National Library of Energy BETA

Sample records for quality cfr code

  1. Title 18 Alaska Administrative Code Chapter 50 Air Quality Control...

    Open Energy Info (EERE)

    50 Air Quality Control Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 18 Alaska Administrative Code Chapter 50 Air...

  2. Title 18 Alaska Administrative Code Chapter 70 Water Quality...

    Open Energy Info (EERE)

    0 Water Quality Standards Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 18 Alaska Administrative Code Chapter 70...

  3. Software quality and process improvement in scientific simulation codes

    SciTech Connect (OSTI)

    Ambrosiano, J.; Webster, R.

    1997-11-01

    This report contains viewgraphs on the quest to develope better simulation code quality through process modeling and improvement. This study is based on the experience of the authors and interviews with ten subjects chosen from simulation code development teams at LANL. This study is descriptive rather than scientific.

  4. Energy Code Enforcement Training Manual : Covering the Washington State Energy Code and the Ventilation and Indoor Air Quality Code.

    SciTech Connect (OSTI)

    Washington State Energy Code Program

    1992-05-01

    This manual is designed to provide building department personnel with specific inspection and plan review skills and information on provisions of the 1991 edition of the Washington State Energy Code (WSEC). It also provides information on provisions of the new stand-alone Ventilation and Indoor Air Quality (VIAQ) Code.The intent of the WSEC is to reduce the amount of energy used by requiring energy-efficient construction. Such conservation reduces energy requirements, and, as a result, reduces the use of finite resources, such as gas or oil. Lowering energy demand helps everyone by keeping electricity costs down. (It is less expensive to use existing electrical capacity efficiently than it is to develop new and additional capacity needed to heat or cool inefficient buildings.) The new VIAQ Code (effective July, 1991) is a natural companion to the energy code. Whether energy-efficient or not, an homes have potential indoor air quality problems. Studies have shown that indoor air is often more polluted than outdoor air. The VIAQ Code provides a means of exchanging stale air for fresh, without compromising energy savings, by setting standards for a controlled ventilation system. It also offers requirements meant to prevent indoor air pollution from building products or radon.

  5. FOIA 10CFR, Code of Federal Regulations for the Freedom of Information Act

    Broader source: Energy.gov [DOE]

    FOIA 10CFR, Code of Federal Regulations (CFR) for the Freedom of Information Act is 10 CFR 1004, as posted on the U.S. Department of Energy website.

  6. Recommended reforms in codes and standards, quality assurance, and engineering practices for competitive liquid metal nuclear power plants

    SciTech Connect (OSTI)

    Harms, W.O.

    1986-04-01

    Recommendations are presented on LMFBR: codes and standards; quality assurance requirements and practices; and engineering practices. (JDB)

  7. Quality Assurance Procedures for ModCat Database Code Files

    SciTech Connect (OSTI)

    Siciliano, Edward R.; Devanathan, Ram; Guillen, Zoe C.; Kouzes, Richard T.; Schweppe, John E.

    2014-04-01

    The Quality Assurance procedures used for the initial phase of the Model Catalog Project were developed to attain two objectives, referred to as “basic functionality” and “visualization.” To ensure the Monte Carlo N-Particle model input files posted into the ModCat database meet those goals, all models considered as candidates for the database are tested, revised, and re-tested.

  8. DNFSB 2002-1 Software Quality Assurance Improvement Plan Commitment 4.2.1.2: Safety Quality Assurance Plan and Criteria for the Safety Analysis Toolbox Codes

    Office of Environmental Management (EM)

    EH-4.2.1.2-Criteria Defense Nuclear Facilities Safety Board Recommendation 2002-1 Software Quality Assurance Improvement Plan Commitment 4.2.1.2: Software Quality Assurance Plan and Criteria for the Safety Analysis Toolbox Codes U.S. Department of Energy Office of Environment, Safety and Health 1000 Independence Ave., S.W. Washington, DC 20585-2040 November 2003 Software Quality Assurance Criteria for Safety Analysis Codes November 2003 INTENTIONALLY BLANK ii Software Quality Assurance Criteria

  9. Council on Environmental Quality (CEQ) NEPA Regulations: 40 CFR...

    Open Energy Info (EERE)

    LibraryAdd to library Legal Document- Secondary Legal SourceSecondary Legal Source: Council on Environmental Quality (CEQ) NEPA Regulations: 40 CFR 1500 - 1518Legal Author CEQ...

  10. Bar coded air sample tracking and bar coded loose surface contamination sample tracking: How it can assist in compliance with the DOE`s new 10 CFR 835 and the NRC`s new 10 CFR 20 regulations

    SciTech Connect (OSTI)

    Bailey, W.H.

    1994-12-31

    The paper describes advance sample tracking and processing techniques which utilize bar code technology for field data collection and count room analysis. Techniques described by the paper include bar coded area air sampling, bar coded portable breathing zone air sampling, and bar coded loose surface contamination sampling. Bar coded sample tracking is explored to demonstrate how it can assist in compliance with new DOE 10 CFR 835 and NRC 10 CFR 20 requirements. Operation of portable bar code readers is explored to provide insight to the advantages of bar coded sample tracking and corresponding sample trending analyses. Case studies involving bar coded sample tracking systems which are in use at NRC facilities, DOE sites, and decommission projects are discussed.

  11. Title 40 C.F.R. 1500 - Council on Environmental Quality | Open...

    Open Energy Info (EERE)

    C.F.R. 1500 - Council on Environmental Quality Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 40 C.F.R. 1500 -...

  12. Quality Assurance Management System Guide for Use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-06-17

    This Guide provides information on principles and practices used to establish and implement an effective quality assurance program or quality management system in accordance with the requirements of 10 CFR 830. Cancels DOE G 414.1-2. Canceled by DOE G 414.1-2B.

  13. Title 40 CFR 1500-1508 Council on Environmental Quality | Open...

    Open Energy Info (EERE)

    0-1508 Council on Environmental Quality Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 40 CFR 1500-1508 Council on...

  14. Section 23: Models and Computer Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application-2014 for the Waste Isolation Pilot Plant Models and Computer Codes (40 CFR § 194.23) United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Models and Computer Codes (40 CFR § 194.23) Table of Contents 23.0 Models and Computer Codes (40 CFR § 194.23) 23.1 Requirements 23.2 40 CFR § 194.23(a)(1) 23.2.1 Background 23.2.2 1998 Certification Decision 23.2.3 Changes in the CRA-2004 23.2.4

  15. Items Supporting the Hanford Internal Dosimetry Program Implementation of the IMBA Computer Code

    SciTech Connect (OSTI)

    Carbaugh, Eugene H.; Bihl, Donald E.

    2008-01-07

    The Hanford Internal Dosimetry Program has adopted the computer code IMBA (Integrated Modules for Bioassay Analysis) as its primary code for bioassay data evaluation and dose assessment using methodologies of ICRP Publications 60, 66, 67, 68, and 78. The adoption of this code was part of the implementation plan for the June 8, 2007 amendments to 10 CFR 835. This information release includes action items unique to IMBA that were required by PNNL quality assurance standards for implementation of safety software. Copie of the IMBA software verification test plan and the outline of the briefing given to new users are also included.

  16. Quality assurance and quality control for the compact physics research facility (CPRF) and ZTH experiment

    SciTech Connect (OSTI)

    Kewish, R.W. Jr.

    1989-01-01

    In compliance with DOE Order 5700.6B, which establishes policies to assure quality achievement in DOE programs, we instituted a quality assurance and quality control program whose primary goal is to assure that reliable components are available with which to assemble the CPRF/ZTH experiment. The Code of Federal Regulations 10 CFR 50, appendix B, and the ANSI standard N45.2 were used as a primary source of guidance in establishing a plan for our QA program. Accepted codes, such as the National Electric Code (NEC), and standards adopted by organizations such as ANSI, IEEE, ASME, and NEMA were used in the design and production of components in keeping with the primary goal of the CPRF program. In setting up the CPRF/ZTH quality assurance program it was our intention to have these standards apply to all suppliers, both within and outside the Laboratory. 5 refs., 6 figs.

