due to the time-dependent driving, this system permits chaotic dynamics depending on the drive parameters, which could not occur in previous studies. From the investigation of the Poincare sections, we find there exist complex trajectories in the phase space, leading to very complicated structures of the phase space with mixed regular and chaotic regions. By calculating the quasienergy levels of the corresponding Floquet operators, the signatures of quantum chaos are also found in this system. The level spacing distribution is very close to the Poisson distribution or Wigner distribution when the corresponding classical dynamics is regular or chaotic.
Condensation on Slippery Asymmetric Bumps
Kyoo-Chul Park; Philseok Kim; Neil He; Joanna Aizenberg
2015-01-14T23:59:59.000Z
Bumps are omnipresent from human skin to the geological structures on planets, which offer distinct advantages in numerous phenomena including structural color, drag reduction, and extreme wettability. Although the topographical parameters of bumps such as radius of curvature of convex regions significantly influence various phenomena including anti-reflective structures and contact time of impacting droplets, the effect of the detailed bump topography on growth and transport of condensates have not been clearly understood. Inspired by the millimetric bumps of the Namib Desert beetle, here we report the identified role of radius of curvature and width of bumps with homogeneous surface wettability in growth rate, coalescence and transport of water droplets. Further rational design of asymmetric convex topography and synergetic combination with slippery coating simultaneously enable self-transport, leading to unseen five-fold higher growth rate and an order of magnitude faster shedding time of droplets compared to superhydrophobic surfaces. We envision that our fundamental understanding and innovative design of bumps can be applied to lead enhanced performance in various phase change applications including water harvesting.
Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition
Renate Landig; Ferdinand Brennecke; Rafael Mottl; Tobias Donner; Tilman Esslinger
2015-03-18T23:59:59.000Z
The dynamic structure factor is a central quantity describing the physics of quantum many-body systems, capturing structure and collective excitations of a material. In condensed matter, it can be measured via inelastic neutron scattering, which is an energy-resolving probe for the density fluctuations. In ultracold atoms, a similar approach could so far not be applied due to the diluteness of the system. Here, we report on a direct, real-time and non-destructive measurement of the dynamic structure factor of a quantum gas exhibiting cavity-mediated long-range interactions. The technique relies on inelastic scattering of photons, stimulated by the enhanced vacuum field inside a high finesse optical cavity. We extract the density fluctuations, their energy and lifetime while the system undergoes a structural phase transition. We observe an occupation of the relevant quasi-particle mode on the level of a few excitations, and provide a theoretical description of this dissipative quantum many-body system.
Optimizing Steam & Condensate System: A Case Study
Venkatesan, V. V.; Norris, C.
2011-01-01T23:59:59.000Z
Optimization of Steam & Condensate systems in any process plant results in substantial reduction of purchased energy cost. During periods of natural gas price hikes, this would benefit the plant in controlling their fuel budget significantly...
Cold condensation of dust in the ISM
Rouillé, Gaël; Krasnokutski, Serge A; Krebsz, Melinda; Henning, Thomas
2015-01-01T23:59:59.000Z
The condensation of complex silicates with pyroxene and olivine composition at conditions prevailing in molecular clouds has been experimentally studied. For this purpose, molecular species comprising refractory elements were forced to accrete on cold substrates representing the cold surfaces of surviving dust grains in the interstellar medium. The efficient formation of amorphous and homogeneous magnesium iron silicates at temperatures of about 12 K has been monitored by IR spectroscopy. The gaseous precursors of such condensation processes in the interstellar medium are formed by erosion of dust grains in supernova shock waves. In the laboratory, we have evaporated glassy silicate dust analogs and embedded the released species in neon ice matrices that have been studied spectroscopically to identify the molecular precursors of the condensing solid silicates. A sound coincidence between the 10 micron band of the interstellar silicates and the 10 micron band of the low-temperature siliceous condensates can be...
Hierarchical superhydrophobic aluminum surfaces for condensation applications
Lopez, Ken, S.B. Massachusetts Institute of Technology
2012-01-01T23:59:59.000Z
Many existing industrial systems, including thermal desalination plants and air conditioning systems, involve the process of condensation and are heavily dependent on this process for achieving adequate levels of energy ...
Dual condensates at finite isospin chemical potential
Zhang, Zhao
2015-01-01T23:59:59.000Z
The dual observables as order parameters for center symmetry are tested at finite isospin chemical potential $\\mu_I$ in a Polyakov-loop enhanced chiral model of QCD with physical quark masses. As a counterpart of the dressed Polyakov-loop, the first Fourier moment of pion condensate is introduced for $\\mu_I>{m_\\pi}/{2}$ under the temporal twisted boundary conditions for quarks. We demonstrate that this dual condensate exhibits the similar temperature dependence as the conventional Polyakov-loop. We confirm that its rapid increase with $T$ is driven by the evaporating of pion condensation. On the other hand, the dressed Polyakov-loop shows abnormal thermal behavior, which even decreases with $T$ at low temperatures due to the influence of pion condensate. We thus argue that in QCD the critical temperature extracting from a dual observable may have nothing to do with the quark confinement-deconfinement transition if the quark mass is very small.
Condensation heat transfer on superhydrophobic surfaces
Miljkovic, Nenad
Condensation is a phase change phenomenon often encountered in nature, as well as used in industry for applications including power generation, thermal management, desalination, and environmental control. For the past eight ...
Modeling and Optimization of Superhydrophobic Condensation
Miljkovic, Nenad
Superhydrophobic micro/nanostructured surfaces for dropwise condensation have recently received significant attention due to their potential to enhance heat transfer performance by shedding water droplets via coalescence-induced ...
Dropwise Condensation on Micro- and Nanostructured Surfaces
Miljkovic, Nenad
In this review we cover recent developments in the area of surface- enhanced dropwise condensation against the background of earlier work. The development of fabrication techniques to create surface structures at the micro- ...
Advanced materials for enhanced condensation heat transfer
Paxson, Adam Taylor
2014-01-01T23:59:59.000Z
This thesis investigates the use of three classes advanced materials for promoting dropwise condensation: 1. robust hydrophobic functionalizations 2. superhydrophobic textures 3. lubricant-imbibed textures We first define ...
Condensation heat transfer on nanoengineered surfaces
Paxson, Adam Taylor
2011-01-01T23:59:59.000Z
This thesis presents a series of three related studies with the aim of developing a surface that promotes robust dropwise condensation. Due to their remarkably low droplet adhesion, superhydrophobic surfaces were investigated ...
Time and Matter An International Colloquium on the Science of Time
Time and Matter An International Colloquium on the Science of Time August 11 - 17, 2002 at Venice International University, Italy Topics: Precise measurements of time Arrow of time in classical and quantum physics Tunneling time and various paradoxa in quantum physics Matter, antimatter and microscopic time
Bose-Einstein Condensation (For the 9th
Bose-Einstein Condensation (For the 9th Edition of the McGraw-Hill Encyclopedia of Science of bosonic particles is cooled below a critical temperature, it condenses into a Bose-Einstein condensate. Bose-Einstein condensation (BEC) is a phase-transition, which does not depend on the specific
Dropwise condensation on superhydrophobic surfaces with two-tier roughness
Chen, Chuan-Hua
Dropwise condensation on superhydrophobic surfaces with two-tier roughness Chuan-Hua Chen,a Qingjun condensation. Superhydrophobicity appears ideal to promote continued dropwise condensation which requires rapid. This letter reports continuous dropwise condensation on a superhydrophobic surface with short carbon nanotubes
Chikkatur, Ananth P.
2006-02-22T23:59:59.000Z
In this thesis, two different sets of experiments are described. The first is an exploration of the microscopic superfluidity of dilute gaseous Bose- Einstein condensates. The second set
Condensate polishers add operating reliability and flexibility
Layman, C.M.; Bennett, L.L.
2008-08-15T23:59:59.000Z
Many of today's advanced steam generators favour either an all-volatile treatment or oxygenated treatment chemistry programme, both of which require strict maintenance of an ultra-pure boiler fedwater ro condensate system. Those requirements are many times at odds with the lower-quality water sources, such as greywater, available for plant makeup and cooling water. Adding a condensate polisher can be a simple, cost-effective solution. 4 figs.
Measured Impacts of Air Conditioner Condenser Shading
Parker, D. S.; Barkaszi, S. F.; Sonne, J. K.
1996-01-01T23:59:59.000Z
(Sonne, et a]., 1993). Insolation was measured using two calibrated silicon cell pyranometers with a relative accuracy of 3%. One was located on the unobstructed roof top and the other placed by the outside condenser unit. Wind speed was provided....4 m) Wax myrtle trees (Myrica cerifera) and the larger specimen was a 10-foot (3.3 m) Live Oak (Quercus virginiana). The trees were located to provide a shade pattern with maximum afternoon coverage of the condensing unit and surrounding area...
Eugene A. Demler Harvard University, Department of Physics
Correlated Quantum Systems , ITAMP, Cambridge, Massachusetts Organizer, 2006 Winter Aspen Conference Matter and Materials Physics, Colorado. Organizer, 2002 Aspen Winter Conference on Condensed Matter
Quantum chaos and order based on classically moving reference frames
Hai Wenhua [Department of Physics, Hunan Normal University, Changsha 410081 (China); Department of Physics, Jishou University, Jishou 416000, Hunan (China); Xie Qiongtao; Fang Jianshu [Department of Physics, Hunan Normal University, Changsha 410081 (China)
2005-07-15T23:59:59.000Z
We develop a mathematically consistent approach for treating the quantum systems based on moving classical reference frames. The classical and quantum exact solutions show excellently classical-quantum correspondence, in which the quantum chaotic coherent states correspond to the classically chaotic motions. Applying the approach to the periodically driven linear and nonlinear oscillators, the regular and chaotic quantum states and quantum levels, and the quantum chaotic regions are evidenced. The results indicate that chaos may cause the collapse of matter wave packets and suppress the quantum effect of energy.
Neutrino matter potentials induced by Earth
J. Linder
2006-01-15T23:59:59.000Z
An instructive method of deriving the matter potentials felt by neutrinos propagating through matter on Earth is presented. This paper thoroughly guides the reader through the calculations involving the effective weak Hamiltonian for lepton and quark scattering. The matter potentials are well-known results since the late 70's, but a detailed and pedagogical calculation of these quantities is hard to find. We derive potentials due to charged and neutral current scattering on electrons, neutrons and protons. Intended readership is for undergraduates/graduates in the fields of relativistic quantum mechanics and quantum field theory. In addition to the derivation of the potentials for neutrinos, we explicitely study the origin of the reversed sign for potentials in the case of antineutrino-scattering.
Matter Wave Radiation Leading to Matter Teleportation
Yong-Yi Huang
2015-02-12T23:59:59.000Z
The concept of matter wave radiation is put forward, and its equation is established for the first time. The formalism solution shows that the probability density is a function of displacement and time. A free particle and a two-level system are reinvestigated considering the effect of matter wave radiation. Three feasible experimental designs, especially a modified Stern-Gerlach setup, are proposed to verify the existence of matter wave radiation. Matter wave radiation effect in relativity has been formulated in only a raw formulae, which offers another explanation of Lamb shift. A possible mechanics of matter teleportation is predicted due to the effect of matter wave radiation.
Reginald T. Cahill
2005-06-06T23:59:59.000Z
In 1990 Alcubierre, within the General Relativity model for space-time, proposed a scenario for `warp drive' faster than light travel, in which objects would achieve such speeds by actually being stationary within a bubble of space which itself was moving through space, the idea being that the speed of the bubble was not itself limited by the speed of light. However that scenario required exotic matter to stabilise the boundary of the bubble. Here that proposal is re-examined within the context of the new modelling of space in which space is a quantum system, viz a quantum foam, with on-going classicalisation. This model has lead to the resolution of a number of longstanding problems, including a dynamical explanation for the so-called `dark matter' effect. It has also given the first evidence of quantum gravity effects, as experimental data has shown that a new dimensionless constant characterising the self-interaction of space is the fine structure constant. The studies here begin the task of examining to what extent the new spatial self-interaction dynamics can play a role in stabilising the boundary without exotic matter, and whether the boundary stabilisation dynamics can be engineered; this would amount to quantum gravity engineering.
Dorfman, Konstantin E.
