National Library of Energy BETA

Sample records for quality assurance grouped

  1. Quality Assurance Specialist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Quality Control Technician; Quality Assurance Inspector; Quality Assurance Representative

  2. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-29

    To establish an effective management system [i.e., quality assurance programs (QAPs)] using the performance requirements of this Order, coupled with technical standards where appropriate. Cancels DOE O 414.1.

  3. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25

    The Order defines roles and responsibilities for providing quality assurance for DOE products and services.Admin Chg 1, dated 5-8-13, supersedes DOE O 414.1D.

  4. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1981-07-21

    To provide Department of Energy (DOE) policy, set forth principles, and assign responsibilities for establishing, implementing, and maintaining programs of plans and actions to assure quality achievement in DOE programs. Cancels DOE O 5700.6, dated 1-16-1981. Canceled by DOE O 5700.6B, dated 9-23-1986.

  5. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1981-01-16

    To provide Department of Energy (DOE) policy, set forth principles, and assign responsibilities for establishing, implementing, and maintaining programs of plans and actions to assure quality achievement in DOE programs. Canceled by DOE O 5700.6A, dated 7-21-1981.

  6. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-04-29

    This Order ensures that the quality of DOE/NNSA products and services meets or exceeds the customer's expectations. This Order cancels DOE O 414.1A, Quality Assurance, dated 9-29-99, and Attachment 1, paragraph 8, and Attachment 2, paragraph 22, of DOE O 440.1A, Worker Protection Management for DOE Federal and Contractor Employees, dated 3-27-98. Cancels: DOE O 414.1A and DOE O 440.1A, parts as noted.

  7. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-07-12

    To establish an effective management system [i.e., quality assurance programs(QAPs)] using the performance requirements of this Order, coupled with technical standards where appropriate. Change 1, dated 7/12/01, facilitates the Department's organizational transition necessitated by establishment of the NNSA. (Attachment 2 of this Order is canceled by DOE O 470.2B.) Cancels: DOE O 414.1

  8. Quality assurance plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This Quality Assurance Plan (QAP) is concerned with design and construction (Sect. 2) and characterization and monitoring (Sect. 3). The basis for Sect. 2 is the Quality Assurance Plan for the Design and Construction of Waste Area Grouping 6 Closure at Oak Ridge National Laboratory, Oak Ridge, Tennessee, and the basis for Sect. 3 is the Environmental Restoration Quality Program Plan. Combining the two areas into one plan gives a single, overall document that explains the requirements and from which the individual QAPs and quality assurance project plans can be written. The Waste Area Grouping (WAG) 6 QAP establishes the procedures and requirements to be implemented for control of quality-related activities for the WAG 6 project. Quality Assurance (QA) activities are subject to requirements detailed in the Martin Marietta Energy Systems, Inc. (Energy Systems), QA Program and the Environmental Restoration (ER) QA Program, as well as to other quality requirements. These activities may be performed by Energy Systems organizations, subcontractors to Energy Systems, and architect-engineer (A-E) under prime contract to the US Department of Energy (DOE), or a construction manager under prime contract to DOE. This plan specifies the overall Energy Systems quality requirements for the project. The WAG 6 QAP will be supplemented by subproject QAPs that will identify additional requirements pertaining to each subproject.

  9. Track 9: Quality Assurance

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 9: Quality Assurance

  10. Data Driven Quality Assurance and Quality Control

    Broader source: Energy.gov [DOE]

    "Data Driven Quality Assurance & Quality Control," Patrick Roche, Conservation Services Group. Provides an overview of data QA/QC system design.

  11. Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-06-17

    This Order ensures that the quality of DOE/NNSA products and services meets or exceeds the customers' expectations. Cancels DOE O 414.1B and DOE N 411.1. Canceled by DOE O 414.1D.

  12. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Holland, R. C.

    1998-06-01

    This Quality Assurance Project Plan documents the quality assurance activities for the Wastewater/Stormwater/Groundwater and Environmental Surveillance Programs. This QAPP was prepared in accordance with DOE guidance on compliance with 10CFR830.120.

  13. Quality Assurance | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality Assurance The Quality Assurance & Continuous Improvement Department has the critical role of working with the U.S. Department of Energy and other regulators on the environment, health and safety; self-assessment and quality assurance. The department's goal is to devise, integrate and manage activities, programs and systems that make it possible for the lab, its employees and its contractors deliver services and products that perpetuate environmental, integrated safety and quality

  14. RAVEN Quality Assurance Activities

    SciTech Connect (OSTI)

    Cogliati, Joshua Joseph

    2015-09-01

    This report discusses the quality assurance activities needed to raise the Quality Level of Risk Analysis in a Virtual Environment (RAVEN) from Quality Level 3 to Quality Level 2. This report also describes the general RAVEN quality assurance activities. For improving the quality, reviews of code changes have been instituted, more parts of testing have been automated, and improved packaging has been created. For upgrading the quality level, requirements have been created and the workflow has been improved.

  15. Quality Assurance Rule

    Broader source: Energy.gov [DOE]

    This rule establishes quality assurance requirements for contractors conducting activities, including providing items or services which affect, or may affect, nuclear safety of DOE nuclear facilities.

  16. Quality Assurance Manual

    SciTech Connect (OSTI)

    McGarrah, J.E.

    1995-05-01

    In order to provide clients with quality products and services, Pacific Northwest Laboratory (PNL) has established and implemented a formal quality assurance program. These management controls are documented in this manual (PNL-MA-70) and its accompanying standards and procedures. The QA Program meets the basic requirements and supplements of ANSI/ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities, as interpreted for PNL activities. Additional, the quality requirements are augmented to include the Total Quality approach defined in the Department of Energy Order 5700.6C, Quality Assurance. This manual provides requirements and an overview of the administrative procedures that apply to projects and activities.

  17. IT Quality Assurance

    Broader source: Energy.gov [DOE]

    Quality, error-free work holds down costs. Avoiding mistakes and rework saves valuable time, effort, and materials. Quality assurance provides the mechanisms for paying close attention to details...

  18. Section 22: Quality Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality Assurance (40 CFR § 194.22) United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Quality Assurance (40 CFR § 194.22) Table of Contents 22.0 Quality Assurance (40 CFR § 194.22) 22.1 Requirements 22.2 Background 22.3 1998 Certification Decision 22.4 Changes in the CRA-2004 22.5 EPA's Evaluation of Compliance for the 2004 Recertification 22.5.1 NQA Standards 22.5.2 Audits of QA Plan

  19. Quality Assurance Corporate Board

    Broader source: Energy.gov [DOE]

    The Office of Environmental Management (EM) Quality Assurance Corporate Board is an executive board that includes both senior U.S. Department of Energy (DOE) and contractor representatives who are...

  20. Software Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-10-02

    DOE N 251.40, dated 5/3/01, extends this directive until 12/31/01. To define requirements and responsibilities for software quality assurance (SQA) within the Department of Energy (DOE). Does not cancel other directives.

  1. Software Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-10-02

    To define requirements and responsibilities for software quality assurance (SQA) within the Department of Energy (DOE). DOE N 251.40, dated 5/3/01, extends this directive until 12/31/01.

  2. Quality Assurance Program Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-16

    This Guide provides information on principles, requirements, and practices used to establish and implement an effective Quality Assurance Program. Admin Chg 2, dated 5-8-13, Admin Chg 1.

  3. Quality assurance and data management

    SciTech Connect (OSTI)

    Lockrem, L.L.

    1998-01-12

    This report contains graphs and tables relating to quality assurance and data management for environmental quality at Hanford Reservation.

  4. Quality Assurance Program Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-16

    This Guide provides information on principles, requirements, and practices used to establish and implement an effective Quality Assurance Program. Cancels DOE G 414.1-2A, DOE G 414.1-3 and DOE G 414.1-5. Admin Chg 1, dated 9-27-11. Admin Chg 2, dated 5-8-13.

  5. Quality Assurance Program Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-16

    The directive provides guidance for DOE elements and contractors in developing and implementing an effective Quality Assurance Program. Cancels DOE G 414.1-2A, DOE G 414.1-3 and DOE G 414.1-5. Superseded by Admin Chg 1, 9-27-11.

  6. Report on the activities of the ASME-NQA Committee Working Group on Quality Assurance Requirements for Research and Development, April 1990 to August 1991

    SciTech Connect (OSTI)

    Dronkers, J.J.

    1991-09-01

    This report transmits to the public eye the activities of the American Society of Mechanical Engineers-Nuclear Quality Assurance (ASME-NQA) Committee Working Group on Quality Assurance Requirements for Research and Development. The appendix lists the members of this group as of August 1991. The report covers a period of 17 months. The working group met eight times in this period, and much intellectual ground was traversed. There was seldom agreement on the nature of the task, but there was no doubt as to its urgency. The task was how to adapt the nuclear quality assurance standard, the NQA-1, to research and development work. 1 fig., 7 tabs.

  7. International Quality Assurance Standards (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Hacke, P.; Wohlgemuth, J.; Kempe, M.; Yamamichi, M.

    2011-02-01

    Tests to make quantitative predictions about photovoltaic (PV) modules are needed. This presentation proposes the creation of international quality assurance standards for PV modules.

  8. Weapons Quality Assurance Qualification Standard

    Energy Savers [EERE]

    ... Emphasis preferred on quality assurance, statistics, DOE-STD-1025-2008 7 mathematics, production management, industrial management, computer science, engineering, engineering ...

  9. Quality Assurance for Residential Retrofit Programs

    Broader source: Energy.gov [DOE]

    This webinar covered quality assurance and how to assure that your investment achieves a desired result of saving energy.

  10. Better Buildings Workforce Peer Exchange Quality Assurance Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assurance Strategies Better Buildings Workforce Peer Exchange Quality Assurance Strategies Better Buildings Workforce Peer Exchange Quality Assurance Strategies, call ...

  11. IEC Quality Assurance Task Group 5: UV, Temperature, and Humidity (Presentation)

    SciTech Connect (OSTI)

    Miller, D.; Bath, J.; Kö hl, M.; Shioda, T.

    2014-06-01

    Taskgroup 5 (TG5) is concerned with a comparative aging standard incorporating factors including ultraviolet radiation and temperature. Separate experiments are being conducted in support of a test standard via the regional sub-groups in Asia, Europe, and the United States. The authors will describe the objectives and timeline for TG5 as well as providing an update on the experiments in progress.

  12. Used Fuel Disposition Campaign Preliminary Quality Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary objective of this report is to ...

  13. EM Quality Assurance Policy, Revision 0

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It is EM policy that all EM projects will have a consistent quality assurance approach while allowing for grading based ... Quality Assurance Implementation Plan demonstrating how ...

  14. Quality Assurance Program Guide - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CURRENT DOE G 414.1-2B Admin Chg 2, Quality Assurance Program Guide by Colette Broussard Functional areas: Administrative Change, Quality Assurance and Oversight This Guide...

  15. WIPP Documents - Quality Assurance and Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality Assurance and Safety Quality Assurance Program Document DOE/CBFO-94-1012 Rev. 12 Effective date: 8/15

  16. CRAD, NNSA- Quality Assurance (QA)

    Broader source: Energy.gov [DOE]

    CRAD for Quality Assurance (QA). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  17. IEC Quality Assurance Task Group 5: UV, Temperature, and Humidity (Presentation)

    SciTech Connect (OSTI)

    Miller, D.; Bath, J.; Kohl, M.; Shioda, T.

    2014-03-01

    Taskgroup 5 (TG5) is concerned with a comparative aging standard incorporating factors including ultraviolet radiation, temperature, and humidity. Separate experiments are being conducted in support of a test standard via the regional sub-groups in Asia, Europe, and the United States. The authors will describe the objectives and timeline for TG5 as well as providing an update on the experiments in progress.

  18. Keys to Successful Quality Assurance and Quality Control Programs...

    Office of Environmental Management (EM)

    Keys to Successful Quality Assurance and Quality Control Programs (101) Keys to Successful Quality Assurance and Quality Control Programs (101) January 28...

  19. Keys to Successful Quality Assurance and Quality Control Programs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Keys to Successful Quality Assurance and Quality Control Programs (101) Keys to Successful Quality Assurance and Quality Control Programs (101) Better Buildings Residential Network ...

  20. Quality Assurance Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1) to ensure all EM projects utilize a consistent quality assurance approach. PDF icon Quality Assurance Policy, Revision 1 PDF icon EM Quaility Assurance Program (EM-QA-001 ...

  1. 2010 Quality Assurance Improvement Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assurance Improvement Project Plan 2010 Quality Assurance Improvement Project Plan This Project Plan is jointly developed by the Department of Energy (DOE) Office of Environmental Management (EM) and the Energy Facility Contractors Group (EFCOG), to provide execution support to the EM Quality Assurance (QA) Corporate Board. The Board serves a vital and critical role in ensuring that the EM mission is completed safely, correctly, and efficiently. 2010 Quality Assurance Improvement Project

  2. 2012 Quality Assurance Improvement Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Quality Assurance Improvement Project Plan 2012 Quality Assurance Improvement Project Plan This Project Plan is jointly developed by the Department of Energy (DOE) Office of Environmental Management (EM) and the Energy Facility Contractors Group (EFCOG), to provide execution support to the EM Quality Assurance (QA) Corporate Board. The Board serves a vital and critical role in ensuring that the EM mission is completed safely, correctly, and efficiently. 2012 Quality Assurance Improvement

  3. 2014 Quality Assurance Improvement Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Quality Assurance Improvement Project Plan 2014 Quality Assurance Improvement Project Plan This Project Plan is jointly developed by the Department of Energy (DOE) Office of Environmental Management (EM) and the Energy Facility Contractors Group (EFCOG), to provide execution support to the EM Quality Assurance (QA) Corporate Board. The Board serves a vital and critical role in ensuring that the EM mission is completed safely, correctly, and efficiently. 2014 Quality Assurance Improvement

  4. 2015 Quality Assurance Improvement Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Quality Assurance Improvement Project Plan 2015 Quality Assurance Improvement Project Plan This Project Plan is jointly developed by the Department of Energy (DOE) Office of Environmental Management (EM) and the Energy Facility Contractors Group (EFCOG), to provide execution support to the EM Quality Assurance (QA) Corporate Board. The Board serves a vital and critical role in ensuring that the EM mission is completed safely, correctly, and efficiently. 2015 Quality Assurance Improvement

  5. Environmental Monitoring Program Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Holland, R.C.

    1993-06-01

    The Quality Assurance Project Plan (QAPP) is intended to document the quality assurance of the Environmental Monitoring Program. The Quality Assurance Project Plan has two parts and is written to become a chapter in the Environmental Monitoring Plan. Part A describes the management responsibilities and activities performed to assure the quality of the Environmental Monitoring Program. Part B covers the documentation requirements for changes in the Monitoring Program, and provides details on control of the design and implementation of quality assurance activities.

  6. Safety & Quality Assurance

    Broader source: Energy.gov [DOE]

    Together, our Facility Operations Division and Engineering, Safety and Quality Division work to ensure EM conducts its operations and cleanup safely through sound practices. These divisions ensure...