  17. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wrappers will automatically provide the necessary MPI include files and libraries. For Fortran source code use mpif90: % mpif90 -o example.x example.f90 For C source code use...

  18. Graded quality assurance in procurement

    SciTech Connect (OSTI)

    Fan, D.C.

    1995-12-31

    The Code of Federal Regulations, Part 50, Appendix B, requires every applicant for an operating license to include in its final safety analysis report information pertaining to the managerial and administrative controls to be used to ensure safe operation. This appendix establishes quality assurance requirements for the design, construction, and operation of those structures, systems, and components (SSC) that perform safety-related functions. The activities affecting safety-related SSC functions include designing, purchasing, fabricating, and so forth, Title 10 CFR 50.65 established requirements to ensure that the maintenance activities conducted by licensees are effective. This is also known as the maintenance rule.

  19. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Holland, R. C.

    1998-06-01

    This Quality Assurance Project Plan documents the quality assurance activities for the Wastewater/Stormwater/Groundwater and Environmental Surveillance Programs. This QAPP was prepared in accordance with DOE guidance on compliance with 10CFR830.120.

  20. Suspect/Counterfeit Items Guide for Use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1B, Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-11-03

    This Guide provides guidance to assist DOE/NNSA and its contractors in mitigating the safety threat of suspect/counterfeit items (S/CIs). Cancels DOE G 440.1-6, Implementation Guide for use with Suspect/Counterfeit Items Requirements of DOE O 440.1, Worker Protection Management; 10 CFR 830.120; and DOE O 5700.6C, Quality Assurance, dated 6-30-97. Canceled by DOE G 414.1-2B.

  1. [BILLING CODE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 CFR Parts 433 Docket No.: EERE-2011-BT-STD-0055 RIN 1904-AC60 Energy Efficiency ... ASHRAE 90.1-2007 90.1-2010 89,888,200 91,851 1.2795 10% below 90.1-2010 126,091,100 ...

  2. Risk Code?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identify the Task Risk Code >2 Determine if a Work Control Document is needed What is the Unmitigated Risk Code? Rev.1 09/05/14 Read and Agree to Comply with appropriate mitigation and sign Work Control Documents Is there an approved Work Control Document (WCD)? WORK PLANNING, CONTROL AND AUTHORIZATION FLOW DIAGRAM 1. Define Scope of Work 2. Analyze Hazards 3. Develop and Implement Hazard Controls 4. Perform Work Within Controls 5. Feedback and Continuous Improvement Analyze Hazards and

  3. Speech coding

    SciTech Connect (OSTI)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the

  4. The First ASME Code Stamped Cryomodule at SNS

    SciTech Connect (OSTI)

    Howell, M P; Crofford, M T; Douglas, D L; Kim, S -H; Steward, S T; Strong, W H; Afanador, R; Hannah, B S; Saunders, J; Mammosser, J D

    2012-07-01

    The first spare cryomodule for the Spallation Neutron Source (SNS) has been designed, fabricated, and tested by SNS personnel. The approach to design for this cryomodule was to hold critical design features identical to the original design such as bayonet positions, coupler positions, cold mass assembly, and overall footprint. However, this is the first SNS cryomodule that meets the pressure requirements put forth in the 10 CFR 851: Worker Safety and Health Program. The most significant difference is that Section VIII of the ASME Boiler and Pressure Vessel Code was applied to the vacuum vessel of this cryomodule. Applying the pressure code to the helium vessels within the cryomodule was considered. However, it was determined to be schedule prohibitive because it required a code case for materials that are not currently covered by the code. Good engineering practice was applied to the internal components to verify the quality and integrity of the entire cryomodule. The design of the cryomodule, fabrication effort, and cryogenic test results will be reported in this paper.

  5. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview Open Mpi is the the only MPI library available on Euclid. This implementation of MPI-2 is described at Open MPI: Open Source High Performance Computing. The default compiler suite is from the Portland Group which is loaded by default at login, along with the PGI compiled Open MPI environment. % module list Currently Loaded Modulefiles: 1) pgi/10.8 2) openmpi/1.4.2 Basic Example Open MPI provides a convenient set of wrapper commands which you should use in

  6. code release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    code release - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  7. Section 22: Quality Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality Assurance (40 CFR § 194.22) United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Quality Assurance (40 CFR § 194.22) Table of Contents 22.0 Quality Assurance (40 CFR § 194.22) 22.1 Requirements 22.2 Background 22.3 1998 Certification Decision 22.4 Changes in the CRA-2004 22.5 EPA's Evaluation of Compliance for the 2004 Recertification 22.5.1 NQA Standards 22.5.2 Audits of QA Plan

  8. RAVEN Quality Assurance Activities

    SciTech Connect (OSTI)

    Cogliati, Joshua Joseph

    2015-09-01

    This report discusses the quality assurance activities needed to raise the Quality Level of Risk Analysis in a Virtual Environment (RAVEN) from Quality Level 3 to Quality Level 2. This report also describes the general RAVEN quality assurance activities. For improving the quality, reviews of code changes have been instituted, more parts of testing have been automated, and improved packaging has been created. For upgrading the quality level, requirements have been created and the workflow has been improved.

  9. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bureau of Construction Codes is responsible for the administration of the State Construction Code Act (1972 PA 230), also known as the Uniform Construction Code.

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    Georgia's Department of Community Affairs periodically reviews, amends and/or updates the state minimum standard codes. Georgia has "mandatory" and "permissive" codes. Georgia State Energy Code...

  11. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: On March 9, 2016, the State Fire Prevention and Building Code Council adopted major updates to the State Uniform Code and the State Energy Code. The State Energy Code has been updated to 2015...

  12. WAP Memorandum 010: Quality Management Plan - Record Keeping...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10: Quality Management Plan - Record Keeping and Reporting WAP Memorandum 010: Quality Management Plan - Record Keeping and Reporting Effective: April 8, 2015 10 CFR 440.24 ...

  13. Implementation guide for use with suspect/counterfeit items: Requirements of DOE O 440.1, worker protection management; 10 CFR 830.120; and DOE 5700.6C, quality assurance

    SciTech Connect (OSTI)

    1997-06-01

    Department of Energy (DOE) Order (O) 440.1, Worker Protection Management For DOE Federal and Contractors Employees, [7] sets forth requirements for DOE and its contractors to implement suspect and counterfeit items (S/CI) controls as part of the quality assurance (QA) programs required by 10 Code of Federal Regulations (CFR) 830.120 [8] or DOE 5700.6C, Quality Assurance [9]. DOE G-830.120, Implementation Guide for Use with 10 CFR Part 830.120, Quality Assurance, [10] provides additional guidance on establishing and implementing effective QA processes to control S/CIs. DOE O 232.1, Occurrence Reporting and Processing of Operations, [11] specifies requirements for reporting S/CIs under the DOE Occurrence Reporting and Processing System (ORPS). DOE promulgated the requirements and guidance to control or eliminate the hazards posed by S/CIs, which can lead to unexpected equipment failures and undue risks to the DOE mission, the environment, and personnel. This Guide is a compendium of information contained in the referenced DOE directives and other documents concerning S/CI controls. It incorporates, updates, and supersedes earlier guidance issued in Plan for the Suspect/Counterfeit Products Issue in the Department of Energy, dated October 1993, [4] and in memoranda issued by Defense Programs (DP) [12-16] and other DOE program offices. This guidance was developed to strengthen the procurement process, identify and eliminate S/CIs, and improve the reporting of S/CIs. The information in this Guide, when implemented by DOE and its contractors, will satisfy the S/CI requirements contained in the referenced DOE directives.

  14. Cal. Pub. Res. Code 21080 | Open Energy Information

    Open Energy Info (EERE)

    library Legal Document- StatuteStatute: Cal. Pub. Res. Code 21080Legal Abstract Sets forth general statutory provisions for California's environmental quality programs....