2010-07-14T23:59:59.000Z
description of a dilute Bose gas was formulated by Bogoliubov [5-8, 22, 23]. The main idea is in separating the condensate contribution to the bosonic field operator. In general, the field operator can be written as ??(r) =summationtextk?k(r)?ak, where ?k... of the systematic application of the quantum field theory to an interacting sys- tem of bosons due to Beliaev [7, 8, 22]. This leads to a generalized Green?s function formalism, which builds in the crucial role of the Bose condensate and allows one to determine...
Dorfman, Konstantin E.
2010-07-14T23:59:59.000Z
description of a dilute Bose gas was formulated by Bogoliubov [5-8, 22, 23]. The main idea is in separating the condensate contribution to the bosonic field operator. In general, the field operator can be written as ??(r) =summationtextk?k(r)?ak, where ?k... of the systematic application of the quantum field theory to an interacting sys- tem of bosons due to Beliaev [7, 8, 22]. This leads to a generalized Green?s function formalism, which builds in the crucial role of the Bose condensate and allows one to determine...
RELATIVISTIC QUANTUM FIELD THEORY OF A HYPERNUCLEI
Boguta, J.
2013-01-01T23:59:59.000Z
0 Nuclei in Relativistic Field Theory of Nuclear Matter, LBLRelativistic Quantum Field Theory of Finite Nuclei, LBL prein a Relativistic Mean-Field Theory, Stanford preprint F.E.
Webb, R.L.; Chamra, L.; Jaber, H.
1992-02-01T23:59:59.000Z
Electric utility steam condensers typically use plain tubes made of titanium, stainless steel, or copper alloys. Approximately two-thirds of the total thermal resistance is on the water side of the plain tube. This program seeks to conceive and develop a tube geometry that has special enhancement geometries on the tube (water) side and the steam (shell) side. This ``enhanced`` tube geometry, will provide increased heat transfer coefficients. The enhanced tubes will allow the steam to condense at a lower temperature. The reduced condensing temperature will reduce the turbine heat rate, and increase the plant peak load capability. Water side fouling and fouling control is a very important consideration affecting the choice of the tube side enhancement. Hence, we have consciously considered fouling potential in our selection of the tube side surface geometry. Using appropriate correlations and theoretical models, we have designed condensation and water side surface geometries that will provide high performance and be cleanable using sponge ball cleaning. Commercial tube manufacturers have made the required tube geometries for test purposes. The heat transfer test program includes measurement of the condensation and water side heat transfer coefficients. Fouling tests are being run to measure the waterside fouling resistance, and to the test the ability of the sponge ball cleaning system to clean the tubes.
Briens, Frederic Jean-Louis
1986-01-01T23:59:59.000Z
of drawdown or buildup tests, the formation permeability can be estimated. Although these conventional techniques have been successfully applied to 'dry' gas well analysis, they have not been extended to high-pressure gas condensate wells. The application... Condensate Reser voir Data. . 43 Elf Aquitaine Gas Condensate Reservoir Fluid Composition Elf Aquitaine Gas Condensate Well Production Test Data. Drawdown Test F1 of Elf Aquitaine Gas Condensate Mell 45 46 Drawdown Test F2 of Elf Aquitaine Gas...
Instability of condensate lm and capillary blocking in small-diameter-thermosyphon condensers
Zhao, Tianshou
. Teng, P. Cheng*, T.S. Zhao Department of Mechanical Engineering, The Hong Kong University of Science, such as air-conditioning, refriger- ation, and heat-pipe condensers, etc. The concurrent two be encountered in both concurrent and countercurrent condensers. In large-diameter (either concurrent
Quantum holographic encoding in a two-dimensional electron gas
Moon, Christopher
2010-05-26T23:59:59.000Z
The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures - 'molecular holograms' - which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as {approx}0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm{sup 2} and place tens of bits into a single fermionic state.
Roll Wave Effects on Annular Condensing Heat Transfer in Horizontal PCCS Condenser Tube
Masaya Kondo; Hideo Nakamura; Yoshinari Anoda [Japan Atomic Energy Research Institute, Tokai-mura 319-1195 (Japan); Sadanori Saishu; Hiroyuki Obata; Rumi Shimada [Japan Atomic Power Company (Japan); Shinichi Kawamura [Tokyo Electric Power Company, Incorporated, 1-3, Uchisaiwai-cho 1-chome, Chiyoda-ku, Tokyo, 1008560 (Japan)
2002-07-01T23:59:59.000Z
A horizontal in-tube condensation heat exchanger is under investigation to be used for a passive containment cooling system (PCCS) of a next generation-type BWR. The flow conditions in the horizontal condenser tube were observed both visually and by local void fraction fluctuation. The observed flow regimes at a rated condition were annular flow at the tube inlet, and turned gradually into wavy flow and smooth stratified flow along the length of the tube. It was found further that frequency of the roll waves that appear on the liquid film in the annular flow is closely related to the measured local condensation heat transfer coefficient. Based on the flow observation, the roll wave frequency and measured condensation heat transfer coefficient, a model is proposed which predicts the condensation heat transfer coefficient particularly for annular flows around the tube inlet region. The proposed heat transfer model predicts well the influences of pressure, local gas-phase velocity and film thickness. (authors)
April 22, 2011 Institute for Quantum Matter
von der Heydt, Rüdiger
Spectroscopy · Neutron (SNS, NIST) · THz photon (JHU) · Micro waves (JHU) · Raman (JHU) · Angle Resolved Photo #12;Spectroscopy at National facilities Spallation Neutron Source, ORNL Advanced Light Source, LBNL NIST Center for Neutron Research #12;Accomplishments 2008-present · The Experimental Frontier Cold
Color superconductivity and dense quark matter
Massimo Mannarelli
2008-12-26T23:59:59.000Z
The properties of cold and dense quark matter have been the subject of extensive investigation, especially in the last decade. Unfortunately, we still lack of a complete understanding of the properties of matter in these conditions. One possibility is that quark matter is in a color superconducting phase which is characterized by the formation of a diquark condensate. We review some of the basic concepts of color superconductivity and some of the aspects of this phase of matter which are relevant for compact stars. Since quarks have color, flavor as well as spin degrees of freedom many different color superconducting phases can be realized. At asymptotic densities QCD predicts that the color flavor locked phase is favored. At lower densities where the QCD coupling constant is large, perturbative methods cannot be applied and one has to rely on some effective model, eventually trying to constrain such a model with experimental observations. The picture is complicated by the requirement that matter in the interior of compact stars is in weak equilibrium and neutral. These conditions and the (possible) large value of the strange quark mass conspire to separate the Fermi momenta of quarks with different flavors, rendering homogenous superconducting phases unstable. One of the aims of this presentation is to introduce non-experts in the field to some of the basic ideas of color superconductivity and to some of its open problems.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Dark Matter Theory Dark Matter Theory Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505)...
QUANTUM CHAOS IN QUANTUM NETWORKS()
Shepelyansky, Dima
QUANTUM CHAOS IN QUANTUM NETWORKS() Chepelianskii Alexei LycÂ´ee Pierre de Fermat and Quantware MIPS Computers and Quantum Chaos", June 28 - 30, 2001, Villa Olmo, Como, Italy #12;SHORT DESCRIPTION OF THE RESULTS Quantum chaos in a quantum small world We introduce and study a quantum small world model
Color superconductivity with determinant interaction in strange quark matter
Amruta Mishra; Hiranmaya Mishra
2006-08-28T23:59:59.000Z
We investigate the effect of six fermion determinant interaction on color superconductivity as well as on chiral symmetry breaking. Coupled mass gap equations and the superconducting gap equation are derived through the minimisation of the thermodynamic potential. The effect of nonzero quark -- antiquark condensates on the superconducting gap is derived. This becomes particularly relevant for the case of 2-flavor superconducting matter with unpaired strange quarks in the diquark channel. While the effect of six fermion interaction leads to an enhancement of u-d superconductivity, due to nonvanishing strange quark--antiquark condensates, such an enhancement will be absent at higher densities for u-s or d-s superconductivity due to early (almost) vanishing of light quark-- antiquark condensates.
New Horizons in Gravity: The Trace Anomaly, Dark Energy and Condensate Stars
Mottola, Emil
2010-01-01T23:59:59.000Z
General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degrees of freedom in the extended effective field theory of gravity generated by the trace anomaly of massless quantum fields in curved space. The origin of these conformal scalar degrees of freedom as massless poles in two-particle intermediate states of anomalous amplitudes in flat space is exposed. At event horizons the conformal anomaly scalar degrees of freedom can have macroscopically large effects on the geometry, potentially removing the classical event horizon of black hole and cosmological spacetimes, replacing them with a quantum boundary layer where the effective value of the gravitational vacuum energy density can change. In the effective theory, the cosmological term becomes a dynamical condensate, whose value depends upon boundary conditions near the horizon. In the conformal phase where the anomaly induced fluctutations dominate, and the conden...
Preoperational test report, recirculation condenser cooling systems
Clifton, F.T.
1997-11-04T23:59:59.000Z
This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.
Landau-Peierls instability in a Fulde-Ferrell type inhomogeneous chiral condensed phase
Tong-Gyu Lee; Eiji Nakano; Yasuhiko Tsue; Toshitaka Tatsumi; Bengt Friman
2015-04-13T23:59:59.000Z
We investigate the stability of an inhomogeneous chiral condensed phase against low energy fluctuations about a spatially modulated order parameter. This phase corresponds to the so-called dual chiral density wave in the context of quark matter, where the chiral condensate is spatially modulated with a finite wavevector in a single direction. From the symmetry viewpoint, the phase realizes a locking of flavor and translational symmetries. Starting with a Landau-Ginzburg-Wilson effective Lagrangian, we find that the associated Nambu-Goldstone modes, whose dispersion relations are spatially anisotropic and soft in the direction normal to the wavevector of the modulation, wash out the long-range order at finite temperatures, but support algebraically decaying long-range correlations. This implies that the phase can exhibit a quasi-one-dimensional order as in liquid crystals.
New generation low-energy probes for ultralight axion and scalar dark matter
Stadnik, Yevgeny V
2015-01-01T23:59:59.000Z
We present a brief overview of a new generation of high-precision laboratory and astrophysical measurements to search for ultralight (sub-eV) axion, axion-like pseudoscalar and scalar dark matter, which form either a coherent condensate or topological defects (solitons). In these new detection methods, the sought effects are linear in the interaction constant between dark matter and ordinary matter, which is in stark contrast to traditional searches for dark matter, where the sought effects are quadratic or higher order in the underlying interaction constants (which are extremely small).
New generation low-energy probes for ultralight axion and scalar dark matter
Yevgeny V. Stadnik; Victor V. Flambaum
2015-06-28T23:59:59.000Z
We present a brief overview of a new generation of high-precision laboratory and astrophysical measurements to search for ultralight (sub-eV) axion, axion-like pseudoscalar and scalar dark matter, which form either a coherent condensate or topological defects (solitons). In these new detection methods, the sought effects are linear in the interaction constant between dark matter and ordinary matter, which is in stark contrast to traditional searches for dark matter, where the sought effects are quadratic or higher order in the underlying interaction constants (which are extremely small).
Condenser optic with sacrificial reflective surface
Tichenor, Daniel A.; Kubiak, Glenn D.; Lee, Sang Hun
2006-07-25T23:59:59.000Z
Employing collector optics that have a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics are normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.
Condenser optic with sacrificial reflective surface
Tichenor, Daniel A. (Castro Valley, CA); Kubiak, Glenn D. (Livermore, CA); Lee, Sung Hun (Sunnyvale, CA)
2007-07-03T23:59:59.000Z
Employing collector optics that has a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics is normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.
The Pumpless Alternative to Condensate Return
Sneary, M. L.; Buchanan, M. G.
1995-01-01T23:59:59.000Z
F. Each vat has a temperature control valve on the steam supply line and the condensate was trapped and returned to a vented pump set. (See Figure G). The pump set was replaced with a closed/flash system. A tube and shell heat exchanger... heat energy through a vent line so the condensate can? cool and be pumped. This heat energy can be seen and is called flash steam. Along with the heat energy, boiler water and chemicals are also lost to the atmosphere. (See Figure B). Open...
Light-gas effect on steam condensation
Anderson, M.H.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States); Herranz, L.E. [Centro de Investigcaiones Energeticas Medioambientales y Tecnologicas, Madrid (Spain)
1997-12-01T23:59:59.000Z
In a postulated reactor accident, the loss of coolant results in a release of high-temperature steam into the containment. Under these circumstances steam condensation onto containment walls provides an effective mechanism of energy removal. However, the presence of noncondensable gas is known to degrade the heat transfer. It has also been found that the introduction of a light noncondensable gas has little effect until sufficient quantities are present to disrupt the buoyancy forces. Our investigation shows the dramatic effect of high concentrations of light gas decreasing steam condensation rates under anticipated accident conditions for AP600, with helium as the simulant for hydrogen.
Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems
P. Marini; H. Zheng; M. Boisjoli; G. Verde; A. Chbihi; G. Ademard; L. Auger; C. Bhattacharya; B. Borderie; R. Bougault; J. Frankland; E. Galichet; D. Gruyer; S. Kundu; M. La Commara; I. Lombardo; O. Lopez; G. Mukherjee; P. Napolitani; M. Parlog; M. F. Rivet; E. Rosato; R. Roy; G. Spadaccini; M. Vigilante; P. C. Wigg; A. Bonasera
2015-01-03T23:59:59.000Z
We report experimental signals of Bose-Einstein condensation in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4$\\pi$ detector array to the forward angle VAMOS magnetic spectrometer, allowed us to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. Furthermore, by means of quantum fluctuation analysis techniques, temperatures and mean volumes per particle "as seen by" bosons and fermions separately are correlated to the excitation energy of the reconstructed system. The obtained results are consistent with the production of dilute mixed (bosons/fermions) systems, where bosons experience a smaller volume as compared to the surrounding fermionic gas. Our findings recall similar phenomena observed in the study of boson condensates in atomic traps.
Kennedy, John M.; Kim, Sunwoo; Kim, Kwang J.
2009-10-06T23:59:59.000Z
Phase change heat transfer is notorious for increasing the irreversibility of, and therefore decreasing the efficiency of, geothermal power plants. Its significant contribution to the overall irreversibility of the plant makes it the most important source of inefficiency in the process. Recent studies here have shown the promotion of drop wise condensation in the lab by means of increasing the surface energy density of a tube with nanotechnology. The use of nanotechnology has allowed the creation of surface treatments which discourage water from wetting a tube surface during a static test. These surface treatments are unique in that they create high- contact angles on the condensing tube surfaces to promote drop wise condensation.
QCD sum rules for the baryon octet in nuclear matter
E. L. Kryshen
2011-08-01T23:59:59.000Z
The baryon self-energies are expressed in terms of the QCD condensates of the lowest dimension in symmetric and asymmetric nuclear matter within the QCD sum-rule approach. The self-energies are shown to satisfy the Gell-Mann--Okubo relations in the linear SU(3) breaking approximation. The results are in qualitative agreement with those obtained by the standard nuclear physics methods.
Zach Medin; Dong Lai
2008-01-18T23:59:59.000Z
For sufficiently strong magnetic fields and/or low temperatures, the neutron star surface may be in a condensed state with little gas or plasma above it. Such surface condensation can significantly affect the thermal emission from isolated neutron stars, and may lead to the formation of a charge-depleted acceleration zone ("vacuum gap") in the magnetosphere above the stellar polar cap. Using the latest results on the cohesive property of magnetic condensed matter, we quantitatively determine the conditions for surface condensation and vacuum gap formation in magnetic neutron stars. We find that condensation can occur if the thermal energy kT of the neutron star surface is less than about 8% of its cohesive energy Q_s, and that a vacuum gap can form if the neutron star's rotation axis and magnetic moment point in opposite directions and kT is less than about 4% of Q_s. Thus, vacuum gap accelerators may exist for some neutron stars. Motivated by this result, we also study the physics of pair cascades in the vacuum gap model for photon emission by accelerating electrons and positrons due to both curvature radiation and resonant/nonresonant inverse Compton scattering. Our calculations of the condition of cascade-induced vacuum breakdown and the related pulsar death line/boundary generalize previous works to the superstrong field regime. We find that inverse Compton scatterings do not produce a sufficient number of high energy photons in the gap and thus do not lead to pair cascades for most neutron star parameters. We discuss the implications of our results for the recent observations of neutron star thermal radiation as well as for the detection/non-detection of radio emission from high-B pulsars and magnetars.
Atmospheric Condensation Potential of Windows in Hot, Humid Climates
El Diasty, R.; Budaiwi, I.
1992-01-01T23:59:59.000Z
condensation rate has been obtained by utilizing a simplified transient uni-dimensional finite difference model. The results show that this model has enhanced the assessment of the potential for atmospheric condensation on windows in hot, humid climates...
Energy Savings By Recovery of Condensate From Steam Heating System
Cheng, W. S.; Zhi, C. S.
1985-01-01T23:59:59.000Z
the problem of air bleeding, and 4) Scientific management of condensate system and bleed valve. If the above mentioned points are well dealt with, the recovery and utilization of condensate will be very beneficial....
Finite-temperature phase diagram of a polarized Fermi condensate
Loss, Daniel
at zero temperature on the molecular BoseEinstein condensate side. On this basis, we argue investigation of the crossover from a BoseEinstein condensate (BEC) of diatomic molecules to the Bardeen
An Analysis of Steam Process Heater Condensate Drainage Options
Risko, J. R.
for those installations with unsuitable condensate drainage include: ? Condensate being visibly wasted from the heat exchanger discharge side, either from a hose connection at the strainer, or an opened union or drain valve on the steam trap's outlet...
Energy Conservation-As it Applies to Condensate Return Systems
Sneary, M. L.
1985-01-01T23:59:59.000Z
Valuable heat energy in condensate is wasted when it is vented to the atmosphere in the form of flash steam at many condensate pumping stations. This heat energy may be recovered and put to use if the pumping station can ...
Film condensation of liquid metals -- precision of measurement
Wilcox, Stanley James
1969-01-01T23:59:59.000Z
Major differences exist in results published by investigators of film condensation of liquid metal vapors. In particular, the reported dependence of the condensation coefficient on pressure has raised questions about both ...
Transient direct-contact condensation on liquid droplets
Pasamehmetoglu, K.O.; Nelson, R.A.
1987-01-01T23:59:59.000Z
In this paper, direct-contact condensation on subcooled liquid droplets is studied in two parts. In the first part, simple design correlations for the condensation in a steady environment are developed based upon a conduction model. These correlations include the convective heat-transfer coefficient, condensation rate, total condensation, and the droplet-thermalization time. In the second part of the paper, the effect of a time-dependent saturation temperature on the condensation process is investigated. A rapid decrease in saturation temperature is typical of condensation environments in which the steam-supply rate is limited and condensation-induced depressurization becomes important. Design correlations are developed for condensation in an environment in which the saturation temperature decreases linearly with time. These correlations are graphically compared to the design correlations of the first part through a quasi-steady approach. The error associated with this approach is quantified as a function of the rate of change of the saturation temperature.
Heat transfer during film condensation of potassium vapor
Kroger, Detlev Gustav
1966-01-01T23:59:59.000Z
The object of this work is to investigate theoretically and experimentally the following two phases of heat transfer during condensation of potassium vapore, a. Heat transfer during film condensation of pure saturated ...
ANTENNA-COUPLED LIGHT-MATTER INTERACTIONS
NOVOTNY, LUKAS
2014-01-10T23:59:59.000Z
This project is focused on antenna-coupled photon emission from single quantum emitters. The properties of optical antennas are tailored to control different photophysical parameters, such as the excited state lifetime, the saturation intensity, and the quantum yield [3]. Using a single molecule coupled to an optical antenna whose position and properties can be controllably adjusted we established a detailed and quantitative understanding of light-matter interactions in nanoscale environments. We have studied various quantum emitters: single molecules [11], quantum dots [7], rareearth ions [2], and NV centers in diamond [19]. We have systematically studied the interaction of these emitters with optical antennas. The overall objective was to establish a high-level of control over the light-matter interaction. In order to eliminate the coupling to the environment, we have taken a step further and explored the possibility of levitating the quantum emitter in high vacuum. What started as a side-project soon became a main activity in our research program and led us to the demonstration of vacuum trapping and cooling of a nanoscale particle [14].
Cosmic Background Radiation Due to Photon Condensation
B. G. Sidharth
1998-06-10T23:59:59.000Z
It is shown that a collection of photons with nearly the same frequency exhibits a Bose "condensation" type of phenomenon at about 3 degrees K corresponding to a peak intensity at a wave length of about 0.4cm. This could give a mechanism for the observed Cosmic Background Radiation, and also explain some curious features.
Bose-Einstein Condensation in Compactified Spaces
Kiyoshi Shiraishi
2012-11-26T23:59:59.000Z
We discuss the thermodynamic potential of a charged Bose gas with the chemical potential in arbitrary dimensions. The critical temperature for Bose-Einstein condensation is investigated. In the case of the compactified background metric, it is shown that the critical temperature depends on the size of the extra spaces. The asymmetry of the "Kaluza-Klein charge" is also discussed.
Proof of Concept: Cloud Condensation Nucleus Counter
Delene, David J.
North Dakota project. The solid circle is the mean value, the horizontal line is the 50th percentile Price High Price #12;Research Applications · One commercially available cloud condensation nuclei (CCN) counter. · Available since 2002 · Sold over 100 Units, Mostly Labs · Price is Approximately $70
Aerosol Condensational Growth in Cloud Formation
Geng, Jun
2010-10-12T23:59:59.000Z
A code for the quasi-stationary solution of the coupled heat and mass transport equations for aerosols in a finite volume was developed. Both mass and heat are conserved effectively in the volume, which results in a competitive aerosol condensation...
Gas condensate damage in hydraulically fractured wells
Adeyeye, Adedeji Ayoola
2004-09-30T23:59:59.000Z
This project is a research into the effect of gas condensate damage in hydraulically fractured wells. It is the result of a problem encountered in producing a low permeability formation from a well in South Texas owned by the El Paso Production...
Promising Technology: Condensing Gas Water Heaters
Broader source: Energy.gov [DOE]
Condensing water heaters achieve higher efficiencies than conventional water heaters by capturing the latent heat from water vapor contained in the flue gases. Combustion gases are exhausted through a secondary heat exchanger where the latent heat of water vapor in the exhaust gas is transferred to the stored water. This technology enables the water heater to achieve thermal efficiencies up to 99%.
Water Management for Evaporatively Cooled Condensers
California at Davis, University of
Water Management for Evaporatively Cooled Condensers Theresa Pistochini May 23rd, 2012 ResearchAirCapacity,tons Gallons of Water Continuous Test - Outdoor Air 110-115 Deg F Cyclic Test - Outdoor Air 110-115 Deg F #12 AverageWaterHardness(ppm) Cooling Degree Days (60°F Reference) 20% Population 70% Population 10
Optimizing Steam & Condensate System: A Case Study
Venkatesan, V. V.; Norris, C.
2011-01-01T23:59:59.000Z
for electricity). The site generates steam for its process operation from 3 gas fired boilers at 525-psig pressure. The steam is consumed at 5 process areas; Acid, Basics, Crystals, Derivatives & Hydrogen plants. All of the process areas recover condensate inside...
Measured Impacts of Air Conditioner Condenser Shading
Parker, D. S.; Barkaszi, S. F.; Sonne, J. K.
1996-01-01T23:59:59.000Z
-and-after experiments conducted on three homes over a two year period. A recent EPA study recommends shading of exterior AC condensers, using landscaping or other means, as a method to reduce space cooling energy use (Akbari et al., 1992)....
Di-Antiquarks condensation in Color Superconductivity
Fabio L. Braghin
2006-11-30T23:59:59.000Z
Some consequences of a classical vector field (chromo-electromagnetic field) coupled to quarks, which undergo to superfluid and/or superconductive states with diquark / diantiquark condensation, are investigated. For this, one scalar field exchange is considered in the lines investigated by Pisarski and Rischke \\cite{PISARSKI-RISCHKE} in the mean field approach. Some effects and possible consequences are discussed.
Chikkatur, Ananth P., 1975-
2003-01-01T23:59:59.000Z
In this thesis, two different sets of experiments are described. The first is an exploration of the microscopic superfluidity of dilute gaseous Bose-Einstein condensates. The second set of experiments were performed using ...