  7. Implementation of Remote 3-Dimensional Image Guided Radiation Therapy Quality Assurance for Radiation Therapy Oncology Group Clinical Trials

    SciTech Connect (OSTI)

    Cui Yunfeng; Galvin, James M.; Radiation Therapy Oncology Group, American College of Radiology, Philadelphia, Pennsylvania ; Parker, William; Breen, Stephen; Yin Fangfang; Cai Jing; Papiez, Lech S.; Li, X. Allen; Bednarz, Greg; Chen Wenzhou; Xiao Ying

    2013-01-01

    Purpose: To report the process and initial experience of remote credentialing of three-dimensional (3D) image guided radiation therapy (IGRT) as part of the quality assurance (QA) of submitted data for Radiation Therapy Oncology Group (RTOG) clinical trials; and to identify major issues resulting from this process and analyze the review results on patient positioning shifts. Methods and Materials: Image guided radiation therapy datasets including in-room positioning CT scans and daily shifts applied were submitted through the Image Guided Therapy QA Center from institutions for the IGRT credentialing process, as required by various RTOG trials. A centralized virtual environment is established at the RTOG Core Laboratory, containing analysis tools and database infrastructure for remote review by the Physics Principal Investigators of each protocol. The appropriateness of IGRT technique and volumetric image registration accuracy were evaluated. Registration accuracy was verified by repeat registration with a third-party registration software system. With the accumulated review results, registration differences between those obtained by the Physics Principal Investigators and from the institutions were analyzed for different imaging sites, shift directions, and imaging modalities. Results: The remote review process was successfully carried out for 87 3D cases (out of 137 total cases, including 2-dimensional and 3D) during 2010. Frequent errors in submitted IGRT data and challenges in the review of image registration for some special cases were identified. Workarounds for these issues were developed. The average differences of registration results between reviewers and institutions ranged between 2 mm and 3 mm. Large discrepancies in the superior-inferior direction were found for megavoltage CT cases, owing to low spatial resolution in this direction for most megavoltage CT cases. Conclusion: This first experience indicated that remote review for 3D IGRT as part of QA

  8. Quality Assurance Requirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements Quality Assurance Requirements The QARD provides the framework for both the achievement and verification of quality. Quality Assurance Requirements and Description (1.37 MB) More Documents & Publications Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description QA Corporate Board Meeting - December 2013 Protocol for EM Review/Field Self-Assessment of Site Specific Quality Assurance Programs/Quality Implementation Plans

  9. DOE Order on Quality Assurance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AVAILABLE ONLINE AT: INITIATED BY: www.directives.doe.gov Office of Health, Safety and Security U.S. Department of Energy ORDER Washington, D.C. Approved: 4-25-2011 SUBJECT: QUALITY ASSURANCE 1. PURPOSE. a. To ensure that Department of Energy (DOE), including National Nuclear Security Administration (NNSA), products and services meet or exceed customers' requirements and expectations. b. To achieve quality for all work based upon the following principles: (1) All work, as defined in this Order,

  10. Waste Management Quality Assurance Plan

    SciTech Connect (OSTI)

    Not Available

    1993-11-30

    Lawrence Berkeley Laboratory`s Environment Department addresses its responsibilities through activities in a variety of areas. The need for a comprehensive management control system for these activities has been identified by the Department of Energy (DOE). The WM QA (Waste Management Quality Assurance) Plan is an integral part of a management system that provides controls necessary to ensure that the department`s activities are planned, performed, documented, and verified. This WM QA Plan defines the requirements of the WM QA program. These requirements are derived from DOE Order 5700.6C, Quality Assurance, the LBL Operating and Assurance Program Plan (OAP, LBL PUB-3111), and other environmental compliance documents applicable to WM activities. The requirements presented herein, as well as the procedures and methodologies that direct the implementation of these requirements, will undergo review and revisions as necessary. The provisions of this QA Plan and its implementing documents apply to quality-affecting activities performed by and for WM. It is also applicable to WM contractors, vendors, and other LBL organizations associated with WM activities, except where such contractors, vendors, or organizations are governed by their own WM-approved QA programs. References used in the preparation of this document are (1) ASME NQA-1-1989, (2) ANSI/ASQC E4 (Draft), (3) Waste Management Quality Assurance Implementing Management Plan (LBL PUB-5352, Rev. 1), (4) LBL Operating and Assurance Program Plan (OAP), LBL PUB-3111, 2/3/93. A list of terms and definitions used throughout this document is included as Appendix A.

  11. Quality Assurance Specialist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assurance Specialist Quality Assurance Specialist Submitted by admin on Sun, 2016-06-26 00:15 Job Summary Organization Name Department Of Energy Agency SubElement ...

  12. Quality Assurance Guide for Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-27

    This Guide provides acceptable approaches for implementing the Quality Assurance requirements and criteria of DOE O 413.3A related to the development and implementation of a Quality Assurance Program for the project. No cancellations.

  13. Quality Assurance Corporate Board | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Any questions concerning the EM Quality Assurance Corporate Board can be directed to Bob Murray, Director for the Office of Standards and Quality Assurance, at 202-586-1426. ...

  14. Safety Software Quality Assurance- Central Registry

    Broader source: Energy.gov [DOE]

    The Department of Energy maintains a list of "toolbox" codes that have been evaluated against DOE Safety Software Quality Assurance (SSQA) requirements of DOE O 414.1D, Quality Assurance, and its...

  15. EM Quality Assurance Centralized Training Platform Project Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management Quality Assurance EM Quality Assurance Centralized Training Platform Project Plan for 2009-2010 EM Quality Assurance Centralized Training Platform Project...

  16. Quality Assurance Project Plan for the treatability study of in situ vitrification of Seepage Pit 1 in Waste Area Grouping 7 at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    NONE

    1995-07-01

    This Quality Assurance Project Plan (QAPjP) establishes the quality assurance procedures and requirements to be implemented for the control of quality-related activities for Phase 3 of the Treatability Study (TS) of In Situ Vitrification (ISV) of Seepage Pit 1, ORNL Waste Area Grouping 7. This QAPjP supplements the Quality Assurance Plan for Oak Ridge National Laboratory Environmental Restoration Program by providing information specific to the ISV-TS. Phase 3 of the TS involves the actual ISV melt operations and posttest monitoring of Pit 1 and vicinity. Previously, Phase 1 activities were completed, which involved determining the boundaries of Pit 1, using driven rods and pipes and mapping the distribution of radioactivity using logging tools within the pipes. Phase 2 involved sampling the contents, both liquid and solids, in and around seepage Pit 1 to determine their chemical and radionuclide composition and the spatial distribution of these attributes. A separate QAPjP was developed for each phase of the project. A readiness review of the Phase 3 activities presented QAPjP will be conducted prior to initiating field activities, and an Operational Acceptance, Test (OAT) will also be conducted with no contamination involved. After, the OAT is complete, the ISV process will be restarted, and the melt will be allowed to increase with depth and incorporate the radionuclide contamination at the bottom of Pit 1. Upon completion of melt 1, the equipment will be shut down and mobilized to an adjacent location at which melt 2 will commence.

  17. An operational health physics quality assurance program

    SciTech Connect (OSTI)

    Costigan, S.A.; McAtee, J.L. III; Somers, W.M.; Huchton, R.L.

    1996-06-01

    DOE Order 5700.6C, Quality Assurance, stipulates QA requirements for all DOE activities. This order is now codified as 10CFR830.120, Nuclear Safety Management, Quality Assurance Requirements, which is applicable to DOE nuclear facilities. A Quality Assurance Management Plan (QAMP) was developed by the Health Physics Operations Group (ESH-1) at Los Alamos National Laboratory (LANL). The goal of the ESH-1 QAMP is to ensure that operational radiation protection activities meet the criteria outlined in DOE Order 5700.6C, DOE-ER-STD-6001-92 and 10CFR830.120. The ten required elements are QA Program, Personal Training and Qualifications, Quality Improvement, Documents and Records, Work Processes, Design, Procurement, Inspection and Acceptance Testing, Management Assessment and Independent Assessment. The QAMP has been useful for the development of QAMPs at nuclear facilities and has helped ensure uniformity of institutional requirements where Health Physics services are deployed to facilities. To implement a subset of QAMP requirements, a Quality Assurance Self-Evaluation Program (QASE) was established. This program provides a novel self-audit mechanism for the formal identification and correction of non-conforming items related to Operational Health Physics. Additionally, the QASE is a useful management tool for Radiological Control Technician Supervisors and staff and provides a tracking mechanism for ongoing problem areas. Data have been Collected for two calendar years on a number of concerns that fall into four general categories: radiological posting and labeling, instrumentation, monitoring requirements, and radiological documents/records.

  18. Quality assurance program plan for Building 327

    SciTech Connect (OSTI)

    Tanke, J.M.

    1997-05-22

    This Quality Assurance Program Plan (QAPP) provides an overview of the quality assurance program for Building 327. The program applies to the facility safety structures, systems, and components and to activities that could affect safety structures, systems, and components. Adherence to the quality assurance program ensures the following: US Department of Energy missions and objectives are effectively accomplished; Products and services are safe, reliable, and meet or exceed the requirements and expectations of the user; Hazards to the public, to Hanford Site and facility workers, and to the environment are minimized. The format of this Quality Assurance Program Plan is structured to parallel that of 10 CFR 83 0.120, Quality Assurance Requirements. This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the 324 Building B-Cell Safety Cleanout Project (BCCP). This QAPP is responsive to the Westinghouse Hanford Company Quality Assurance Program and Implementation Plan, WHC-SP 113 1, for 10 CFR 830.120, Nuclear Safety Management, Quality Assurance Requirements; and DOE Order 5700.6C, Quality Assurance. This QAPP supersedes PNNL PNL-MA-70 QAP Quality Assurance Plan No. WTC-050 Rev. 2, issue date May 3, 1996.

  19. Graded quality assurance in procurement

    SciTech Connect (OSTI)

    Fan, D.C.

    1995-12-31

    The Code of Federal Regulations, Part 50, Appendix B, requires every applicant for an operating license to include in its final safety analysis report information pertaining to the managerial and administrative controls to be used to ensure safe operation. This appendix establishes quality assurance requirements for the design, construction, and operation of those structures, systems, and components (SSC) that perform safety-related functions. The activities affecting safety-related SSC functions include designing, purchasing, fabricating, and so forth, Title 10 CFR 50.65 established requirements to ensure that the maintenance activities conducted by licensees are effective. This is also known as the maintenance rule.

  20. QUALITY ASSURANCE EXCHANGE July 2005 Volume 1 Issue 1

    Broader source: Energy.gov [DOE]

    QUALITY ASSURANCE EXCHANGE July 2005 Volume 1 Issue 1 US Department of Energy, Office of Quality Assurance Programs (EH-31)

  1. Waste Receipt Quality Assurance Program - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receipt Quality Assurance Program About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Receipt Quality Assurance Program Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size The Hanford Site has a

  2. Quality assurance program plan fuel supply shutdown

    SciTech Connect (OSTI)

    Metcalf, I.L.

    1998-09-21

    This Quality Assurance Program plan (QAPP) describes how the Fuel Supply Shutdown (FSS) project organization implements the quality assurance requirements of HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) and the B and W Hanford Company Quality Assurance Program Plan (QAPP), FSP-MP-004. The QAPP applies to facility structures, systems, and components and to activities (e.g., design, procurement, testing, operations, maintenance, etc.) that could affect structures, systems, and components. This QAPP also provides a roadmap of applicable Project Hanford Policies and Procedures (PHPP) which may be utilized by the FSS project organization to implement the requirements of this QAPP.

  3. Waste Receipt Quality Assurance Program - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receipt Quality Assurance Program About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual...

  4. Quality Assurance Program Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Each employee is expected to do the job in accordance with procedures and other ... Communication and Outreach Stakeholder Satisfaction Survey CERCLA Sites Quality Assurance ...

  5. SOPP-43, EM-23 Quality Assurance Oversight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POLICY: The Office of Environmental Management (EM) Quality Assurance program requirements and expectations are documented in the EM Quality Assurance Program (QAP), EM-QA-001, dated October 2008. The QAP is the EM management system to ensure that all EM organizations "do work correctly." The QAP meets the requirements of DOE O 414.1C, Quality Assurance, and 10 CFR 830 Subpart A "Quality Assurance Requirements." The QAP demonstrates how QA and the Integrated Safety

  6. FAQS Reference Guide – Weapon Quality Assurance

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the August 2008 edition of DOE-STD-1025-2008, Weapon Quality Assurance Functional Area Qualification Standard.

  7. Safety Software Quality Assurance Functional Area Qualification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    72-2011, Safety Software Quality Assurance Functional Area Qualification Standard by Diane Johnson This SSQA FAQS identifies the minimum technical competency requirements for DOE...

  8. Keys to Successful Quality Assurance and Quality Control Programs (101) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Keys to Successful Quality Assurance and Quality Control Programs (101) Keys to Successful Quality Assurance and Quality Control Programs (101) Better Buildings Residential Network Peer Exchange Call Series: Keys to Successful Quality Assurance and Quality Control Programs (101), call slides and discussion summary. Call Slides and Discussion Summary (1.79 MB) More Documents & Publications Quality Control, Standardization of Upgrades, and Workforce Expectations Home

  9. Quality assurance manual: Volume 2, Appendices

    SciTech Connect (OSTI)

    Oijala, J.E.

    1988-06-01

    This paper contains quality assurance information on departments of the Stanford Linear Accelerator Center. Particular quality assurance policies and standards discussed are on: Mechanical Systems; Klystron and Microwave Department; Electronics Department; Plant Engineering; Accelerator Department; Purchasing; and Experimental Facilities Department. (LSP)

  10. SWiFT Software Quality Assurance Plan.

    SciTech Connect (OSTI)

    Berg, Jonathan Charles

    2016-01-01

    This document describes the software development practice areas and processes which contribute to the ability of SWiFT software developers to provide quality software. These processes are designed to satisfy the requirements set forth by the Sandia Software Quality Assurance Program (SSQAP). APPROVALS SWiFT Software Quality Assurance Plan (SAND2016-0765) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Controls Engineer Jonathan Berg (6121) Date CHANGE HISTORY Issue Date Originator(s) Description A 2016/01/27 Jon Berg (06121) Initial release of the SWiFT Software Quality Assurance Plan

  11. Assuring quality in high-consequence engineering

    SciTech Connect (OSTI)

    Hoover, Marcey L.; Kolb, Rachel R.

    2014-03-01

    In high-consequence engineering organizations, such as Sandia, quality assurance may be heavily dependent on staff competency. Competency-dependent quality assurance models are at risk when the environment changes, as it has with increasing attrition rates, budget and schedule cuts, and competing program priorities. Risks in Sandia's competency-dependent culture can be mitigated through changes to hiring, training, and customer engagement approaches to manage people, partners, and products. Sandia's technical quality engineering organization has been able to mitigate corporate-level risks by driving changes that benefit all departments, and in doing so has assured Sandia's commitment to excellence in high-consequence engineering and national service.

  12. SAPHIRE 8 Software Quality Assurance Oversight

    SciTech Connect (OSTI)

    Kurt G. Vedros

    2011-09-01

    The software quality assurance oversight consists of updating and maintaining revision control of the SAPHIRE 8 quality assurance program documentation and of monitoring revision control of the SAPHIRE 8 source code. This report summarizes the oversight efforts through description of the revision control system (RCS) setup, operation and contents. Documents maintained under revision control include the Acceptance Test Plan (ATP), Configuration Management Plan, Quality Assurance Plan, Software Project Plan, Requirements Traceability Matrix (RTM), System Test Plan, SDP Interface Training Manual, and the SAPHIRE 8, 'New Features and Capabilities Overview'.

  13. Audit of the DOE's Commercial Laboratory Quality Assurance Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Quality Assurance Evaluation Requirement The Department's Quality Assurance Order, 5700.6C dated August 21, 1991, requires that contractors confirm that subcontract commercial ...

  14. Quality Assurance Exchange August 2009, Volume 5 Issue 2

    Broader source: Energy.gov [DOE]

    Quality Assurance Exchange August 2009, Volume 5 Issue 2 U.S. Department of Energy Office of Quality Assurance Policy and Assistance

  15. Quality Assurance Exchange June 2006, Volume 2 Issue 2

    Broader source: Energy.gov [DOE]

    Quality Assurance Exchange June 2006, Volume 2 Issue 2 U.S. Department of Energy, Office of Corporate Performance Assessment Office of Quality Assurance Programs (EH-31)

  16. Automated Office Systems Support (AOSS) Quality Assurance Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A quality assurance model, including checklists, for activity relative to network and desktop computer support. Automated Office Systems Support (AOSS) Quality Assurance Model ...

  17. Nuclear Waste Partnership (NWP) Quality Assurance Program Description...

    Office of Environmental Management (EM)

    Waste Partnership (NWP) Quality Assurance Program Description (QAPD) Nuclear Waste Partnership (NWP) Quality Assurance Program Description (QAPD) The documents included in this ...

  18. Understanding DOE Quality Assurance Requirements and ASME NQA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Quality Assurance Requirements and ASME NQA-1 For Application in DOE Nuclear Projects Training Agenda Understanding DOE Quality Assurance Requirements and ASME NQA-1 For ...

  19. EM Quality Assurance Assessment Schedule FY 2010 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2010 EM Quality Assurance Assessment Schedule FY 2010 Attached for planning and coordination purposes is the updated Quality Assurance (QA) assessment schedule for the...