  15. Cal. Pub. Res. Code 21001 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Pub. Res. Code 21001Legal Abstract Sets forth California's policy on maintenance of environmental quality. Published NA Year Signed or Took Effect 1970 Legal...

  16. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    Mississippi's existing state code is based on the 1977 Model Code for Energy Conservation (MCEC). The existing law does not mandate enforcement by localities, and any revised code will probably...

  17. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    The State Building Code Council revised the Washington State Energy Code (WESC) in February 2013, effective July 1, 2013. The WESC is a state-developed code based upon ASHRAE 90.1-2010 and the...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Kentucky Building Code (KBC) is updated every three years on a cycle one year behind the publication year for the International Building Code. Any changes to the code by the state of Kentucky...

  19. 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    79120 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) Babcock & Wilcox Technical Services Pantex, LLC PO Box 30020 Amarillo, TX 79120 CODE I FACILITY ...

  20. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Rhode Island Building Code Standards Committee adopts, promulgates and administers the state building code. Compliance is determined through the building permit and inspection process by local...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    The North Carolina State Building Code Council is responsible for developing all state codes. By statute, the Commissioner of Insurance has general supervision over the administration and...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    The West Virginia State Fire Commission is responsible for adopting and promulgating statewide construction codes. These codes may be voluntarily adopted at the local level. Local jurisdictions...

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    Public Act 093-0936 (Illinois Energy Conservation Code for Commercial Buildings) was signed into law in August, 2004. The Illinois Energy Conservation Code for Commercial Buildings became...

  4. Building Energy Codes: State and Local Code Implementation Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mark Lessans Fellow Building Energy Codes: State and Local Code Implementation Overview ... building code regarding energy efficiency to the revised model code and submit a ...

  5. New Code Compliance Briefs Assist in Resolving Codes and Standards...

    Energy Savers [EERE]

    New Code Compliance Briefs Assist in Resolving Codes and Standards Concerns in Energy Innovations New Code Compliance Briefs Assist in Resolving Codes and Standards Concerns in ...

  6. Manually operated coded switch

    DOE Patents [OSTI]

    Barnette, Jon H.

    1978-01-01

    The disclosure relates to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made.

  7. Quality assurance program plan for radionuclide airborne emissions monitoring

    SciTech Connect (OSTI)

    Boom, R.J.

    1995-03-01

    This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of airborne emissions. The Hanford Site radioactive airborne emissions requirements are defined in National Emissions Standards for Hazardous Air Pollutants (NESHAP), Code of Federal Regulations, Title 40, Part 61, Subpart H (EPA 1991a). Reporting of the emissions to the US Department of Energy is performed in compliance with requirements of US Department of Energy, Richland Operations Office Order 5400.1, General Environmental Protection Program (DOE-RL 1988). This Quality Assurance Program Plan is prepared in accordance with and to the requirements of QAMS-004/80, Guidelines and Specifications for Preparing Quality Assurance Program Plans (EPA 1983). Title 40 CFR Part 61, Appendix B, Method 114, Quality Assurance Methods (EPA 1991b) specifies the quality assurance requirements and that a program plan should be prepared to meet the requirements of this regulation. This Quality Assurance Program Plan identifies NESHAP responsibilities and how the Westinghouse Hanford Company Environmental, Safety, Health, and Quality Assurance Division will verify that the methods are properly implemented.

  8. Tank waste remediation system characterization project quality policies

    SciTech Connect (OSTI)

    Trible, T.C., Westinghouse Hanford

    1996-07-31

    This quality plan describes the system used by Characterization Project management to achieve quality. This plan is comprised on eleven quality policies which, when taken together, form a management system deployed to achieve quality. This quality management system is based on the customer`s quality requirements known as the `RULE`, 10 CFR 830.120, Quality Assurance.

  9. Code of Federal Regulations Nuclear Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Code of Federal Regulations Nuclear Activities Code of Federal Regulations Nuclear Activities April 24,2010 This part sets forth the procedures to govern the conduct of persons involved in DOE nuclear activities and, in particular, to achieve compliance with the DOE Nuclear Safety Requirements by all persons subject to those requirements. 10 C.F.R. 820, Procedural Rules for DOE Nuclear Activities, sets forth the procedures to implement the provisions of the Price-Anderson Amendments Act of 1988

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    The New Jersey Uniform Construction Code Act provides that model codes and standards publications shall not be adopted more frequently than once every three years. However, a revision or amendment...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    Legislation passed in March 2010 authorized the Alabama Energy and Residential Code (AERC) Board to adopt mandatory residential and commercial energy codes for all jurisdictions. In 2015, the AER...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    A mandatory energy code is not enforced at the state level. If a local energy code is adopted, it is enforced at the local level. Builders or sellers of new residential buildings (single-family or...

  13. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  14. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Indiana Residential Building Code is based on the 2003 IRC with state amendments (eff. 9/11/05). This code applies to 1 and 2 family dwellings and townhouses. During the adoption process,...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 1993 State Legislature updated the state energy code to the 1989 Model Energy Code (MEC) and established a procedure to update the standard. Then in 1995, following consultation with an...

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Florida Building Commission (FBC) is directed to adopt, revise, update, and maintain the Florida Building Code in accordance with Chapter 120 of the state statutes. The code is mandatory...

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2006 Iowa enacted H.F. 2361, requiring the State Building Commissioner to adopt energy conservation requirements based on a nationally recognized building energy code. The State Building Code...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    In September 2011 the Nebraska Building Energy Code was updated to the 2009 International Energy Conservation Code (IECC) standards. As with the previous 2003 IECC standards, which had been in...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    In November of 2015, the Commission adopted the 2015 International Building Code (IBC) with amendments. The Commission did not adopt the 2012 International Energy Conservation Code (IECC) as part...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more deta...

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    Changes to the energy code are submitted to the Uniform Building Code Commission. The proposed change is reviewed by the Commission at a monthly meeting to decide if it warrants further considera...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Virginia Uniform Statewide Building Code (USBC) is a statewide minimum requirement that local jurisdictions cannot amend. The code is applicable to all new buildings in the commonwealth. The...

  6. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    Colorado is a home rule state, so no statewide energy code exists, although state government buildings do have specific requirements. Voluntary adoption of energy codes is encouraged and efforts...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    All residential and commercial structures are required to comply with the state’s energy code. The 2009 New Mexico Energy Conservation Code (NMECC), effective June 2013, is based on 2009...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 2012 IECC is in effect for all residential and commercial buildings, Idaho schools, and Idaho jurisdictions that adopt and enforce building codes, unless a local code exists that is more...

  10. Cellulases and coding sequences

    DOE Patents [OSTI]

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-01-01

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  11. Cellulases and coding sequences

    DOE Patents [OSTI]

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-02-20

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    New Hampshire adopted a mandatory statewide building code in 2002 based on the 2000 IECC. S.B. 81 was enacted in July 2007, and it upgraded the New Hampshire Energy Code to the 2006 IECC. In Dece...

  13. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    In March 2006, SB 459 was enacted to promote renewable energy and update the state's building energy codes.

  14. XSOR codes users manual

    SciTech Connect (OSTI)

    Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.

    1993-11-01

    This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ``XSOR``. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms.

  15. DLLExternalCode

    Energy Science and Technology Software Center (OSTI)

    2014-05-14

    DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read frommore » files created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.« less

  16. DLLExternalCode

    SciTech Connect (OSTI)

    Greg Flach, Frank Smith

    2014-05-14

    DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read from files created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.

  17. Generating code adapted for interlinking legacy scalar code and extended vector code

    DOE Patents [OSTI]

    Gschwind, Michael K

    2013-06-04

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.

  18. Enforcement Guidance Supplement 99-01, Enforcement of 10 CFR 830.120 (Quality Assurance Rule) for Facilities below Hazard Category III

    Office of Environmental Management (EM)

    EGS: 99-01 Department of Energy Washington, DC 20585 July 1, 1999 MEMORANDUM FOR DOE PAAA COORDINATORS CONTRACTOR PAAA COORDINATORS FROM: R. KEITH CHRISTOPHER DIRECTOR OFFICE OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 99-01: Enforcement of 10 CFR Part 830.120 (Quality Assurance Rule) for Facilities below Hazard Category III Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Enforcement and

  19. Mechanical code comparator

    DOE Patents [OSTI]

    Peter, Frank J.; Dalton, Larry J.; Plummer, David W.

