Sample records for quality assurance plan

  1. Waste Management Quality Assurance Plan

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01T23:59:59.000Z

    Revision 6 Waste Management Quality Assurance Plan Waste6 WM QA Plan Waste Management Quality Assurance Plan LBNL/4 Management Quality Assurance

  2. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Holland, R. C.

    1998-06-01T23:59:59.000Z

    This Quality Assurance Project Plan documents the quality assurance activities for the Wastewater/Stormwater/Groundwater and Environmental Surveillance Programs. This QAPP was prepared in accordance with DOE guidance on compliance with 10CFR830.120.

  3. Software Quality Assurance Plan Example | Department of Energy

    Energy Savers [EERE]

    Assurance Plan Example Software Quality Assurance Plan Example An example of a software quality assurance plan developed from an actual DOE project SQA plan based on DOE G...

  4. The Waste Management Quality Assurance Implementing Management Plan (QAIMP)

    E-Print Network [OSTI]

    Albert editor, R.

    2009-01-01T23:59:59.000Z

    DIVISION Waste Management Quality Assurance ImplementingI I IMPLEMENTING MANAGEMENT QUALITY PLAN ASSURANCE I lilillI WM-QAIMP Waste Management Quality Assurance Implementing

  5. NMMSS Software Quality Assurance Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Quality Assurance Plan The Software Quality Assurance Plan (SQAP) for the Nuclear Materials Management and Safeguard System (NMMSS) software upgrade project (an actual DOE...

  6. Hanford Tanks Initiative quality assurance implementation plan

    SciTech Connect (OSTI)

    Huston, J.J.

    1998-06-23T23:59:59.000Z

    Hanford Tanks Initiative (HTI) Quality Assurance Implementation Plan for Nuclear Facilities defines the controls for the products and activities developed by HTI. Project Hanford Management Contract (PHMC) Quality Assurance Program Description (QAPD)(HNF-PRO599) is the document that defines the quality requirements for Nuclear Facilities. The QAPD provides direction for compliance to 10 CFR 830.120 Nuclear Safety Management, Quality Assurance Requirements. Hanford Tanks Initiative (HTI) is a five-year activity resulting from the technical and financial partnership of the US Department of Energy`s Office of Waste Management (EM-30), and Office of Science and Technology Development (EM-50). HTI will develop and demonstrate technologies and processes for characterization and retrieval of single shell tank waste. Activities and products associated with HTI consist of engineering, construction, procurement, closure, retrieval, characterization, and safety and licensing.

  7. Quality Assurance Program Plan for FFTF effluent controls. Revision 1

    SciTech Connect (OSTI)

    Seamans, J.A.

    1995-06-08T23:59:59.000Z

    This Quality Assurance Program Plan is specific to environmental related activities within the FFTF Property Protected Area. The activities include effluent monitoring and Low Level Waste Certification.

  8. SAPHIRE 8 Software Quality Assurance Plan

    SciTech Connect (OSTI)

    Curtis Smith

    2010-02-01T23:59:59.000Z

    This Quality Assurance (QA) Plan documents the QA activities that will be managed by the INL related to JCN N6423. The NRC developed the SAPHIRE computer code for performing probabilistic risk assessments (PRAs) using a personal computer (PC) at the Idaho National Laboratory (INL) under Job Code Number (JCN) L1429. SAPHIRE started out as a feasibility study for a PRA code to be run on a desktop personal PC and evolved through several phases into a state-of-the-art PRA code. The developmental activity of SAPHIRE was the result of two concurrent important events: The tremendous expansion of PC software and hardware capability of the 90s and the onset of a risk-informed regulation era.

  9. 222-S Laboratory Quality Assurance Plan. Revision 1

    SciTech Connect (OSTI)

    Meznarich, H.K.

    1995-07-31T23:59:59.000Z

    This Quality Assurance Plan provides,quality assurance (QA) guidance, regulatory QA requirements (e.g., 10 CFR 830.120), and quality control (QC) specifications for analytical service. This document follows the U.S Department of Energy (DOE) issued Hanford Analytical Services Quality Assurance Plan (HASQAP). In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. Quality assurance elements required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAMS-004) and Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (QAMS-005) from the US Environmental Protection Agency (EPA) are covered throughout this document. A quality assurance index is provided in the Appendix A. This document also provides and/or identifies the procedural information that governs laboratory operations. The personnel of the 222-S Laboratory and the Standards Laboratory including managers, analysts, QA/QC staff, auditors, and support staff shall use this document as guidance and instructions for their operational and quality assurance activities. Other organizations that conduct activities described in this document for the 222-S Laboratory shall follow this QA/QC document.

  10. Quality Assurance Program Plan for radionuclide airborne emissions monitoring

    SciTech Connect (OSTI)

    Vance, L.M.

    1993-07-01T23:59:59.000Z

    This Quality Assurance Program Plan (QAPP) describes the quality assurance requirements and responsibilities for radioactive airborne emissions measurements activities from regulated stacks are controlled at the Hanford Site. Detailed monitoring requirements apply to stacks exceeding 1% of the standard of 10 mrem annual effective dose equivalent to the maximally exposed individual from operations of the Hanford Site.

  11. NIF Projects Controls and Information Systems Software Quality Assurance Plan

    SciTech Connect (OSTI)

    Fishler, B

    2011-03-18T23:59:59.000Z

    Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

  12. AVLIS Production Plant Preliminary Quality Assurance Plan and Assessment

    SciTech Connect (OSTI)

    Not Available

    1984-11-15T23:59:59.000Z

    This preliminary Quality Assurance Plan and Assessment establishes the Quality Assurance requirements for the AVLIS Production Plant Project. The Quality Assurance Plan defines the management approach, organization, interfaces, and controls that will be used in order to provide adequate confidence that the AVLIS Production Plant design, procurement, construction, fabrication, installation, start-up, and operation are accomplished within established goals and objectives. The Quality Assurance Program defined in this document includes a system for assessing those elements of the project whose failure would have a significant impact on safety, environment, schedule, cost, or overall plant objectives. As elements of the project are assessed, classifications are provided to establish and assure that special actions are defined which will eliminate or reduce the probability of occurrence or control the consequences of failure. 8 figures, 18 tables.

  13. ERD UMTRA Project quality assurance program plan, Revision 7

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This document is the revised Quality Assurance Program Plan (QAPP) dated September, 1995 for the Environmental Restoration Division (ERD) Uranium Mill Tailings Remedial Action Project (UMTRA). Quality Assurance requirements for the ERD UMTRA Project are based on the criteria outlined in DOE Order 5700.6C or applicable sections of 10 CFR 830.120. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the ERD UMTRA Project and its contractors.

  14. Plutonium stabilization and handling quality assurance program plan

    SciTech Connect (OSTI)

    Weiss, E.V.

    1998-04-22T23:59:59.000Z

    This Quality Assurance Program Plan (QAPP) identifies project quality assurance requirements for all contractors involved in the planning and execution of Hanford Site activities for design, procurement, construction, testing and inspection for Project W-460, Plutonium Stabilization and Handling. The project encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM.

  15. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1981-01-16T23:59:59.000Z

    To provide Department of Energy (DOE) policy, set forth principles, and assign responsibilities for establishing, implementing, and maintaining programs of plans and actions to assure quality achievement in DOE programs. Canceled by DOE O 5700.6A, dated 7-21-1981.

  16. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1981-07-21T23:59:59.000Z

    To provide Department of Energy (DOE) policy, set forth principles, and assign responsibilities for establishing, implementing, and maintaining programs of plans and actions to assure quality achievement in DOE programs. Cancels DOE O 5700.6, dated 1-16-1981. Canceled by DOE O 5700.6B, dated 9-23-1986.

  17. Quality Assurance Program Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    into the daily operations of our programs and projects. The QA Program functions as a management tool to ensure that quality objectives are achieved throughout LM's technical,...

  18. UMTRA Project Office quality assurance program plan. Revision 6

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites. The UMTRA Project`s mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. Because these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the UMTRA Project Office and its contractors.

  19. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Riddle, Donna L.

    2007-05-03T23:59:59.000Z

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, “Quality Assurance Requirements,” ANSI/ASQC E4-2004, “Quality Systems for Environmental Data and Technology Programs – Requirements with Guidance for Use,” and ISO 14001-2004, “Environmental Management Systems,” have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, “Quality Assurance Program,” identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, “QA Program Implementation,” identifies the TAC organizations that have responsibility for implementing the QA program requirements; and Appendix C of the QA Manual provides comparison tables that identify where the requirements of other standards are addressed in the QA Manual.

  20. UMTRA project technical assistance contractor quality assurance implementation plan

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP) (DOE, 1993a), which was developed using US Department of Energy (DOE) Order 5700.6C quality assurance (QA) criteria. The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. All QA issues in the QAIP shall comply with requirements contained in the TAC QAPP (DOE, 1933a). Because industry standards for data acquisition and data control are not addressed in DOE Order 5700.6C, the QAIP has been formatted to the 14 US Environmental Protection Agency (EPA) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) QA requirements. DOE Order 5700.6C criteria that are not contained in the CERCLA requirements are added to the QAIP as additional requirements in Sections 15.0 through 18.0. Project documents that contain CERCLA requirements and 5700.6 criteria shall be referenced in this document to avoid duplication. Referenced documents are not included in this QAIP but are available through the UMTRA Project Document Control Center.

  1. UMTRA technical assistance contractor quality assurance program plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAc Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements.

  2. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-11-30T23:59:59.000Z

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  3. Management and overview Quality Assurance Program Plan. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office (DOE/ UMTRA-PO) is the US Department of Energy (DOE) Albuquerque Operations Office (AL) organization charged with the responsibility of managing and coordinating the activities of the various participating organizations and support contractors working on the UMTRA Project. This Quality Assurance Program Plan (QAPP) describes how the DOE/UMTRA-PO, as assisted by the Technical Assistance Contractor (TAC), performs the quality assurance (QA) aspects of managing and coordinating UMTRA Project activities. This QAPP was developed to comply with DOE Order 5700.6A, August, 1981, and AL Order 5700.6B, April, 1984, which contain the criteria applicable to Project QA activities.

  4. Used Fuel Disposition Campaign Preliminary Quality Assurance...

    Energy Savers [EERE]

    Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary...

  5. National Ignition Facility Quality Assurance Program Plan. Revision 1

    SciTech Connect (OSTI)

    Wolfe, C.R.; Yatabe, J.

    1996-09-01T23:59:59.000Z

    The National Ignition Facility (NIF) is a key constituent of the Department of Energy`s Stockpile Stewardship Program. The NIF will use inertial confinement fusion (ICF) to produce ignition and energy gain in ICF targets, and will perform weapons physics and high-energy- density experiments in support of national security and civilian objectives. The NIF Project is a national facility involving the collaboration of several DOE laboratories and subcontractors, including Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Laser Energetics (UR/LLE). The primary mission of the NIF Project is the construction and start-up operation of laser-based facilities that will demonstrate fusion ignition in the laboratory to provide nuclear-weapons-related physics data, and secondarily, to propagate fusion burn aimed at developing a potential source of civilian energy. To support the accomplishment of this very important mission, the LLNL Laser Directorate created the NIF Project Office to organize and bring about the Project. The NIF Project Office has established this Quality Assurance Program to ensure its success. This issue of the Quality Assurance Program Plan (QAPP) adds the requirements for the conduct of Title 11 design, construction, procurement, and Title III engineering. This QAPP defines and describes the program-the management system-for specifying, achieving, and assuring the quality of all NIF Project work consistent with the policies of the Laboratory and the Laser Directorate.

  6. CERCLA Sites Quality Assurance Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal OngoingCERCLA Sites Quality Assurance Project Plan

  7. UMTRA Project Office Quality Assurance Program Plan. Revision 5

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites in accordance with Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRA Project`s mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. The US Department of Energy (DOE) UMTRA Project Office directs the overall Project. Because these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria (set forth in the reference documents) has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. The UMTRA Project Office shall require each Project contractor to prepare and submit for approval a more detailed QAPP that is based on the applicable criteria of this QAPP and the referenced documents. All QAPPs on the UMTRA Project shall fit within the framework of this plan or an industry standard format that has been approved by the DOE Project Office.

  8. Quality Assurance Specialist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Quality Control Technician; Quality Assurance Inspector; Quality Assurance Representative

  9. UMTRA technical assistance contractor Quality Assurance Program Plan. Revision 4

    SciTech Connect (OSTI)

    Pehrson, P.

    1993-10-12T23:59:59.000Z

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAC Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements. The key to ensuring compliance with this directive is a two-step professional approach: utilize the quality system in all areas of activity, and generate a personal commitment from all personnel to provide quality service. The quality staff will be experienced, trained professionals capable of providing maximum flexibility to Project goal attainment. Such flexibility will enable the staff to be more cost effective and to further improve communication and coordination. To provide control details, this QAPP will be supplemented by approved standard operating procedures that provide requirements for performing the various TAC quality-related activities. These procedures shall describe applicable design input and document control activities and documentation.

  10. Quality-Assurance and Data Management Plan for Groundwater Activities by the U.S. Geological

    E-Print Network [OSTI]

    Quality-Assurance and Data Management Plan for Groundwater Activities by the U.S. Geological Survey;#12;Quality-Assurance and Data Management Plan for Groundwater Activities by the U.S. Geological Survey management plan for groundwater activities by the U.S. Geological Survey in Kansas, 2014: U.S. Geological

  11. Master Pump Shutdown MPS Software Quality Assurance Plan (SQAP)

    SciTech Connect (OSTI)

    BEVINS, R.R.

    2000-09-20T23:59:59.000Z

    The MPSS Software Quality Assurance (SQAP) describes the tools and strategy used in the development of the MPSS software. The document also describes the methodology for controlling and managing changes to the software.

  12. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-29T23:59:59.000Z

    To establish an effective management system [i.e., quality assurance programs (QAPs)] using the performance requirements of this Order, coupled with technical standards where appropriate. Cancels DOE O 414.1.

  13. Waste Encapsulation and Storage Facility (WESF) Quality Assurance Program Plan (QAPP)

    SciTech Connect (OSTI)

    ROBINSON, P.A.

    2000-04-17T23:59:59.000Z

    This Quality Assurance Plan describes how the Waste Encapsulation and Storage Facility (WESF) implements the quality assurance (QA) requirements of the Quality Assurance Program Description (QAPD) (HNF-Mp-599) for Project Hanford activities and products. This QAPP also describes the organizational structure necessary to successfully implement the program. The QAPP provides a road map of applicable Project Hanford Management System Procedures, and facility specific procedures, that may be utilized by WESF to implement the requirements of the QAPD.

  14. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Irene Farnham

    2011-05-01T23:59:59.000Z

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  15. Quality assurance program plan for the Site Physical and Electrical Calibration Services Lab. Revision 1

    SciTech Connect (OSTI)

    Carpenter, C.A.

    1995-03-02T23:59:59.000Z

    This Quality Assurance Program Plan (QAPP) is organized to address WHC`s implementation of quality assurance requirements as they are presented as interpretive guidance endorsed by the Department of Energy (DOE) Field Office, Richland DOE Order 5700.6C Quality Assurance. The quality assurance requirements presented in this plan will assure Measuring and Test Equipment (M and TE) are in conformance with prescribed technical requirements and that data provided by testing, inspection, or maintenance are valid. This QAPP covers all activities and work elements that are variously called QA, quality control, and quality engineering regardless of the organization performing the work. This QAPP identifies the QA requirements for planning, control, and documentation of operations, modifications, and maintenance of the WHC Site Physical and Electrical Calibration Services Laboratory. The primary function of the WHC Site Physical and Electrical Calibration Services Laboratory is providing calibration, standardization, or repair service of M and TE.

  16. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-04-29T23:59:59.000Z

    This Order ensures that the quality of DOE/NNSA products and services meets or exceeds the customer's expectations. This Order cancels DOE O 414.1A, Quality Assurance, dated 9-29-99, and Attachment 1, paragraph 8, and Attachment 2, paragraph 22, of DOE O 440.1A, Worker Protection Management for DOE Federal and Contractor Employees, dated 3-27-98. Cancels: DOE O 414.1A and DOE O 440.1A, parts as noted.

  17. Westinghouse Hanford Company quality assurance program and implementation plan

    SciTech Connect (OSTI)

    Moss, S.S., Westinghouse Hanford

    1996-07-01T23:59:59.000Z

    This is the first revision of the Quality AssurancePlan/Implementation Plan (QAP/IP) for nuclear facilities managedand operated by the Westinghouse Hanford Company (WHC).Development of the initial IP required review of the WHC qualityassurance program to the requirements of the 10 CFR 830.120, andcompletion of initial baseline assessments against the QAP toverify implementation of the program. Each WHC-managed nuclearfacility provided a stand-alone section to the QAP/IP, describingits mission and life-cycle status. WHC support organizationsalso performed assessments for their lead areas, and providedinputs to a separate stand-alone section with the initialbaseline assessment results. In this first revision, the initialbaseline matrixes for those facilities found to be in compliancewith the QAP have been removed. Tank Waste Remediation System(TWRS) and K Basins have modified their baseline matrixes to showcompletion of action items to date. With the followingexceptions, the WHC-managed nuclear facilities and their supportorganizations were found to have implemented QA programs thatsatisfy the requirements of 10 CFR 830.120. TWRS identifiedImplementation Plan Action Items having to do with: generationand revision of as-built drawings; updating TWRS organizationaland program documents; tracking the condition/age ofmaterials/equipment; and reconstitution of design bases forexisting, active facilities. No incremental funding needs wereidentified for FY95. For FY97, TWRS identified incrementalfunding in the amount of $65,000 for as-built drawings, and$100,000 for tracking the age/condition of materials/equipment.The K Basin Fuel Storage Facility identified Implementation PlanAction Items having to do with: training; updating procedures;establishing configuration management; reconstituting designbases; and providing darwings; and developing integrated,resource-loaded schedules. Incremental funding needs in theamount of $1.7 million were identified, over a time periodthrough March 1996, to implement the actions. The costs were allassociated with the actions on training ($300K) and configurationmanagement, design bases, and drawings ($1.4M). Schedulardetails and compensatory measures for the action items areprovided in Appendices A and D to this document.

  18. Quality assurance program plan for FRG sealed isotopic heat sources project (C-229)

    SciTech Connect (OSTI)

    Tanke, J.M.

    1997-05-16T23:59:59.000Z

    This QAPP implements the Quality Assurance Program Plan for the FRG Sealed Isotopic Heat Sources Project (C-229). The heat source will be relocated from the 324 Building and placed in interim storage at the Central Waste Complex (CWC).

  19. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-07-12T23:59:59.000Z

    To establish an effective management system [i.e., quality assurance programs(QAPs)] using the performance requirements of this Order, coupled with technical standards where appropriate. Change 1, dated 7/12/01, facilitates the Department's organizational transition necessitated by establishment of the NNSA. (Attachment 2 of this Order is canceled by DOE O 470.2B.) Cancels: DOE O 414.1

  20. Quality Assurance Program Plan for the Waste Sampling and Characterization Facility

    SciTech Connect (OSTI)

    Grabbe, R.R.

    1995-03-02T23:59:59.000Z

    The objective of this Quality Assurance Plan is to provide quality assurance (QA) guidance, implementation of regulatory QA requirements, and quality control (QC) specifications for analytical service. This document follows the Department of Energy (DOE)-issued Hanford Analytical Services Quality Assurance Plan (HASQAP) and additional federal [10 US Code of Federal Regulations (CFR) 830.120] QA requirements that HASQAP does not cover. This document describes how the laboratory implements QA requirements to meet the federal or state requirements, provides what are the default QC specifications, and/or identifies the procedural information that governs how the laboratory operates. In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. This document also covers QA elements that are required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAPPs), (QAMS-004), and Interim Guidelines and Specifications for Preparing Quality Assurance Product Plans (QAMS-005) from the Environmental Protection Agency (EPA). A QA Index is provided in the Appendix A.

  1. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-02-11T23:59:59.000Z

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  2. Quality Assurance Program Plan for AGR Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    W. Ken Sowder

    2004-02-01T23:59:59.000Z

    Quality Assurance Plan (QPP) is to document the Idaho National Engineering and Environmental Laboratory (INEEL) Management and Operating (M&O) Contractor’s quality assurance program for AGR Fuel Development and Qualification activities, which is under the control of the INEEL. The QPP is an integral part of the Gen IV Program Execution Plan (PEP) and establishes the set of management controls for those systems, structures and components (SSCs) and related quality affecting activities, necessary to provide adequate confidence that items will perform satisfactorily in service.

  3. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    SciTech Connect (OSTI)

    NONE

    1997-04-14T23:59:59.000Z

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste.

  4. Quality Assurance Exchange April 2007

    Broader source: Energy.gov (indexed) [DOE]

    "Provide Feed- back and Continuous Improvement." (continued on page 3) WTS SHARES ISSUES MANAGEMENT PROGRAM EM INITIATES QA EVALUATION PLAN EM-wide quality assurance program spe-...

  5. Sandia National Laboratories, California Quality Assurance Project Plan for Environmental Monitoring Program.

    SciTech Connect (OSTI)

    Holland, Robert C.

    2005-09-01T23:59:59.000Z

    This Quality Assurance Project Plan (QAPP) applies to the Environmental Monitoring Program at the Sandia National Laboratories/California. This QAPP follows DOE Quality Assurance Management System Guide for Use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance (DOE G 414.1-2A June 17, 2005). The Environmental Monitoring Program is located within the Environmental Operations Department. The Environmental Operations Department is responsible for ensuring that SNL/CA operations have minimal impact on the environment. The Department provides guidance to line organizations to help them comply with applicable environmental regulations and DOE orders. To fulfill its mission, the department has groups responsible for waste management; pollution prevention, air quality; environmental planning; hazardous materials management; and environmental monitoring. The Environmental Monitoring Program is responsible for ensuring that SNL/CA complies with all Federal, State, and local regulations and with DOE orders regarding the quality of wastewater and stormwater discharges. The Program monitors these discharges both visually and through effluent sampling. The Program ensures that activities at the SNL/CA site do not negatively impact the quality of surface waters in the vicinity, or those of the San Francisco Bay. The Program verifies that wastewater and stormwater discharges are in compliance with established standards and requirements. The Program is also responsible for compliance with groundwater monitoring, and underground and above ground storage tanks regulatory compliance. The Program prepares numerous reports, plans, permit applications, and other documents that demonstrate compliance.

  6. Project Hanford management contract quality assurance program implementation plan for nuclear facilities

    SciTech Connect (OSTI)

    Bibb, E.K.

    1997-10-15T23:59:59.000Z

    During transition from the Westinghouse Hanford Company (WHC) Management and Operations (M and O) contract to the Fluor Daniel Hanford (FDH) Management and Integration (M and I) contract, existing WHC policies, procedures, and manuals were reviewed to determine which to adopt on an interim basis. Both WHC-SP-1131,Hanford Quality Assurance Program and Implementation Plan, and WHC-CM-4-2, Quality Assurance Manual, were adopted; however, it was recognized that revisions were required to address the functions and responsibilities of the Project Hanford Management Contract (PHMC). This Quality Assurance Program Implementation Plan for Nuclear Facilities (HNF-SP-1228) supersedes the implementation portion of WHC-SP-1 13 1, Rev. 1. The revised Quality Assurance (QA) Program is documented in the Project Hanford Quality Assurance Program Description (QAPD), HNF-MP-599. That document replaces the QA Program in WHC-SP-1131, Rev. 1. The scope of this document is limited to documenting the nuclear facilities managed by FDH and its Major Subcontractors (MSCS) and the status of the implementation of 10 CFR 830.120, Quality Assurance Requirements, at those facilities. Since the QA Program for the nuclear facilities is now documented in the QAPD, future updates of the information provided in this plan will be by letter. The layout of this plan is similar to that of WHC-SP-1 13 1, Rev. 1. Sections 2.0 and 3.0 provide an overview of the Project Hanford QA Program. A list of Project Hanford nuclear facilities is provided in Section 4.0. Section 5.0 provides the status of facility compliance to 10 CFR 830.120. Sections 6.0, 7.0, and 8.0 provide requested exemptions, status of open items, and references, respectively. The four appendices correspond to the four projects that comprise Project Hanford.

  7. Track 9: Quality Assurance

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 9: Quality Assurance

  8. Pacific Northwest National Laboratory Apatite Investigation at the 100-NR-2 Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-03-28T23:59:59.000Z

    This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the 100-NR-2 Apatite Project. The U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N would include apatite sequestration as the primary treatment, followed by a secondary treatment. The scope of this project covers the technical support needed before, during, and after treatment of the targeted subsurface environment using a new high-concentration formulation.

  9. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    SciTech Connect (OSTI)

    Hall, L.R.

    1995-05-30T23:59:59.000Z

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1.

  10. Quality Assurance Program Plan (QAPP) Waste Management Project

    SciTech Connect (OSTI)

    HORHOTA, M.J.

    2000-12-21T23:59:59.000Z

    The Waste Management Project (WMP) is committed to excellence in our work and to delivering quality products and services to our customers, protecting our employees and the public and to being good stewards of the environment. We will continually strive to understand customer requirements, perform services, and activities that meet or exceed customer expectations, and be cost-effective in our performance. The WMP maintains an environment that fosters continuous improvement in our processes, performance, safety and quality. The achievement of quality will require the total commitment of all WMP employees to our ethic that Quality, Health and Safety, and Regulatory Compliance must come before profits. The successful implementation of this policy and ethic requires a formal, documented management quality system to ensure quality standards are established and achieved in all activities. The following principles are the foundation of our quality system. Senior management will take full ownership of the quality system and will create an environment that ensures quality objectives are met, standards are clearly established, and performance is measured and evaluated. Line management will be responsible for quality system implementation. Each organization will adhere to all quality system requirements that apply to their function. Every employee will be responsible for their work quality, to work safely and for complying with the policies, procedures and instructions applicable to their activities. Quality will be addressed and verified during all phases of our work scope from proposal development through closeout including contracts or projects. Continuous quality improvement will be an ongoing process. Our quality ethic and these quality principles constantly guide our actions. We will meet our own quality expectations and exceed those of our customers with vigilance, commitment, teamwork, and persistence.

  11. Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator Programs

    SciTech Connect (OSTI)

    Gabriel, D. M.; Miller, G. D.; Bohne, W. A.

    1995-03-16T23:59:59.000Z

    The purpose of this document is to serve as the Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) programs performed at EG&G Mound Applied Technologies. As such, it identifies and describes the systems and activities in place to support the requirements contained in DOE Order 5700.6C as reflected in MD-10334, Mound Quality Policy and Responsibilities and the DOE/RPSD supplement, OSA/PQAR-1, Programmatic Quality Assurance Requirements for Space and Terrestrial Nuclear Power Systems. Unique program requirements, including additions, modifications, and exceptions to these quality requirements, are contained in the appendices of this plan. Additional appendices will be added as new programs and activities are added to Mound's HS/RTG mission assignment.

  12. 2012 Quality Assurance Improvement Project Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) |2 National Energy AssuranceMo-alloys for

  13. The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-03T23:59:59.000Z

    The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

  14. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP). The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. The QAIP is authorized and approved by the TAC Project Manager and QA manager. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization activities are carried out in a manner that will protect public health and safety, promote the success of the UMTRA Project and meet or exceed contract requirements.

  15. Office of Quality Assurance

    Broader source: Energy.gov [DOE]

    The Office of Quality Assurance establishes and maintains the quality assurance (QA) policies, requirements and guidance for the Department and serves as DOE's corporate resource to ensure that products and services meet or exceed the Department’s quality objectives.

  16. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-06-17T23:59:59.000Z

    This Order ensures that the quality of DOE/NNSA products and services meets or exceeds the customers' expectations. Cancels DOE O 414.1B and DOE N 411.1. Canceled by DOE O 414.1D.

  17. PNNL Apatite Investigation at 100-NR-2 Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-02T23:59:59.000Z

    In 2004, the U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory (PNNL), and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area would include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary. Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing strontium-90 flux to the Columbia River. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the PNNL Apatite Investigation at 100-NR-2 Project. The plan is designed to be used exclusively by project staff.

  18. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water, Revision 2

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This document contains the Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The QAIP outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QA program is designed to use monitoring, audit, and surveillance activities as management tools to ensure that UMTRA Project activities are carried out in amanner to protect public health and safety, promote the success of the UMTRA Project, and meet or exceed contract requirements.

  19. Quality Assurance Project Plan for radioactive airborne emissions data compilation and reporting

    SciTech Connect (OSTI)

    Burris, S.A.; Thomas, S.P.

    1994-02-01T23:59:59.000Z

    This Quality Assurance Project Plan addresses the quality assurance requirements for compiling data from radioactie aiborne emissions. These data will be reported to the US Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Hanford Site radioactive airborne emissions are reported to the US Environmental Protection Agency in compliance with Title 40, Protection of the Environment, Code of Federal Regulations, Part 61, ``National Emissions Standards for Hazardous Air Pollutants , ``Subpart H, ``National Emissions Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities`` (EPA 1989a). Reporting to US Department of Energy is performed in compliance with requirements of US Department of Energy Order 5400.1, General Environmental Protection Program (DOE 1988a).

  20. Management and overview Quality Assurance Program Plan. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office (DOE/ UMTRA-PO) is the US Department of Energy (DOE) Albuquerque Operations Office (AL) organization charged with the responsibility of managing and coordinating the activities of the various participating organizations and support contractors working on the UMTRA Project. This Quality Assurance Program Plan (QAPP) describes how the DOE/UMTRA-PO, as assisted by the Technical Assistance Contractor (TAC), performs the quality assurance (QA) aspects of managing and coordinating UMTRA Project activities. This QAPP was developed to comply with DOE Order 5700.6A, August, 1981, and AL Order 5700.6B, April, 1984, which contain the criteria applicable to Project QA activities.

  1. Quality assurance project plan for the UMTRA technical assistance contractor hydrochemistry facility. Final report

    SciTech Connect (OSTI)

    NONE

    1993-07-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) hydrochemistry facility is used to perform a limited but important set of services for the UMTRA Project. Routine services include support of field-based hydrological and geochemical operations and water sampling activities. Less commonly, the hydrology and geochemistry staff undertake special studies and site characterization studies at this facility. It is also used to train hydrologists, geochemists, and groundwater sampling crews. A review of this Quality Assurance Project Plan (QAPP) shall be accomplished once each calendar year. This review will be targeted to be accomplished not sooner than 6 months and not later than 18 months after the last review.

  2. Quality Assurance Plan for site electrical replacements at substation line item subproject: 69 KV Substation

    SciTech Connect (OSTI)

    Ohler, C.K.

    1991-05-21T23:59:59.000Z

    The 69 KV Substation Project is based on the recognized need to provide a continuous, reliable source of power and to improve the firm capacity of the electrical service to all production facilities at Mound. The project consists of the following major element: 69 KV Substation: (1) Install a 69 KV Substation and associated equipment with two parallel 18 MVA transformers. (2) Install duct bank as required and provide 15 KV feeder cable from new substation to existing Substation 95 for connection to Mound`s existing primary distribution system. (3) Install duct bank for underground routing of the 15 KV feeder cable from Manhole 5C to the existing power house cable pit. (4) Reconfigure existing Dayton Power and Light Co. 15 KV switchgear in P Building. The purpose of this Quality Assurance Plan (QA Plan) is to assure that the objectives of the United States Department of Energy (D.O.E.) and EG&G Mound Applied Technologies, Miamisburg, Ohio (Mound) are met for this non-weapons project relative to health and safety, protection of the environment, reliability and continuity of operations, and documentation of quality efforts. This QA Plan identifies the activities and responsibilities which are necessary in the design, procurement, fabrication, installation, and start up of this project in order to meet these objectives.

  3. [Uranium Mill Tailings Remedial Action Project Office Quality Assurance Program Plan]. Revision 4

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites in accordance with Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRA Project`s mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. The US Department of Energy (DOE) UMTRA Project Office (UMTRA PO) directs the overall project. Since these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria (set forth in the reference documents) has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. The UMTRA PO shall require each Project contractor to prepare and submit for approval a more detailed QAPP that is based on the applicable criteria of this QAPP and the referenced documents. All QAPPs on the UMTRA Project shall fit within the framework of this plan.

  4. [Uranium Mill Tailings Remedial Action Project Office Quality Assurance Program Plan

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites in accordance with Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRA Project's mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. The US Department of Energy (DOE) UMTRA Project Office (UMTRA PO) directs the overall project. Since these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria (set forth in the reference documents) has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. The UMTRA PO shall require each Project contractor to prepare and submit for approval a more detailed QAPP that is based on the applicable criteria of this QAPP and the referenced documents. All QAPPs on the UMTRA Project shall fit within the framework of this plan.

  5. The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-29T23:59:59.000Z

    Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.

  6. Global Threat Reduction Initiative Fuel-Thermo-Physical Characterization Project Quality Assurance Plan

    SciTech Connect (OSTI)

    Pereira, Mario M.; Slonecker, Bruce D.

    2012-06-01T23:59:59.000Z

    The charter of the Fuel Thermo-Physical Characterization Project is to ready Pacific Northwest National Laboratory (PNNL) facilities and processes for the receipt of unirradiated and irradiated low enriched uranium (LEU) molybdenum (U-Mo) fuel element samples, and to perform analysis to support the Global Threat Reduction Initiative conversion program. PNNL’s support for the program will include the establishment of post-irradiation examination processes, including thermo-physical properties, unique to the U.S. Department of Energy laboratories. These processes will ultimately support the submission of the base fuel qualification (BFQ) to the U.S. Nuclear Regulatory Commission (NRC) and revisions to High Performance Research Reactor Safety Analysis Reports to enable conversion from highly enriched uranium to LEU fuel. This quality assurance plan (QAP) provides the quality assurance requirements and processes that support the NRC BFQ. This QAP is designed to be used by project staff, and prescribes the required management control elements that are to be met and how they are implemented. Additional controls are captured in Fuel Thermo-Physical Characterization Project plans, existing procedures, and procedures to be developed that provide supplemental information on how work is conducted on the project.

  7. Software quality assurance handbook

    SciTech Connect (OSTI)

    Not Available

    1990-09-01T23:59:59.000Z

    There are two important reasons for Software Quality Assurance (SQA) at Allied-Signal Inc., Kansas City Division (KCD): First, the benefits from SQA make good business sense. Second, the Department of Energy has requested SQA. This handbook is one of the first steps in a plant-wide implementation of Software Quality Assurance at KCD. The handbook has two main purposes. The first is to provide information that you will need to perform software quality assurance activities. The second is to provide a common thread to unify the approach to SQA at KCD. 2 figs.