  20. QUALITY ASSURANCE EXCHANGE December 2005 Volume 1 Issue 3

    Broader source: Energy.gov [DOE]

    QUALITY ASSURANCE EXCHANGE December 2005 Volume 1 Issue 3 U.S. Department of Energy, Office of Corporate Performance Assessment Office of Quality Assurance Programs (EH-31)

  1. Quality Assurance Exchange March 2006, Volume 2 Issue 1

    Broader source: Energy.gov [DOE]

    Quality Assurance Exchange March 2006, Volume 2 Issue 1 U.S. Department of Energy, Office of Corporate Performance Assessment Office of Quality Assurance Programs (EH-31)

  2. Quality Assurance Exchange Winter 2010 Volume 6 Issue 1

    Broader source: Energy.gov [DOE]

    Quality Assurance Exchange Winter 2010 Volume 6 Issue 1 U.S. Department of Energy Office of Quality Assurance Policy and Assistance

  3. Quality Assurance Exchange October 2008 Volume 4 Issue 2

    Broader source: Energy.gov [DOE]

    Quality Assurance Exchange October 2008 Volume 4 Issue 2 U.S. Department of Energy Office of Quality Assurance Policy and Assistance

  4. FAQS Gap Analysis Qualification Card - Quality Assurance | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assurance FAQS Gap Analysis Qualification Card - Quality Assurance Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between ...

  5. Quality Assurance Checklists for Video, Animations, and Audio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Videos, Animations, & Audio Quality Assurance Checklists for Video, Animations, and Audio Web Requirements Quality Assurance Checklists for Video, Animations, and Audio Web ...

  6. Quality Assurance Checklists for Energy.gov Web Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy.gov Content Management System Quality Assurance Checklists for Energy.gov Web Requirements Quality Assurance Checklists for Energy.gov Web Requirements For Office of ...

  7. Quality Assurance Guide for Project Management - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, Quality Assurance Guide for Project Management by John Makepeace Functional areas: Project Management, Quality Assurance and Oversight This Guide provides acceptable approaches...

  8. FAQS Reference Guide – Quality Assurance

    Broader source: Energy.gov [DOE]

    This reference guide has been developed to address the competency statements in the April 2002 edition of DOE-Standard (STD)-1150-2002, Quality Assurance Functional Area Qualification Standard.

  9. Quality Assurance Guide for Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-27

    This Guide provides information to assist U.S. Department of Energy (DOE) Federal Project Directors (FPD) and their Integrated Project Teams (IPT) in carrying out their Quality Assurance (QA)-related roles and responsibilities.

  10. Quality Assurance for Critical Decision Reviews RM

    Broader source: Energy.gov [DOE]

    The purpose of this Quality Assurance for Capital Project Critical Decision Review Module (QA RM) is to identify, integrate, and clarify the QA performance objectives, criteria, and guidance needed...

  11. Transuranic Waste Characterization Quality Assurance Program Plan

    SciTech Connect (OSTI)

    NONE

    1995-04-30

    This quality assurance plan identifies the data necessary, and techniques designed to attain the required quality, to meet the specific data quality objectives associated with the DOE Waste Isolation Pilot Plant (WIPP). This report specifies sampling, waste testing, and analytical methods for transuranic wastes.

  12. Automating linear accelerator quality assurance

    SciTech Connect (OSTI)

    Eckhause, Tobias; Thorwarth, Ryan; Moran, Jean M.; Al-Hallaq, Hania; Farrey, Karl; Ritter, Timothy; DeMarco, John; Pawlicki, Todd; Kim, Gwe-Ya; Popple, Richard; Sharma, Vijeshwar; Park, SungYong; Perez, Mario; Booth, Jeremy T.

    2015-10-15

    Purpose: The purpose of this study was 2-fold. One purpose was to develop an automated, streamlined quality assurance (QA) program for use by multiple centers. The second purpose was to evaluate machine performance over time for multiple centers using linear accelerator (Linac) log files and electronic portal images. The authors sought to evaluate variations in Linac performance to establish as a reference for other centers. Methods: The authors developed analytical software tools for a QA program using both log files and electronic portal imaging device (EPID) measurements. The first tool is a general analysis tool which can read and visually represent data in the log file. This tool, which can be used to automatically analyze patient treatment or QA log files, examines the files for Linac deviations which exceed thresholds. The second set of tools consists of a test suite of QA fields, a standard phantom, and software to collect information from the log files on deviations from the expected values. The test suite was designed to focus on the mechanical tests of the Linac to include jaw, MLC, and collimator positions during static, IMRT, and volumetric modulated arc therapy delivery. A consortium of eight institutions delivered the test suite at monthly or weekly intervals on each Linac using a standard phantom. The behavior of various components was analyzed for eight TrueBeam Linacs. Results: For the EPID and trajectory log file analysis, all observed deviations which exceeded established thresholds for Linac behavior resulted in a beam hold off. In the absence of an interlock-triggering event, the maximum observed log file deviations between the expected and actual component positions (such as MLC leaves) varied from less than 1% to 26% of published tolerance thresholds. The maximum and standard deviations of the variations due to gantry sag, collimator angle, jaw position, and MLC positions are presented. Gantry sag among Linacs was 0.336 ± 0.072 mm. The

  13. Redesigning Radiotherapy Quality Assurance: Opportunities to Develop an Efficient, Evidence-Based System to Support Clinical Trials-Report of the National Cancer Institute Work Group on Radiotherapy Quality Assurance

    SciTech Connect (OSTI)

    Bekelman, Justin E.; Deye, James A.; Vikram, Bhadrasain; Bentzen, Soren M.; Bruner, Deborah; Curran, Walter J.; Dignam, James; Efstathiou, Jason A.; FitzGerald, T.J.; Hurkmans, Coen; Ibbott, Geoffrey S.; Lee, J. Jack; Merchant, Thomas E.; Michalski, Jeff; Palta, Jatinder R.; Simon, Richard; Ten Haken, Randal K.; Timmerman, Robert; Tunis, Sean; Coleman, C. Norman; and others

    2012-07-01

    Purpose: In the context of national calls for reorganizing cancer clinical trials, the National Cancer Institute sponsored a 2-day workshop to examine challenges and opportunities for optimizing radiotherapy quality assurance (QA) in clinical trial design. Methods and Materials: Participants reviewed the current processes of clinical trial QA and noted the QA challenges presented by advanced technologies. The lessons learned from the radiotherapy QA programs of recent trials were discussed in detail. Four potential opportunities for optimizing radiotherapy QA were explored, including the use of normal tissue toxicity and tumor control metrics, biomarkers of radiation toxicity, new radiotherapy modalities such as proton beam therapy, and the international harmonization of clinical trial QA. Results: Four recommendations were made: (1) to develop a tiered (and more efficient) system for radiotherapy QA and tailor the intensity of QA to the clinical trial objectives (tiers include general credentialing, trial-specific credentialing, and individual case review); (2) to establish a case QA repository; (3) to develop an evidence base for clinical trial QA and introduce innovative prospective trial designs to evaluate radiotherapy QA in clinical trials; and (4) to explore the feasibility of consolidating clinical trial QA in the United States. Conclusion: Radiotherapy QA can affect clinical trial accrual, cost, outcomes, and generalizability. To achieve maximum benefit, QA programs must become more efficient and evidence-based.

  14. DOE Order on Quality Assurance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assurance » DOE Order on Quality Assurance DOE Order on Quality Assurance The purpose of this order is to ensure that Department of Energy (DOE), including National Nuclear Security Administration (NNSA), products and services meet or exceed customers' requirements and expectations. DOE Order on Quality Assurance (252.09 KB) More Documents & Publications Order Module--DOE O 414.1D, QUALITY ASSURANCE Order Module--SAFETY SOFTWARE GUIDE FOR USE WITH 10 CFR 830, SUBPART A, QUALITY

  15. The Groundwater Performance Assessment Project Quality Assurance Plan

    SciTech Connect (OSTI)

    Walker, Thomas G.

    2005-01-26

    This document provides the quality assurance guidelines that will be followed by the groundwater project.

  16. Quality Assurance Project Plan for the Environmental Monitoring Program in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    Waste Area Grouping (WAG) 6 is a hazardous and low-level radioactive waste disposal site at Oak Ridge National Laboratory (ORNL). Extensive site investigations have revealed contaminated surface water, sediments, groundwater, and soils. Based on the results of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) conducted from 1989--1991 and on recent interactions with the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), a decision was made to defer implementing source control remedial measures at the WAG. The information shows WAG 6 contributes < 2% of the total off-site contaminant risk released over White Oak Dam (WOD). The alternative selected to address hazards at WAG 6 involves maintenance of site access controls to prevent public exposure to on-site contaminants, continued monitoring of contaminant releases to determine if source control measures will be required in the future, and development of technologies to support final remediation of WAG 6. This Quality Assurance Project Plan (QAPjP) has been developed as part of the Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE/OR/01-1192&D1). Environmental monitoring will be conducted in two phases: the baseline monitoring phase and the routine annual monitoring phase. The baseline monitoring phase will be conducted to establish the baseline contaminant release conditions at the Waste Area Grouping (WAG), to confirm the site-related chemicals of concern (COC), and to gather data to confirm the site hydrologic model. The baseline monitoring phase is expected to begin in 1994 and continue for 12-18 months. The routine annual monitoring phase will consist of continued sampling and analyses of COC to determine off-WAG contaminant flux, to identify trends in releases, and to confirm the COC. The routine annual monitoring phase will continue for {approximately}4 years.

  17. Office of Civilian Radioactive Waste Management-Quality Assurance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements and Description | Department of Energy Management-Quality Assurance Requirements and Description Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description A report detailling the requirements and description of the Quality Assurance program. Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description (566.23 KB) More Documents & Publications Quality Assurance Requirements Civilian Radioactive Waste

  18. Quality Assurance Source Requirements Traceability Database

    SciTech Connect (OSTI)

    MURTHY, R., NAYDENOVA, A., DEKLEVER, R., BOONE, A.

    2006-01-30

    At the Yucca Mountain Project the Project Requirements Processing System assists in the management of relationships between regulatory and national/industry standards source criteria, and Quality Assurance Requirements and Description document (DOE/R W-0333P) requirements to create compliance matrices representing respective relationships. The matrices are submitted to the U.S. Nuclear Regulatory Commission to assist in the commission's review, interpretation, and concurrence with the Yucca Mountain Project QA program document. The tool is highly customized to meet the needs of the Office of Civilian Radioactive Waste Management Office of Quality Assurance.

  19. Quality assurance plan for the design and construction of Waste Area Grouping 6 Closure at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The WAG 6 Closure Quality Assurance Plan establishes the procedures and requirements to be implemented for control of quality-related activities for the WAG 6 Closure project that are subject to the application of the Martin Marietta Energy Systems, Inc. (Energy Systems) QA Program, the Environmental Restoration Division QA Program, and other quality requirements. These activities may be performed by Energy Systems organizations, a subcontractor to Energy Systems, an architect-engineer (A-E) under prime contract to the Department of Energy (DOE), and/or a construction manager under prime contract to DOE. This plan specifies the overall Energy Systems Engineering quality requirements for the project. The WAG 6 Closure QA Plan will be supplemented by subproject QA plans that will identify additional requirements pertaining to each subproject.

  20. Quality assurance plan for the design and construction of Waste Area Grouping 6 Closure at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The WAG 6 Closure Quality Assurance Plan establishes the procedures and requirements to be implemented for control of quality-related activities for the WAG 6 Closure project that are subject to the application of the Martin Marietta Energy Systems, Inc. (Energy Systems) QA Program, the Environmental Restoration Division QA Program, and other quality requirements. These activities may be performed by Energy Systems organizations, a subcontractor to Energy Systems, an architect-engineer (A-E) under prime contract to the Department of Energy (DOE), and/or a construction manager under prime contract to DOE. This plan specifies the overall Energy Systems Engineering quality requirements for the project. The WAG 6 Closure QA Plan will be supplemented by subproject QA plans that will identify additional requirements pertaining to each subproject.

  1. Quality Assurance Functional Area Qualification Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-12-02

    The Quality Assurance (QA) Functional Area Qualification Standard (FAQS) establishes common functional area competency requirements for all DOE QA personnel who provide assistance, direction, guidance, oversight, or evaluation of contractor technical activities that could impact the safe operation of DOE’s defense nuclear facilities.

  2. 222-S laboratory quality assurance plan

    SciTech Connect (OSTI)

    Meznarich, H.K.

    1995-04-01

    This document provides quality assurance guidelines and quality control requirements for analytical services. This document is designed on the basis of Hanford Analytical Services Quality Assurance Plan (HASQAP) technical guidelines and is used for governing 222-S and 222-SA analytical and quality control activities. The 222-S Laboratory provides analytical services to various clients including, but not limited to, waste characterization for the Tank Waste Remediation Systems (TWRS), waste characterization for regulatory waste treatment, storage, and disposal (TSD), regulatory compliance samples, radiation screening, process samples, and TPA samples. A graded approach is applied on the level of sample custody, QC, data verification, and data reporting to meet the specific needs of the client.

  3. Office of Standards and Quality Assurance Correspondence | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Services » Program Management » Quality Assurance » Office of Standards and Quality Assurance Correspondence Office of Standards and Quality Assurance Correspondence The Safety, Security, and Quality Programs (EM-40) and subsequently the Office of Standards and Quality Assurance (EM-43) place a large emphasis on the fact that the Environmental Management (EM) work of safely cleaning up the environmental legacy of the Cold War is performed in the Field. A primary role of our

  4. Nuclear Safety Software & Quality Assurance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Software & Quality Assurance Nuclear Safety Software & Quality Assurance Nuclear Safety Software & Quality Assurance In support of DOE O 410.1, Central Technical Authority Responsibilities Regarding Nuclear Safety Requirements, the Chief of Nuclear Safety (CNS) provides operational awareness, oversight, and assistance to Environmental Management (EM) Headquarters, field offices, and their contractors in the areas of nuclear safety Quality Assurance (QA) and Software Quality

  5. ROC analysis in patient specific quality assurance

    SciTech Connect (OSTI)

    Carlone, Marco; MacPherson, Miller; Cruje, Charmainne; Rangel, Alejandra; McCabe, Ryan; Nielsen, Michelle

    2013-04-15

    Purpose: This work investigates the use of receiver operating characteristic (ROC) methods in patient specific IMRT quality assurance (QA) in order to determine unbiased methods to set threshold criteria for {gamma}-distance to agreement measurements. Methods: A group of 17 prostate plans was delivered as planned while a second group of 17 prostate plans was modified with the introduction of random multileaf collimator (MLC) position errors that are normally distributed with {sigma}{approx}{+-}0.5, {+-}1.0, {+-}2.0, and {+-}3.0 mm (a total of 68 modified plans were created). All plans were evaluated using five different {gamma}-criteria. ROC methodology was applied by quantifying the fraction of modified plans reported as 'fail' and unmodified plans reported as 'pass.'Results: {gamma}-based criteria were able to attain nearly 100% sensitivity/specificity in the detection of large random errors ({sigma} > 3 mm). Sensitivity and specificity decrease rapidly for all {gamma}-criteria as the size of error to be detected decreases below 2 mm. Predictive power is null with all criteria used in the detection of small MLC errors ({sigma} < 0.5 mm). Optimal threshold values were established by determining which criteria maximized sensitivity and specificity. For 3%/3 mm {gamma}-criteria, optimal threshold values range from 92% to 99%, whereas for 2%/2 mm, the range was from 77% to 94%. Conclusions: The optimal threshold values that were determined represent a maximized test sensitivity and specificity and are not subject to any user bias. When applied to the datasets that we studied, our results suggest the use of patient specific QA as a safety tool that can effectively prevent large errors (e.g., {sigma} > 3 mm) as opposed to a tool to improve the quality of IMRT delivery.

  6. Quality Assurance Exchange April 2009, Volume 5 Issue 1

    Office of Energy Efficiency and Renewable Energy (EERE)

    Quality Assurance ExchangeA pril 2009, Volume 5 Issue 1 U.S. Department of Energy Office of Quality Assurance Policy and Assistance IN THE SPOTLIGHT: GEORGE DETSIS, PROGRAM MANAGER Analytical Services Program Office of Corporate Safety Programs

  7. Quality Assurance Exchange September 2005, Volume 1 Issue 2

    Broader source: Energy.gov [DOE]

    Quality Assurance Exchange September 2005, Volume 1 Issue 2 U.S. Department of Energy, Off ice of Corporate Performance Assessment Off ice of Quality Assurance Programs (EH-31)

  8. Microsoft Word - CBFO Names Randy Unger Director of Quality Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CBFO Names Randy Unger Director of Quality Assurance CARLSBAD, N.M., June 14, 2011 -Randy Unger has been named Director of Quality Assurance (QA) for the U.S. Department of...