    2002-01-01

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  20. Code of Conduct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Governance » Ethics, Accountability, Contract » Code of Conduct Code of Conduct Helping employees recognize and resolve the ethics and compliance issues that may arise in their daily work. Contact Ethics and Compliance Group (505) 667-7506 Email Code of Conduct Los Alamos National Laboratory is committed to operating in accordance with the highest standards of ethics and compliance and with its core values of service to our nation, ethical conduct and personal accountability, excellence in our

  1. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes on Hopper Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the hopper compute node processors. NOTE: The intention

  2. Shields - Code Coupling

    SciTech Connect (OSTI)

    Vernon, Louis James

    2015-03-02

    This PowerPoint presentation focuses on the history and benefits of the Space Weather Modeling Framework (SWMF) code and collaborative software development.

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    Kansas adopted the 2006 International Energy Conservation Code (IECC) as "the applicable state standard" for commercial and industrial buildings. Enforcement is provided by local jurisdictions; t...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    Pennsylvania Department of Labor and Industry (DLI) has the authority to upgrade commercial and residential energy standards through the regulatory process. The current code, the 2009 UCC, became...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Maryland Building Performance Standards (MBPS) are adopted by the Maryland Department of Housing and Community Development (DHCD) Codes Administration. As required by legislation passed in...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Connecticut Office of the State Building Inspector establishes and enforces building, electrical, mechanical, plumbing and energy code requirements by reviewing, developing, adopting and...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Office of the State Fire Marshal is granted the authority to promulgate amendments, revisions, and alternative compliance methods for the code.

  8. Building Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Cohan Program Manager Building Energy Codes April 22, 2014 Presentation Outline * Mission * Goals * Program Organization * StrategiesRoles * Near-Term Focus * Measuring ...

  9. Tokamak Systems Code

    SciTech Connect (OSTI)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  10. Improving Code Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    provisions in International Energy Conservation Code (IECC) through proof-of-concept ... This includes updating recommendations based on newer CBECs or BPD energy statistics. ...

  11. Top NAICS Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Related Products Manufacturing for Measuring, Displaying, Top Ten NAICS Codes Dollar Value 511210 Software Publishers 334516 Analytical Laboratory Instrument Manufacturing...

  12. Advanced Imaging Optics Utilizing Wavefront Coding.

    SciTech Connect (OSTI)

    Scrymgeour, David; Boye, Robert; Adelsberger, Kathleen

    2015-06-01

    Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise. Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.

  13. Lichenase and coding sequences

    DOE Patents [OSTI]

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2000-08-15

    The present invention provides a fungal lichenase, i.e., an endo-1,3-1,4-.beta.-D-glucanohydrolase, its coding sequence, recombinant DNA molecules comprising the lichenase coding sequences, recombinant host cells and methods for producing same. The present lichenase is from Orpinomyces PC-2.

  14. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program U.S. Department of Energy Building Technologies Office Jeremy Williams, Project Manager Building Technologies Peer Review April 2014 Presentation Overview: * Introduction * Statutory Requirements * Program Structure * Recent accomplishments 2 Introduction: Background NATIONAL STATE LOCAL Building codes are developed through national industry consensus processes with input from industry representatives, trade organizations, government officials, and the general public Model energy codes

  15. Application of the ASME code in the design of the GA-4 and GA-9 casks

    SciTech Connect (OSTI)

    Mings, W.J. ); Koploy, M.A. )

    1992-01-01

    General Atomics (GA) is developing two spent fuel shipping casks for transport by legal weight truck (LWT). The casks are designed to the loading, environmental conditions and safety requirements defined in Title 10 of the Code of Federal Regulations, Part 71 (10CFR71). To ensure that all components of the cask meet the 10CFR71 rules, GA established structural design criteria for each component based on NRC Regulatory Guides and the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code). This paper discusses the criteria used for different cask components, how they were applied and the conservatism and safety margins built into the criteria and assumption.

  16. Application of the ASME code in the design of the GA-4 and GA-9 casks

    SciTech Connect (OSTI)

    Mings, W.J.; Koploy, M.A.

    1992-08-01

    General Atomics (GA) is developing two spent fuel shipping casks for transport by legal weight truck (LWT). The casks are designed to the loading, environmental conditions and safety requirements defined in Title 10 of the Code of Federal Regulations, Part 71 (10CFR71). To ensure that all components of the cask meet the 10CFR71 rules, GA established structural design criteria for each component based on NRC Regulatory Guides and the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code). This paper discusses the criteria used for different cask components, how they were applied and the conservatism and safety margins built into the criteria and assumption.

  17. Technical Standards, Safety Analysis Toolbox Codes - November 2003 |

    Office of Environmental Management (EM)

    Department of Energy Standards, Safety Analysis Toolbox Codes - November 2003 Technical Standards, Safety Analysis Toolbox Codes - November 2003 November 2003 Software Quality Assurance Plan and Criteria for the Safety Analysis Toolbox Codes Safety analysis software for the DOE "toolbox" was designated by DOE/EH in March 2003 (DOE/EH, 2003). The supporting basis for this designation was provided by a DOE-chartered Safety Analysis Software Group in the technical report, Selection of

  18. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  19. Safety Software Quality Assurance- Central Registry

    Broader source: Energy.gov [DOE]

    The Department of Energy maintains a list of "toolbox" codes that have been evaluated against DOE Safety Software Quality Assurance (SSQA) requirements of DOE O 414.1D, Quality Assurance, and its...

  20. Compressible Astrophysics Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  1. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    On May 2014, Delaware updated its energy code to 2012 IECC with amendments for residential sector and ASHRAE 90.1-2010 with amendments for the commercial sector. The Delaware specific amendments to...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    Authority for adopting the state energy codes was previously vested in the Energy Security Office of the Department of Commerce (originally the Department of Public Services). In 1999-2000, the...

  3. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    example.x example.c For C++ source code use CC % CC -fast -o example.x example.C All compilers on Hopper, PGI, Pathscale, Cray, GNU, and Intel, are provided via five programming...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Massachusetts Board of Building Regulations and Standards has authority to promulgate the Massachusetts State Building Code (MSBC). The energy provisions in the MSBC were developed by the Boa...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Oregon Energy Code amendments were most recently updated for both residential and non-residential construction in 2014. In October 2010 Oregon also adopted the Oregon Solar Installation...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    Both State building codes adoption and enforcement efforts fall under the purview of the State Fire Marshal’s Office within the Department of Commerce and Insurance (C&I). Any changes to the...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Texas State Energy Conservation Office (SECO) by rule may choose to adopt the latest published editions of the energy efficiency provisions of the International Residential Code (IRC) or the...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    Missouri does not have a statewide building or energy code for private residential and commercial buildings, and there currently is no state regulatory agency authorized to promulgate, adopt, or...

  9. Tribal Green Building Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with even amount of white space between photos and header Tribal Green Building Codes Chelsea Chee November 1 3, 2012 SAND 2012---9858C Photos placed in horizontal position with ...

  10. Compiling Codes on Cori

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wrappers will automatically link codes with MPI libraries and other Cray system software. ... NOTE: The intention is that programs are compiled on the login nodes and executed on the ...

  11. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wrappers will automatically link codes with MPI libraries and other Cray system software. ... NOTE: The intention is that programs are compiled on the login nodes and executed on the ...

  12. National Energy Codes Conference

    Broader source: Energy.gov [DOE]

    Join us in Nashville, TN March 23-26, 2015 for the National Energy Codes Conference! Additional details, including registration information, a preliminary agenda, the application for the Jeffrey A...