  8. Software Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-10-02T23:59:59.000Z

    To define requirements and responsibilities for software quality assurance (SQA) within the Department of Energy (DOE). DOE N 251.40, dated 5/3/01, extends this directive until 12/31/01.

  9. Software Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-10-02T23:59:59.000Z

    DOE N 251.40, dated 5/3/01, extends this directive until 12/31/01. To define requirements and responsibilities for software quality assurance (SQA) within the Department of Energy (DOE). Does not cancel other directives.

  10. Quality Assurance Specialist (Safety Software Qualtiy Assurance)

    Broader source: Energy.gov [DOE]

    A successful candidate in this position performs safety software quality assurance oversight of all activities that support the Waste Isolation Pilot Plant (WIPP) compliance with environmental,...

  11. Task Technical and Quality Assurance Plan for the Characterization of Tank 25F Saltcake Core Samples

    SciTech Connect (OSTI)

    Martino, C

    2005-08-15T23:59:59.000Z

    The Department of Energy (DOE) recognizes the need for the characterization of High-Level Waste (HLW) saltcake in the Savannah River Site (SRS) F- and H-area tank farms to support upcoming salt processing activities. As part of the enhanced characterization efforts, Tank 25F will be sampled and the samples analyzed at the Savannah River National Laboratory (SRNL). This Task Technical and Quality Assurance Plan documents the planned activities for the physical, chemical, and radiological analysis of the Tank 25F saltcake core samples. This plan does not cover other characterization activities that do not involve core sample analysis and it does not address issues regarding sampling or sample transportation. The objectives of this report are: (1) Provide information useful in projecting the composition of dissolved salt batches by quantifying important components (such as actinides, {sup 137}Cs, and {sup 90}Sr) on a per batch basis. This will assist in process selection for the treatment of salt batches and provide data for the validation of dissolution modeling. (2) Determine the properties of the heel resulting from dissolution of the bulk saltcake. Also note tendencies toward post-mixing precipitation. (3) Provide a basis for determining the number of samples needed for the characterization of future saltcake tanks. Gather information useful towards performing characterization in a manner that is more cost and time effective.

  12. Quality assurance and data management

    SciTech Connect (OSTI)

    Lockrem, L.L.

    1998-01-12T23:59:59.000Z

    This report contains graphs and tables relating to quality assurance and data management for environmental quality at Hanford Reservation.

  13. Performance assurance program plan

    SciTech Connect (OSTI)

    Rogers, B.H.

    1997-11-06T23:59:59.000Z

    B and W Protec, Inc. (BWP) is responsible for implementing the Performance Assurance Program for the Project Hanford Management Contract (PHMC) in accordance with DOE Order 470.1, Safeguards and Security Program (DOE 1995a). The Performance Assurance Program applies to safeguards and security (SAS) systems and their essential components (equipment, hardware, administrative procedures, Protective Force personnel, and other personnel) in direct support of Category I and H special nuclear material (SNM) protection. Performance assurance includes several Hanford Site activities that conduct performance, acceptance, operability, effectiveness, and validation tests. These activities encompass areas of training, exercises, quality assurance, conduct of operations, total quality management, self assessment, classified matter protection and control, emergency preparedness, and corrective actions tracking and trending. The objective of the Performance Assurance Program is to capture the critical data of the tests, training, etc., in a cost-effective, manageable program that reflects the overall effectiveness of the program while minimizing operational impacts. To aid in achieving this objective, BWP will coordinate the Performance Assurance Program for Fluor Daniel Hanford, Inc. (FDH) and serve as the central point for data collection.

  14. Quality assurance plan for the molten salt reactor experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    This Quality Assurance Plan (QAP) identifies and describes the systems utilized by Molten Salt Reactor Experiment (MSRE) Remediation Project personnel to implement the requirements and associated applicable guidance contained in the Quality Program Description, Y/QD-15 Rev. 2 (Martin Marietta Energy Systems, Inc., 1995) and Environmental Management and Enrichment Facilities Work Smart Standards. This QAP defines the quality assurance (QA) requirements applicable to all activities and operations in and directly pertinent to the MSRE Remediation Project. This QAP will be periodically reviewed, revised, and approved as necessary. This QAP identifies and describes the QA activities and procedures implemented by the various Oak Ridge National Laboratory support organizations and personnel to provide confidence that these activities meet the requirements of this project. Specific support organization (Division) quality requirements, including the degree of implementation of each, are contained in the appendixes of this plan.

  15. SAPHIRE 8 Software Quality Assurance Oversight

    SciTech Connect (OSTI)

    Kurt G. Vedros

    2011-09-01T23:59:59.000Z

    The software quality assurance oversight consists of updating and maintaining revision control of the SAPHIRE 8 quality assurance program documentation and of monitoring revision control of the SAPHIRE 8 source code. This report summarizes the oversight efforts through description of the revision control system (RCS) setup, operation and contents. Documents maintained under revision control include the Acceptance Test Plan (ATP), Configuration Management Plan, Quality Assurance Plan, Software Project Plan, Requirements Traceability Matrix (RTM), System Test Plan, SDP Interface Training Manual, and the SAPHIRE 8, 'New Features and Capabilities Overview'.

  16. Quality Assurance Program Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-16T23:59:59.000Z

    This Guide provides information on principles, requirements, and practices used to establish and implement an effective Quality Assurance Program. Cancels DOE G 414.1-2A, DOE G 414.1-3 and DOE G 414.1-5. Admin Chg 1, dated 9-27-11. Admin Chg 2, dated 5-8-13.

  17. Quality Assurance Program Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-16T23:59:59.000Z

    The directive provides guidance for DOE elements and contractors in developing and implementing an effective Quality Assurance Program. Cancels DOE G 414.1-2A, DOE G 414.1-3 and DOE G 414.1-5. Superseded by Admin Chg 1, 9-27-11.

  18. Quality Assurance Program Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-16T23:59:59.000Z

    This Guide provides information on principles, requirements, and practices used to establish and implement an effective Quality Assurance Program. Cancels DOE G 414.1-2A, DOE G 414.1-3 and DOE G 414.4-5. Admin Chg 1, dated 9-27-11. Admin Chg 2, dated 5-8-13.

  19. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31T23:59:59.000Z

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA- 731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  20. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01T23:59:59.000Z

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  1. Software Quality Assurance Subcommittee : Guidelines for Requirements...

    Broader source: Energy.gov (indexed) [DOE]

    Software Quality Assurance Subcommittee : Guidelines for Requirements Management Software Quality Assurance Subcommittee : Guidelines for Requirements Management Requirements...

  2. Quality Assurance Corporate Board | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Assurance Corporate Board Quality Assurance Corporate Board The Office of Environmental Management (EM) Quality Assurance Corporate Board is an executive board that includes both...

  3. Quality Assurance | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014 2013 2012 2011Quality Assurance Is A Key

  4. Quality Assurance 9-1 9. Quality Assurance

    E-Print Network [OSTI]

    Pennycook, Steve

    Reservation 9-2 Quality Assurance the National Institute of Standards and Tech- nology (NIST), other DOE address and meet applicable quality standards. 9.2 FIELD SAMPLING QUALITY ASSURANCE Field sampling QA.Somekeyqualitypractices include the following: · use of standard operating procedures for sample collection and analysis; · use

  5. Independent Verification and Validation Of SAPHIRE 8 Software Quality Assurance Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2010-02-01T23:59:59.000Z

    This report provides an evaluation of the Software Quality Assurance Plan. The Software Quality Assurance Plan is intended to ensure all actions necessary for the software life cycle; verification and validation activities; documentation and deliverables; project management; configuration management, nonconformance reporting and corrective action; and quality assessment and improvement have been planned and a systematic pattern of all actions necessary to provide adequate confidence that a software product conforms to established technical requirements; and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  6. Independent Verification and Validation Of SAPHIRE 8 Software Quality Assurance Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2010-03-01T23:59:59.000Z

    This report provides an evaluation of the Software Quality Assurance Plan. The Software Quality Assurance Plan is intended to ensure all actions necessary for the software life cycle; verification and validation activities; documentation and deliverables; project management; configuration management, nonconformance reporting and corrective action; and quality assessment and improvement have been planned and a systematic pattern of all actions necessary to provide adequate confidence that a software product conforms to established technical requirements; and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  7. Data Driven Quality Assurance and Quality Control

    Broader source: Energy.gov [DOE]

    "Data Driven Quality Assurance & Quality Control," Patrick Roche, Conservation Services Group. Provides an overview of data QA/QC system design.

  8. Quality Assurance Exchange August 2011

    Office of Environmental Management (EM)

    Editor: Debbie Rosano: 301-903-8177, debbie.rosano@hq.doe.gov Quality Assurance Web site: www.hss.energy.govnuclearsafetyqa Questions or Comments? Please submit to...

  9. International Quality Assurance Standards (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Hacke, P.; Wohlgemuth, J.; Kempe, M.; Yamamichi, M.

    2011-02-01T23:59:59.000Z

    Tests to make quantitative predictions about photovoltaic (PV) modules are needed. This presentation proposes the creation of international quality assurance standards for PV modules.

  10. Construction quality assurance report

    SciTech Connect (OSTI)

    Roscha, V.

    1994-09-08T23:59:59.000Z

    This report provides a summary of the construction quality assurance (CQA) observation and test results, including: The results of the geosynthetic and soil materials conformance testing. The observation and testing results associates with the installation of the soil liners. The observation and testing results associated with the installation of the HDPE geomembrane liner systems. The observation and testing results associated with the installation of the leachate collection and removal systems. The observation and testing results associated with the installation of the working surfaces. The observation and testing results associated with in-plant manufacturing process. Summary of submittal reviews by Golder Construction Services, Inc. The submittal and certification of the piping material specifications. The observation and verification associated of the Acceptance Test Procedure results of the operational equipment functions. Summary of the ECNs which are incorporated into the project.

  11. A Template for a Performance Assurance Plan

    Office of Environmental Management (EM)

    Template for a Performance Assurance Plan (draft) Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Performance Assurance Plan...

  12. Quality Assurance Functional Area Qualification Standard - DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50-2013, Quality Assurance Functional Area Qualification Standard by Administrator The Quality Assurance (QA) Functional Area Qualification Standard (FAQS) establishes common...

  13. Quality Assurance 9-1 9. Quality Assurance

    E-Print Network [OSTI]

    Pennycook, Steve

    Institute of Standards and Tech- nology (NIST), other DOE sources, or EPA are used for such work address and meet applicable quality standards. 9.2 FIELD SAMPLING QUALITY ASSURANCE Field sampling QA.Somekeyqualitypractices include the following: · use of standard operating procedures for sample collection and analysis; · use

  14. Quality Assurance 9-1 9. Quality Assurance

    E-Print Network [OSTI]

    Pennycook, Steve

    Institute of Standards and Technology (NIST), EPA , or other DOE laboratories are used for such work address and meet applicable quality standards. 9.2 FIELD SAMPLING QUALITY ASSURANCE Field sampling QA include the following: use of standard operating procedures (SOPs) for sample collection and analysis

  15. Quality Assurance 9 2009 Site environmental report9-

    E-Print Network [OSTI]

    throughout the entire organization. The purpose of the BNL Quality Management (QM) System is to implement QM methodology throughout the various Laboratory management systems and associated processes, in order to: PlanQuality Assurance 9 2009 Site environmental report9- DRAFT Quality assurance is an integral part

  16. Quality Assurance 9 2008 Site environmental report9-

    E-Print Network [OSTI]

    throughout the entire organization. The purpose of the BNL Quality Management (QM) System is to implement QM methodology throughout the various Laboratory management systems and associated processes, in order to: PlanQuality Assurance 9 2008 Site environmental report9- DRAFT Quality assurance is an integral part

  17. Quality Assurance 9-1 9. Quality Assurance

    E-Print Network [OSTI]

    Pennycook, Steve

    Institute of Standards and Technology (NIST), other DOE sources, or EPA are used for such work qual- ity standards. 9.2 Field Sampling Quality Assurance Field sampling QA encompasses many prac the following: use of standard operating procedures for sample collection and analysis; use of chain

  18. Quality Assurance 9-1 9. Quality Assurance

    E-Print Network [OSTI]

    Pennycook, Steve

    ). Certified standards traceable to the National Institute of Standards and Technology (NIST), other DOE standards. 9.2 FIELD SAMPLING QUALITY ASSURANCE Field sampling QA encompasses many practices that minimize error and evaluate samplingperformance.Somekeyqualitypractices include the following: · use of standard

  19. Quality Assurance 9-1 9. Quality Assurance

    E-Print Network [OSTI]

    Pennycook, Steve

    ). Certified standards traceable to the National In- stitute of Standards and Technology (NIST), DOE sources standards. 9.2 Field Sampling Quality Assurance Field sampling QA encompasses many prac- tices that minimize control processes and standard operating procedures for sample collection and analysis; use of chain

  20. Quality Assurance Specialist

    Broader source: Energy.gov [DOE]

    This position is located in the Office of the Assistant Secretary for Environmental Management (EM), Office of the Deputy Assistant Secretary for Safety, Security and Quality Programs, Office of...

  1. Quality assurance manual: Volume 1

    SciTech Connect (OSTI)

    Oijala, J.E.

    1988-06-01T23:59:59.000Z

    Stanford Linear Accelerator Center (SLAC) is a DOE-supported research facility that carries out experimental and theoretical research in high energy physics and developmental work in new techniques for particle acceleration and experimental instrumentation. The purpose of this manual is to describe SLAC quality assurance policies and practices in various parts of the Laboratory.

  2. Quality Assurance Guide for Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-27T23:59:59.000Z

    This Guide provides acceptable approaches for implementing the Quality Assurance requirements and criteria of DOE O 413.3A related to the development and implementation of a Quality Assurance Program for the project. No cancellations.

  3. Section 22: Quality Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is Taking Over OurSecretaryFigure 1. LocationQuality

  4. Fuel Efficiency Automobile Test Quality Assurance Narrative

    E-Print Network [OSTI]

    Denver, University of

    Fuel Efficiency Automobile Test Quality Assurance Narrative Standard Operating Procedures Help ........................................................................................................... 3 FEAT Standard Operating Procedures...................................................................................................................24 Maintenance Items

  5. Quality Assurance Project Plan for the treatability study of in situ vitrification of Seepage Pit 1 in Waste Area Grouping 7 at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This Quality Assurance Project Plan (QAPjP) establishes the quality assurance procedures and requirements to be implemented for the control of quality-related activities for Phase 3 of the Treatability Study (TS) of In Situ Vitrification (ISV) of Seepage Pit 1, ORNL Waste Area Grouping 7. This QAPjP supplements the Quality Assurance Plan for Oak Ridge National Laboratory Environmental Restoration Program by providing information specific to the ISV-TS. Phase 3 of the TS involves the actual ISV melt operations and posttest monitoring of Pit 1 and vicinity. Previously, Phase 1 activities were completed, which involved determining the boundaries of Pit 1, using driven rods and pipes and mapping the distribution of radioactivity using logging tools within the pipes. Phase 2 involved sampling the contents, both liquid and solids, in and around seepage Pit 1 to determine their chemical and radionuclide composition and the spatial distribution of these attributes. A separate QAPjP was developed for each phase of the project. A readiness review of the Phase 3 activities presented QAPjP will be conducted prior to initiating field activities, and an Operational Acceptance, Test (OAT) will also be conducted with no contamination involved. After, the OAT is complete, the ISV process will be restarted, and the melt will be allowed to increase with depth and incorporate the radionuclide contamination at the bottom of Pit 1. Upon completion of melt 1, the equipment will be shut down and mobilized to an adjacent location at which melt 2 will commence.

  6. State and Local Energy Assurance Planning | Department of Energy

    Office of Environmental Management (EM)

    State and Local Energy Assurance Planning State and Local Energy Assurance Planning OE works closely with State and local governments on energy assurance issues. The office...

  7. Tomotherapy treatment plan quality assurance: The impact of applied criteria on passing rate in gamma index method

    SciTech Connect (OSTI)

    Bresciani, Sara; Di Dia, Amalia; Maggio, Angelo; Cutaia, Claudia; Miranti, Anna; Infusino, Erminia; Stasi, Michele [Medical Physics Division, Institute for Cancer Research and Treatment (IRCCS), 10060 Candiolo (Italy)] [Medical Physics Division, Institute for Cancer Research and Treatment (IRCCS), 10060 Candiolo (Italy)

    2013-12-15T23:59:59.000Z

    Purpose: Pretreatment patient plan verification with gamma index (GI) metric analysis is standard procedure for intensity modulated radiation therapy (IMRT) treatment. The aim of this paper is to evaluate the variability of the local and global gamma index obtained during standard pretreatment quality assurance (QA) measurements for plans performed with Tomotherapy unit. The QA measurements were performed with a 3D diode array, using variable passing criteria: 3%/3 mm, 2%/2 mm, 1%/1 mm, each with both local and global normalization.Methods: The authors analyzed the pretreatment QA results for 73 verifications; 37 were prostate cancer plans, 16 were head and neck plans, and 20 were other clinical sites. All plans were treated using the Tomotherapy Hi-Art System. Pretreatment QA plans were performed with the commercially available 3D diode array ArcCHECK™. This device has 1386 diodes arranged in a helical geometry spaced 1 cm apart. The dose measurements were acquired on the ArcCHECK™ and then compared with the calculated dose using the standard gamma analysis method. The gamma passing rate (%GP), defined as the percentage of points satisfying the condition GI < 1, was calculated for different criteria (3%/3 mm, 2%/2 mm, 1%/1 mm) and for both global and local normalization. In the case of local normalization method, the authors set three dose difference threshold (DDT) values of 2, 3, and 5 cGy. Dose difference threshold is defined as the minimum absolute dose error considered in the analysis when using local normalization. Low-dose thresholds (TH) of 5% and 10% were also applied and analyzed.Results: Performing a paired-t-test, the authors determined that the gamma passing rate is independent of the threshold values for all of the adopted criteria (5%TH vs 10%TH, p > 0.1). Our findings showed that mean %GPs for local (or global) normalization for the entire study group were 93% (98%), 84% (92%), and 66% (61%) for 3%/3 mm, 2%/2 mm, and 1%/1 mm criteria, respectively. DDT was equal to 2 cGy for the local normalization analysis cases. The authors observed great variability in the resulting %GP. With 3%/3 mm gamma criteria, the overall passing rate with local normalization was 4.6% less on the average than with global one, as expected. The wide difference between %GP calculated with global or local approach is also confirmed by an unpaired t-test statistical analysis.Conclusions: The variability of %GP obtained confirmed the necessity to establish defined agreement criteria that could be universal and comparable between institutions. In particular, while the gamma passing rate does not depend on the choice of threshold, the choice of DDT strongly influences the gamma passing rate for local calculations. The difference between global and local %GP was statistically significant for prostate and other treatment sites when DDT was changed from 2 to 3 cGy.

  8. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-07T23:59:59.000Z

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

  9. QUALITY ASSURANCE EXCHANGE July 2005 Volume 1 Issue 1

    Broader source: Energy.gov [DOE]

    QUALITY ASSURANCE EXCHANGE July 2005 Volume 1 Issue 1 US Department of Energy, Office of Quality Assurance Programs (EH-31)

  10. assurance plan revision: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assurance plan revision First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 QUALITY ASSURANCE MANUAL...

  11. The ARRA EAP Energy Assurance Planning Bulletin

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plans and Reporting Deadlines News from the States California Approves Energy Efficiency Standards Energy Assurance Success Stories Heber Light & Power Takes Lead on Local EA...

  12. The ARRA EAP Energy Assurance Planning Bulletin

    Broader source: Energy.gov (indexed) [DOE]

    of State EA Plans Exercise and Reporting Deadlines Energy Assurance Success Stories West Virginia News from the States California is Top Renewable State Upcoming Events NMU...

  13. Quality assurance for gamma knives

    SciTech Connect (OSTI)

    Jones, E.D.; Banks, W.W.; Fischer, L.E. [Lawrence Livermore National Lab., CA (United States)

    1995-09-01T23:59:59.000Z

    This report describes and summarizes the results of a quality assurance (QA) study of the Gamma Knife, a nuclear medical device used for the gamma irradiation of intracranial lesions. Focus was on the physical aspects of QA and did not address issues that are essentially medical, such as patient selection or prescription of dose. A risk-based QA assessment approach was used. Sample programs for quality control and assurance are included. The use of the Gamma Knife was found to conform to existing standards and guidelines concerning radiation safety and quality control of external beam therapies (shielding, safety reviews, radiation surveys, interlock systems, exposure monitoring, good medical physics practices, etc.) and to be compliant with NRC teletherapy regulations. There are, however, current practices for the Gamma Knife not covered by existing, formalized regulations, standards, or guidelines. These practices have been adopted by Gamma Knife users and continue to be developed with further experience. Some of these have appeared in publications or presentations and are slowly finding their way into recommendations of professional organizations.

  14. Software Quality Assurance Plan for GoldSim Models Supporting the Area 3 and Area 5 Radioactive Waste Management Sites Performance Assessment Program

    SciTech Connect (OSTI)

    Gregory J. Shott, Vefa Yucel

    2007-01-03T23:59:59.000Z

    This Software Quality Assurance Plan (SQAP) applies to the development and maintenance of GoldSim models supporting the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) performance assessments (PAs) and composite analyses (CAs). Two PA models have been approved by the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as of November 2006 for the PA maintenance work undertaken by National Security Technologies, LLC (NSTec). NNSA/NSO asked NSTec to assume the custodianship of the models for future development and maintenance. The models were initially developed by Neptune and Company (N&C).

  15. Safety Software Quality Assurance Functional Area Qualification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    72-2011, Safety Software Quality Assurance Functional Area Qualification Standard by Diane Johnson This SSQA FAQS identifies the minimum technical competency requirements for DOE...

  16. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01T23:59:59.000Z

    for Modern Lighting Product Quality Assurance for Off-GridLighting Africa Product Quality Assurance Workshop AirlieLighting Initiative Quality Certification Institute United

  17. Quality assurance manual: Volume 2, Appendices

    SciTech Connect (OSTI)

    Oijala, J.E.

    1988-06-01T23:59:59.000Z

    This paper contains quality assurance information on departments of the Stanford Linear Accelerator Center. Particular quality assurance policies and standards discussed are on: Mechanical Systems; Klystron and Microwave Department; Electronics Department; Plant Engineering; Accelerator Department; Purchasing; and Experimental Facilities Department. (LSP)

  18. Designing and Implementing Effective Performance Assurance Plans

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting— covers performance assurance planning and process, including performance-based contracts, and measurement and verification protocols.

  19. Quality Assurance Exchange Winter 2010 Volume 6 Issue 1

    Broader source: Energy.gov [DOE]

    Quality Assurance Exchange Winter 2010 Volume 6 Issue 1 U.S. Department of Energy Office of Quality Assurance Policy and Assistance

  20. Quality Assurance Exchange June 2006, Volume 2 Issue 2

    Broader source: Energy.gov [DOE]

    Quality Assurance Exchange June 2006, Volume 2 Issue 2 U.S. Department of Energy, Office of Corporate Performance Assessment Office of Quality Assurance Programs (EH-31)

  1. FAQS Reference Guide - Quality Assurance | Department of Energy

    Office of Environmental Management (EM)

    Reference Guide - Quality Assurance FAQS Reference Guide - Quality Assurance This reference guide has been developed to address the competency statements in the April 2002 edition...

  2. Better Buildings Workforce Peer Exchange Quality Assurance Strategies...

    Energy Savers [EERE]

    Better Buildings Workforce Peer Exchange Quality Assurance Strategies Better Buildings Workforce Peer Exchange Quality Assurance Strategies Better Buildings Workforce Peer Exchange...

  3. Office of Civilian Radioactive Waste Management-Quality Assurance...

    Broader source: Energy.gov (indexed) [DOE]

    Civilian Radioactive Waste Management-Quality Assurance Requirements and Description Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description...

  4. CRAD, Quality Assurance - Oak Ridge National Laboratory TRU ALPHA...

    Broader source: Energy.gov (indexed) [DOE]

    Quality Assurance - Oak Ridge National Laboratory TRU ALPHA LLWT Project CRAD, Quality Assurance - Oak Ridge National Laboratory TRU ALPHA LLWT Project November 2003 A section of...

  5. Quality Assurance Exchange October 2008 Volume 4 Issue 2

    Broader source: Energy.gov [DOE]

    Quality Assurance Exchange October 2008 Volume 4 Issue 2 U.S. Department of Energy Office of Quality Assurance Policy and Assistance

  6. Quality Assurance Exchange March 2006, Volume 2 Issue 1

    Broader source: Energy.gov [DOE]

    Quality Assurance Exchange March 2006, Volume 2 Issue 1 U.S. Department of Energy, Office of Corporate Performance Assessment Office of Quality Assurance Programs (EH-31)

  7. QUALITY ASSURANCE EXCHANGE December 2005 Volume 1 Issue 3

    Broader source: Energy.gov [DOE]

    QUALITY ASSURANCE EXCHANGE December 2005 Volume 1 Issue 3 U.S. Department of Energy, Office of Corporate Performance Assessment Office of Quality Assurance Programs (EH-31)

  8. Quality Assurance Exchange August 2009, Volume 5 Issue 2

    Broader source: Energy.gov [DOE]

    Quality Assurance Exchange August 2009, Volume 5 Issue 2 U.S. Department of Energy Office of Quality Assurance Policy and Assistance

  9. FAQS Reference Guide – Safety Software Quality Assurance

    Broader source: Energy.gov [DOE]

    This reference guide has been developed to address the competency statements in the (March 2011) edition of DOE-STD-1172-2011, Safety Software Quality Assurance Functional Area Qualification Standard.

  10. QUALITY ASSURANCE MANUAL Revised March 2009

    E-Print Network [OSTI]

    . Guidelines 4-7 III. Standards of Care 8 IV. Standard of Care by Discipline Dental Hygiene 9 Endodontics 10 set forth in that paper. Quality assessment is a measure of quality and is a continuing function;GUIDELINES The following guidelines shall serve to guide the Quality Assurance Committee in the performance

  11. Highly Integrated Quality Assurance – An Empirical Case

    SciTech Connect (OSTI)

    Drake Kirkham; Amy Powell; Lucas Rich

    2011-02-01T23:59:59.000Z

    Highly Integrated Quality Assurance – An Empirical Case Drake Kirkham1, Amy Powell2, Lucas Rich3 1Quality Manager, Radioisotope Power Systems (RPS) Program, Idaho National Laboratory, P.O. Box 1625 M/S 6122, Idaho Falls, ID 83415-6122 2Quality Engineer, RPS Program, Idaho National Laboratory 3Quality Engineer, RPS Program, Idaho National Laboratory Contact: Voice: (208) 533-7550 Email: Drake.Kirkham@inl.gov Abstract. The Radioisotope Power Systems Program of the Idaho National Laboratory makes an empirical case for a highly integrated Quality Assurance function pertaining to the preparation, assembly, testing, storage and transportation of 238Pu fueled radioisotope thermoelectric generators. Case data represents multiple campaigns including the Pluto/New Horizons mission, the Mars Science Laboratory mission in progress, and other related projects. Traditional Quality Assurance models would attempt to reduce cost by minimizing the role of dedicated Quality Assurance personnel in favor of either functional tasking or peer-based implementations. Highly integrated Quality Assurance adds value by placing trained quality inspectors on the production floor side-by-side with nuclear facility operators to enhance team dynamics, reduce inspection wait time, and provide for immediate, independent feedback. Value is also added by maintaining dedicated Quality Engineers to provide for rapid identification and resolution of corrective action, enhanced and expedited supply chain interfaces, improved bonded storage capabilities, and technical resources for requirements management including data package development and Certificates of Inspection. A broad examination of cost-benefit indicates highly integrated Quality Assurance can reduce cost through the mitigation of risk and reducing administrative burden thereby allowing engineers to be engineers, nuclear operators to be nuclear operators, and the cross-functional team to operate more efficiently. Applicability of this case extends to any high-value, long-term project where traceability and accountability are determining factors.

  12. Emergency Readiness Assurance Plans (ERAPs)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume describes the assessments and documentation that would ensure that stated response capabilities are sufficient to implement emergency plans. Canceled by DOE G 151.1-3.

  13. Quality assurance plan for the Molten Salt Reactor Experiment Remediation Project at the Oak Ridge National Laboratory. Phase 1 -- Interim corrective measures and Phase 2 -- Purge and trap reactive gases

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This Quality Assurance Plan (QAP) identifies and describes the systems utilized by the Molten Salt Reactor Experiment Remediation Project (MSRERP) personnel to implement the requirements and associated applicable guidance contained in the Quality Program Description Y/QD-15 Rev. 2 (Energy Systems 1995f). This QAP defines the quality assurance (QA) requirements applicable to all activities and operations in and directly pertinent to the MSRERP Phase 1--Interim Corrective Measures and Phase 2--Purge and Trap objectives. This QAP will be reviewed, revised, and approved as necessary for Phase 3 and Phase 4 activities. This QAP identifies and describes the QA activities and procedures implemented by the various Oak Ridge National Laboratory support organizations and personnel to provide confidence that these activities meet the requirements of this project. Specific support organization (Division) quality requirements, including the degree of implementation of each, are contained in the appendixes of this plan.

  14. Quality Assurance Exchange, October 2008

    Broader source: Energy.gov (indexed) [DOE]

    of manufacturers' QA programs and those processes that are critical for manufac- turing filters to DOE quality requirements and specifications. For further information,...

  15. Quality Assurance Project Plan for the Environmental Monitoring Program in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    Waste Area Grouping (WAG) 6 is a hazardous and low-level radioactive waste disposal site at Oak Ridge National Laboratory (ORNL). Extensive site investigations have revealed contaminated surface water, sediments, groundwater, and soils. Based on the results of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) conducted from 1989--1991 and on recent interactions with the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), a decision was made to defer implementing source control remedial measures at the WAG. The information shows WAG 6 contributes < 2% of the total off-site contaminant risk released over White Oak Dam (WOD). The alternative selected to address hazards at WAG 6 involves maintenance of site access controls to prevent public exposure to on-site contaminants, continued monitoring of contaminant releases to determine if source control measures will be required in the future, and development of technologies to support final remediation of WAG 6. This Quality Assurance Project Plan (QAPjP) has been developed as part of the Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE/OR/01-1192&D1). Environmental monitoring will be conducted in two phases: the baseline monitoring phase and the routine annual monitoring phase. The baseline monitoring phase will be conducted to establish the baseline contaminant release conditions at the Waste Area Grouping (WAG), to confirm the site-related chemicals of concern (COC), and to gather data to confirm the site hydrologic model. The baseline monitoring phase is expected to begin in 1994 and continue for 12-18 months. The routine annual monitoring phase will consist of continued sampling and analyses of COC to determine off-WAG contaminant flux, to identify trends in releases, and to confirm the COC. The routine annual monitoring phase will continue for {approximately}4 years.

  16. Quality assurance in small plating shops

    SciTech Connect (OSTI)

    McNabb, W.J. (Electroless Nickel Plating of Louisiana, Hammond, LA (United States))

    1993-10-01T23:59:59.000Z

    The potential for electroless nickel coatings in oilfield and petrochemical applications is quite high. The greatest obstacle to their use has been a reputation for poor quality due to a lack of quality control in many plating shops. To overcome this, electroless nickel shops should not only have a quality control program in their operation, but must also document its use and success. This article describes how a plating shoe can develop the necessary procedures, manuals, and paperwork trail to offer quality assurance and to satisfy customers.

  17. Quality Assurance Exchange April 2009, Volume 5 Issue 1

    Broader source: Energy.gov [DOE]

    Quality Assurance ExchangeA pril 2009, Volume 5 Issue 1 U.S. Department of Energy Office of Quality Assurance Policy and Assistance IN THE SPOTLIGHT: GEORGE DETSIS, PROGRAM MANAGER Analytical Services Program Office of Corporate Safety Programs

  18. CRAD, Quality Assurance - Los Alamos National Laboratory TA 55...

    Broader source: Energy.gov (indexed) [DOE]

    Quality Assurance - Los Alamos National Laboratory TA 55 SST Facility CRAD, Quality Assurance - Los Alamos National Laboratory TA 55 SST Facility A section of Appendix C to DOE G...

  19. Chemical analysis quality assurance at the ICPP

    SciTech Connect (OSTI)

    Hand, R.L.

    1990-12-31T23:59:59.000Z

    This document discusses the chemical analysis quality assurance program at the ICPP which involves records management, analytical methods quality control, analysis procedures and training and qualification. Since 1979, the major portion of the quality assurance program has been implemented on a central analytical computer system. The individual features provided by the system are storage, retrieval, and search capabilities over all general request and sample analysis information, automatic method selection for all process streams, automation of all method calculations, automatic assignment of bias and precision estimates at all analysis levels, with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of all process stream results for replicate agreement, automatic testing of process results against pre- established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of all analysis data plus all statistical testing to the Production Department.

  20. Chemical analysis quality assurance at the ICPP

    SciTech Connect (OSTI)

    Hand, R.L.

    1990-01-01T23:59:59.000Z

    This document discusses the chemical analysis quality assurance program at the ICPP which involves records management, analytical methods quality control, analysis procedures and training and qualification. Since 1979, the major portion of the quality assurance program has been implemented on a central analytical computer system. The individual features provided by the system are storage, retrieval, and search capabilities over all general request and sample analysis information, automatic method selection for all process streams, automation of all method calculations, automatic assignment of bias and precision estimates at all analysis levels, with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of all process stream results for replicate agreement, automatic testing of process results against pre- established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of all analysis data plus all statistical testing to the Production Department.