  9. Quality Assurance Exchange January 2007, Volume 3 Issue 1

    Broader source: Energy.gov [DOE]

    Quality Assurance Exchange January 2007, Volume 3 Issue 1 U.S. Department of Energy Office of Corporate Safety Analysis

  10. Quality Assurance Exchange August 2007, Volume 3 Issue 2

    Broader source: Energy.gov [DOE]

    Quality Assurance Exchange August 2007, Volume 3 Issue 2 U.S. Department of Energy Office of Corporate Safety Analysis

  11. Quality Assurance Exchange Setpebmer 2007, Volume 3 Issue 3

    Broader source: Energy.gov [DOE]

    Quality Assurance Exchange Setpebmer 2007, Volume 3 Issue 3 U.S. Department of Energy Office of Corporate Safety Analysis

  12. NMMSS Software Quality Assurance Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NMMSS Software Quality Assurance Plan NMMSS Software Quality Assurance Plan The Software Quality Assurance Plan (SQAP) for the Nuclear Materials Management and Safeguard System (NMMSS) software upgrade project (an actual DOE software development project) can be used as a template to facilitate the creation of the SQA plan for your particular project NMMSS Software Quality Assurance Plan (164.99 KB) More Documents & Publications Configuration Management Plan Software Configuration Management

  13. CERCLA Sites Quality Assurance Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CERCLA Sites Quality Assurance Project Plan CERCLA Sites Quality Assurance Project Plan CERCLA Sites Quality Assurance Project Plan CERCLA Sites Quality Assurance Project Plan (905.68 KB) More Documents & Publications Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008 Closure Sites Performance of a Permeable Reactive Barrier Using Granular Zero-Valent Iron: FY 2004 Annual Report Durango, Colorado, Disposal Site

  14. Project Management Quality Assurance Guide, GPG 017 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Management Quality Assurance Guide, GPG 017 Project Management Quality Assurance Guide, GPG 017 LIFE CYCLE ASSET MANAGEMENT Good Practice Guide GPG-FM-017 Quality Assurance March 1996 Department of Energy Office of Field Management Office of Project and Fixed Asset Management Project Management Quality Assurance Guide, GPG 017 (303.89 KB) More Documents & Publications DOE-STD-1054-93 Independent Oversight Review, Waste Treatment and Immobilization Plant - May 2013 Site Selection

  15. Quality Assurance Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOT MEASUREMENT SENSITIVE DOE-STD-1150-2013 December 2013 DOE STANDARD QUALITY ASSURANCE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. DOE-STD-1150-2013 This document is available on the Department of Energy Technical Standards Program Website at http://www.hss.energy.gov/nuclearsafety/ns/techstds/ ii

  16. Operational excellence (six sigma) philosophy: Application to software quality assurance

    SciTech Connect (OSTI)

    Lackner, M.

    1997-11-01

    This report contains viewgraphs on operational excellence philosophy of six sigma applied to software quality assurance. This report outlines the following: goal of six sigma; six sigma tools; manufacturing vs administrative processes; Software quality assurance document inspections; map software quality assurance requirements document; failure mode effects analysis for requirements document; measuring the right response variables; and questions.

  17. Quality Assurance for Critical Decision Reviews RM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assurance for Critical Decision Reviews Module March 2010 CD-0 O 0 OFFICE OF Q C CD-1 F ENVIRO Standard R Quality A Rev Critical Decis CD-2 M ONMENTAL Review Plan Assuranc view Module sion (CD) Ap CD March 2010 L MANAGE n (SRP) e (QA) e pplicability D-3 EMENT CD-4 Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the

  18. EM Quality Assurance Centralized Training Platform Project Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project plan for the development of a centralized quality assurance training platform to develop a consistent approach and methodology to training personnel. PDF icon EM Quality ...

  19. SOPP-43, EM-23 Quality Assurance Oversight | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Program Management » Quality Assurance » SOPP-43, EM-23 Quality Assurance Oversight SOPP-43, EM-23 Quality Assurance Oversight Procedure to describe the process that will be utilized by the EM Office of Standards and Quality Assurance to guide its activities related to oversight and audit of the EM Field/site, project, and vendor QA programs. SOPP-43, EM-23 Quality Assurance Oversight (408.14 KB) More Documents & Publications Protocol for EM Review/Field Self-Assessment of

  20. 222-S Laboratory Quality Assurance Plan. Revision 1

    SciTech Connect (OSTI)

    Meznarich, H.K.

    1995-07-31

    This Quality Assurance Plan provides,quality assurance (QA) guidance, regulatory QA requirements (e.g., 10 CFR 830.120), and quality control (QC) specifications for analytical service. This document follows the U.S Department of Energy (DOE) issued Hanford Analytical Services Quality Assurance Plan (HASQAP). In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. Quality assurance elements required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAMS-004) and Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (QAMS-005) from the US Environmental Protection Agency (EPA) are covered throughout this document. A quality assurance index is provided in the Appendix A. This document also provides and/or identifies the procedural information that governs laboratory operations. The personnel of the 222-S Laboratory and the Standards Laboratory including managers, analysts, QA/QC staff, auditors, and support staff shall use this document as guidance and instructions for their operational and quality assurance activities. Other organizations that conduct activities described in this document for the 222-S Laboratory shall follow this QA/QC document.

  1. Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan | Department of Energy Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary objective of this report is to determine whether the existing Fuel Cycle Technologies (FCT) Quality Assurance Program Document (QAPD) is sufficient for work to be performed in the Used Fuel Disposition Campaign (UFDC), and where the existing QAPD is not sufficient, supply recommendations for changes to the QAPD to

  2. Better Buildings Workforce Peer Exchange Quality Assurance Strategies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Quality Assurance Strategies Better Buildings Workforce Peer Exchange Quality Assurance Strategies Better Buildings Workforce Peer Exchange Quality Assurance Strategies, call slides and discussion summary, November 17, 2011. Call Slides and Discussion Summary (669.89 KB) More Documents & Publications Better Buildings Workforce Peer Exchange Call: Kick-off Recruiting a Local and Diverse Workforce and Mitigating Barriers to Entry Better Buildings Neighborhood Program

  3. FUEL CYCLE TECHNOLOGIES QUALITY ASSURANCE PROGRAM DOCUMENT | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy FUEL CYCLE TECHNOLOGIES QUALITY ASSURANCE PROGRAM DOCUMENT FUEL CYCLE TECHNOLOGIES QUALITY ASSURANCE PROGRAM DOCUMENT The purpose of this Fuel Cycle Technologies (FCT) Quality Assurance Program Document (QAPD) is to define qualityassurance (QA) requirements for the FCT Program. These requirements are applicable to FCT activities and Participants (see definition) to the extent defined herein. In developing these requirements, it is recognized that each Department of Energy (DOE)

  4. Understanding DOE Quality Assurance Requirements and ASME NQA-1 For

    Office of Environmental Management (EM)

    Application in DOE Nuclear Projects Training Agenda | Department of Energy Agenda Understanding DOE Quality Assurance Requirements and ASME NQA-1 For Application in DOE Nuclear Projects Training Agenda Agenda for the Understanding DOE Quality Assurance Requirements and ASME NQA-1 For Application in DOE Nuclear Projects Training Workshop held on May 14, 2015. Agenda (36.02 KB) More Documents & Publications Understanding DOE Quality Assurance Requirements and ASME NQA-1 For Application in

  5. Understanding DOE Quality Assurance Requirements and ASME NQA-1 For

    Office of Environmental Management (EM)

    Application in DOE Nuclear Projects Training Materials | Department of Energy Materials Understanding DOE Quality Assurance Requirements and ASME NQA-1 For Application in DOE Nuclear Projects Training Materials Training Materials for the Understanding DOE Quality Assurance Requirements and ASME NQA-1 For Application in DOE Nuclear Projects Training Workshop held on May 14, 2015. Training Materials (4.27 MB) More Documents & Publications Understanding DOE Quality Assurance Requirements

  6. Communication Product Quality Assurance Checklists | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assurance Checklists Communication Product Quality Assurance Checklists These quality assurance checklists list the requirements for Office of Energy Efficiency and Renewable Energy (EERE) publication and exhibit communication products. Office Checklist The EERE Office Requestor, Subject Matter Expert, and/or the EERE Office Communications Lead should ensure the product meets the following requirements. Content is written for its intended audience(s). Content is free from grammatical

  7. Health, Safety, & Quality Assurance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health, Safety, & Quality Assurance Health, Safety, & Quality Assurance Nuclear Safety and Worker Safety and Health training Nuclear Safety and Worker Safety and Health training PPPO's Safety and Health, Nuclear Safety, and Quality Assurance programs collectively ensure protection of public and worker health and safety and the environment. This is accomplished by empowering and holding accountable managers, employees and contractors to prioritize health, safety and environmental

  8. Quality Assurance Program Plan for FFTF effluent controls. Revision 1

    SciTech Connect (OSTI)

    Seamans, J.A.

    1995-06-08

    This Quality Assurance Program Plan is specific to environmental related activities within the FFTF Property Protected Area. The activities include effluent monitoring and Low Level Waste Certification.

  9. Establishing the Office of Environmental Management Quality Assurance Corporate Board

    Broader source: Energy.gov [DOE]

    The purpose of this memorandum is to introduce the Office of Environmental Management (EM) Quality Assurance (QA) Corporate Board which implements EM'S policy and guidance and promotes lessons...

  10. Understanding DOE Quality Assurance Requirements and ASME NQA...

    Broader source: Energy.gov (indexed) [DOE]

    Materials for the Understanding DOE Quality Assurance Requirements and ASME NQA-1 For Application in DOE Nuclear ... DOE Nuclear Projects, A Management Overview and ...

  11. Nuclear Safety Software & Quality Assurance | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Safety Software & Quality Assurance In support of DOE O 410.1, Central Technical Authority Responsibilities Regarding Nuclear Safety Requirements, the Chief of Nuclear...

  12. EM Quality Assurance Policy, Revision 0 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy, Revision 0 EM Quality Assurance Policy, Revision 0 Previous EM policy on the use of the corporate Quality Assurance Program (EM-QA-001 Rev. 0). This document has been superseded by Revision 1 of the policy, but is still in use at some EM sites. EM Quality Assurance Policy, Revision 0 (259.04 KB) More Documents & Publications Line Management Understanding of QA and Oversight EM Quality Assurance Program (EM-QA-001 Revision 0) QA Corporate Board Meeting - February 2010 (Teleconference)

  13. Office of Civilian Radioactive Waste Management-Quality Assurance...

    Energy Savers [EERE]

    Quality Assurance Requirements Civilian Radioactive Waste Management System Requirements Document Root Cause Analysis Report In Response to Condition Report 5223 Regarding Emails ...

  14. Quality Assurance Checklists for Energy.gov Websites

    Broader source: Energy.gov [DOE]

    Use these quality assurance (QA) checklists for websites and Web pages in energy.gov's Drupal content management system to ensure they meet mandatory requirements:

  15. Review of the Sandia Site Office Quality Assurance Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    ... Plan, Rev. 10, 11212 * PLA 10-09, Software Quality Assurance Project Plan, Rev. 00, 1912 * Sandia Site Office Crosscutting Procedure 1304.02, Guidance and Expectations ...

  16. EM Quality Assurance Centralized Training Platform Project Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the Lead Auditor-under instruction (may not be the same as ... a college level curriculum addressing the basic knowledge of quality assurance principles, methods of ...

  17. Software quality assurance at the weapons engineering tritium facility

    SciTech Connect (OSTI)

    Hart, O.

    1997-11-01

    This report contains viewgraphs on the evolution of software quality assurance at the Weapons Engineering Tritium Facility in relation to DOE`s requirements for nuclear facilities.

  18. General Engineer/Physical Scientist (Quality Assurance Engineer)

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will perform oversight and evaluate the M&O; contractors performance in the following functional areas: nuclear facility and weapon quality assurance,...

  19. FAQS Qualification Card - Quality Assurance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs is a set of common Functional Area Qualification Standards (FAQS) and ... More Documents & Publications FAQS Gap Analysis Qualification Card - Quality Assurance ...

  20. Better Buildings Workforce Peer Exchange Quality Assurance Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7, 2011 Better Buildings Workforce Peer Exchange Quality Assurance Strategies Call Slides and Discussion Summary Agenda * Call Logistics and Introductions What is your program ...

  1. EM Quality Assurance Program (EM-QA-001 Revision 1)

    Broader source: Energy.gov [DOE]

    The purpose of this document is to describe the U.S. Department of Energy (DOE), Office of Environmental Management (EM) Quality Assurance Program (QAP).

  2. Quality Assurance Checklists for Video, Animations, and Audio Web Requirements

    Broader source: Energy.gov [DOE]

    Use these quality assurance (QA) checklists to ensure your audio files, flash animations, podcasts, and videos meet all Office of Energy Efficiency and Renewable Energy (EERE) standards.

  3. Real-Time Pretreatment Review Limits Unacceptable Deviations on a Cooperative Group Radiation Therapy Technique Trial: Quality Assurance Results of RTOG 0933

    SciTech Connect (OSTI)

    Gondi, Vinai; Cui, Yunfeng; Mehta, Minesh P.; Manfredi, Denise; Xiao, Ying; Galvin, James M.; Rowley, Howard; Tome, Wolfgang A.

    2015-03-01

    Purpose: RTOG 0933 was a phase II trial of hippocampal avoidance during whole brain radiation therapy for patients with brain metastases. The results demonstrated improvement in short-term memory decline, as compared with historical control individuals, and preservation of quality of life. Integral to the conduct of this trial were quality assurance processes inclusive of pre-enrollment credentialing and pretreatment centralized review of enrolled patients. Methods and Materials: Before enrolling patients, all treating physicians and sites were required to successfully complete a “dry-run” credentialing test. The treating physicians were credentialed based on accuracy of magnetic resonance imaging–computed tomography image fusion and hippocampal and normal tissue contouring, and the sites were credentialed based on protocol-specified dosimetric criteria. Using the same criteria, pretreatment centralized review of enrolled patients was conducted. Physicians enrolling 3 consecutive patients without unacceptable deviations were permitted to enroll further patients without pretreatment review, although their cases were reviewed after treatment. Results: In all, 113 physicians and 84 sites were credentialed. Eight physicians (6.8%) failed hippocampal contouring on the first attempt; 3 were approved on the second attempt. Eight sites (9.5%) failed intensity modulated radiation therapy planning on the first attempt; all were approved on the second attempt. One hundred thirteen patients were enrolled in RTOG 0933; 100 were analyzable. Eighty-seven cases were reviewed before treatment; 5 (5.7%) violated the eligibility criteria, and 21 (24%) had unacceptable deviations. With feedback, 18 cases were approved on the second attempt and 2 cases on the third attempt. One patient was treated off protocol. Twenty-two cases were reviewed after treatment; 1 (4.5%) violated the eligibility criteria, and 5 (23%) had unacceptable deviations. Conclusions: Although >95% of the

  4. SAPHIRE 8 Software Quality Assurance Plan

    SciTech Connect (OSTI)

    Curtis Smith

    2010-02-01

    This Quality Assurance (QA) Plan documents the QA activities that will be managed by the INL related to JCN N6423. The NRC developed the SAPHIRE computer code for performing probabilistic risk assessments (PRAs) using a personal computer (PC) at the Idaho National Laboratory (INL) under Job Code Number (JCN) L1429. SAPHIRE started out as a feasibility study for a PRA code to be run on a desktop personal PC and evolved through several phases into a state-of-the-art PRA code. The developmental activity of SAPHIRE was the result of two concurrent important events: The tremendous expansion of PC software and hardware capability of the 90s and the onset of a risk-informed regulation era.

  5. SAPHIRE 8 Volume 6 - Quality Assurance

    SciTech Connect (OSTI)

    C. L. Smith; R. Nims; K. J. Kvarfordt

    2011-03-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Version 8 is a software application developed for performing a complete probabilistic risk assessment using a personal computer running the Microsoft Windows operating system. SAPHIRE 8 is funded by the U.S. Nuclear Regulatory Commission (NRC). The role of the INL in this project is that of software developer and tester. This development takes place using formal software development procedures and is subject to quality assurance (QA) processes. The purpose of this document is to describe how the SAPHIRE software QA is performed for Version 8, what constitutes its parts, and limitations of those processes. In addition, this document describes the Independent Verification and Validation that was conducted for Version 8 as part of an overall QA process.

  6. Hanford analytical services quality assurance requirements documents

    SciTech Connect (OSTI)

    Hyatt, J.E.