  13. Radiation Safety Training Guide for Use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-03-17

    This Guide provides an acceptable methodology for establishing and operating a radiation safety training program that will comply with U.S. Department of Energy (DOE) requirements specified in Title 10 of the Code of Federal Regulations (CFR), Part 835, Occupational Radiation Protection (DOE 1998a), hereinafter referred to as 10 CFR 835. In particular, this Guide provides guidance for achieving compliance with subpart J of 10 CFR 835. Canceled by DOE G 441.1-1B.

  14. PNNL Energy Codes Portfolio

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PNNL Energy Codes Portfolio 2015 Building Technologies Office Peer Review ADOPT COMPLY DEVELOP Bing Liu bing.liu@pnnl.gov Rosemarie Bartlett rosemarie.bartlett@pnnl.gov Pacific Northwest National Laboratory Project Summary Timeline: Multi-year program in support of DOE statutory requirements Key Milestones: 1. DOE's Determinations on 90.1-2013 and 2015 IECC 2. Update DOE's Energy odes ost-Effectiveness Methodology 3. Commercial Codes Roadmap 4. 90.1-2013 and 2015 IECC Cost Analyses 5.

  15. Health Code Number (HCN) Development Procedure

    SciTech Connect (OSTI)

    Petrocchi, Rocky; Craig, Douglas K.; Bond, Jayne-Anne; Trott, Donna M.; Yu, Xiao-Ying

    2013-09-01

    This report provides the detailed description of health code numbers (HCNs) and the procedure of how each HCN is assigned. It contains many guidelines and rationales of HCNs. HCNs are used in the chemical mixture methodology (CMM), a method recommended by the department of energy (DOE) for assessing health effects as a result of exposures to airborne aerosols in an emergency. The procedure is a useful tool for proficient HCN code developers. Intense training and quality assurance with qualified HCN developers are required before an individual comprehends the procedure to develop HCNs for DOE.

  16. Generating code adapted for interlinking legacy scalar code and...

    Office of Scientific and Technical Information (OSTI)

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a ...

  17. New Code Compliance Briefs Assist in Resolving Codes and Standards...

    Energy Savers [EERE]

    New Code Compliance Briefs Assist in Resolving Codes and Standards Concerns in Energy ... system knowledge that may limit effective implementation of new and existing standards. ...

  18. Enforcement Guidance Supplement 99-01, Enforcement of 10 CFR...

    Office of Environmental Management (EM)

    Guidance Supplement 99-01: Enforcement of 10 CFR Part 830.120 (Quality Assurance Rule) for ... "Nuclear Safety Management," and 10 CFR Part 835, "Occupational Radiation Protection." ...

  19. Nevada Energy Code for Buildings

    Office of Energy Efficiency and Renewable Energy (EERE)

    Legislation signed in 2009 changed the process of adopting building codes in the state. Previously, the statewide code would only apply to local governments that had not already adopted a code,...

  20. User`s manual for SNL-SAND-II code

    SciTech Connect (OSTI)

    Griffin, P.J.; Kelly, J.G.; VanDenburg, J.W.

    1994-04-01

    Sandia National Laboratories, in the process of characterizing the neutron environments at its reactor facilities, has developed an enhanced version of W. McElroy`s original SAND-II code. The enhanced input, output, and plotting interfaces make the code much easier to use. The basic physics and operation of the code remain unchanged. Important code enhancements include the interfaces to the latest ENDF/B-VI and IRDF-90 dosimetry-quality cross sections and the ability to use silicon displacement-sensitive devices as dosimetry sensors.

  1. FAA Smoke Transport Code

    Energy Science and Technology Software Center (OSTI)

    2006-10-27

    FAA Smoke Transport Code, a physics-based Computational Fluid Dynamics tool, which couples heat, mass, and momentum transfer, has been developed to provide information on smoke transport in cargo compartments with various geometries and flight conditions. The software package contains a graphical user interface for specification of geometry and boundary conditions, analysis module for solving the governing equations, and a post-processing tool. The current code was produced by making substantial improvements and additions to a codemore » obtained from a university. The original code was able to compute steady, uniform, isothermal turbulent pressurization. In addition, a preprocessor and postprocessor were added to arrive at the current software package.« less

  2. Securing mobile code.

    SciTech Connect (OSTI)

    Link, Hamilton E.; Schroeppel, Richard Crabtree; Neumann, William Douglas; Campbell, Philip LaRoche; Beaver, Cheryl Lynn; Pierson, Lyndon George; Anderson, William Erik

    2004-10-01

    If software is designed so that the software can issue functions that will move that software from one computing platform to another, then the software is said to be 'mobile'. There are two general areas of security problems associated with mobile code. The 'secure host' problem involves protecting the host from malicious mobile code. The 'secure mobile code' problem, on the other hand, involves protecting the code from malicious hosts. This report focuses on the latter problem. We have found three distinct camps of opinions regarding how to secure mobile code. There are those who believe special distributed hardware is necessary, those who believe special distributed software is necessary, and those who believe neither is necessary. We examine all three camps, with a focus on the third. In the distributed software camp we examine some commonly proposed techniques including Java, D'Agents and Flask. For the specialized hardware camp, we propose a cryptographic technique for 'tamper-proofing' code over a large portion of the software/hardware life cycle by careful modification of current architectures. This method culminates by decrypting/authenticating each instruction within a physically protected CPU, thereby protecting against subversion by malicious code. Our main focus is on the camp that believes that neither specialized software nor hardware is necessary. We concentrate on methods of code obfuscation to render an entire program or a data segment on which a program depends incomprehensible. The hope is to prevent or at least slow down reverse engineering efforts and to prevent goal-oriented attacks on the software and execution. The field of obfuscation is still in a state of development with the central problem being the lack of a basis for evaluating the protection schemes. We give a brief introduction to some of the main ideas in the field, followed by an in depth analysis of a technique called 'white-boxing'. We put forth some new attacks and improvements

  3. Radiation-Generating Devices Guide for Use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-15

    For use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection. This Guide provides an acceptable methodology for establishing and operating a sealed radioactive source accountability and control program that will comply with U.S. Department of Energy (DOE) requirements specified in Title 10 of the Code of Federal Regulations (CFR), Part 835, Occupational Radiation Protection (DOE 1998a), hereinafter referred to as 10 CFR 835. In particular, this Guide provides guidance for achieving compliance with subpart M of 10 CFR 835. Canceled by DOE G 441.1-1B.

  4. GENII Code Guidance

    National Nuclear Security Administration (NNSA)

    ... Journal of the Air Pollution Control Association 23:491-495. DNFSB, 2000, Defense Nuclear Facilities Safety Board, Quality Assurance for Safety-Related Software at Department of ...

  5. Mesh Quality Improvement Toolkit

    Energy Science and Technology Software Center (OSTI)

    2002-11-15

    MESQUITE is a linkable software library to be used by simulation and mesh generation tools to improve the quality of meshes. Mesh quality is improved by node movement and/or local topological modifications. Various aspects of mesh quality such as smoothness, element shape, size, and orientation are controlled by choosing the appropriate mesh qualtiy metric, and objective function tempate, and a numerical optimization solver to optimize the quality of meshes, MESQUITE uses the TSTT mesh interfacemore » specification to provide an interoperable toolkit that can be used by applications which adopt the standard. A flexible code design makes it easy for meshing researchers to add additional mesh quality metrics, templates, and solvers to develop new quality improvement algorithms by making use of the MESQUITE infrastructure.« less

  6. Safety Software Guide for Use with 10 CFR 830, Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-06-17

    This Guide provides acceptable methods for implementing the safety software quality assurance requirements of DOE O 414.1C, Quality Assurance. Certified 11-3-10. No cancellation.

  7. Electrical Circuit Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  8. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2006-03-08

    MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operationmore » of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.« less

  9. Confocal coded aperture imaging

    DOE Patents [OSTI]

    Tobin, Jr., Kenneth William (Harriman, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  10. Coded credentials: A primer

    SciTech Connect (OSTI)

    Wright, L.J.