  1. S/w Quality Assurance CAST-TX 1 Software Quality Assurance

    E-Print Network [OSTI]

    Tian, Jeff

    (tian@engr.smu.edu) Southern Methodist University Dallas, Texas, USA Contents · Software Quality: Why Management Nov. 30, 2002 Prof. Jeff Tian, SMU #12;S/w Quality Assurance CAST-TX 2 Software Quality: Why/usage-based testing and relia- bility engineering measurement and risk management Nov. 30, 2002 Prof. Jeff Tian, SMU

  2. Quality Assurance Exchange January 2007, Volume 3 Issue 1

    Broader source: Energy.gov [DOE]

    Quality Assurance Exchange January 2007, Volume 3 Issue 1 U.S. Department of Energy Office of Corporate Safety Analysis

  3. Quality Assurance Exchange Setpebmer 2007, Volume 3 Issue 3

    Broader source: Energy.gov [DOE]

    Quality Assurance Exchange Setpebmer 2007, Volume 3 Issue 3 U.S. Department of Energy Office of Corporate Safety Analysis

  4. Quality Assurance Exchange August 2007, Volume 3 Issue 2

    Broader source: Energy.gov [DOE]

    Quality Assurance Exchange August 2007, Volume 3 Issue 2 U.S. Department of Energy Office of Corporate Safety Analysis

  5. DATA COLLECTION, QUALITY ASSURANCE, AND ANALYSIS PLAN FOR THE 2008/2009 HYDROGEN AND FUEL CELLS KNOWLEDGE AND OPINIONS SURVEYS

    SciTech Connect (OSTI)

    Schmoyer, Richard L [ORNL; Truett, Lorena Faith [ORNL; Diegel, Susan W [ORNL

    2008-09-01T23:59:59.000Z

    The 2008/2009 Knowledge and Opinions Survey, conducted for the Department of Energy's Hydrogen Program will measure the levels of awareness and understanding of hydrogen and fuel cell technologies within five target populations: (1) the general public, (2) students, (3) personnel in state and local governments, (4) potential end users of hydrogen fuel and fuel cell technologies in business and industry, and (5) safety and code officials. The ultimate goal of the surveys is a statistically valid, nationally based assessment. Distinct information collections are required for each of the target populations. Each instrument for assessing baseline knowledge is targeted to the corresponding population group. While many questions are identical across all populations, some questions are unique to each respondent group. The biggest data quality limitation of the hydrogen survey data (at least of the general public and student components) will be nonresponse bias. To ensure as high a response rate as possible, various measures will be taken to minimize nonresponse, including automated callbacks, cycling callbacks throughout the weekdays, and availability of Spanish speaking interviewers. Statistical adjustments (i.e., sampling weights) will also be used to account for nonresponse and noncoverage. The primary objective of the data analysis is to estimate the proportions of target population individuals who would respond to the questions in the various possible ways. Data analysis will incorporate necessary adjustments for the sampling design and sampling weights (i.e., probability sampling). Otherwise, however, the analysis will involve standard estimates of proportions of the interviewees responding in various ways to the questions. Sample-weight-adjusted contingency table chi-square tests will also be computed to identify differences between demographic groups The first round of Knowledge and Opinions Surveys was conducted in 2004. Analysis of these surveys produced a baseline assessment of technical knowledge about hydrogen and fuel cells and a statistically valid description of opinions about safety and potential usage in the United States. The current surveys will repeat the process used in 2004. In addition the 2008/2009 survey results will be compared with the 2004 baseline results to assess changes in knowledge levels and opinions. In 2011/2012, the surveys will be repeated, and changes in knowledge and opinions will again be assessed. The information gained from these surveys will be used to enhance and update the DOE Hydrogen Program's education efforts.

  6. Geothermal: Sponsored by OSTI -- Quality Assurance of NUFT Code...

    Office of Scientific and Technical Information (OSTI)

    Quality Assurance of NUFT Code for Underground Test Area (UGTA) Activities Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

  7. 9 QUALITY ASSURANCE AND QUALITY CONTROL 9.1 Introduction

    E-Print Network [OSTI]

    for their intended use. A quality system is a management system that describes the elements necessary to plan in the use of radioactive materials. There are self-imposed internal quality management systems (e.g., DOE an organization-specific quality system, there is no need to develop new quality management systems, to the extent

  8. SAPHIRE 8 Volume 6 - Quality Assurance

    SciTech Connect (OSTI)

    C. L. Smith; R. Nims; K. J. Kvarfordt

    2011-03-01T23:59:59.000Z

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Version 8 is a software application developed for performing a complete probabilistic risk assessment using a personal computer running the Microsoft Windows™ operating system. SAPHIRE 8 is funded by the U.S. Nuclear Regulatory Commission (NRC). The role of the INL in this project is that of software developer and tester. This development takes place using formal software development procedures and is subject to quality assurance (QA) processes. The purpose of this document is to describe how the SAPHIRE software QA is performed for Version 8, what constitutes its parts, and limitations of those processes. In addition, this document describes the Independent Verification and Validation that was conducted for Version 8 as part of an overall QA process.

  9. Guidance for the Quality Assurance of Fire Protection Systems

    Broader source: Energy.gov [DOE]

    This quality assurance document is intended to provide guidance for the DOE fire protection community in the continuing effort to ensure the reliability of fire protection systems. This guidance document applies the concepts of DOE Order 5700.6C, Quality Assurance, to the management of fire protection systems.

  10. Model-based Quality Assurance of Automotive Software

    E-Print Network [OSTI]

    Jurjens, Jan

    CASE tool by ETAS · Used in automotive industry · Event-driven operational model #12;Jan Jürjens et alModel-based Quality Assurance of Automotive Software Jan Jürjens1 , Daniel Reiss2 , David (Germany) #12;Jan Jürjens et al.: Model-based Quality Assurance of Automotive Software 2 The Problem (Meta

  11. EMERGENCY READINESS ASSURANCE PLAN (ERAP) FOR FISCAL YEAR (FY) 2014

    SciTech Connect (OSTI)

    Bush, Shane

    2014-09-01T23:59:59.000Z

    This Emergency Readiness Assurance Plan (ERAP) for Fiscal Year (FY) 2014 in accordance with DOE O 151.1C, “Comprehensive Emergency Management System.” The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for FY-15. Specifically, the ERAP assures the Department of Energy Idaho Operations Office that stated emergency capabilities at INL are sufficient to implement PLN-114, “INL Emergency Plan/RCRA Contingency Plan.

  12. A pioneering application of NQA-1 quality assurance standards in the development of software

    SciTech Connect (OSTI)

    Weisbin, A.N.

    1988-01-01T23:59:59.000Z

    One reason for systematically applying quality assurance to computer software is the extensive use of results from computer programs to characterize potential sited for nuclear waste repositories leading ultimately to important policy making decisions. Because data from these programs characterize the likely radioactivity profile for many hundreds of years, experimental validation is not feasible. The Sensitivity and Uncertainty Analysis Methods Development Project (SUAMDP) was developed to formulate and utilize efficient and comprehensive methods for determining sensitivities of calculated results with respect to changes in all input parameters. The computerized methodology was embodied in the Gradient Enhanced Software System (GRESS). Due to the fact that GRESS was to be used in the site characterization for waste storage, stringent NQA-1 requirements were imposed by the sponsor. A working relationship between the Oak Ridge National Laboratory (ORNL) Quality Department and the research scientists developing GRESS was essential in achieving understanding and acceptance of the quality assurance requirements as applied to the SUAMDP. The relationship resulted in the SUAMDP becoming the first software project at ORNL to develop a comprehensive NQA-1 Quality Assurance Plan; this plan now serves as a model for software quality assurance at ORNL. This paper describes the evolution of this plan and its impact on the application of quality assurance procedures to software. 2 refs.

  13. 2012 National Energy Assurance Planning Conference After-Action...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 National Energy Assurance Planning Conference June 28-29, 2012 Gaylord Hotel and Convention Center, National Harbor, MD After-Action Report August 2012 Co-Sponsored by: U.S....

  14. INVENTORY AND REVIEW OF QUALITY ASSURANCE/QUALITY CONTROL

    E-Print Network [OSTI]

    ........................................................................................................8 APPENDICES APPENDIX A Obtaining the Electronic Database APPENDIX B Summary Format for QA of the Environmental Quality Component of the Fraser River Action Plan (FRAP). This committee is mandated to provide of high quality, reliable environmental data; 2) compatible data which will be readily exchangeable both

  15. IT Quality Assurance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossary ofHome Energy ScoreIT Capital PlanningQuality

  16. Quality Assurance Management System Guide for Use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-06-17T23:59:59.000Z

    This Guide provides information on principles and practices used to establish and implement an effective quality assurance program or quality management system in accordance with the requirements of 10 CFR 830. Cancels DOE G 414.1-2. Canceled by DOE G 414.1-2B.

  17. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01T23:59:59.000Z

    of technological options for off-grid light provision thatQuality Assurance for Off-Grid Lighting in Africa Conferencemarkets for high efficiency off-grid lighting technologies

  18. action quality assurance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M Mirapeix; David Solana; Alfonso lvarez-de-mir; Pilar-beatriz Garca-allende; Olga M Conde; Jos Miguel Lpez-higuera 88 The Quality Assurance Agency for Higher...

  19. analytical quality assurance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M Mirapeix; David Solana; Alfonso lvarez-de-mir; Pilar-beatriz Garca-allende; Olga M Conde; Jos Miguel Lpez-higuera 90 The Quality Assurance Agency for Higher...

  20. 9-1 2002 SITE ENVIRONMENTAL REPORT CHAPTER 9: QUALITY ASSURANCE

    E-Print Network [OSTI]

    Homes, Christopher C.

    . The purpose of the BNL Quality Management (QM) System is to implement QM methodology throughout the various9-1 2002 SITE ENVIRONMENTAL REPORT CHAPTER 9: QUALITY ASSURANCE Quality Assurance 9Quality assurance is an integral part of every activity at Brookhaven National Laboratory. BNLs Quality Assurance

  1. The quality assurance of heat fused thermoplastic pipeline joints 

    E-Print Network [OSTI]

    Earles, Larry Lee

    1982-01-01T23:59:59.000Z

    THE QUALITY ASSURANCE OF HEAT FUSED THERMOPLASTIC PIPELINE JOINTS A Thesis by LARRY LEE EARLES Submitted to the Graduate College of Texas A&M University in partial fulfillment for the requirements for the degree of MASTER OF SCIENCE... December 1982 Major Subject: Mechanical Engineering THE QUALITY ASSURANCE OF HEAT FUSED THERMOPLASTIC PIPELINE JOINTS A Thesis LARRY LEE EARLES Approved as to style and content by: Mario A. Colaluca (Chairman of Committee) Carl Gerhold (Member...

  2. Quality Planning Handbook VERSION 1.0 November 22, 1999, 1998

    E-Print Network [OSTI]

    Report DQOs Data Quality Objectives GIS Geographic Information System MSR Management Systems Review Performance Evaluation QA Quality Assurance QC Quality Control QSMP Quality Systems Management Plan PQMP Program Quality Management Plans QIWP Quality Integrated Work Plan QSSC Quality Systems Science Center R

  3. AAPM Task Group 128: Quality assurance tests for prostate brachytherapy ultrasound systems

    SciTech Connect (OSTI)

    Pfeiffer, Douglas; Sutlief, Steven; Feng Wenzheng; Pierce, Heather M.; Kofler, Jim [Imaging Department, Boulder Community Foothills Hospital, Boulder, Colorado 80301 (United States); Radiation Therapy, VA Medical Center, VA Puget Sound Health Care System, Seattle, Washingon 98108 (United States); Cardiology and Interventional Radiology, William Beaumont Hospital, Royal Oak, Michigan 48073 (United States); CIRS, Inc., Norfolk, Virginia 23513 (United States); Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2008-12-15T23:59:59.000Z

    While ultrasound guided prostate brachytherapy has gained wide acceptance as a primary treatment tool for prostate cancer, quality assurance of the ultrasound guidance system has received very little attention. Task Group 128 of the American Association of Physicists in Medicine was created to address quality assurance requirements specific to transrectal ultrasound used for guidance of prostate brachytherapy. Accurate imaging guidance and dosimetry calculation depend upon the quality and accuracy of the ultrasound image. Therefore, a robust quality assurance program for the ultrasound system is essential. A brief review of prostate brachytherapy and ultrasound physics is provided, followed by a recommendation for elements to be included in a comprehensive test phantom. Specific test recommendations are presented, covering grayscale visibility, depth of penetration, axial and lateral resolution, distance measurement, area measurement, volume measurement, needle template/electronic grid alignment, and geometric consistency with the treatment planning computer.

  4. Safety Software Guide for Use with 10 CFR 830, Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-06-17T23:59:59.000Z

    This Guide provides acceptable methods for implementing the safety software quality assurance requirements of draft DOE O 414.1C, Quality Assurance. Certified 11-3-10. No cancellation.

  5. Quality assurance for radioactive waste packages -- A general approach

    SciTech Connect (OSTI)

    Martens, B.R. [Bundesamt fuer Strahlenschutz, Saltzgitter (Germany)

    1993-12-31T23:59:59.000Z

    Radioactive waste packages must fulfill the requirements resulting from regulations concerning handling, treatment, conditioning, transportation, storage and disposal so that the goal of radioactive waste management can be achieved. Usually in different parts of waste management different quality systems are used, and different quality assurance measures are performed. In the paper, these problems ar elucidated and it is explained by means of the quality assurance performed for the disposal of radioactive waste in Germany how the fulfillment of the requirements of the repository can be ensured.

  6. 302:20130613.1452 Quality Assurance Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    into the quality management system. A focus on continual improvement, regular review, and assessment of the system is available to help you achieve your quality goals. LASP's approach to quality management is designed around the ISO 9001:2008 standard for quality systems. All elements of the ISO model are incorporated

  7. Software quality assurance (SQA) for Savannah River reactors

    SciTech Connect (OSTI)

    Schaumann, C.M.

    1990-01-01T23:59:59.000Z

    Over the last 25 years, the Savannah River Site (SRS) has developed a strong Software Quality Assurance (SQA) program. It provides the information and management controls required of a high quality auditable system. The SRS SQA program provides the framework to meet the requirements in increasing regulation.

  8. Quality assurance program description: Hanford Waste Vitrification Plant, Part 1. Revision 3

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    This document describes the Department of Energy`s Richland Field Office (DOE-RL) quality assurance (QA) program for the processing of high-level waste as well as the Vitrification Project Quality Assurance Program for the design and construction of the Hanford Waste Vitrification Plant (HWVP). It also identifies and describes the planned activities that constitute the required quality assurance program for the HWVP. This program applies to the broad scope of quality-affecting activities associated with the overall HWVP Facility. Quality-affecting activities include designing, purchasing, fabricating, handling, shipping, storing, cleaning, erecting, installing, inspecting, testing, maintaining, repairing, and modifying. Also included are the development, qualification, and production of waste forms which may be safely used to dispose of high-level radioactive waste resulting from national defense activities. The HWVP QA program is made up of many constituent programs that are being implemented by the participating organizations. This Quality Assurance program description is intended to outline and define the scope and application of the major programs that make up the HWVP QA program. It provides a means by which the overall program can be managed and directed to achieve its objectives. Subsequent parts of this description will identify the program`s objectives, its scope, application, and structure.

  9. CRAD, Quality Assurance- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Quality Assurance Program at the Idaho Accelerated Retrieval Project Phase II.

  10. Quality Assurance Procedures for ModCat Database Code Files

    SciTech Connect (OSTI)

    Siciliano, Edward R.; Devanathan, Ram; Guillen, Zoe C.; Kouzes, Richard T.; Schweppe, John E.

    2014-04-01T23:59:59.000Z

    The Quality Assurance procedures used for the initial phase of the Model Catalog Project were developed to attain two objectives, referred to as “basic functionality” and “visualization.” To ensure the Monte Carlo N-Particle model input files posted into the ModCat database meet those goals, all models considered as candidates for the database are tested, revised, and re-tested.

  11. Model-Based Quality Assurance of Automotive Software

    E-Print Network [OSTI]

    Jurjens, Jan

    Model-Based Quality Assurance of Automotive Software Jan Jürjens1 , Daniel Reiß2 , and David, Germany Abstract. Software in embedded (e.g. automotive) systems requires a high level of reliability to the automotive sector, characterized by strict safety requirements to com- ponents of a motor vehicle (see [5, 16

  12. External Quality Assurance Services (EQAS) Ethanol/Ammonia Program

    E-Print Network [OSTI]

    Rodriguez, Carlos

    External Quality Assurance Services (EQAS) Ethanol/Ammonia Program BC35 12 x 3 mL 2 Analytes QC35 12 x 3 mL Specimen Only ENGLISH INTENDED USE Bio-Rad EQAS Ethanol/Ammonia Program is designed

  13. TASK TECHNICAL AND QUALITY ASSURANCE PLAN FOR THE CHARACTERIZATION AND LEACHING OF A THERMOWELL AND CONDUCTIVITY PROBE PIPE SAMPLE FROM TANK 48H

    SciTech Connect (OSTI)

    Fondeur, F

    2005-11-02T23:59:59.000Z

    A key component for the accelerated implementation and operation of the Salt Waste Processing Facility (SWPF) is the recovery of Tank 48H. Tank 48H is a type IIIA tank with a maximum capacity of 1.3 million gallons. The material on the Tank 48H internal tank surfaces is estimated to have a total volume of approximately 115 gallons consisting of mostly water soluble solids with approximately 20 wt% insoluble solids (33 Kg TPB). This film is assumed to be readily removable. The material on the internal equipment/surfaces of Tank 48H is presumed to be easily removed by slurry pump operation. For Tank 49H, the slurry pumps were operated almost continuously for approximately 6 months after which time the tank was inspected and the film was found to be removed. The major components of the Tank 49H film were soluble solids--Na{sub 3}H(CO){sub 2}, Al(OH){sub 3}, NaTPB, NaNO{sub 3} and NaNO{sub 2}. Although the Tank 48H film is expected to be primarily soluble solids, it may not behave the same as the Tank 49H film. Depending on when the Recycle material or inhibited water can be added to Tank 48H, the tank may not be allowed to agitate for this same amount of time. The tank will be filled above 150 inches and agitated at least once during the Aggregation process. If the material cannot be removed after completion of these batches, the material may be removed with additional fill and agitation operations. There is a risk that this will not remove the material from the internal surfaces. As a risk mitigation activity, properties of the film and the ease of removing the film from the tank will be evaluated prior to initiating Aggregation. This task will investigate the dissolution of Tank 48H solid deposits in inhibited water and DWPF recycle. To this end, tank personnel plan to cut and remove a thermowell pipe from Tank 48H and submit the cut pieces to SRNL for both characterization and leaching behavior. A plan for the removal, packaging and transport of the thermowell pipe has been issued. This task plan outlines the proposed method of analysis and testing to estimate (1) the thickness of the solid deposit, (2) chemical composition of the deposits and (3) the leaching behavior of the solid deposits in inhibited water (IW) and in Tank 48H aggregate solution.

  14. EM Quality Assurance Assessment Schedule FY 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EM HighlightsSeptemberQUALITY

  15. Waste Receipt Quality Assurance Program - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRates >-PlansRequest

  16. Introduction of Break-Out Session at the International PV Module Quality Assurance Forum (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Yamamichi, M.; Sample, T.

    2011-07-01T23:59:59.000Z

    This presentation outlines review requirements for quality assurance (QA) rating systems, logical design of QA systems, and specific tasks for break-out session 1 of the 2011 International PV Module Quality Assurance Forum.

  17. Quality Assurance for Critical Decision Reviews RM

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo. 195 -Pueblo de 2011NewslettersQuality

  18. Quality Assurance Functional Area Qualification Standard

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to analysis3Energy QualityNOT

  19. Quality Assurance Checklist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified Energy Conservation Bond (QECB)Quality

  20. Service Quality Assurance 08/08/08 INMGT 220 001

    E-Print Network [OSTI]

    Wu, Mingshen

    . Course Objectives An introduction to quality, quality systems, and quality management through a survey) in Technology Management from Indiana State Univ., specialization in manufacturing systems [planning to receive · Statistical Process Control (partial) Textbook The Management and Control of Quality by Evans and Lindsay 6th

  1. EECLP Webinar #2: Quality Assurance and Evaluation Monitoring Verification-- Text Version

    Broader source: Energy.gov [DOE]

    Below is the text version of the EECLP Webinar 2: Quality Assurance and Evaluation Monitoring Verification, presented in December 2014.

  2. Permanent Breast Seed Implant Dosimetry Quality Assurance

    SciTech Connect (OSTI)

    Keller, Brian M., E-mail: Brian.Keller@sunnybrook.ca [Department of Medical Physics, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Department of Radiation Oncology, University of Toronto, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Ravi, Ananth [Department of Medical Physics, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Sankreacha, Raxa [Carlo Fidani Regional Cancer Center, Mississauga, ON (Canada); Pignol, Jean-Philippe [Department of Radiation Oncology, University of Toronto, Sunnybrook Health Sciences Center, Toronto, ON (Canada)

    2012-05-01T23:59:59.000Z

    Purpose: A permanent breast seed implant is a novel method of accelerated partial breast irradiation for women with early-stage breast cancer. This article presents pre- and post-implant dosimetric data, relates these data to clinical outcomes, and makes recommendations for those interested in starting a program. Methods and Materials: A total of 95 consecutive patients were accrued into one of three clinical trials after breast-conserving surgery: a Phase I/II trial (67 patients with infiltrating ductal carcinoma); a Phase II registry trial (25 patients with infiltrating ductal carcinoma); or a multi-center Phase II trial for patients with ductal carcinoma in situ (3 patients). Contouring of the planning target volume (PTV) was done on a Pinnacle workstation and dosimetry calculations, including dose-volume histograms, were done using a Variseed planning computer. Results: The mean pre-implant PTV coverage for the V{sub 90}, V{sub 100}, V{sub 150}, and V{sub 200} were as follows: 98.8% {+-} 1.2% (range, 94.5-100%); 97.3% {+-} 2.1% (range, 90.3-99.9%), 68.8% {+-} 14.3% (range, 32.7-91.5%); and 27.8% {+-} 8.6% (range, 15.1-62.3%). The effect of seed motion was characterized by post-implant dosimetry performed immediately after the implantation (same day) and at 2 months after the implantation. The mean V{sub 100} changed from 85.6% to 88.4% (p = 0.004) and the mean V{sub 200} changed from 36.2% to 48.3% (p < 0.001). Skin toxicity was associated with maximum skin dose (p = 0.014). Conclusions: Preplanning dosimetry should aim for a V{sub 90} of approximately 100%, a V{sub 100} between 95% and 100%, and a V{sub 200} between 20% and 30%, as these numbers are associated with no local recurrences to date and good patient tolerance. In general, the target volume coverage improved over the duration of the seed therapy. The maximum skin dose, defined as the average dose over the hottest 1 Multiplication-Sign 1-cm{sup 2} surface area, should be limited to 90% of the prescription dose to minimize delayed skin toxicity.

  3. Building commissioning: The key to quality assurance

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    This Guide is written to aid building owners and retrofit project managers currently participating in the Rebuild America program. The Guide provides information on implementing building commissioning projects that will optimize the results of existing building equipment improvements and retrofits projects. It should be used in coordination with Rebuild America`s Community Partnership Handbook. The Handbook describes, in detail, eight important steps necessary for planning and carrying out a community-wide energy-efficiency program. In step number 7 of the Handbook, commissioning is shown to be an integral aspect of implementing a building retrofit. The commissioning process ensures that a facility is safe, efficient, comfortable, and conducive to the presumed activities for which it was constructed. Rebuild America strongly encourages its partners to incorporate commissioning into their retrofit projects. By verifying the correct installation, functioning, operation, and maintenance of equipment, the commissioning process ensures that efficiency measures will continue to deliver benefits over the long term. Although commissioning can take place after the equipment has been installed, it is more effective when it takes place over the entire equipment installation process.

  4. Routine Radiological Environmental Monitoring Plan, Volume 2 Appendices

    SciTech Connect (OSTI)

    Bechtel Nevada

    1998-12-31T23:59:59.000Z

    Supporting material for the plan includes: QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR NTS AIR; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR WATER ON AND OFF THE NEVADA TEST SITE; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR NTS BIOTA; QUALITY ASSURANCE, ANALYSIS, AND SAMPLING PLAN FOR DIRECT RADIATION MONITORING; DATA QUALITY OBJECTIVES PROCESS; VADOSE ZONE MONITORING PLAN CHECKLIST.

  5. QUALITY ASSURANCE PROJECT PLAN CSMRI SITE REMEDIATION

    E-Print Network [OSTI]

    .4.5.2 Transportation Regulations...................................................................8 2.4.5.3 Landfill

  6. 2010 Quality Assurance Improvement Project Plan

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth Site »StrategicReferencesRobotics Engineer: Lonnie Love 107Smart0

  7. 2012 Quality Assurance Improvement Project Plan

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth Site »StrategicReferencesRobotics Engineer:20112 -Electricity Forum2012DOE

  8. Quality Assurance 9 2005 Site environmental report9-

    E-Print Network [OSTI]

    throughout the entire organization. The purpose of the BNL Quality Management (QM) System is to imple- ment QM methodology throughout the various Laboratory management systems and associated processes- ployed as an integrated system of management activities. These activities involve planning

  9. Chemical analysis quality assurance at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Hand, R.L.; Anselmo, R.W.; Black, D.B.; Jacobson, J.J.; Lewis, L.C.; Marushia, P.C.; Spraktes, F.W.; Zack, N.R.

    1985-01-01T23:59:59.000Z

    The Idaho Chemical Processing Plant (ICPP) is a uranium reprocessing facility operated by Westinghouse Idaho Nuclear Company for the Department of Energy at the Idaho National Engineering Laboratory (INEL). The chemical analysis support required for the plant processes is provided by a chemical analysis staff of 67 chemists, analysts, and support personnel. The documentation and defense of the chemical analysis data at the ICPP has evolved into a complete chemical analysis quality assurance program with training/qualification and requalification, chemical analysis procedures, records management and chemical analysis methods quality control as major elements. The quality assurance procedures are implemented on a central analytical computer system. The individual features provided by the computer system are automatic method selection for process streams, automation of method calculations, automatic assignment of bias and precision estimates at analysis levels to all method results, analyst specific daily requalification or with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of process stream results for replicate agreement, automatic testing of process results against pre-established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of analysis data plus the results of all statistical testing to the Production Department.

  10. Functional Quality Assurance- A Cx Method for Innovative Systems

    E-Print Network [OSTI]

    Ioannidis, M.

    1N?rnberg ? M?nchen ? Frankfurt ? Gera ? Berlin ? Leipzig ? D?sseldorf ? F?rth ? Hamburg ? Stuttgart ? Moskau ? Washington DC www.eb-ing.com Functional Quality Assurance ? A Cx Approach For Innovative Systems Dipl.-Ing. Marios Ioannidis ESL-IC-08...-10-12a Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 2N?rnberg ? M?nchen ? Frankfurt ? Gera ? Berlin ? Leipzig ? D?sseldorf ? F?rth ? Hamburg ? Stuttgart ? Moskau ? Washington...

  11. Functional Quality Assurance- A Cx Method for Innovative Systems 

    E-Print Network [OSTI]

    Ioannidis, M.

    2008-01-01T23:59:59.000Z

    1N?rnberg ? M?nchen ? Frankfurt ? Gera ? Berlin ? Leipzig ? D?sseldorf ? F?rth ? Hamburg ? Stuttgart ? Moskau ? Washington DC www.eb-ing.com Functional Quality Assurance ? A Cx Approach For Innovative Systems Dipl.-Ing. Marios Ioannidis ESL-IC-08...8th International Conference for Enhanced Building Operations - ICEBO?08 Conference Center of the Federal Ministry of Economics and Technology Berlin, October 20 - 22, 2008 Dipl.-Ing. Marios Ioannidis Ebert-Ingenieure GmbH & Co. KG...

  12. Quality assurance in the transport of UF{sub 6}

    SciTech Connect (OSTI)

    Ravenscroft, N.L. [Edlow International Company, Washington, DC (United States)

    1991-12-31T23:59:59.000Z

    Edlow International`s primary business is the international transportation of radioactive materials. Therefore, Edlow has the responsibility to ensure that shipments are performed in compliance with regulatory requirements. In this regard, Edlow maintains a Quality Assurance (QA) Program. A major part of this Program is the establishment and use of QA Procedures. This paper addresses QA procedural requirements and how they are applied to a routine international shipment of low enriched UF{sub 6}. Only the major requirements for scheduling shipments will be addressed.

  13. Specified assurance level sampling procedure

    SciTech Connect (OSTI)

    Willner, O.

    1980-11-01T23:59:59.000Z

    In the nuclear industry design specifications for certain quality characteristics require that the final product be inspected by a sampling plan which can demonstrate product conformance to stated assurance levels. The Specified Assurance Level (SAL) Sampling Procedure has been developed to permit the direct selection of attribute sampling plans which can meet commonly used assurance levels. The SAL procedure contains sampling plans which yield the minimum sample size at stated assurance levels. The SAL procedure also provides sampling plans with acceptance numbers ranging from 0 to 10, thus, making available to the user a wide choice of plans all designed to comply with a stated assurance level.

  14. Product Quality Assurance for Off-Grid Lighting in Africa

    SciTech Connect (OSTI)

    World Bank; Mills, Evan; Mills, Evan

    2008-07-13T23:59:59.000Z

    Although the emergence of markets for high efficiency off-grid lighting technologies holds promise, realizing the potential of this opportunity on a long-term, sustainable basis requires careful attention to issues of product quality, consumer protection, and the potential for significant 'market spoiling', in anticipation of increases of sales of low cost, low performance off-grid lighting products. The goal of the Lighting Africa quality assurance workshop was to articulate strategies to mitigate the dangers of market spoiling and to explore ways to protect consumers from misleading advertising for sales of inferior, off-grid lighting products in the context of Lighting Africa's overarching objective to support the industry in developing a robust off-grid lighting market in Africa. The workshop resulted in the identification of two strategic approaches for meeting Lighting Africa quality assurance programmatic needs. The first strategy is intended to meet a short-term programmatic need for quality associated with requests for lighting products by bulk procurement agents, such as in a World Bank-financed project. The development of procurement specifications and test procedures that could be used in a quality/usability screening method in order to provide guidance for forthcoming large volume purchases emerged as the best solution to meet this need. Such approaches are used in World Bank-financed solar home systems (SHSs) projects in Bangladesh, Sri Lanka, and China, among others. However, unlike the SHSs which have multiple balance-of-system (BOS) components warranting the need for an array of specifications for individual components, stand alone lighting systems require specifications that are amenable to individual light points. To test this approach, Lighting Africa elected to use the technical specifications issued by the Photovoltaic Global Approval Program for solar lanterns that use CFL bulbs (PVRS11A) as the basis of qualifying such products. A contract has been competitively awarded to the Global Approval Program for Photovoltaics (PV GAP) under the Lighting Africa Program to select and test ten solar lantern product models. Lantern selection will be determined based on a number of criteria, among them, the ability to provide a daily duty cycle of at least 3 hours of light, the number of days of autonomy of battery, the volume of sales (especially in Africa), and whether or not the manufacturing facility is ISO 9000 certified. Those that are confirmed as meeting the specifications may be eligible to receive a PVGAP quality seal. The work is being carried out in partnership with the Photovoltaic and Wind Quality Test Center in Beijing, China and TUV Rhineland in Koeln, Germany. As off-grid LED-based stand-alone lighting products is in a nascent stage of development compared to CFL-based lanterns, Lighting Africa will support the development of a 'Quality Screening' approach to selecting LED lighting, in order not to delay consumers benefiting from such advances. The screening methodology could be used by procurement agencies to qualify LED lighting products for bulk or programmatic procurements. The main elements of this work comprises of developing a procurement specification and test procedure for undertaking a 'quick' quality/usability screening to be used for procuring LED lights and to test up to 30 LED-based lights to screen products that meet the requirement. The second strategy is intended to meet a longer-term need associated with creating a self-sustaining product quality assurance program that will effectively protect the African consumer, prevent significant market spoiling, adapt with expected technological advancements over the long-term--in other words, give consumers the ability to detect quality products and the information needed to find products that meet their specific needs from among the myriad of lighting products that become available commercially. Workshop discussions and the discussions evolving from the workshop led the Lighting Africa team to opt for an approach similar to that of th

  15. Quality Assurance Baseline Assessment Report to Los Alamos National Laboratory Analytical Chemistry Operations

    SciTech Connect (OSTI)

    Jordan, R. A.

    1998-09-01T23:59:59.000Z

    This report summarizes observations that were made during a Quality Assurance (QA) Baseline Assessment of the Nuclear Materials Technology Analytical Chemistry Group (NMT-1). The Quality and Planning personnel, for NMT-1, are spending a significant amount of time transitioning out of their roles of environmental oversight into production oversight. A team from the Idaho National Engineering and Environmental Laboratory Defense Program Environmental Surety Program performed an assessment of the current status of the QA Program. Several Los Alamos National Laboratory Analytical Chemistry procedures were reviewed, as well as Transuranic Waste Characterization Program (TWCP) QA documents. Checklists were developed and the assessment was performed according to an Implementation Work Plan, INEEL/EXT-98-00740.