Quantum Dynamics of Solitons in Strongly Interacting Systems on Optical Lattices
Rubbo, Chester P; Reinhardt, William P; Balakrishnan, Radha; Rey, Ana Maria; Manmana, Salvatore R
2012-01-01T23:59:59.000Z
Mean-field dynamics of strongly interacting bosons has been shown to support two species of solitons: one of Gross-Pitaevski (GP)-type where the condensate fraction remains dark and a novel non-GP-type characterized by brightening of the condensate fraction. Here we study the effects of quantum fluctuations on these solitons using the adaptive time-dependent density matrix renormalization group method, which takes into account the effect of strong correlations. We use local observables as the density, condensate density and correlation functions as well as the entanglement entropy to characterize the stability of the initial states. We find both species of solitons to be stable under quantum evolution for a finite duration, their tolerance to quantum fluctuations being enhanced as the width of the soliton increases. We describe possible experimental realizations in atomic Bose Einstein Condensates, polarized degenerate Fermi gases, and in systems of polar molecules on optical lattices.
Fayer, Michael D.
Does Quantum Mechanics Make Sense?Does Quantum Mechanics Make Sense? Some relatively simple Classical Mechanics Quantum Mechanics Relative Absolute What does relative vs. absolute size mean?What does relative vs. absolute size mean? Why does it matter?Why does it matter? #12;Classical Mechanics
Modular invariant gaugino condensation in the presence of ananomalous U(1)*
Gaillard, Mary K.; Giedt, Joel; Mints, Aleksey L.
2003-12-10T23:59:59.000Z
Starting from the previously constructed effective supergravity theory below the scale of U(1) breaking in orbifold compactifications of the weakly coupled heterotic string, we study the effective theory below the scale of supersymmetry breaking by gaugino and matter condensation in a hidden sector. Questions we address include vacuum stability and the masses of the various moduli fields, including those associated with flat directions at the U(1) breaking scale, and of their fermionic superpartners. The issue of soft supersymmetry-breaking masses in the observable sector presents a particularly serious challenge for this class of models.
REVIEW ARTICLE FOCUS BoseEinstein condensation in
Loss, Daniel
REVIEW ARTICLE FOCUS BoseEinstein condensation in magnetic insulators The BoseEinstein condensate-mail: thierry.giamarchi@physics.unige.ch; c.ruegg@ucl.ac.uk; olegt@jhu.edu Not long after Bose and Einstein . It is thus natural to ask whether these bosons can undergo Bose Einstein condensation and become superfluid
Quantum gravitational dust collapse does not result in a black hole
Cenalo Vaz
2014-12-22T23:59:59.000Z
Quantum gravity suggests that the paradox recently put forward by Almheiri et. al. (AMPS) can be resolved if matter does not undergo continuous collapse to a singularity but condenses on the apparent horizon. One can then expect a quasi-static object to form even after the gravitational field has overcome any degeneracy pressure of the matter fields. We consider dust collapse. If the collapse terminates on the apparent horizon, the Misner-Sharp mass function of the dust ball is predicted and we construct static solutions with no tangential pressure that would represent such a compact object. The collapse wave functions indicate that there will be processes by which energy extraction from the center occurs. These leave behind a negative point mass at the center which contributes to the total energy of the system but has no effect on the the energy density of the dust ball. The solutions describe a compact object whose boundary lies outside its Schwarzschild radius and which is hardly distinguishable from a neutron star.
Fermi points and topological quantum phase transitions in a model of superconducting wires
T. O. Puel; P. D. Sacramento; M. A. Continentino
2015-06-01T23:59:59.000Z
The importance of models with an exact solution for the study of materials with non-trivial topological properties has been extensively demonstrated. Among these, the Kitaev model of a one-dimensional $p$-wave superconductor plays a guiding role in the search for Majorana modes in condensed matter systems. Also, the $sp$ chain, with an anti-symmetric mixing among the $s$ and $p$ bands provides a paradigmatic example of a topological insulator with well understood properties. There is an intimate relation between these two models and in particular their topological quantum phase transitions share the same universality class. Here we consider a two-band $sp$ model of spinless fermions with an attractive (inter-band) interaction. Both the interaction and hybridization between the $s$ and $p$ fermions are anti-symmetric. The zero temperature phase diagram of the model presents a variety of phases including a Weyl superconductor, topological insulator and trivial phases. The quantum phase transitions between these phases can be either continuous or discontinuous. We show that the transition from the topological superconducting phase to the trivial one has critical exponents different from those of an equivalent transition in Kitaev's model.
Wei-Dong Li; Yunbo Zhang; J. -Q. Liang
2003-05-21T23:59:59.000Z
The energy band structure and energy splitting due to quantum tunneling in two weakly linked Bose-Einstein condensates were calculated by using the instanton method. The intrinsic coherent properties of Bose Josephson junction were investigated in terms of energy splitting. For $E_{C}/E_{J}\\ll 1$, the energy splitting is small and the system is globally phase coherent. In the opposite limit, $E_{C}/E_{J}\\gg 1$, the energy splitting is large and the system becomes a phase dissipation. Our reslults suggest that one should investigate the coherence phenomna of BJJ in proper condition such as $E_{C}/E_{J}\\sim 1$.
Jain, Piyush; Cinti, Fabio; Boninsegni, Massimo [Department of Physics, University of Alberta, Edmonton, Alberta (Canada)
2011-07-01T23:59:59.000Z
Low-temperature properties of harmonically confined two-dimensional assemblies of dipolar bosons are systematically investigated by Monte Carlo simulations. Calculations carried out for different numbers of particles and strengths of the confining potential yield evidence of a quantum phase transition from a superfluid to a crystal-like phase, consistently with what is observed in the homogeneous system. It is found that the crystal phase nucleates in the center of the trap, as the density increases. Bose-Einstein condensation vanishes at T=0 upon entering the crystalline phase, concurrently with the disappearance of the superfluid response.
Ideal Quantum Gases with Planck Scale Limitations
Rainer Collier
2015-03-14T23:59:59.000Z
A thermodynamic system of non-interacting quantum particles changes its statistical distribution formulas if there is a universal limitation for the size of energetic quantum leaps (magnitude of quantum leaps smaller than Planck energy). By means of a restriction of the a priori equiprobability postulate one can reach a thermodynamic foundation of these corrected distribution formulas. The number of microstates is determined by means of a suitable counting method and combined with thermodynamics via the Boltzmann principle. The result is that, for particle energies that come close to the Planck energy, the thermodynamic difference between fermion and boson distribution vanishes. Both distributions then approximate a Boltzmann distribution. The wave and particle character of the quantum particles, too, can be influenced by choosing the size of the temperature and particle energy parameters relative to the Planck energy, as you can see from the associated fluctuation formulas. In the case of non-relativistic degeneration, the critical parameters Fermi momentum (fermions) and Einstein temperature (bosons) vanish as soon as the rest energy of the quantum particles reaches the Planck energy. For the Bose-Einstein condensation there exists, in the condensation range, a finite upper limit for the number of particles in the ground state, which is determined by the ratio of Planck mass to the rest mass of the quantum particles. In the relativistic high-temperature range, the energy densities of photon and neutrino radiation have finite limit values, which is of interest with regard to the start of cosmic expansion.
Relativistic Gross-Pitaevskii equation and the cosmological Bose Einstein Condensation
Takeshi Fukuyama; Masahiro Morikawa
2006-01-30T23:59:59.000Z
We do not know 96% of the total matter in the universe at present. In this paper, a cosmological model is proposed in which Dark Energy (DE) is identified as Bose-Einstein Condensation (BEC) of some boson field. Global cosmic acceleration caused by this BEC and multiple rapid collapses of BEC into black holes etc. (=Dark Matter (DM)) are examined based on the relativistic version of the Gross-Pitaevskii equation. We propose (a) a novel mechanism of inflation free from the slow-rolling condition, (b) a natural solution for the cosmic coincidence ('Why Now?') problem through the transition from DE into DM, (c) very early formation of highly non-linear objects such as black holes, which might trigger the first light as a form of quasars, and (d) log-z periodicity in the subsequent BEC collapsing time. All of these are based on the steady slow BEC process.
Silicotitanate molecular sieve and condensed phases
Nenoff, Tina M. (Albuquerque, NM); Nyman, May D. (Albuquerque, NM)
2002-01-01T23:59:59.000Z
A new microporous crystalline molecular sieve material having the formula Cs.sub.3 TiSi.sub.3 O.sub.95.cndot.3H.sub.2 O and its hydrothermally condensed phase, Cs.sub.2 TiSi.sub.6 O.sub.15, are disclosed. The microporous material can adsorb divalent ions of radionuclides or other industrial metals such as chromium, nickel, lead, copper, cobalt, zinc, cadmium, barium, and mercury, from aqueous or hydrocarbon solutions. The adsorbed metal ions can be leached out for recovery purposes or the microporous material can be hydrothermally condensed to a radiation resistant, structurally and chemically stable phase which can serve as a storage waste form for radionuclides.
Condensation induced water hammer driven sterilization
Kullberg, Craig M.
2004-05-11T23:59:59.000Z
A method and apparatus (10) for treating a fluid or materials therein with acoustic energy has a vessel (14) for receiving the fluid with inner walls shaped to focus acoustic energy to a target zone within the vessel. One or more nozzles (26) are directed into the vessel (14) for injecting a condensable vapor, such as steam, into the vessel (14). The system may include a steam source (18) for providing steam as the condensable vapor from an industrial waste heat source. Steam drums (88) are disposed between the steam source (18) and nozzles (26) to equalize and distribute the vapor pressure. A cooling source (30) provides a secondary fluid for maintaining the liquid in the vessel (14) in subcooled conditions. A heating jacket (32) surrounds the vessel (14) to heat the walls of the vessel (14) and prevent biological growth thereon. A pressurizer (33) may operate the system at elevated pressures.
Graham, Peter W.
We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, ...
Knaian, Ara N. (Ara Nerses), 1977-
2008-01-01T23:59:59.000Z
Programmable matter is a proposed digital material having computation, sensing, actuation, and display as continuous properties active over its whole extent. Programmable matter would have many exciting applications, like ...
Kumar, Jason [Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)
2014-06-24T23:59:59.000Z
We review the theoretical framework underlying models of asymmetric dark matter, describe astrophysical constraints which arise from observations of neutron stars, and discuss the prospects for detecting asymmetric dark matter.
Pion condensation in a dense neutrino gas
Hiroaki Abuki; Tomas Brauner; Harmen J. Warringa
2009-08-26T23:59:59.000Z
We argue that using an equilibrated gas of neutrinos it is possible to probe the phase diagram of QCD for finite isospin and small baryon chemical potentials. We discuss this region of the phase diagram in detail and demonstrate that for large enough neutrino densities a Bose-Einstein condensate of positively charged pions arises. Moreover, we show that for nonzero neutrino density the degeneracy in the lifetimes and masses of the charged pions is lifted.
Condensing Hybrid Water Heater Monitoring Field Evaluation
Maguire, J.; Earle, L.; Booten, C.; Hancock, C. E.
2011-10-01T23:59:59.000Z
This paper summarizes the Mascot home, an abandoned property that was extensively renovated. Several efficiency upgrades were integrated into this home, of particular interest, a unique water heater (a Navien CR240-A). Field monitoring was performed to determine the in-use efficiency of the hybrid condensing water heater. The results were compared to the unit's rated efficiency. This unit is Energy Star qualified and one of the most efficient gas water heaters currently available on the market.
Collecting and Using Condensate on Site
Glawe, D.
2013-01-01T23:59:59.000Z
water application (Source: Adapted from Mechell et. al, Rainwater Harvesting: System Planning. 2010) ESL-KT-13-12-43 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Effective Design – Drain Line Air Seal... the other way around too…… saving energy saves water) ESL-KT-13-12-43 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 On site water sources • Condensate • Rainwater • Cooling...
Strong dark matter constraints on GMSB models
F. Staub; W. Porod; J. Niemeyer
2010-01-18T23:59:59.000Z
We reconsider the dark matter problem in supersymmetric models with gauge mediated supersymmetry breaking, with and without R-parity breaking. In these classes of models, a light gravitino forms the dark matter.Consistency with the experimental data, in particular the dark matter abundance and the small-scale power spectrum, requires additional entropy production after the decoupling of the gravitino from the thermal bath. We demonstrate that the usual mechanism via messenger number violating interactions does not work in models where the messenger belongs to SU (5) representations. This is mainly a consequence of two facts: (i) there are at least two different types of lightest messenger particles and (ii) the lightest messenger particle with SU (2) quantum numbers decays dominantly into vector bosons once messenger number is broken, a feature which has been overlooked so far. In case of SO(10) messenger multiplets we find scenarios which work if the SM gauge singlet component is rather light.
Strong dark matter constraints on GMSB models
Staub, F; Niemeyer, J
2009-01-01T23:59:59.000Z
We reconsider the dark matter problem in supersymmetric models with gauge mediated supersymmetry breaking, with and without R-parity breaking. In these classes of models, a light gravitino forms the dark matter.Consistency with the experimental data, in particular the dark matter abundance and the small-scale power spectrum, requires additional entropy production after the decoupling of the gravitino from the thermal bath. We demonstrate that the usual mechanism via messenger number violating interactions does not work in models where the messenger belongs to SU (5) representations. This is mainly a consequence of two facts: (i) there are at least two different types of lightest messenger particles and (ii) the lightest messenger particle with SU (2) quantum numbers decays dominantly into vector bosons once messenger number is broken, a feature which has been overlooked so far. In case of SO(10) messenger multiplets we find scenarios which work if the SM gauge singlet component is rather light.
Hot-dark matter, cold dark matter and accelerating universe
Abbas Farmany; Amin Farmany; Mohammad Mahmoodi
2006-07-07T23:59:59.000Z
The Friedman equation is solved for a universe contains hotdark matter and cold dark matter. In this scenario, hot-dark matter drives an accelerating universe no cold dark matter.
Caballero-Benitez, Santiago F
2015-01-01T23:59:59.000Z
Quantum trapping potentials for ultracold gases change the landscape of classical properties of scattered light and matter. The atoms in a quantum many-body correlated phase of matter change the properties of light and vice versa. The properties of both light and matter can be tuned by design and depend on the interplay between long-range (nonlocal) interactions mediated by an optical cavity and short-range processes of the atoms. Moreover, the quantum properties of light get significantly altered by this interplay, leading the light to have nonclassical features. Further, these nonclassical features can be designed and optimised.
Formation of a condensate during charged collapse
Ariel Edery; Benjamin Constantineau
2015-06-22T23:59:59.000Z
We observe a condensate forming in the interior of a black hole (BH) during numerical simulations of gravitational collapse of a massless charged (complex) scalar field. The magnitude of the scalar field in the interior tends to a non-zero constant; spontaneous breaking of gauge symmetry occurs and a condensate forms. This phenomena occurs in the presence of a BH without the standard symmetry breaking quartic potential; the breaking occurs via the dynamics of the system itself. We also observe that the scalar field in the interior rotates in the complex plane and show that it matches numerically the electric potential to within $1\\%$. That a charged scalar condensate can form near the horizon of a black hole in the Abelian Higgs model without the standard symmetry breaking potential had previously been shown analytically in an explicit model involving a massive scalar field in an $AdS_4$ background. Our numerical simulation lends strong support to this finding, although in our case the scalar field is massless and the spacetime is asymptotically flat.
Measuring non-condensable gases in steam
Doornmalen, J. P. C. M. van; Kopinga, K., E-mail: k.kopinga@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)
2013-11-15T23:59:59.000Z
In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M{sup TM} Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.
Orientifold Planar Equivalence: The Chiral Condensate
Adi Armoni; Biagio Lucini; Agostino Patella; Claudio Pica
2008-09-29T23:59:59.000Z
The recently introduced orientifold planar equivalence is a promising tool for solving non-perturbative problems in QCD. One of the predictions of orientifold planar equivalence is that the chiral condensates of a theory with $N_f$ flavours of Dirac fermions in the symmetric (or antisymmetric) representation and $N_f$ flavours of Majorana fermions in the adjoint representation have the same large $N$ value for any value of the mass of the (degenerate) fermions. Assuming the invariance of the theory under charge conjugation, we prove this statement on the lattice for staggered quenched condensates in SU($N$) Yang-Mills in the large $N$ limit. Then, we compute numerically those quenched condensates for $N$ up to 8. After separating the even from the odd corrections in $1/N$, we are able to show that our data support the equivalence; however, unlike other quenched observables, subleading terms in $1/N$ are needed for describing the data for the symmetric and antisymmetric representation at $N$=3. Possible lessons for the unquenched case are discussed.
De finetti theorems, mean-field limits and bose-Einstein condensation
Nicolas Rougerie
2015-06-17T23:59:59.000Z
These notes deal with the mean-field approximation for equilibrium states of N-body systems in classical and quantum statistical mechanics. A general strategy for the justification of effective models based on statistical independence assumptions is presented in details. The main tools are structure theorems {\\`a} la de Finetti, describing the large N limits of admissible states for these systems. These rely on the symmetry under exchange of particles, due to their indiscernability. Emphasis is put on quantum aspects, in particular the mean-field approximation for the ground states of large bosonic systems, in relation with the Bose-Einstein condensation phenomenon. Topics covered in details include: the structure of reduced density matrices for large bosonic systems, Fock-space localization methods, derivation of effective energy functionals of Hartree or non-linear Schr{\\"o}dinger type, starting from the many-body Schr{\\"o}dinger Hamiltonian.
Théorčmes de de Finetti, limites de champ moyen et condensation de Bose-Einstein
Nicolas Rougerie
2015-02-13T23:59:59.000Z
These lecture notes treat the mean-field approximation for equilibrium states of N body systems in classical and quantum statistical mechanics. A general strategy to justify effective models based on assumptions of statistical independence of the particles is in presented in detail. The main tools are a structure theorems of de Finetti that describe large N limits of states accessible to the systems in question, exploiting the indistinguishablity of particles. The focus is on quantum aspects, particularly the mean-field approximation for the ground state of a large system of bosons, in connection with Bose-Einstein condensation: structure of reduced density matrices of a large bosonic system, localization methods in Fock space, derivation of Hartree and non-linear Schr\\"odinger effective energy functionals.
Carlos Barcelo; Stefano Liberati; Matt Visser
2003-08-14T23:59:59.000Z
Bose-Einstein condensates (BEC) have recently been the subject of considerable study as possible analogue models of general relativity. In particular it was shown that the propagation of phase perturbations in a BEC can, under certain conditions, closely mimic the dynamics of scalar quantum fields in curved spacetimes. In two previous articles [gr-qc/0110036, gr-qc/0305061] we noted that a varying scattering length in the BEC corresponds to a varying speed of light in the ``effective metric''. Recent experiments have indeed achieved a controlled tuning of the scattering length in Rubidium 85. In this article we shall discuss the prospects for the use of this particular experimental effect to test some of the predictions of semiclassical quantum gravity, for instance, particle production in an expanding universe. We stress that these effects are generally much larger than the Hawking radiation expected from causal horizons, and so there are much better chances for their detection in the near future.
From semiconductors to quantum gravity: to centenary of Matvei Bronstein
G. E. Volovik
2007-05-18T23:59:59.000Z
Investigation of the many-body condensed-matter systems allows us to connect the microscopic physics at the atomic energy scale and the macroscopic physics emerging in the low-energy corner. It gives some hints on the mechanisms of the formation of the physical laws which our Universe obeys. The paper is devoted to the centenary of Matvei Petrovich Bronstein.
Quantum metric fluctuations and Hawking radiation
R. Parentani
2000-09-05T23:59:59.000Z
In this Letter we study the gravitational interactions between outgoing configurations giving rise to Hawking radiation and in-falling configurations. When the latter are in their ground state, the near horizon interactions lead to collective effects which express themselves as metric fluctuations and which induce dissipation, as in Brownian motion. This dissipation prevents the appearance of trans-Planckian frequencies and leads to a description of Hawking radiation which is very similar to that obtained from sound propagation in condensed matter models.
Quantum Chaos and Quantum Algorithms
Daniel Braun
2001-10-05T23:59:59.000Z
It was recently shown (quant-ph/9909074) that parasitic random interactions between the qubits in a quantum computer can induce quantum chaos and put into question the operability of a quantum computer. In this work I investigate whether already the interactions between the qubits introduced with the intention to operate the quantum computer may lead to quantum chaos. The analysis focuses on two well--known quantum algorithms, namely Grover's search algorithm and the quantum Fourier transform. I show that in both cases the same very unusual combination of signatures from chaotic and from integrable dynamics arises.
Lincoln, Don
2014-08-07T23:59:59.000Z
Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.
Energy-momentum balance in quantum dielectrics
Ulf Leonhardt
2005-12-21T23:59:59.000Z
We calculate the energy-momentum balance in quantum dielectrics such as Bose-Einstein condensates. In agreement with the experiment [G. K. Campbell et al. Phys. Rev. Lett. 94, 170403 (2005)] variations of the Minkowski momentum are imprinted onto the phase, whereas the Abraham tensor drives the flow of the dielectric. Our analysis indicates that the Abraham-Minkowski controversy has its root in the Roentgen interaction of the electromagnetic field in dielectric media.
The dark matter is mostly an axion BEC
Sikivie, Pierre
2010-01-01T23:59:59.000Z
Axions differ from ordinary cold dark matter, such as WIMPs or sterile neutrinos, because they form a Bose-Einstein condensate (BEC). As a result, axions accreting onto a galactic halo fall in with net overall rotation. In contrast, ordinary CDM accretes onto galactic halos with an irrotational velocity field. The inner caustics are different in the two cases. It is shown that if the dark matter is axions, the phase space structure of the halos of isolated disk galaxies, such as the Milky Way, is precisely that of the caustic ring model for which observational support exists. The other dark matter candidates predict a far more chaotic phase space structure for galactic halos.
The Properties of Matter in White Dwarfs and Neutron Stars
Shmuel Balberg; Stuart L. Shapiro
2000-04-24T23:59:59.000Z
White dwarfs and neutron stars are stellar objects with masses comparable to that of our sun. However, as the endpoint stages of stellar evolution, these objects do not sustain any thermonuclear burning and therefore can no longer support the gravitational load of their own mass by generating thermal pressure. Rather, matter in their interiors is compressed to much higher densities than commonly found in normal stars, and pressure is created by degenerate fermion kinetic energy and particle interactions. As a result, white dwarfs and neutron stars offer unique cosmic laboratories for studying matter at very high densities. In this review we discuss the basic properties of condensed matter at extreme densities and summarize the extent to which these properties can be examined by observations of compact objects.
Moments of $?$ meson spectral functions in vacuum and nuclear matter
Philipp Gubler; Wolfram Weise
2015-07-14T23:59:59.000Z
Moments of the $\\phi$ meson spectral function in vacuum and in nuclear matter are analyzed, combining a model based on chiral SU(3) effective field theory (with kaonic degrees of freedom) and finite-energy QCD sum rules. For the vacuum we show that the spectral density is strongly constrained by a recent accurate measurement of the $e^+ e^- \\to K^+ K^-$ cross section. In nuclear matter the $\\phi$ spectrum is modified by interactions of the decay kaons with the surrounding nuclear medium, leading to a significant broadening and an asymmetric deformation of the $\\phi$ meson peak. We demonstrate that both in vacuum and nuclear matter, the first two moments of the spectral function are compatible with finite-energy QCD sum rules. A brief discussion of the next-higher spectral moment involving strange four-quark condensates is also presented.
Quantum Electrodynamics of Casimir Momentum: Momentum of the Quantum Vacuum?
Sebastien Kawka; Bart Van Tiggelen
2009-11-09T23:59:59.000Z
The electromagnetic vacuum is known to have energy. It has been recently argued that the quantum vacuum can possess momentum, that adds up to the momentum of matter. This ``Casimir momentum'' is closely related to the Casimir effect, in which case energy is exchanged. In previous theory it was treated semi-classically. We present a non-relativistic quantum theory for the linear momentum of electromagnetic zero-point fluctuations, considering an harmonic oscillator subject to crossed, quasi-static magnetic and electric and coupled to the quantum vacuum. We derive a contribution of the quantum vacuum to the linear pseudo-momentum and give a new estimate for the achievable speed. Our analysis show that the effect exists and that it is finite.
Michele Mosca
2008-08-04T23:59:59.000Z
This article surveys the state of the art in quantum computer algorithms, including both black-box and non-black-box results. It is infeasible to detail all the known quantum algorithms, so a representative sample is given. This includes a summary of the early quantum algorithms, a description of the Abelian Hidden Subgroup algorithms (including Shor's factoring and discrete logarithm algorithms), quantum searching and amplitude amplification, quantum algorithms for simulating quantum mechanical systems, several non-trivial generalizations of the Abelian Hidden Subgroup Problem (and related techniques), the quantum walk paradigm for quantum algorithms, the paradigm of adiabatic algorithms, a family of ``topological'' algorithms, and algorithms for quantum tasks which cannot be done by a classical computer, followed by a discussion.
Electric fields and quantum wormholes
Dalit Engelhardt; Ben Freivogel; Nabil Iqbal
2015-05-24T23:59:59.000Z
Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "quantum wormhole". We demonstrate within low-energy effective field theory that there is a precise sense in which electric fields can also thread such quantum wormholes. We define a non-perturbative "wormhole susceptibility" that measures the ease of passing an electric field through any sort of wormhole. The susceptibility of a quantum wormhole is suppressed by powers of the U(1) gauge coupling relative to that for a classical wormhole but can be made numerically equal with a sufficiently large amount of entangled matter.
Ronnie Kosloff
2013-05-10T23:59:59.000Z
Quantum thermodynamics addresses the emergence of thermodynamical laws from quantum mechanics. The link is based on the intimate connection of quantum thermodynamics with the theory of open quantum systems. Quantum mechanics inserts dynamics into thermodynamics giving a sound foundation to finite-time-thermodynamics. The emergence of the 0-law I-law II-law and III-law of thermodynamics from quantum considerations is presented. The emphasis is on consistence between the two theories which address the same subject from different foundations. We claim that inconsistency is the result of faulty analysis pointing to flaws in approximations.
8.04 Quantum Physics I, Spring 2003
Lee, Young S.
Experimental basis of quantum physics: photoelectric effect, Compton scattering, photons, Franck-Hertz experiment, the Bohr atom, electron diffraction, deBroglie waves, and wave-particle duality of matter and light. ...
Preparing topological projected entangled pair states on a quantum computer
Schwarz, Martin
Simulating exotic phases of matter that are not amenable to classical techniques is one of the most important potential applications of quantum information processing. We present an efficient algorithm for preparing a large ...
A Kinetic Theory Approach to Quantum Gravity
B. L. Hu
2002-04-22T23:59:59.000Z
We describe a kinetic theory approach to quantum gravity -- by which we mean a theory of the microscopic structure of spacetime, not a theory obtained by quantizing general relativity. A figurative conception of this program is like building a ladder with two knotted poles: quantum matter field on the right and spacetime on the left. Each rung connecting the corresponding knots represent a distinct level of structure. The lowest rung is hydrodynamics and general relativity; the next rung is semiclassical gravity, with the expectation value of quantum fields acting as source in the semiclassical Einstein equation. We recall how ideas from the statistical mechanics of interacting quantum fields helped us identify the existence of noise in the matter field and its effect on metric fluctuations, leading to the establishment of the third rung: stochastic gravity, described by the Einstein-Langevin equation. Our pathway from stochastic to quantum gravity is via the correlation hierarchy of noise and induced metric fluctuations. Three essential tasks beckon: 1) Deduce the correlations of metric fluctuations from correlation noise in the matter field; 2) Reconstituting quantum coherence -- this is the reverse of decoherence -- from these correlation functions 3) Use the Boltzmann-Langevin equations to identify distinct collective variables depicting recognizable metastable structures in the kinetic and hydrodynamic regimes of quantum matter fields and how they demand of their corresponding spacetime counterparts. This will give us a hierarchy of generalized stochastic equations -- call them the Boltzmann-Einstein hierarchy of quantum gravity -- for each level of spacetime structure, from the macroscopic (general relativity) through the mesoscopic (stochastic gravity) to the microscopic (quantum gravity).
S-Dual Gaugino Condensation and Supersymmetry Breaking
Z. Lalak; A. Niemeyer; H. P. Nilles
1994-10-27T23:59:59.000Z
The principle of S-duality is used to incorporate gaugino condensates into effective supergravity (superstring) Lagrangians. We discuss two implementations of S-duality which differ in the way the coupling constant is transformed. Both solve the problem of the runaway dilaton and lead to satisfactory supersymmetry breaking in models with a {\\em single} gaugino condensate. The breakdown of supersymmetry is intimately related to a nontrivial transformation of the condensate under T-duality.
Fermion mass generation without a condensate
Venkitesh Ayyar
2014-12-05T23:59:59.000Z
We study a lattice field theory model containing two flavors of massless staggered fermions with an onsite four-fermion interaction. The symmetry of the model forbids non-zero fermion bilinear order parameters that can generate a fermion mass. At weak couplings, we expect a massless fermion phase. At strong couplings, we can argue for the existence of massive fermions without the formation of any fermion bilinear condensate. Using Monte Carlo calculations in three space-time dimensions, we find evidence for a direct second order phase transition between the two phases.
Localized Domains of Disoriented Chiral Condensates
B. K. Nandi; T. K. Nayak; B. Mohanty; D. P. Mahapatra; Y. P. Viyogi
1999-03-12T23:59:59.000Z
A new method to search for localized domains of disoriented chiral condensates (DCC) has been proposed by utilising the (eta-phi) phase space distributions of charged particles and photons. Using the discrete wavelet transformation (DWT) analysis technique, it has been found that the presence of DCC domains broadens the distribution of wavelet coefficients in comparison to that of normal events. Strength contours have been derived from the differences in rms deviations of these distributions by taking into account the size of DCC domains and the probability of DCC production in ultra-relativistic heavy ion collisions. This technique can be suitably adopted to experiments measuring multiplicities of charged particles and photons.
Collecting and Using Condensate on Site
Glawe, D.
2013-01-01T23:59:59.000Z
-18 Condensate on site use • Reduces city’s energy use • Reduces city’s carbon footprint • Potential quick return on investment for facility • Potential to alleviate drought restrictions on site ESL-KT-13-12-43 CATEE 2013: Clean Air Through Energy Efficiency...-KT-13-12-43 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Energy estimates for san antonio • Extraction, processing, and distribution of potable water 1,939 KWh per million gallons• Wastewater Treatment 2,232 k...
Inflationary universe in loop quantum cosmology
Xin Zhang; Yi Ling
2007-07-23T23:59:59.000Z
Loop quantum cosmology provides a nice solution of avoiding the big bang singularity through a big bounce mechanism in the high energy region. In loop quantum cosmology an inflationary universe is emergent after the big bounce, no matter what matter component is filled in the universe. A super-inflation phase without phantom matter will appear in a certain way in the initial stage after the bounce; then the universe will undergo a normal inflation stage. We discuss the condition of inflation in detail in this framework. Also, for slow-roll inflation, we expect the imprint from the effects of the loop quantum cosmology should be left in the primordial perturbation power spectrum. However, we show that this imprint is too weak to be observed.
Workshop on Condensing Heating and Water Heating Equipment
Broader source: Energy.gov (indexed) [DOE]
Workshop on Condensing Heating and Water Heating Equipment Thursday, October 9, 2014 List of Attendees OrganizationAttendees DOE - John Cymbalsky - Ashley Armstrong - Johanna...
Color Glass Condensate in QCD at High Energy
Kazunori Itakura
2004-10-28T23:59:59.000Z
I give a brief review about the color glass condensate, which is the universal form of hadrons and nuclei at high energies.
natural gas+ condensing flue gas heat recovery+ water creation...
natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...
Condensing Heating and Water Heating Equipment Workshop Location...
Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...
Air Handler Condensate Recovery at the Environmental Protection...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Recovery at the Environmental Protection Agency's Science and Ecosystem Support Division Air Handler Condensate Recovery at the Environmental Protection Agency's Science and...
,"U.S. Crude Oil plus Lease Condensate Proved Reserves"
U.S. Energy Information Administration (EIA) Indexed Site
Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...
Air-Cooled Condensers for Next Generation Power Plants
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
based on specifications for a condenser in existing binary plant * Used combination of Aspen Plus and Aspen's Exchanger Design and Rating (EDR) software tools to evaluate...
Curved non-relativistic spacetimes, Newtonian gravitation and massive matter
Michael Geracie; Kartik Prabhu; Matthew M. Roberts
2015-07-10T23:59:59.000Z
There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativisitic symmetries which supports massive matter fields. In particular, one can not impose a priori restrictions on the geometric data if one wants to analyze matter response to a perturbed geometry. In this paper we construct such a Bargmann spacetime in complete generality without any prior restrictions on the fields specifying the geometry. The resulting spacetime structure includes the familiar Newton-Cartan structure with an additional gauge field which couples to mass. We illustrate the matter coupling with a few examples. The general spacetime we construct also includes as a special case the covariant description of Newtonian gravity, which has been thoroughly investigated in previous works. We also show how our Bargmann spacetimes arise from a suitable non-relativistic limit of Lorentzian spacetimes. In a companion paper [arXiv:1503.02680] we use this Bargmann spacetime structure to investigate the details of matter couplings, including the Noether-Ward identities, and transport phenomena and thermodynamics of non-relativistic fluids.
Quantum correlations; quantum probability approach
W. A. Majewski
2015-05-21T23:59:59.000Z
This survey gives a comprehensive account of quantum correlations understood as a phenomenon stemming from the rules of quantization. Centered on quantum probability it describes the physical concepts related to correlations (both classical and quantum), mathematical structures, and their consequences. These include the canonical form of classical correlation functionals, general definitions of separable (entangled) states, definition and analysis of quantumness of correlations, description of entanglement of formation, and PPT states. This work is intended both for physicists interested not only in collection of results but also in the mathematical methods justifying them, and mathematicians looking for an application of quantum probability to concrete new problems of quantum theory.
Probing and Manipulating Fermionic and Bosonic Quantum Gases with Quantum Light
Thomas J. Elliott; Gabriel Mazzucchi; Wojciech Kozlowski; Santiago F. Caballero-Benitez; Igor B. Mekhov
2015-09-02T23:59:59.000Z
We study the atom-light interaction in the fully quantum regime, with focus on off-resonant light scattering into a cavity from ultracold atoms trapped in an optical lattice. The detection of photons allows the quantum nondemolition (QND) measurement of quantum correlations of the atomic ensemble, distinguishing between different quantum states. We analyse the entanglement between light and matter and show how it can be exploited for realising multimode macroscopic quantum superpositions such as Schr\\"odinger cat states, for both bosons and fermions. We provide examples utilising different measurement schemes, and study their robustness to decoherence. Finally, we address the regime where the optical lattice potential is a quantum dynamical variable and is modified by the atomic state, leading to novel quantum phases, and significantly altering the phase diagram of the atomic system.
Luc Blanchet; Lavinia Heisenberg
2015-05-19T23:59:59.000Z
Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because the two types of dark matter interact through the vector field, a ghostly degree of freedom in the decoupling limit is reintroduced in the dark matter sector. Crucial questions to address in future work is whether the polarisation mechanism can be realized in absence of ghosts, and what are the cosmological implications of the model.
Broader source: Energy.gov [DOE]
This edition of the mailbag tackles follow-up questions from our Energy Matters discussion on breaking our reliance on foreign oil.
Nicolas Gisin
2015-07-18T23:59:59.000Z
Quantum Communication is the art of transferring an unknown quantum state from one location, Alice, to a distant one, Bob. This is a non-trivial task because of the quantum no-cloning theorem which prevents one from merely using only classical means.
Nuclear Physics from Lattice Quantum Chromodynamics
Savage, Martin J
2015-01-01T23:59:59.000Z
Quantum Chromodynamics and Quantum Electrodynamics, both renormalizable quantum field theories with a small number of precisely constrained input parameters, dominate the dynamics of the quarks and gluons - the underlying building blocks of protons, neutrons, and nuclei. While the analytic techniques of quantum field theory have played a key role in understanding the dynamics of matter in high energy processes, they encounter difficulties when applied to low-energy nuclear structure and reactions, and dense systems. Expected increases in computational resources into the exascale during the next decade will provide the ability to determine a range of important strong interaction processes directly from QCD using the numerical technique of Lattice QCD. This will complement the nuclear physics experimental program, and in partnership with new thrusts in nuclear many-body theory, will enable unprecedented understanding and refinement of nuclear forces and, more generally, the visible matter in our universe. In th...
Centrifugal quantum states of neutrons
V. V. Nesvizhevsky; A. K. Petukhov; K. V. Protasov; A. Yu. Voronin
2008-06-24T23:59:59.000Z
We propose a method for observation of the quasi-stationary states of neutrons, localized near the curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror Fermi-potential. This phenomenon is an example of an exactly solvable "quantum bouncer" problem that could be studied experimentally. It could provide a promising tool for studying fundamental neutron-matter interactions, as well as quantum neutron optics and surface physics effects. We develop formalism, which describes quantitatively the neutron motion near the mirror surface. The effects of mirror roughness are taken into account.
Formation of multi-solitons and vortex bright solitons in Bose-condensed alkali-metal atoms
Luca Salasnich
2003-09-02T23:59:59.000Z
Formation of multi-solitons and vortex bright solitons in Bose-condensed alkali-metal atoms is analyzed by using the nonpolynomial Schordinger equation. A train of bright solitons is obtained from an axially homogeneous Bose-Einstein condensate by a sudden change of the scattering length from repulsive to attractive. We derive an analytical expression for the number of bright solitons generated by using this mechanism. The formula generalizes a previous formula obtained with the 1D Gross-Pitaevskii equation. In the second part we consider vortex bright solitons, namely cigar-shaped bright solitons with a nonzero angular quantum number $k$ along the axial direction. By using a variational approach we determine the shape of vortex bright solitons, showing that the critical number of atoms for the collapse of the vortex soliton increases with a larger $k$. Finally we calculate monopole and quadrupole collective oscillations of these vortex bright solitons.
Emergent gravitational dynamics in Bose-Einstein condensates
Lorenzo Sindoni; Florian Girelli; Stefano Liberati
2009-09-29T23:59:59.000Z
We discuss a toy model for an emergent non-relativistic gravitational theory. Within a certain class of Bose-Einstein condensates, it is possible to show that, in a suitable regime, a modified version of non-relativistic Newtonian gravity does effectively describes the low energy dynamics of the coupled system condensate/quasi-particles.
ENERGY SERIES "CFD Modeling and its Application in Steam Condenser
Bergman, Keren
SEMINAR: ENERGY SERIES "CFD Modeling and its Application in Steam Condenser Performance Improvement will discuss the application of CFD to steam condensers, an area where both of the above mentioned limitations of computational fluid dynamics, having applied these techniques extensively in the design large heat exchangers
Observation of Bogoliubov excitations in exciton-polariton condensates
Loss, Daniel
predicted the occurrence of BoseEinstein condensation (BEC) in an ideal gas of non-interacting bosonic of the polariton BoseEinstein condensation (BEC) transition is expected to be up to room temperature. The leakage@nii.ac.jp; yyamamoto@stanford.edu Published online: 1 August 2008; doi:10.1038/nphys1034 Einstein's 1925 paper
Shepelyansky, Dima
Applications of quantum chaos to realistic quantum computations and sound treatment on quantum speech and sound of complex quantum wavefunctions. Keywords: Quantum computers, quantum chaos
Delene, David J.
` Relationship between Cloud Condensation Nuclei and Satellite Retrievals of Cloud Droplet is the relationship between below cloud base cloud condensation nuclei (CCN) and satellite retrievals of cloud droplet cloud effective radius; however, satellites can not measure cloud condensation nuclei (CCN
Heat transfer rates for filmwise, dropwise, and superhydrophobic condensation on silicon substrates
Hery, Travis M
2011-01-01T23:59:59.000Z
Condensation, a two-phase heat transfer processes, is commonly utilized in industrial systems. Condensation heat transfer can be optimized by using surfaces in which dropwise condensation (DWC) occurs, and even further ...
A numerical analysis of condenser performance of a seawater desalination system
Mohamed, Hassan, S.B. Massachusetts Institute of Technology
2009-01-01T23:59:59.000Z
This thesis presents the numerical analysis of three type condensers for desalination of seawater system. The condensers that were analyzed were a finned tube condenser that was built in Malaysia desalination plant, a ...
Albert Schwarz
2014-08-16T23:59:59.000Z
One says that a pair (P,Q) of ordinary differential operators specify a quantum curve if [P,Q]=const. If a pair of difference operators (K,L) obey the relation KL=const LK we say that they specify a discrete quantum curve. This terminology is prompted by well known results about commuting differential and difference operators, relating pairs of such operators with pairs of meromorphic functions on algebraic curves obeying some conditions. The goal of this paper is to study the moduli spaces of quantum curves. We will show how to quantize a pair of commuting differential or difference operators (i.e. to construct the corresponding quantum curve or discrete quantum curve). The KP-hierarchy acts on the moduli space of quantum curves; we prove that similarly the discrete KP-hierarchy acts on the moduli space of discrete quantum curves.
Gobato, Ricardo; Fedrigo, Desire Francine Gobato
2015-01-01T23:59:59.000Z
Our work is an approach between matter and energy. Using the famous equation E = mc^2, Einstein and the Law of Universal Gravitation of Newton, we estimate that a small amount matter converted into energy is needed to lift, using the gravitational potential energy equation on the surface, a mountain of solid iron or even Mount Everest.
Blanchet, Luc
2015-01-01T23:59:59.000Z
Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because the two types of dark matter interact through the vector field, a ghostly degree of fre...
Spark gap switch system with condensable dielectric gas
Thayer, III, William J. (Kent, WA)
1991-01-01T23:59:59.000Z
A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.
Collecting and recirculating condensate in a nuclear reactor containment
Schultz, Terry L. (Murrysville Boro, PA)
1993-01-01T23:59:59.000Z
An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank.
Collecting and recirculating condensate in a nuclear reactor containment
Schultz, T.L.
1993-10-19T23:59:59.000Z
An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank. 3 figures.
Hermano Velten; Dominik J. Schwarz
2012-10-01T23:59:59.000Z
Fluids often display dissipative properties. We explore dissipation in the form of bulk viscosity in the cold dark matter fluid. We constrain this model using current data from supernovae, baryon acoustic oscillations and the cosmic microwave background. Considering the isotropic and homogeneous background only, viscous dark matter is allowed to have a bulk viscosity $\\lesssim 10^7$ Pa$\\cdot$s, also consistent with the expected integrated Sachs-Wolfe effect (which plagues some models with bulk viscosity). We further investigate the small-scale formation of viscous dark matter halos, which turns out to place significantly stronger constraints on the dark matter viscosity. The existence of dwarf galaxies is guaranteed only for much smaller values of the dark matter viscosity, $\\lesssim 10^{-3}$ Pa$\\cdot$s.
Baudis, Laura
2015-01-01T23:59:59.000Z
One of the major challenges of modern physics is to decipher the nature of dark matter. Astrophysical observations provide ample evidence for the existence of an invisible and dominant mass component in the observable universe, from the scales of galaxies up to the largest cosmological scales. The dark matter could be made of new, yet undiscovered elementary particles, with allowed masses and interaction strengths with normal matter spanning an enormous range. Axions, produced non-thermally in the early universe, and weakly interacting massive particles (WIMPs), which froze out of thermal equilibrium with a relic density matching the observations, represent two well-motivated, generic classes of dark matter candidates. Dark matter axions could be detected by exploiting their predicted coupling to two photons, where the highest sensitivity is reached by experiments using a microwave cavity permeated by a strong magnetic field. WIMPs could be directly observed via scatters off atomic nuclei in underground, ultr...
Bose-Einstein Condensates in Superlattices
Mason A. Porter; P. G. Kevrekidis
2005-07-28T23:59:59.000Z
We consider the Gross-Pitaevskii (GP) equation in the presence of periodic and quasiperiodic superlattices to study cigar-shaped Bose-Einstein condensates (BECs) in such potentials. We examine spatially extended wavefunctions in the form of modulated amplitude waves (MAWs). With a coherent structure ansatz, we derive amplitude equations describing the evolution of spatially modulated states of the BEC. We then apply second-order multiple scale perturbation theory to study harmonic resonances with respect to a single lattice wavenumber as well as ultrasubharmonic resonances that result from interactions of both wavenumbers of the superlattice. In each case, we determine the resulting system's equilibria, which represent spatially periodic solutions, and subsequently examine the stability of the corresponding solutions by direct simulations of the GP equation, identifying them as typically stable solutions of the model. We then study subharmonic resonances using Hamiltonian perturbation theory, tracing robust, spatio-temporally periodic patterns.
Nonlinear interferometry with Bose-Einstein condensates
Tacla, Alexandre B. [Center for Quantum Information and Control, MSC 07-4220, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Boixo, Sergio [Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125 (United States); Datta, Animesh [Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU (United Kingdom); Shaji, Anil [School of Physics, Indian Institute of Science Education and Research, College of Engineering Trivandrum Campus, Thiruvananthapuram, Kerala 695016 (India); Caves, Carlton M. [Center for Quantum Information and Control, MSC 07-4220, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072 (Australia)
2010-11-15T23:59:59.000Z
We analyze a proposed experiment [Boixo et al., Phys. Rev. Lett. 101, 040403 (2008)] for achieving sensitivity scaling better than 1/N in a nonlinear Ramsey interferometer that uses a two-mode Bose-Einstein condensate (BEC) of N atoms. We present numerical simulations that confirm the analytical predictions for the effect of the spreading of the BEC ground-state wave function on the ideal 1/N{sup 3/2} scaling. Numerical integration of the coupled, time-dependent, two-mode Gross-Pitaevskii equations allows us to study the several simplifying assumptions made in the initial analytic study of the proposal and to explore when they can be justified. In particular, we find that the two modes share the same spatial wave function for a length of time that is sufficient to run the metrology scheme.
Chalcogenide nanowires by evaporation-condensation
Johnson, Bradley R.; Schweiger, Michael J.; Sundaram, S. K.
2005-02-02T23:59:59.000Z
Chalcogenide (arsenic sulfide) nanowires have been successfully synthesized from As2S3 under near-equilibrium conditions via evaporation-condensation process in evacuated glass ampoules. The as-synthesized nanowires were pure, nearly stoichiometric, and amorphous. The nanowires had diameters ranging from 40 to 140 nm and lengths up to a few millimeters. Distinct joints of the crisscrossing nanowires indicate potential for forming structural networks. They have been characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Raman spectroscopy, and X-ray diffraction (XRD) to determine their structure, composition, and morphology. Selected area diffraction (SAD) in the TEM and XRD confirmed their amorphous nature. The As-S nanowires could make an ideal system for understanding the carrier transport and photonic properties in nanoscale for this family of materials (IV-V compounds). Chalcogenide nanowires show promise for integrated nanoelectronics and biophotonics.
Quantum information science and complex quantum systems
Michael A. Nielsen
2002-10-01T23:59:59.000Z
What makes quantum information science a science? This paper explores the idea that quantum information science may offer a powerful approach to the study of complex quantum systems.
From holography towards real-world nuclear matter
Li, Si-wen; Wang, Qun
2015-01-01T23:59:59.000Z
Quantum chromodynamics is notoriously difficult to solve at nonzero baryon density, and most models or effective theories of dense quark or nuclear matter are restricted to a particular density regime and/or a particular form of matter. Here we study dense (and mostly cold) matter within the holographic Sakai-Sugimoto model, aiming at a strong-coupling framework in the wide density range between nuclear saturation density and ultra-high quark matter densities. The model contains only three parameters, and we ask whether it fulfills two basic requirements of real-world cold and dense matter, a first-order onset of nuclear matter and a chiral phase transition at high density to quark matter. Such a model would be extremely useful for astrophysical applications because it would provide a single equation of state for all densities relevant in a compact star. Our calculations are based on two approximations for baryonic matter, firstly an instanton gas and secondly a homogeneous ansatz for the non-abelian gauge fi...
Theoretical Condensed Matter Physics | U.S. DOE Office of Science (SC)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (MillionStructural Basis of WntSupportB 18B()The FiveRevisedThe vision of a smart1
Open problems in condensed matter physics, 1987 (Conference) | SciTech
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23Tribal EnergyCatalytic CobySpeeding access toSpeeding accessScientific(Technical Report) |
Graphene wormholes: A condensed matter illustration of Dirac fermions in curved space
J. Gonzalez; J. Herrero
2009-09-16T23:59:59.000Z
We study the properties of graphene wormholes in which a short nanotube acts as a bridge between two graphene sheets, where the honeycomb carbon lattice is curved from the presence of 12 heptagonal defects. By taking the nanotube bridge with very small length compared to the radius, we develop an effective theory of Dirac fermions to account for the low-energy electronic properties of the wormholes in the continuum limit, where the frustration induced by the heptagonal defects is mimicked by a line of fictitious gauge flux attached to each of them. We find in particular that, when the effective gauge flux from the topological defects becomes maximal, the zero-energy modes of the Dirac equation can be arranged into two triplets, that can be thought as the counterpart of the two triplets of zero modes that arise in the dual instance of the continuum limit of large spherical fullerenes. We further investigate the graphene wormhole spectra by performing a numerical diagonalization of tight-binding hamiltonians for very large lattices realizing the wormhole geometry. The correspondence between the number of localized electronic states observed in the numerical approach and the effective gauge flux predicted in the continuum limit shows that graphene wormholes can be consistently described by an effective theory of two Dirac fermion fields in the curved geometry of the wormhole, opening the possibility of using real samples of the carbon material as a playground to experiment with the interaction between the background curvature and the Dirac fields.
Condensed Matter and Materials Physics | U.S. DOE Office of Science (SC)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41clothThe Bonneville Power Administration would like submit theNationalto CanadaResources This page ! ! ! !CMMS
Simplicity of condensed matter at its core: Generic definition of a Roskilde-simple system
Thomas B. Schrřder; Jeppe C. Dyre
2014-10-10T23:59:59.000Z
The theory of isomorphs is reformulated by defining Roskilde-simple systems (those with isomorphs) by the property that the order of the potential energies of configurations at one density is maintained when these are scaled uniformly to a different density. Isomorphs remain curves in the thermodynamic phase diagram along which structure, dynamics, and excess entropy are invariant, implying that the phase diagram is effectively one-dimensional with respect to many reduced-unit properties. In contrast to the original formulation of the isomorph theory, however, the density-scaling exponent is not exclusively a function of density and the isochoric heat capacity is not an exact isomorph invariant. A prediction is given for the latter quantity's variation along the isomorphs. Molecular dynamics simulations of the Lennard-Jones and Lennard-Jones Gaussian systems validate the new approach.
RESEARCH IN THE THEORY OF CONDENSED MATT-ER AND ELEMENTARY PARTICLES
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (Million Cubic Feet)setsManagementProtonQ1FY14 1 Summary ofR. M.RAPIDDWDREPORT98.PDF
Pittendrigh, Barry
Member, Ohio Eminent Scholar, Mechanical & Aerospace Engineering Professor of Physics The Ohio State is conducted mostly by phonons. Historically, impeding their transport has been achieved by alloying TE Eminent Scholar and professor in the Mechanical and Aerospace Engineering Department and in the Physics
Cardone, F; Petrucci, A
2011-01-01T23:59:59.000Z
The purpose of this paper is to place side by side the experimental results of Piezonu- clear reactions, which have been recently unveiled, and those collected during the last twenty years of experiments on low energy nuclear reactions (LENR). We will briefy re- port the results of our campaign of piezonuclear reactions experiments where ultrasounds and cavitation were applied to solutions of stable elements. These outcomes will be shown to be compatible with the results and evidences obtained from low energy nuclear reac- tion experiments. Some theoretical concepts and ideas, on which our experiments are grounded, will be sketched and it will be shown that, in order to trigger our measured effects, it exists an energy threshold, that has to be overcome, and a maximum inter- val of time for this energy to be released to the nuclear system. Eventually, a research hypothesis will be put forward about the chance to raise the level of analogy from the mere comparison of results up to the phenomenological level. H...
F. Cardone; R. Mignani; A. Petrucci
2011-03-06T23:59:59.000Z
The purpose of this paper is to place side by side the experimental results of Piezonu- clear reactions, which have been recently unveiled, and those collected during the last twenty years of experiments on low energy nuclear reactions (LENR). We will briefy re- port the results of our campaign of piezonuclear reactions experiments where ultrasounds and cavitation were applied to solutions of stable elements. These outcomes will be shown to be compatible with the results and evidences obtained from low energy nuclear reac- tion experiments. Some theoretical concepts and ideas, on which our experiments are grounded, will be sketched and it will be shown that, in order to trigger our measured effects, it exists an energy threshold, that has to be overcome, and a maximum inter- val of time for this energy to be released to the nuclear system. Eventually, a research hypothesis will be put forward about the chance to raise the level of analogy from the mere comparison of results up to the phenomenological level. Here, among the various evidences collected in LENR experiments, we will search for hints about the overcome of the energy threshold and about the mechanism that releases the loaded energy in a suitable interval of time.
NUCLEAR AND PARTICLE-PHYSICS ASPECTS OF CONDENSED-MATTER NANOSYSTEMS
Yannouleas, Constantine
potential + liquid drop model for smooth variation Literature: Y&L, PRB 48, 8376 (1993) (multiply anionic metal clusters) Y&L, PRB 51, 1902 (1995) (deformed metal clusters) Y&L, Ch. 7 in "Recent Advances Yannouleas & Landman, PRB 48, 8376 (1993) #12;Applications of DFT-SCM: neutral fullerene C60 Y&L, Chem. Phys
Proceedings of the 1984 workshop on high-energy excitations in condensed matter. Volume I
Silver, R.N. (comp.)
1984-12-01T23:59:59.000Z
This volume covers neutron scattering inelastic instrumentation, x-ray scattering inelastic instrumentation, and magnetic excitations. (GHT)
Vyacheslav Solovyov, Harold Wiesmann and Masaki Department of Condensed Matter Physics and
Homes, Christopher C.
waxClear wax Exposed filmExposed film SubstrateSubstrate Clear waxClear wax Film wedgeFilm wedge SubstrateSubstrate YBCOYBCO Clear waxClear wax 200200 µµµµµµµµmm InterferometryInterferometry:: Linear
Optimization of hybrid-water/air-cooled condenser in an enhanced...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Optimization of hybrid-waterair-cooled condenser in an enhanced turbine geothermal ORC system Optimization of hybrid-waterair-cooled condenser in an enhanced turbine geothermal...
Decoherence of matter waves by thermal emission of radiation
Lucia Hackermueller; Klaus Hornberger; Bjoern Brezger; Anton Zeilinger; Markus Arndt
2004-02-19T23:59:59.000Z
Emergent quantum technologies have led to increasing interest in decoherence - the processes that limit the appearance of quantum effects and turn them into classical phenomena. One important cause of decoherence is the interaction of a quantum system with its environment, which 'entangles' the two and distributes the quantum coherence over so many degrees of freedom as to render it unobservable. Decoherence theory has been complemented by experiments using matter waves coupled to external photons or molecules, and by investigations using coherent photon states, trapped ions and electron interferometers. Large molecules are particularly suitable for the investigation of the quantum-classical transition because they can store much energy in numerous internal degrees of freedom; the internal energy can be converted into thermal radiation and thus induce decoherence. Here we report matter wave interferometer experiments in which C70 molecules lose their quantum behaviour by thermal emission of radiation. We find good quantitative agreement between our experimental observations and microscopic decoherence theory. Decoherence by emission of thermal radiation is a general mechanism that should be relevant to all macroscopic bodies.
Relativistic Laser-Matter Interactions
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Relativistic Laser-Matter Interactions Relativistic Laser-Matter Interactions Enabling the next generation of intense particle accelerators Contact Juan Fernandez (505) 667-6575...
Exact Classical Correspondence in Quantum Cosmology
Moncy V. John
2014-05-30T23:59:59.000Z
We find a Friedmann model with appropriate matter/energy density such that the solution of the Wheeler-DeWitt equation exactly corresponds to the classical evolution. The well-known problems in quantum cosmology disappear in the resulting coasting evolution. The exact quantum-classical correspondence is demonstrated with the help of the de Broglie-Bohm and modified de Broglie-Bohm approaches to quantum mechanics. It is reassuring that such a solution leads to a robust model for the universe, which agrees well with cosmological expansion indicated by SNe Ia data.
Unruh effect for neutrinos interacting with accelerated matter
Dvornikov, Maxim
2015-01-01T23:59:59.000Z
We study the evolution of neutrinos in a background matter moving with a linear acceleration. The Dirac equation for a massive neutrino electroweakly interacting with background fermions is obtained in a comoving frame where matter is at rest. We solve this Dirac equation for ultrarelativistic neutrinos. The neutrino quantum states in matter moving with a linear acceleration are obtained. We demonstrate that the neutrino electroweak interaction with an accelerated matter leads to the vacuum instability which results in the neutrino-antineutrino pairs creation. We rederive the temperature of the Unruh radiation and find the correction to the Unruh effect due to the specific neutrino interaction with background fermions. As a possible application of the obtained results we discuss the neutrino pairs creation in a core collapsing supernova. The astrophysical upper limit on the neutrino masses is obtained.
Y. Nakamura; J. Takahashi; Y. Yamanaka; S. Ohkubo
2014-11-24T23:59:59.000Z
An effective field theory of $\\alpha$ cluster condensation is formulated as a spontaneously broken symmetry in quantum field theory to understand the raison d'\\^etre and nature of the Hoyle and $\\alpha$ cluster states in $^{12}$C. The Nambu-Goldstone and Higgs mode operators in infinite systems are replaced with a pair of canonical operators whose Hamiltonian gives rise to discrete energy states in addition to the Bogoliubov-de Gennes excited states. The calculations reproduce well the experimental spectrum of the $\\alpha$ cluster states. The existence of the Nambu-Goldstone-Higgs states is demonstrated.
Method and apparatus for high-efficiency direct contact condensation
Bharathan, Desikan (Lakewood, CO); Parent, Yves (Golden, CO); Hassani, A. Vahab (Golden, CO)
1999-01-01T23:59:59.000Z
A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.
Method and apparatus for high-efficiency direct contact condensation
Bharathan, D.; Parent, Y.; Hassani, A.V.
1999-07-20T23:59:59.000Z
A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions, and the geometric properties of the contact medium. 39 figs.
R. Tsekov
2012-12-05T23:59:59.000Z
The Brownian motion of a light quantum particle in a heavy classical gas is theoretically described and a new expression for the friction coefficient is obtained for arbitrary temperature. At zero temperature it equals to the de Broglie momentum of the mean free path divided by the mean free path. Alternatively, the corresponding mobility of the quantum particle in the classical gas is equal to the square of the mean free path divided by the Planck constant. The Brownian motion of a quantum particle in a quantum environment is also discussed.
Dual-phase reactor plant with partitioned isolation condenser
Hui, Marvin M. (Cupertino, CA)
1992-01-01T23:59:59.000Z
A nuclear energy plant housing a boiling-water reactor utilizes an isolation condenser in which a single chamber is partitioned into a distributor plenum and a collector plenum. Steam accumulates in the distributor plenum and is conveyed to the collector plenum through an annular manifold that includes tubes extending through a condenser pool. The tubes provide for a transfer of heat from the steam, forming a condensate. The chamber has a disk-shaped base, a cylindrical sidewall, and a semispherical top. This geometry results in a compact design that exhibits significant performance and cost advantages over prior designs.
Electromagnetic triangle anomaly and neutral pion condensation in QCD vacuum
Cao, Gaoqing
2015-01-01T23:59:59.000Z
We study the QCD vacuum structure under the influence of an electromagnetic field with a nonzero second Lorentz invariant $I_2=\\vec{E}\\cdot{\\vec B}$. We show that the presence of $I_2$ can induce neutral pion ($\\pi^0$) condensation in the QCD vacuum through the electromagnetic triangle anomaly. Within the frameworks of chiral perturbation theory at leading small-momenta expansion as well as the Nambu--Jona-Lasinio model at leading $1/N_c$ expansion, we quantify the dependence of the $\\pi^0$ condensate on $I_2$. The stability of the $\\pi^0$-condensed vacuum against the Schwinger charged pair production due to electric field is also discussed.
Martoff, C. J.
Dark matter (DM) detectors with directional sensitivity have the potential of yielding an unambiguous positive observation of WIMPs as well as discriminating between galactic DM halo models. In this paper, we introduce the ...
Matter & Energy Civil Engineering
Rogers, John A.
See Also: Matter & Energy Detectors· Optics· Civil Engineering· Engineering· Nature of Water Yonggang Huang, Joseph Cummings Professor of Civil and Environmental Engineering and Mechanical Engineering· Electronics· Reference Photography· Infrared· Mechanical engineering · Optics· ScienceDaily (Jan. 17, 2011
D'Eramo, Francesco
2012-01-01T23:59:59.000Z
In this thesis, we build new Effective Field Theory tools to describe the propagation of energetic partons in hot and dense media, and we propose two new reactions for dark matter in the early universe. In the first part, ...
Rohini M. Godbole
2010-06-30T23:59:59.000Z
In this article I trace the development of the human understanding of the "Heart of Matter" from early concepts of "elements" (or alternatively "Panchmahabhootas") to the current status of "quarks" and "leptons" as the fundamental constituents of matter, interacting together via exchange of the various force carrier particles called "gauge bosons" such as the photon, W/Z-boson etc. I would like to show how our understanding of the fundamental constituents of matter has gone hand in hand with our understanding of the fundamental forces in nature. I will also outline how the knowledge of particle physics at the "micro" scale of less than a Fermi(one millionth of a nanometer), enables us to offer explanations of Cosmological observations at the "macro" scale. Consequently these observations, may in turn, help us address some very fundamental questions of the Physics at the "Heart of the Matter".