    1988-02-01

    The need to identify people is an age-old requirement that has taken many forms over the ages. With the advent of the age of technology, the need has become more acute and many methods have been devised to help with the identification process. This report is designed to be a primer on one of those methods - the coded credential, e.g., a credential that is compatible with computerized access control systems.

  11. THREAT OF MALICIOUS CODE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THREAT OF MALICIOUS CODE The Department of Energy (DOE) is strongly committed to the protection of all DOE assets from cyber attack and malicious exploitation. This includes information, networks, hardware, software, and mobile devices. DOE's continued diligence in this arena is critical in today's constantly-evolving cyber threat landscape. A recently cited incident involved senior officials receiving unsolicited free phone chargers. Luckily, the source was legitimate and did not result in a

  12. Coding Archives - Nercenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coding What Certificates Should My Microsoft Exchange Server Have? Much like any other network application, in order to secure the functionality and safety of Microsoft Exchange Servers, it's essential to adopt specific certificates. Due to the literally thousands, if not millions, of security threats bombarding your Exchange Server every day, these certificates ensure users have a safe messaging experience while simultaneously safeguarding your data and sensitive information from being

  13. Bar coded retroreflective target

    DOE Patents [OSTI]

    Vann, Charles S.

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  14. MELCOR computer code manuals

    SciTech Connect (OSTI)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L.; Hodge, S.A.; Hyman, C.R.; Sanders, R.L.

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  15. DOE Order on Quality Assurance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assurance » DOE Order on Quality Assurance DOE Order on Quality Assurance The purpose of this order is to ensure that Department of Energy (DOE), including National Nuclear Security Administration (NNSA), products and services meet or exceed customers' requirements and expectations. DOE Order on Quality Assurance (252.09 KB) More Documents & Publications Order Module--DOE O 414.1D, QUALITY ASSURANCE Order Module--SAFETY SOFTWARE GUIDE FOR USE WITH 10 CFR 830, SUBPART A, QUALITY

  16. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface ...

  17. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

  18. Idaho Code | Open Energy Information

    Open Energy Info (EERE)

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Idaho Code Citation Idaho Code (2014). Retrieved from "http:en.openei.org...

  19. Building America Expert Meeting: Code Challenges with Multifamily Area

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Separation Walls | Department of Energy Code Challenges with Multifamily Area Separation Walls Building America Expert Meeting: Code Challenges with Multifamily Area Separation Walls This Building America Expert Meeting was conducted by the IBACOS team on Sept. 29, 2014, and focused on air sealing of area separation wall assemblies in multifamily buildings. This is an identified barrier that limits the ability of builders to cost effectively achieve higher energy efficiency and quality

  20. Hanford Meteorological Station computer codes: Volume 2, The PROD computer code

    SciTech Connect (OSTI)

    Andrews, G.L.; Buck, J.W.

    1987-09-01

    At the end of each work shift (day, swing, and graveyard), the Hanford Meteorological Station (HMS), operated by Pacific Northwest Laboratory, issues a forecast of the 200-ft-level wind speed and direction and the weather for use at B Plant and PUREX. These forecasts are called production forecasts. The PROD computer code is used to archive these production forecasts and apply quality assurance checks to the forecasts. The code accesses an input file, which contains the previous forecast's date and shift number, and an output file, which contains the production forecasts for the current month. A data entry form consisting of 20 fields is included in the program. The fields must be filled in by the user. The information entered is appended to the current production monthly forecast file, which provides an archive for the production forecasts. This volume describes the implementation and operation of the PROD computer code at the HMS.

  1. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2005-06-26

    Exotxt is an analysis code that reads finite element results data stored in an exodusII file and generates a file in a structured text format. The text file can be edited or modified via a number of text formatting tools. Exotxt is used by analysis to translate data from the binary exodusII format into a structured text format which can then be edited or modified and then either translated back to exodusII format or tomore » another format.« less

  2. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2005-05-07

    CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases intomore » a single database which makes it easier to postprocess the results data.« less

  3. JOY computer code

    SciTech Connect (OSTI)

    Couch, R.G.; Albright, E.L.; Alexander, N.B.

    1983-01-01

    JOY is a 3-dimensional multifluid Eulerian hydrocode in Cartesian coordinates. It contains an elastic-plastic treatment and a shock-initiation model for high explosives (HE). Development of JOY was funded by the Ballistic Missile Defense Advanced Technology Center (BMDATC). The intended use of the code was for the study of hypervelocity impacts. The ultimate goal was to perform a structural analysis of objects subject to such impacts. JOY was designed to treat the early-impact phases where material motion is complicated, and then transfer information to DYNA3D for the longer-timescale analysis.

  4. Evaluation and Control of Radiation Dose to the Embryo/Fetus Guide for Use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-29

    This Guide provides an acceptable methodology for establishing and operating a program to control fetal exposure to ionizing radiation and evaluate the resultant dose that will comply with U.S. Department of Energy (DOE) requirements specified in Title 10 of the Code of Federal Regulations (CFR), Part 835, Occupational Radiation Protection (DOE 1998), hereinafter referred to as 10 CFR 835.

  5. Benchmarking of Neutron Production of Heavy-Ion Transport Codes

    SciTech Connect (OSTI)

    Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence

    2012-01-01

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required.

  6. Update on the OPAL opacity code

    SciTech Connect (OSTI)

    Rogers, F.J.; Iglesias, C.A.; Wilson, B.G.

    1990-02-23

    Persisting discrepancies between theory and observation in a number of astrophysical properties has led to the conjecture that opacity databases may be inaccurate. The OPAL opacity code has been developed to address this question. The physical basis of OPAL removes several of the approximations present in past calculations. For example, it utilizes a much larger and more detailed set of atomic data than was used to construct the Los Alamos Astrophysical Library. This data is generated online, in LS or intermediate coupling, from prefitted analytic effective potentials and is of similar quality as single configuration, relativistic, self-consistent-field calculations. The OPAL code has been used to calculate opacities for the solar core and for Cepheid variable stars. In both cases, significant increases in the opacity compared to the Los Alamos Astrophysical Library were found. 37 refs., 2 figs., 1 tab.

  7. Update on the opal opacity code

    SciTech Connect (OSTI)

    Rogers, F.J.; Iglesias, C.A.; Wilson, B.G. )

    1990-05-01

    Persisting discrepancies between theory and observation in a number of astrophysical properties has led to the conjecture that opacity databases may be inaccurate. The OPAL opacity code has been developed to address this question. The physical basis of OPAL removes several of the approximations present in past calculations. For example, it utilizes a much larger and more detailed set of atomic data than was used to construct the los Alamos Astrophysical Library. This data is generated online, in LS or intermediate coupling, from prefitted analytic effective potentials and is of similar quality as single configuration, relativistic, self-consistent-field calculations. The OPAL code has been used to calculate opacities for the solar core and for Cepheid variable stars. In both cases, significant increases in the opacity compared to the Los Alamos Astrophysical Library were found.

  8. Code Tables | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Code Tables U.S. Department of Energy / U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System Code Tables Action Code The action code identifies the type of activity being reported in a transaction. The Action Code table shows the valid action codes. Nature of Transaction (TI) Code The financial code signifies the nature of the financial or contractual activity that is involved in the transaction. The Nature of Transaction (TI) Code table shows the valid action

  9. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013 ...

  10. Utah Code Annotated | Open Energy Information

    Open Energy Info (EERE)

    Code Ann. DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Code Annotated Citation Utah Code Annotated (2014). Retrieved from...

  11. Product Service Codes @ Headquarters | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Service Codes @ Headquarters A listing of Product Service Codes used at Headquarters Procurement Services PDF icon Produce Service Codes @ Headquarters.pdf More Documents &...

  12. Cal. Wat. Code 13376 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13376Legal Abstract Cal. Wat. Code 13376, current through August 14, 2014. Published NA Year Signed or Took Effect 2014 Legal Citation Cal. Wat. Code...