  16. Quality Assurance 9 2007 Site environmental report9-

    E-Print Network [OSTI]

    governing work, and extends throughout the entire organization. The purpose of the BNL Quality Management (QM) System is to implement QM methodology throughout the various Laboratory management systems is de- ployed as an integrated system of management activities. These activities involve planning

  17. Quality Assurance 9 2003 SITE ENVIRONMENTAL REPORT9-1

    E-Print Network [OSTI]

    Homes, Christopher C.

    organization. The purpose of the BNL Quality Management (QM) System is to imple- ment QM methodology throughout the vari- ous BNL management systems and associated processes to: Plan and perform BNL operations is de-For environmental monitoring, QA ployed as an integrated system of management activities

  18. Quality Assurance 9 2004 SITE ENVIRONMENTAL REPORT9-1

    E-Print Network [OSTI]

    of the BNL Quality Management (QM) System is to implement QM methodol- ogy throughout the various BNL management systems and associated processes, in order to: Plan and perform BNL operations in a reliable monitoring, QA is de- ployed as an integrated system of management activities. These activities involve

  19. Quality Assurance 9 2010 SITE ENVIRONMENTAL REPORT9-1

    E-Print Network [OSTI]

    Management (QM) System is to implement QM methodology throughout the various Laboratory management systems is de- ployed as an integrated system of management activities. These activities involve planning- ect manager for each environmental program determines the type, amount, and quality of data needed

  20. Quality Assurance 9 2011 Site environmental report9-1

    E-Print Network [OSTI]

    Management (QM) System is to implement QM methodology throughout the various Laboratory management systems is de- ployed as an integrated system of management activities. These activities involve planning- ect manager for each environmental program determines the type, amount, and quality of data needed

  1. Quality Assurance 9 2006 Site environmental report9-

    E-Print Network [OSTI]

    throughout the entire organization. The purpose of the BNL Quality Management (QM) System is to imple- ment QM methodology throughout the various Laboratory management systems and associated processes as an integrated system of management activities. These activities involve planning, implementation, control

  2. Quality Assurance 9 2012 SITE ENVIRONMENTAL REPORT9-1

    E-Print Network [OSTI]

    Management (QM) System is to implement QM methodology throughout the various Laboratory management systems is de- ployed as an integrated system of management activities. These activities involve planning- ect manager for each environmental program determines the type, amount, and quality of data needed

  3. Quality assurance for the ALICE Monte Carlo procedure

    E-Print Network [OSTI]

    M. Ajaz; Seforo Mohlalisi; Peter Hristov; Jean Pierre Revol

    2009-04-10T23:59:59.000Z

    We implement the already existing macro,$ALICE_ROOT/STEER /CheckESD.C that is ran after reconstruction to compute the physics efficiency, as a task that will run on proof framework like CAF. The task was implemented in a C++ class called AliAnalysisTaskCheckESD and it inherits from AliAnalysisTaskSE base class. The function of AliAnalysisTaskCheckESD is to compute the ratio of the number of reconstructed particles to the number of particle generated by the Monte Carlo generator.The class AliAnalysisTaskCheckESD was successfully implemented. It was used during the production for first physics and permitted to discover several problems (missing track in the MUON arm reconstruction, low efficiency in the PHOS detector etc.). The code is committed to the SVN repository and will become standard tool for quality assurance.

  4. Configuration Management Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    & Publications SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Configuration Management Checklist NMMSS Software Quality Assurance Plan Software Configuration...

  5. Recommended reforms in codes and standards, quality assurance, and engineering practices for competitive liquid metal nuclear power plants

    SciTech Connect (OSTI)

    Harms, W.O. (comp.)

    1986-04-01T23:59:59.000Z

    Recommendations are presented on LMFBR: codes and standards; quality assurance requirements and practices; and engineering practices. (JDB)

  6. SQA(TM): Surface Quality Assured Steel Bar Program

    SciTech Connect (OSTI)

    Tzyy-Shuh Chang; Jianjun Shi; Shiyu Zhou

    2009-03-03T23:59:59.000Z

    OG Technologies, Inc. (OGT) has led this SQA (Surface Quality Assured Steel Bar) program to solve the major surface quality problems plaguing the US special quality steel bars and rods industry and their customers, based on crosscutting sensors and controls technologies. Surface defects in steel formed in a hot rolling process are one of the most common quality issues faced by the American steel industry, accounting for roughly 50% of the rejects or 2.5% of the total shipment. Unlike other problems such as the mechanical properties of the steel product, most surface defects are sporadic and cannot be addressed based on sampling techniques. This issue hurts the rolling industry and their customers in their process efficiency and operational costs. The goal of this program is to develop and demonstrate an SQA prototype, with synergy of HotEye® and other innovations, that enables effective rolling process control and efficient quality control. HotEye®, OGT’s invention, delivers high definition images of workpieces at or exceeding 1,450?C while the workpieces travel at 100 m/s. The elimination of surface defect rejects will be achieved through the integration of imaging-based quality assessment, advanced signal processing, predictive process controls and the integration with other quality control tools. The SQA program team, composed of entities capable of and experienced in (1) research, (2) technology manufacturing, (3) technology sales and marketing, and (4) technology end users, is very strong. There were 5 core participants: OGT, Georgia Institute of Technology (GIT), University of Wisconsin (UW), Charter Steel (Charter) and ArcelorMittal Indiana Harbor (Inland). OGT served as the project coordinator. OGT participated in both research and commercialization. GIT and UW provided significant technical inputs to this SQA project. The steel mills provided access to their rolling lines for data collection, design of experiments, host of technology test and verification, and first-hand knowledge of the most advanced rolling line operation in the US. This project lasted 5 years with 5 major tasks. The team successfully worked through the tasks with deliverables in detection, data analysis and process control. Technologies developed in this project were commercialized as soon as they were ready. For instance, the advanced surface defect detection algorithms were integrated into OGT’s HotEye® RSB systems late 2005, resulting in a more matured product serving the steel industry. In addition to the commercialization results, the SQA team delivered 7 papers and 1 patent. OGT was also recognized by two prestigious awards, including the R&D100 Award in 2006. To date, this SQA project has started to make an impact in the special bar quality industry. The resulted product, HotEye® RSB systems have been accepted by quality steel mills worldwide. Over 16 installations were completed, including 1 in Argentina, 2 in Canada, 2 in China, 2 in Germany, 2 in Japan, and 7 in the U.S. Documented savings in reduced internal rejects, improved customer satisfaction and simplified processes were reported from various mills. In one case, the mill reported over 50% reduction in its scrap, reflecting a significant saving in energy and reduction in emission. There exist additional applications in the steel industry where the developed technologies can be used. OGT is working toward bringing the developed technologies to more applications. Examples are: in-line inspection and process control for continuous casting, steel rails, and seamless tube manufacturing.

  7. The effect of job performance aids on quality assurance

    SciTech Connect (OSTI)

    Fosshage, Erik

    2014-06-01T23:59:59.000Z

    Job performance aids (JPAs) have been studied for many decades in a variety of disciplines and for many different types of tasks, yet this is the first known research experiment using JPAs in a quality assurance (QA) context. The objective of this thesis was to assess whether a JPA has an effect on the performance of a QA observer performing the concurrent dual verification technique for a basic assembly task. The JPA used in this study was a simple checklist, and the design borrows heavily from prior research on task analysis and other human factors principles. The assembly task and QA construct of concurrent dual verification are consistent with those of a high consequence manufacturing environment. Results showed that the JPA had only a limited effect on QA performance in the context of this experiment. However, there were three important and unexpected findings that may draw interest from a variety of practitioners. First, a novel testing methodology sensitive enough to measure the effects of a JPA on performance was created. Second, the discovery that there are different probabilities of detection for different types of error in a QA context may be the most far-reaching results. Third, these results highlight the limitations of concurrent dual verification as a control against defects. It is hoped that both the methodology and results of this study are an effective baseline from which to launch future research activities.

  8. Total Quality Commissioning for HVAC Systems to Assure High Performance Throughout the Whole Life Cycle 

    E-Print Network [OSTI]

    Maisey, G.; Milestone, B.

    2005-01-01T23:59:59.000Z

    TOTAL QUALITY COMMISSIONING FOR HVAC SYSTEMS TO ASSURE HIGH PERFORMANCE THROUGHOUT THE WHOLE LIFE CYCLE By: Grahame E. Maisey, P.E., and Beverly Milestone, LEED AP Building Services Consultants INTRODUCTION Current HVAC systems... not provide a life cycle, high performance assurance program. Continuous commissioning is being used to continually adjust the HVAC systems to regain good performance from the original systems, but again, is not a life cycle, high performance assurance...

  9. Facility Software Quality Assurance for Capital Project Decisions RM

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007FYFacility Software Quality

  10. Standard guide for establishing a quality assurance program for uranium conversion facilities

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2004-01-01T23:59:59.000Z

    1.1 This guide provides guidance and recommended practices for establishing a comprehensive quality assurance program for uranium conversion facilities. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate health and safety practices and determine the applicability of regulatory limitations prior to use. 1.3 The basic elements of a quality assurance program appear in the following order: FUNCTION SECTION Organization 5 Quality Assurance Program 6 Design Control 7 Instructions, Procedures & Drawings 8 Document Control 9 Procurement 10 Identification and Traceability 11 Processes 12 Inspection 13 Control of Measuring and Test Equipment 14 Handling, Storage and Shipping 15 Inspection, Test and Operating Status 16 Control of Nonconforming Items 17 Corrective Actions 18 Quality Assurance Records 19 Audits 20 TABLE 1 NQA-1 Basic Requirements Relat...

  11. Development of Quality Assurance Methods for Performance-Based Maintenance Contracts for Roadway Assets

    E-Print Network [OSTI]

    Shelton, Debora Brooke

    2011-02-22T23:59:59.000Z

    DEVELOPMENT OF QUALITY ASSURANCE METHODS FOR PERFORMANCE- BASED MAINTENANCE CONTRACTS FOR ROADWAY ASSETS A Thesis by DEBORA BROOKE SHELTON Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2010 Major Subject: Civil Engineering DEVELOPMENT OF QUALITY ASSURANCE METHODS FOR PERFORMANCE- BASED MAINTENANCE CONTRACTS FOR ROADWAY ASSETS A Thesis...

  12. Handbook of software quality assurance techniques applicable to the nuclear industry

    SciTech Connect (OSTI)

    Bryant, J.L.; Wilburn, N.P.

    1987-08-01T23:59:59.000Z

    Pacific Northwest Laboratory is conducting a research project to recommend good engineering practices in the application of 10 CFR 50, Appendix B requirements to assure quality in the development and use of computer software for the design and operation of nuclear power plants for NRC and industry. This handbook defines the content of a software quality assurance program by enumerating the techniques applicable. Definitions, descriptions, and references where further information may be obtained are provided for each topic.

  13. Underground Test Area Fiscal Year 2012 Annual Quality Assurance Report Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Farnham, Irene; Marutzky, Sam

    2013-01-01T23:59:59.000Z

    This report is mandated by the Underground Test Area (UGTA) Quality Assurance Project Plan (QAPP) and identifies the UGTA quality assurance (QA) activities for fiscal year (FY) 2012. All UGTA organizations—U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO); Desert Research Institute (DRI); Lawrence Livermore National Laboratory (LLNL); Los Alamos National Laboratory (LANL); Navarro-Intera, LLC (N-I); National Security Technologies, LLC (NSTec); and the U.S. Geological Survey (USGS)—conducted QA activities in FY 2012. The activities included conducting assessments, identifying findings and completing corrective actions, evaluating laboratory performance, revising the QAPP, and publishing documents. In addition, processes and procedures were developed to address deficiencies identified in the FY 2011 QAPP gap analysis.

  14. Underground Test Area Fiscal Year 2013 Annual Quality Assurance Report Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Krenzien, Susan; Marutzky, Sam

    2014-01-01T23:59:59.000Z

    This report is required by the Underground Test Area (UGTA) Quality Assurance Plan (QAP) and identifies the UGTA quality assurance (QA) activities for fiscal year (FY) 2013. All UGTA organizations—U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO); Desert Research Institute (DRI); Lawrence Livermore National Laboratory (LLNL); Los Alamos National Laboratory (LANL); Navarro-Intera, LLC (N-I); National Security Technologies, LLC (NSTec); and the U.S. Geological Survey (USGS)—conducted QA activities in FY 2013. The activities included conducting assessments, identifying findings and completing corrective actions, evaluating laboratory performance, and publishing documents. In addition, integrated UGTA required reading and corrective action tracking was instituted.

  15. SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Project Planning...

    Broader source: Energy.gov (indexed) [DOE]

    PROGRAM: Project Planning Checklist SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Project Planning Checklist The following checklist is intended to provide system owners, project...

  16. Subject: Quality Assurance Letter To Whom It May Concern

    E-Print Network [OSTI]

    Thomas, David D.

    program, appropriate facilities and equipment qualification to support quality services, as well and test qualification to ensure the quality of routine services. As part of our Quality System Management

  17. Approved Module Information for PH3704, 2014/5 Module Title/Name: Quality Assured Pharmaceutical

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    and processes, including the use of Standard Operating Procedures, Good Laboratory Practice, Good Pharmaceutical Technology Module Code: PH3704 School: Life and Health Sciences Module Type: Standard Module New Module of these materials. · To describe the role of quality assurance in the maintenance of the quality of pharmaceutical

  18. assurance project plans: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and water resources, while supporting the Pecos River Compact by delivering water to Texas 4. Project Objectives: Planning for a possible candidate conservation agreement will...

  19. assurance project plan: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and water resources, while supporting the Pecos River Compact by delivering water to Texas 4. Project Objectives: Planning for a possible candidate conservation agreement will...

  20. assurance plan project: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and water resources, while supporting the Pecos River Compact by delivering water to Texas 4. Project Objectives: Planning for a possible candidate conservation agreement will...

  1. Summary report on the Solar Consumer Assurance Network (SOLCAN) Program Planning Task in the southern region

    SciTech Connect (OSTI)

    Browne, M. B. [comp.] [comp.

    1981-03-15T23:59:59.000Z

    The goal of the SOLCAN Program Planning Task is to assist in the development, at the state and local levels, of consumer assurance approaches that will support the accelerated adoption and effective use of new products promoted by government incentives to consumers to meet our nation's energy needs. The task includes state-conducted evaluations and state SOLCAN meetings to identify consumer assurance mechanisms, assess their effectiveness, and identify and describe alternative means for strengthening consumer and industry assurance in each state. Results of the SOLCAN process are presented, including: a Solar Consumer Protection State Assessment Guide; State Solar Consumer Assurance Resources for Selected States; State Solar Consumer Protection Assessment Interviews for Florida; and state SOLCAN meeting summaries and participants. (LEW)

  2. PVS0071 Quality assurance and communication on Animal Welfare web-based teaching material, 3.0 credits

    E-Print Network [OSTI]

    PVS0071 Quality assurance and communication on Animal Welfare web- based teaching material, 3. Objective: On completion of the course the students shall be able to: · Apply quality assurance principles. Literature: Löfström E, Kanerva K, Tuuttila L, Lehtinen A & Nevgi A (2007) With high quality on the net

  3. SU-E-T-32: An Application of GafChromic RTQA2 Film to the Patient Specified Quality Assurance

    SciTech Connect (OSTI)

    Peng, J; Hu, W [Fudan University Shanghai Cancer Center, Shanghai (China)

    2014-06-01T23:59:59.000Z

    Purpose: GafChromic RTQA2 film is known as a quality assurance (QA) tool for light field and radiation field verification. This study is attempted to apply the RTQA2 film to the patient specified quality assurance. Methods: Pre-irradiated and post-irradiated RTQA2 films were scanned in a reflection mode using a flatbed scanner. A plan-based dose calibration method utilized the mapping information of calculated dose image and measured film image to create a dose vs. pixel value calibration model. This model was used to calibrate the measured film image from the pixel value (gray value) image to the dose image. The dose agreement between calculated and measured dose images were analyzed using the gamma analysis. To evaluate the feasibility of this method, three clinical approved RapidArc cases (one abdomen cancer and two head-and-neck cancer patients) were tested. The tolerance of 3% dose difference and 3 mm distance to agreement (DTA) and gamma index ? 1 were set for the analysis. Results: The calibrated film dose image from measurement was successfully compared to the predicted dose image from the commercial treatment planning. The gamma analysis results showed good consistency. Gamma passing rates were 99.02%, 94.84%, and 98.33% for the three patients, respectively. Conclusion: The plan based calibration method has the feasibility for dose verification without shortages of film batch and development time variation.

  4. assurance program argonne: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The sponsor Kemner, Ken 4 1999 Quality Assurance Project Plan Regional Monitoring Program Environmental Sciences and Ecology Websites Summary: in the development of our...

  5. Suspect/Counterfeit Items Guide for Use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1B, Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-11-03T23:59:59.000Z

    This Guide provides guidance to assist DOE/NNSA and its contractors in mitigating the safety threat of suspect/counterfeit items (S/CIs). Cancels DOE G 440.1-6, Implementation Guide for use with Suspect/Counterfeit Items Requirements of DOE O 440.1, Worker Protection Management; 10 CFR 830.120; and DOE O 5700.6C, Quality Assurance, dated 6-30-97. Canceled by DOE G 414.1-2B.

  6. Quality Assurance Program Undergoes Sound Changes to Ensure Safe, Correct Work

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Completing the world’s largest nuclear cleanup safely and correctly is EM’s priority. In support of that central mission, EM recently made changes that strengthen its corporate quality assurance program, marking the first revisions to the quality program since EM established it in 2008. The program provides the foundation for achieving quality through a consistent approach to all mission-related work across the EM complex.

  7. Pressure tube testing test plan document production assurance program

    SciTech Connect (OSTI)

    Zaloudek, F.R. [Pacific Northwest Lab., Richland, WA (United States); Ruff, E.S. [UNC Nuclear Industries, Richland, WA (United States)

    1986-04-01T23:59:59.000Z

    UNC Nuclear Industries (UNC) has initiated a plan for the manufacture of zirconium alloy pressure tubes required for the future operation of N-Reactor. As part of this plan, UNC is establishing a program to qualify and develop a manufacturing process capable of fabricating these pressure tubes to the requirements of UNC specification HWS 6502, REV 4, Amendment 1. The objective of the task described in this test plan is to support the UNC program by performing physical/chemical testing on prototype tubes sections produced or procured during FY-1986, 1987 and 1988 and to test samples from production runs after 1988 as may be required. The types of tests included in this pressure tube testing task will be as follows: (1) Tensile tests; (2) Burst testing; (3) Tests to evaluate fracture properties; (4) Corrosion tests; (5) Spectrographic analysis of chemical composition; (6) Metallographic evaluation of grain size and oxide layer thickness.

  8. Potsdam University's Approach to Quality Assurance in Higher Education A comprehensive and systematic quality management system is characteristic for education and

    E-Print Network [OSTI]

    Potsdam, Universität

    and systematic quality management system is characteristic for education and training at Potsdam the quality management system is undergoing institutional evaluation: the German "System of the university's quality assurance system. At the same time the faculties are accountable

  9. Quality Assurance 9 2013 SITE ENVIRONMENTAL REPORT9-1

    E-Print Network [OSTI]

    throughout the various Laboratory management systems and associated processes, in order to: § Plan, security, and health of the staff and public § Standardize processes and support continual improvement, implementation, control, reporting, assessment, and continual improvement. QC activities mea- sure each process

  10. Fiber optic quality assurance at the Nevada Test Site

    SciTech Connect (OSTI)

    Manning, J.; Baumgart, S.; Malone, R.; Thayer, D.

    1981-01-01T23:59:59.000Z

    A large number of fiber optic cables were used in support of a neutron imaging experiment at the Nevada Test Site. This paper describes the quality control testing of fiber components used on this experiment. The principal reason for quality control testing was to ensure reliable, high transmission fibers; a secondary reason was to gain data on a large sample of fiber cables in the field. Also described is the instrumentation developed for carrying out these field measurements. The design of the quality control instrumentation was a compromise between accuracy and simplicity of use.

  11. CRAD, Quality Assurance- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Quality Assurance Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project.

  12. CRAD, Quality Assurance- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Quality Assurance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  13. CRAD, Quality Assurance- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Quality Assurance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  14. Quality assurance of solar thermal systems with the ISFH-Input/Output-Procedure

    E-Print Network [OSTI]

    Quality assurance of solar thermal systems with the ISFH- Input/Output-Procedure Peter Paerisch different solar systems. The simulation model was validated with measured data. The deviation between meas * Tel. +49 (0)5151-999503, Fax: +49 (0)5151-999500, Email: paerisch@isfh.de Abstract Input/Output

  15. Quality Assurance Guidelines for Superior Vena Cava Stenting in Malignant Disease

    SciTech Connect (OSTI)

    Uberoi, Raman [John Radcliffe Hospital, Department of Radiology (United Kingdom)], E-mail: raman.uberoi@orh.nhs.uk

    2006-06-15T23:59:59.000Z

    Superior vena cava stenting for the treatment of malignant superior vena cava obstruction is now well established. It offers simple, rapid, and safe palliation of a distressing and potentially fatal complication of mediastinal malignant disease and compares very favorably with standard therapies such as chemotherapy and radiotherapy. The following are quality assurance guidelines for superior vena cava stenting.

  16. Project Hanford management contract quality improvement project management plan

    SciTech Connect (OSTI)

    ADAMS, D.E.

    1999-03-25T23:59:59.000Z

    On July 13, 1998, the U.S. Department of Energy, Richland Operations Office (DOE-RL) Manager transmitted a letter to Fluor Daniel Hanford, Inc. (FDH) describing several DOE-RL identified failed opportunities for FDH to improve the Quality Assurance (QA) Program and its implementation. In addition, DOE-RL identified specific Quality Program performance deficiencies. FDH was requested to establish a periodic reporting mechanism for the corrective action program. In a July 17, 1998 response to DOE-RL, FDH agreed with the DOE concerns and committed to perform a comprehensive review of the Project Hanford Management Contract (PHMC) QA Program during July and August, 1998. As a result, the Project Hanford Management Contract Quality Improvement Plan (QIP) (FDH-3508) was issued on October 21, 1998. The plan identified corrective actions based upon the results of an in-depth Quality Program Assessment. Immediately following the scheduled October 22, 1998, DOE Office of Enforcement and Investigation (EH-10) Enforcement Conference, FDH initiated efforts to effectively implement the QIP corrective actions. A Quality Improvement Project (QI Project) leadership team was assembled to prepare a Project Management Plan for this project. The management plan was specifically designed to engage a core team and the support of representatives from FDH and the major subcontractors (MSCs) to implement the QIP initiatives; identify, correct, and provide feedback as to the root cause for deficiency; and close out the corrective actions. The QI Project will manage and communicate progress of the process.

  17. Establishing the Office of Environmental Management Quality Assurance Corporate Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof1-SCORECARD-09-21-11 Page 1 ofDepartmentSzulman

  18. FAQS Reference Guide - Quality Assurance | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of Energy 088:Energy FACTOccupationalof

  19. FUEL CYCLE TECHNOLOGIES QUALITY ASSURANCE PROGRAM DOCUMENT | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment of Energy Quarterly Report

  20. Safety Software Quality Assurance Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDERSTATE0-1of Energy Safety Planning2-2011

  1. Standard guide for establishing a quality assurance program for analytical chemistry laboratories within the nuclear industry

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    1.1 This guide covers the establishment of a quality assurance (QA) program for analytical chemistry laboratories within the nuclear industry. Reference to key elements of ANSI/ISO/ASQC Q9001, Quality Systems, provides guidance to the functional aspects of analytical laboratory operation. When implemented as recommended, the practices presented in this guide will provide a comprehensive QA program for the laboratory. The practices are grouped by functions, which constitute the basic elements of a laboratory QA program. 1.2 The essential, basic elements of a laboratory QA program appear in the following order: Section Organization 5 Quality Assurance Program 6 Training and Qualification 7 Procedures 8 Laboratory Records 9 Control of Records 10 Control of Procurement 11 Control of Measuring Equipment and Materials 12 Control of Measurements 13 Deficiencies and Corrective Actions 14

  2. EM Quality Assurance Assessment Schedule FY 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune 20, 2013Meeting Materials EMEM Quality

  3. Safety Software Quality Assurance - Central Registry | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmental AssignmentAprilANDSafety Software Quality

  4. Quality Assurance Exchange March 2011, Volume 7 Issue 1

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergy Small Team Oversight Activities -Toilets,DepartmentU.S.Quality Software

  5. Isotopic power supplies for space and terrestrial systems: quality assurance by Sandia National Laboratories

    SciTech Connect (OSTI)

    Hannigan, R.L.; Harnar, R.R.

    1981-09-01T23:59:59.000Z

    The Sandia National Laboratories participation in Quality Assurance (QA) programs for Radioisotopic Thermoelectric Generators which have been used in space and terrestrial systems over the past 15 years is summarized. Basic elements of the program are briefly described and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems for which Sandia has had the QA responsibility are also presented. In addition, the outlook for Sandia participation in RTG programs for the next several years is noted.

  6. EM Quality Assurance Centralized Training Platform Project Plan for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune 20, 2013Meeting Materials EMEM

  7. The Waste Management Quality Assurance Implementing Management Plan (QAIMP)

    E-Print Network [OSTI]

    Albert editor, R.

    2009-01-01T23:59:59.000Z

    Qualification and certification requirements for procedures, specifications, and personnel EquipmentQualification and certification requirements of test personnel. Type of testing and measuring equipment

  8. Software Quality Assurance Plan Example | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart GridAbout Energy.gov

  9. 2014 Quality Assurance Improvement Project Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)Department ofNow in its third year, theThis

  10. 2010 Quality Assurance Improvement Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies09Combustion2/2010New Fuel Cell0

  11. 2015 Quality Assurance Improvement Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015 Peer Review | Plenaries 20155

  12. CERCLA Sites Quality Assurance Project Plan | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergy Bush HydrogenEmissions and the Effects of Climate

  13. Introduction of Break-Out Session 2 of the 2011 International PV Module Quality Assurance Forum(Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Kurtz, S.; Sample, T.; Yamamichi, M.

    2011-07-01T23:59:59.000Z

    This presentation outlines the goals and specific tasks of break-out session 2 of the 2011 International PV Module Quality Assurance Forum, along with a review of accelerated stress tests used for photovoltaics (PV).

  14. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    The purpose of the Order is to ensure that DOE, including NNSA, products and services meet or exceed customers’ requirements and expectations. Cancels DOE O 414.1C. Adm Chg 1, 5-8-13

  15. 2012 National Energy Assurance Planning Conference After-Action Report (August 2012)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) |2 National Energy Assurance Planning Conference

  16. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Quality Assurance Manual

    SciTech Connect (OSTI)

    C. L. Smith; R. Nims; K. J. Kvarfordt; C. Wharton

    2008-08-01T23:59:59.000Z

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment using a personal computer running the Microsoft Windows operating system. SAPHIRE is primarily funded by the U.S. Nuclear Regulatory Commission (NRC). The role of the INL in this project is that of software developer and tester. This development takes place using formal software development procedures and is subject to quality assurance (QA) processes. The purpose of this document is to describe how the SAPHIRE software QA is performed for Version 6 and 7, what constitutes its parts, and limitations of those processes.

  17. Use of treatment log files in spot scanning proton therapy as part of patient-specific quality assurance

    SciTech Connect (OSTI)

    Li Heng; Sahoo, Narayan; Poenisch, Falk; Suzuki, Kazumichi; Li Yupeng; Li Xiaoqiang; Zhang Xiaodong; Gillin, Michael T.; Zhu, X. Ronald [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Lee, Andrew K. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2013-02-15T23:59:59.000Z

    Purpose: The purpose of this work was to assess the monitor unit (MU) values and position accuracy of spot scanning proton beams as recorded by the daily treatment logs of the treatment control system, and furthermore establish the feasibility of using the delivered spot positions and MU values to calculate and evaluate delivered doses to patients. Methods: To validate the accuracy of the recorded spot positions, the authors generated and executed a test treatment plan containing nine spot positions, to which the authors delivered ten MU each. The spot positions were measured with radiographic films and Matrixx 2D ion-chambers array placed at the isocenter plane and compared for displacements from the planned and recorded positions. Treatment logs for 14 patients were then used to determine the spot MU values and position accuracy of the scanning proton beam delivery system. Univariate analysis was used to detect any systematic error or large variation between patients, treatment dates, proton energies, gantry angles, and planned spot positions. The recorded patient spot positions and MU values were then used to replace the spot positions and MU values in the plan, and the treatment planning system was used to calculate the delivered doses to patients. The results were compared with the treatment plan. Results: Within a treatment session, spot positions were reproducible within {+-}0.2 mm. The spot positions measured by film agreed with the planned positions within {+-}1 mm and with the recorded positions within {+-}0.5 mm. The maximum day-to-day variation for any given spot position was within {+-}1 mm. For all 14 patients, with {approx}1 500 000 spots recorded, the total MU accuracy was within 0.1% of the planned MU values, the mean (x, y) spot displacement from the planned value was (-0.03 mm, -0.01 mm), the maximum (x, y) displacement was (1.68 mm, 2.27 mm), and the (x, y) standard deviation was (0.26 mm, 0.42 mm). The maximum dose difference between calculated dose to the patient based on the plan and recorded data was within 2%. Conclusions: The authors have shown that the treatment log file in a spot scanning proton beam delivery system is precise enough to serve as a quality assurance tool to monitor variation in spot position and MU value, as well as the delivered dose uncertainty from the treatment delivery system. The analysis tool developed here could be useful for assessing spot position uncertainty and thus dose uncertainty for any patient receiving spot scanning proton beam therapy.

  18. Quality system for the educational activities at the University of Oslo (last update 6 July 2010) QUALITY ASSURANCE SYSTEM FOR THE EDUCATIONAL

    E-Print Network [OSTI]

    Johansen, Tom Henning

    Quality system for the educational activities at the University of Oslo (last update 6 July 2010) 1 QUALITY ASSURANCE SYSTEM FOR THE EDUCATIONAL ACTIVITIES AT THE UNIVERSITY OF OSLO (last update 6 July 2010............................................................................25 #12;Quality system for the educational activities at the University of Oslo (last update 6 July

  19. Standard Review Plan for Environmental Restoration Program Quality Management Plans. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The Department of Energy, Richland Operations Office (RL) Manual Environmental Restoration Program Quality System Requirements (QSR) for the Hanford Site, defines all quality requirements governing Hanford Environmental Restoration (ER) Program activities. The QSR requires that ER Program participants develop Quality Management Plans (QMPs) that describe how the QSR requirements will be implemented for their assigned scopes of work. This standard review plan (SRP) describes the ER program participant responsibilities for submittal of QMPs to the RL Environmental Restoration Division for review and the RL methodology for performing the reviews of participant QMPS. The SRP serves the following functions: acts as a guide in the development or revision of QMPs to assure that the content is complete and adequate; acts as a checklist to be used by the RL staff in their review of participant QMPs; acts as an index or matrix between the requirements of the QSR and implementing methodologies described in the QMPs; decreases the time and subjectivity of document reviews; and provides a formal, documented method for describing exceptions, modifications, or waivers to established ER Program quality requirements.

  20. Quality Assurance Strategy for Existing Homes: Final Quality Management Primer for High Performing Homes

    SciTech Connect (OSTI)

    Del Bianco, M.; Taggart, J.; Sikora, J.; Wood, A.

    2012-12-01T23:59:59.000Z

    This guide is designed to help Building America (BA) Teams understand quality management and its role in transitioning from conventional to high performance home building and remodeling. It explains what quality means, the value of quality management systems, the unique need for QMS when building high performing homes, and the first steps to a implementing a comprehensive QMS. This document provides a framework and context for BA teams when they encounter builders and remodelers.

  1. Quality health plans & benefits Healthier living

    E-Print Network [OSTI]

    to the Affordable Care Act, also known as the health care reform law, will comply with requirements for WomenQuality health plans & benefits Healthier living Financial well-being Intelligent solutions 05's Preventive Health Services. This means that for women with reproductive capacity, certain women

  2. QUALITY ASSURANCE/QUALITY CONTROL MANUAL FOR THE LOWER CAPE FEAR RIVER PROGRAM

    E-Print Network [OSTI]

    Mallin, Michael

    Operating Procedures for Field Sampling..........................7 7 Chain of Custody Maintenance and Calibration" to "Multi-Parameter Water Quality Meter Operation". Page 1 - Introduction............................................................................1 5 Station Descriptions and Sampling Schedule.................................3 6 Standard

  3. Quality assurance in the petroleum industry: Oil and gas industry Total Quality Management (TQM)

    SciTech Connect (OSTI)

    Penny, N.P.

    1991-01-01T23:59:59.000Z

    This paper describes the development and implementation of Total Quality Management (TQM) at the Naval Petroleum Reserves in California (NPRC), known as Elk Hills', and one of the largest oil and gas producing and processing facilities in the nation. NPRC is jointly owned by the United States Department of Energy (DOE), and Chevron USA Inc. (CUSA), and is managed and operated by Bechtel Petroleum Operations Inc. (BPOI). This paper describes step-by-step methods for getting started in TQM in the oil and gas industry, including the essential quality systems ingredients. The paper also illustrates how the President's Award for Quality and Productivity Improvement and the Malcolm Baldrige National Quality Award (MBNQA) can be used as the assessment standards and benchmarks for measuring TQM. 8 refs., 2 figs.

  4. 9-1 2001 SITE ENVIRONMENTAL REPORT CHAPTER 9: QUALITY ASSURANCE

    E-Print Network [OSTI]

    Homes, Christopher C.

    organization. The purpose of the BNL Quality Management (QM) System is to implement QM methodology throughout the various BNL management systems and associated processes to: § Plan and perform BNL operations and expectations. For environmental monitoring, QA is defined as an integrated system of management activities

  5. Teaching Quality Assurance and Project Management to Undergraduate Computing Students in Pakistan

    E-Print Network [OSTI]

    Mehmood, Zaigham

    2009-01-01T23:59:59.000Z

    Software Project Management (SPM) and Software Quality Assurance (SQA) are key components of undergraduate Computing programmes at educational establishments in Pakistan. Because of the nature of these subjects, there are a number of issues that need to be discussed and resolved so that the teaching becomes more effective, students learning experience is more enjoyable and their ability to be actively involved in SPM and SQA, after the completion of their studies, becomes further improved. In this paper, we discuss experience of teaching SPM and SQA at one particular institution in Islamabad Pakistan. Using this as a case study, we underline the students perspective, highlight the inherent issues and suggest ways to improve the delivery of these subjects. Since, the issues are mainly generic, the aim is to provide discussion and recommendations to benefit a wider computing community in academia.

  6. U.S. Department of Energy, Carlsbad Area Office quality assurance program document. Revision 1

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    Mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of TRU waste, and establishing an effective system for management of TRU waste from generation to disposal. To help in fulfilling this mission and to ensure that risks and environmental impacts are identified and minimized, and that safety, reliability, and performance are optimized, CAO`s policy is to establish and maintain an effective quality assurance (QA) program that supports compliance with applicable Federal, State, and local regulations, and DOE orders and requirements. This document establishes QA program requirements for all programs, projects, and activities sponsored by CAO.