    1997-09-25

    Hanford Analytical Services Quality Assurance Requirements Document (HASQARD) is issued by the Analytical Services, Program of the Waste Management Division, US Department of Energy (US DOE), Richland Operations Office (DOE-RL). The HASQARD establishes quality requirements in response to DOE Order 5700.6C (DOE 1991b). The HASQARD is designed to meet the needs of DOE-RL for maintaining a consistent level of quality for sampling and field and laboratory analytical services provided by contractor and commercial field and laboratory analytical operations. The HASQARD serves as the quality basis for all sampling and field/laboratory analytical services provided to DOE-RL through the Analytical Services Program of the Waste Management Division in support of Hanford Site environmental cleanup efforts. This includes work performed by contractor and commercial laboratories and covers radiological and nonradiological analyses. The HASQARD applies to field sampling, field analysis, and research and development activities that support work conducted under the Hanford Federal Facility Agreement and Consent Order Tri-Party Agreement and regulatory permit applications and applicable permit requirements described in subsections of this volume. The HASQARD applies to work done to support process chemistry analysis (e.g., ongoing site waste treatment and characterization operations) and research and development projects related to Hanford Site environmental cleanup activities. This ensures a uniform quality umbrella to analytical site activities predicated on the concepts contained in the HASQARD. Using HASQARD will ensure data of known quality and technical defensibility of the methods used to obtain that data. The HASQARD is made up of four volumes: Volume 1, Administrative Requirements; Volume 2, Sampling Technical Requirements; Volume 3, Field Analytical Technical Requirements; and Volume 4, Laboratory Technical Requirements. Volume 1 describes the administrative requirements

  7. Guidance for the Quality Assurance of Fire Protection Systems

    Broader source: Energy.gov [DOE]

    This quality assurance document is intended to provide guidance for the DOE fire protection community in the continuing effort to ensure the reliability of fire protection systems. This guidance document applies the concepts of DOE Order 5700.6C, Quality Assurance, to the management of fire protection systems.

  8. Quality assurance program plan for radionuclide airborne emissions monitoring

    SciTech Connect (OSTI)

    Boom, R.J.

    1995-03-01

    This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of airborne emissions. The Hanford Site radioactive airborne emissions requirements are defined in National Emissions Standards for Hazardous Air Pollutants (NESHAP), Code of Federal Regulations, Title 40, Part 61, Subpart H (EPA 1991a). Reporting of the emissions to the US Department of Energy is performed in compliance with requirements of US Department of Energy, Richland Operations Office Order 5400.1, General Environmental Protection Program (DOE-RL 1988). This Quality Assurance Program Plan is prepared in accordance with and to the requirements of QAMS-004/80, Guidelines and Specifications for Preparing Quality Assurance Program Plans (EPA 1983). Title 40 CFR Part 61, Appendix B, Method 114, Quality Assurance Methods (EPA 1991b) specifies the quality assurance requirements and that a program plan should be prepared to meet the requirements of this regulation. This Quality Assurance Program Plan identifies NESHAP responsibilities and how the Westinghouse Hanford Company Environmental, Safety, Health, and Quality Assurance Division will verify that the methods are properly implemented.

  9. Operational Environmental Monitoring Program Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Perkins, C.J.

    1994-08-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and operational environmental monitoring performed by Westinghouse Hanford Company as it implements the Operational Environmental Monitoring program. This plan applies to all sampling and monitoring activities performed by Westinghouse Hanford Company in implementing the Operational Environmental Monitoring program at the Hanford Site.

  10. Quality Assurance Policy and Directives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assurance Policy and Directives Quality Assurance Policy and Directives DOE's QA requirements are found in a regulation for nuclear facilities/activities 10 CFR 830, Subpart A and DOE O 414.1D, Quality Assurance, for all other applications. Guidance for implementing the requirements is found in: DOE G 414.1-1C, G 414.1-2B, G 414.1-4. The Office also represents DOE's interests on international and national quality standards committees and conformity assessment bodies (third-party

  11. AVLIS Production Plant Preliminary Quality Assurance Plan and Assessment

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    This preliminary Quality Assurance Plan and Assessment establishes the Quality Assurance requirements for the AVLIS Production Plant Project. The Quality Assurance Plan defines the management approach, organization, interfaces, and controls that will be used in order to provide adequate confidence that the AVLIS Production Plant design, procurement, construction, fabrication, installation, start-up, and operation are accomplished within established goals and objectives. The Quality Assurance Program defined in this document includes a system for assessing those elements of the project whose failure would have a significant impact on safety, environment, schedule, cost, or overall plant objectives. As elements of the project are assessed, classifications are provided to establish and assure that special actions are defined which will eliminate or reduce the probability of occurrence or control the consequences of failure. 8 figures, 18 tables.

  12. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2007-01-10

    The U.S. Department of Energy (DOE) has conducted interim groundwater remedial activities on the Hanford Site since the mid-1990s for several groundwater contamination plumes. DOE established the Columbia River Protection Supplemental Technologies Project (Technologies Project) in 2006 to evaluate alternative treatment technologies. The objectives for the technology project are as follows: develop a 300 Area polyphosphate treatability test to immobilize uranium, design and test infiltration of a phosphate/apatite technology for Sr-90 at 100-N, perform carbon tetrachloride and chloroform attenuation parameter studies, perform vadose zone chromium characterization and geochemistry studies, perform in situ biostimulation of chromium studies for a reducing barrier at 100-D, and perform a treatability test for phytoremediation for Sr-90 at 100-N. This document provides the quality assurance guidelines that will be followed by the Technologies Project. This Quality Assurance Project Plan is based on the quality assurance requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--Quality Assurance Requirements as delineated in Pacific Northwest National Laboratorys Standards-Based Management System. In addition, the technology project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.

  13. Quality Assurance Plan, N springs expedited response action

    SciTech Connect (OSTI)

    Jackson, G.J.

    1994-07-01

    This document is the Quality Assurance Plan (QAP) to be followed during the definitive design, construction, and operational phases for activities associated with the N Springs Expedited Response Action (ERA) for the 100-NR-2 Operable Unit (OU). Westinghouse Hanford Company (WHC) will comply with the US Department of Energy (DOE) Order 5700.6C, Quality Assurance (DOE 1989), and the US Environmental Protection Agency (EPA), EPA/530-SW-86-031, Technical Guidance Document: Construction Quality Assurance for Hazardous Waste Land Disposal Facilities (EPA 1986).

  14. Microsoft Word - CBFO Names Randy Unger Director of Quality Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CBFO Names Randy Unger Director of Quality Assurance CARLSBAD, N.M., June 14, 2011 -Randy Unger has been named Director of Quality Assurance (QA) for the U.S. Department of Energy's (DOE's)Carlsbad Field Office (CBFO), which oversees the Waste Isolation Pilot Plant (WIPP). Unger brings with him 17 years of experience within the DOE complex from sites across the country. "I'm pleased to announce the selection of Randy Unger as the CBFO Director of Quality Assurance," said Acting CBFO

  15. Quality Assurance Management System Guide for Use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-06-17

    This Guide provides information on principles and practices used to establish and implement an effective quality assurance program or quality management system in accordance with the requirements of 10 CFR 830. Cancels DOE G 414.1-2. Canceled by DOE G 414.1-2B.

  16. EM Quality Assurance Program (EM-QA-001 Revision 0)

    Broader source: Energy.gov [DOE]

    Previous revision of the Environmental Management Quality Assurance Program. The program is the EM management system to ensure we"do work correctly." This document has been superseded by Revision 1...

  17. Lloyd's Register Quality Assurance, Inc. Now Available as Accredited...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Now Available as Accredited SEP Verification Body Lloyd's Register Quality Assurance, Inc. Now Available as Accredited SEP Verification Body March 16, 2015 - 3:09pm Addthis The U.S. ...

  18. FAQS Reference Guide – Safety Software Quality Assurance

    Broader source: Energy.gov [DOE]

    This reference guide has been developed to address the competency statements in the (March 2011) edition of DOE-STD-1172-2011, Safety Software Quality Assurance Functional Area Qualification Standard.

  19. Signed Quality Assurance Hub Memo | Department of Energy

    Office of Environmental Management (EM)

    In a memorandum to the FieldSite Managers dated July 10, 2009, it was announced that the Office of Standards and Quality Assurance (EM-23) had deployed a pilot prototype web-based ...

  20. Quality Assurance Checklists for Energy.gov Web Requirements

    Broader source: Energy.gov [DOE]

    For Office of Energy Efficiency and Renewable Energy (EERE) websites, use these quality assurance (QA) checklists for websites and Web pages in Energy.gov's content management system (CMS) to ensure they meet mandatory requirements:

  1. Project quality assurance plant: Sodium storage facility, project F-031

    SciTech Connect (OSTI)

    Shultz, J.W.; Shank, D.R.

    1994-11-01

    The Sodium Storage Facility Project Quality Assurance Plan delineates the quality assurance requirements for construction of a new facility, modifications to the sodium storage tanks, and tie-ins to the FFTF Plant. This plan provides direction for the types of verifications necessary to satisfy the functional requirements within the project scope and applicable regulatory requirements determined in the Project Functional Design Criteria (FDC), WHC-SD-FF-FDC-009.

  2. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect (OSTI)

    Frazier, T.P.

    1994-10-20

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans.

  3. Near-facility environmental monitoring quality assurance project plan

    SciTech Connect (OSTI)

    McKinney, S.M.

    1997-11-24

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site.

  4. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-03-12

    Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.

  5. Project Facilitation and Quality Assurance for Federal ESPCs | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Project Facilitation and Quality Assurance for Federal ESPCs Project Facilitation and Quality Assurance for Federal ESPCs Document offers guidance on how to agencies can qualify their own project facilitators after notifying the U.S. Department of Energy Federal Energy Management Program energy savings performance contract (ESPC) program manager in writing who they have designated to serve as the qualifying official and confirming their use of the qualification standards. Download

  6. NIF Projects Controls and Information Systems Software Quality Assurance Plan

    SciTech Connect (OSTI)

    Fishler, B

    2011-03-18

    Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

  7. Highly Integrated Quality Assurance – An Empirical Case

    SciTech Connect (OSTI)

    Drake Kirkham; Amy Powell; Lucas Rich

    2011-02-01

    Highly Integrated Quality Assurance – An Empirical Case Drake Kirkham1, Amy Powell2, Lucas Rich3 1Quality Manager, Radioisotope Power Systems (RPS) Program, Idaho National Laboratory, P.O. Box 1625 M/S 6122, Idaho Falls, ID 83415-6122 2Quality Engineer, RPS Program, Idaho National Laboratory 3Quality Engineer, RPS Program, Idaho National Laboratory Contact: Voice: (208) 533-7550 Email: Drake.Kirkham@inl.gov Abstract. The Radioisotope Power Systems Program of the Idaho National Laboratory makes an empirical case for a highly integrated Quality Assurance function pertaining to the preparation, assembly, testing, storage and transportation of 238Pu fueled radioisotope thermoelectric generators. Case data represents multiple campaigns including the Pluto/New Horizons mission, the Mars Science Laboratory mission in progress, and other related projects. Traditional Quality Assurance models would attempt to reduce cost by minimizing the role of dedicated Quality Assurance personnel in favor of either functional tasking or peer-based implementations. Highly integrated Quality Assurance adds value by placing trained quality inspectors on the production floor side-by-side with nuclear facility operators to enhance team dynamics, reduce inspection wait time, and provide for immediate, independent feedback. Value is also added by maintaining dedicated Quality Engineers to provide for rapid identification and resolution of corrective action, enhanced and expedited supply chain interfaces, improved bonded storage capabilities, and technical resources for requirements management including data package development and Certificates of Inspection. A broad examination of cost-benefit indicates highly integrated Quality Assurance can reduce cost through the mitigation of risk and reducing administrative burden thereby allowing engineers to be engineers, nuclear operators to be nuclear operators, and the cross-functional team to operate more efficiently. Applicability of this case

  8. Implementation guide for Hanford Analytical Services Quality Assurance Plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This implementation guide for the Hanford Analytical Services Quality Assurance Plan (HASQAP) was developed by the US Department of Energy, Richland Operations Office (RL) Waste Management Division, Analytical Services Branch. This plan formally presents RL`s direction for Hanford Sitewide implementation of the HASQAP. The HASQAP establishes a uniform standard for quality requirements to meet US Department of Energy Order 5700.6C, Quality Assurance (10 CFR 830.120, ``Quality Assurance Requirements``), and is intended to satisfy the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) requirements for ``Guidance on Preparation of Laboratory Quality Assurance Plans``. The quality assurance criteria specified in the HASQAP shall serve as a baseline for implementing quality management systems for the laboratories that provide analytical services, for data requesters and users, and for oversight organizations that monitor the data-generation process. Affected organizations shall implement the HASQAP requirements that are applicable to their work scope. Full implementation of the HASQAP is scheduled to occur by August 1995. RL will work with the US Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology) to have the HASQAP document incorporated into Appendix F of the Tri-Party Agreement by early Fiscal Year 1996.

  9. Quality assurance program plan for SNF characterization support project

    SciTech Connect (OSTI)

    Tanke, J.M.

    1997-05-22

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the Spent Nuclear Fuel Characterization Support Project. This QAPP has been developed specifically for the Spent Nuclear Fuel Characterization Support Project, per Letter of Instruction (LOI) from Duke Engineering and Services Company, letter No. DESH-9655870, dated Nov. 22, 1996. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP) and LOI. These activities include installation of sectioning equipment and furnace, surface and subsurface examinations, sectioning for metallography, and element drying and conditioning testing, as well as project related operations within the 327 facility as it relates to the specific activities of this project. General facility activities are covered in other appropriate QA-PPS. In addition, this QAPP supports the related quality assurance activities addressed in CM-2-14, Hazardous Material Packaging and Shipping,1261 and HSRCM-1, Hanford Site Radiological Control Manual. The 327 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a Babcock and Wilcox Hanford Company (BVMC) managed facility. During this transition process existing procedures and documents will be utilized until replaced by BVMC procedures and documents. These documents conform to the requirements found in PNL-MA-70, Quality Assurance Manual and PNL-MA-8 1, Hazardous Materials Shipping Manual. The Quality Assurance Program Index (QAPI) contained in Table 1 provides a matrix which shows how project activities relate to IO CFR 830.120 and 5700.6C criteria. Quality Assurance program requirements will be addressed separate from the requirements specified in this document. Other Hanford Site organizations/companies may be utilized in support of this project and the subject organizations are

  10. 2011 SAPHIRE 8 Software Quality Assurance Status Report

    SciTech Connect (OSTI)

    Kurt G. Vedros

    2011-09-01

    The Software Quality Assurance engineer position was created in fiscal year 2011 to better maintain and improve the quality of the SAPHIRE 8 development program. This year's Software Quality Assurance tasks concentrated on developing the framework of the SQA program. This report reviews the accomplishments and recommendations for each of the subtasks set forth for JCN V6059: (1) Reviews, Tests, and Code Walkthroughs; (2) Data Dictionary; (3) Metrics; (4) Requirements Traceability Matrix; (5) Provide Oversight on SAPHIRE QA Activities; and (6) Support NRC Presentations and Meetings.

  11. Mixed Waste Integrated Program Quality Assurance requirements plan

    SciTech Connect (OSTI)

    Not Available

    1994-04-15

    Mixed Waste Integrated Program (MWIP) is sponsored by the US Department of Energy (DOE), Office of Technology Development, Waste Management Division. The strategic objectives of MWIP are defined in the Mixed Waste Integrated Program Strategic Plan, and expanded upon in the MWIP Program Management Plan. This MWIP Quality Assurance Requirement Plan (QARP) applies to mixed waste treatment technologies involving both hazardous and radioactive constituents. As a DOE organization, MWIP is required to develop, implement, and maintain a written Quality Assurance Program in accordance with DOE Order 4700.1 Project Management System, DOE Order 5700.6C, Quality Assurance, DOE Order 5820.2A Radioactive Waste Management, ASME NQA-1 Quality Assurance Program Requirements for Nuclear Facilities and ANSI/ASQC E4-19xx Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs. The purpose of the MWIP QA program is to establish controls which address the requirements in 5700.6C, with the intent to minimize risks and potential environmental impacts; and to maximize environmental protection, health, safety, reliability, and performance in all program activities. QA program controls are established to assure that each participating organization conducts its activities in a manner consistent with risks posed by those activities.

  12. Quality assurance inspections for shipping and storage containers

    SciTech Connect (OSTI)

    Stromberg, H.M.; Roberts, G.D.; Bryce, J.H.

    1996-04-01

    This is a guide for conducting quality assurance inspections of transportation packaging and dry spent fuel storage system suppliers. (Suppliers are defined as designers, fabricators, distributors, users or owners of those packaging and storage systems.) This guide may be used during inspection to determine regulatory compliance with 10 CFR, Part 71, Subpart H; 10 CFR, Part 72, Subpart G; 10 CFR, Part 21; and supplier`s quality assurance program commitments. It was developed to provide a structured, consistent approach to inspections. The guidance therein provides a framework for evaluation of transportation packaging and dry spent fuel storage systems quality assurance programs. Inspectors are provided with the flexibility to adapt the methods and concepts to meet inspection requirements for the particular facility. The method used in the guide treats each activity at a facility as a separate performance element and combines the activities within the framework of an ``inspection tree.``The method separates each performance element into several areas for inspection and identifies guidelines, based on regulatory requirements, to qualitatively evaluate each area. This guide also serves as a field manual to facilitate quality assurance inspection activities. This guide replaces an earlier one, NUREG/CR-5717 (Packing Supplier Inspection Guide). This replacement guide enhances the inspection activities for transportation packagings and adds the dry spent fuel storage system quality assurance inspection activities.

  13. The Groundwater Performance Assessment Project Quality Assurance Plan

    SciTech Connect (OSTI)

    Luttrell, Stuart P.

    2006-05-11

    U.S. Department of Energy (DOE) has monitored groundwater on the Hanford Site since the 1940s to help determine what chemical and radiological contaminants have made their way into the groundwater. As regulatory requirements for monitoring increased in the 1980s, there began to be some overlap between various programs. DOE established the Groundwater Performance Assessment Project (groundwater project) in 1996 to ensure protection of the public and the environment while improving the efficiency of monitoring activities. The groundwater project is designed to support all groundwater monitoring needs at the site, eliminate redundant sampling and analysis, and establish a cost-effective hierarchy for groundwater monitoring activities. This document provides the quality assurance guidelines that will be followed by the groundwater project. This QA Plan is based on the QA requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--General Provisions/Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory’s Standards-Based Management System. In addition, the groundwater project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The groundwater project has determined that the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.

  14. Safety Software Guide for Use with 10 CFR 830, Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-06-17

    This Guide provides acceptable methods for implementing the safety software quality assurance requirements of DOE O 414.1C, Quality Assurance. Certified 11-3-10. No cancellation.

  15. DNFSB 2002-1 Software Quality Assurance Improvement Plan Commitment 4.2.1.2: Safety Quality Assurance Plan and Criteria for the Safety Analysis Toolbox Codes

    Office of Environmental Management (EM)

    EH-4.2.1.2-Criteria Defense Nuclear Facilities Safety Board Recommendation 2002-1 Software Quality Assurance Improvement Plan Commitment 4.2.1.2: Software Quality Assurance Plan and Criteria for the Safety Analysis Toolbox Codes U.S. Department of Energy Office of Environment, Safety and Health 1000 Independence Ave., S.W. Washington, DC 20585-2040 November 2003 Software Quality Assurance Criteria for Safety Analysis Codes November 2003 INTENTIONALLY BLANK ii Software Quality Assurance Criteria

  16. Performance and Quality Assurance | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Development, maintenance and oversight to ensure consistency throughout SFO and monitor ... of quality components to support stockpile maintenance and evaluation requirements

  17. 200 Area Liquid Effluent Facilities -- Quality assurance program plan

    SciTech Connect (OSTI)

    Fernandez, L.

    1995-03-13

    This Quality Assurance Program Plan (QAPP) describes the quality assurance and management controls used by the 200 Area Liquid Effluent Facilities (LEF) to perform its activities in accordance with DOE Order 5700.6C. The 200 Area LEF consists of the following facilities: Effluent Treatment Facility (ETF); Treated Effluent Disposal Facility (TEDF); Liquid Effluent Retention facility (LERF); and Truck Loading Facility -- (Project W291). The intent is to ensure that all activities such as collection of effluents, treatment, concentration of secondary wastes, verification, sampling and disposal of treated effluents and solids related with the LEF operations, conform to established requirements.

  18. Plutonium stabilization and handling quality assurance program plan

    SciTech Connect (OSTI)

    Weiss, E.V.

    1998-04-22

    This Quality Assurance Program Plan (QAPP) identifies project quality assurance requirements for all contractors involved in the planning and execution of Hanford Site activities for design, procurement, construction, testing and inspection for Project W-460, Plutonium Stabilization and Handling. The project encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM.

  19. Environmental Restoration Remedial Action Quality Assurance Requirements Document

    SciTech Connect (OSTI)

    Cote, R.F.

    1991-09-01

    The Environmental Restoration Remedial Action Quality Assurance Requirements Document defines the quality assurance program requirements for the US Department of Energy-Richland Field Office Environmental Restoration Remedial Action Program at the Hanford Site. This paper describes the objectives outlined in DOE/RL 90-28. The Environmental Restoration Remedial Action Program implements significant commitments made by the US Department of Energy in the Hanford Federal Facility Agreement and Consent Order entered into with the Washington State Department of Ecology and the US Environmental Protection Agency. 18 refs.

  20. ERD UMTRA Project quality assurance program plan, Revision 7

    SciTech Connect (OSTI)

    1995-09-01

    This document is the revised Quality Assurance Program Plan (QAPP) dated September, 1995 for the Environmental Restoration Division (ERD) Uranium Mill Tailings Remedial Action Project (UMTRA). Quality Assurance requirements for the ERD UMTRA Project are based on the criteria outlined in DOE Order 5700.6C or applicable sections of 10 CFR 830.120. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the ERD UMTRA Project and its contractors.

  1. Quality assurance in the Antares laser fusion construction project

    SciTech Connect (OSTI)

    Reichelt, W.H.

    1984-01-01

    The Antares CO/sub 2/ laser facility came on line in November 1983 as an experimental physics facility; it is the world's largest CO/sub 2/ laser fusion system. Antares is a major component of the Department of Energy's Inertial Confinement Fusion Program. Antares is a one-of-a-kind laser system that is used in an experimental environment. Given limited project funds and tight schedules, the quality assurance program was tailored to achieve project goals without imposing oppressive constraints. The discussion will review the Antares quality assurance program and the utility of various portions to completion of the project.

  2. Quality assurance management plan (QAPP) special analytical support (SAS)

    SciTech Connect (OSTI)

    LOCKREM, L.L.

    1999-05-20

    It is the policy of Special Analytical Support (SAS) that the analytical aspects of all environmental data generated and processed in the laboratory, subject to the Environmental Protection Agency (EPA), U.S. Department of Energy or other project specific requirements, be of known and acceptable quality. It is the intention of this QAPP to establish and assure that an effective quality controlled management system is maintained in order to meet the quality requirements of the intended use(s) of the data.

  3. Tank Waste Project Quality Assurance Program Plan. Revision 1

    SciTech Connect (OSTI)

    Clayton, R.E.

    1994-11-20

    This plan describes all the Quality Assurance Program elements required by DOE Order 5700.6C. The elements shall be applied as applicable to specific Tank Waste Projects. A project-specific QAPP shall be issued as a supporting document which shall be used in conjunction with this QAPP. The project specific QAPP shall describe or define any special information, instructions or requirements.

  4. Assessment report for Hanford analytical services quality assurance plan

    SciTech Connect (OSTI)

    Taylor, L.H.

    1994-11-01

    This report documents the assessment results of DOE/RL-94-55, Hanford Analytical Services Quality Assurance Plan. The assessment was conducted using the Requirement and Self-Assessment Database (RSAD), which contains mandatory and nonmandatory DOE Order statements for the relevant DOE orders.

  5. CRAD, Quality Assurance- Idaho MF-628 Drum Treatment Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2007 readiness assessment of the Quality Assurance Program at the Advanced Mixed Waste Treatment Project.

  6. Near Facility Environmental Monitoring Quality Assurance Project Plan

    SciTech Connect (OSTI)

    MCKINNEY, S.M.

    2000-05-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards.

  7. CRAD, Quality Assurance- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Quality Assurance Program at the Idaho Accelerated Retrieval Project Phase II.

  8. Los Alamos National Laboratory's Quality and Performance Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Division receives Piñon Recognition from Quality New Mexico Quality New Mexico Quality and Performance Assurance Division receives Piñon Recognition from Quality New Mexico The Lab and its support service contractors have received 31 Piñon and Roadrunner recognitions since 1997. April 17, 2013 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  9. UMTRA Project Office quality assurance program plan. Revision 6

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites. The UMTRA Project`s mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. Because these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the UMTRA Project Office and its contractors.

  10. Sandia National Laboratories, California Quality Assurance Project Plan for Environmental Monitoring Program.

    SciTech Connect (OSTI)

    Holland, Robert C.

    2005-09-01

    This Quality Assurance Project Plan (QAPP) applies to the Environmental Monitoring Program at the Sandia National Laboratories/California. This QAPP follows DOE Quality Assurance Management System Guide for Use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance (DOE G 414.1-2A June 17, 2005). The Environmental Monitoring Program is located within the Environmental Operations Department. The Environmental Operations Department is responsible for ensuring that SNL/CA operations have minimal impact on the environment. The Department provides guidance to line organizations to help them comply with applicable environmental regulations and DOE orders. To fulfill its mission, the department has groups responsible for waste management; pollution prevention, air quality; environmental planning; hazardous materials management; and environmental monitoring. The Environmental Monitoring Program is responsible for ensuring that SNL/CA complies with all Federal, State, and local regulations and with DOE orders regarding the quality of wastewater and stormwater discharges. The Program monitors these discharges both visually and through effluent sampling. The Program ensures that activities at the SNL/CA site do not negatively impact the quality of surface waters in the vicinity, or those of the San Francisco Bay. The Program verifies that wastewater and stormwater discharges are in compliance with established standards and requirements. The Program is also responsible for compliance with groundwater monitoring, and underground and above ground storage tanks regulatory compliance. The Program prepares numerous reports, plans, permit applications, and other documents that demonstrate compliance.

  11. Assuring the quality of safety analyses and safety analysis documentation

    SciTech Connect (OSTI)

    J. E. Johnson

    2000-05-03

    Planning, preparation, and submittal of safety analysis reports might be pursued in a manner similar to a quality-related procurement, where customer needs, expectations and acceptance criteria are established in advance. Then the product/service provider, the contractor, should apply various quality control processes to assure the desired characteristics of the product safety analysis documents. Improving the quality and acceptability to DOE of safety documents at first submittal should result in a more expeditious DOE review and approval process, thereby reducing costs of network and recycle through reviews.

  12. Assuring the Quality of Safety Analyses and Safety Analysis Documentation

    SciTech Connect (OSTI)

    Johnson, John Edwin

    2000-05-01

    Planning, preparation, and submittal of safety analysis reports might be pursued in a manner similar to a quality-related procurement, where customer needs, expectations and acceptance criteria are established in advance. Then the product/service provider, the contractor, should apply various quality control processes to assure the desired characteristics of the product safety analysis documents. Improving the quality and acceptability to DOE of safety documents at first submittal should result in a more expeditious DOE review and approval process, thereby reducing costs of network and recycle through reviews.

  13. Introduction of Break-Out Session at the International PV Module Quality Assurance Forum (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Yamamichi, M.; Sample, T.

    2011-07-01

    This presentation outlines review requirements for quality assurance (QA) rating systems, logical design of QA systems, and specific tasks for break-out session 1 of the 2011 International PV Module Quality Assurance Forum.

  14. B&W Y-12 names Kevin Corbett Vice President of Quality Assurance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B&W Y-12 names Kevin ... B&W Y-12 names Kevin Corbett Vice President of Quality Assurance Posted: April 23, 2013 - 3:59pm Kevin Corbett, B&W Y-12 Vice President, Quality Assurance ...

  15. UMTRA project technical assistance contractor quality assurance implementation plan

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP) (DOE, 1993a), which was developed using US Department of Energy (DOE) Order 5700.6C quality assurance (QA) criteria. The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. All QA issues in the QAIP shall comply with requirements contained in the TAC QAPP (DOE, 1933a). Because industry standards for data acquisition and data control are not addressed in DOE Order 5700.6C, the QAIP has been formatted to the 14 US Environmental Protection Agency (EPA) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) QA requirements. DOE Order 5700.6C criteria that are not contained in the CERCLA requirements are added to the QAIP as additional requirements in Sections 15.0 through 18.0. Project documents that contain CERCLA requirements and 5700.6 criteria shall be referenced in this document to avoid duplication. Referenced documents are not included in this QAIP but are available through the UMTRA Project Document Control Center.

  16. Hanford analytical services quality assurance plan. Revision 1

    SciTech Connect (OSTI)

    1995-02-01

    This document, the Hanford Analytical Services Quality Assurance Plan (HASQAP), is issued by the U.S. Department of Energy, Richland Operations Office (RL). The HASQAP establishes quality requirements in response to U.S. Department of Energy (DOE) Order 5700.6C, Quality Assurance (10 CFR 830.120, {open_quotes}Quality Assurance Requirements{close_quotes}). The HASQAP is designed to meet the needs of the RL for controlling the of analytical chemistry services provided by laboratory operations. The HASQAP is issued through the Analytical Services Branch of the Waste Management Division. The Analytical Services Branch is designated by the RL as having the responsibility for oversight management of laboratory operations under the Waste Management Division. The laboratories conduct sample analyses under several regulatory statutes, such as the Clean Air Act and the Clean Water Act. Sample analysis in support of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) is a major role of the laboratory operations.

  17. Development and implementation of an analytical quality assurance plan at the Hanford site

    SciTech Connect (OSTI)

    Kuhl-Klinger, K.J.; Taylor, C.D.; Kawabata, K.K.

    1995-08-01

    The Hanford Analytical Services Quality Assurance Plan (HASQAP) provides a uniform standard for onsite and offsite laboratories performing analytical work in support of Hanford Site environmental cleanup initiatives. The Hanford Site is a nuclear site that originated during World War 11 and has a legacy of environmental clean up issues. In early 1993, the need for and feasibility of developing a quality assurance plan to direct all analytical activities performed to support environmental cleanup initiatives set forth in the Hanford Federal Facility Agreement and Consent Order were discussed. Several group discussions were held and from them came the HASQAP. This document will become the quality assurance guidance document in a Federal Facility Agreement and Consent Order. This paper presents the mechanics involved in developing a quality assurance plan for this scope of activity, including the approach taken to resolve the variability of quality control requirements driven by numerous regulations. It further describes the consensus building process and how the goal of uniting onsite and offsite laboratories as well as inorganic, organic, and radioanalytic disciplines under a common understanding of basic quality control concepts was achieved.

  18. EECLP Webinar #2: Quality Assurance and Evaluation Monitoring Verification-- Text Version

    Broader source: Energy.gov [DOE]

    Below is the text version of the EECLP Webinar 2: Quality Assurance and Evaluation Monitoring Verification, presented in December 2014.

  19. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-11-30

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  20. 242-A Evaporator quality assurance plan. Revision 2

    SciTech Connect (OSTI)

    Basra, T.S.

    1995-05-04

    The purpose of this quality assurance project plan (Plan) is to provide requirements for activities pertaining to sampling, shipping, and analyses associated with candidate feed tank samples for the 242-A Evaporator project. The purpose of the 242-A Evaporator project is to reduce the volume of aqueous waste in the Double Shell Tank (DST) System and will result in considerable savings to the disposal of mixed waste. The 242-A Evaporator feed stream originates from DSTs identified as candidate feed tanks. The 242-A Evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending the condensate (called process condensate) to the Liquid Effluent Retention Facility (LEPF) storage basin where it is stored prior to treatment in the Effluent Treatment Facility (ETF). The objective of this quality assurance project plan is to provide the planning, implementation, and assessment of sample collection and analysis, data issuance, and validation activities for the candidate feed tanks.

  1. Quality Assurance Inspection and Testing of HEPA Filters

    Office of Environmental Management (EM)

    NOT MEASUREMENT SENSITIVE DOE-STD-1150-2013 December 2013 DOE STANDARD QUALITY ASSURANCE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. DOE-STD-1150-2013 This document is available on the Department of Energy Technical Standards Program Website at http://www.hss.energy.gov/nuclearsafety/ns/techstds/ ii

  2. Quality Assurance Procedures for ModCat Database Code Files

    SciTech Connect (OSTI)

    Siciliano, Edward R.; Devanathan, Ram; Guillen, Zoe C.; Kouzes, Richard T.; Schweppe, John E.

    2014-04-01

    The Quality Assurance procedures used for the initial phase of the Model Catalog Project were developed to attain two objectives, referred to as “basic functionality” and “visualization.” To ensure the Monte Carlo N-Particle model input files posted into the ModCat database meet those goals, all models considered as candidates for the database are tested, revised, and re-tested.

  3. An approach to software quality assurance for robotic inspection systems

    SciTech Connect (OSTI)

    Kiebel, G.R.

    1993-10-01

    Software quality assurance (SQA) for robotic systems used in nuclear waste applications is vital to ensure that the systems operate safely and reliably and pose a minimum risk to humans and the environment. This paper describes the SQA approach for the control and data acquisition system for a robotic system being developed for remote surveillance and inspection of underground storage tanks (UST) at the Hanford Site.

  4. Quality assurance program plan for low-level waste at the WSCF Laboratory

    SciTech Connect (OSTI)

    Morrison, J.A.

    1994-11-01

    The purpose of this document is to provide guidance for the implementation of the Quality Assurance Program Plan (QAPP) for the management of low-level waste at the Waste Sampling and Characterization Facility (WSCF) Laboratory Complex as required by WHC-CM-4-2, Quality Assurance Manual, which is based on Quality Assurance Program Requirements for Nuclear Facilities, NQA-1 (ASME).

  5. National Ignition Facility Quality Assurance Program Plan. Revision 1

    SciTech Connect (OSTI)

    Wolfe, C.R.; Yatabe, J.

    1996-09-01

    The National Ignition Facility (NIF) is a key constituent of the Department of Energy`s Stockpile Stewardship Program. The NIF will use inertial confinement fusion (ICF) to produce ignition and energy gain in ICF targets, and will perform weapons physics and high-energy- density experiments in support of national security and civilian objectives. The NIF Project is a national facility involving the collaboration of several DOE laboratories and subcontractors, including Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Laser Energetics (UR/LLE). The primary mission of the NIF Project is the construction and start-up operation of laser-based facilities that will demonstrate fusion ignition in the laboratory to provide nuclear-weapons-related physics data, and secondarily, to propagate fusion burn aimed at developing a potential source of civilian energy. To support the accomplishment of this very important mission, the LLNL Laser Directorate created the NIF Project Office to organize and bring about the Project. The NIF Project Office has established this Quality Assurance Program to ensure its success. This issue of the Quality Assurance Program Plan (QAPP) adds the requirements for the conduct of Title 11 design, construction, procurement, and Title III engineering. This QAPP defines and describes the program-the management system-for specifying, achieving, and assuring the quality of all NIF Project work consistent with the policies of the Laboratory and the Laser Directorate.

  6. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Riddle, Donna L.

    2007-05-03

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, “Quality Assurance Requirements,” ANSI/ASQC E4-2004, “Quality Systems for Environmental Data and Technology Programs – Requirements with Guidance for Use,” and ISO 14001-2004, “Environmental Management Systems,” have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, “Quality Assurance Program,” identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, “QA Program Implementation,” identifies the TAC organizations that have responsibility for

  7. Effluent monitoring Quality Assurance Project Plan for radioactive airborne emissions data. Revision 2

    SciTech Connect (OSTI)

    Frazier, T.P.

    1995-12-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for compiling Hanford Site radioactive airborne emissions data. These data will be reported to the U.S. Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Effluent Monitoring performs compliance assessments on radioactive airborne sampling and monitoring systems. This Quality Assurance Project Plan is prepared in compliance with interim guidelines and specifications. Topics include: project description; project organization and management; quality assurance objectives; sampling procedures; sample custody; calibration procedures; analytical procedures; monitoring and reporting criteria; data reduction, verification, and reporting; internal quality control; performance and system audits; corrective actions; and quality assurance reports.

  8. Quality assurance and quality control for the compact physics research facility (CPRF) and ZTH experiment

    SciTech Connect (OSTI)

    Kewish, R.W. Jr.

    1989-01-01

    In compliance with DOE Order 5700.6B, which establishes policies to assure quality achievement in DOE programs, we instituted a quality assurance and quality control program whose primary goal is to assure that reliable components are available with which to assemble the CPRF/ZTH experiment. The Code of Federal Regulations 10 CFR 50, appendix B, and the ANSI standard N45.2 were used as a primary source of guidance in establishing a plan for our QA program. Accepted codes, such as the National Electric Code (NEC), and standards adopted by organizations such as ANSI, IEEE, ASME, and NEMA were used in the design and production of components in keeping with the primary goal of the CPRF program. In setting up the CPRF/ZTH quality assurance program it was our intention to have these standards apply to all suppliers, both within and outside the Laboratory. 5 refs., 6 figs.

  9. UMTRA technical assistance contractor quality assurance program plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAc Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements.

  10. Gas generation matrix depletion quality assurance project plan

    SciTech Connect (OSTI)

    NONE

    1998-05-01

    The Los Alamos National Laboratory (LANL) is to provide the necessary expertise, experience, equipment and instrumentation, and management structure to: Conduct the matrix depletion experiments using simulated waste for quantifying matrix depletion effects; and Conduct experiments on 60 cylinders containing simulated TRU waste to determine the effects of matrix depletion on gas generation for transportation. All work for the Gas Generation Matrix Depletion (GGMD) experiment is performed according to the quality objectives established in the test plan and under this Quality Assurance Project Plan (QAPjP).

  11. UMTRA Project Office Quality Assurance Program Plan. Revision 5

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites in accordance with Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRA Project`s mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. The US Department of Energy (DOE) UMTRA Project Office directs the overall Project. Because these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria (set forth in the reference documents) has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. The UMTRA Project Office shall require each Project contractor to prepare and submit for approval a more detailed QAPP that is based on the applicable criteria of this QAPP and the referenced documents. All QAPPs on the UMTRA Project shall fit within the framework of this plan or an industry standard format that has been approved by the DOE Project Office.

  12. Quality assurance in the transport of UF{sub 6}

    SciTech Connect (OSTI)

    Ravenscroft, N.L.

    1991-12-31

    Edlow International`s primary business is the international transportation of radioactive materials. Therefore, Edlow has the responsibility to ensure that shipments are performed in compliance with regulatory requirements. In this regard, Edlow maintains a Quality Assurance (QA) Program. A major part of this Program is the establishment and use of QA Procedures. This paper addresses QA procedural requirements and how they are applied to a routine international shipment of low enriched UF{sub 6}. Only the major requirements for scheduling shipments will be addressed.

  13. S-PRIME Thermionic Space Nuclear Power System Quality Assurance Program Plan

    SciTech Connect (OSTI)

    Jones, C.M.

    1992-09-23

    This Quality Assurance Program Plan (QAPP)describes how the Thermionic Space Nuclear Power System Design and Technology Demonstration Project addresses the Quality Assurance requirements delineated in DOE Order 5700.6C and the Thermionic Program Management Plan 214PMP000001. The Quality Assurance Program is based on the following fundamental principles, which Rocketdyne endorses and the QA Project Manager and Program Manager shall enforce: Quality Achievement is a continuing responsibility of line organization at all levels; the Quality Assurance organization through the effective overview of work, gives additional assurance that specified requirements are met; risk is the fundamental consideration in determining to what extent the Quality Assurance Plan should be applied to items and processes; action is based on facts and analysis, customer driven quality, strong quality leadership and continuous improvement.

  14. Order Module--DOE O 414.1D, QUALITY ASSURANCE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    14.1D, QUALITY ASSURANCE Order Module--DOE O 414.1D, QUALITY ASSURANCE "To ensure that DOE, including NNSA, products and services meet or exceed customers' requirements and expectations. To achieve quality for all work based upon the following principles: All work, as defined in this Order, is conducted through an integrated and effective management system. Management support for planning, organization, resources, direction, and control is essential to quality assurance (QA). Performance

  15. UMTRA technical assistance contractor Quality Assurance Program Plan. Revision 4

    SciTech Connect (OSTI)

    Pehrson, P.

    1993-10-12

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAC Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements. The key to ensuring compliance with this directive is a two-step professional approach: utilize the quality system in all areas of activity, and generate a personal commitment from all personnel to provide quality service. The quality staff will be experienced, trained professionals capable of providing maximum flexibility to Project goal attainment. Such flexibility will enable the staff to be more cost effective and to further improve communication and coordination. To provide control details, this QAPP will be supplemented by approved standard operating procedures that provide requirements for performing the various TAC quality-related activities. These procedures shall describe applicable design input and document control activities and documentation.

  16. Quality Assurance Program Plan (QAPP) Waste Management Project

    SciTech Connect (OSTI)

    VOLKMAN, D.D.

    1999-10-27

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

  17. QA (quality assurance) at Fermilab; the hermeneutics of NQA-1

    SciTech Connect (OSTI)

    Bodnarczuk, M.

    1988-06-01

    This paper opens with a brief overview of the purpose of Fermilab and a historical synopsis of the development and current status of quality assurance (QA) at the Laboratory. The paper subsequently addresses some of the more important aspects of interpreting the national standard ANSI/ASME NQA-1 in pure research environments like Fermilab. Highlights of this discussion include, what is hermeneutics and why are hermeneutical considerations relevant for QA, a critical analysis of NQA-1 focussing on teleological aspects of the standard, a description of the hermeneutical approach to NQA-1 used at Fermilab which attempts to capture the true intents of the document without violating the deeply ingrained traditions of quality standards and peer review that have been foundational to the overall success of the paradigms of high-energy physics.

  18. Waste management and quality assurance: Reasonable co-existence?

    SciTech Connect (OSTI)

    Bresson, J.F.

    1989-11-01

    Implementing Chapter 3, Low-Level Waste Management, of DOE Order 5820-2, ``Radioactive Waste Management`` has created a major change in the operating philosophy of DOE`s prime contractors. So has the decision of May 1, 1987, when it was made clear that EPA has regulatory authority over DOE`s mixed waste. Suddenly two additional items became clear. First, DOE and its contractors were going to learn more about composition of low-level and low-level mixed waste than ever before. Second, low-level waste management was about to become a more focused, formal program, complete with needs for: (1) waste form identification, (2) program documentation; and (3) assurance that DOE`s waste does in fact comply with applicable requirements. The importance of the above items is clearly emphasized by the inclusion of Data Quality Objectives in the Waste Acceptance Criteria section of DOE 5820-2 Chapter 3 guidance called Data Quality Objectives, (DQO). Simply put, the purpose of the DQO is to identify the quality (and quantity) of information necessary to convince a regulator or decision maker that enough is known about DOE`s low-level and low-level mixed waste to allow safe disposal. The main objectives of the DOE and EPA shallow land burial requirements are to: (1) generate, with documented evidence, waste forms which are chemically inert and immobile, such that the waste will not tend to move about in the disposal medium; (2) select a disposal medium which would not let the wastes move about anyway; and (3) build some barriers around the wastes as emplaced in burial grounds, to provide additional assurance that buried wastes will stay in place. Compliance with these requirements must be demonstrated by quality data which describes the entire series of compliance activities.

  19. Argonne National Laboratory Internal Appraisal Program environment, safety, health/quality assurance oversight

    SciTech Connect (OSTI)

    Winner, G.L.; Siegfried, Y.S.; Forst, S.P.; Meshenberg, M.J.

    1995-06-01

    Argonne National Laboratory`s Internal Appraisal Program has developed a quality assurance team member training program. This program has been developed to provide training to non-quality assurance professionals. Upon successful completion of this training and approval of the Internal Appraisal Program Manager, these personnel are considered qualified to assist in the conduct of quality assurance assessments. The training program has been incorporated into a self-paced, computerized, training session.

  20. Waste Encapsulation and Storage Facility (WESF) Quality Assurance Program Plan (QAPP)

    SciTech Connect (OSTI)

    ROBINSON, P.A.

    2000-04-17

    This Quality Assurance Plan describes how the Waste Encapsulation and Storage Facility (WESF) implements the quality assurance (QA) requirements of the Quality Assurance Program Description (QAPD) (HNF-Mp-599) for Project Hanford activities and products. This QAPP also describes the organizational structure necessary to successfully implement the program. The QAPP provides a road map of applicable Project Hanford Management System Procedures, and facility specific procedures, that may be utilized by WESF to implement the requirements of the QAPD.

  1. Ava Holland Joins DOE Carlsbad Field Office As Quality Assurance Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ava Holland Joins DOE Carlsbad Field Office As Quality Assurance Manager CARLSBAD, N.M., February 12, 2002 - The U.S. Department of Energy's (DOE) Carlsbad Field Office today announced the appointment of Ava Holland as Manager of Quality Assurance. Holland is responsible for DOE's Quality Assurance Program as required to comply with the Waste Isolation Pilot Plant's (WIPP) Hazardous Waste Facility Permit. In this role, she provides oversight to ensure the safe characterization, transportation

  2. [Quality assurance in basic research and R D

    SciTech Connect (OSTI)

    Hoke, P.B.

    1993-01-01

    Oak Ridge National Laboratory (ORNL) is one of the nation's largest and most widely diversified federal multipurpose research and development centers. The Laboratory is operated by Martin Marietta Energy Systems Inc. for the US DOE. Its mission embraces non-nuclear as well as nuclear energy development together with a wide range of supporting research in engineering, physical sciences, life sciences as well as social sciences and economics. The Laboratory's program is dominated by four major areas of development that are approximately equal in size: nuclear (fission) energy development, basic physical sciences research, biomedical and environmental, and magnetic fusion energy development. This document outlines ORNL's quality assurance (QA) program in response to the ten criteria of DOE order 5700.6C. Guidance for implementation comes both from Attachment I of 5700.6C and DOE-ER-STD-6001-92. The basis for the program, integration of DOE orders, program architecture, assessment activities, and financial restraints are discussed.

  3. Product Quality Assurance for Off-Grid Lighting in Africa

    SciTech Connect (OSTI)

    World Bank; Mills, Evan; Mills, Evan

    2008-07-13

    Although the emergence of markets for high efficiency off-grid lighting technologies holds promise, realizing the potential of this opportunity on a long-term, sustainable basis requires careful attention to issues of product quality, consumer protection, and the potential for significant 'market spoiling', in anticipation of increases of sales of low cost, low performance off-grid lighting products. The goal of the Lighting Africa quality assurance workshop was to articulate strategies to mitigate the dangers of market spoiling and to explore ways to protect consumers from misleading advertising for sales of inferior, off-grid lighting products in the context of Lighting Africa's overarching objective to support the industry in developing a robust off-grid lighting market in Africa. The workshop resulted in the identification of two strategic approaches for meeting Lighting Africa quality assurance programmatic needs. The first strategy is intended to meet a short-term programmatic need for quality associated with requests for lighting products by bulk procurement agents, such as in a World Bank-financed project. The development of procurement specifications and test procedures that could be used in a quality/usability screening method in order to provide guidance for forthcoming large volume purchases emerged as the best solution to meet this need. Such approaches are used in World Bank-financed solar home systems (SHSs) projects in Bangladesh, Sri Lanka, and China, among others. However, unlike the SHSs which have multiple balance-of-system (BOS) components warranting the need for an array of specifications for individual components, stand alone lighting systems require specifications that are amenable to individual light points. To test this approach, Lighting Africa elected to use the technical specifications issued by the Photovoltaic Global Approval Program for solar lanterns that use CFL bulbs (PVRS11A) as the basis of qualifying such products. A contract

  4. Quality assurance/quality control (QA/QC) procedures for hazardous-waste incineration. Handbook

    SciTech Connect (OSTI)

    Dux, T.; Gilford, P.; Bergman, F.; Boomer, B.; Hooton, D.

    1990-01-01

    The Environmental Protection Agency (EPA) has promulgated regulations for hazardous waste incinerators under the Resource Conservation and Recovery Act. These regulations require the permit applicant to conduct trial burns to demonstrate compliance with the regulatory limits and provide data needed to write the individual permits. Trial burns require a Quality Assurance Project Plan (QAPjP) with quality assurance/quality control (QA/QC) procedures to control and evaluate data quality. The primary focus of the handbook is the trial burn itself; however, a discussion of the QA/QC for routine incinerator monitoring and permit compliance is included in a separate chapter. The area has slightly different requirements and objectives from those of the trial burn. The trial burn should be viewed as a short-term project with a defined beginning and end, while compliance monitoring is considered an ongoing process.

  5. Project specific quality assurance plan, W-151, Tank 241-AZ-101 waste retrieval system. Revision 2

    SciTech Connect (OSTI)

    Manthei, M.E.

    1994-11-21

    This project specific quality assurance program plan establishes the responsibility for the implementation of QA requirements, defines and documents the QA requirements associated with design, procurement, and construction, and defines and documents the degree of QA reviews and verifications on the design and construction necessary to assure compliance to project and DOE requirements. Revision 2 updates the QAPP to provide concurrence with approved work scope deletion. In addition, the Quality Assurance Program Index is being updated to reflect the current Quality Assurance Program requirements per DOE Order 5700.6C.

  6. Quality assurance program plan for the Site Physical and Electrical Calibration Services Lab. Revision 1

    SciTech Connect (OSTI)

    Carpenter, C.A.

    1995-03-02

    This Quality Assurance Program Plan (QAPP) is organized to address WHC`s implementation of quality assurance requirements as they are presented as interpretive guidance endorsed by the Department of Energy (DOE) Field Office, Richland DOE Order 5700.6C Quality Assurance. The quality assurance requirements presented in this plan will assure Measuring and Test Equipment (M and TE) are in conformance with prescribed technical requirements and that data provided by testing, inspection, or maintenance are valid. This QAPP covers all activities and work elements that are variously called QA, quality control, and quality engineering regardless of the organization performing the work. This QAPP identifies the QA requirements for planning, control, and documentation of operations, modifications, and maintenance of the WHC Site Physical and Electrical Calibration Services Laboratory. The primary function of the WHC Site Physical and Electrical Calibration Services Laboratory is providing calibration, standardization, or repair service of M and TE.

  7. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Irene Farnham

    2011-05-01

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  8. [Quality assurance in basic research and R&D

    SciTech Connect (OSTI)

    Hoke, P.B.

    1993-05-01

    Oak Ridge National Laboratory (ORNL) is one of the nation`s largest and most widely diversified federal multipurpose research and development centers. The Laboratory is operated by Martin Marietta Energy Systems Inc. for the US DOE. Its mission embraces non-nuclear as well as nuclear energy development together with a wide range of supporting research in engineering, physical sciences, life sciences as well as social sciences and economics. The Laboratory`s program is dominated by four major areas of development that are approximately equal in size: nuclear (fission) energy development, basic physical sciences research, biomedical and environmental, and magnetic fusion energy development. This document outlines ORNL`s quality assurance (QA) program in response to the ten criteria of DOE order 5700.6C. Guidance for implementation comes both from Attachment I of 5700.6C and DOE-ER-STD-6001-92. The basis for the program, integration of DOE orders, program architecture, assessment activities, and financial restraints are discussed.

  9. Waste management R&D Quality Assurance: An alternative approach

    SciTech Connect (OSTI)

    Brosseau, D.A.; Harlan, C.P.; Cochrell, R.C.

    1991-02-01

    This paper summarizes the development and initial implementation of a Quality Assurance (QA) Program for technical activities associated with assessing compliance of an existing DOE nuclear waste site with applicable environmental regulations. The requirements for establishing the QA program are defined, along with the approach and emphasis used to develop the program. The structure of the program and the various levels of QA plans and procedures are briefly discussed. Initial implementation efforts are summarized. The QA program was developed by and for the project participants and was structured according to the major technical requirements of the project. The QA plans and procedures are written for the convenience and use of the technical staff and not merely to satisfy auditor expectations. Every effort was made to avoid an 18-point approach typical of many QA programs patterned after the dictates of the industry recognized ``national consensus standards.`` Flexibility is emphasized due to the nature of the research and development activities associated with the technical program. Recommendations are provided for using this alternative approach to QA program development for similar technical efforts elsewhere. 10 refs., 1 fig., 5 tabs.

  10. The effect of job performance aids on quality assurance

    SciTech Connect (OSTI)

    Fosshage, Erik

    2014-06-01

    Job performance aids (JPAs) have been studied for many decades in a variety of disciplines and for many different types of tasks, yet this is the first known research experiment using JPAs in a quality assurance (QA) context. The objective of this thesis was to assess whether a JPA has an effect on the performance of a QA observer performing the concurrent dual verification technique for a basic assembly task. The JPA used in this study was a simple checklist, and the design borrows heavily from prior research on task analysis and other human factors principles. The assembly task and QA construct of concurrent dual verification are consistent with those of a high consequence manufacturing environment. Results showed that the JPA had only a limited effect on QA performance in the context of this experiment. However, there were three important and unexpected findings that may draw interest from a variety of practitioners. First, a novel testing methodology sensitive enough to measure the effects of a JPA on performance was created. Second, the discovery that there are different probabilities of detection for different types of error in a QA context may be the most far-reaching results. Third, these results highlight the limitations of concurrent dual verification as a control against defects. It is hoped that both the methodology and results of this study are an effective baseline from which to launch future research activities.

  11. Recommended reforms in codes and standards, quality assurance, and engineering practices for competitive liquid metal nuclear power plants

    SciTech Connect (OSTI)

    Harms, W.O.

    1986-04-01

    Recommendations are presented on LMFBR: codes and standards; quality assurance requirements and practices; and engineering practices. (JDB)

  12. International Thermonuclear Experimental Reactor U.S. Home Team Quality Assurance Plan

    SciTech Connect (OSTI)

    Sowder, W. K.

    1998-10-01

    The International Thermonuclear Experimental Reactor (ITER) project is unique in that the work is divided among an international Joint Central Team and four Home Teams, with the overall responsibility for the quality of activities performed during the project residing with the ITER Director. The ultimate responsibility for the adequacy of work performed on tasks assigned to the U.S. Home Team resides with the U.S. Home Team Leader and the U.S. Department of Energy Office of Fusion Energy (DOE-OFE). This document constitutes the quality assurance plan for the ITER U.S. Home Team. This plan describes the controls exercised by U.S. Home Team management and the Performing Institutions to ensure the quality of tasks performed and the data developed for the Engineering Design Activities assigned to the U.S. Home Team and, in particular, the Research and Development Large Projects (7). This plan addresses the DOE quality assurance requirements of 10 CFR 830.120, "Quality Assurance." The plan also describes U.S. Home Team quality commitments to the ITER Quality Assurance Program. The ITER Quality Assurance Program is based on the principles described in the International Atomic Energy Agency Standard No. 50-C-QA, "Quality Assurance for Safety in Nuclear Power Plants and Other Nuclear Facilities." Each commitment is supported with preferred implementation methodology that will be used in evaluating the task quality plans to be submitted by the Performing Institutions. The implementing provisions of the program are based on guidance provided in American National Standards Institute/American Society of Mechanical Engineers NQA-1 1994, "Quality Assurance." The individual Performing Institutions will implement the appropriate quality program provisions through their own established quality plans that have been reviewed and found to comply with U.S. Home Team quality assurance plan commitments to the ITER Quality Assurance Program. The extent of quality program provisions

  13. Issues and Experiences on Radioactive Waste Quality Control / Quality Assurance with Regard to Future Disposal

    SciTech Connect (OSTI)

    Beckmerhagen, I.; Brennecke, P.; Steyer, S.; Bandt, G.

    2006-07-01

    In the Federal Republic of Germany all types of radioactive waste (short-lived, long-lived) are to be disposed of in deep geological formations. Thus, the safe management of radioactive waste presupposes an appropriate conditioning of primary waste-to-waste packages suitable for emplacement in a repository as well as the documentation of pre-treatment, processing and packaging steps and the waste package characteristics being relevant for disposal. Due to the operation, decommissioning and dismantling of nuclear facilities as well as the application of radioisotopes in industry, medicine and research and development radioactive waste continuously arises in Germany. In order to manage this waste different measures and procedures regarding its conditioning and quality control/quality assurance were introduced and since many years successfully applied. Waste conditioning is especially characterized by a flexible application of the Konrad waste acceptance requirements. The rationale for this approach is due to the present non-availability of a repository in Germany. Several examples of a 'tailor-made' application of the waste acceptance requirements in treatment, conditioning and documentation processes as well as the quality assurance/quality control processes illustrate the current German approach. (authors)

  14. Quality Assurance Baseline Assessment Report to Los Alamos National Laboratory Analytical Chemistry Operations

    SciTech Connect (OSTI)

    Jordan, R. A.

    1998-09-01

    This report summarizes observations that were made during a Quality Assurance (QA) Baseline Assessment of the Nuclear Materials Technology Analytical Chemistry Group (NMT-1). The Quality and Planning personnel, for NMT-1, are spending a significant amount of time transitioning out of their roles of environmental oversight into production oversight. A team from the Idaho National Engineering and Environmental Laboratory Defense Program Environmental Surety Program performed an assessment of the current status of the QA Program. Several Los Alamos National Laboratory Analytical Chemistry procedures were reviewed, as well as Transuranic Waste Characterization Program (TWCP) QA documents. Checklists were developed and the assessment was performed according to an Implementation Work Plan, INEEL/EXT-98-00740.

  15. QAS 2.6 Quality Assurance Records 3/15/95

    Office of Energy Efficiency and Renewable Energy (EERE)

    The objective of this surveillance is to evaluate the effectiveness of the contractor's implementation of the program to identify, collect and maintain quality assurance records.  The surveillance...

  16. Quality assurance program plan for FRG sealed isotopic heat sources project (C-229)

    SciTech Connect (OSTI)

    Tanke, J.M.

    1997-05-16

    This QAPP implements the Quality Assurance Program Plan for the FRG Sealed Isotopic Heat Sources Project (C-229). The heat source will be relocated from the 324 Building and placed in interim storage at the Central Waste Complex (CWC).

  17. SU-F-BRE-16: VMAT Commissioning and Quality Assurance (QA) of...

    Office of Scientific and Technical Information (OSTI)

    ICOM Test HarnessTM Citation Details In-Document Search Title: SU-F-BRE-16: VMAT Commissioning and Quality Assurance (QA) of An Elekta Synergy-STM Linac Using ICOM Test ...

  18. ETA-HIQA01 - Audit of the Quality Assurance Program for the Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AUDIT OF THE QUALITY ASSURANCE PROGRAM FOR THE CONTROL AND USE OF MEASURING AND TEST ... 6 8.5 Laboratory Records 7 8.6 CalibrationTest Report Preparation 7 8.7 Personnel 9 9.0 ...

  19. ETA-NQA001 - Audit of the Quality Assurance Program for the Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AUDIT OF THE QUALITY ASSURANCE PROGRAM FOR THE CONTROL AND USE OF MEASURING AND TEST ... 6 8.5 Laboratory Records 7 8.6 CalibrationTest Report Preparation 7 8.7 Personnel 9 9.0 ...

  20. ETA-HQA01 - Audit of the Quality Assurance Program for the Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AUDIT OF THE QUALITY ASSURANCE PROGRAM FOR THE CONTROL AND USE OF MEASURING AND TEST ... 6 8.5 Laboratory Records 7 8.6 CalibrationTest Report Preparation 7 8.7 Personnel 9 9.0 ...

  1. Audit of the Quality Assurance Program for the Control and Use...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AUDIT OF THE QUALITY ASSURANCE PROGRAM FOR THE CONTROL AND USE OF MEASURING AND TEST ... 7 8.5 Laboratory Records 8 8.6 CalibrationTest Report Preparation 8 8.7 Personnel 9 9.0 ...

  2. Facility Software Quality Assurance (SQA) for Captal Project Critical Decisions RM

    Broader source: Energy.gov [DOE]

    The purpose of this Software Quality Assurance for Capital Project Critical Decision Review Module (SQA RM) is to identify, integrate, and clarify, in one EM document, the SQA performance...

  3. Quality assurance program plan for 324 Building B-Cell safety cleanout project (BCCP)

    SciTech Connect (OSTI)

    Tanke, J.M.

    1997-05-22

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the 324 Building B-Cell Safety Cleanout Project (BCCP). This QAPP is responsive to the Westinghouse Hanford Company Quality Assurance Program and Implementation Plan, WHC-SP-1131, for 10 CFR 830.120, Nuclear Safety Management, Quality Assurance Requirements; and DOE Order 5700.6C, Quality Assurance. This QAPP supersedes PNNL PNL-MA-70 QAP Quality Assurance Plan No. WTC-050 Rev. 2, issue date May 3, 1996. This QAPP has been developed specifically for the BCCP. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP). These activities include all aspects of decontaminating B-Cell and project related operations within the 324 Building as it relates to the specific activities of this project. General facility activities (i.e. 324 Building Operations) are covered in the Building 324 QAPP. In addition, this QAPP supports the related quality assurance activities addressed in CM-2-14, Hazardous Material Packaging and Shipping, and HSRCM-1, Hanford Site Radiological Control Manual, The 324 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a B and W Hanford Company (BWHC) managed facility. During this transition process existing, PNNL procedures and documents will be utilized until replaced by BWHC procedures and documents. These documents conform to the requirements found in PNL-MA-70, Quality Assurance Manual and PNL-MA-8 1, Hazardous Materials Shipping Manual. The Quality Assurance Program Index (QAPI) contained in Table 1 provides a matrix which shows how project activities relate to 10 CFR 83 0.120 and 5700.6C criteria. Quality Assurance program requirements will be addressed separate from the requirements specified in this document. Other Hanford Site organizations/companies may be

  4. Westinghouse Hanford Company quality assurance program and implementation plan

    SciTech Connect (OSTI)

    Moss, S.S., Westinghouse Hanford

    1996-07-01

    This is the first revision of the Quality AssurancePlan/Implementation Plan (QAP/IP) for nuclear facilities managedand operated by the Westinghouse Hanford Company (WHC).Development of the initial IP required review of the WHC qualityassurance program to the requirements of the 10 CFR 830.120, andcompletion of initial baseline assessments against the QAP toverify implementation of the program. Each WHC-managed nuclearfacility provided a stand-alone section to the QAP/IP, describingits mission and life-cycle status. WHC support organizationsalso performed assessments for their lead areas, and providedinputs to a separate stand-alone section with the initialbaseline assessment results. In this first revision, the initialbaseline matrixes for those facilities found to be in compliancewith the QAP have been removed. Tank Waste Remediation System(TWRS) and K Basins have modified their baseline matrixes to showcompletion of action items to date. With the followingexceptions, the WHC-managed nuclear facilities and their supportorganizations were found to have implemented QA programs thatsatisfy the requirements of 10 CFR 830.120. TWRS identifiedImplementation Plan Action Items having to do with: generationand revision of as-built drawings; updating TWRS organizationaland program documents; tracking the condition/age ofmaterials/equipment; and reconstitution of design bases forexisting, active facilities. No incremental funding needs wereidentified for FY95. For FY97, TWRS identified incrementalfunding in the amount of $65,000 for as-built drawings, and$100,000 for tracking the age/condition of materials/equipment.The K Basin Fuel Storage Facility identified Implementation PlanAction Items having to do with: training; updating procedures;establishing configuration management; reconstituting designbases; and providing darwings; and developing integrated,resource-loaded schedules. Incremental funding needs in theamount of $1.7 million were identified, over a time

  5. Quality assurance grading guidelines for research and development at DOE facilities

    SciTech Connect (OSTI)

    Powell, T.B.; Morris, R.N.

    1993-01-01

    The quality assurance (QA) requirements for the US Department of Energy (DOE) are established in DOE Order 5700.6C. This order is applicable for all DOE departmental elements, management, and maintenance and operating contractors and requires that documented Quality Assurance Programs (QAPs) are prepared at all levels; it has one attachment. The DOE Office of Energy Research (DOE-ER) has issued a standard to ensure implementation of the full intent of this order in the ER community.

  6. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-02-20

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  7. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-02-11

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  8. Summary of the 3rd International PV Module Quality Assurance Forum |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summary of the 3rd International PV Module Quality Assurance Forum Summary of the 3rd International PV Module Quality Assurance Forum Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps3_pvtec_saito.pdf (586.08 KB) More Documents & Publications Overview of Progress in Thermoelectric Power Generation Technologies in Japan Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Overview of

  9. Laboratory quality assurance and its role in the safeguards analytical laboratory evaluation (SALE) program

    SciTech Connect (OSTI)

    Delvin, W. L.; Pietri, C. E.

    1981-07-01

    Since the late 1960's, strong emphasis has been given to quality assurance in the nuclear industry, particularly to that part involved in nuclear reactors. This emphasis has had impact on the analytical chemistry laboratory because of the importance of analytical measurements in the certification and acceptance of materials used in the fabrication and construction of reactor components. Laboratory quality assurance, in which the principles of quality assurance are applied to laboratory operations, has a significant role to play in processing, fabrication, and construction programs of the nuclear industry. That role impacts not only process control and material certification, but also safeguards and nuclear materials accountability. The implementation of laboratory quality assurance is done through a program plan that specifies how the principles of quality assurance are to be applied. Laboratory quality assurance identifies weaknesses and deficiencies in laboratory operations and provides confidence in the reliability of laboratory results. Such confidence in laboratory measurements is essential to the proper evaluation of laboratories participating in the Safeguards Analytical Laboratory Evaluation (SALE) Program.

  10. The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-29

    Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.