  13. Cal. Wat. Code 13320 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13320Legal Abstract Cal. Wat. Code 13320, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  14. Cal. Wat. Code 13369 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13369Legal Abstract Cal. Wat. Code 13369, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  15. Cal. Wat. Code 13373 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13373Legal Abstract Cal. Wat. Code 13373, current through August 14, 2014. Published NA Year Signed or Took Effect 1987 Legal Citation Cal. Wat. Code...

  16. Cal. Wat. Code 13160 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13160Legal Abstract Cal. Wat. Code 13160, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  17. Reactor System Transient Code.

    Energy Science and Technology Software Center (OSTI)

    1999-07-14

    RELAP3B describes the behavior of water-cooled nuclear reactors during postulated accidents or power transients, such as large reactivity excursions, coolant losses or pump failures. The program calculates flows, mass and energy inventories, pressures, temperatures, and steam qualities along with variables associated with reactor power, reactor heat transfer, or control systems. Its versatility allows one to describe simple hydraulic systems as well as complex reactor systems.

  18. Enforcement Guidance Supplement 99-01: Enforcement of 10 CFR Part 830.120 (Quality Assurance Rule) for Facilities below Hazard Category III

    Broader source: Energy.gov [DOE]

    Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Enforcement and Investigation (EH Enforcement) periodically to issue clarifying guidance regarding the processes used in its enforcement activities. During the past 18 months, EH Enforcement has identified a number of examples in which both DOE and contractor organizations have incorrectly exempted activities from applicability of the DOE Quality Assurance Rule 10 CFR 830.120 (QA Rule). The contractors excluded these activities on the basis that the QA Rule did not apply if the activity was classified as less than a Hazard Category III under DOE Standard 1027-92 (Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports). Standard 1027 provides guidance for determining whether a facility, activity or area requires a Safety Analysis Report but it does not provide a basis for exclusion from the provisions of the QA Rule.

  19. Enforcement Guidance Supplement 99-01:Enforcement of 10 CFR Part 830.120 (Quality Assurance Rule)for Facilities Below Hazard Category III

    Broader source: Energy.gov [DOE]

    Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Enforcement and Investigation (EH Enforcement) periodically to issue clarifying guidance regarding the processes used in its enforcement activities. During the past 18 months, EH Enforcement has identified a number of examples in which both DOE and contractor organizations have incorrectly exempted activities fromapplicability of the DOE Quality Assurance Rule 10 CFR 830.120 (QA Rule). The contractors excluded these activities on the basis that the QA Rule did not apply if the activity was classified as less than a Hazard Category III under DOE Standard 1027-92 (Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports). Standard 1027 provides guidance for determining whether a facility, activity or area requires a Safety Analysis Report but it does not provide a basis for exclusion from the provisions of the QA Rule.

  20. Explosive Formulation Code Naming SOP

    SciTech Connect (OSTI)

    Martz, H. E.

    2014-09-19

    The purpose of this SOP is to provide a procedure for giving individual HME formulations code names. A code name for an individual HME formulation consists of an explosive family code, given by the classified guide, followed by a dash, -, and a number. If the formulation requires preparation such as packing or aging, these add additional groups of symbols to the X-ray specimen name.

  1. Title 40 CFR 1502 - Environmental Impact Statement | Open Energy...

    Open Energy Info (EERE)

    Regulation: Title 40 CFR 1502 - Environmental Impact StatementLegal Abstract Subpart 1502 Environmental Impact Statement under Title 40: Protection of Environment of the U.S. Code...

  2. NEEP Building Energy Codes Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Markets value and prioritize energy efficiency - Rating and Disclosure ( VT, Cambridge, MA) * Robust & qualified building energy code work force: DE, RI, MA, MD, NY * ...

  3. City of Austin- Zoning Code

    Broader source: Energy.gov [DOE]

    The Zoning Code also allows for preservation plans in historic districts to incorporate sustainability measures such as solar technologies and other energy generation and efficiency measures.

  4. Technical Assistance: Increasing Code Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Peer Review Rosemarie Bartlett ... energy codes resulting in higher-performing buildings that ... feedback * Provide education and training materials in ...

  5. Clark County- Energy Conservation Code

    Broader source: Energy.gov [DOE]

    In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings...

  6. Marin County- Solar Access Code

    Broader source: Energy.gov [DOE]

    Marin County's Energy Conservation Code is designed to assure new subdivisions provide for future passive or natural heating or cooling opportunities in the subdivision to the extent feasible. ...

  7. Telescope Adaptive Optics Code

    Energy Science and Technology Software Center (OSTI)

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The defaultmore » parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST« less

  8. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  9. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public. Open full...

  10. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  11. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect (OSTI)

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  12. Accelerator Physics Code Web Repository

    SciTech Connect (OSTI)

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  13. Environmental assessment for issuance of 10 CFR Parts 834 and 835

    SciTech Connect (OSTI)

    Not Available

    1992-01-22

    The US Department of Energy (DOE) is proposing that two rules for radiation protection be included in Title 10 of the US Code of Federal Regulations (CFR). These proposed rule are 10 CFR Part 834, Radiation Protection of the Public and the Environment,'' and 10 CFR Part 835. Radiation Protection for Occupational Workers.'' Both would apply to normal operations at all DOE and DOE contractor facilities where ionizing radiation exposure could occur. The proposed rules are based on existing DOE Orders for radiation protection of workers, the public, and the environment. Proposed rule 10 CFR Part 834 essentially incorporates Order DOE 5400.5, Radiation Protection of the Public and the Environment'' (DOE 1990a), which was issued on February 8, 1990. Proposed rule 10 CFR Part 835 incorporates DOE 5480.11, Radiation Protection for Occupational Workers'' (DOE 1988a), which was issued on December 21, 1988. The intent in codifying these Orders is to provide the DOE with regulations for protection of members of the public and radiation workers against ionizing radiation and to enhance enforcement of the requirements under the Price Anderson Amendments Act (PAAA 1988). The proposed rules are designed to preserve the radiation protection provisions of the DOE Orders. The purpose of this environmental assessment (EA) is to provide an analysis that can be used to determine whether the proposed action -- promulgation of proposed 10 CFR Part 834 and 10 CFR Part 835 -- significantly affects the quality of the environment within the meaning of the National Environmental Policy Act (NEPA 1969). This EA identifies alternatives to the proposed action and examines what impact each of the alternatives would have on environmental quality.

  14. Environmental assessment for issuance of 10 CFR Parts 834 and 835

    SciTech Connect (OSTI)

    Not Available

    1992-01-22

    The US Department of Energy (DOE) is proposing that two rules for radiation protection be included in Title 10 of the US Code of Federal Regulations (CFR). These proposed rule are 10 CFR Part 834, ``Radiation Protection of the Public and the Environment,`` and 10 CFR Part 835. ``Radiation Protection for Occupational Workers.`` Both would apply to normal operations at all DOE and DOE contractor facilities where ionizing radiation exposure could occur. The proposed rules are based on existing DOE Orders for radiation protection of workers, the public, and the environment. Proposed rule 10 CFR Part 834 essentially incorporates Order DOE 5400.5, ``Radiation Protection of the Public and the Environment`` (DOE 1990a), which was issued on February 8, 1990. Proposed rule 10 CFR Part 835 incorporates DOE 5480.11, ``Radiation Protection for Occupational Workers`` (DOE 1988a), which was issued on December 21, 1988. The intent in codifying these Orders is to provide the DOE with regulations for protection of members of the public and radiation workers against ionizing radiation and to enhance enforcement of the requirements under the Price Anderson Amendments Act (PAAA 1988). The proposed rules are designed to preserve the radiation protection provisions of the DOE Orders. The purpose of this environmental assessment (EA) is to provide an analysis that can be used to determine whether the proposed action -- promulgation of proposed 10 CFR Part 834 and 10 CFR Part 835 -- significantly affects the quality of the environment within the meaning of the National Environmental Policy Act (NEPA 1969). This EA identifies alternatives to the proposed action and examines what impact each of the alternatives would have on environmental quality.

  15. Portable code development in C

    SciTech Connect (OSTI)

    Brown, S.A.