  7. 2003 Horseshoe Beach Lease Area, Dixie County Quality Assurance/Quality Control (QA/QC) Log

    E-Print Network [OSTI]

    Florida, University of

    the month. This includes information on fouling, equipment failures and whether post-deployment checks were or a lack of standardization between the two sondes). Notes regarding reliability of data (whether/Quality Control (QA/QC) Log General Notes on Reliability of Data: 1) In general, measurements of temperature

  8. 2004 Gulf Jackson Lease Area, Levy County Quality Assurance/Quality Control (QA/QC) Log

    E-Print Network [OSTI]

    Florida, University of

    the month. This includes information on fouling, equipment failures and whether post-deployment checks were or a lack of standardization between the two sondes). Notes regarding reliability of data (whether/Quality Control (QA/QC) Log General Notes on Reliability of Data: 1) In general, measurements of temperature

  9. 2002 Dog Island Lease Area, Levy County Quality Assurance/Quality Control (AQ/QC) Log

    E-Print Network [OSTI]

    Florida, University of

    the month. This includes information on fouling, equipment failures and whether post-deployment checks were or a lack of standardization between the two sondes). Notes regarding reliability of data (whether/Quality Control (AQ/QC) Log General Notes on Reliability of Data: 1) In general, measurements of temperature

  10. 2003 Body A Lease Area, Brevard County Quality Assurance/Quality Control (QA/QC) Log

    E-Print Network [OSTI]

    Florida, University of

    the month. This includes information on fouling, equipment failures and whether post-deployment checks were or a lack of standardization between the two sondes). Notes regarding reliability of data (whether/Quality Control (QA/QC) Log General Notes on Reliability of Data: 1) In general, measurements of temperature

  11. 2003 Pine Island Lease Area, Dixie County Quality Assurance/Quality Control (QA/QC) Log

    E-Print Network [OSTI]

    Florida, University of

    the month. This includes information on fouling, equipment failures and whether post-deployment checks were or a lack of standardization between the two sondes). Notes regarding reliability of data (whether/Quality Control (QA/QC) Log General Notes on Reliability of Data: 1) In general, measurements of temperature

  12. 2002 Body A Lease Area, Brevard County Quality Assurance/Quality Control (QA/QC) Log

    E-Print Network [OSTI]

    Florida, University of

    the month. This includes information on fouling, equipment failures and whether post-deployment checks were or a lack of standardization between the two sondes). Notes regarding reliability of data (whether/Quality Control (QA/QC) Log General Notes on Reliability of Data: 1) In general, measurements of temperature

  13. 2002 Pine Island Lease Area, Dixie County Quality Assurance/Quality Control (QA/QC) Log

    E-Print Network [OSTI]

    Florida, University of

    the month. This includes information on fouling, equipment failures and whether post-deployment checks were or a lack of standardization between the two sondes). Notes regarding reliability of data (whether/Quality Control (QA/QC) Log General Notes on Reliability of Data: 1) In general, measurements of temperature

  14. 2003 Dog Island Lease Area, Levy County Quality Assurance/Quality Control (QA/QC) Log

    E-Print Network [OSTI]

    Florida, University of

    the month. This includes information on fouling, equipment failures and whether post-deployment checks were or a lack of standardization between the two sondes). Notes regarding reliability of data (whether/Quality Control (QA/QC) Log General Notes on Reliability of Data: 1) In general, measurements of temperature

  15. 2003 Gulf Jackson Lease Area, Levy County Quality Assurance/Quality Control (QA/QC) Log

    E-Print Network [OSTI]

    Florida, University of

    the month. This includes information on fouling, equipment failures and whether post-deployment checks were or a lack of standardization between the two sondes). Notes regarding reliability of data (whether/Quality Control (QA/QC) Log General Notes on Reliability of Data: 1) In general, measurements of temperature

  16. 2002 Gulf Jackson Lease Area, Levy County Quality Assurance/Quality Control (QA/QC) Log

    E-Print Network [OSTI]

    Florida, University of

    the month. This includes information on fouling, equipment failures and whether post-deployment checks were or a lack of standardization between the two sondes). Notes regarding reliability of data (whether/Quality Control (QA/QC) Log General Notes on Reliability of Data: 1) In general, measurements of temperature

  17. Quality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal systems

    E-Print Network [OSTI]

    Quality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal the confidence in solar thermal energy. The so called Input/Output-Procedure is controlling the solar heat systems. The simulation model was validated with measured data and a lot of failures in 11 solar thermal

  18. A study of IMRT planning parameters on planning efficiency, delivery efficiency, and plan quality

    SciTech Connect (OSTI)

    Mittauer, Kathryn [Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, Florida 32603 and J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Lu Bo; Yan Guanghua; Kahler, Darren; Amdur, Robert; Liu Chihray [Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, Florida 32603 (United States); Gopal, Arun [Department of Radiation Oncology, New York-Presbyterian Hospital, Columbia University, New York, New York 10032 (United States)

    2013-06-15T23:59:59.000Z

    Purpose: To improve planning and delivery efficiency of head and neck IMRT without compromising planning quality through the evaluation of inverse planning parameters.Methods: Eleven head and neck patients with pre-existing IMRT treatment plans were selected for this retrospective study. The Pinnacle treatment planning system (TPS) was used to compute new treatment plans for each patient by varying the individual or the combined parameters of dose/fluence grid resolution, minimum MU per segment, and minimum segment area. Forty-five plans per patient were generated with the following variations: 4 dose/fluence grid resolution plans, 12 minimum segment area plans, 9 minimum MU plans, and 20 combined minimum segment area/minimum MU plans. Each plan was evaluated and compared to others based on dose volume histograms (DVHs) (i.e., plan quality), planning time, and delivery time. To evaluate delivery efficiency, a model was developed that estimated the delivery time of a treatment plan, and validated through measurements on an Elekta Synergy linear accelerator. Results: The uncertainty (i.e., variation) of the dose-volume index due to dose calculation grid variation was as high as 8.2% (5.5 Gy in absolute dose) for planning target volumes (PTVs) and 13.3% (2.1 Gy in absolute dose) for planning at risk volumes (PRVs). Comparison results of dose distributions indicated that smaller volumes were more susceptible to uncertainties. The grid resolution of a 4 mm dose grid with a 2 mm fluence grid was recommended, since it can reduce the final dose calculation time by 63% compared to the accepted standard (2 mm dose grid with a 2 mm fluence grid resolution) while maintaining a similar level of dose-volume index variation. Threshold values that maintained adequate plan quality (DVH results of the PTVs and PRVs remained satisfied for their dose objectives) were 5 cm{sup 2} for minimum segment area and 5 MU for minimum MU. As the minimum MU parameter was increased, the number of segments and delivery time were decreased. Increasing the minimum segment area parameter decreased the plan MU, but had less of an effect on the number of segments and delivery time. Our delivery time model predicted delivery time to within 1.8%. Conclusions: Increasing the dose grid while maintaining a small fluence grid allows for improved planning efficiency without compromising plan quality. Delivery efficiency can be improved by increasing the minimum MU, but not the minimum segment area. However, increasing the respective minimum MU and/or the minimum segment area to any value greater than 5 MU and 5 cm{sup 2} is not recommended because it degrades plan quality.

  19. Volumetric-Modulated Arc Therapy: Effective and Efficient End-to-End Patient-Specific Quality Assurance

    SciTech Connect (OSTI)

    O'Daniel, Jennifer, E-mail: jennifer.odaniel@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Das, Shiva; Wu, Q. Jackie; Yin Fangfang [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States)

    2012-04-01T23:59:59.000Z

    Purpose: To explore an effective and efficient end-to-end patient-specific quality-assurance (QA) protocol for volumetric modulated arc radiotherapy (VMAT) and to evaluate the suitability of a stationary radiotherapy QA device (two-dimensional [2D] ion chamber array) for VMAT QA. Methods and Materials: Three methods were used to analyze 39 VMAT treatment plans for brain, spine, and prostate: ion chamber (one-dimensional absolute, n = 39), film (2D relative, coronal/sagittal, n = 8), and 2D ion chamber array (ICA, 2D absolute, coronal/sagittal, n = 39) measurements. All measurements were compared with the treatment planning system dose calculation either via gamma analysis (3%, 3- to 4-mm distance-to-agreement criteria) or absolute point dose comparison. The film and ion chamber results were similarly compared with the ICA measurements. Results: Absolute point dose measurements agreed well with treatment planning system computed doses (ion chamber: median deviation, 1.2%, range, -0.6% to 3.3%; ICA: median deviation, 0.6%, range, -1.8% to 2.9%). The relative 2D dose measurements also showed good agreement with computed doses (>93% of pixels in all films passing gamma, >90% of pixels in all ICA measurements passing gamma). The ICA relative dose results were highly similar to those of film (>90% of pixels passing gamma). The coronal and sagittal ICA measurements were statistically indistinguishable by the paired t test with a hypothesized mean difference of 0.1%. The ion chamber and ICA absolute dose measurements showed a similar trend but had disparities of 2-3% in 18% of plans. Conclusions: After validating the new VMAT implementation with ion chamber, film, and ICA, we were able to maintain an effective yet efficient patient-specific VMAT QA protocol by reducing from five (ion chamber, film, and ICA) to two measurements (ion chamber and single ICA) per plan. The ICA (Matrixx Registered-Sign , IBA Dosimetry) was validated for VMAT QA, but ion chamber measurements are recommended for absolute dose comparison until future developments correct the ICA angular dependence.

  20. EVALUATION OF TGA AS A QUALITY ASSURANCE TOOL FOR SURFACEMODIFIED ZIRCOLOY-4

    SciTech Connect (OSTI)

    Korinko, P.; Imrich, K.

    2009-09-21T23:59:59.000Z

    Thermogravimetric analysis (TGA) and coupled Mass Spectroscopy (MS) were evaluated to determine their suitability as a quality assurance tool for surface modified nickel plated zircaloy-4 liner tubes. Samples with 0, 0.1, 0.2, 0.3, and 0.4 mils of heat treated nickel plate were tested at 330, 370, and 400 C. Not all of the samples exhibited the expected typical parabolic shaped oxidation curve. The measured weight change was consistent for the as received and 0.2 mil and the 0.4 mil surface modified samples. None of the samples were tested under aggressive enough conditions to consume the surface modified materials during the test duration. Use of the Mass Spectrometer in conjunction with the TGA did not produce valuable data and was only used for the 400 C test series; however, the TGA was valuable. The 0.1 and 0.3 mil surface modified Zr-4 samples exhibited thru surface modified layer cracks which could account for the variation in oxidation behavior. TGA tests for periods up to six hours appear viable as a method to ascertain oxidation behavior for consistent results. Additional testing of samples with known variations in surface modified layer thickness and quality is recommended as part of the QA acceptance testing.

  1. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179

    SciTech Connect (OSTI)

    Bissonnette, Jean-Pierre; Balter, Peter A.; Dong Lei; Langen, Katja M.; Lovelock, D. Michael; Miften, Moyed; Moseley, Douglas J.; Pouliot, Jean; Sonke, Jan-Jakob; Yoo, Sua [Task Group 179, Department of Radiation Physics, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Department of Radiation Physics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiation Oncology, M. D. Anderson Cancer Center Orlando, Orlando, Florida 32806 (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 (United States); Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Department of Radiation Physics, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Department of Radiation Oncology, UCSF Comprehensive Cancer Center, 1600 Divisadero St., Suite H 1031, San Francisco, California 94143-1708 (United States); Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Department of Radiation Oncology, Duke University, Durham, North Carolina 27710 (United States)

    2012-04-15T23:59:59.000Z

    Purpose: Commercial CT-based image-guided radiotherapy (IGRT) systems allow widespread management of geometric variations in patient setup and internal organ motion. This document provides consensus recommendations for quality assurance protocols that ensure patient safety and patient treatment fidelity for such systems. Methods: The AAPM TG-179 reviews clinical implementation and quality assurance aspects for commercially available CT-based IGRT, each with their unique capabilities and underlying physics. The systems described are kilovolt and megavolt cone-beam CT, fan-beam MVCT, and CT-on-rails. A summary of the literature describing current clinical usage is also provided. Results: This report proposes a generic quality assurance program for CT-based IGRT systems in an effort to provide a vendor-independent program for clinical users. Published data from long-term, repeated quality control tests form the basis of the proposed test frequencies and tolerances.Conclusion: A program for quality control of CT-based image-guidance systems has been produced, with focus on geometry, image quality, image dose, system operation, and safety. Agreement and clarification with respect to reports from the AAPM TG-101, TG-104, TG-142, and TG-148 has been addressed.

  2. NARSTO Quality Planning and Data Management Handbooks Executive Summary

    E-Print Network [OSTI]

    'existingqualityassuranceprograms. The first of the three documents, the NARSTO Quality Systems Management Plan (QSMP), is the umbrella underNARSTO Quality Planning and Data Management Handbooks Executive Summary This brief Executive, and guidance documents for quality planning and data management. NARSTO is a non-binding, tri-national public

  3. Corporate Sustainability Reporting: Investigation of Assurance Process, Assurance Characteristics and Assurance Frameworks Used

    E-Print Network [OSTI]

    Rao, Sunita

    2012-08-31T23:59:59.000Z

    This dissertation is on assured sustainability reporting. It has three parts that are titled as follows: Part 1. Planning Assurance Services for Sustainability Reporting: An Analysis of Cost versus Assurance in Audit ...

  4. Construction quality assurance for Pit 6 landfill closure, Lawrence Livermore National Laboratory, Site 300

    SciTech Connect (OSTI)

    NONE

    1997-10-30T23:59:59.000Z

    Golder Construction Services, Inc. (GCS), under contract to the Regents of the University of California, Lawrence Livermore National Laboratory (LLNL), provided the construction quality assurance (CQA) observation and testing during the construction of the Site 300, Pit 6 landfill closure cover. The cap construction was performed as a CERCLA non-time-critical removal action from June 2 to August 29, 1997. the project site is located 18 miles east of Livermore on Tesla Road and approximately 10 miles southwest of Tracy on Corral Hollow Road in San Joaquin County, California. This report certifies that the LLNL, Site 300, Pit 6, Landfill Closure was constructed in accordance with the construction specifications and design drawings. This report documents construction activities and CQA monitoring and testing for construction of the Pit 6 Landfill Closure. Golder Associates, Inc. of Oakland, California was the design engineering firm responsible for preparation of the drawings and specifications. CQA services were provided by GCS, of Roseville, California, under supervision of a California registered civil Engineer.

  5. Quality Assurance Manual for the "Frutas y Verduras" produce operation: 1. Initial considerations on the evaluaton and conservation of vegetables

    E-Print Network [OSTI]

    Riba, Edgard Luis

    1987-01-01T23:59:59.000Z

    Abstract This professional paper is the starting point for the development of the Quality Assurance Manual for the produce operation "Frutas y Verduras, " in the Republic of Panama. The paper deals with the main vegetables handled by the Frutas y... description of what the handling practices are at the present time, and also, gives recommendations on what they should be. 2 ALLIUM 2. 1 Bunching onion (Cebollina, Allium fistulosum): 2. 1. 1 Description Bunching onions, as consumed in Panama, do...

  6. Special Report on Review of "The Department of Energy's Quality Assurance Process for Prime Recipients' Reporting for the American Recovery and Reinvestment Act"

    SciTech Connect (OSTI)

    None

    2009-10-01T23:59:59.000Z

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) was established to jumpstart the U.S. economy, create or save millions of jobs, spur technological advances in health and science, and invest in the Nation's energy future. The Department of Energy (Department) will receive an unprecedented $37 billion in Recovery Act funding to support a variety of science, energy, and environmental initiatives. The majority of the funding received by the Department will be allocated to various recipients through grants, cooperative agreements, contracts, and other financial instruments. To ensure transparency and accountability, the Office of Management and Budget (OMB) requires that recipients report on their receipt and use of Recovery Act funds on a quarterly basis to FederalReporting.gov. OMB also specifies that Federal agencies should develop and implement formal procedures to help ensure the quality of recipient reported information. Data that must be reported by recipients includes total funding received; funds expended or obligated; projects or activities for which funds were obligated or expended; and the number of jobs created and/or retained. OMB requires that Federal agencies perform limited data quality reviews of recipient data to identify material omissions and/or significant reporting errors and notify the recipients of the need to make appropriate and timely changes to erroneous reports. As part of a larger audit of recipient Recovery Act reporting and performance measurement and in support of a Government-wide review sponsored by the Recovery Accountability and Transparency Board, we completed an interim review to determine whether the Department had established a process to ensure the quality and accuracy of recipient reports. Our review revealed that the Department had developed a quality assurance process to facilitate the quarterly reviews of recipient data. The process included procedures to compare existing information from the Department's financial information systems with that reported to FederalReporting.gov by recipients. In addition, plans were in place to notify recipients of anomalies and/or errors exposed by the quality assurance process. While the Department has made a good deal of progress in this area, we did, however, identify several issues which could, if not addressed, impact the effectiveness of the quality assurance process.

  7. Final Report Project Activity Task ORD-FY04-002 Nevada System of Higher Education Quality Assurance Program

    SciTech Connect (OSTI)

    Smiecinski, Amy; Keeler, Raymond; Bertoia, Julie; Mueller, Terry; Roosa, Morris; Roosa, Barbara

    2008-03-07T23:59:59.000Z

    The principal purpose of DOE Cooperative Agreement DE-FC28-04RW12232 is to develop and continue providing the public and the U.S. Department of Energy’s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) with an independently derived, unbiased body of scientific and engineering data concerning the study of Yucca Mountain as a potential high-level radioactive waste repository. Under this agreement, the Nevada System of Higher Education (NSHE), formerly the University and Community College System of Nevada (UCCSN), performs scientific or engineering research, and maintains and fosters collaborative working relationships between government and academic researchers. In performing these activities, the NSHE has already developed and implemented a Quality Assurance (QA) program, which was accepted by the DOE Office of Quality Assurance, under the previous Cooperative Agreement Number DE-FC28-98NV12081. The following describes the objectives of Project Activity 002 “Quality Assurance Program” under cooperative agreement DE-FC28-04RW12232. The objective of this QA program was to assure that data produced under the cooperative agreement met the OCRWM QA Requirements and Description (QARD) requirements for quality-affecting (Q) data. The QA Program was written to address specific QARD requirements historically identified and incorporated in Q activities to the degree appropriate for the nature, scope, and complexity of the activity. Additional QARD requirements were integrated into the program when required to complete a specific activity. NSHE QA staff developed a detailed matrix to address each QARD element, identifying the applicable requirements and specifying where each requirement is addressed in the QA program procedures, or identify requirements as “not applicable” to the QA program. Controlled documents were prepared in the form of QA procedures (QAPs) and implementing procedures (IPs). NSHE identified new QAPs and IPs when needed. NSHE PIs implemented the QA program and completed individual research project activities. PIs were also responsible for developing implementing procedures, conducting technical training, assuring that the QA program training was acquired by all task personnel, and participating in monitoring the QA program control for each individual research project activity. This project activity, which was an essential part of the program to enhance the collaborative ongoing research between the NSHE and ORD, was intended to support all quality-affecting activities funded during the five-year period of the cooperative agreement. However, the cooperative agreement was down-graded to non quality-affecting after 4 years.

  8. Guidance on the application of quality assurance for characterizing a low-level radioactive waste disposal site

    SciTech Connect (OSTI)

    Pittiglio, C.L. Jr.; Starmer, R.J.; Hedges, D.

    1990-10-01T23:59:59.000Z

    This document provides the Nuclear Regulatory Commission's staff guidance to an applicant on meeting the quality control (QC) requirements of Title 10 of the Code of Federal Regulations, Part 61, Section 61.12 (10 CFR 61.12), for a low-level waste disposal facility. The QC requirements combined with the requirements for managerial controls and audits are the basis for developing a quality assurance (QA) program and for the guidance provided herein. QA guidance is specified for site characterization activities necessary to meet the performance objectives of 10 CFR Part 61 and to limit exposure to or the release of radioactivity. 1 tab.

  9. Characterization and use of a 2D-array of ion chambers for brachytherapy dosimetric quality assurance

    SciTech Connect (OSTI)

    Yewondwossen, Mammo, E-mail: mammo.yewondwossen@cdha.nshealth.ca [Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia (Canada)

    2012-10-01T23:59:59.000Z

    The two-dimensional (2D) ionization chamber array MatriXX Evolution is one of the 2D ionization chamber arrays developed by IBA Dosimetry (IBA Dosimetry, Germany) for megavoltage real-time absolute 2D dosimetry and verification of intensity-modulated radiation therapy (IMRT). The purpose of this study was to (1) evaluate the performance of ion chamber array for submegavoltage range brachytherapy beam dose verification and quality assurance (QA) and (2) use the end-to-end dosimetric evaluation that mimics a patient treatment procedure and confirm the primary source strength calibration agrees in both the treatment planning system (TPS) and treatment delivery console computers. The dose linearity and energy dependence of the 2D ion chamber array was studied using kilovoltage X-ray beams (100, 180 and 300 kVp). The detector calibration factor was determined using 300 kVp X-ray beams so that we can use the same calibration factor for dosimetric verification of high-dose-rate (HDR) brachytherapy. The phantom used for this measurement consists of multiple catheters, the IBA MatriXX detector, and water-equivalent slab of RW3 to provide full scattering conditions. The treatment planning system (TPS) (Oncentra brachy version 3.3, Nucletron BV, Veenendaal, the Netherlands) dose distribution was calculated on the computed tomography (CT) scan of this phantom. The measured and TPS calculated distributions were compared in IBA Dosimetry OmniPro-I'mRT software. The quality of agreement was quantified by the gamma ({gamma}) index (with 3% delta dose and distance criterion of 2 mm) for 9 sets of plans. Using a dedicated phantom capable of receiving 5 brachytherapy intralumenal catheters a QA procedure was developed for end-to-end dosimetric evaluation for routine QA checks. The 2D ion chamber array dose dependence was found to be linear for 100-300 kVp and the detector response (k{sub user}) showed strong energy dependence for 100-300 kVp energy range. For the Ir-192 brachytherapy HDR source, dosimetric evaluation k{sub user} factor determined by photon beam of energy of 300 kVp was used. The maximum mean difference between ion chamber array measured and TPS calculated was 3.7%. Comparisons of dose distribution for different test plans have shown agreement with >94.5% for {gamma} {<=}1. Dosimetric QA can be performed with the 2D ion chamber array to confirm primary source strength calibration is properly updated in both the TPS and treatment delivery console computers. The MatriXX Evolution ionization chamber array has been found to be reliable for measurement of both absolute dose and relative dose distributions for the Ir-192 brachytherapy HDR source.

  10. A process for establishing a financial assurance plan for LLW disposal facilities

    SciTech Connect (OSTI)

    Smith, P. [EG and G Idaho, Inc., Idaho Falls, ID (United States). National Low-Level Waste Management Program

    1993-04-01T23:59:59.000Z

    This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided.

  11. assistance program plan: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    their site visit o Outline for today Van Volkenburgh, Elizabeth 69 Aquatic Pesticide Monitoring Program Quality Assurance Program Plan Environmental Sciences and Ecology Websites...

  12. Environmental monitoring plan - environmental monitoring section. Revision 1

    SciTech Connect (OSTI)

    Wilt, G.C. [ed.; Tate, P.J.; Brigdon, S.L. [and others

    1994-11-01T23:59:59.000Z

    This report presents the environmental monitoring plan for the Lawrence Livermore National Laboratory. A site characterization is provided along with monitoring and measurement techniques and quality assurance measures.

  13. Quality assurance for the clinical implementation of kilovoltage intrafraction monitoring for prostate cancer VMAT

    SciTech Connect (OSTI)

    Ng, J. A. [School of Medicine, University of Sydney, NSW 2006, Australia and School of Physics, University of Sydney, NSW 2006 (Australia); Booth, J. T. [School of Physics, University of Sydney, NSW 2006, Australia and Northern Sydney Cancer Centre, Royal North Shore Hospital, NSW 2065 (Australia); O’Brien, R. T.; Huang, C.-Y.; Keall, P. J., E-mail: paul.keall@sydney.edu.au [School of Medicine, University of Sydney, NSW 2006 (Australia); Colvill, E. [School of Medicine, University of Sydney, NSW 2006, Australia and Northern Sydney Cancer Centre, Royal North Shore Hospital, NSW 2065 (Australia); Poulsen, P. R. [Department of Oncology, Aarhus University Hospital, Nørrebrogade 44, Aarhus C 8000 (Denmark)

    2014-11-01T23:59:59.000Z

    Purpose: Kilovoltage intrafraction monitoring (KIM) is a real-time 3D tumor monitoring system for cancer radiotherapy. KIM uses the commonly available gantry-mounted x-ray imager as input, making this method potentially more widely available than dedicated real-time 3D tumor monitoring systems. KIM is being piloted in a clinical trial for prostate cancer patients treated with VMAT (NCT01742403). The purpose of this work was to develop clinical process and quality assurance (QA) practices for the clinical implementation of KIM. Methods: Informed by and adapting existing guideline documents from other real-time monitoring systems, KIM-specific QA practices were developed. The following five KIM-specific QA tests were included: (1) static localization accuracy, (2) dynamic localization accuracy, (3) treatment interruption accuracy, (4) latency measurement, and (5) clinical conditions accuracy. Tests (1)–(4) were performed using KIM to measure static and representative patient-derived prostate motion trajectories using a 3D programmable motion stage supporting an anthropomorphic phantom with implanted gold markers to represent the clinical treatment scenario. The threshold for system tolerable latency is <1 s. The tolerances for all other tests are that both the mean and standard deviation of the difference between the programmed trajectory and the measured data are <1 mm. The (5) clinical conditions accuracy test compared the KIM measured positions with those measured by kV/megavoltage (MV) triangulation from five treatment fractions acquired in a previous pilot study. Results: For the (1) static localization, (2) dynamic localization, and (3) treatment interruption accuracy tests, the mean and standard deviation of the difference are <1.0 mm. (4) The measured latency is 350 ms. (5) For the tests with previously acquired patient data, the mean and standard deviation of the difference between KIM and kV/MV triangulation are <1.0 mm. Conclusions: Clinical process and QA practices for the safe clinical implementation of KIM, a novel real-time monitoring system using commonly available equipment, have been developed and implemented for prostate cancer VMAT.

  14. Program Academic Quality Plan Department of Construction Management

    E-Print Network [OSTI]

    Moore, Paul A.

    Program Academic Quality Plan Department of Construction Management Bowling Green State University://www.bgsu.edu/colleges/technology/undergraduate/cmt/index.html Integral in this effort is our Program Academic Quality Plan. I. Bowling Green State University Mission Bowling Green State University provides educational experiences inside and outside the classroom

  15. Quality Control Planning for the Mother Boards 1. Overview

    E-Print Network [OSTI]

    5/29/99 Quality Control Planning for the Mother Boards 1. Overview The quality control is divided manufacturing to ensure that the production is proceeding as planned. In a second phase, burn-in and detailed Tests Once production is ready to begin, a group of 5 cards will be prepared by the manufacturer

  16. Assessment of Quality Assurance Measures for Radioactive Material Transport Packages not Requiring Competent Authority Design Approval - 13282

    SciTech Connect (OSTI)

    Komann, Steffen; Groeke, Carsten; Droste, Bernhard [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 44-46, 12203 Berlin (Germany)] [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 44-46, 12203 Berlin (Germany)

    2013-07-01T23:59:59.000Z

    The majority of transports of radioactive materials are carried out in packages which don't need a package design approval by a competent authority. Low-active radioactive materials are transported in such packages e.g. in the medical and pharmaceutical industry and in the nuclear industry as well. Decommissioning of NPP's leads to a strong demand for packages to transport low and middle active radioactive waste. According to IAEA regulations the 'non-competent authority approved package types' are the Excepted Packages and the Industrial Packages of Type IP-1, IP-2 and IP-3 and packages of Type A. For these types of packages an assessment by the competent authority is required for the quality assurance measures for the design, manufacture, testing, documentation, use, maintenance and inspection (IAEA SSR 6, Chap. 306). In general a compliance audit of the manufacturer of the packaging is required during this assessment procedure. Their regulatory level in the IAEA regulations is not comparable with the 'regulatory density' for packages requiring competent authority package design approval. Practices in different countries lead to different approaches within the assessment of the quality assurance measures in the management system as well as in the quality assurance program of a special package design. To use the package or packaging in a safe manner and in compliance with the regulations a management system for each phase of the life of the package or packaging is necessary. The relevant IAEA-SSR6 chap. 801 requires documentary verification by the consignor concerning package compliance with the requirements. (authors)

  17. Quantitative assessment of the accuracy of dose calculation using pencil beam and Monte Carlo algorithms and requirements for clinical quality assurance

    SciTech Connect (OSTI)

    Ali, Imad, E-mail: iali@ouhsc.edu [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Ahmad, Salahuddin [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2013-10-01T23:59:59.000Z

    To compare the doses calculated using the BrainLAB pencil beam (PB) and Monte Carlo (MC) algorithms for tumors located in various sites including the lung and evaluate quality assurance procedures required for the verification of the accuracy of dose calculation. The dose-calculation accuracy of PB and MC was also assessed quantitatively with measurement using ionization chamber and Gafchromic films placed in solid water and heterogeneous phantoms. The dose was calculated using PB convolution and MC algorithms in the iPlan treatment planning system from BrainLAB. The dose calculation was performed on the patient's computed tomography images with lesions in various treatment sites including 5 lungs, 5 prostates, 4 brains, 2 head and necks, and 2 paraspinal tissues. A combination of conventional, conformal, and intensity-modulated radiation therapy plans was used in dose calculation. The leaf sequence from intensity-modulated radiation therapy plans or beam shapes from conformal plans and monitor units and other planning parameters calculated by the PB were identical for calculating dose with MC. Heterogeneity correction was considered in both PB and MC dose calculations. Dose-volume parameters such as V95 (volume covered by 95% of prescription dose), dose distributions, and gamma analysis were used to evaluate the calculated dose by PB and MC. The measured doses by ionization chamber and EBT GAFCHROMIC film in solid water and heterogeneous phantoms were used to quantitatively asses the accuracy of dose calculated by PB and MC. The dose-volume histograms and dose distributions calculated by PB and MC in the brain, prostate, paraspinal, and head and neck were in good agreement with one another (within 5%) and provided acceptable planning target volume coverage. However, dose distributions of the patients with lung cancer had large discrepancies. For a plan optimized with PB, the dose coverage was shown as clinically acceptable, whereas in reality, the MC showed a systematic lack of dose coverage. The dose calculated by PB for lung tumors was overestimated by up to 40%. An interesting feature that was observed is that despite large discrepancies in dose-volume histogram coverage of the planning target volume between PB and MC, the point doses at the isocenter (center of the lesions) calculated by both algorithms were within 7% even for lung cases. The dose distributions measured with EBT GAFCHROMIC films in heterogeneous phantoms showed large discrepancies of nearly 15% lower than PB at interfaces between heterogeneous media, where these lower doses measured by the film were in agreement with those by MC. The doses (V95) calculated by MC and PB agreed within 5% for treatment sites with small tissue heterogeneities such as the prostate, brain, head and neck, and paraspinal tumors. Considerable discrepancies, up to 40%, were observed in the dose-volume coverage between MC and PB in lung tumors, which may affect clinical outcomes. The discrepancies between MC and PB increased for 15 MV compared with 6 MV indicating the importance of implementation of accurate clinical treatment planning such as MC. The comparison of point doses is not representative of the discrepancies in dose coverage and might be misleading in evaluating the accuracy of dose calculation between PB and MC. Thus, the clinical quality assurance procedures required to verify the accuracy of dose calculation using PB and MC need to consider measurements of 2- and 3-dimensional dose distributions rather than a single point measurement using heterogeneous phantoms instead of homogenous water-equivalent phantoms.

  18. Application of information technology and statistical process control in pharmaceutical quality assurance & compliance

    E-Print Network [OSTI]

    Srinivasan, Asvin

    2011-01-01T23:59:59.000Z

    Recently, the FDA issued new quality guidelines (Q10) encouraging drug manufacturers to improve their quality monitoring procedures. This renewed focus on quality and risk management has prompted Novartis to re-evaluate ...

  19. Characterization of responses of 2d array seven29 detector and its combined use with octavius phantom for the patient-specific quality assurance in rapidarc treatment delivery

    SciTech Connect (OSTI)

    Syamkumar, S.A., E-mail: skppm@rediffmail.com [Department of Medical Physics, Cancer Institute (WIA), Chennai (India); Padmanabhan, Sriram; Sukumar, Prabakar; Nagarajan, Vivekanandan [Department of Medical Physics, Cancer Institute (WIA), Chennai (India)

    2012-04-01T23:59:59.000Z

    A commercial 2D array seven29 detector has been characterized and its performance has been evaluated. 2D array ionization chamber equipped with 729 ionization chambers uniformly arranged in a 27 Multiplication-Sign 27 matrix with an active area of 27 Multiplication-Sign 27 cm{sup 2} was used for the study. An octagon-shaped phantom (Octavius Phantom) with a central cavity is used to insert the 2D ion chamber array. All measurements were done with a linear accelerator. The detector dose linearity, reproducibility, output factors, dose rate, source to surface distance (SSD), and directional dependency has been studied. The performance of the 2D array, when measuring clinical dose maps, was also investigated. For pretreatment quality assurance, 10 different RapidArc plans conforming to the clinical standards were selected. The 2D array demonstrates an excellent short-term output reproducibility. The long-term reproducibility was found to be within {+-}1% over a period of 5 months. Output factor measurements for the central chamber of the array showed no considerable deviation from ion chamber measurements. We found that the 2D array exhibits directional dependency for static fields. Measurement of beam profiles and wedge-modulated fields with the 2D array matched very well with the ion chamber measurements in the water phantom. The study shows that 2D array seven29 is a reliable and accurate dosimeter and a useful tool for quality assurance. The combination of the 2D array with the Octavius phantom proved to be a fast and reliable method for pretreatment verification of rotational treatments.

  20. Evolving treatment plan quality criteria from institution-specific experience

    SciTech Connect (OSTI)

    Ruan, D.; Shao, W.; DeMarco, J.; Tenn, S.; King, C.; Low, D.; Kupelian, P.; Steinberg, M. [Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2012-05-15T23:59:59.000Z

    Purpose: The dosimetric aspects of radiation therapy treatment plan quality are usually evaluated and reported with dose volume histogram (DVH) endpoints. For clinical practicality, a small number of representative quantities derived from the DVH are often used as dose endpoints to summarize the plan quality. National guidelines on reference values for such quantities for some standard treatment approaches are often used as acceptance criteria to trigger treatment plan review. On the other hand, treatment prescription and planning approaches specific to each institution warrants the need to report plan quality in terms of practice consistency and with respect to institution-specific experience. The purpose of this study is to investigate and develop a systematic approach to record and characterize the institution-specific plan experience and use such information to guide the design of plan quality criteria. In the clinical setting, this approach will assist in (1) improving overall plan quality and consistency and (2) detecting abnormal plan behavior for retrospective analysis. Methods: The authors propose a self-evolving methodology and have developed an in-house prototype software suite that (1) extracts the dose endpoints from a treatment plan and evaluates them against both national standard and institution-specific criteria and (2) evolves the statistics for the dose endpoints and updates institution-specific criteria. Results: The validity of the proposed methodology was demonstrated with a database of prostate stereotactic body radiotherapy cases. As more data sets are accumulated, the evolving institution-specific criteria can serve as a reliable and stable consistency measure for plan quality and reveals the potential use of the ''tighter'' criteria than national standards or projected criteria, leading to practice that may push to shrink the gap between plans deemed acceptable and the underlying unknown optimality. Conclusions: The authors have developed a rationale to improve plan quality and consistency, by evolving the plan quality criteria from institution-specific experience, complementary to national standards. The validity of the proposed method was demonstrated with a prototype system on prostate stereotactic body radiotherapy (SBRT) cases. The current study uses direct and indirect DVH endpoints for plan quality evaluation, but the infrastructure proposed here applies to general outcome data as well. The authors expect forward evaluation together with intelligent update based on evidence-based learning, which will evolve the clinical practice for improved efficiency, consistency, and ultimately better treatment outcome.

  1. Software Quality Assurance: DOE N 203.1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart GridAbout Energy.govAssurance: DOE N

  2. Retrospective Estimation of the Quality of Intensity-Modulated Radiotherapy Plans for Lung Cancer

    E-Print Network [OSTI]

    Koo, Jihye; Chung, Weon Kuu; Kim, Dong Wook

    2015-01-01T23:59:59.000Z

    This study estimated the planning quality of intensity-modulated radiotherapy in 42 lung cancer cases to provide preliminary data for the development of a planning quality assurance algorithm. Organs in or near the thoracic cavity (ipsilateral lung, contralateral lung, heart, liver, esophagus, spinal cord, and bronchus) were selected as organs at risk (OARs). Radiotherapy plans were compared using the conformity index (CI), coverage index (CVI), and homogeneity index (HI) of the planning target volume (PTV), OAR-PTV distance and OAR-PTV overlap volume, and the V10Gy, V20Gy, and equivalent uniform dose (EUD) of the OARs. The CI, CVI, and HI of the PTV were 0.54 - 0.89 , 0.90 - 1.00 , and 0.11 - 0.41, respectively. The mean EUDs (V10Gy, V20Gy) of the ipsilateral lung, contralateral lung, esophagus, cord, liver, heart, and bronchus were 8.07 Gy (28.06, 13.17), 2.59 Gy (6.53, 1.18), 7.02 Gy (26.17, 12.32), 3.56 Gy (13.56, 4.48), 0.72 Gy (2.15, 0.91), 5.14 Gy (19.68, 8.62), and 10.56 Gy (36.08, 19.79), respectivel...

  3. Software archeology: a case study in software quality assurance and design

    SciTech Connect (OSTI)

    Macdonald, John M [Los Alamos National Laboratory; Lloyd, Jane A [Los Alamos National Laboratory; Turner, Cameron J [COLORADO SCHOOL OF MINES

    2009-01-01T23:59:59.000Z

    Ideally, quality is designed into software, just as quality is designed into hardware. However, when dealing with legacy systems, demonstrating that the software meets required quality standards may be difficult to achieve. As the need to demonstrate the quality of existing software was recognized at Los Alamos National Laboratory (LANL), an effort was initiated to uncover and demonstrate that legacy software met the required quality standards. This effort led to the development of a reverse engineering approach referred to as software archaeology. This paper documents the software archaeology approaches used at LANL to document legacy software systems. A case study for the Robotic Integrated Packaging System (RIPS) software is included.

  4. Improving spot-scanning proton therapy patient specific quality assurance with HPlusQA, a second-check dose calculation engine

    SciTech Connect (OSTI)

    Mackin, Dennis; Li, Yupeng; Taylor, Michael B.; Kerr, Matthew; Holmes, Charles; Sahoo, Narayan; Poenisch, Falk; Li, Heng; Lii, Jim; Amos, Richard; Wu, Richard; Suzuki, Kazumichi; Gillin, Michael T.; Zhu, X. Ronald; Zhang, Xiaodong [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)] [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2013-12-15T23:59:59.000Z

    Purpose: The purpose of this study was to validate the use of HPlusQA, spot-scanning proton therapy (SSPT) dose calculation software developed at The University of Texas MD Anderson Cancer Center, as second-check dose calculation software for patient-specific quality assurance (PSQA). The authors also showed how HPlusQA can be used within the current PSQA framework.Methods: The authors compared the dose calculations of HPlusQA and the Eclipse treatment planning system with 106 planar dose measurements made as part of PSQA. To determine the relative performance and the degree of correlation between HPlusQA and Eclipse, the authors compared calculated with measured point doses. Then, to determine how well HPlusQA can predict when the comparisons between Eclipse calculations and the measured dose will exceed tolerance levels, the authors compared gamma index scores for HPlusQA versus Eclipse with those of measured doses versus Eclipse. The authors introduce the ??? transformation as a way to more easily compare gamma scores.Results: The authors compared measured and calculated dose planes using the relative depth, z/R × 100%, where z is the depth of the measurement and R is the proton beam range. For relative depths than less than 80%, both Eclipse and HPlusQA calculations were within 2 cGy of dose measurements on average. When the relative depth was greater than 80%, the agreement between the calculations and measurements fell to 4 cGy. For relative depths less than 10%, the Eclipse and HPlusQA dose discrepancies showed a negative correlation, ?0.21. Otherwise, the correlation between the dose discrepancies was positive and as large as 0.6. For the dose planes in this study, HPlusQA correctly predicted when Eclipse had and had not calculated the dose to within tolerance 92% and 79% of the time, respectively. In 4 of 106 cases, HPlusQA failed to predict when the comparison between measurement and Eclipse's calculation had exceeded the tolerance levels of 3% for dose and 3 mm for distance-to-agreement.Conclusions: The authors found HPlusQA to be reasonably effective (79%± 10%) in determining when the comparison between measured dose planes and the dose planes calculated by the Eclipse treatment planning system had exceeded the acceptable tolerance levels. When used as described in this study, HPlusQA can reduce the need for patient specific quality assurance measurements by 64%. The authors believe that the use of HPlusQA as a dose calculation second check can increase the efficiency and effectiveness of the QA process.

  5. DNFSB 2002-1 Software Quality Assurance Improvement Plan Commitment 4.2.1.2: Safety Quality Assurance Plan and Criteria for the Safety Analysis Toolbox Codes

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentI Office of ENERGY Science

  6. Quality Assurance Plan: Environmental Quality Assurance Project Plan. DOE/OR/21548-352. QY-200-201-1.17. Revision 2

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A' 3 ct : -. . . .~.Q

  7. Bio/Pharmaceutical Quality Assurance Supervisor/Manager Open Applicant Pool BioMARC/IDRC/OVPR/CSU

    E-Print Network [OSTI]

    Stephens, Graeme L.

    of documentation for compliance to good documentation practices and to the technical requirements of directive to plan and accomplish goals; as well as leads deviation, CAPA, and OOS investigations. The quality, completeness and compliance to requirements to ensure that QA standards and regulatory requirements are met

  8. Application of EPA quality assurance procedures to a soil characterization study at the DOE Nevada Test Site

    SciTech Connect (OSTI)

    Snyder, K.E.; Byers, G.E.; Van Remortel, R.D. [Lockheed-Martin Environmental Systems and Technologies Co., Las Vegas, NV (United States); Gustafson, D.L. [Raytheon Services Nevada, Las Vegas, NV (United States)

    1995-12-01T23:59:59.000Z

    The transfer, modification, and application of well formulated and tested quality assurance (QA) procedures from one project to another deserves consideration. The use of a proven QA program design could result in cost savings and the collection of data with a greater degree of confidence. To test this thesis, a QA program, originally developed for large nationwide Environmental Protection Agency (EPA) programs, was adapted and implemented in a site characterization study at the Department of Energy (DOE) Nevada Test Site to ensure that laboratory data satisfied pre-determined measurement quality objectives (MQOs). The QA Program was adapted from EPA programs such as the National Acid Precipitation Assessment Program, the Environmental Monitoring and Assessment Program, and to a lesser degree, the Comprehensive Environmental Recovery, Compensation and Liability Act (CERCLA) Program. The QA design adopted the batch or lot concept, in which samples are organized into groups of quality samples (non-blinds, blinds, and double-blinds), which were included in each batch to evaluate and control measurement uncertainty and to address sample preparation. Detectability was assessed using instrument detection limits and precision data for low-concentration samples. Precision was assessed using data from reference samples under a two-tiered system based on concentration ranges. Accuracy was investigated in terms of bias with respect to reference values. The results showed that QA concepts developed for previous nationwide EPA programs were successfully adapted for the site-specific DOE project.

  9. Enabling States and Localities to Improve Energy Assurance and Resiliency Planning (September 2010)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 in theGroupJuneThis76Planning (September 2010) |

  10. Sasquatch Semantical Approach of Assuring high Data Quality by Applying Data Mining Techniques

    E-Print Network [OSTI]

    Appelrath, Hans-Jürgen

    be to delete those data, or to correct them by a domain expert or by the data quality management system itself in enterprises' data management systems. It utilizes two main ideas for its goal: On the one hand the given data schemas of one or more data management systems are mapped to the concepts and properties of an either

  11. Safety Software Quality Assurance Functions, Responsibilities, and Authorities for Nuclear Facilities and Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-27T23:59:59.000Z

    To assign roles and responsibilities for improving the quality of safety software. DOE N 411.2 (archived) extends this Notice until 01/31/2005. DOE N 411.3 extends this Notice until 1/31/06. Canceled by DOE O 414.1C. does not cancel other directives.

  12. Morphological Analysis of Zirconium Nuclear Fuel Retaining Rods Braided with SiC: Quality Assurance and Defect Identification

    SciTech Connect (OSTI)

    Michael V Glazoff; Robert Hiromoto; Akira Tokuhiro

    2014-08-01T23:59:59.000Z

    In the after-Fukushima world, the stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Among the methods explored currently to improve zircaloys’ thermal stability in off-normal conditions, using a protective coat of the SiC filaments is considered because silicon carbide is well known for its remarkable chemical inertness at high temperatures. A typical SiC fiber contains ~50,000 individual filaments of 5 – 10 µm in diameter. In this paper, an effort was made to develop and apply mathematical morphology to the process of automatic defect identification in Zircaloy-4 rods braided with the protective layer of the silicon carbide filament. However, the issues of the braiding quality have to be addressed to ensure its full protective potential. We present the original mathematical morphology algorithms that allow solving this problem of quality assurance successfully. In nuclear industry, such algorithms are used for the first time, and could be easily generalized to the case of automated continuous monitoring for defect identification in the future.

  13. 2004 Indian River Lease Area, Indian River County Quality Assurance/Quality Control (QA/QC) Log

    E-Print Network [OSTI]

    Florida, University of

    the month. This includes information on fouling, equipment failures and whether post-deployment checks were or a lack of standardization between the two sondes). Notes regarding reliability of data (whether/Quality Control (QA/QC) Log General Notes on Reliability of Data: 1) In general, measurements of temperature

  14. Expert systems: A new approach to radon mitigation training and quality assurance

    SciTech Connect (OSTI)

    Brambley, M.R.; Hanlon, R.L.; Parker, G.B.

    1990-07-01T23:59:59.000Z

    Training radon mitigators and ensuring that they provide high-quality work on the scale necessary to reduce radon to acceptable levels in the large number of homes and schools requiring some mitigation is a challenging problem. The US Environmental Protection Agency and several states have made commendable efforts to train mitigators and ensure that they provide quality services to the public. Expert systems could be used to extend and improve the effectiveness of these efforts. The purpose of this paper is to introduce the radon community to this promising new technology. The paper includes a description of a prototype system developed by Pacific Northwest Laboratory that illustrates several of the capabilities that expert systems can provide, a brief explanation of how the prototype works, and a discussion of the potential roles and benefits of fully-developed expert systems for radon mitigation. 4 refs., 3 figs.

  15. Implementation of a Geographic Information System for municipal water quality assurance

    E-Print Network [OSTI]

    Murphy, Eileen Marie

    1996-01-01T23:59:59.000Z

    Implementing a GIS. Maximizing the Potential of a GIS. . Cooperative Planning. . VH: CONCLUSIONS. References. 13 14 14 15 15 17 18 20 21 23 25 71 LIST OF FIGURES Figure 1: Locauon of the Green River watershed. Figure 2: Portion of QA... are listed by ESRI as data sources for ArcView: TIFF, ERDAS, BSQ, BIL, and BIF files; Sun rasterfiles; and run-length compressed files. Tabular data, either directly displayed or joined to existing spatial data, can be data from database servers...

  16. Redesigning Radiotherapy Quality Assurance: Opportunities to Develop an Efficient, Evidence-Based System to Support Clinical Trials-Report of the National Cancer Institute Work Group on Radiotherapy Quality Assurance

    SciTech Connect (OSTI)

    Bekelman, Justin E., E-mail: bekelman@uphs.upenn.edu [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Deye, James A.; Vikram, Bhadrasain [National Cancer Institute, Bethesda, Maryland (United States); Bentzen, Soren M. [University of Wisconsin, Madison, Wisconsin (United States); Bruner, Deborah [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Curran, Walter J. [Emory University, Atlanta, Georgia (United States); Dignam, James [University of Chicago, Chicago, Illinois (United States); Efstathiou, Jason A. [Massachusetts General Hospital, Boston, Massachusetts (United States); FitzGerald, T.J. [University of Massachusetts, Boston, Massachusetts (United States); Hurkmans, Coen [European Organization for Research and Treatment of Cancer, Brussels (Belgium); Ibbott, Geoffrey S.; Lee, J. Jack [University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Merchant, Thomas E. [St. Jude Children's Research Hospital, Memphis, Tennessee (United States); Michalski, Jeff [University of Washington, St. Louis, Missouri (United States); Palta, Jatinder R. [University of Florida, Miami, Florida (United States); Simon, Richard [National Institutes of Health, Bethesda, Maryland (United States); Ten Haken, Randal K. [University of Michigan, Ann Arbor, Michigan (United States); Timmerman, Robert [University of Texas Southwestern Medical Center, Dallas, Texas (United States); Tunis, Sean [Center for Medical Technology Policy, Baltimore, Maryland (United States); Coleman, C. Norman [National Cancer Institute, Bethesda, Maryland (United States); and others

    2012-07-01T23:59:59.000Z

    Purpose: In the context of national calls for reorganizing cancer clinical trials, the National Cancer Institute sponsored a 2-day workshop to examine challenges and opportunities for optimizing radiotherapy quality assurance (QA) in clinical trial design. Methods and Materials: Participants reviewed the current processes of clinical trial QA and noted the QA challenges presented by advanced technologies. The lessons learned from the radiotherapy QA programs of recent trials were discussed in detail. Four potential opportunities for optimizing radiotherapy QA were explored, including the use of normal tissue toxicity and tumor control metrics, biomarkers of radiation toxicity, new radiotherapy modalities such as proton beam therapy, and the international harmonization of clinical trial QA. Results: Four recommendations were made: (1) to develop a tiered (and more efficient) system for radiotherapy QA and tailor the intensity of QA to the clinical trial objectives (tiers include general credentialing, trial-specific credentialing, and individual case review); (2) to establish a case QA repository; (3) to develop an evidence base for clinical trial QA and introduce innovative prospective trial designs to evaluate radiotherapy QA in clinical trials; and (4) to explore the feasibility of consolidating clinical trial QA in the United States. Conclusion: Radiotherapy QA can affect clinical trial accrual, cost, outcomes, and generalizability. To achieve maximum benefit, QA programs must become more efficient and evidence-based.

  17. Quality assurance guidance for laboratory assessment plates in support of EM environmental sampling and analysis activities

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This document is one of several guidance documents developed to support the EM (DOE Environmental Restoration and Waste Management) Analytical Services program. Its purpose is to introduce assessment plates that can be used to conduct performance assessments of an organization`s or project`s ability to meet quality goals for analytical laboratory activities. These assessment plates are provided as non-prescriptive guidance to EM-support organizations responsible for collection of environmental data for remediation and waste management programs at DOE facilities. The assessments evaluate objectively all components of the analytical laboratory process to determine their proper selection and use.

  18. DOE Order Self Study Modules - DOE O 414.1D Quality Assurance

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE FitsEnergyMessagein Alaska14.1D QUALITY

  19. Quality Assurance Exchange September 2005, Volume 1 Issue 2 | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to analysis3Energy Quality

  20. Quality Assurance Exchange March 2011, Volume 7 Issue 1 | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergy Small Team Oversight Activities -Toilets,DepartmentU.S.Quality

  1. Eat your way to better health Quality health plans & benefits

    E-Print Network [OSTI]

    Acton, Scott

    Eat your way to better health Quality health plans & benefits Healthier living Financial well-being Intelligent solutions Good food is the key to good health If we ate a variety of healthy foods and didn't eat oils. Or those found in olive, canola and peanut oils. They can help improve your health when you use

  2. SU-E-T-48: Automated Quality Assurance for XML Controlled Linacs

    SciTech Connect (OSTI)

    Valdes, G; Morin, O; Pouliot, J; Chuang, C [UC San Francisco, San Francisco, CA (United States)

    2014-06-01T23:59:59.000Z

    Purpose: To automate routine imaging QA procedures so that complying with TG 142 and TG 179 can be efficient and reliable. Methods: Two QA tests for a True Beam Linac were automatized. A Winston Lutz test as described by Lutz et al{sup 1} using the Winston Lutz test kit from BrainLab, Germany and a CBCT Image Quality test as described in TG 179 using the EMMA phantom, Siemens Medical Physics, Germany were performed in our True Beam. For each QA procedure tested, a 3 step paradigm was used. First, the data was automatically acquired using True Beam Developer Mode and XML scripting. Second, the data acquired in the first step was automatically processed using in-home grown Matlab GUIs. Third, Machine Learning algorithms were used to automatically classify the processed data and reports generated. Results: The Winston Luzt test could be performed by an experienced medical physicist in 29.0 ± 8.0 min. The same test, if automated using our paradigm, could be performed in 3.0 ± 0.1 min. In the same lieu, time could be substantially saved for image quality tests. In this case, the amount of time saved will depend on the phantoms used and the initial localization method. Additionally, machine learning algorithms could automatically identify the roots of the problems if any and possibly help reduce machine down time. Conclusion: Modern linear accelerators are equipped with advanced 2D and 3D imaging that are used for patient alignment substantially improving IGRT protocols. However, this extra complexity exponentially increases the number of QA tests needed. Using the new paradigm described above, not only bare minimum but best practice QA programs could be implemented with the same manpower. This work is supported by Varian, Palo Alto, CA.

  3. Development of a one-stop beam verification system using electronic portal imaging devices for routine quality assurance

    SciTech Connect (OSTI)

    Lim, Sangwook, E-mail: medicalphysics@hotmail.com [Department of Radiation Oncology, Kosin University College of Medicine, Seo-gu, Busan (Korea, Republic of); Ma, Sun Young; Jeung, Tae Sig [Department of Radiation Oncology, Kosin University College of Medicine, Seo-gu, Busan (Korea, Republic of); Yi, Byong Yong [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Lee, Sang Hoon [Department of Radiation Oncology, Cheil General Hospital and Women's Healthcare Center, Kwandong University College of Medicine, Jung-gu, Seoul (Korea, Republic of); Lee, Suk [Department of Radiation Oncology, College of Medicine, Korea University, Seongbuk-gu, Seoul (Korea, Republic of); Cho, Sam Ju [Department of Radiation Oncology, Eulji University School of Medicine, Eulji General Hospital, Nowon-gu, Seoul (Korea, Republic of); Choi, Jinho [Department of Radiation Oncology, Gachon University of Medicine and Science, Namdong-gu, Incheon (Korea, Republic of)

    2012-10-01T23:59:59.000Z

    In this study, a computer-based system for routine quality assurance (QA) of a linear accelerator (linac) was developed by using the dosimetric properties of an amorphous silicon electronic portal imaging device (EPID). An acrylic template phantom was designed such that it could be placed on the EPID and be aligned with the light field of the collimator. After irradiation, portal images obtained from the EPID were transferred in DICOM format to a computer and analyzed using a program we developed. The symmetry, flatness, field size, and congruence of the light and radiation fields of the photon beams from the linac were verified simultaneously. To validate the QA system, the ion chamber and film (X-Omat V2; Kodak, New York, NY) measurements were compared with the EPID measurements obtained in this study. The EPID measurements agreed with the film measurements. Parameters for beams with energies of 6 MV and 15 MV were obtained daily for 1 month using this system. It was found that our QA tool using EPID could substitute for the film test, which is a time-consuming method for routine QA assessment.

  4. Final construction quality assurance report for the Y-12 Industrial Landfill V, Area 2, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Bessom, W.H. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1996-11-01T23:59:59.000Z

    Lockheed Martin Energy Systems (LMES) has finished construction of Area 2 of the Y-12 Plant Industrial Landfill (ILF-V), classified as a Class 2 Landfill. This final Construction Quality Assurance (CQA) Report provides documentation that Area 2 was constructed in substantial compliance with the Tennessee Department of Environment and Conservation (TDEC) approved design, as indicated and specified in the permit drawings, approved changes, and specifications. This report applies specifically to the Area 2 excavation, compacted clay soil liner, geomembrane liner, granular leachate collection layer, protective soil cover, and the leachate collection system. An ``As-Built`` survey was performed and is included. The drawings provide horizontal and vertical information for Area 2, the anchor trench, the leachate collection pipe, the temporary access road, and cross-sections of Area 2. This report provides documentation of the following items: the excavation activities of Area 2; the maximum recompacted coefficient of hydraulic conductivity or permeability of the soil is less than 1 {times} 10{sup {minus}7} centimeters per second (cm/sec); the total thickness of the compacted clay soil liner equals a minimum of 2 feet; a 40 mil impermeable geomembrane (polypropylene) flexible membrane liner (FML) and 16 oz. geotextile fabric was placed in direct contact with the compacted clay soil liner; a 12 inch granular leachate collection layer was installed and covered with a 8 oz. geotextile separation fabric; the installation of the leachate collection piping; and the two foot protective clay soil cover.

  5. Reliable detection of fluence anomalies in EPID-based IMRT pretreatment quality assurance using pixel intensity deviations

    SciTech Connect (OSTI)

    Gordon, J. J.; Gardner, J. K.; Wang, S.; Siebers, J. V. [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States); Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Department of Radiation Oncology, Weill Cornell Medical College, New York, New York 10095 (United States); Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2012-08-15T23:59:59.000Z

    Purpose: This work uses repeat images of intensity modulated radiation therapy (IMRT) fields to quantify fluence anomalies (i.e., delivery errors) that can be reliably detected in electronic portal images used for IMRT pretreatment quality assurance. Methods: Repeat images of 11 clinical IMRT fields are acquired on a Varian Trilogy linear accelerator at energies of 6 MV and 18 MV. Acquired images are corrected for output variations and registered to minimize the impact of linear accelerator and electronic portal imaging device (EPID) positioning deviations. Detection studies are performed in which rectangular anomalies of various sizes are inserted into the images. The performance of detection strategies based on pixel intensity deviations (PIDs) and gamma indices is evaluated using receiver operating characteristic analysis. Results: Residual differences between registered images are due to interfraction positional deviations of jaws and multileaf collimator leaves, plus imager noise. Positional deviations produce large intensity differences that degrade anomaly detection. Gradient effects are suppressed in PIDs using gradient scaling. Background noise is suppressed using median filtering. In the majority of images, PID-based detection strategies can reliably detect fluence anomalies of {>=}5% in {approx}1 mm{sup 2} areas and {>=}2% in {approx}20 mm{sup 2} areas. Conclusions: The ability to detect small dose differences ({<=}2%) depends strongly on the level of background noise. This in turn depends on the accuracy of image registration, the quality of the reference image, and field properties. The longer term aim of this work is to develop accurate and reliable methods of detecting IMRT delivery errors and variations. The ability to resolve small anomalies will allow the accuracy of advanced treatment techniques, such as image guided, adaptive, and arc therapies, to be quantified.

  6. Quality Assurance of Multifractionated Pelvic Interstitial Brachytherapy for Postoperative Recurrences of Cervical Cancers: A Prospective Study

    SciTech Connect (OSTI)

    Shukla, Pragya [Department of Radiation Oncology and Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra (India); Chopra, Supriya, E-mail: schopra@actrec.gov.in [Department of Radiation Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra (India); Engineer, Reena; Mahantshetty, Umesh [Department of Radiation Oncology and Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra (India); Paul, Siji Nojin; Phurailatpam, Reena [Department of Radiation Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra (India); SV, Jamema; Shrivastava, Shyam K. [Department of Radiation Oncology and Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra (India)

    2012-03-15T23:59:59.000Z

    Purpose: To evaluate three-dimensional needle displacements during multifractionated interstitial brachytherapy (BT) for cervical cancers. Methods and Materials: Patients scheduled to undergo pelvic interstitial BT for postoperative and or postradiation vault recurrences were included from November 2009 to December 2010. All procedures were performed under spinal anesthesia. Postprocedure BT planning CT scans were obtained with patients in supine position with arms on the chest (interslice thickness of 3 mm). Thereafter, verification CT was repeated at every alternate fraction. Needle displacements were measured in reference to a relocatable bony point. The mean cranial, caudal, anteroposterior, and mediolateral displacements were recorded. Statistical significance of mean interfraction displacements was evaluated with Wilcoxon Test. Results: Twenty patients were included. Seventeen received boost BT (20 Gy/5 fractions/3 days) after external radiation, three received radical BT alone (36 Gy/9 fractions/5-8 days). An average of three scans (range, 2-3) were available per patient, and 357 needle displacements were analyzed. For the entire study cohort, the average of mean needle displacement was 2.5 mm (range, 0-7.4), 17.4 mm (range, 0-27.9), 1.7 mm (range, 0-6.7), 2.1 mm (range, 0-9.5), 1.7 mm (range, 0-9.3), and 0.6 mm (range, 0-7.8) in cranial, caudal, anterior, posterior, right, and left directions, respectively. The mean displacement in the caudal direction was higher between Days 1 and 2 than that between Days 2 and 3 (13.4 mm vs. 3.8 mm; p = 0.01). The average caudal displacements were no different between reirradiation and boost cohort (15.2 vs. 17.8 mm). Conclusions: Clinically significant caudal displacements occur during multifractionated pelvic brachytherapy. Optimal margins need to be incorporated while preplanning brachytherapy to account for interfraction displacements.

  7. Recovery Act: Enhancing State Energy Assurance | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancing State Energy Assurance Recovery Act: Enhancing State Energy Assurance States are using these funds to plan for energy supply disruption risks and vulnerabilities to...

  8. Texas Air Quality Status and the Texas Emission Reduction Plan

    E-Print Network [OSTI]

    Hildebrand, S.

    2012-01-01T23:59:59.000Z

    Through Energy Efficiency Conference ? Galveston, Texas ? October 10, 2012 0.0 1.3 2.7 4.0 5.3 6.7 8.0 60 90 120 150 180 210 240 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011...Texas Air Quality Status and the Texas Emission Reduction Plan Susana M. Hildebrand, P.E., Chief Engineer Texas Commission on Environmental Quality Clean Air Through Energy Efficiency Conference ? Galveston, Texas ? October 10, 2012...

  9. Results of a Quality Assurance Review of External Beam Radiation Therapy in the International Society of Paediatric Oncology (Europe) Neuroblastoma Group's High-risk Neuroblastoma Trial: A SIOPEN Study

    SciTech Connect (OSTI)

    Gaze, Mark N., E-mail: mark.gaze@uclh.nhs.uk [Department of Oncology, University College London Hospitals NHS Foundation Trust, London (United Kingdom); Boterberg, Tom [Department of Radiation Oncology, Ghent University Hospital, Ghent (Belgium)] [Department of Radiation Oncology, Ghent University Hospital, Ghent (Belgium); Dieckmann, Karin; Hoermann, Marcus [General Hospital Vienna, Medical University Vienna (Austria)] [General Hospital Vienna, Medical University Vienna (Austria); Gains, Jennifer E.; Sullivan, Kevin P. [Department of Oncology, University College London Hospitals NHS Foundation Trust, London (United Kingdom)] [Department of Oncology, University College London Hospitals NHS Foundation Trust, London (United Kingdom); Ladenstein, Ruth [Children's Cancer Research Institute, St. Anna Children's Hospital, Vienna (Austria)] [Children's Cancer Research Institute, St. Anna Children's Hospital, Vienna (Austria)

    2013-01-01T23:59:59.000Z

    Purpose: Radiation therapy is important for local control in neuroblastoma. This study reviewed the compliance of plans with the radiation therapy guidelines of the International Society of Paediatric Oncology (Europe) Neuroblastoma Group (SIOPEN) High-Risk Trial protocol. Methods and Materials: The SIOPEN trial central electronic database has sections to record diagnostic imaging and radiation therapy planning data. Individual centers may upload data remotely, but not all centers involved in the trial chose to use this system. A quality scoring system was devised based on how well the radiation therapy plan matched the protocol guidelines, to what extent deviations were justified, and whether adverse effects may result. Central review of radiation therapy planning was undertaken retrospectively in 100 patients for whom complete diagnostic and treatment sets were available. Data were reviewed and compared against protocol guidelines by an international team of radiation oncologists and radiologists. For each patient in the sample, the central review team assigned a quality assurance score. Results: It was found that in 48% of patients there was full compliance with protocol requirements. In 29%, there were deviations for justifiable reasons with no likely long-term adverse effects resulting. In 5%, deviations had occurred for justifiable reasons, but that might result in adverse effects. In 1%, there was a deviation with no discernible justification, which would not lead to long-term adverse events. In 17%, unjustified deviations were noted, with a risk of an adverse outcome resulting. Conclusions: Owing to concern over the proportion of patients in whom unjustified deviations were observed, a protocol amendment has been issued. This offers the opportunity for central review of radiation therapy plans before the start of treatment and the treating clinician a chance to modify plans.

  10. SU-E-J-162: Quality Assurance Procedures for MR Guided Focused Ultrasound Treatment of Bone Metastasis

    SciTech Connect (OSTI)

    Chen, L; Chen, X; Wang, B; Gupta, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2014-06-01T23:59:59.000Z

    Purpose: The purpose of this work is to develop and verify our quality assurance (QA) procedures to ensure the safety and efficacy of MR-guided focused ultrasound (MRgFUS) treatment of bone metastases. Methods: A practical QA program was developed. Monthly and daily QA (DQA) procedures were performed. The major QA items included the checks of the machine hardware, software and patient safety features. Briefly, these checks/tests include: 1) the cooling system reservoir and treatment table; 2) power to the treatment table; 3) the MR coil; 4) the transducer position with MRI; 5) image display on the treatment work station; 6) the effective focal spot in 3 directions using MR thermometry; and 7) all the safety devices including a sonication lamp, and the emergency stop-sonication switches. In order to avoid patient skin burn, it is important to remove gas bubbles in the interfaces between the treatment table and the gel pad, and the gel pad and patients skin during the patient setup. Our QA procedures have been verified and evaluated through patient treatments. Seven patients with scapula, humeral head, sacrum, ilium, pubic ramus and acetabular bone metastases were treated using MRgFUS. Results: Our study showed that all seven patients tolerated the MRgFUS treatment well. No skin toxicity or other complications were observed. The pain score (0–10) using the visual analog scale (VAS) was significantly reduced from 8.0 ± 1.1 before treatment to 4.7 ± 3.0, 3.0 ± 1.5, 3.2 ± 2.8 and 3.4 ± 1.5 at one day, one month, two months and three months after the MRgFUS treatment, respectively. Conclusion: We demonstrated that with the appropriate QA procedures, MRgFUS is a safe, effective and noninvasive treatment modality for palliation of bone metastases.

  11. Sampling and Quality Assurance Plan Little Commissioner Creek, Wilkinson County Georgia

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    ) 946-4394 fsenn@wilkinsoncounty.net Kenneth L. Turner Mayor City of Gordon PO Box 387 Gordon, GA 31031) 946-1122 Fax (478) 946-4394 Paul Vendrell UGA Feed and Environmental Water Lab Agricultural Services

  12. EM Quality Assurance Centralized Training Platform Project Plan for 2009-2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EM HighlightsSeptemberQUALITYOFFICE OF

  13. Plan for Quality Management 2007-2010 THE UNIVERSITY OF GOTHENBURG

    E-Print Network [OSTI]

    Johannesson, Henrik

    Plan for Quality Management 2007-2010 THE UNIVERSITY OF GOTHENBURG Contents Preface 4 Purpose 5 Points of Departure 6 Specific Activities during 2007-2010 8 PREFACE This plan for quality management. In the plan, significant principles for quality management are described, as are a number of specific

  14. Report: EM Quality Assurance

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department ofEM Communications August 24, 2006ManagementEM

  15. Quality Assurance REFERENCE GUIDE

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergy Small Team Oversight ActivitiesNOT MEASUREMENT SENSITIVEQuality

  16. Environmental sensor networks and continuous data quality assurance to manage salinity within a highly regulated river basin

    E-Print Network [OSTI]

    Quinn, N.W.T.

    2010-01-01T23:59:59.000Z

    and Drainage System for Drainage Water Quality Management,quality management using a novel software tool, Aquarius. Commercial turn-key monitoring systems

  17. Joint Quality Management and Quality Assurance Project Plan Drum Sampler Demonstration of PM Mass and XRF Elements

    E-Print Network [OSTI]

    California at Davis, University of

    and XRF Elements U.S. Environmental Protection Agency Office of Research and Development National Center of elements measured by X-ray fluorescence, called XRF-elements) is currently conducted once every sixth day with Synchrotron- XRF analysis for XRF-elements, offers everyday speciation data at a cost comparable to one day

  18. Protocol for EM Review/Field Self-Assessment of Site Specific Quality Assurance Programs/Quality Implementation Plans

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |of EnergySelectedofGeothermal Systems

  19. Study of quality assurance regulations for linear accelerators in Korea: A comparison study between the current status in Korea and the international guidelines

    E-Print Network [OSTI]

    Lee, Hyunho; Jo, Yunhui; Yoon, Myonggeun

    2015-01-01T23:59:59.000Z

    Quality assurance (QA) for medical linear accelerators is indispensable for appropriate cancer treatment. Some international organizations and western advanced countries provide QA guidelines for linear accelerators. Currently, QA regulations for linear accelerators in Korean hospitals specify a system in which each hospital stipulates its independent hospital-based protocols for QA procedures (HP_QAPs) and conducts QA based on these HP_QAPs while regulatory authorities verify whether items under these HP_QAPs have been performed. However, because this regulatory method cannot guarantee the quality of universal treatment, and QA items with tolerance criteria are different in many hospitals, the presentation of standardized QA items and tolerance criteria is essential. In this study, QA items in HP_QAPs from various hospitals and those presented by international organizations. Concordance rates between QA items for linear accelerators that were presented by the aforementioned organizations and those currently ...

  20. SU-E-T-153: Establish a Comprehensive Patient-Specific Plan QA Database for Instituitional Quality Control Program

    SciTech Connect (OSTI)

    Ding, X; Olszanski, A; Scheuermann, R; Bellerive, M; Solberg, T [University of Pennsylvania, Philadelphia, PA (United States)

    2014-06-01T23:59:59.000Z

    Purpose: Since the publication of TG-119, several new treatment techniques requiring new QA devices have been implemented in the clinic. To monitor and analyze our institutional QA performance, we have created a comprehensive QA database using Research Electronic Data Capture (REDCap). The database will also assist us in creating IMRT QA Analysis practice guidelines. Methods: Since Oct. 2013, 336 patient plan QA results were entered into the database. Plan parameters such as plan ID, treatment site, technique, energy, optimization constraints, modulation factor, leaf speed, leaf opening.etc were automatically extracted from the Varian Eclipse database to allow us to refine our evaluation and analysis method. Specific QA device, LINAC-related information, and measurement and analysis results were manually entered by the QA team. IMRT plans were measured using MapCHECK2 while RapidArc plans were measured using ArcCHECK. Distance-To-Agreement 3%/3mm without global maximum normalization was used. Results: The data indicates that different treatment techniques might benefit from a different site-specific action level(AL) depending on the complexity of the plan and optimization parameter used (e.g., breast IMRT QA= 97.8% and pelvis IMRT QA=93.1%). Different QA devices may also benefit from a different AL (MapCHECK2 = 94.1% while ArcCHECK = 83.0%). The relationship between the parameters and passing rate suggests that the complexity of each plan, characterized by leaf travel, leaf opening and modulation factor, affect the passing rate significantly. The database is reviewed regularly, and any abnormal point of the QA result or a trend of lower QA passing rate on a specific LINAC is further investigated. Conclusion: Establishing a comprehensive QA database provides an overview of the quality assurance program. It not only helps in answering the question “what is a reasonable and achievable standard for each institution”, but also saves time in monitoring and investigating the daily machine and QA performance.

  1. The feasibility study and characterization of a two-dimensional diode array in “magic phantom” for high dose rate brachytherapy quality assurance

    SciTech Connect (OSTI)

    Espinoza, A.; Beeksma, B.; Petasecca, M.; Fuduli, I.; Porumb, C.; Cutajar, D.; Lerch, M. L. F.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia)] [Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Corde, S.; Jackson, M. [Department of Radiation Oncology, Prince of Wales Hospital, New South Wales 2031 (Australia)] [Department of Radiation Oncology, Prince of Wales Hospital, New South Wales 2031 (Australia)

    2013-11-15T23:59:59.000Z

    Purpose: High dose rate (HDR) brachytherapy is a radiation treatment technique capable of delivering large dose rates to the tumor. Radiation is delivered using remote afterloaders to drive highly active sources (commonly {sup 192}Ir with an air KERMA strength range between 20 000 and 40 000 U, where 1 U = 1 ?Gy m{sup 2}/h in air) through applicators directly into the patient's prescribed region of treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it is essential that there are methods for quality assurance (QA) that can directly and accurately verify the treatment plan and the functionality of the remote afterloader. This paper describes the feasibility study of a QA system for HDR brachytherapy using a phantom based two-dimensional 11 × 11 epitaxial diode array, named “magic phantom.”Methods: The HDR brachytherapy treatment plan is translated to the phantom with two rows of 10 (20 in total) HDR source flexible catheters, arranged above and below the diode array “magic plate” (MP). Four-dimensional source tracking in each catheter is based upon a developed fast iterative algorithm, utilizing the response of the diodes in close proximity to the {sup 192}Ir source, sampled at 100 ms intervals by a fast data acquisition (DAQ) system. Using a {sup 192}Ir source in a solid water phantom, the angular response of the developed epitaxial diodes utilized in the MP and also the variation of the MP response as a function of the source-to-detector distance (SDD) were investigated. These response data are then used by an iterative algorithm for source dwelling position determination. A measurement of the average transit speed between dwell positions was performed using the diodes and a fast DAQ.Results: The angular response of the epitaxial diode showed a variation of 15% within 360°, with two flat regions above and below the detector face with less than 5% variation. For SDD distances of between 5 and 30 mm the relative response of the epitaxial diodes used in the MP is in good agreement (within 8%) with radial dose function measurements found within the TG-43 protocol, with SDD of up to 70 mm showing a 40% over response. A method for four-dimensional localization of the HDR source was developed, allowing the source dwell position to be derived within 0.50 mm of the expected position. An estimation of the average transit speed for varying step sizes was determined and was found to increase from (12.8 ± 0.3) up to (38.6 ± 0.4) cm/s for a step size of 2.5 and 50 mm, respectively.Conclusions: Our characterization of the designed QA “magic phantom” with MP in realistic HDR photon fields demonstrates the promising performance for real-time source position tracking in four dimensions and measurements of transit times. Further development of this system will allow a full suite for QA in HDR brachytherapy and analysis, and for future in vivo tracking.

  2. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    SciTech Connect (OSTI)

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

    2009-01-01T23:59:59.000Z

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

  3. Indoor Air Quality Plan Page 1 of 5 Environmental Health and Safety Original: December 15, 2007

    E-Print Network [OSTI]

    Rainforth, Emma C.

    Air Quality (IAQ) Standard (N.J.A.C. 12:100-13)(2007), which was proposed on December 18, 2006's health and productivity. The College has established the following plan to promote good indoor air quality for employees in our buildings. This plan follows the requirements established by the PEOSH IAQ

  4. Enforcement Guidance Supplement 99-01: Enforcement of 10 CFR Part 830.120 (Quality Assurance Rule) for Facilities below Hazard Category III

    Broader source: Energy.gov [DOE]

    Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Enforcement and Investigation (EH Enforcement) periodically to issue clarifying guidance regarding the processes used in its enforcement activities. During the past 18 months, EH Enforcement has identified a number of examples in which both DOE and contractor organizations have incorrectly exempted activities from applicability of the DOE Quality Assurance Rule 10 CFR 830.120 (QA Rule). The contractors excluded these activities on the basis that the QA Rule did not apply if the activity was classified as less than a Hazard Category III under DOE Standard 1027-92 (Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports). Standard 1027 provides guidance for determining whether a facility, activity or area requires a Safety Analysis Report but it does not provide a basis for exclusion from the provisions of the QA Rule.

  5. Enforcement Guidance Supplement 99-01:Enforcement of 10 CFR Part 830.120 (Quality Assurance Rule)for Facilities Below Hazard Category III

    Broader source: Energy.gov [DOE]

    Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Enforcement and Investigation (EH Enforcement) periodically to issue clarifying guidance regarding the processes used in its enforcement activities. During the past 18 months, EH Enforcement has identified a number of examples in which both DOE and contractor organizations have incorrectly exempted activities fromapplicability of the DOE Quality Assurance Rule 10 CFR 830.120 (QA Rule). The contractors excluded these activities on the basis that the QA Rule did not apply if the activity was classified as less than a Hazard Category III under DOE Standard 1027-92 (Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports). Standard 1027 provides guidance for determining whether a facility, activity or area requires a Safety Analysis Report but it does not provide a basis for exclusion from the provisions of the QA Rule.

  6. Service quality planning for freight distribution with time windows in large networks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    as a quality factor of the service, since its nature and configuration also affects the total transportation1 Service quality planning for freight distribution with time windows in large networks Francesco introduces a methodology whose aim is to evaluate how the quality of a freight distribution service with time

  7. DRAFT Walla Walla Subbasin Aquatic RM&E Plan 1 Developed by: WDFW

    E-Print Network [OSTI]

    . This plan will therefore, serve as an interim set of guidelines that will assure a systematic approach should provide data of known quality (accuracy and precision) - Validate EDT model as a reliable measure

  8. Environmental sensor networks and continuous data quality assurance to manage salinity within a highly regulated river basin

    SciTech Connect (OSTI)

    Quinn, N.W.T.; Ortega, R.; Holm, L.

    2010-01-05T23:59:59.000Z

    This paper describes a new approach to environmental decision support for salinity management in the San Joaquin Basin of California that focuses on web-based data sharing using YSI Econet technology and continuous data quality management using a novel software tool, Aquarius.

  9. Quality Assurance Management System Guide for Use with 10 CFR 830.120 and DOE O 414.1

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-06-17T23:59:59.000Z

    DOE Elements and DOE contractors should consult this Guide in order to develop and implement effective management systems that are consistent with the Department's quality expectations and that support the Safety Management System Policy, DOE P 450.4. Canceled by DOE G 414.1-2A. Does not cancel other directives.

  10. Assurance Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational ManagementDemand Module This Assurance Council

  11. Guidance for the design and management of a maintenance plan to assure safety and improve the predictability of a DOE nuclear irradiation facility. Final report

    SciTech Connect (OSTI)

    Booth, R.S.; Kryter, R.C.; Shepard, R.L.; Smith, O.L. [Oak Ridge National Lab., TN (United States); Upadhyaya, B.R. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Rowan, W.J.

    1994-10-01T23:59:59.000Z

    A program is recommended for planning the maintenance of DOE nuclear facilities that will help safety and enhance availability throughout a facility`s life cycle. While investigating the requirements for maintenance activities, a major difference was identified between the strategy suitable for a conventional power reactor and one for a research reactor facility: the latter should provide a high degree of predicted availability (referred to hereafter as ``predictability``) to its users, whereas the former should maximize total energy production. These differing operating goals necessitate different maintenance strategies. A strategy for scheduling research reactor facility operation and shutdown for maintenance must balance safety, reliability,and predicted availability. The approach developed here is based on three major elements: (1) a probabilistic risk analysis of the balance between assured reliability and predictability (presented in Appendix C), (2) an assessment of the safety and operational impact of maintenance activities applied to various components of the facility, and (3) a data base of historical and operational information on the performance and requirements for maintenance of various components. These factors are integrated into a set of guidelines for designing a new highly maintainable facility, for preparing flexible schedules for improved maintenance of existing facilities, and for anticipating the maintenance required to extend the life of an aging facility. Although tailored to research reactor facilities, the methodology has broader applicability and may therefore be used to improved the maintenance of power reactors, particularly in anticipation of peak load demands.

  12. SU-E-T-152: Error Sensitivity and Superiority of a Protocol for 3D IMRT Quality Assurance

    SciTech Connect (OSTI)

    Gueorguiev, G [Massachusetts General Hospital, Boston, MA (United States); University of Massachusetts Lowell, Lowell, MA (United States); Cotter, C; Turcotte, J; Sharp, G; Crawford, B [Massachusetts General Hospital, Boston, MA (United States); Mah'D, M [University of Massachusetts Lowell, Lowell, MA (United States)

    2014-06-01T23:59:59.000Z

    Purpose: To test if the parameters included in our 3D QA protocol with current tolerance levels are able to detect certain errors and show the superiority of 3D QA method over single ion chamber measurements and 2D gamma test by detecting most of the introduced errors. The 3D QA protocol parameters are: TPS and measured average dose difference, 3D gamma test with 3mmDTA/3% test parameters, and structure volume for which the TPS predicted and measured absolute dose difference is greater than 6%. Methods: Two prostate and two thoracic step-and-shoot IMRT patients were investigated. The following errors were introduced to each original treatment plan: energy switched from 6MV to 10MV, linac jaws retracted to 15cmx15cm, 1,2,3 central MLC leaf pairs retracted behind the jaws, single central MLC leaf put in or out of the treatment field, Monitor Units (MU) increased and decreased by 1 and 3%, collimator off by 5 and 15 degrees, detector shifted by 5mm to the left and right, gantry treatment angle off by 5 and 15 degrees. QA was performed on each plan using single ion chamber, 2D ion chamber array for 2D gamma analysis and using IBA's COMPASS system for 3D QA. Results: Out of the three tested QA methods single ion chamber performs the worst not detecting subtle errors. 3D QA proves to be the superior out of the three methods detecting all of introduced errors, except 10MV and 1% MU change, and MLC rotated (those errors were not detected by any QA methods tested). Conclusion: As the way radiation is delivered evolves, so must the QA. We believe a diverse set of 3D statistical parameters applied both to OAR and target plan structures provides the highest level of QA.

  13. Sanitary landfill groundwater quality assessment plan Savannah River Site

    SciTech Connect (OSTI)

    Wells, D.G.; Cook, J.W.

    1990-06-01T23:59:59.000Z

    This assessment monitoring plan has been prepared in accordance with the guidance provided by the SCDHEC in a letter dated December 7, 1989 from Pearson to Wright and a letter dated October 9, 1989 from Keisler to Lindler. The letters are included a Appendix A, for informational purposes. Included in the plan are all of the monitoring data from the landfill monitoring wells for 1989, and a description of the present monitoring well network. The plan proposes thirty-two new wells and an extensive coring project that includes eleven soil borings. Locations of the proposed wells attempt to follow the SCDHEC guidelines and are downgradient, sidegradient and in the heart of suspected contaminant plumes. Also included in the plan is the current Savannah River Site Sampling and Analysis Plan and the well construction records for all of the existing monitoring wells around the sanitary landfill.

  14. Environmental Protection Implementation Plan

    SciTech Connect (OSTI)

    Brekke, D.D.

    1995-11-01T23:59:59.000Z

    This Environmental Protection Implementation Plan is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. This document states SNL/California`s commitment to conduct its operations in an environmentally safe and responsible manner. The Environmental Protection Implementation Plan helps management and staff comply with applicable environmental responsibilities. This report focuses on the following: notification of environmental occurrences; general planning and reporting; special programs and plans; environmental monitoring program; and quality assurance and data verification.

  15. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    SciTech Connect (OSTI)

    King, D.A.

    1994-11-10T23:59:59.000Z

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  16. Learning Rewrite rules versus search control rules to improve plan quality

    E-Print Network [OSTI]

    Elio, Renée

    ]. That may partially explain why most of the search-control systems have been designed to automatically of planning experience. We designed two systems, Sys-REWRITE and Sys-SEARCH-CONTROL, that automaticallylearnLearning Rewrite rules versus search control rules to improve plan quality M. Afzal Upal1 and Renee

  17. Creating High-quality Roadmaps for Motion Planning in Virtual Environments

    E-Print Network [OSTI]

    Geraerts, R.J.

    Creating High-quality Roadmaps for Motion Planning in Virtual Environments Roland Geraerts and Mark, the Netherlands Email: {roland,markov}@cs.uu.nl Abstract-- Our goal is to create roadmaps that are particularly suited for motion planning in virtual environments. We use our Reachability Roadmap Method to compute

  18. SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    PROGRAM SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM Training Checklist SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM More Documents & Publications Quality Assurance Checklist...

  19. Quality Work Plan Checklist and Resources - Section 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified Energy Conservation BondEnergyQuality Quality

  20. Quality Work Plan Checklist and Resources - Section 2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified Energy Conservation BondEnergyQuality Quality

  1. Quality Work Plan Checklist and Resources - Section 3

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified Energy Conservation BondEnergyQuality Quality

  2. Quality Work Plan Checklist and Resources - Section 4

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified Energy Conservation BondEnergyQuality Quality

  3. Local Energy Assurance Planning Selectees

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms Loan Terms The following

  4. SU-E-J-47: Development of a High-Precision, Image-Guided Radiotherapy, Multi- Purpose Radiation Isocenter Quality-Assurance Calibration and Checking System

    SciTech Connect (OSTI)

    Liu, C [UniversityFlorida, Gainesville, FL (United States); Yan, G; Helmig, R; Lebron, S; Kahler, D [University of Florida, Gainesville, FL (United States)

    2014-06-01T23:59:59.000Z

    Purpose: To develop a system that can define the radiation isocenter and correlate this information with couch coordinates, laser alignment, optical distance indicator (ODI) settings, optical tracking system (OTS) calibrations, and mechanical isocenter walkout. Methods: Our team developed a multi-adapter, multi-purpose quality assurance (QA) and calibration device that uses an electronic portal imaging device (EPID) and in-house image-processing software to define the radiation isocenter, thereby allowing linear accelerator (Linac) components to be verified and calibrated. Motivated by the concept that each Linac component related to patient setup for image-guided radiotherapy based on cone-beam CT should be calibrated with respect to the radiation isocenter, we designed multiple concentric adapters of various materials and shapes to meet the needs of MV and KV radiation isocenter definition, laser alignment, and OTS calibration. The phantom's ability to accurately define the radiation isocenter was validated on 4 Elekta Linacs using a commercial ball bearing (BB) phantom as a reference. Radiation isocenter walkout and the accuracy of couch coordinates, ODI, and OTS were then quantified with the device. Results: The device was able to define the radiation isocenter within 0.3 mm. Radiation isocenter walkout was within ±1 mm at 4 cardinal angles. By switching adapters, we identified that the accuracy of the couch position digital readout, ODI, OTS, and mechanical isocenter walkout was within sub-mm. Conclusion: This multi-adapter, multi-purpose isocenter phantom can be used to accurately define the radiation isocenter and represents a potential paradigm shift in Linac QA. Moreover, multiple concentric adapters allowed for sub-mm accuracy for the other relevant components. This intuitive and user-friendly design is currently patent pending.

  5. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.

    SciTech Connect (OSTI)

    Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr. (,; .); Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01T23:59:59.000Z

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  6. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan part 2 mappings for the ASC software quality engineering practices, version 2.0.

    SciTech Connect (OSTI)

    Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr. (,; .); Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01T23:59:59.000Z

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR001.3.2 and CPR001.3.6 and to a Department of Energy document, ''ASCI Software Quality Engineering: Goals, Principles, and Guidelines''. This document also identifies ASC management and software project teams' responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  7. Environmental Quality Assurance Project Plan. DOE/OR/21548-352. C-200-204-1.03.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; ...)369s ..T I.

  8. Quality Assurance Exchange, December 2005

    Broader source: Energy.gov (indexed) [DOE]

    BNL conducts 3rd Consecutive Third- Party Evaluation of its Assessment Program 2 SQA Work Activity 2 Software Risk Management 3 Announcements, Updates, and Activities 7...

  9. Quality Assurance Exchange, January 2007

    Broader source: Energy.gov (indexed) [DOE]

    1 Best Practices: Appropriate Metrics Facilitate Data-Driven IT Decisions 4 SQA Work Activity 4: Procurement and Supplier Management 6 Safety Software Central Registry...

  10. Quality Assurance Exchange, June 2006

    Broader source: Energy.gov (indexed) [DOE]

    (CQI). Influ- enced by leaders such as Walter Shewhart, W. Edwards Dem- ing, Joseph M. Juran, Philip B. Crosby, Peter Sange and the Baldrige Criteria for Performance...

  11. Quality Assurance Exchange, March 2006

    Broader source: Energy.gov (indexed) [DOE]

    ImproperTorqueOccurrences.pdf For more information contact: Bud Danielson at Bud.Danielson@eh.doe.gov "Lessons Learned..." (Continued from page 2) Q u a li t y As s u r a...

  12. Quality Assurance Exchange, April 2009

    Broader source: Energy.gov (indexed) [DOE]

    development, and resource allocations; and as a team leader of numerous Environmental Impact Statements and Environmental Assessments. He began his Federal career 32 years ago by...

  13. Quality Assurance Exchange, Winter 2010

    Office of Environmental Management (EM)

    of all organizations involved in the procurement should be well documented and followed. Lesson Learned: When possible, the DA and PA should be the same entity to help facilitate...

  14. Weapons Quality Assurance Qualification Standard

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell DirectorThe Water PowerLast SaturdayAmanda

  15. Quality Assurance Exchange August 2011

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo. 195 -Pueblo de 2011 REPORTDirector's

  16. Quality Assurance | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo. 195 -Pueblo de

  17. DOE Order on Quality Assurance

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOE F 243.2 Records Scheduling3-2008 DOE OIGInteractions

  18. Quality Assurance Requirements and Description

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to analysis3Energy

  19. Quality Assurance | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: ThomasDepartment ofThisHiTek logo HiTekLoans | DepartmentMike

  20. Quality Assurance and Configuration Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, and Storage ofQuadrennial4.1D Admin

  1. Quality Assurance Policy, Revision 1

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site Environmental Reports Portsmouth| DepartmentQA CorporateDepartment ofU.S.EnergyNOT

  2. Signed Quality Assurance Hub Memo

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transfer toSensor Technologies for aShoshone-Bannock TribesShuttle :I

  3. 2014 Quality Work Plan (QWP) Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergy VehicleSessionOffice4 NCAI Executive4 Quality14

  4. Accelerating PV Cost Effectiveness Through Systems Design, Engineering, and Quality Assurance: Phase I Annual Technical Report, 4 November 2004 - 3 November 2005

    SciTech Connect (OSTI)

    Botkin, J.

    2006-07-01T23:59:59.000Z

    During Phase I of this PV Manufacturing R&D subcontract, PowerLight Corporation has made significant progress toward the reduction of installed costs for commercial-scale, rooftop PV systems. PowerLight has worked to reduce operating costs by improving long-term reliability and performance through the development of more sophisticated tools used in system design and monitoring. Additionally, PowerLight has implemented design improvements with the goal of reducing cost while maintaining and/or improving product quality. As part of this effort, PowerLight also modified manufacturing and shipping processes to accommodate these design changes, streamline material flow, reduce cost, and decrease waste streams. During Phase II of this project, PowerLight plans to continue this work with the goal of reducing system cost and improving system performance.

  5. Environmental Quality Information Analysis Center multi-year plan

    SciTech Connect (OSTI)

    Rivera, R.G. [RDG, Inc. (United States); Das, S. [Oak Ridge National Lab., TN (United States); Walsh, T.E. [Florida Univ., Gainesville, FL (United States)

    1992-09-01T23:59:59.000Z

    An information analysis center (IAC) is a federal resource that provides technical information for a specific technology field. An IAC links an expert technical staff with an experienced information specialist group, supported by in-house or external data bases to provide technical information and maintain a corporate knowledge in a technical area. An IAC promotes the rapid transfer of technology among its users and provides assistance in adopting new technology and predicting and assessing emerging technology. This document outlines the concept, requirements, and proposed development of an Environmental Quality IAC (EQIAC). An EQIAC network is composed of several nodes, each of which has specific technology capabilities. This document outlines strategic and operational objectives for the phased development of one such node of an EQIAC network.

  6. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    SciTech Connect (OSTI)

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01T23:59:59.000Z

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

  7. DOE Awards Small Business Contract for Support, Planning Services...

    Broader source: Energy.gov (indexed) [DOE]

    will be in support of the Environmental Management's Office of Operational Safety and quality assurance support of the Office of Standards and Quality Assurance. Trinity...

  8. Groundwater Monitoring Well Installation Work Plan

    E-Print Network [OSTI]

    ...................................................................................................................... 1 1.2.1 Water Quality........................................................................................................... 8 3.12 Quality Assurance.................................................................................................... 9 4.4 Environmental Management System

  9. The ends of uncertainty: Air quality science and planning in Central California

    SciTech Connect (OSTI)

    Fine, James

    2003-09-01T23:59:59.000Z

    Air quality planning in Central California is complicated and controversial despite millions of dollars invested to improve scientific understanding. This research describes and critiques the use of photochemical air quality simulation modeling studies in planning to attain standards for ground-level ozone in the San Francisco Bay Area and the San Joaquin Valley during the 1990's. Data are gathered through documents and interviews with planners, modelers, and policy-makers at public agencies and with representatives from the regulated and environmental communities. Interactions amongst organizations are diagramed to identify significant nodes of interaction. Dominant policy coalitions are described through narratives distinguished by their uses of and responses to uncertainty, their exposures to risks, and their responses to the principles of conservatism, civil duty, and caution. Policy narratives are delineated using aggregated respondent statements to describe and understand advocacy coalitions. I found that models impacted the planning process significantly, but were used not purely for their scientific capabilities. Modeling results provided justification for decisions based on other constraints and political considerations. Uncertainties were utilized opportunistically by stakeholders instead of managed explicitly. Ultimately, the process supported the partisan views of those in control of the modeling. Based on these findings, as well as a review of model uncertainty analysis capabilities, I recommend modifying the planning process to allow for the development and incorporation of uncertainty information, while addressing the need for inclusive and meaningful public participation. By documenting an actual air quality planning process these findings provide insights about the potential for using new scientific information and understanding to achieve environmental goals, most notably the analysis of uncertainties in modeling applications. Concurrently, needed uncertainty information is identified and capabilities to produce it are assessed. Practices to facilitate incorporation of uncertainty information are suggested based on research findings, as well as theory from the literatures of the policy sciences, decision sciences, science and technology studies, consensus-based and communicative planning, and modeling.

  10. Technical work plan for the privatization waste characterization data quality objective process

    SciTech Connect (OSTI)

    Kirkbride, R.A.

    1996-04-24T23:59:59.000Z

    This work plan addresses the activities necessary to complete the data quality objectives process for the purpose of providing sufficient characterization information to successfully stage, pretreat, and immobilize low-activity waste per the requirements and specifications identified in the Tank Waste Remediation System Privatization Request for Proposal. The scope of this task is to complete the data quality objectives process, the results of which will provide a technical basis for sampling and characterization needs related to privatization of pretreatment and low-activity waste immobilization.

  11. Waste Management Plan for the Oak Ridge National Remedial Investigation/Feasibility Study

    SciTech Connect (OSTI)

    Not Available

    1988-04-01T23:59:59.000Z

    In accordance with the requirements of the Remedial Investigation/Feasibility Study (RI/FS) Project Quality Assurance Plan, this Waste Management Plan establishes clear lines of responsibility and authority, documentation requirements, and operational guidance for the collection, identification, segregation, classification, packaging, certification, and storage/disposal of wastes. These subjects are discussed in the subsequent sections of this document.

  12. NIF Title III engineering plan

    SciTech Connect (OSTI)

    Deis, G

    1998-06-01T23:59:59.000Z

    The purpose of this document is to define the work that must be accomplished by the NIF Project during Title III Engineering. This definition is intended to be sufficiently detailed to provide a framework for yearly planning, to clearly identify the specific deliverables so that the Project teams can focus on them, and to provide a common set of objectives and processes across the Project. This plan has been preceded by similar documents for Title I and Title II design and complements the Site Management Plan, the Project Control Manual, the Quality Assurance Program Plan, the RM Parsons NIF Title III Configuration Control Plan, the Integrated Project Schedule, the Preliminary Safety Analysis Report, the Configuration Management Plan, and the Transition Plan.

  13. UESC Performance Assurance

    Office of Environmental Management (EM)

    Performance Assurance (M&V) Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR May 7 - 8, 2014 Virginia Beach, VA Outline * Federal Requirements - Commissioning...

  14. 300 area TEDF NPDES Permit Compliance Monitoring Plan

    SciTech Connect (OSTI)

    Loll, C.M.

    1995-09-05T23:59:59.000Z

    This document presents the 300 Area Treated Effluent Disposal Facility (TEDF) National Pollutant Discharge Elimination System (NPDES) Permit Compliance Monitoring Plan (MP). The MP describes how ongoing monitoring of the TEDF effluent stream for compliance with the NPDES permit will occur. The MP also includes Quality Assurance protocols to be followed.

  15. Sandia National Laboratories: Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Database Has Logged 420 Energy Storage Projects Worldwide with 123 GW of Installed Capacity On October 22, 2013, in Energy, Energy Assurance, Energy Assurance,...

  16. assurance test method: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assurance test method First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Quality Assurance of Test...

  17. Water resource management planning guide for Savannah River Plant

    SciTech Connect (OSTI)

    Hubbard, J.E.; Stephenson, D.E.; Steele, J.L. (Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.); Gordon, D.E. (Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Plant)

    1988-10-01T23:59:59.000Z

    The Water Resource Management Planning Guide provides an outline for the development of a Savannah River Plant Water Resource Management Plan (WRMP) to protect, manage, and monitor the site's water resources. The management plan is based on three principle elements: (1) protection of the water quality, (2) management of the water quantity, and (3) monitoring of the water quality and quantity. The plan will assure that changes in water quality and quantity are identified and that corrective action is implemented as needed. In addition, water management activities within and between Savannah River Plant (SRP) organizations and departments will be coordinated to ensure the proper management of water resources. This document is intended as a guide to suggest goals and objectives that will provide a basis for the development of a water resource plan for SRP. Planning should be flexible rather than rigid, and the plan outlines in this document was prepared to be modified or updated as conditions necessitate. 16 refs., 12 figs.

  18. SU-E-T-69: Cloud-Based Monte Carlo Patient-Specific Quality Assurance (QA) Method for Volumetric Modulated Arc Therapy (VMAT)

    SciTech Connect (OSTI)

    Chen, X; Xing, L; Luxton, G; Bush, K [Stanford University, Palo Alto, CA (United States); Azcona, J [Clinica Universidad de Navarra, Pamplona (Spain)

    2014-06-01T23:59:59.000Z

    Purpose: Patient-specific QA for VMAT is incapable of providing full 3D dosimetric information and is labor intensive in the case of severe heterogeneities or small-aperture beams. A cloud-based Monte Carlo dose reconstruction method described here can perform the evaluation in entire 3D space and rapidly reveal the source of discrepancies between measured and planned dose. Methods: This QA technique consists of two integral parts: measurement using a phantom containing array of dosimeters, and a cloud-based voxel Monte Carlo algorithm (cVMC). After a VMAT plan was approved by a physician, a dose verification plan was created and delivered to the phantom using our Varian Trilogy or TrueBeam system. Actual delivery parameters (i.e., dose fraction, gantry angle, and MLC at control points) were extracted from Dynalog or trajectory files. Based on the delivery parameters, the 3D dose distribution in the phantom containing detector were recomputed using Eclipse dose calculation algorithms (AAA and AXB) and cVMC. Comparison and Gamma analysis is then conducted to evaluate the agreement between measured, recomputed, and planned dose distributions. To test the robustness of this method, we examined several representative VMAT treatments. Results: (1) The accuracy of cVMC dose calculation was validated via comparative studies. For cases that succeeded the patient specific QAs using commercial dosimetry systems such as Delta- 4, MAPCheck, and PTW Seven29 array, agreement between cVMC-recomputed, Eclipse-planned and measured doses was obtained with >90% of the points satisfying the 3%-and-3mm gamma index criteria. (2) The cVMC method incorporating Dynalog files was effective to reveal the root causes of the dosimetric discrepancies between Eclipse-planned and measured doses and provide a basis for solutions. Conclusion: The proposed method offers a highly robust and streamlined patient specific QA tool and provides a feasible solution for the rapidly increasing use of VMAT treatments in the clinic.

  19. Notice of Intent to Revise DOE G 414.1-1B, Management and Independent Assessments Guide for Use with 10 CFR, Part 830, Subpart A, and DOE O 414.1C, Quality Assurance; DOE M 450.4-1, Integrated Safety Management System Manual; and DOE O 226.1A

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-04-18T23:59:59.000Z

    This memorandum provides justification for revising DOE G 414.1-1B, Management and Independent Assessments Guide for Use With 10 CFR, Part 830, Subpart A, and DOE O 414.1C, Quality Assurance; DOE M 450.4-1, Integrated Safety Management System Manual; and DOE O 226.1A, Implementation of Department of Energy Oversight Policy.

  20. Management Plan Management Plan

    E-Print Network [OSTI]

    Plan, Management Plan Page MP­ 1 #12;Management Plan water quality standards, instream flows, privateManagement Plan Management Plan "Management and restoration programs for native salmonids have communities" J. Lichatowich et al. 1998. A Conceptual Foundation for the Management of Native Salmonids

  1. Enforcement Guidance Supplement 99-01, Enforcement of 10 CFR 830.120 (Quality Assurance Rule) for Facilities below Hazard Category III

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof EnergyPublic Law of|EnergyCybersecurity EGS: 99-01

  2. Cesium legacy safety project management work plan

    SciTech Connect (OSTI)

    Durham, J.S.

    1998-04-21T23:59:59.000Z

    This Management Work Plan (MWP) describes the process flow, quality assurance controls, and the Environment, Safety, and Health requirements of the Cesium Legacy Safety Project. This MWP provides an overview of the project goals and methods for repackaging the non-conforming Type W overpacks and packaging the CsCl powder and pellets. This MWP is not intended to apply to other activities associated with the CsCl Legacy Safety Program (i.e., clean out of South Cell).

  3. Infrastructure Assurance Center

    E-Print Network [OSTI]

    Kemner, Ken

    and impact-analysis tool developed by Argonne National Laboratory. This powerful tool allows for rapid, first in which flooding of the Savannah River along the South Carolina/Georgia border caused a 25% reduction Assurance Center Our nation relies on natural gas to meet about 22% of its energy needs. Within the next 10

  4. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06T23:59:59.000Z

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  5. SU-D-BRD-07: Automatic Patient Data Audit and Plan Quality Check to Support ARIA and Eclipse

    SciTech Connect (OSTI)

    Li, X; Li, H; Wu, Y; Mutic, S; Yang, D [Washington University School of Medicine, St. Louis, MO (United States)

    2014-06-01T23:59:59.000Z

    Purpose: To ensure patient safety and treatment quality in RT departments that use Varian ARIA and Eclipse, we developed a computer software system and interface functions that allow previously developed electron chart checking (EcCk) methodologies to support these Varian systems. Methods: ARIA and Eclipse store most patient information in its MSSQL database. We studied the contents in the hundreds database tables and identified the data elements used for patient treatment management and treatment planning. Interface functions were developed in both c-sharp and MATLAB to support data access from ARIA and Eclipse servers using SQL queries. These functions and additional data processing functions allowed the existing rules and logics from EcCk to support ARIA and Eclipse. Dose and structure information are important for plan quality check, however they are not stored in the MSSQL database but as files in Varian private formats, and cannot be processed by external programs. We have therefore implemented a service program, which uses the DB Daemon and File Daemon services on ARIA server to automatically and seamlessly retrieve dose and structure data as DICOM files. This service was designed to 1) consistently monitor the data access requests from EcCk programs, 2) translate the requests for ARIA daemon services to obtain dose and structure DICOM files, and 3) monitor the process and return the obtained DICOM files back to EcCk programs for plan quality check purposes. Results: EcCk, which was previously designed to only support MOSAIQ TMS and Pinnacle TPS, can now support Varian ARIA and Eclipse. The new EcCk software has been tested and worked well in physics new start plan check, IMRT plan integrity and plan quality checks. Conclusion: Methods and computer programs have been implemented to allow EcCk to support Varian ARIA and Eclipse systems. This project was supported by a research grant from Varian Medical System.

  6. On Comparing the Quality of Head and Neck Imrt Plans Delivered with Two Different Linear Accelerator Manufacturers

    SciTech Connect (OSTI)

    Basran, Parminder S., E-mail: pbasran@bccancer.bc.c [Department of Medical Physics, Odette Cancer Centre, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Balogh, Judith; Poon, Ian; MacKenzie, Robert [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Odette Cancer Centre, Toronto, Ontario (Canada); Chan, Timothy [Department of Medical Sciences, University of Western Ontario, Toronto, Ontario (Canada)

    2011-04-01T23:59:59.000Z

    The purpose of this work was to determine whether 2 different types of linear accelerators manufacturers with similar MLC leaf widths deliver equivalent IMRT distributions for head and neck radiotherapy patients. In this study, plans delivered with Siemens linacs were re-optimized with an Elekta linac and vice versa. To test for significance, paired t-tests were computed to examine differences in target and normal tissue doses and monitor units. Dose distributions, dose-volume histograms, and dose to targets and normal tissues were found to be equivalent irrespective of the linac type. However, approximately 15% more monitor units were delivered when planned on the Elekta machine (p < 0.002). Both linear accelerators provide plans of comparable dosimetric quality; however, Elekta machines deliver slightly more monitor units than Siemens machines. This increase is likely due differences in geometric properties of the machine head designs, as modeled in the treatment planning system.

  7. Microsoft Word - LATA Award Fee Plan FY13 Final 9-26-12 with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quality and effectiveness of Environment, Safety, Health and Quality Assurance (ESH&QA) Program, quality and effectiveness of project support, and quality and effectiveness...

  8. Microsoft Word - DRAFT FY15 Award Fee Plan LATA - 09-19-2014...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quality and effectiveness of Environment, Safety, Health and Quality Assurance (ESH&QA) Program, quality and effectiveness of project support, and quality and effectiveness...

  9. Emergency Readiness Assurance Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-02-27T23:59:59.000Z

    To establish the requirements of the Emergency Readiness Assurance Program with a goal of assurting that the Department of Energy (DOE) Emergency Management System (EMS) is ready to respond promptly, efficiently, and effectively to any emergency involving DOE facilities or requiring DOE assistance. Cancels DOE O 5500.10 dated 4-30-91. Chg 1 dated 2-27-92. Change 1 canceled by DOE O 151.1 of 9-25-95.

  10. The ARRA EAP Energy Assurance Planning Bulletin

    Broader source: Energy.gov (indexed) [DOE]

    during energy emergencies. DOE will also invite industry, non-profit, and Federal agency participants who are critical to the discussion. Stay tuned for more information...

  11. Designing and Implementing Effective Performance Assurance Plans

    Broader source: Energy.gov (indexed) [DOE]

    view all areas of the room 4 Daylighting Controls Functional Test No. 4: a) During daylight hours, observe lights. b) Simulate reduction in day light, observe lights. c) During...

  12. Local Energy Assurance Planning Selected Cities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms Loan Terms The following

  13. The ARRA EAP Energy Assurance Planning Bulletin

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon2001 Power PlantAPRIL 1, 2011 THE

  14. The ARRA EAP Energy Assurance Planning Bulletin

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon2001 Power PlantAPRIL 1, 2011 THE3, 2012 THE

  15. The ARRA EAP Energy Assurance Planning Bulletin

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon2001 Power PlantAPRIL 1, 2011 THE3, 2012

  16. Plan Quality Optimisation via Block Decomposition Fazlul Hasan Siddiqui and Patrik Haslum

    E-Print Network [OSTI]

    Haslum, Patrik

    to be used at any point on the efficiency­quality trade-off scale. Anytime planners promise to provide

  17. Quality assurance in the Brenham Residue Lab

    E-Print Network [OSTI]

    Jackson, Jerry

    1988-01-01T23:59:59.000Z

    the methylene chloride layer through sodium sulfate into a 588 mL Kurdina-Danish flask with a 18 mL Mills Tube. Add 1 or 2 Carborundum boiling chips and attach a Snyder column and evaporate on a steam bath to about 2 mL. Take this to dzyness on a N...

  18. FAQS Qualification Card – Safety Software Quality Assurance

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  19. Office of the Vice President for Research Research Quality AssuranceResearch Quality AssuranceResearch Quality AssuranceResearch Quality Assurance

    E-Print Network [OSTI]

    Ginzel, Matthew

    are on the web atWe are on the web at www purdue edu/research/vpr/We are on the web atWe are on the web at www

  20. FAQS Job Task Analyses- Quality Assurance

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  1. EM Quality Assurance Policy, Revision 0

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EM HighlightsSeptemberQUALITYOFFICE OFOffice of

  2. Quality Assurance Requirements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005UNS Electric,RM ExitProperty Transfer or37 PMThe Office of

  3. Software Quality Assurance Control of Existing Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart GridAbout Energy.gov »

  4. SOPP-43, EM-23 Quality Assurance Oversight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913|| Department ofSOLID ELECTROLYTES

  5. Quality Assurance Corporate Board | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCODepartment ofRecipientsandPublicPump SystemsPuttingServices »

  6. Quality Assurance Program | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCODepartment ofRecipientsandPublicPumpServices » Program

  7. Quality Assurance Rule | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCODepartment ofRecipientsandPublicPumpServices »

  8. Safety & Quality Assurance | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepository | DepartmentSEA-04:Department of¿QUÉ ESSafety &

  9. Report: Acquisition, Project Management, and Quality Assurance

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energyasto|Department of

  10. Performance and Quality Assurance | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoid Nanosheets Offer a Math Library

  11. WIPP Documents - Quality Assurance and Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka AnalyticsLarge

  12. Quality Assurance - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, and Storage ofQuadrennial4.1D Admin Chg

  13. Quality assurance | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, and Storage ofQuadrennial4.1D

  14. Princeton Plasma Physics Lab - Quality assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.7 348,016.0 336,514.0laser-diagnosticsdiagnosticssystems

  15. Quality Assurance - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITY AEROSOL: ShalePutting! ! NERSC ! Q QServices

  16. Quality Assurance Functional Area Qualification Standard - DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITY AEROSOL: ShalePutting! ! NERSC ! Q

  17. Quality Assurance Functional Area Qualification Standard - DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITY AEROSOL: ShalePutting! ! NERSC ! QDirectives,

  18. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage Silicon CarbideAgency:UNM:EducationAssurance

  19. Sandia Energy - Infrastructure Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePower Company'sInAs Quantum DotAssurance Home

  20. Contractor Assurance System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution And Bylaws |ContactFlowDecember01 SF-30156 Assurance

  1. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o (1)Tara6948sceneCarbonAssurance

  2. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect (OSTI)

    Reidel, Steve P.

    2006-05-26T23:59:59.000Z

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  3. OIA: Office of Contractor Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for science, best management practices, and continuous improvement are achieved at LBNL. The OCA is an internal independent assurance organization, and is authorized to have...

  4. 300 Area TEDF NPDES Permit Compliance Monitoring Plan

    SciTech Connect (OSTI)

    Loll, C.M.

    1994-10-13T23:59:59.000Z

    This monitoring plan describes the activities and methods that will be employed at the 300 Area Treated Effluent Disposal Facility (TEDF) in order to ensure compliance with the National Discharge Elimination System (NPDES) permit. Included in this document are a brief description of the project, the specifics of the sampling effort, including the physical location and frequency of sampling, the support required for sampling, and the Quality Assurance (QA) protocols to be followed in the sampling procedures.

  5. RCRA facility investigation/corrective measures study work plan for the 200-UP-2 Operable Unit, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The 200-UP-2 Operable Unit is one of two source operable units at the U Plant Aggregate Area at the Hanford Site. Source operable units include waste management units and unplanned release sites that are potential sources of radioactive and/or hazardous substance contamination. This work plan, while maintaining the title RFI/CMS, presents the background and direction for conducting a limited field investigation in the 200-UP-2 Operable Unit, which is the first part of the process leading to final remedy selection. This report discusses the background, prior recommendations, goals, organization, and quality assurance for the 200-UP-2 Operable Unit Work Plan. The discussion begins with a summary of the regulatory framework and the role of the work plan. The specific recommendations leading into the work plan are then addressed. Next, the goals and organization of the report are discussed. Finally, the quality assurance and supporting documentation are presented.

  6. The German quality system for waste repositories

    SciTech Connect (OSTI)

    Beckmerhagen, I.; Berg, H.P.; Brennecke, P. [Bundesamt fuer Strahlenschutz, Saltzgitter (Germany)

    1993-12-31T23:59:59.000Z

    The Bundesamt fuer Strahlenschutz (BfS)--Federal Office for Radiation protection--has to guarantee that the requirements resulting from different regulations concerning planning, design, construction, operation and decommissioning of a waste repository are fulfilled. In addition, the results of the safety assessments lead to nuclear-specific requirements on the design of the plant as well as to requirements on the radioactive waste packages intended to be disposed of. Therefore, the implementation of a quality assurance (QA) and quality control (QC) system is an essential task in order to ensure that the designed quality is achieved so that the necessary precaution against damage is taken. In this paper, a detailed description of QA and QC to be applied to the planned Konrad repository as well as the basic principles and the present status of the waste package QC are indicated and discussed.

  7. Safety and quality management and administration Fiscal Year 1995 site support program plan WBS 6.7.2.6

    SciTech Connect (OSTI)

    Hagan, J.W.

    1994-09-01T23:59:59.000Z

    The mission of the Emergency, Safety, and Quality Services (ESQ) management and Program Integration is to provide leadership for the ESQ Department, coordinate business management activities of the ESQ department, and the programs it supports, as well as to plan organize, direct, and control other activities that require department-wide coordination. Primary activities include providing strategic and business planning and reporting support to ESQ management; developing and documenting ESQ management systems and procedures; coordinating ESQ`s self-assessment and Award Fee self evaluation efforts; coordinating the ESQ departments`s communication, total quality, cost savings, and productivity efforts; and tracking ESQ commitments and staffing data. This program element also provides program direction and performance assessment for the ESH&Q division of ICF KH. The ESH&Q Division educates ICF KH management and employees to protect personnel and the environment; identifies, interprets and inspects to requirements; provides administrative and field support; performs final acceptance of construction; assesses effectiveness of ICF KH programs and processes, and performs baseline ESH&Q assessments.

  8. Aggies Commit to Learning for a Lifetime What is a Quality Enhancement Plan?

    E-Print Network [OSTI]

    course of action that addresses a well defined and focused topic or issue related to enhancing student learning outcomes specified in the Academic Master Plan. The goal of Aggies Commit is to ensure students existing and/or develop new sustainable high impact learning experiences to help students achieve selected

  9. Enhancing the content and quality of local comprehensive plans: the role of state mandates

    E-Print Network [OSTI]

    Prater, Carla Sue

    1993-01-01T23:59:59.000Z

    Madrid, Missouri areas would cause much greater damages and loss of life (Berke and Beatley 1992). Hurricane Andrew, which struck Florida in 1992 was the most costly natural disaster ever to strike the United States with over $30 billion in damages... (Settle 1985). The rising costs are largely attributed to local reluctance and inability to carry out hazard mitigation planning programs (Berke and Beatley 1992; Burby et al. 1985; Godschalk et al. 1989). Second, natural hazards have regional impacts...

  10. Strategic Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a single BPA data repository * Data quality improvements * Improve model alignment with WECC planning data * Improve WECC base case coordination * Align the BPA data model with...

  11. Total quality management applications for Hanford`s five-year plan and public outreach

    SciTech Connect (OSTI)

    Peterson, J.M. [USDOE Richland Operations Office, WA (United States)

    1993-12-31T23:59:59.000Z

    The US Department of Energy has encountered problems and experienced successes and failures in the cleanup of the Hanford Site in Washington State. This paper focuses on (1) internal problems involved in managing this large and complex cleanup; (2) attempts at overcoming these problems; (3) problems and attempts at solutions in describing cleanup activities to the public and other government entities. It describes the Total Quality Management (TQM) approaches used in trying to solve these problems.

  12. SAPHIRE 8 Software Independent Verification and Validation Plan

    SciTech Connect (OSTI)

    Rae J. Nims

    2009-04-01T23:59:59.000Z

    SAPHIRE 8 is being developed with a phased or cyclic iterative rapid application development methodology. Due to this approach, a similar approach is being taken for the IV&V activities on each vital software object. The IV&V plan is structured around NUREG/BR-0167, “Software Quality Assurance Program and Guidelines,” February 1993. The Nuclear Regulatory Research Office Instruction No.: PRM-12, “Software Quality Assurance for RES Sponsored Codes,” March 26, 2007 specifies that RES-sponsored software is to be evaluated against NUREG/BR-0167. Per the guidance in NUREG/BR-0167, SAPHIRE is classified as “Level 1.” Level 1 software corresponds to technical application software used in a safety decision.

  13. SAPHIRE 8 Software Independent Verification and Validation Plan

    SciTech Connect (OSTI)

    Rae J. Nims; Kent M. Norris

    2010-02-01T23:59:59.000Z

    SAPHIRE 8 is being developed with a phased or cyclic iterative rapid application development methodology. Due to this approach, a similar approach is being taken for the IV&V activities on each vital software object. The IV&V plan is structured around NUREG/BR-0167, “Software Quality Assurance Program and Guidelines,” February 1993. The Nuclear Regulatory Research Office Instruction No.: PRM-12, “Software Quality Assurance for RES Sponsored Codes,” March 26, 2007 specifies that RES-sponsored software is to be evaluated against NUREG/BR-0167. Per the guidance in NUREG/BR-0167, SAPHIRE is classified as “Level 1.” Level 1 software corresponds to technical application software used in a safety decision.

  14. Comments from the Virginia Department of Environmental Quality on PEPCO's Intention to Commence Planned Transmission Outages

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEANSpringsNational Broadband Plan

  15. Software Quality Assurance Guide for Use with DOE O 414.1D, Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-02-04T23:59:59.000Z

    The revision to DOE G 414.1-4 will conform to the revised DOE O 414.1D and incorporate new information and lessons learned since 2005, including information gained as a result of the February 2011, Government Accountability Office (GAO) report, GAO-11-143 NUCLEAR WASTE: DOE Needs a Comprehensive Strategy and Guidance on Computer Models that Support Environmental Cleanup Decisions.

  16. Quality Assurance forQuality Assurance for Security-Critical SystemsSecurity-Critical Systems

    E-Print Network [OSTI]

    Jurjens, Jan

    Munich Extensive collaboration with industry (BMW,Extensive collaboration with industry (BMW, Hypo (rather than breaking) them.breaking) them. Assumptions on system context, physical environment.Assumptions on system context, physical environment. Attacker may use unintended/unnoticed functionalityAttacker may

  17. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 0

    SciTech Connect (OSTI)

    Marutzky, Sam; Farnham, Irene

    2014-10-01T23:59:59.000Z

    The purpose of the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan) is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing the extent of groundwater contamination from underground nuclear testing. This Plan identifies locations to be sampled by corrective action unit (CAU) and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well-purging requirements, detection levels, and accuracy requirements; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling of interest to UGTA. This Plan does not address compliance with requirements for wells that supply the NNSS public water system or wells involved in a permitted activity.

  18. National Security Technology Incubator Operations Plan

    SciTech Connect (OSTI)

    None

    2008-04-30T23:59:59.000Z

    This report documents the operations plan for developing the National Security Technology Incubator (NSTI) program for southern New Mexico. The NSTI program will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The NSTI program is being developed as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA). The operation plan includes detailed descriptions of the structure and organization, policies and procedures, scope, tactics, and logistics involved in sustainable functioning of the NSTI program. Additionally, the operations plan will provide detailed descriptions of continuous quality assurance measures based on recommended best practices in incubator development by the National Business Incubation Association (NBIA). Forms that assist in operations of NSTI have been drafted and can be found as an attachment to the document.

  19. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31T23:59:59.000Z

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  20. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01T23:59:59.000Z

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  1. Groundwater Quality Sampling and Analysis Plan for Environmental Monitoring Waste Area Grouping 6 at Oak Ridge National Laboratory. Environmental Restoration Program

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

  2. Groundwater quality sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of energy and managed by martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

  3. Quality Policy

    Broader source: Energy.gov [DOE]

    Quality Policy It is the policy of the Department of Energy to establish quality requirements to ensure that risks and environmental impacts are minimized and that safety, reliability, and performance are maximized through the application of effective management systems commensurate with the risks posed by the facility or activity and its work. The Department implements this policy through the QA Order and the QA rule directives to ensure quality assurance requirements are clearly specified for the broad spectrum of work performed by DOE and its contractors.

  4. Proactive Planning

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01T23:59:59.000Z

    tx H2O | pg. 20 Landowners and agricultural producers in the Cedar Creek watershed are working with agency representatives and gov- ernment leaders on a proactive plan to help reduce pollution flowing into Cedar Creek Reservoir. The 34...-county watershed have an opportunity to voice their opinions and help draft the watershed protection plan for the reservoir. The plan, which will outline ways to reduce pollution and improve water quality, is an outgrowth of years of water quality monitoring...

  5. Performance Demonstration Program Management Plan

    SciTech Connect (OSTI)

    Carlsbad Field Office

    2005-07-01T23:59:59.000Z

    To demonstrate compliance with the Waste Isolation Pilot Plant (WIPP) waste characterization program, each testing and analytical facility performing waste characterization activities participates in the Performance Demonstration Program (PDP). The PDP serves as a quality control check against expected results and provides information about the quality of data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed by an independent organization to each of the facilities participating in the PDP. There are three elements within the PDP: analysis of simulated headspace gases, analysis of solids for Resource Conservation and Recovery Act (RCRA) constituents, and analysis for transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques. Because the analysis for TRU radionuclides using NDA techniques involves both the counting of drums and standard waste boxes, four PDP plans are required to describe the activities of the three PDP elements. In accordance with these PDP plans, the reviewing and approving authority for PDP results and for the overall program is the CBFO PDP Appointee. The CBFO PDP Appointee is responsible for ensuring the implementation of each of these plans by concurring with the designation of the Program Coordinator and by providing technical oversight and coordination for the program. The Program Coordinator will designate the PDP Manager, who will coordinate the three elements of the PDP. The purpose of this management plan is to identify how the requirements applicable to the PDP are implemented during the management and coordination of PDP activities. The other participants in the program (organizations that perform site implementation and activities under CBFO contracts or interoffice work orders) are not covered under this management plan. Those activities are governed by the organization’s quality assurance (QA) program and procedures or as otherwise directed by CBFO.

  6. Conduct Operations Assessment Plan - Developed By NNSA/Nevada...

    Broader source: Energy.gov (indexed) [DOE]

    AMTS Performance Assurance Division AMNS Programs CONDUCT OF OPERATIONS Assessment Plan NNSANevada Site Office Independent Oversight Division Performance Objective: The purpose of...

  7. Application of Specialized Optimization Techniques in Water Quantity and Quality Management with Respect to Planning for the Trinity River Basi

    E-Print Network [OSTI]

    Meier Jr., W. L.; Shih, C. S.

    and quantity in water planning is increasing considerably. Because of past planning practice stemming from institutional structure and legislative directive, this consideration has not been widespread or comprehensive in nature up to the present time. Although...

  8. Automatic data for applied railway management : passenger demand, service quality measurement, and tactical planning on the London Overground Network

    E-Print Network [OSTI]

    Frumin, Michael S

    2010-01-01T23:59:59.000Z

    The broad goal of this thesis is to demonstrate the potential positive impacts of applying automatic data to the management and tactical planning of a modern urban railway. Tactical planning is taken here to mean the set ...

  9. OG&E's Power Quality Program

    E-Print Network [OSTI]

    Davis, M.

    Our commitment to reliable electric power does not stop at the meter, but extends all the way to the equipment that it operates. Through the Power Quality Program, we provide professional power consultants to assure that the customer has quality...

  10. Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion: Project management/evaluation plan

    SciTech Connect (OSTI)

    Hallenbeck, L.D.; Harpole, K.J.; Gerard, M.G.

    1995-05-03T23:59:59.000Z

    The objectives of the Management/Evaluation Plan are: (1) clarify management structure, task responsibilities and schedules, and (2) to be used as a basis for judging the Project Evaluation Report submitted as a part of the continuation application. The components addressed in the report are: management structure; project staff organization; management procedure; quality assurance plan; ES and H plan and environmental compliance reporting; task WBS and logic flow diagram; list and schedule of planned deliverables; diagram of existing facilities; industry interaction; and evaluation of technical and economic feasibility.

  11. Quality Work Plan Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev nextEnergyCanadianVersion) | DepartmentTraining1 |

  12. Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

    1993-07-01T23:59:59.000Z

    This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan).

  13. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    SciTech Connect (OSTI)

    Vollmer, A.T.

    1993-10-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references.

  14. Power Assure | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation, searchPocatelloIIIRock JumpPoulsenPoweoAssure

  15. Environmental Monitoring Plan United States Department of Energy Richland Operations Office. Revision 2

    SciTech Connect (OSTI)

    NONE

    1997-11-10T23:59:59.000Z

    This Environmental Monitoring Plan was prepared for the US Department of Energy`s (DOE`s) Richland Operations Office (RL) to implement the requirements of DOE Order 5400.1. According to the Order, each DOE site, facility, or activity that uses, generates, releases, or manages significant pollutants or hazardous materials shall prepare a written environmental monitoring plan covering two major activities: (1) effluent monitoring and (2) environmental surveillance. The plan is to contain information discussing the rationale and design criteria for the monitoring programs, sampling locations and schedules, quality assurance requirements, program implementation procedures, analytical procedures, and reporting requirements. The plan`s purpose is to assist DOE in the management of environmental activities at the Hanford Site and to help ensure that operations on the site are conducted in an environmentally safe and sound manner.

  16. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume I – Summary Report, Annual Report to the Texas Commission on Environmental Quality September 2002 – August 2003

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Bryant, J.; Turner, W. D.

    2003-01-01T23:59:59.000Z

    The Energy Systems Laboratory (Laboratory) is pleased to provide our second annual report, Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan to the Texas Council on Environmental Quality (TCEQ) in fulfillment of its...

  17. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Volume I-Summary Report, Annual Report to the Texas Commission on Environmental Quality, January 2009-December 2009 

    E-Print Network [OSTI]

    Haberl, J.; Culp, C.; Yazdani, B.; Lewis, C.; Liu, Z.; Baltazar-Cervantes, J. C.; Mukhopadhyay, J.; Gilman, D.; Degelman, L.; McKelvey, K.; Claridge, D.

    2010-01-01T23:59:59.000Z

    report, 'Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan' to the Texas Commission on Environmental Quality. This report is organized in three volumes: Volume I - Summary Report - provides an executive summary...

  18. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume I--Summary Report, Annual Report to the Texas Commission on Environmental Quality, January 2008-December 2008 

    E-Print Network [OSTI]

    Baltazar, Juan-Carlos; Claridge, David; Yazdani, Bahman; Mukhopadhyay, Jaya; Liu, Zi; Muns, Shirley; Gilman, Don; Degelman, Larry; Haberl, Jeff; Culp, Charles

    2009-01-01T23:59:59.000Z

    report, 'Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan' to the Texas Commission on Environmental Quality. This report is organized in three volumes: Volume I - Summary Report - provides an executive summary...

  19. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume I - Summary Report, Annual Report to the Texas Commission on Environmental Quality, January 2006 - June 2007 

    E-Print Network [OSTI]

    Verdict, M.; Baltazar-Cervantes, J. C.; Yazdani, B.; Ahmed, M.; Degelman, L.; Muns, S.; Fitzpatrick, T.; Gilman, D.; Liu, Z.; Mukhopadhyay, J.; McKelvey, K.; Montgomery, C.; Haberl, J. S.; Culp, C.

    2008-01-23T23:59:59.000Z

    report, 'Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan' to the Texas Commission on Environmental Quality. This report is organized in three volumes: Volume I - Summary Report - provides an executive summary...

  20. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Volume I-Summary Report, Annual Report to the Texas Commission on Environmental Quality, January 2009-December 2009

    E-Print Network [OSTI]

    Haberl, J.; Culp, C.; Yazdani, B.; Lewis, C.; Liu, Z.; Baltazar-Cervantes, J. C.; Mukhopadhyay, J.; Gilman, D.; Degelman, L.; McKelvey, K.; Claridge, D.

    report, 'Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan' to the Texas Commission on Environmental Quality. This report is organized in three volumes: Volume I - Summary Report - provides an executive summary...

  1. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume I - Summary Report, Annual Report to the Texas Commission on Environmental Quality, January 2006 - June 2007

    E-Print Network [OSTI]

    Verdict, M.; Baltazar-Cervantes, J. C.; Yazdani, B.; Ahmed, M.; Degelman, L.; Muns, S.; Fitzpatrick, T.; Gilman, D.; Liu, Z.; Mukhopadhyay, J.; McKelvey, K.; Montgomery, C.; Haberl, J. S.; Culp, C.

    2008-01-23T23:59:59.000Z

    report, 'Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan' to the Texas Commission on Environmental Quality. This report is organized in three volumes: Volume I - Summary Report - provides an executive summary...

  2. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume I--Summary Report, Annual Report to the Texas Commission on Environmental Quality, January 2008-December 2008

    E-Print Network [OSTI]

    Baltazar, Juan-Carlos; Claridge, David; Yazdani, Bahman; Mukhopadhyay, Jaya; Liu, Zi; Muns, Shirley; Gilman, Don; Degelman, Larry; Haberl, Jeff; Culp, Charles

    report, 'Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan' to the Texas Commission on Environmental Quality. This report is organized in three volumes: Volume I - Summary Report - provides an executive summary...

  3. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume II – Technical Report, Annual Report to the Texas Commission on Environmental Quality September 2002 – August 2003

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Bryant, J.; Turner, W. D.

    2003-01-01T23:59:59.000Z

    The Energy Systems Laboratory (Laboratory) is pleased to provide our second annual report, Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan to the Texas Council on Environmental Quality (TCEQ) in fulfillment of its...

  4. Planning for a regional rail system : analysis of high speed and high quality rail in the Basque region

    E-Print Network [OSTI]

    Lewis, Paul R. S. (Paul Robinson S.)

    2011-01-01T23:59:59.000Z

    The goal of this thesis is to provide guidance for regional rail network planning to achieve the maximum benefits in terms of economic growth, passenger satisfaction, and environmental sustainability. The hypothesis is ...

  5. United States Department of Energy Richland Operations Office Environmental Protection Implementation Plan: November 9, 1993, to November 9, 1994

    SciTech Connect (OSTI)

    NONE

    1993-11-01T23:59:59.000Z

    The hub of today`s programs at the Hanford Site are activities dedicated to managing stored and new wastes and cleanup of waste sites. To ensure focused planning and implementing efforts for these programs, management of the site is assigned to DOE`s Office of Environmental Restoration and Waste Management. This report describes policies and procedures in the following areas: Compliance activities; Environmental restoration; Waste management; and Technology development. Procedures for notification of environmental occurrences, long-range environmental protection planning and reporting, waste management programs; environmental monitoring programs, and quality assurance and data verification are also described and discussed.

  6. OIA: Office of Contract Assurance: Assurance Systems: Cyber Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (QA) It is the policy of the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) to carry out all activities in a reliable, safe and quality manner. To help fulfill...

  7. Professional, Applied & Continuing Education INFORMATION ASSURANCE & SECURITY CERTIFICATE

    E-Print Network [OSTI]

    Martin, Jeff

    Professional, Applied & Continuing Education INFORMATION ASSURANCE & SECURITY CERTIFICATE Demand for technical security and information assurance professionals has risen dramatically in recent years OPPORTUNITIES: TUITION: Required Courses (78 Hours): · Information Assurance and Security Level 1: Information

  8. Office of Institutional Assurance - OIA Web Files OIA Web Files

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab mastheads Berkeley Lab US DOE A-Z Index Phone Book Careers Search Office of Institutional Assurance About the Office of Institutional Assurance (OIA) Office of...

  9. NREL: News Feature - Assuring Solar Modules Will Last for Decades

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Laboratory (NREL) is co-leading an international push to assure the reliability of solar panels-an assurance demanded by customers, manufacturers, lenders, and utilities....

  10. Central Characterization Program (CCP) Transuranic Waste Characterizat...

    Office of Environmental Management (EM)

    Characterization Quality Assurance Project Plan Central Characterization Program (CCP) Transuranic Waste Characterization Quality Assurance Project Plan This document was used to...

  11. Sampling and Analysis Plan for U.S. Department of Energy Office...

    Office of Environmental Management (EM)

    Assurance Project Plan 2011 Annual Site Environmental Report (ASER) Preliminary Evaluation of the Trench 1 Collection Drain Floodplain Area of the Shiprock, New Mexico, Site...

  12. 1999 vadose zone monitoring plan and guidance for subsequent years

    SciTech Connect (OSTI)

    Horton, D.G.; Reidel, S.P.; Last, G.V.

    1998-08-01T23:59:59.000Z

    The US Department of Energy`s Hanford Site has the most diverse and largest amounts of radioactive waste in the US. The majority of the liquid waste was disposed to the soil column where much of it remains today. This document provides the rationale and general framework for vadose zone monitoring at cribs, ditches, trenches and other disposal facilities to detect new sources of contamination and track the movement of existing contamination in the vadose zone for the protection of groundwater. The document provides guidance for subsequent site-specific vadose zone monitoring plans and includes a brief description of past vadose monitoring activities (Chapter 3); the results of the Data Quality Objective process used for this plan (Chapter 4); a prioritization of liquid waste disposal sites for vadose monitoring (Chapter 5 and Appendix B); a general Monitoring and Analysis Plan (Chapter 6); a general Quality Assurance Project Plan (Appendix A), and a description of vadose monitoring activities planned for FY 1999 (Appendix C).

  13. 2002 WIPP Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-09-30T23:59:59.000Z

    DOE Order 5400.1, General Environmental Protection Program, requires each DOE | facility to prepare an environmental management plan (EMP). This document is | prepared for WIPP in accordance with the guidance contained in DOE Order 5400.1; DOE Order 5400.5, Radiation Protection of the Public and Environment; applicable sections of Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T; DOE, 1991); and the Title 10 Code of Federal Regulations (CFR) Part 834, ''Radiation Protection of the Public and Environment'' (draft). Many sections of DOE Order 5400.1 have been replaced by DOE Order 231.1, which is the driver for the annual Site Environmental Report (SER) and the guidance source for preparing many environmental program documents. The WIPP Project is operated by Westinghouse TRU Solutions (WTS) for the DOE. This plan defines the extent and scope of WIPP's effluent and environmental | monitoring programs during the facility's operational life and also discusses WIPP's quality assurance/quality control (QA/QC) program as it relates to environmental monitoring. In addition, this plan provides a comprehensive description of environmental activities at WIPP including: A summary of environmental programs, including the status of environmental monitoring activities A description of the WIPP Project and its mission A description of the local environment, including demographics An overview of the methodology used to assess radiological consequences to the public, including brief discussions of potential exposure pathways, routine and accidental releases, and their consequences Responses to the requirements described in the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  14. Unit 10: Software Quality To introduce software quality management and

    E-Print Network [OSTI]

    Finkelstein, Anthony

    . ¥ ISO 9001 Quality Systems - Model for Quality Assurance in Design/Development, Production, Installation intervals by management to ensure its continuing suitability, effectiveness and conformance with ISO 9001 with particular reference to the requirements of ISO 9000 and associated standards. Ð To introduce QFD

  15. DRAFT Fifteenmile Management Plan 5. Fifteenmile Subbasin Management Plan

    E-Print Network [OSTI]

    DRAFT Fifteenmile Management Plan 5. Fifteenmile Subbasin Management Plan DRAFT May 25 2004 Group 5. FIFTEENMILE SUBBASIN MANAGEMENT PLAN............................................... 38 5.5.2. Consistency with the Clean Water Act, Total Maximum Daily Loads and Existing Water Quality

  16. October 2012 Energy Assurance Planning Bulletin Volume 3 No 4

    Broader source: Energy.gov (indexed) [DOE]

    Courses World Energy Engineering Conference NARUC Annual Meeting Clean Energy Workforce Education Conference NASEO State Energy Policy and Technology Outlook Conference Globalcon...

  17. UC Assurance Plan For Lawrence Berkeley National Laboratory July 2007

    E-Print Network [OSTI]

    Chernowski, John

    2007-01-01T23:59:59.000Z

    has the most effective lockout/tagout program? ” “I’m hereWhy don’t you have a lockout/tagout program? ” “This is an

  18. UC Assurance Plan For Lawrence Berkeley National Laboratory July2007

    SciTech Connect (OSTI)

    Chernowski, John

    2007-07-09T23:59:59.000Z

    This Division ES&H Self-Assessment Manual describes how the Laboratory administers a division self-assessment program that conforms to the institutional requirements promulgated in the 'LBNL Environment, Safety and Health Self-Assessment Program' (LBNL/PUB-5344, latest revision). The institutional program comprises all appraisal and reporting activities that identify environmental, safety, and health deficiencies and associated corrective actions. It is designed to meet U.S. Department of Energy (DOE) requirements for self-assessment. Self-assessment is a continuous process of information gathering and evaluation. A division selfassessment program should describe methods for gathering and documenting information, and methods to analyze these performance data to identify trends and root causes and their corrections.

  19. assurance management plan: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a public health intervention from 10 to 5 micrograms per deciliter. Based on this new reference value, approximately 500,000 U.S. children are implicated and about 30,000 of...

  20. State and Local Energy Assurance Planning | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeSSection 1.StateState and Local