    1990-11-06

    With a new generation of high performance computers appearing around us on a time scale of months, a new challenge for developers of simulation codes is to write and maintain production codes that are both highly portable and maximally efficient. My contention is that C is the language that is both best suited to that goal and is widely available today. GLF is a new code written mainly in C which is intended to have all of the XRASER physics and run on any platform of interest. It demonstrates the power of the C paradigm for code developers and flexibility and ease of use for the users. Three fundamental problems are discussed: the C/UNIX development environment; the supporting tools and libraries which handle data and graphics portability issues; and the advantages of C in numerical simulation code development.

  16. Local invariants of stabilizer codes

    SciTech Connect (OSTI)

    Nest, Maarten van den; Dehaene, Jeroen; Moor, Bart de

    2004-09-01

    In Phys. Rev. A 58, 1833 (1998), Grassl et al. presented a family of polynomial invariants which separate the orbits of multiqubit density operators {rho} under the action of the local unitary group. We consider this family of invariants for the class of those {rho} that are the projection operators describing stabilizer codes and give a complete translation of these invariants into the binary framework in which stabilizer codes are usually described. Such an investigation of local invariants of quantum codes is of natural importance in quantum coding theory, since locally equivalent codes have the same error-correcting capabilities and local invariants are powerful tools to explore their structure. Moreover, the present result is relevant in the context of multipartite entanglement and the development of the measurement-based model of quantum computation known as the one-way quantum computer.

  17. Quality assurance program plan for Building 327

    SciTech Connect (OSTI)

    Tanke, J.M.

    1997-05-22

    This Quality Assurance Program Plan (QAPP) provides an overview of the quality assurance program for Building 327. The program applies to the facility safety structures, systems, and components and to activities that could affect safety structures, systems, and components. Adherence to the quality assurance program ensures the following: US Department of Energy missions and objectives are effectively accomplished; Products and services are safe, reliable, and meet or exceed the requirements and expectations of the user; Hazards to the public, to Hanford Site and facility workers, and to the environment are minimized. The format of this Quality Assurance Program Plan is structured to parallel that of 10 CFR 83 0.120, Quality Assurance Requirements. This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the 324 Building B-Cell Safety Cleanout Project (BCCP). This QAPP is responsive to the Westinghouse Hanford Company Quality Assurance Program and Implementation Plan, WHC-SP 113 1, for 10 CFR 830.120, Nuclear Safety Management, Quality Assurance Requirements; and DOE Order 5700.6C, Quality Assurance. This QAPP supersedes PNNL PNL-MA-70 QAP Quality Assurance Plan No. WTC-050 Rev. 2, issue date May 3, 1996.

  18. Building Codes Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Codes Resources Building Codes Resources Some commercial and/or residential construction codes mandate certain energy performance requirements for the design, materials, and equipment used in new construction and renovations. State-wide minimum codes may be amended by local jurisdictions to be more stringent if energy performance requirements are lacking or liberal. Find building codes resources below. DOE Resources Building Energy Codes Program: Resource Center Building Energy Codes Program:

  19. Codes and Standards Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Activities » Codes and Standards Activities Codes and Standards Activities The Fuel Cell Technologies Office works with code development organizations, code officials, industry experts, and national laboratory scientists to draft new model codes and equipment standards that cover emerging hydrogen technologies for consideration by the various code enforcing jurisdictions. DOE's codes and standards activities are focused on: Developing training programs for state and local officials that

  20. ETR/ITER systems code

    SciTech Connect (OSTI)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  1. New Code Compliance Briefs Assist in Resolving Codes and Standards...

    Energy Savers [EERE]

    Codes and Standards Concerns in Energy Innovations February 24, 2016 3:00PM to 4:30PM EST The Building America Program is hosting a free webinar that will provide an overview ...

  2. Comparison of linac simulation codes

    SciTech Connect (OSTI)

    Nath, S.; Ryne, Robert D.; Stovall, J.; Takeda, H.; Xiang, J.; Young, L.; Pichoff, N.; Uriot, D.; Crandall, K.

    2001-01-25

    The Spallation Neutron Source (SNS) project is a collaborative effort between Brookhaven, Argonne, Jefferson, Lawrence Berkeley, Los Alamos and Oak Ridge National Laboratories. Los Alamos is responsible for the design of the linac for this accelerator complex. The code PARMILA, developed at Los Alamos is widely used for proton linac design and beam dynamics studies. The most updated version includes superconducting structures among others. In recent years, some other codes have also been developed which primarily focuses on the studies of the beam dynamics. In this paper, we compare the simulation results and discuss physics aspects of the different linac design and beam dynamics simulation codes.

  3. State building energy codes status

    SciTech Connect (OSTI)

    1996-09-01

    This document contains the State Building Energy Codes Status prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy under Contract DE-AC06-76RL01830 and dated September 1996. The U.S. Department of Energy`s Office of Codes and Standards has developed this document to provide an information resource for individuals interested in energy efficiency of buildings and the relevant building energy codes in each state and U.S. territory. This is considered to be an evolving document and will be updated twice a year. In addition, special state updates will be issued as warranted.

  4. SOPP-43, EM-23 Quality Assurance Oversight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POLICY: The Office of Environmental Management (EM) Quality Assurance program requirements and expectations are documented in the EM Quality Assurance Program (QAP), EM-QA-001, dated October 2008. The QAP is the EM management system to ensure that all EM organizations "do work correctly." The QAP meets the requirements of DOE O 414.1C, Quality Assurance, and 10 CFR 830 Subpart A "Quality Assurance Requirements." The QAP demonstrates how QA and the Integrated Safety

  5. NAICS Codes @ Headquarters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAICS Codes @ Headquarters NAICS Codes @ Headquarters A listing of NAICS codes used at Headquarters Procurement Services NAICS Codes @ Headquarters.pdf (37.93 KB) More Documents & Publications Product Service Codes @ Headquarters Management & Operating Subcontract Reporting Capability (MOSRC) Downloads Historical Procurement Information

  6. code | OpenEI Community

    Open Energy Info (EERE)

    by Graham7781(2017) Super contributor 14 April, 2014 - 09:48 National Day of Civic Hacking code community data Event hacking international national OpenEI The National Day of...

  7. The Integrated TIGER Series Codes

    Energy Science and Technology Software Center (OSTI)

    2006-01-15

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with anmore » input scheme based on order-independent descriptive keywords that makes maximum use of defaults and intemal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.« less

  8. electromagnetics, eddy current, computer codes

    Energy Science and Technology Software Center (OSTI)

    2002-03-12

    TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.

  9. Edge equilibrium code for tokamaks

    SciTech Connect (OSTI)

    Li, Xujing; Drozdov, Vladimir V.

    2014-01-15

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  10. Example of Environmental Restoration Code of Accounts

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter describes the fundamental structure of an example remediation cost code system, lists and describes the Level 1 cost codes, and lists the Level 2 and Level 3 cost codes.

  11. SPEERs Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of the REEO's, we are learning quickly, responding to ... Energy Code Compliance Collaborative in Oklahoma. *Double ... regional code datastrategies - provide technical ...

  12. Finite Element Scalar Diffraction Theory Code

    Energy Science and Technology Software Center (OSTI)

    1993-08-18

    This computer code calculates the optical diffraction field for diffraction through two-dimensional apertures to aid optical system design. The code allows plotting of the diffraction field.

  13. Building Energy Code | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  14. Building Energy Codes | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Codes Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  15. Building Energy Codes Collaborative Technical Assistance for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborative Technical Assistance for States Building Energy Codes Collaborative Technical ... 2014 BTO Peer Review Southeast Energy Efficiency Alliance's Building Energy Codes ...

  16. National Template: Hydrogen Vehicle and Infrastructure Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Vehicle and Infrastructure Codes and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory) National Template: Hydrogen Vehicle and Infrastructure Codes and ...

  17. Laboratory Equipment Donation Program - LEDP Widget Code

    Office of Scientific and Technical Information (OSTI)

    Widget Inclusion Code Copy the code below and paste it to your website or blog: