Powered by Deep Web Technologies
Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Qualifying Combined Heat and Power (CHP) activity  

Science Journals Connector (OSTI)

The EU 2002 draft and 2004 final CHP Directives propose qualifying CHP activity with the quality norm. This norm benchmarks the energy efficiency of CHP plant outputs on external reference power and heat efficiencies. Because the quality norm amalgamates cogeneration and condensing activity its application entails particular perverse effects for high-quality and adapted scale investment in CHP capacities and for operating available units. Operators get incentives to part-load or shut down their capacities and to avoid condensing activity (lucrative at spiky price conditions in the power market). The formula of the quality norm is only useful when CHP activity (heat recovery, cogenerated electricity, fuel consumption for cogeneration) is first quantified reliably.

Aviel Verbruggen

2007-01-01T23:59:59.000Z

2

Combined Heat and Power  

Office of Environmental Management (EM)

energy costs and 31 emissions while also providing more resilient and reliable electric power and thermal energy 1 . CHP 32 systems combine the production of heat (for both...

3

Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

available today." -American Council for an Energy-Efficient Economy What is Combined Heat & Power (CHP)? Federal Utility Partnership Working Group May 7 - 8, 2014 Virginia...

4

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

5

Accelerating Combined Heat & Power Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ACCELERATING COMBINED HEAT & POWER DEPLOYMENT An Industry Consultation by the United States Energy Association August 31, 2011 Cover Photograph: CHP Plant at the Mueller Energy...

6

Southwest Gas Corporation - Combined Heat and Power Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program < Back Eligibility Commercial Industrial Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate 50% of the installed cost of the project Program Info State Arizona Program Type Utility Rebate Program Rebate Amount $400/kW - $500/kW up to 50% of the installed cost of the project Provider Southwest Gas Corporation Southwest Gas Corporation (SWG) offers incentives to qualifying commercial and industrial facilities who install efficient Combined Heat and Power systems (CHP). CHP systems produce localized, on-site power and heat which can be used in a variety of ways. Incentives vary based upon the efficiency

7

Combined Retrieval, Microphysical Retrievals and Heating Rates  

DOE Data Explorer (OSTI)

Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

Feng, Zhe

8

Combined Heat and Power Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technical Assistance Combined Heat & Power Deployment Combined Heat and Power Basics Combined Heat and Power Basics Combined heat and power (CHP), also known as cogeneration,...

9

Industrial Distributed Energy: Combined Heat & Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Information about the Department of Energys Industrial Technologies Program and its Combined Heat and Power program.

10

Solar air heating system for combined DHW and space heating  

E-Print Network (OSTI)

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren ?stergaard Jensen

11

CONSULTANT REPORT COMBINED HEAT AND POWER  

E-Print Network (OSTI)

CONSULTANT REPORT COMBINED HEAT AND POWER: POLICY ANALYSIS AND 2011 ­ 2030 MARKET ASSESSMENT This report analyzes the potential market penetration of combined heat and power systems in California from 2011 to 2030. This analysis evaluates the potential contribution of new combined heat and power

12

CONSULTANT REPORT COMBINED HEAT AND POWER  

E-Print Network (OSTI)

CONSULTANT REPORT COMBINED HEAT AND POWER: POLICY ANALYSIS AND 2011 ­ 2030 MARKET ASSESSMENT ABSTRACT This report analyzes the potential market penetration of combined heat and power systems the markets, applications, technologies, and economic competition for combined heat and power over

13

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

14

Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Combined Heat and Power Combined Heat and Power Jump to: navigation, search All power plants release a certain amount of heat during electricity generation. This heat can be used to serve thermal loads, such as building heating and hot water requirements. The simultaneous production of electrical (or mechanical) and useful thermal power from a single source is referred to as a combined heat and power (CHP) process, or cogeneration. Contents 1 Combined Heat and Power Basics 2 Fuel Types 2.1 Rural Resources 2.2 Urban Resources 3 CHP Technologies 3.1 Steam Turbine 3.2 Gas Turbine 3.3 Microturbine 3.4 Reciprocating Engine 4 Example CHP Systems[7] 4.1 University of Missouri (MU) 4.2 Princeton University 4.3 University of Iowa 4.4 Cornell University 5 Glossary 6 References Combined Heat and Power Basics

15

Benefits of Combined Heat and Power | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Benefits of Combined Heat and Power Benefits of Combined Heat and Power Combined heat and power (CHP) positively impacts the health of local economies and supports national policy...

16

ENVIRONMENTAL REVENUE STREAMS FOR COMBINED HEAT AND POWER | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENVIRONMENTAL REVENUE STREAMS FOR COMBINED HEAT AND POWER ENVIRONMENTAL REVENUE STREAMS FOR COMBINED HEAT AND POWER ENVIRONMENTAL REVENUE STREAMS FOR COMBINED HEAT AND POWER...

17

Encouraging Combined Heat and Power in California Buildings  

E-Print Network (OSTI)

Memorandum Encouraging Combined Heat and Power in California2012 ICF, 2012, Combined Heat and Power: Policy AnalysisA New Generation of Combined Heat and Power: Policy Planning

Stadler, Michael

2014-01-01T23:59:59.000Z

18

Investment in Combined Heat and Power: CHP  

Science Journals Connector (OSTI)

This study investigates the advantages of investing in plants for cogeneration, i.e., Combined Heat and Power (CHP), in case the heat is utilized ... in order to analyze the dimensioning of a CHP plant. Two main ...

Gran Bergendahl

2010-01-01T23:59:59.000Z

19

Midwest Region Combined Heat and Power Projects  

Energy.gov (U.S. Department of Energy (DOE))

DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

20

Northwest Region Combined Heat and Power Projects  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Pacific Region Combined Heat and Power Projects  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

22

Northeast Region Combined Heat and Power Projects  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

23

Combined Heat & Power Technology Overview and Federal Sector...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat & Power Technology Overview and Federal Sector Deployment Combined Heat & Power Technology Overview and Federal Sector Deployment Presentation covers the Combined...

24

Low-Cost Packaged Combined Heat and Power System | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Packaged Combined Heat and Power System Low-Cost Packaged Combined Heat and Power System Introduction Many combined heat and power (CHP) systems less than 1 megawatt (MW)...

25

Fuel-Flexible Microturbine and Gasifier System for Combined Heat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in...

26

Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2011 FuelCell Energy, Inc., in...

27

ITP Industrial Distributed Energy: Combined Heat and Power -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of...

28

Promoting Combined Heat and Power (CHP) for Multifamily Properties...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 The U.S. Department of Housing and...

29

Combined Heat and Power (CHP) Resource Guide for Hospital Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 The objective of this 2007...

30

Energy Portfolio Standards and the Promotion of Combined Heat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009 Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White...

31

Guide to Using Combined Heat and Power for Enhancing Reliability...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in...

32

Combined Heat and Power: Expanding CHP in Your State | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power: Expanding CHP in Your State Combined Heat and Power: Expanding CHP in Your State This presentation, given through the DOE's Technical Assitance Program...

33

National CHP Roadmap: Doubling Combined Heat and Power Capacity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the...

34

Survey of Emissions Models for Distributed Combined Heat and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 The models...

35

Opportunities for Combined Heat and Power in Data Centers, March...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Opportunities for Combined Heat and Power in Data Centers, March 2009 Opportunities for Combined Heat and Power in Data Centers, March 2009 This report analyzes the opportunities...

36

Energy Department Actions to Deploy Combined Heat and Power,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 -...

37

Development of an Advanced Combined Heat and Power (CHP) System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2011 Development of an Advanced Combined Heat and Power (CHP) System...

38

Combined Heat and Power Market Potential for Opportunity Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004...

39

Assessment of Combined Heat and Power Premium Power Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment of Combined Heat and Power Premium Power Applications in California, September 2008 Assessment of Combined Heat and Power Premium Power Applications in California,...

40

National Association of Counties Webinar - Combined Heat and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Association of Counties Webinar - Combined Heat and Power: Resiliency Strategies for Critical Facilities National Association of Counties Webinar - Combined Heat and Power:...

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by...

42

Combined Heat and Power (CHP) Integrated with Burners for Packaged...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Providing Clean, Low-Cost,...

43

AMO Industrial Distributed Energy: Combine Heat and Power: A...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Solution Combined Heat and Power August 2012 Combined Heat and Power: A Clean Energy Solution 1 Contents Executive Summary ......

44

Renewable Combined Heat and Power Dairy Operations  

E-Print Network (OSTI)

horsepower Guascor model SFGLD-560 biogas-fired lean burn internal combustion (IC) engine and generator set and modify the existing biogas toelectricity combined heat and power (CHP) system operated at Fiscalini bacteria to remove hydrogen sulfide presented in the biogas. Source: Fiscalini Farms Term: March 2011

45

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network (OSTI)

for Combined Heat and Power, U.S. E NVTL . P ROT . A GENCY CCombined Heat and Power: A Technology Whose Time Has ComeD.C. COMBINED HEAT AND POWER A. Create an Organization to

Ferraina, Steven

2014-01-01T23:59:59.000Z

46

Assessment of Large Combined Heat and Power Market, April 2004...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large Combined Heat and Power Market, April 2004 Assessment of Large Combined Heat and Power Market, April 2004 This 2004 report summarizes an assessment of the 2-50 MW combined...

47

GUIDELINES FOR CERTIFICATION OF COMBINED HEAT AND POWER SYSTEMS  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION GUIDELINES FOR CERTIFICATION OF COMBINED HEAT AND POWER SYSTEMS for Certification of Combined Heat and Power Systems Pursuant to the Waste Heat and Carbon Emissions Reduction Act Heat and Power System Pursuant to the Waste Heat and Carbon Emissions Reduction Act, Public Utilities

48

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(DOE) (DOE) Industrial Technology Program (ITP) Industrial Distributed Energy: Combined Heat & Power (CHP) Richard Sweetser Senior Advisor DOE's Mid-Atlantic Clean Energy Application Center 32% Helping plants save energy today using efficient energy management practices and efficient new technologies Activities to spur widespread commercial use of CHP and other distributed generation solutions 10% Manufacturing Energy Systems 33% Industries of the Future R&D addressing top priorities in America's most energy-intensive industries and cross-cutting activities applicable to multiple industrial subsectors 25% Industrial Distributed Energy Industrial Technical Assistance DOE ITP FY'11 Budget: $100M Knowledge development and

49

HUD Combined Heat and Power (CHP) Guide #3, September 2010 |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HUD Combined Heat and Power (CHP) Guide 3, September 2010 HUD Combined Heat and Power (CHP) Guide 3, September 2010 This Level 2 analysis tool for multifamily buildings will help...

50

Alaska Gateway School District Adopts Combined Heat and Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alaska Gateway School District Adopts Combined Heat and Power Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the...

51

Plant Oil Fuels Combined Heat and Power (CHP)  

Science Journals Connector (OSTI)

Combined heat and power (CHP) or cogeneration is the simultaneous generation of both useable heat and power in a single process by a heat and power supply station or an engine. The mechanical energy is usuall...

Dr. Klaus Thuneke

2013-01-01T23:59:59.000Z

52

Plant Oil Fuels Combined Heat and Power (CHP)  

Science Journals Connector (OSTI)

Combined heat and power (CHP) or cogeneration is the simultaneous generation of both useable heat and power in a single process by a heat and power supply station or an engine. The mechanical energy is usuall...

Dr. Klaus Thuneke

2012-01-01T23:59:59.000Z

53

Encouraging Combined Heat and Power in California Buildings  

E-Print Network (OSTI)

incentive ($/W) wind turbine waste heat to power pressurewind turbines, fuel cells, organic rankine cycle/waste heat capture, pressure reduction turbines, advanced energy storage, and combined heat and power

Stadler, Michael

2014-01-01T23:59:59.000Z

54

Alaska Gateway School District Adopts Combined Heat and Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Tok School's use of a biomass combined heat and power system is helping the school to save on energy costs.

55

Combined heat recovery and make-up water heating system  

SciTech Connect

A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

Kim, S.Y.

1988-05-24T23:59:59.000Z

56

FINAL STAFF PAPER A New Generation of Combined Heat  

E-Print Network (OSTI)

onsite or exporting it to the grid. The feasibility of meeting the state's combined heat and power goals FINAL STAFF PAPER A New Generation of Combined Heat and Power: Policy Planning. Neff , Bryan. A New Generation of Combined Heat and Power: Policy Planning for 2030. 2012. California

57

Effects of a carbon tax on microgrid combined heat and power adoption  

E-Print Network (OSTI)

Modeling with Combined Heat and Power Applications. with or without combined heat and power (CHP) equipment,Carbon emissions; Combined heat and power; CHP; Distributed

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-01-01T23:59:59.000Z

58

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

Modeling with Combined Heat and Power Applications,Committee, Combined Heat and Power Workshop, CaliforniaJuly 23, 2009 Combined Heat and Power Installation

Stadler, Michael

2010-01-01T23:59:59.000Z

59

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network (OSTI)

Modeling with Combined Heat and Power Applications. Lawrencegeneration, combined heat and power, and thermally drivenPacific Region Combined Heat and Power Application Center (

Norwood, Zack

2010-01-01T23:59:59.000Z

60

ITP Industrial Distributed Energy: Ultra Efficient Combined Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System A High-Temperature Fuel Cell to Provide On-site Process Reducing Gas, Clean Power, and Heat The project will utilize...

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Utility Incentives for Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Utility Incentives for Combined Heat and Power Utility Incentives for Combined Heat and Power Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Utility Incentives for Combined Heat and Power Focus Area: Solar Topics: Policy Impacts Website: www.epa.gov/chp/documents/utility_incentives.pdf Equivalent URI: cleanenergysolutions.org/content/utility-incentives-combined-heat-and- Language: English Policies: Financial Incentives This report reviews a U.S. Environmental Protection Agency study that researched 41 U.S. utilities and found that nearly half provided some kind of support for combined heat and power (CHP). Here they profile 16 utility programs that support CHP in ways excluding direct financial incentives. References Retrieved from "http://en.openei.org/w/index.php?title=Utility_Incentives_for_Combined_Heat_and_Power&oldid=514610

62

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network (OSTI)

energy efficient and environmentally friendly technology.Combined Heat and Power: A Technology Whose Time Has Comesteps to utilize the technology. 9 The average increase in

Ferraina, Steven

2014-01-01T23:59:59.000Z

63

Combined Heat and Power: Connecting the Gap between Markets and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices (Part I) Susanne Brooks, Brent Elswick, and R. Neal Elliott March 2006...

64

Combined Heat and Power System Achieves Millions in Cost Savings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

campus, which includes 750 buildings. Photo courtesy of Texas A&M University Combined Heat and Power System Achieves Millions in Cost Savings at Large University Recovery Act...

65

Combined Heat and Power with Your Local Utility  

Energy.gov (U.S. Department of Energy (DOE))

Presentationgiven at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers combined heat and power (CHP) and its uses, configurations, considerations, and more.

66

Integrated Combined Heat and Power/Advanced Reciprocating Internal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications Development of an Improved Modular Landfill Gas Cleanup and...

67

Combined Heat and Power System Enables 100% Reliability at Leading...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enables 100% Reliability at Leading Medical Campus - Case Study, 2013 Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus - Case Study, 2013 Thermal...

68

Combined Heat and Power System Achieves Millions in Cost Savings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Achieves Millions in Cost Savings at Large University - Case Study, 2013 Combined Heat and Power System Achieves Millions in Cost Savings at Large University - Case Study, 2013...

69

Combined Heat and Power System Enables 100% Reliability at Leading...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

buildings on nearly 1,000 acres. Photo courtesy of Thermal Energy Corporation Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus Recovery Act...

70

Ultra Efficient Combined Heat, Hydrogen, and Power System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

information. Project Objective Demonstrate Tri-generation (CHHP) combining heat, hydrogen and power production using a high temperature fuel cell to reduce O&M costs...

71

Mid-Atlantic Region Combined Heat and Power Projects  

Energy.gov (U.S. Department of Energy (DOE))

DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

72

ITP Industrial Distributed Energy: Combined Heat and Power: Effective...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Solutions for a Sustainable Future ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future Report describing the...

73

Combined Heat and Power Webinar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webinar Combined Heat and Power Webinar 06092010CHP.pdf More Documents & Publications CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices,...

74

ITP Distributed Energy: Combined Heat and Power Market Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Governor COMBINED HEAT AND POWER MARKET ASSESSMENT Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: ICF International,...

75

Combined Heat and Power Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power Basics Combined Heat and Power Basics Combined Heat and Power Basics November 1, 2013 - 11:40am Addthis Combined heat and power (CHP), also known as cogeneration, is: A process flow diagram showing efficiency benefits of CHP CHP Process Flow Diagram The concurrent production of electricity or mechanical power and useful thermal energy (heating and/or cooling) from a single source of energy. A type of distributed generation, which, unlike central station generation, is located at or near the point of consumption. A suite of technologies that can use a variety of fuels to generate electricity or power at the point of use, allowing the heat that would normally be lost in the power generation process to be recovered to provide needed heating and/or cooling. CHP technology can be deployed quickly, cost-effectively, and with few

76

Quantifying Combined Heat and Power (CHP) activity  

Science Journals Connector (OSTI)

In CHP plants without heat rejection facilities power, output is complementary to the recovery of heat, and all activity is cogeneration. CHP plants with heat rejection facilities can operate a mix of cogeneration and condensing activities. Quantifying the energy flows of both activities properly requires knowledge of the design power-to-heat ratios of the CHP processes (steam and gas turbines, combustion engines). The ratios may be multiple, non-linear or extend into the virtual domain of the production possibility sets of the plants. Quantifying cogeneration in CCGT plants reveals a definition conflict but consistent solutions are available.

Aviel Verbruggen

2007-01-01T23:59:59.000Z

77

Combined Heat and Power Research and Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

related to dilution and fuel selection Difficult for near-term Environmental heat loss * Low-temperature combustion techniques * Adiabatic approach increases thermal...

78

Corrosion Investigations at Masned Combined Heat and Power Plant  

E-Print Network (OSTI)

Corrosion Investigations at Masnedø Combined Heat and Power Plant Part VI Melanie Montgomery AT MASNED? COMBINED HEAT AND POWER PLANT PART VI CONTENTS 1. Introduction Department for Manufacturing Engineering Technical University of Denmark Asger Karlsson Energi E2 Power

79

Optimal Scheduling of Industrial Combined Heat and Power Plants  

E-Print Network (OSTI)

Optimal Scheduling of Industrial Combined Heat and Power Plants under Time-sensitive Electricity Prices Sumit Mitra , Lige Sun , Ignacio E. Grossmann December 24, 2012 Abstract Combined heat and power companies. However, under-utilization can be a chance for tighter interaction with the power grid, which

Grossmann, Ignacio E.

80

Combined Flue Gas Heat Recovery and Pollution Control Systems  

E-Print Network (OSTI)

in the field of heat recovery now make it possible to recover a portion of the wasted heat and improve the working conditions of the air purification equipment. Proper design and selection of heat recovery and pollution control equipment as a combination...

Zbikowski, T.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Combined Heat and Power (CHP) essentials  

Science Journals Connector (OSTI)

'CHP essentials' introduces the concept of power and heat 'production possibility sets', starting at the cradle of CHP, i.e., the thermal power generation plant. The latter always occasions 'fatal' heat that is either recovered (the 'merit' of CHP) or wasted (condensing). This split paves the way to defining the production possibility sets of CHP plants, shown for steam turbines, internal combustion engines and gas turbines as main CHP technologies. Three indicators are widely used to monitor CHP performance: the overall conversion efficiency (quantity indicator), the (mostly ill-defined) power to heat ratio (quality indicator), the 'quality norm' advertised by the EU Directive 2004/8/EC. The paper levels the field for discussing the crucial issue of identifying and quantifying CHP activity.

Aviel Verbruggen

2007-01-01T23:59:59.000Z

82

Portland Community College Celebrates Commissioning of Combined Heat and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portland Community College Celebrates Commissioning of Combined Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System October 3, 2011 - 4:43pm Addthis U.S. Energy Secretary Steven Chu today applauded the commissioning of a combined heat and power (CHP) fuel cell system at Portland Community College in Oregon. The CHP fuel cell system will help Portland Community College save on its energy bills and help achieve its energy efficiency and sustainability goals. Students at the College will also learn about the fuel cell technology used in the project as part of a comprehensive alternative energy curriculum offered by the school. "The benefits of a combined heat and power fuel cell system, coupled with

83

ARM - PI Product - Combined Retrieval, Microphysical Retrievals & Heating  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsCombined Retrieval, Microphysical Retrievals & ProductsCombined Retrieval, Microphysical Retrievals & Heating Rates Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Combined Retrieval, Microphysical Retrievals & Heating Rates 2011.10.11 - 2012.02.07 Site(s) GAN General Description Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval. The PNNL Combined Remote Sensor retrieval algorithm (CombRet) is designed to retrieve cloud and precipitation properties for all sky conditions. The retrieval is based on a combination of several previously published retrievals, with new additions related to the retrieval of cloud microphysical properties when only one instrument is able to detect cloud (i.e. radar only or lidar only).

84

Definition: Combined heat and power | Open Energy Information  

Open Energy Info (EERE)

heat and power heat and power Jump to: navigation, search Dictionary.png Combined heat and power The production of electricity and heat from a single process. Almost synonymous with the term cogeneration, but slightly more broad. Under the Public Utility Regulatory Policies Act (PURPA), the definition of cogeneration is the production of electric energy and "another form of useful thermal energy through the sequential use of energy." Since some facilities produce both heat and power but not in a sequential fashion, the term CHP is used.[1][2][3] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition Cogeneration power plants produce electricity but do not waste the heat this process creates. The heat is used for district heating or other purposes, and thus the overall efficiency is improved. For example could

85

NREL: Climate Neutral Research Campuses - Combined Heat and Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Combined Heat and Power Combined Heat and Power Combined heat and power (CHP) systems on research campuses can reduce climate impact by 15% to 30% and yield a positive financial return, because they recover heat that is typically wasted in the generation of electric power and deliver that energy in a useful form. The following links go to sections that describe how CHP may fit into your climate action plans. Considerations Sample Project Related Links CHP systems can take advantage of large central heating plants and steam distribution systems that are available on many campuses. CHP systems may be new at a particular facility, but the process and equipment involve well-established industrial technologies. The U.S. Environmental Protection Agency CHP Partnership offers technical information and resources that

86

Pacific Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Pacific www.pacificCHPTAP.org Terry Clapham California Center for Sustainable Energy 858-244-4872 terry.clapham@energycenter.org California Alameda County Santa Rita Jail, Dublin Burlingame Wastewater Treatment Plant, Burlingame Chiquita Water Reclamation Plant, Santa Margarita DGS Central Plant, Sacramento East Bay Municipal Utility District, Oakland East Bay Municipal Utility District WWTP, Oakland EMWD Microturbine Energy System, Riverside County

87

Southeast Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeast Region Combined Heat and Power Projects Southeast Region Combined Heat and Power Projects Southeast Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Southeast www.southeastCHPTAP.org Isaac Panzarella North Carolina State University 919-515-0354 ipanzarella@ncsu.edu Alabama View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Alabama. Arkansas Fourche Creek Wastewater Treatment Facility, Little Rock View EEA's database of all known CHP installations in Arkansas. Florida Howard F. Curren Advanced Wastewater Treatment Plant, Tampa Shands Hospital, Gainesville View EEA's database of all known CHP installations in Florida.

88

Midwest Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwest Region Combined Heat and Power Projects Midwest Region Combined Heat and Power Projects Midwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Midwest www.midwestCHPTAP.org John Cuttica University of Illinois at Chicago 312-996-4382 cuttica@uic.edu Cliff Haefke University of Illinois at Chicago 312-355-3476 chaefk1@uic.edu Illinois Adkins Energy, Lena Advocate South Suburban Hospital, Hazel Crest Antioch Community High School, Antioch Elgin Community College, Elgin Evanston Township High School, Evanston Hunter Haven Farms, Inc., Pearl City Jesse Brown VA Medical Center, Chicago Lake Forest Hospital, Lake Forest

89

Pacific Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Pacific www.pacificCHPTAP.org Terry Clapham California Center for Sustainable Energy 858-244-4872 terry.clapham@energycenter.org California Alameda County Santa Rita Jail, Dublin Burlingame Wastewater Treatment Plant, Burlingame Chiquita Water Reclamation Plant, Santa Margarita DGS Central Plant, Sacramento East Bay Municipal Utility District, Oakland East Bay Municipal Utility District WWTP, Oakland EMWD Microturbine Energy System, Riverside County

90

Northwest Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Region Combined Heat and Power Projects Northwest Region Combined Heat and Power Projects Northwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Northwest www.northwestCHPTAP.org David Sjoding Washington State University 360-956-2004 sjodingd@energy.wsu.edu Alaska Alaska Village Electric Cooperative, Anvik Alaska Village Electric Cooperative, Grayling Exit Glacier - Kenai Fjords National Park, Seward Golovin City, Golovin Inside Passage Electric Cooperative, Angoon Kokhanok City, Kokhanok St. Paul Island, St. Paul Island Village Council, Kongiganak City Village Council, Kwigillingok City Village Council, Stevens Village

91

Southwest Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Region Combined Heat and Power Projects Southwest Region Combined Heat and Power Projects Southwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Southwest www.southwestCHPTAP.org Christine Brinker Southwest Energy Efficiency Project 720-939-8333 cbrinker@swenergy.org Arizona Ina Road Water Pollution Control Facility, Tucson University of Arizona, Tucson View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Arizona. Colorado Metro Wastewater Reclamation District, Denver MillerCoors, Golden New Belgium Brewery, Fort Collins Trailblazer Pipeline, Fort Collins View EEA's database of all known CHP installations in Colorado.

92

Biomass Energy Small-Scale Combined Heat and Power Systems  

Science Journals Connector (OSTI)

Combined heat and power (CHP) generation is one of the essential pillar in a modern, sustainable, and environmentally friendly energy generation. This is due to the fact that cogeneration systems are energeti...

Daniel Bchner; Volker Lenz

2012-01-01T23:59:59.000Z

93

Biomass Energy Small-Scale Combined Heat and Power Systems  

Science Journals Connector (OSTI)

Combined heat and power (CHP) generation is one of the essential pillar in a modern, sustainable, and environmentally friendly energy generation. This is due to the fact that cogeneration systems are energeti...

Daniel Bchner; Volker Lenz

2013-01-01T23:59:59.000Z

94

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the Combined Heat & Power Technology Overview and Federal Sector Deployment from Oakridge National Laboratory. The presentation is from the FUPWG Spring Meeting, held on May 22, 2013 in San Francisco, California.

95

ITP Industrial Distributed Energy: Promoting Combined Heat and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Promoting Combined Heat and Power (CHP) for Multifamily Properties Robert Groberg, U.S. Department of Housing and Urban Development (HUD) Mike MacDonald and Patti Garland, Oak...

96

ITP Industrial Distributed Energy: HUD Combined Heat and Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HUD COMBINED HEAT AND POWER (CHP) GUIDE 3 INTRODUCTION TO THE LEVEL 2 ANALYSIS TOOL FOR MULTIFAMILY BUILDINGS PREPARED FOR U.S. DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT BY U.S....

97

Using and Measuring the Combined Heat and Power Advantage  

E-Print Network (OSTI)

Combined Heat and Power (CHP), also known as cogeneration, refers to the integration of thermal energy with power generation. CHP is a powerful energy conservation measure that has been identified as an important greenhouse gas reduction measure...

John, T.

2011-01-01T23:59:59.000Z

98

Encouraging Combined Heat and Power in California Buildings  

E-Print Network (OSTI)

of Commercial-Building Micro-grids, IEEE Transactions onEffects of Carbon Tax on Micro-grid Combined Heat and Powerin this work, picks optimal micro-grid 3 /building equipment

Stadler, Michael

2014-01-01T23:59:59.000Z

99

CHP: It's Time for Combined Heat and Power  

E-Print Network (OSTI)

and export 16. Creates local jobs for installation, operation and maintenance 17. Supports competitive electricity market structure General Conclusion It is very much in the PUBLIC interest to support CHP distributed energy even if the private incentives... of use Electricity Electricity Heat Heat Combined Heat and Power Conventional Generation Building Load Power Plant fuel (66 units of remote energy) Boiler fuel (34 units of on-site energy) CHP fuel (x units of on-site energy) Losses Losses 20 29 20...

Herweck, R.

100

An algorithm for combined heat and power economic dispatch  

SciTech Connect

This paper presents a new algorithm for Combined Heat and Power (CHP) economic dispatch. The CHP economic dispatch problem is decomposed into two subproblems: the heat dispatch and the power dispatch. The subproblems are connected through the heat-power feasible region constraints of co-generation units. The connection can be interpreted by the unit heat-power feasible region constraint multipliers in the Lagrangian function, and the interpretation naturally leads to the development of a two-layer algorithm. The outer layer uses the Lagrangian Relaxation technique to solve the power dispatch iteratively. In each iteration, the inner layer solves the heat dispatch with the unit heat capacities passed by the outer layer. The binding constraints of the heat dispatch are fed back to the outer layer to move the CHP economic dispatch towards a global optimal solution.

Guo, T.; Henwood, M.I. [Henwood Energy Services, Inc., Sacramento, CA (United States)] [Henwood Energy Services, Inc., Sacramento, CA (United States); Ooijen, M. van [Eindhoven Univ. of Technology (Netherlands)] [Eindhoven Univ. of Technology (Netherlands)

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Combined ICR heating antenna for ion separation systems  

SciTech Connect

A combination of one- and two-wave antennas (one and two turns of conductors around a plasma cylinder, respectively) is proposed. This combined antenna localizes an RF field within itself. It is shown that spent nuclear fuel processing systems based on ICR heating of nuclear ash by such a combined antenna have high productivity. A theory of the RF field excitation in ICR ion separation systems is presented in a simple and compact form.

Timofeev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

2011-01-15T23:59:59.000Z

102

Effects of a carbon tax on combined heat and power adoption by a microgrid  

E-Print Network (OSTI)

of a Carbon Tax on Combined Heat and Power Adoption by aof a Carbon Tax on Combined Heat and Power Adoption by ainvolving combined heat and power (CHP). The expectation

Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

2002-01-01T23:59:59.000Z

103

Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power Projects Combined Heat and Power Projects Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles. Search the project profiles database. Project profiles can be searched by state, CHP TAP, market sector, North American Industry Classification System (NAICS) code, system size, technology/prime mover, fuel, thermal energy use, and year installed. View a list of project profiles by market sector. To view project profiles by state, click on a state on the map or choose a state from the drop-down list below. "An image of the United States representing a select number of CHP project profiles on a state-by-state basis View Energy and Environmental Analysis Inc.'s (EEA) database of all known

104

Guide to Combined Heat and Power Systems for Boiler Owners and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power Systems for Boiler Owners and Operators Guide to Combined Heat and Power Systems for Boiler Owners and Operators This guide presents useful information for...

105

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview and Overview and Federal Sector Deployment Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company Bob Slattery Oak Ridge National Laboratory CHP is an integrated energy system that:  is located at or near a facility  generates electrical and/or mechanical power  recovers waste heat for ◦ heating ◦ cooling ◦ dehumidification  can utilize a variety of technologies and fuels  is also referred to as cogeneration The on-site simultaneous generation of two forms of energy (heat and electricity) from a single fuel/energy source Defining Combined Heat and Power (CHP) Steam Electricity Fuel Prime Mover & Generator Heat Recovery Steam Boiler Conventional CHP

106

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste  

Science Journals Connector (OSTI)

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste ... Dilution of hydrogen rich fuels resulting from coal or heavy hydrocarbon gasification processes with nitrogen prior to the entrance of the gas turbines may be desirable in precombustion carbon capture and storage (CCS) routes, in order to ensure safe operations of gas turbines. ...

Jhuma Sadhukhan; Kok Siew Ng; Nilay Shah; Howard J. Simons

2009-09-15T23:59:59.000Z

107

A PASSIVE SOLAR HEATING SYSTEM COMBINED WITH A HEATPUMP AND A LONG TERM HEAT STORAGE  

Science Journals Connector (OSTI)

ABSTRACT This paper describes the design and the first preliminary performance results of a sunspace attached to an existent building, combined with a heatpump and a long term heat storage. The aim of the project is to study the possibility of storing the excess heat of the passive system in a low temperature storage, which is used as cold source for a heatpump. The advantages of the presented system are that the energy flows in the passive solar system can be controlled and that a rather high solar fraction can be obtained (around .7 to .8 in the climate of Ispra). KEYWORDS Passive solar energy, heat pump, heat storage

D. van Hattem; R. Colombo; P. Actis-Dato

1988-01-01T23:59:59.000Z

108

Combined Heat and Power Pilot Loan Program (Connecticut) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Program (Connecticut) Loan Program (Connecticut) Combined Heat and Power Pilot Loan Program (Connecticut) < Back Eligibility Commercial Industrial Institutional Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate $450 per kilowatt Program Info Funding Source Clean Energy Finance and Investment Authority Start Date 06/18/2012 State Connecticut Program Type State Loan Program Rebate Amount Varies based on the specific technology, efficiency, and economics of the installation Provider Clean Energy Finance and Investment Authority Note: The application deadline was September 28, 2012. This solicitation is now closed. Check the program web site for information regarding the next solicitation. The Clean Energy Finance and Investment Authority (CEFIA) is administering

109

Combined Heat and Power Pilot Grant Program (Connecticut ) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grant Program (Connecticut ) Grant Program (Connecticut ) Combined Heat and Power Pilot Grant Program (Connecticut ) < Back Eligibility Commercial Industrial Institutional Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate $450 per kilowatt Program Info Funding Source Clean Energy Finance and Investment Authority State Connecticut Program Type State Grant Program Rebate Amount Varies based on the specific technology, efficiency, and economics of the installation Provider Clean Energy Finance and Investment Authority Note: The initial application deadline was September 28, 2012. This solicitation is now closed. Check the program web site for information regarding the next solicitation. The Clean Energy Finance and Investment Authority (CEFIA) is administering

110

Combined Heat and Power - A Decade of Progress, A Vision for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power - A Decade of Progress, A Vision for the Future, August 2009 Combined Heat and Power - A Decade of Progress, A Vision for the Future, August 2009 Combined...

111

The development of Coke Carried-Heat Gasification Coal-Fired Combined Cycle  

Science Journals Connector (OSTI)

Carried-Heat Partial Gasification Combined cycle is a novel combined cycle which was proposed by Thermal Engineering Department ... technology, Coke Carried-Heat Gasification Coal-Fired Combined Cycle, as the imp...

Li Zhao; Xiangdong Xu

1999-12-01T23:59:59.000Z

112

Combined Heat and Power (CHP) Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Development » Smart Grid » Distributed Technology Development » Smart Grid » Distributed Energy » Combined Heat and Power (CHP) Systems Combined Heat and Power (CHP) Systems The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light industrial, supermarkets, restaurants, hospitality, health care and high-tech industries. In high-tech industries such as telecommunications, commercial data processing and internet services, the use of electronic data and signal processing have become a cornerstone in the U.S. economy. These industries represent high potential for CHP and distributed energy due to their ultra-high reliability and power quality requirements and related large

113

Combined Heat and Power with Your Local Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnership Working Group Combined Heat and Power C.A. Skip Cofield October 16, 2012 Agenda * Southern Company * Combined Heat and Power (CHP) * Southern Company CHP * Utility Partnerships 2 Southern Company Overview Operating Companies: * Alabama Power * Georgia Power * Gulf Power * Mississippi Power Subsidiaries: * Southern LINC * Southern Nuclear * Southern Power * Southern Telecom 3 Retail Generating Units Wholesale Generating Units * 4.4 million customers * 43,500+ MW * 26,000+ employees * 120,000 square miles of retail service territory * 27,000 mi. of transmission lines * 3,700 substations * $17.7B in operating revenue * $2.2B in net income * $39.2B in market cap * $59.3B in assets * $13.5B annual op. expense 4 Southern Company Overview

114

Encouraging Combined Heat and Power in California Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

267E 267E Encouraging Combined Heat and Power in California Buildings Michael Stadler, Markus Groissböck, Gonçalo Cardoso, Andreas Müller, and Judy Lai Environmental Energy Technologies Division http://microgrid.lbl.gov This project was funded by the California Energy Commission Public Interest Energy Research (PIER) Program under WFO Contract No. 500-10-052 and by the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. We are appreciative of the Commission's timely support for this project. We particularly thank Golam Kibrya and Chris Scruton for their guidance and assistance through all phases of the project. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Encouraging Combined Heat and Power in California

115

Energy efficient operation strategy design for the combined cooling, heating and power system.  

E-Print Network (OSTI)

??Combined cooling, heating and power (CCHP) systems are known as trigeneration systems, designed to provide electricity, cooling and heating simultaneously. The CCHP system has become (more)

Liu, Mingxi

2012-01-01T23:59:59.000Z

116

Encouraging Combined Heat and Power in California Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Encouraging Combined Heat and Power in California Buildings Encouraging Combined Heat and Power in California Buildings Title Encouraging Combined Heat and Power in California Buildings Publication Type Report LBNL Report Number LBNL-6267E Year of Publication 2013 Authors Stadler, Michael, Markus Groissböck, Gonçalo Cardoso, Andreas Müller, and Judy Lai Abstract Governor Brown's research priorities include an additional 6.5 GW of combined heat and power (CHP) by 2030. As of 2009, roughly 0.25 GW of small natural gas and biogas fired CHP is documented by the Self-Generation Incentive Program (SGIP) database. The SGIP is set to expire, and the anticipated grid de-carbonization based on the development of 20 GW of renewable energy will influence the CHP adoption. Thus, an integrated optimization approach for this analysis was chosen that allows optimizing the adoption of distributed energy resources (DER) such as photovoltaics (PV), CHP, storage technologies, etc. in the California commercial sector from the building owners' perspective. To solve this DER adoption problem the Distributed Energy Resources Customer Adoption Model (DER-CAM), developed by the Lawrence Berkeley National Laboratory and used extensively to address the problem of optimally investing and scheduling DER under multiple settings, has been used. The application of CHP at large industrial sites is well known, and much of its potential is already being realized. Conversely, commercial sector CHP, especially those above 50 to 100 kW peak electricity load, is widely overlooked. In order to analyze the role of DER in CO2 reduction, 147 representative sites in different climate zones were selected from the California Commercial End Use Survey (CEUS). About 8000 individual optimization runs, with different assumptions for the electric tariffs, natural gas costs, marginal grid CO2 emissions, and nitrogen oxide treatment costs, SGIP, fuel cell lifetime, fuel cell efficiency, PV installation costs, and payback periods for investments have been performed. The most optimistic CHP potential contribution in this sector in 2020 will be 2.7 GW. However, this result requires a SGIP in 2020, 46% average electric efficiency for fuel cells, a payback period for investments of 10 years, and a CO2 focused approach of the building owners. In 2030 it will be only 2.5 GW due to the anticipated grid de-carbonization. The 2030 result requires a 60% electric efficiency and 20 year life time for fuel cells, a payback period of 10 years, and a CO2 minimization strategy of building owners. Finally, the possible CHP potential in 2030 shows a significant variance between 0.2 GW and 2.5 GW, demonstrating the complex interactions between technologies, policies, and customer objectives.

117

WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM  

SciTech Connect

This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

Allan Jones

2003-09-01T23:59:59.000Z

118

Standby Rates for Combined Heat and Power Systems  

SciTech Connect

Improvements in technology, low natural gas prices, and more flexible and positive attitudes in government and utilities are making distributed generation more viable. With more distributed generation, notably combined heat and power, comes an increase in the importance of standby rates, the cost of services utilities provide when customer generation is not operating or is insufficient to meet full load. This work looks at existing utility standby tariffs in five states. It uses these existing rates and terms to showcase practices that demonstrate a sound application of regulatory principles and ones that do not. The paper also addresses areas for improvement in standby rates.

Sedano, Richard [Regulatory Assistance Partnership; Selecky, James [Brubaker & Associates, Inc.; Iverson, Kathryn [Brubaker & Associates, Inc.; Al-Jabir, Ali [Brubaker & Associates, Inc.

2014-02-01T23:59:59.000Z

119

Combined heat and power's potential to meet New York City's sustainability goals  

Science Journals Connector (OSTI)

Abstract Combined Heat and Power (CHP) has been proven as a mature technology that can benefit both building owners and utility operators. As the economic and environmental benefits of CHP in urban centers gain recognition, regulations and policies have evolved to encourage their deployment. However, the question remains whether these policies are sufficient in helping to achieve the larger sustainability goals, such as the New York City-specific goal of incorporating 800MW of distributed generation. In this paper, the current regulatory and policy environment for CHP is discussed. Then, an engineering analysis estimating the potential for CHP in NYC at the individual building and microgrid scale, considered a city block, is performed. This analysis indicates that over 800MW of individual building CHP systems would qualify for the current incentives but many systems would need to undergo more cumbersome air permitting processes reducing the viable capacity to 360MW. In addition microgrid CHP systems with multiple owners could contribute to meeting the goal even after considering air permits; however, these systems may incorporate many residential customers. The regulatory framework for microgrids with multiple owners and especially residential customers is particularly uncertain therefore additional policies would be needed to facilitate their development.

Bianca Howard; Alexis Saba; Michael Gerrard; Vijay Modi

2014-01-01T23:59:59.000Z

120

Guide to Combined Heat and Power Systems for Boiler Owners and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Many owners...

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2011 Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2011 TDA...

122

Combined Heat and Power: Is It Right For Your Facility? | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power: Is It Right For Your Facility? Combined Heat and Power: Is It Right For Your Facility? This presentation provides an overview of CHP technologies and how...

123

Assessing the Benefits of On-Site Combined Heat and Power During...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessing the Benefits of On-Site Combined Heat and Power During the August 14, 2003, Blackout, June 2004 Assessing the Benefits of On-Site Combined Heat and Power During the...

124

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study...

125

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section...

126

National Association of Counties Webinar- Combined Heat and Power: Resiliency Strategies for Critical Facilities  

Energy.gov (U.S. Department of Energy (DOE))

Combined heat and power (CHP), also known as cogeneration, is a method whereby energy is produced, and excess heat from the production process can be used for heating and cooling processes....

127

Experimental investigation on system with combination of ground-source heat pump and solar collector  

Science Journals Connector (OSTI)

This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by ...

Tao Hu ? ?; Jialing Zhu ???; Wei Zhang ? ?

2013-06-01T23:59:59.000Z

128

Engine Driven Combined Heat and Power: Arrow Linen Supply, December 2008  

Energy.gov (U.S. Department of Energy (DOE))

Presentation overview the arrow linen supply combined heat and power, its cost savings, success factors, and impacts

129

The Market and Technical Potential for Combined Heat and Power in the Industrial Sector, January 2000  

Energy.gov (U.S. Department of Energy (DOE))

Report of an analysis of the market and technical potential for combined heat and power in the industrial sector

130

Encouraging Combined Heat and Power in California Buildings  

E-Print Network (OSTI)

solar thermal utilization photovoltaic solar thermal electric storage heatDER technologies as PV, solar thermal, electric and heat

Stadler, Michael

2014-01-01T23:59:59.000Z

131

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System Combined Heat and Power System by Zachary Mills Norwood Doctor of Philosophy in the Energy and Resources of analysis of Distributed Concentrating Solar Combined Heat and Power (DCS-CHP) systems is a design

California at Berkeley, University of

132

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

with or without combined heat and power (CHP) and contributein Microgrids with Combined Heat and Power Chris Marnay,Microgrids with Combined Heat and Power 1 Chris Marnay a) ,

Marnay, Chris

2010-01-01T23:59:59.000Z

133

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network (OSTI)

Economic Analysis of Combined Heat and Power Technologies inEconomic Analysis of Combined Heat and Power Technologies inAgency (1998). Combined Heat and Power in Denmark. Version

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

134

Qualified Specialists in Industrial Assessment Tools  

Energy.gov (U.S. Department of Energy (DOE))

Lists of contact information for people who have passed the training to become qualified specialists in at least one of five system areas: process heating, steam, pumps, fan, and compressed air systems.

135

Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CCHP) Systems  

Energy.gov (U.S. Department of Energy (DOE))

The emergence of technologies that efficiently convert heat into cooling, such as absorption chillers, has opened up many new opportunities and markets for combined heat and power systems. These...

136

EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Combined Power and Biomass Heating System, Fort Yukon, 2: Combined Power and Biomass Heating System, Fort Yukon, Alaska EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska SUMMARY DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 6, 2013 EA-1922: Finding of No Significant Impact Combined Power and Biomass Heating System, Fort Yukon, Alaska

137

EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Combined Power and Biomass Heating System, Fort Yukon, 2: Combined Power and Biomass Heating System, Fort Yukon, Alaska EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska SUMMARY DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 6, 2013 EA-1922: Finding of No Significant Impact Combined Power and Biomass Heating System, Fort Yukon, Alaska

138

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Improving Desulfurization to Enable Fuel Cell Utilization of Digester Gases This project will develop a new,...

139

Combined Heat and Power Market Potential for Opportunity Fuels, August 2004  

Energy.gov (U.S. Department of Energy (DOE))

Best opportunity fuels for distributed energy resources and combined heat and power (DER/CHP) applications; technologies that can use them; market impact potential.

140

Assessment of Combined Heat and Power Premium Power Applications in California, September 2008  

Energy.gov (U.S. Department of Energy (DOE))

This report analyzes the current economic and environmental performance of combined heat and power (CHP) systems in power interruption intolerant commercial facilities in California.

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009  

Energy.gov (U.S. Department of Energy (DOE))

EPA CHP Partnerships white paper provides information on energy portfolio standards and how they promote combined heat and power.

142

Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007  

Energy.gov (U.S. Department of Energy (DOE))

Reference document of basic information for hospital managers when considering the application of combined heat and power (CHP) in the healthcare industry, specifically in hospitals

143

Anaerobic Digestion and Combined Heat and Power Study  

SciTech Connect

One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted this study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.

Frank J. Hartz; Rob Taylor; Grant Davies

2011-12-30T23:59:59.000Z

144

Combined Heat and Power: Expanding CHP in Your State  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbines Electricity On-Site Consumption Sold to Utility Fuel Natural Gas Propane Biogas Landfill Gas Coal Steam Waste Products Others Generator Heat Exchanger Thermal Process...

145

Encouraging Combined Heat and Power in California Buildings  

E-Print Network (OSTI)

photovoltaic solar thermal electric storage heat storageamount of PV, solar thermal, and electric storage needs toamount of PV, solar thermal, and electric storage needs to

Stadler, Michael

2014-01-01T23:59:59.000Z

146

Encouraging Combined Heat and Power in California Buildings  

E-Print Network (OSTI)

for energy storage, chiller, PV and solar thermal equipmentsolar thermal electric storage heat storage absorption chillers zero net energyenergy resources (DER) technologies such as PV, solar thermal,

Stadler, Michael

2014-01-01T23:59:59.000Z

147

Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power  

E-Print Network (OSTI)

with application to air-cooled stacks for combined heat and power by Thomas Schmeister B.Sc., University to air-cooled stacks for combined heat and power by Thomas Schmeister B.Sc., University of Colorado, 1991 cells as a heat and electrical power source for residential combined heat and power (CHP

Victoria, University of

148

Research on Heating Scope of Combined Heat and Power (CHP) Plant  

Science Journals Connector (OSTI)

Compilation Stipulation on heat-electricity cogeneration program (trial implementation) published recently says, Under the condition of reasonable technical economy, heat resource shall be concentrated as far as...

Tai L; Zheng Wang; Hui Kang

2007-01-01T23:59:59.000Z

149

Modeling the heating of the Green Energy Lab in Shanghai by the geothermal heat pump combined with the solar thermal energy and ground energy storage.  

E-Print Network (OSTI)

?? This work involves the study of heating systems that combine solar collectors, geothermal heat pumps and thermal energy storage in the ground. Solar collectors (more)

Yu, Candice Yau May

2012-01-01T23:59:59.000Z

150

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network (OSTI)

- BACKGROUND: In December 2009, the Combined Heat and Power Plant at Cornell Cornell's conversion of a coal fired heating plant to natural Gas the power plant #12;

Keinan, Alon

151

A modified unit decommitment algorithm in combined heat and power production planning  

Science Journals Connector (OSTI)

This paper addresses the unit commitment in multi-period combined heat and power (CHP) production planning, considering the possibility to trade power on the spot market. We present a modified unit decommitment algorithm (MUD) that starts with a good ... Keywords: combined heat and power production, deregulated power market, energy optimization, modelling, modified unit decommitment, unit commitment

Aiying Rong; Risto Lahdelma

2007-01-01T23:59:59.000Z

152

Opportunities for Combined Heat and Power at Wastewater Treatment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

option for WWTFs that have, or are planning to install, anaerobic digesters. The biogas flow from the digester can be used as fuel to generate electricity and heat in a CHP...

153

Encouraging Combined Heat and Power in California Buildings  

E-Print Network (OSTI)

lifetime for energy storage, chiller, PV and solar thermalEnergy Storage can be stand-alone or paired with solar PV orsolar thermal electric storage heat storage absorption chillers zero net energy

Stadler, Michael

2014-01-01T23:59:59.000Z

154

Combined permeable pavement and ground source heat pump systems  

E-Print Network (OSTI)

The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in these systems allows for the survival of pathogenic organisms within...

Grabowiecki, Piotr

2010-01-01T23:59:59.000Z

155

FACT SHEET: Energy Department Actions to Deploy Combined Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

reuses excess heat to warm Frito-Lay's chip fryer oil - cutting costs and reduce harmful air pollution. The Department is also supporting new CHP technologies that are cleaner,...

156

FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: Energy Department Actions to Deploy Combined Heat and FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking action to develop the next generation of combined heat and power (CHP) technology and help local communities and businesses make cost-effective investments that save money and energy. As part of this effort, the Department launched today seven new regional Combined Heat and Power Technical Assistance Partnerships across the country to help strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce

157

Top 10 Things You Didn't Know About Combined Heat and Power | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power October 21, 2013 - 11:25am Addthis Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs More Top Things: Top 9 Things You Didn't Know About America's Power Grid Top 9 Things You Didn't Know about Carbon Fiber

158

FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: Energy Department Actions to Deploy Combined Heat and FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking action to develop the next generation of combined heat and power (CHP) technology and help local communities and businesses make cost-effective investments that save money and energy. As part of this effort, the Department launched today seven new regional Combined Heat and Power Technical Assistance Partnerships across the country to help strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce

159

EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

741: Seattle Steam Company Combined Heat and Power at Post 741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington Summary This EA evaluates the environmental impacts of a proposal to provide an American Recovery Act and Reinvestment Act of 2009 financial assistance grant to Seattle Steam Company to facilitate the installation of a combined heat and power plant in downtown Seattle, Washington. NOTE: This project has been cancelled. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download June 16, 2010 EA-1741: Draft Environmental Assessment Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington (June 2010)

160

Top 10 Things You Didn't Know About Combined Heat and Power | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power October 21, 2013 - 11:25am Addthis Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs More Top Things: Top 9 Things You Didn't Know About America's Power Grid Top 9 Things You Didn't Know about Carbon Fiber

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Influence of Building Location on Combined Heat and Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

are relatively high risk due to uncertainty of demand Combining hydrogen production with CHP capability may reduce upfront costs and reduce investment risks Fuel Cell with CHP...

162

Combined heat and mass transfer device for improving separation process  

SciTech Connect

A two-phase small channel heat exchange matrix for providing simultaneous heat transfer and mass transfer at a single, predetermined location within a separation column, whereby the thermodynamic efficiency of the separation process is significantly improved. The small channel heat exchange matrix is comprised of a series of channels having a hydraulic diameter no greater than 5.0 mm. The channels are connected to an inlet header for supplying a two-phase coolant to the channels and an outlet header for receiving the coolant horn the channels. In operation, the matrix provides the liquid-vapor contacting surfaces within a separation column, whereby liquid descends along the exterior surfaces of the cooling channels and vapor ascends between adjacent channels within the matrix. Preferably, a perforated and concave sheet connects each channel to an adjacent channel, such that liquid further descends along the concave surfaces of the sheets and the vapor further ascends through the perforations in the sheets. The size and configuration of the small channel heat exchange matrix allows the heat and mass transfer device to be positioned within the separation column, thereby allowing precise control of the local operating conditions within the column and increasing the energy efficiency of the process.

Tran, Thanh Nhon

1997-12-01T23:59:59.000Z

163

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

Conklin, Jim [ORNL; Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

164

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

Conklin, James C.; Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2007-07-01T23:59:59.000Z

165

PipelineMarch 2013 Volume 5, Issue 2 COMBINED HEAT  

E-Print Network (OSTI)

generates electricity while also producing heat that will be used to create steam for University buildings growth has increased steam demand. Without the plant, demand will exceed reliable steam production that are reliable, sustainable and cost-effective. The Southeast Steam plant is the campus' sole steam production

Webb, Peter

166

Combined heat and power systems for commercial buildings: investigating cost, emissions, and primary energy reduction based on system components.  

E-Print Network (OSTI)

?? Combined heat and power (CHP) systems produce electricity and useful heat from fuel. When power is produced near a building which consumes power, transmission (more)

Smith, Amanda D.

2012-01-01T23:59:59.000Z

167

A new absorption chiller to establish combined cold, heat, and power generation utilizing low-temperature heat  

SciTech Connect

Presently available absorption machines for air conditioning are driven with heat of a minimum of 80 C (176 F). A combination of the standard single-effect and a double-lift process has been identified as a new cycle that can use driving heat down to return temperatures of about 55 C (131 F) and permits temperature glides in generation of more than 30 K (54 F). Thus a larger cooling capacity can be produced from the same heat source compared to a single-effect chiller run with the same heat carrier supply temperature and mass flow. According to the estimated heat exchanger area, competitive machine costs for this new chiller can be expected. This single-effect/double-lift absorption chiller can be operated with waste heat from industrial processes, as well as with low-temperature heat (e.g., heat from solar collectors) as driving heat for air conditioning. The large temperature glide and the low return temperature especially fit the operating conditions in district heating networks during the summer. The cycle will be presented, followed by a discussion of suitable operating conditions.

Schweigler, C.J.; Riesch, P.; Demmel, S.; Alefeld, G. [ZAE Bayern, Garching/Muenchen (Germany)

1996-11-01T23:59:59.000Z

168

Combined Cycle (CC) and Combined Heat and Power (CHP) Systems: An Introduction  

Science Journals Connector (OSTI)

Combined Cycle (CC)...is a power plant system in which two types of turbines, namely a gas turbine and a steam turbine, are used to generate electricity. Moreover the turbines are combined in one cycle

Andrzej W. Ordys MScEE; PhD; A. W. Pike

1994-01-01T23:59:59.000Z

169

Tax Deduction Qualified Software  

Energy.gov (U.S. Department of Energy (DOE))

On this page you'll find information about the EnergyGauge Summit version 3.22 (incorporating DOE-2.1E (v120)) qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

170

Tax Deduction Qualified Software  

Energy.gov (U.S. Department of Energy (DOE))

On this page you'll find information about the EnergyGauge Summit version 3.21 (incorporating DOE-2.1E (v120)) qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

171

Tax Deduction Qualified Software  

Energy.gov (U.S. Department of Energy (DOE))

On this page you'll find information about the EnergyGauge Summit version 3.20 (incorporating DOE-2.1E (v120)) qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

172

Qualified Energy Conservation Bonds  

Energy.gov (U.S. Department of Energy (DOE))

A Qualified Energy Conservation Bond (QECB) is a bond that enables qualified state, tribal, and local government issuers to borrow money at attractive rates to fund energy conservation projects (it is important to note that QECBs are not grants). A QECB is among the lowest-cost public financing tools because the U.S. Department of the Treasury subsidizes the issuer's borrowing costs.

173

Mid-Atlantic Region Combined Heat and Power Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mid-Atlantic Region Combined Heat and Power Projects Mid-Atlantic Region Combined Heat and Power Projects Mid-Atlantic Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Mid-Atlantic www.midatlanticCHPTAP.org Jim Freihaut Pennsylvania State University 814-863-0083 jdf11@psu.edu Delaware View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Delaware. District of Columbia View EEA's database of all known CHP installations in the District of Columbia. Maryland Baltimore Refuse Energy Co., Baltimore View EEA's database of all known CHP installations in Maryland. New Jersey View EEA's database of all known CHP installations in New Jersey.

174

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public rights of way and to consider the impact of those laws on the development of combined heat and power ("CHP") facilities, as well as to determine whether a change in those laws would impact utility operations, costs or reliability, or impact utility customers. The study is also to consider whether changing the laws would

175

Analysis of a coal fired combined cycle with carried-heat gasification  

Science Journals Connector (OSTI)

In the research of a more efficient, less costly, more environmentally responsible and less technically difficult method for generating electrical power from coal, the Carried-heat Gasification Combined Cycle (CG...

Xiangdong Xu; Weimin Zhu; Li Zhao; F. N. Fett

176

Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This factsheet describes a project to develop direct steelmaking through the combination of microwave, electric arc, and exothermal heating, a process which is meant to eliminate traditional, intermediate steelmaking steps.

177

Ultra Efficient Combined Heat, Hydrogen, and Power System- Presentation by FuelCell Energy, June 2011  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on Ultra Efficient Combined Heat, Hydrogen, and Power System, given by Pinakin Patel at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

178

A Preliminary Study on Designing Combined Heat and Power (CHP) System for the University Environment  

E-Print Network (OSTI)

Combined heat and power (CHP) systems are an evolving technology that is at the front of the energy conservation movement. With the reduction in energy consumption and green house gas emissions, CHP systems are improving the efficiency of power...

Kozman, T. A.; Reynolds, C. M.; Lee, J.

2008-01-01T23:59:59.000Z

179

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public rights of way and to consider the impact of those laws on the development of combined heat and power ("CHP") facilities, as well as to determine whether a change in those laws would impact utility operations, costs or reliability, or impact utility customers. The study is also to consider whether changing the laws would

180

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network (OSTI)

Technologies in a Grid Application heat, usually in thethe Grid. In this Grid the heat loads are not that great,Combined Heat and Power Technologies in a Grid Application

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Assessing the Benefits of On-Site Combined Heat and Power During the August 14, 2003, Blackout, June 2004  

Energy.gov (U.S. Department of Energy (DOE))

This June 2004 report summarizes the experiences of 12 combined heat and power facilities during the August 14, 2003, blackout

182
183

A state, characteristics, and perspectives of the Czech combined heating and power (CHP) systems  

SciTech Connect

The combined production of electricity and heat is a significant method for saving primary energy sources like fossil fuels, as well as reducing the production of CO{sub 2} and its emission to the atmosphere. The paper discusses the total efficiency of combined heat and power generation (CHP), comparing various types of CHP plants. The paper then describes the situation in the Czech Republic with regard to their centralized heat supply. The author concludes that there is no simple way to rebuild the Czech CHP systems, and that it would be better to start construction on more modern plants. He lists several starting principles to follow in the planning and design stage.

Kadrnozka, J. [Technical Univ. of Brno (Czech Republic)

1994-12-31T23:59:59.000Z

184

Tax Deduction Qualified Software  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Deduction Qualified Software Tax Deduction Qualified Software EnergyGauge Summit version 3.21 On this page you'll find information about the EnergyGauge Summit version 3.20 (incorporating DOE-2.1E (v120)) qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 3 September 2009 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; Florida Solar Energy Center 1679 Clearlake Road

185

Qualified Energy Conservation Bonds  

Energy.gov (U.S. Department of Energy (DOE))

Provides an in-depth description of qualified energy conservation bonds, including process and mechanics, case studies, utilization trends, barriers, and regulatory and legal issues. Author: Energy Programs Consortium

186

Combined solar and internal load effects on selection of heat reclaim-economizer HVAC systems  

SciTech Connect

The concern for energy conservation has led to the development and use of heat recovery systems which reclaim the building internal heat before it is discarded in the exhaust air. On the other hand, economizer cycles have been widely used for many years in a variety of types of HVAC systems. Economizer cycles are widely accepted as a means to reduce operating time for chilling equipment when cool outside air is available. It has been suggested that heat reclaim systems should not be used in conjunction with an HVAC system which incorporates an economizer cycle because the economizer operation would result in heat being exhausted which might have been recovered. Others suggest that the economizer cycle can be used economically in a heat recovery system if properly controlled to maintain an overall building heat balance. This study looks at potential energy savings of such combined systems with particular emphasis on the effects of the solar load (amount of glass) and the internal load level (lights, people, appliances, etc.). For systems without thermal storage, annual energy savings of up to 60 percent are predicted with the use of heat reclaim systems in conjunction with economizers when the heat reclaim has priority. These results demonstrate the necessity of complete engineering evaluations if proper selection and operation of combined heat recovery and economizer cycles are to be obtained. This paper includes the basic methodology for making such evaluations.

Sauer, H.J. Jr.; Howell, R.H.; Wang, Z. (Missouri Univ., Rolla, MO (USA). Dept. of Mechanical Engineering)

1990-05-01T23:59:59.000Z

187

STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIE STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIE Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public rights of way and to consider the impact of those laws on the development of combined heat and power ("CHP") facilities, as well as to determine whether a change in those laws would impact utility operations, costs or reliability, or impact utility customers. The study is also to consider whether a change in those laws

188

Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies within Energy Systems  

E-Print Network (OSTI)

Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies of Micro Combined Heat & Power Technologies within Energy Systems by Karen de los Ángeles Tapia for this purpose. Co-generation of electricity and heat at the residential level, known as micro

Catholic University of Chile (Universidad Católica de Chile)

189

Combined heat and power (CHP or cogeneration) for saving energy and carbon in commercial buildings  

SciTech Connect

Combined Heat and Power (CHP) systems simultaneously deliver electric, thermal and mechanical energy services and thus use fuel very efficiently. Today's small-scale CHP systems already provide heat, cooling and electricity at nearly twice the fuel efficiency of heat and power based on power remote plants and onsite hot water and space heating. In this paper, the authors have refined and extended the assessments of small-scale building CHP previously done by the authors. They estimate the energy and carbon savings for existing small-scale CHP technology such as reciprocating engines and two promising new CHP technologies--microturbines and fuel cells--for commercial buildings. In 2010 the authors estimate that small-scale CHP will emit 14--65% less carbon than separate heat and power (SHP) depending on the technologies compared. They estimate that these technologies in commercial buildings could save nearly two-thirds of a quadrillion Btu's of energy and 23 million tonnes of carbon.

Kaarsberg, T.; Fiskum, R.; Romm, J.; Rosenfeld, A.; Koomey, J.; Teagan, W.P.

1998-07-01T23:59:59.000Z

190

Qualifying Advanced Energy Manufacturing Investment Tax Credit | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Qualifying Advanced Energy Manufacturing Investment Tax Credit Qualifying Advanced Energy Manufacturing Investment Tax Credit < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Heat Pumps Heating Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Wind Solar Maximum Rebate $30 million Program Info Funding Source The American Recovery and Reinvestment Act of 2009 Start Date 02/17/2009 Program Type Industry Recruitment/Support

191

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

SciTech Connect

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

2012-07-01T23:59:59.000Z

192

Modeling and optimization of a combined cycle Stirling-ORC system and design of an integrated microchannel Stirling heat rejector.  

E-Print Network (OSTI)

??The performance of a combined Stirling-ORC power cycle is evaluated, and an integrated microchannel heat exchanger is designed as an annular cold-side heat rejector for (more)

Ingram-Goble, Robbie

2010-01-01T23:59:59.000Z

193

CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation Environment for Whole-building Performance Analysis Title CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation Environment for Whole-building Performance Analysis Publication Type Journal Article Year of Publication 2012 Authors Zhang, J. S., Wei Feng, John Grunewald, Andreas Nicolai, and Carey Zhang Journal HVAC&R Research Volume 18 Issue 1-2 Abstract A computer simulation tool, named "CHAMPS-Multizone" is introduced in this paper for analyzing bothenergy and IAQ performance of buildings. The simulation model accounts for the dynamic effects ofoutdoor climate conditions (solar radiation, wind speed and direction, and contaminant concentrations),building materials and envelope system design, multizone air and contaminant flows in buildings,internal heat and pollutant sources, and operation of the building HVAC systems on the buildingperformance. It enables combined analysis of building energy efficiency and indoor air quality. Themodel also has the ability to input building geometry data and HVAC system operation relatedinformation from software such as SketchUp and DesignBuilder via IDF file format. A "bridge" to accessstatic and dynamic building data stored in a "virtual building" database is also developed, allowingconvenient input of initial and boundary conditions for the simulation, and for comparisons between thepredicted and measured results. This paper summarizes the mathematical models, adoptedassumptions, methods of implementation, and verification and validation results. The needs andchallenges for further development are also discussed

194

A Partial Load Model for a Local Combined Heat and Power Plant  

E-Print Network (OSTI)

A Partial Load Model for a Local Combined Heat and Power Plant Camilla Schaumburg and power (CHP) plants constitute a not insignificant share of the power production in Denmark, particularly using data from a typical local CHP plant and the years 2003 through 2006 are simulated to assess

195

Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings  

Energy.gov (U.S. Department of Energy (DOE))

During and after Hurricane Sandy, combined heat and power (CHP) enabled a number of critical infrastructure and other facilities to continue their operations when the electric grid went down. This guidance document on CHP supports the August 2013 Hurricane Sandy Rebuilding Strategy by providing an overview of CHP and examples of how this technology can help improve the resiliency and reliability of key infrastructure.

196

Efficiency and Air Quality Implications of Distributed Generation and Combined Heat  

E-Print Network (OSTI)

Efficiency and Air Quality Implications of Distributed Generation and Combined Heat and Power March 2011 The Issue Distributed generation generates electricity from many small energy sources near where the electricity is used. The use of distributed generation in urban areas, however, can

197

Evaluation of performance of combined heat and power systems with dual power generation units (D-CHP).  

E-Print Network (OSTI)

?? In this research, a new combined heat and power (CHP) system configuration has been proposed that uses two power generation units (PGU) operating simultaneously (more)

Knizley, Alta Alyce

2013-01-01T23:59:59.000Z

198

The Market and Technical Potential for Combined Heat and Power in the Commercial/Institutional Sector, January 2000  

Energy.gov (U.S. Department of Energy (DOE))

Report of an analysis to determine the potential for cogeneration or combined heat and power (CHP) in the commercial/institutional market.

199

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network (OSTI)

draft, 2001. Danish Energy Agency (1998). Combined Heat andpolicies and measures, Danish Energy Agency. Hirschenhofer,demand in 1996 (Danish Energy Agency 1998). Reliance on CHP

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

200

Performance improvement of combined cycle power plant based on the optimization of the bottom cycle and heat recuperation  

Science Journals Connector (OSTI)

Many F class gas turbine combined cycle (GTCC) power plants are built in ... the efficiency improvement of GTCC plant. A combined cycle with three-pressure reheat heat recovery steam ... HRSG inlet gas temperatur...

Wenguo Xiang; Yingying Chen

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

09/01/12 13:01:401 Quantifying the effects of heating temperature, and combined effects of heating medium2  

E-Print Network (OSTI)

09/01/12 13:01:401 Quantifying the effects of heating temperature, and combined effects of heating medium2 pH and recovery medium pH on the heat resistance of Salmonella typhimurium3 4 I. Leguérinel1 *, I +33 02 98 90 85 4410 E mail address: guerinel@univ-brest.fr11 Abstract12 The influence of heating

Paris-Sud XI, Université de

202

Tax Deduction Qualified Software  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergyGauge Summit version 3.20 EnergyGauge Summit version 3.20 On this page you'll find information about the EnergyGauge Summit version 3.20 (incorporating DOE-2.1E (v120)) qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 5 June 2009 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; Florida Solar Energy Center 1679 Clearlake Road Cocoa, Florida 39922 http://www.energygauge.com

203

Tax Deduction Qualified Software  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRACE 700 version 6.2.9 TRACE 700 version 6.2.9 On this page you'll find information about the TRACE 700 version 6.2.9 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 3 October 2012 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; Trane 3600 Pammel Creek Road La Crosse, WI 54601 http://www.trane.com/trace (2) The name, email address, and telephone number of the person to contact for

204

Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time-sensi%ve Electricity Prices  

E-Print Network (OSTI)

1 Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time. Combined heat and power genera%on plants are also called co-genera%on plants. #12. #12;Facing the challenge of variability, the power grid is in transi

Grossmann, Ignacio E.

205

Multi-objective optimization of a combined cooling, heating and power system driven by solar energy  

Science Journals Connector (OSTI)

Abstract This paper presented a multi-objective optimization of a combined cooling, heating and power system (CCHP) driven by solar energy. The flat-plate solar collector was employed to collect the solar radiation and to transform it into thermal energy. The thermal storage unit was installed to storage the thermal energy collected by the collectors to ensure a continuous energy supplement when solar energy was weak or insufficient. The CCHP system combined an organic Rankine cycle with an ejector refrigeration cycle to yield electricity and cold capacity to users. In order to conduct the optimization, the mathematical model of the solar-powered CCHP system was established. Owing to the limitation of the single-objective optimization, the multi-objective optimization of the system was carried out. Four key parameters, namely turbine inlet temperature, turbine inlet pressure, condensation temperature and pinch temperature difference in vapor generator, were selected as the decision variables to examine the performance of the overall system. Two objective functions, namely the average useful output and the total heat transfer area, were selected to maximize the average useful output and to minimize the total heat transfer area under the given conditions. NSGA-II (Non-dominated Sort Genetic Algorithm-II) was employed to achieve the final solutions in the multi-objective optimization of the system operating in three modes, namely power mode, combined heat and power (CHP) mode, and combined cooling and power (CCP) mode. For the power mode, the optimum average useful output and total heat transfer area were 6.40kW and 46.16m2. For the CCP mode, the optimum average useful output and total heat transfer area were 5.84kW and 58.74m2. For the CHP mode, the optimum average useful output and total heat transfer area were 8.89kW and 38.78m2. Results also indicated that the multi-objective optimization provided a more comprehensive solution set so that the optimum performance could be achieved according to different requirements for system.

Man Wang; Jiangfeng Wang; Pan Zhao; Yiping Dai

2015-01-01T23:59:59.000Z

206

FINAL ENVIRONMENTAL ASSESSMENT FOR A COMBINED POWER AND BIOMASS HEATING SYSTEM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR A COMBINED POWER AND BIOMASS HEATING SYSTEM FORT YUKON, ALASKA U.S. Department of Energy Office of Energy Efficiency and Renewable Energy GOLDEN FIELD OFFICE In Cooperation with USDA RURAL UTILITIES SERVICE DENALI COMMISSION APRIL 2013 ABBREVIATIONS AND ACRONYMS ADEC Alaska Department of Environmental Conservation AFRPA Alaska Forest Resources Practices Act BFE Base Flood Elevation BMP best management practice BTU British Thermal Unit CATG Council of Athabascan Tribal Governments CEQ Council on Environmental Quality CFR Code of Federal Regulations CHP Combined Heat and Power CO carbon monoxide CO 2 carbon dioxide CWA Clean Water Act dBA A-weighted decibel DBH diameter at breast height DOE U.S. Department of Energy EA Environmental Assessment

207

Retrofitting the Strogino district heat supply station with construction of a 260-MW combined-cycle power plant (Consisting of two PGU-130 combined-cycle power units)  

Science Journals Connector (OSTI)

The retrofitting carried out at the Strogino district heat supply station and the specific features of works accomplished in the course of constructing the thermal power station based on a combined-cycle power pl...

V. F. Aleksandrov

2010-02-01T23:59:59.000Z

208

5 Questions for an Expert: Bob Gemmer on Combined Heat and Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Combined heat and power (CHP), also known as co-generation, provides both electricity and heat from a single source all while saving energy and slashing carbon pollution. CHP systems capture energy that is normally lost in centralized power generation and convert that energy to heat and cool manufacturing facilities and businesses. Unlike central power generation, CHP systems are distributed energy generation systems and that means that they are located close to where energy is consumed. The proximity of power generation to its use makes CHP a reliable source of power for hospitals, schools, office buildings, apartment complexes, and other large buildings that require around-the-clock electricity. Bob Gemmer of EEREs Advanced Manufacturing Office is one of the Energy Departments primary experts on CHP technologies with more than 40 years of related expertise. We sat down with Bob to learn more about him and what makes him such a passionate advocate for CHP.

209

Ultra Efficient Combined Heat, Hydrogen, and Power System- Fact Sheet, 2015  

Energy.gov (U.S. Department of Energy (DOE))

FuelCell Energy, Inc., in collaboration with Abbott Furnace Company, is developing a combined heat, hydrogen, and power (CHHP) system that utilizes reducing gas produced by a high-temperature fuel cell to directly replace hydrogen in metal treatment and other industrial processes. Excess reducing gas can be utilized in a low-temperature, bottoming cycle fuel cell incorporated into the CHHP system to increase overall efficiency.

210

A detailed MILP optimization model for combined cooling, heat and power system operation planning  

Science Journals Connector (OSTI)

Abstract A detailed optimization model is presented for planning the short-term operation of combined cooling, heat and power (CCHP) energy systems. The purpose is, given the design of a cogeneration system, to determine an operating schedule that minimizes the total operating and maintenance costs minus the revenue due to the electricity sold to the grid, while taking into account time-varying loads, tariffs and ambient conditions. The model considers the simultaneous use of different prime movers (generating electricity and heat), boilers, compression heat pumps and chillers, and absorption chillers to satisfy given electricity, heat and cooling demands. Heat and cooling load can be stored in storage tanks. Units can have one or two operative variables, highly nonlinear performance curves describing their off-design behavior, and limitations or penalizations affecting their start-up/shut-down operations. To exploit the effectiveness of state-of-the-art Mixed Integer Linear Program (MILP) solvers, the resulting Mixed Integer Nonlinear Programming (MINLP) model is converted into a MILP by appropriate piecewise linear approximation of the nonlinear performance curves. The model, written in the AMPL modeling language, has been tested on several plant test cases. The computational results are discussed in terms of the quality of the solutions, the linearization accuracy and the computational time.

Aldo Bischi; Leonardo Taccari; Emanuele Martelli; Edoardo Amaldi; Giampaolo Manzolini; Paolo Silva; Stefano Campanari; Ennio Macchi

2014-01-01T23:59:59.000Z

211

Solar Colletors Combined with Ground-Source Heat Pumps in Dwellings - Analyses of System Performance.  

E-Print Network (OSTI)

??The use of ground-source heat pumps for heating buildings and domestic hot water in dwellings is increasing rapidly in Sweden. The heat pump extracts heat (more)

Kjellsson, Elisabeth

2009-01-01T23:59:59.000Z

212

NPO Qualifying Officials Primary Functional Area* Qualifying Official  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NPO Qualifying Officials NPO Qualifying Officials Primary Functional Area* Qualifying Official Aviation Safety Officer/ Aviation Manager Richard Caummisar Chemical Processing Jim Goss, Ken Ivey Civil/Structural Engineering Dale Christensen Conduct of Maintenance Any Qualified Facility Representative, Carlos Alvarado, Earl Burkholder, Terrv Zimmennan Construction Management and Engineering Anna Beard, Terry Zimmennan, Dale Christenson, Don Peters Construction Project/Safety Richard Caummisar, Terry Zimmerman, Susan Morris Criticality Safety Roy Hedtke, Ed Kendall Deactivation and Decommission Catherine Schidel Explosives Safety Program Scott Wood Electrical Systems Scott Doleml, Roger Kulavich, Steve Wellbaum .Emergency Management Rodney Barnes Environmental Management Areas Susan Morris. Craig Snider, Jim Donnelly

213

Feasibility of combined solar thermal and ground source heat pump systems in cold climate, Canada  

Science Journals Connector (OSTI)

This document presents a study for examining the viability of hybrid ground source heat pump (GSHP) systems that use solar thermal collectors as the supplemental component in heating dominated buildings. Loads for an actual house in the City of Milton near Toronto, Canada, were estimated. TRNSYS, a system simulation software tool, was used to model yearly performance of a conventional GSHP system as well as a proposed hybrid GSHP system. Actual yearly data collected from the site were examined against the simulation results. This study demonstrates that hybrid ground source heat pump system combined with solar thermal collectors is a feasible choice for space conditioning for heating dominated houses. It was shown that the solar thermal energy storage in the ground could reduce a large amount of ground heat exchanger (GHX) length. Combining three solar thermal collectors with a total area of 6.81m2 to a GSHP system will reduce GHX length by 15%. Sensitivity analysis was carried out for different cities of Canada and resulted that Vancouver, with mildest climate compared to other cities, was the best candidate for the proposed solar hybrid GSHP system with a GHX length reduction to solar collector area ratio of 7.64m/m2. Overall system economic viability was also evaluated using a 20-year life-cycle cost analysis. The analysis showed that there is small economic benefit in comparing to the conventional GSHP system. The net present value of the proposed hybrid system based on the 20-year life-cycle cost analysis was estimated to be in a range of 3.7%7.6% (or $1500 to $3430 Canadian dollar) lower than the conventional GSHP system depending on the drilling cost.

Farzin M. Rad; Alan S. Fung; Wey H. Leong

2013-01-01T23:59:59.000Z

214

Investigation And Evaluation Of The Systemwide Economic Benefits Of Combined Heat And Power Generation In The New York State Energy Market.  

E-Print Network (OSTI)

??Combined Heat and Power (CHP) is the production of electricity and the simultaneous utilization of the heat produced by the generator prime mover. The energy (more)

Baquero, Ricardo

2008-01-01T23:59:59.000Z

215

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

SciTech Connect

Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

Oland, CB

2004-08-19T23:59:59.000Z

216

The use of combined heat and power (CHP) to reduce greenhouse gas emissions  

SciTech Connect

Cogeneration or Combined Heat and Power (CHP) is the sequential production of electric power and thermal energy. It is a more efficient way of providing electricity and process heat than producing them independently. Average overall efficiencies can range from 70% to more than 80%. CHP decisions often present an opportunity to switch to a cleaner fuel. CHP systems are an attractive opportunity to save money, increase overall efficiency, reduce net emissions, and improve environmental performance. Climate Wise, a US Environmental Protection Agency (US EPA) program helping industrial Partners turn energy efficiency and pollution prevention into a corporate asset, has increased awareness of CHP by providing implementation and savings information, providing peer exchange opportunities for its Partners, and recognizing the achievements of Partners that have implemented CHP at their facilities. This paper profiles Climate Wise Partners that have invested in CHP systems, including describing how CHP is used in their facilities and the resulting cost and emission reductions.

Asrael, J.; Milmoe, P.H.; Haydel, J.

1999-07-01T23:59:59.000Z

217

Analysis of combined cooling, heating, and power systems based on source primary energy consumption  

Science Journals Connector (OSTI)

Combined cooling, heating, and power (CCHP) is a cogeneration technology that integrates an absorption chiller to produce cooling, which is sometimes referred to as trigeneration. For building applications, CCHP systems have the advantage to maintain high overall energy efficiency throughout the year. Design and operation of CCHP systems must consider the type and quality of the energy being consumed. Type and magnitude of the on-site energy consumed by a building having separated heating and cooling systems is different than a building having CCHP. Therefore, building energy consumption must be compared using the same reference which is usually the primary energy measured at the source. Site-to-source energy conversion factors can be used to estimate the equivalent source energy from site energy consumption. However, building energy consumption depends on multiple parameters. In this study, mathematical relations are derived to define conditions a CCHP system should operate in order to guarantee primary energy savings.

Nelson Fumo; Louay M. Chamra

2010-01-01T23:59:59.000Z

218

Review of combined photovoltaic/thermal collector: solar assisted heat pump system options  

SciTech Connect

The advantages of using photovoltaic (PV) and combined photovoltaic/thermal (PV/T) collectors in conjunction with residential heat pumps are examined. The thermal and electrical power requirements of similar residences in New York City and Fort Worth are the loads under consideration. The TRNSYS energy balance program is used to simulate the operations of parallel, series, and cascade solar assisted heat pump systems. Similar work involving exclusively thermal collectors is reviewed, and the distinctions between thermal and PV/T systems are emphasized. Provided the defrost problem can be satisfactorily controlled, lifecycle cost analyses show that at both locations the optimum collector area is less than 50 m/sup 2/ and that the parallel system is preferred.

Sheldon, D.B.; Russell, M.C.

1980-01-01T23:59:59.000Z

219

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

SciTech Connect

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

220

Optimization of waste heat recovery boiler of a combined cycle power plant  

SciTech Connect

This paper describes the details of a procedure developed for optimization of a waste heat recovery boiler (WHRB) of a combined cycle power plant (CCPP) using the program for performance prediction of a typical CCPP, details of which have been presented elsewhere (Seyedan et al., 1994). In order to illustrate the procedure, the optimum design of a WHRB for a typical CCPP (employing dual-pressure bottoming cycle) built by a prominent Indian company, has been carried out. The present design of a WHRB is taken as the base design and the newer designs generated by this procedure are compared with it to assess the extent of cost reduction possible.

Seyedan, B.; Dhar, P.L.; Gaur, R.R. [Indian Inst. of Tech., New Delhi (India). Dept. of Mechanical Engineering; Bindra, G.S. [Bharat Heavy Electrical Ltd., New Delhi (India)

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Preliminary Estimates of Combined Heat and Power Greenhouse GasAbatement Potential for California in 2020  

SciTech Connect

The objective of this scoping project is to help the California Energy Commission's (CEC) Public Interest Energy Research (PIER) Program determine where it should make investments in research to support combined heat and power (CHP) deployment. Specifically, this project will: {sm_bullet} Determine what impact CHP might have in reducing greenhouse gas (GHG) emissions, {sm_bullet} Determine which CHP strategies might encourage the most attractive early adoption, {sm_bullet} Identify the regulatory and technological barriers to the most attractive CHP strategies, and {sm_bullet} Make recommendations to the PIER program as to research that is needed to support the most attractive CHP strategies.

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare,Kristina

2007-07-31T23:59:59.000Z

222

Combined cooling, heating and power: A review of performance improvement and optimization  

Science Journals Connector (OSTI)

Abstract This paper presents a review on combined cooling, heating, and power (CCHP) systems. This work summarizes the methods used to perform energetic and exergetic analyses, system optimization, performance improvement studies, and development and analysis of CCHP systems, as reported in existing literature. In addition, this work highlights the most current research and emerging trends in CCHP technologies. It is envisioned that the information collected in this review paper will be a valuable source of information, for researchers, designers, and engineers, and provides direction and guidance for future research in CCHP technology.

Heejin Cho; Amanda D. Smith; Pedro Mago

2014-01-01T23:59:59.000Z

223

A combined power and ejector refrigeration cycle for low temperature heat sources  

SciTech Connect

A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

Zheng, B.; Weng, Y.W. [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

2010-05-15T23:59:59.000Z

224

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

limits potential use of waste heat for space conditioning.the attractive uses for waste heat in many circumstancesprovide electricity and use the waste heat for cleaning, the

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

225

CHP in ESPC: Implementing Combined Heat and Power Technologies Using Energy Savings Performance Contracts (ESPCs): Webinar Transcript  

Energy.gov (U.S. Department of Energy (DOE))

Kurmit Rockwell:Welcome. I'm Kurmit Rockwell, the ESPC Program Manager for DOE's Federal Energy Management Program. In this presentation we will introduce you to the basics of combined heat and...

226

Compact design improves efficiency and CAPEX -- combining plate heat exchangers and gas-liquid separators for gas processing savings  

SciTech Connect

This paper presents the unique combination of two well proven technologies: a compact large scale welded plate heat exchanger with a gas-liquid separator within the same pressure vessel. Explained are the benefits for raw gas processing on production sites where cost, weight and efficiency are of particular importance. Application of this Combined Heat Exchanger-Separator is presented for various gas processing schemes: Turbo Expander, Mechanical Refrigeration and Joule-Thompson.

Waintraub, L.; Sourp, T. [Proser (France)

1998-12-31T23:59:59.000Z

227

Combined use of adiabatic calorimetry and heat conduction calorimetry for quantifying propellant cook-off hazards  

Science Journals Connector (OSTI)

Recent work performed at DERA (now QinetiQ) has shown how accelerating rate calorimetry (ARC) can be used to obtain time to maximum rate curves using larger samples of energetic materials. The use of larger samples reduces the influence of thermal inertia, permitting experimental data to be gathered at temperatures closer to those likely to be encountered during manufacture, transportation or storage of an explosive device. However, in many cases, extrapolation of the time to maximum rate curve will still be necessary. Because of its low detection limit compared to the ARC, heat conduction calorimetry can be used to obtain data points at, or below, the region where an explosive system might exceed its temperature of no return and undergo a thermal explosion. Paired ARC and heat conduction calorimetry experiments have been conducted on some energetic material samples to explore this possibility further. Examples of where both agreement and disagreement are found between the two techniques are reported and the significance of these discussed. Ways in which combining ARC and heat conduction calorimetry experiments can enhance, complement and validate the results obtained from each technique are examined.

P.F. Bunyan; T.T. Griffiths; V.J. Norris

2003-01-01T23:59:59.000Z

228

Combined heat and power has the potential to significantly increase energy production efficiency and thus reduce greenhouse gas emissions, however current market penetration  

E-Print Network (OSTI)

1 Combined heat and power has the potential to significantly increase energy production efficiency that California will not reach the targets for combined heat and power set for it by the Air Resources Board (ARB of combined heat and power into the new ARB Emissions Cap and Trade scheme. This potential failure would

Kammen, Daniel M.

229

Combined Heat and Power (CHP): Is It Right For Your Facility?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnership with the US DOE Partnership with the US DOE Combined Heat and Power (CHP) Is It Right For Your Facility U.S. DOE Industrial Technologies Program Webcast Series May 14 th , 2009 John J. Cuttica Cliff Haefke 312/996-4382 312/355-3476 cuttica@uic.edu chaefk1@uic.edu In Partnership with the US DOE Mid Atlantic www.chpcenterma.org Midwest www.chpcentermw.org Pacific www.chpcenterpr.org Northwest Region www.chpcenternw.org Northeast www.northeastchp.org Intermountain www.IntermountainCHP.org Gulf Coast www.GulfCoastCHP.org Southeastern www.chpcenterse.org In Partnership with the US DOE CHP Decision Making Process Presented by Ted Bronson & Joe Orlando Webcast Series January 8, 2009 CHP Regional Application Centers Walkthrough STOP Average Costs Typical Performance Yes No Energy Rates Profiles

230

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recommendations for Applying Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems A. Rudd, K. Ueno, D. Bergey, R. Osser Building Science Corporation June 2012 i This report received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

231

Effects of a shortened depreciation schedule on the investment costs for combined heat and power  

SciTech Connect

We investigate and compare several generic depreciation methods to assess the effectiveness of possible policy measures with respect to the depreciation schedules for investments in combined heat and power plants in the United States. We assess the different depreciation methods for CHP projects of various sizes (ranging from 1 MW to 100 MW). We evaluate the impact of different depreciation schedules on the tax shield, and the resulting tax savings to potential investors. We show that a shorter depreciation cycle could have a substantial impact on the cost of producing power, making cogeneration more attractive. The savings amount to approximately 6-7 percent of capital and fixed operation and maintenance costs, when changing from the current system to a 7 year depreciation scheme with switchover from declining balance to straight line depreciation. Suggestions for further research to improve the analysis are given.

Kranz, Nicole; Worrell, Ernst

2001-11-15T23:59:59.000Z

232

Thermophotovoltaics for Combined Heat and Power Using Low NOx Gas Fired Radiant Tube Burners  

Science Journals Connector (OSTI)

Three new developments have now occurred making economical TPV systems possible. The first development is the diffused junction GaSb cell that responds out to 1.8 microns producing over 1 W/cm2 electric given a blackbody IR emitter temperature of 1250 C. This high power density along with a simple diffused junction cell makes an array cost of $0.50 per Watt possible. The second development is new IR emitters and filters that put 75% of the radiant energy in the cell convertible band. The third development is a set of commercially available ceramic radiant tube burners that operate at up to 1250 C. Herein we present near term and longer term spectral control designs leading to a 1.5 kW TPV generator / furnace incorporating these new features. This TPV generator / furnace is designed to replace the residential furnace for combined heat and power for the home.

Lewis Fraas; James Avery; Enrico Malfa; Joachim G. Wuenning; Gary Kovacik; Chris Astle

2003-01-01T23:59:59.000Z

233

Real-Time Combined Heat and Power Operational Strategy Using a Hierarchical Optimization Algorithm  

SciTech Connect

Existing attempts to optimize the operation of Combined Heat and Power (CHP) systems for building applications have two major limitations: the electrical and thermal loads are obtained from historical weather profiles; and the CHP system models ignore transient responses by using constant equipment efficiencies. This paper considers the transient response of a building combined with a hierarchical CHP optimal control algorithm to obtain a real-time integrated system that uses the most recent weather and electric load information. This is accomplished by running concurrent simulations of two transient building models. The first transient building model uses current as well as forecast input information to obtain short term predictions of the thermal and electric building loads. The predictions are then used by an optimization algorithm, i.e., a hierarchical controller, that decides the amount of fuel and of electrical energy to be allocated at the current time step. In a simulation, the actual physical building is not available and, hence, to simulate a real-time environment, a second, building model with similar but not identical input loads are used to represent the actual building. A state-variable feedback loop is completed at the beginning of each time step by copying, i.e., measuring, the state variable from the actual building and restarting the predictive model using these ?measured? values as initial conditions. The simulation environment presented in this paper features nonlinear effects such as the dependence of the heat exchanger effectiveness on their operating conditions. The results indicate that the CHP engine operation dictated by the proposed hierarchical controller with uncertain weather conditions have the potential to yield significant savings when compared to conventional systems using current values of electricity and fuel prices.

Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

2011-06-01T23:59:59.000Z

234

A combined heat-transfer analysis of a single-fiber CVD reactor  

SciTech Connect

In high-temperature applications, structural fibers such as SiC are currently being considered for reinforcement of both ceramic and intermetallic matrices. A combined-conjugated heat-transfer and fluid-flow analysis is presented for coating fibers by CVD in a vertical cylindrical quartz reactor. The numerical model focuses on radiation and natural convection. Three case studies are performed, and the wall temperature predictions are compared to experimental measurements. In the first case, the flowing gas is hydrogen, and conduction is more important than both radiation and convection, in which case measured and predicted wall temperatures agree excellently. In the second, hydrogen is replaced by argon, thus making radiation heat transfer more important than the previous situation. Three radiation models with increasing degrees of sophistication are compared: an approximate nongray model (no wavelength dependence of emissivity), an approximate semigray model, and a rigorous semigray model with view factor calculations. Comparison with experiments suggest that a semigray radiative analysis is needed for correct determination of wall temperatures. The third involves argon at a lower flow rate, where natural convection effects are more pronounced. Checking the validity of the Boussinesq approximation by incorporating the explicit dependence of density on temperature in the model shows a slight difference between the velocity fields predicted using the Boussinesq approximation and those obtained using the explicit dependence of density on temperature. However, there is negligible difference between the temperature fields predicted in the two cases.

Kassemi, M.; Gokoglu, S.A.; Panzarella, C.H.; Veitch, L.C. (NASA Lewis Research Center, Cleveland, OH (United States))

1993-10-01T23:59:59.000Z

235

TWO WELL STORAGE SYSTEMS FOR COMBINED HEATING AND AIRCONDITIONING BY GROUNDWATER HEATPUMPS IN SHALLOW AQUIFERS  

E-Print Network (OSTI)

In warmer climates air source heat pumps have gained widestadvantages over air source heat pumps. For example, theair source equipment is much less. The source for this kind of heat pump

Pelka, Walter

2010-01-01T23:59:59.000Z

236

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

natural gas generator with waste heat recovery at a facilityCCHP locations that are using waste heat for cooling alsouse some of the waste heat directly for water or space

Norwood, Zack

2010-01-01T23:59:59.000Z

237

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

of the rejected waste heat from power generation. (c)and for use of the waste heat, a condenser is muchcycle ? t Fraction of waste heat recovered from Rankine

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

238

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

P.C. (2001), Introduction to Advancd Batteries for EmergingPV) and solar thermal collectors; conventional batteries,flow batteries, and heat storage; heat exchangers for

Stadler, Michael

2010-01-01T23:59:59.000Z

239

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

working fluid to power a remote heat engine, as the fluidCHP options. Having a remote heat engine has many advantages

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

240

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

GHG preferable to grid power only when the waste heat can bethe grid electricity it displaces when the waste heat from

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

natural-gas- fired combined cycle generation, and the othernatural-gas-fired combined cycle plants. This assumptionplants were efficient combined cycle plants. The four

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

242

Combined heat and power: How much carbon and energy can it save for manufacturers?  

SciTech Connect

As part of a September 1997 National Laboratory study for the US Department of Energy, the authors estimated the potential for reducing industrial energy consumption and carbon emissions using advanced technologies for combined heat and power (CHP) for the year 2010. In this paper the authors re-analyze the potential for CHP in manufacturing only. The authors also refine the assessment by more accurately estimating the average efficiency of industrial boilers most likely to be replaced by CHP. The authors do this with recent GRI estimates of the age distribution of industrial boilers and standard age-efficiency equations. The previous estimate was based on use of the best CHP technology available, such as the about-to-be commercialized industrial advanced turbine system (ATS). This estimate assumes the use of existing off-the-shelf CHP technologies. Data is now available with which to develop a more realistic suite of penetration rates for existing and new CHP technologies. However, potential variation in actions of state and federal electricity and environmental regulators introduces uncertainties in the use of existing and potential new CHP far greater than those in previous technology penetration estimates. This is, thus, the maximum cost-effective technical potential for the frozen technology case. The authors find that if manufacturers in 1994 had generated all their steam and electric needs with existing CHP technologies, they could have reduced carbon equivalent (carbon dioxide) emissions by up to 30 million metric tons of carbon equivalent (MtC) or nearly 20%. This result is consistent with carbon and energy savings found in other studies. For example, the aforementioned laboratory study found that just three CHP technologies, fuel cells, advanced turbines, and integrated combined cycle technologies, accounted for nearly 10% of the study's projected carbon savings of 400 MtC by 2010--enough to reduce projected US 2010 emissions to 1990 levels.

Kaarsberg, T.M.; Roop, J.M.

1998-07-01T23:59:59.000Z

243

Combined heat recovery and dry scrubbing for MWCs to meet the new EPA guidelines  

SciTech Connect

Both the UK and US Municipal Waste Combuster (MWC) markets have undergone upgraded regulatory control. In the UK, the government`s Integrated Pollution Control (IPC) regime, enforced by the 1990 Environmental Protection Act (EPA) Standard IPR5/3 moved control of emissions of MWCs from local councils to the government Environmental Authority (EA). Existing MWCs had until December 1, 1996 to complete environmental upgrades. Simultaneously, the European Community (EC) was finalizing more stringent legislation to take place in the year 2001. In the US, the 1990 Clean Air Act amendments required the Environmental Protection Agency (EPA) to issue emission guidelines for new and existing facilities. Existing facilities are likely to have only until the end of 1999 to complete upgrades. In North America, Procedair Industries Corp had received contracts from Kvaerner EnviroPower AB, for APC systems of four new Refuse Derived Fuel (RDF) fluid bed boilers that incorporated low outlet temperature economizers as part of the original boiler equipment. The Fayetteville, North Carolina facility was designed for 200,000 tpy. What all these facilities have in common is low economizer outlet temperatures of 285{degrees}F coupled with a Total Dry Scrubbing System. MWC or RDF facilities using conventional spray dryer/fabric filter combinations have to have economizer gas outlet temperatures about 430{degrees}F to allow for evaporation of the lime slurry in the spray dryer without the likelihood of wall build up or moisture carry over. Since the Totally Dry Scrubbing System can operate with economizer gas outlet temperatures about 285{degrees}F, the added energy available for sale from adding low outlet temperature economizer heat recovery can be considerable. This paper focuses on Procedair`s new plant and retrofit experience using `Dry Venturi Reactor/Fabric Filter` combinations with the lower inlet temperature operating conditions.

Finnis, P.J. [Procedair Industries Corp., Louisville, KY (United States); Heap, B.M. [Procedair Limited, Wombourne (United Kingdom)

1997-12-01T23:59:59.000Z

244

Building America Expert Meeting: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

245

Federal strategies to increase the implementation of combined heat and power technologies in the United States  

SciTech Connect

Recent interest in combined heat and power (CHP) is providing momentum to efforts aimed at increasing the capacity of this highly-efficient technology. Factors driving this increase in interest include the need to increase the efficiency of the nation's electricity generation infrastructure, DOE Assistant Secretary Dan Reicher's challenge to double the capacity of CHP by 2010, the success of DOE's Advanced Turbine Systems Program in supporting ultra-efficient CHP technologies, and the necessity of finding cost-effective solutions to address climate change and air quality issues. The federal government is committed to increasing the penetration of CHP technologies in the US. The ultimate goal is to build a competitive market for CHP in which policies and regulations support the implementation of a full suite of technologies for multiple applications. Specific actions underway at the federal level include technology strategies to improve CHP data collection and assessment and work with industry to encourage the development of advanced CHP technologies. Policy strategies include changes to federal environmental permitting procedures including CHP-friendly strategies in federal restructuring legislation, supporting tax credits and changes to depreciation requirements as economic incentives to CHP, working with industry to leverage resources in the development of advanced CHP technologies, educating state officials about the things they can do to encourage CHP, and increasing awareness about the benefits of CHP and the barriers limiting its increased implementation.

Laitner, J.; Parks, W.; Schilling, J.; Scheer, R.

1999-07-01T23:59:59.000Z

246

Analysis of combined cooling, heating, and power systems under a compromised electricthermal load strategy  

Science Journals Connector (OSTI)

Abstract Following the electric load (FE) and following the thermal load (FT) strategies both have advantages and disadvantages for combined cooling, heating and power (CCHP) systems. In this paper, the performance of different strategies is evaluated under operation cost (OC), carbon dioxide emission (CDE) and exergy efficiency (EE). Analysis of different loads in one hour is conducted under the assumption that the additional electricity is not allowed to be sold back to the grid. The results show that FE produces less OC, less CDE, and FT produces higher EE when the electric load is larger. However, FE produces less OC, less CDE and higher EE when the thermal load is larger. Based on a hybrid electricthermal load (HET) strategy, compromised electricthermal (CET) strategies are innovatively proposed using the efficacy coefficient method. Additional, the CCHP system of a hotel in Tianjin is analyzed for all of the strategies. The results for an entire year indicate the first CET strategy is the optimal one when dealing with OC, CDE and EE. And the second CET is the optimal one when dealing with OC and EE. Moreover, the laws are strictly correct for different buildings in qualitative terms.

Gang Han; Shijun You; Tianzhen Ye; Peng Sun; Huan Zhang

2014-01-01T23:59:59.000Z

247

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network (OSTI)

solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

248

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site  

E-Print Network (OSTI)

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

1994-01-01T23:59:59.000Z

249

Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System  

SciTech Connect

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered micro-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric efficiency, average net heat recovery efficiency, and overall net efficiency of the system increased respectively from 33% to 36%, from 38% to 41%, and from 71% to 76%. The temperature of water sent to sit however reduced by about 16% from 51?C to 43 ?C. This was a control strategy and the temperature can be controlled depending on building heat demands. More importantly, the number of shutdowns and maintenance events required to keep the systems running at the manufacturers rated performance specifications were substantially reduced by about 76% (for 8 to 10 units running over a one-year period). From July 2012 to June 2013, there were eight CE5 units in operation and a total of 134 scheduled and unscheduled shutdowns took place. From July 2013 to June 2014, between two to ten units were in operation and only 32 shutdowns were reported (all unscheduled). In summary, the number of shutdowns reduced from 10 shutdowns per month on average for eight CE5units to an average of 2.7 shutdowns per month for M5 units (between two to ten units).

Brooks, Kriston P.; Makhmalbaf, Atefe

2014-10-31T23:59:59.000Z

250

1990,"AK","Combined Heat and Power, Commercial Power","All Sources",4,85.9,80.09  

U.S. Energy Information Administration (EIA) Indexed Site

STATE_CODE","PRODUCER_TYPE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY STATE_CODE","PRODUCER_TYPE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY (Megawatts)","SUMMER_CAPACITY (Megawatts)" 1990,"AK","Combined Heat and Power, Commercial Power","All Sources",4,85.9,80.09 1990,"AK","Combined Heat and Power, Commercial Power","Coal",3,65.5,61.1 1990,"AK","Combined Heat and Power, Commercial Power","Petroleum",1,20.4,18.99 1990,"AK","Combined Heat and Power, Industrial Power","All Sources",23,229.4,204.21 1990,"AK","Combined Heat and Power, Industrial Power","Natural Gas",28,159.32,136.67 1990,"AK","Combined Heat and Power, Industrial Power","Petroleum",8,68.28,65.86

251

110 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review  

Energy.gov (U.S. Department of Energy (DOE))

This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

252

Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications  

SciTech Connect

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative technologies. As the technology gains a foothold in its target markets and demand increases, the costs will decline in response to improved manufacturing efficiencies, similar to trends seen with other technologies. Transparency Market Research forecasts suggest that the CHP-FCS market will grow at a compound annual growth rate of greater than 27 percent over the next 5 years. These production level increases, coupled with the expected low price of natural gas, indicate the economic payback period will move to less than 5 years over the course of the next 5 years. To better understand the benefits of micro-CHP-FCSs, The U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe fuel cells in the commercial markets of California and Oregon. Pacific Northwest National Laboratory is evaluating these systems in terms of economics, operations, and their environmental impact in real-world applications. As expected, the economic analysis has indicated that the high capital cost of the micro-CHP-FCSs results in a longer payback period than typically is acceptable for all but early-adopter market segments. However, a payback period of less than 3 years may be expected as increased production brings system cost down, and CHP incentives are maintained or improved.

Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

2013-10-30T23:59:59.000Z

253

Use of Time-Aggregated Data in Economic Screening Analyses of Combined Heat and Power Systems  

SciTech Connect

Combined heat and power (CHP) projects (also known as cogeneration projects) usually undergo a series of assessments and viability checks before any commitment is made. A screening analysis, with electrical and thermal loads characterized on an annual basis, may be performed initially to quickly determine the economic viability of the proposed project. Screening analyses using time-aggregated data do not reflect several critical cost influences, however. Seasonal and diurnal variations in electrical and thermal loads, as well as time-of-use utility pricing structures, can have a dramatic impact on the economics. A more accurate economic assessment requires additional detailed data on electrical and thermal demand (e.g., hourly load data), which may not be readily available for the specific facility under study. Recent developments in CHP evaluation tools, however, can generate the needed hourly data through the use of historical data libraries and building simulation. This article utilizes model-generated hourly load data for four potential CHP applications and compares the calculated cost savings of a CHP system when evaluated on a time-aggregated (i.e., annual) basis to the savings when evaluated on an hour-by-hour basis. It is observed that the simple, aggregated analysis forecasts much greater savings (i.e., greater economic viability) than the more detailed hourly analysis. The findings confirm that the simpler tool produces results with a much more optimistic outlook, which, if taken by itself, might lead to erroneous project decisions. The more rigorous approach, being more reflective of actual requirements and conditions, presents a more accurate economic comparison of the alternatives, which, in turn, leads to better decision risk management.

Hudson II, Carl Randy [ORNL

2004-09-01T23:59:59.000Z

254

Hot water tank for use with a combination of solar energy and heat-pump desuperheating  

DOE Patents (OSTI)

A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

Andrews, J.W.

1980-06-25T23:59:59.000Z

255

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

A Better Steam Engine: Designing a Distributed Concentrating2011 Abstract A Better Steam Engine: Designing a Distributedprovided for a steam Rankine cycle heat engine achieving 50%

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

256

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

heat and power, and thermally activated cooling equipment.and power system provides electricity and cooling to a dataand power system provides electricity and cooling to a data

Norwood, Zack

2010-01-01T23:59:59.000Z

257

Low-Cost Packaged Combined Heat and Power System with Reduced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

monoxide (CO), and volatile organic compounds (VOCs) * Yearly reduction of carbon dioxide emissions by 950 tons com- pared to separate generation of electricity and heat,...

258

Qualified List of Energy Service Companies  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Management Program (FEMP) established the U.S. Department of Energy (DOE) Qualified List of Energy Service Companies (ESCOs) in accordance with the Energy Policy Act of 1992 and 10 CFR 436. The DOE Qualified List of ESCOs is composed of private industry firms that have submitted an application and been qualified by a qualification review board comprised of DOE staff.

259

Investigation of coal fired combined-cycle cogeneration plants for power, heat, syngas, and hydrogen  

Science Journals Connector (OSTI)

The methodology for determination of technical and economic efficiency of coal fired combined-cycle cogeneration plant (CCCP) with low-pressure ... steam-gas generator and continuous flow gasifier at combined pro...

V. E. Nakoryakov; G. V. Nozdrenko; A. G. Kuzmin

2009-12-01T23:59:59.000Z

260

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

87 DOE Industrial Technologies Program 87 DOE Industrial Technologies Program Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities u CHP Table........................................................................................................................................................................................... 189 Method of Calculating Results from DOE's Combined Heat and Power Activities Industrial Distributed Energy, a cross-cutting activity within the Industrial Technologies Program (ITP), builds on activities conducted by DOE's Office of Industrial Technologies

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Proposing a decision-making model using analytical hierarchy process and fuzzy expert system for prioritizing industries in installation of combined heat and power systems  

Science Journals Connector (OSTI)

Restructuring electric power and increasing energy cost encourage large energy consumers to utilize combined heat and power (CHP) systems. In addition to these two factors, the gradual exclusion of subsidies is the third factor intensifying the utilization ... Keywords: Analytic hierarchy process, Combined heat and power, Decision making, Fuzzy expert system, Industry

Mehdi Piltan; Erfan Mehmanchi; S. F. Ghaderi

2012-01-01T23:59:59.000Z

262

Electronic copy available at: http://ssrn.com/abstract=2014739 Published as: Amir Nosrat and Joshua M. Pearce, "Dispatch Strategy and Model for Hybrid Photovoltaic and Combined Heating,  

E-Print Network (OSTI)

combined heat and power (CHP) systems has provided the opportunity for in- house power backup. In a novel hybrid system is proposed here of PV-trigeneration. In order to reduce waste from excess heat that accounts for electric, domestic hot water, space heating, and space cooling load categories. The dispatch

Paris-Sud XI, Université de

263

Design and Operational Planning of Energy Networks Based on Combined Heat and Power Units  

Science Journals Connector (OSTI)

For each time period and sector, big-M constraints 13 model the heat (generated by the energy generator installed in the sector) transferred to the heat storage tank of the sector (Q?sit). ... Heat and electricity demand data for the reference case have been taken from the Milton Keynes Energy Park data set provided by the U.K. Energy Research Centre Energy Data Centre. ... Cardoso, G.; Stadler, M.; Siddiqui, A.; Marnay, C.; Deforest, N.; Barbosa-Pvoa, A.; Ferro, P.Microgrid reliability modeling and battery scheduling using stochastic linear programming Electric Power Syst. ...

Nikolaos E. Koltsaklis; Georgios M. Kopanos; Michael C. Georgiadis

2014-03-05T23:59:59.000Z

264

1…10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review  

NLE Websites -- All DOE Office Websites (Extended Search)

1-10 kW Stationary Combined Heat 1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential National Renewable Energy Laboratory 1617 Cole Boulevard * Golden, Colorado 80401 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Independent Review Published for the U.S. Department of Energy Hydrogen and Fuel Cells Program NREL/BK-6A10-48265 November 2010 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

265

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power  

Energy.gov (U.S. Department of Energy (DOE))

With their clean and quiet operation, fuel cells represent a promising means of implementing small-scale distributed power generation in the future. Waste heat from the fuel cell can be harnessed...

266

Numerical simulation of three-dimensional combined convective radiative heat transfer in rectangular channels  

E-Print Network (OSTI)

This dissertation presents a numerical simulation of three-dimensional flow and heat transfer in a channel with a backward-facing step. Flow was considered to be steady, incompressible, and laminar. The flow medium was treated to be radiatively...

Ko, Min Seok

2009-05-15T23:59:59.000Z

267

Combined Heat and Power for Federal Facilities and the DOE CHP...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, andor district energy with CHP in their facility and to help them through...

268

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

and decreased cost of heat and electricity grid (Casten andgrid. Chapter 1 begins with analysis of the relative demand for electricity and heatheat can be cost-effectively stored with available technologies. (c) DCS-CHP thus can ameliorate grid-

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

269

Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy  

Science Journals Connector (OSTI)

Abstract Thermodynamic analysis of a combined cycle using a low grade heat source and LNG cold energy was carried out. The combined cycle consisted of an ammoniawater Rankine cycle with and without regeneration and a LNG Rankine cycle. A parametric study was conducted to examine the effects of the key parameters, such as ammonia mass fraction, turbine inlet pressure, condensation temperature. The effects of the ammonia mass fraction on the temperature distributions of the hot and cold streams in heat exchangers were also investigated. The characteristic diagram of the exergy efficiency and heat transfer capability was proposed to consider the system performance and expenditure of the heat exchangers simultaneously. The simulation showed that the system performance is influenced significantly by the parameters with the ammonia mass fraction having largest effect. The net work output of the ammoniawater cycle may have a peak value or increase monotonically with increasing ammonia mass fraction, which depends on turbine inlet pressure or condensation temperature. The exergy efficiency may decrease or increase or have a peak value with turbine inlet pressure depending on the ammonia mass fraction.

Kyoung Hoon Kim; Kyung Chun Kim

2014-01-01T23:59:59.000Z

270

Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water  

Science Journals Connector (OSTI)

We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of $0.25kWh?1 electricity and $0.03kWh?1 thermal, for a system with a life cycle global warming potential of ~80gCO2eqkWh?1 of electricity and ~10gCO2eqkWh?1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of $1.40m?3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that $0.40$1.90m?3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

Zack Norwood; Daniel Kammen

2012-01-01T23:59:59.000Z

271

Combined Heat and Power (CHP), also known as cogeneration, is the concurrent production of electricity or  

E-Print Network (OSTI)

movers or technology types, which include: Reciprocating Engines Combustion or Gas Turbines Steam systems can provide the following products: Electricity Direct mechanical drive Steam or hot water, integrated systems that consist of various components ranging from prime mover (heat engine), generator

272

The radiative and combined mode heat transfer within the L-shaped nonhomogeneous and nongray participating media  

SciTech Connect

The solutions of pure radiative and combined radiative and conductive heat transfer within a L-shaped enclosure are presented. The enclosure contains a mixture of pulverized carbon particles, CO{sub 2}, and N{sub 2}. Three different types of problems are solved: homogeneous radiative properties, nonhomogeneous radiative properties, and combined conduction-radiation problem with nonhomogeneous radiative properties. To obtain solutions for these problems, the YIX method is used. The YIX quadrature uses piecewise constant interpolation of the integrands. To handle the L-shaped enclosure, an ad hoc approach of searching the struck surface node in the line-of-sight is developed. The general approach of handling any arbitrary complex geometry is briefly described. A single point, implicit, quasi-Newton scheme is used to solve the energy equation when both the radiation and conduction heat transfer modes are present. The quasi-Newton works well for a wide range of dimensionless conduction-radiation parameter except when the parameter is less than 0.2, i.e., radiation is the dominant heat transfer mode.

Hsu, P.F. [Florida Inst. of Tech., Melbourne, FL (United States). Mechanical and Aerospace Engineering Programs; Tan, Z. [Univ. of Texas, Austin, TX (United States). Aerospace Engineering and Engineering Mechanics Dept.

1996-11-01T23:59:59.000Z

273

Techno-economic analysis of a coal-fired CHP based combined heating system with gas-fired boilers for peak load compensation  

Science Journals Connector (OSTI)

Combined heat and power (CHP) plants dominate the heating market in China. With the ongoing energy structure reformation and increasing environmental concerns, we propose gas-fired boilers to be deployed in underperforming heating substations of heating networks for peak load compensation, in order to improve both energy efficiency and environmental sustainability. However, due to the relatively high price of gas, techno-economic analysis is required for evaluating different combined heating scenarios, characterized by basic heat load ratio (?). Therefore, we employ the dynamic economics and annual cost method to develop a techno-economic model for computing the net heating cost of the system, considering the current state of the art of cogeneration systems in China. The net heating cost is defined as the investment costs and operations costs of the system subtracted by revenues from power generation. We demonstrate the model in a real-life combined heating system of Daqing, China. The results show that the minimum net heating cost can be realized at ?=0.75 with a cost reduction of 16.8% compared to coal heating alone. Since fuel cost is the dominating factor, sensitivity analyses on coal and gas prices are discussed subsequently.

Hai-Chao Wang; Wen-Ling Jiao; Risto Lahdelma; Ping-Hua Zou

2011-01-01T23:59:59.000Z

274

Integration of biomass fast pyrolysis and precedent feedstock steam drying with a municipal combined heat and power plant  

Science Journals Connector (OSTI)

Abstract Biomass fast pyrolysis (BFP) is a promising pre-treatment technology for converting biomass to transport fuel and in the future also for high-grade chemicals. BFP can be integrated with a municipal combined heat and power (CHP) plant. This paper shows the influence of BFP integration on a CHP plant's main parameters and its effect on the energetic and environmental performance of the connected district heating network. The work comprises full- and part-load operation of a CHP plant integrated with BFP and steam drying. It also evaluates different usage alternatives for the BFP products (char and oil). The results show that the integration is possible and strongly beneficial regarding energetic and environmental performance. Offering the possibility to provide lower district heating loads, the operation hours of the plant can be increased by up to 57%. The BFP products should be sold rather than applied for internal use as this increases the district heating network's primary energy efficiency the most. With this integration strategy future CHP plants can provide valuable products at high efficiency and also can help to mitigate global CO2 emissions.

Thomas Kohl; Timo P. Laukkanen; Mika P. Jrvinen

2014-01-01T23:59:59.000Z

275

Exergy and exergoeconomic analysis and optimisation of diesel engine based Combined Heat and Power (CHP) system using genetic algorithm  

Science Journals Connector (OSTI)

In the present study, a diesel engine based Combined Heat and Power (CHP) system is optimised using exergoeconomic concept and genetic algorithm. For this purpose, the CHP system is first thermodynamically analysed through energy and exergy. Then cost balances and auxiliary equations are applied to subsystems. Finally an objective function representing fuel cost, cost of exergy loss and destruction and purchase and maintenance cost of the system components is considered for the optimisation study. Furthermore the above procedure is applied for a case study that produces 277 kW of electricity and 282 kW of heat. Also exergetic and exergoeconomic parameters are calculated in optimum case and compared with the base case. The results show that by applying the optimisation approach for our case study, 8.02% reduction in objective function is achieved which is might be considerable in CHP systems optimisation.

Farzad Mohammadkhani; Shahram Khalilarya; Iraj Mirzaee

2013-01-01T23:59:59.000Z

276

Wood Heating Fuel Exemption  

Energy.gov (U.S. Department of Energy (DOE))

This statute exempts from the state sales tax all wood or "refuse-derived" fuel used for heating purposes. The law does not make any distinctions about whether the qualified fuels are used for...

277

The HIGH-COMBI project: High solar fraction heating and cooling systems with combination of innovative components and methods  

Science Journals Connector (OSTI)

Abstract The scope of the HIGH-COMBI project is the development of high solar fraction systems by innovative combination of optimized solar heating, cooling and storage technologies as well as control strategies, in order to contribute and assist the further deployment of the solar energy market. Within this project, six demonstration plants were installed in four European countries (Greece, Italy, Spain and Austria). The purpose of this article is to assess the result achieved in the technical field of the project and to present the technical aspects of the six innovative demonstration systems realised during the project period.

Vassiliki N. Drosou; Panagiotis D. Tsekouras; Th.I. Oikonomou; Panos I. Kosmopoulos; Constantine S. Karytsas

2014-01-01T23:59:59.000Z

278

Economic Passive Solar Warm-Air Heating and Ventilating System Combined with Short Term Storage within Building Components for Residential Houses  

Science Journals Connector (OSTI)

Warm-air heating systems are very suitable for the exploitation of solar energy. A relatively low temperature level combined ... used for transportation and distribution equipment or as storage elements.

K. Bertsch; E. Boy; K.-D. Schall

1984-01-01T23:59:59.000Z

279

Determining the maximal capacity of a combined-cycle plant operating with afterburning of fuel in the gas conduit upstream of the heat-recovery boiler  

Science Journals Connector (OSTI)

The effect gained from afterburning of fuel in the gas conduit upstream of the heat-recovery boiler used as part of a PGU-450T combined-cycle plant is considered. The results obtained from ... electric and therma...

V. M. Borovkov; N. M. Osmanova

2011-01-01T23:59:59.000Z

280

Convective heat and mass transfer and evolution of the moisture distribution in combined convection and radio frequency drying  

SciTech Connect

In a previous study (Dostie and Navarri, 1994), experiments indicated that a non-uniform moisture distribution could develop in radio frequency drying depending on the applied power and initial conditions, making the design and scale-up of such a dryer a more difficult task. Consequently, a thorough study of the combined convection and RF drying process was undertaken. Experimental results have shown that the values of the heat and mass transfer coefficients decrease with an increase in evaporation rate caused by RF energy. This effect is adequately taken into account by the boundary layer theory. Furthermore, the usual analogy between heat and mass transfer has been verified to apply in RF drying. Experiments have also shown that a different mass transfer resistance on both sides of the product should not result in non-uniform drying. However, it appears that non-uniform drying is dependent upon the initial moisture distribution and the relative intensity of heat transfer by convection and RF. It was shown that the maximum drying rate occurs at a higher average water content and that the total drying time increases with non-uniformity of the initial moisture distribution.

Poulin, A.; Dostie, M.; Kendall, J. [LTEE d`Hydro-Quebec, Shawinigan, Quebec (Canada); Proulx, P. [Univ. de Sherbrooke, Quebec (Canada)

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Case Study: Fuel Case Study: Fuel Cells Provide Com- bined Heat and Power at Verizon's Garden City Central Office With more than 67 million customers nationwide, Verizon Communications is one of the largest telecommunica- tions providers in the U.S. Power inter- ruptions can severely impact network operations and could result in losses in excess of $1 million/minute. 1 In 2005, Verizon Communications installed a 1.4 MW phosphoric acid fuel cell (PAFC) system, consisting of seven 200 kW units, at its Central Office in Garden City, New York. This fuel cell power plant, the largest in the United States at the time, is reaping environmental benefits and demonstrating the viabil- ity of fuel cells in a commercial, critical telecommunications setting. Background Verizon's Central Office in Garden City,

282

13 - Micro combined heat and power (CHP) systems for residential and small commercial buildings  

Science Journals Connector (OSTI)

Abstract: The principal market for micro-CHP is as a replacement for gas boilers in the 18 million or so existing homes in the UK currently provided with gas-fired central heating systems. In addition there are a significant number of potential applications of micro-CHP in small commercial and residential buildings. In order to gain the optimum benefit from micro-CHP, it is essential to ensure that an appropriate technology is selected to integrate with the energy systems of the building. This chapter describes the key characteristics of the leading micro-CHP technologies, external and internal combustion engines and fuel cells, and how these align with the relevant applications.

J. Harrison

2011-01-01T23:59:59.000Z

283

An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications  

Science Journals Connector (OSTI)

Abstract Performance calculations are presented for a small-scale combined solar heat and power (CSHP) system based on an Organic Rankine Cycle (ORC), in order to investigate the potential of this technology for the combined provision of heating and power for domestic use in the UK. The system consists of a solar collector array of total area equivalent to that available on the roof of a typical UK home, an ORC engine featuring a generalised positive-displacement expander and a water-cooled condenser, and a hot water storage cylinder. Preheated water from the condenser is sent to the domestic hot water cylinder, which can also receive an indirect heating contribution from the solar collector. Annual simulations of the system are performed. The electrical power output from concentrating parabolic-trough (PTC) and non-concentrating evacuated-tube (ETC) collectors of the same total array area are compared. A parametric analysis and a life-cycle cost analysis are also performed, and the annual performance of the system is evaluated according to the total electrical power output and cost per unit generating capacity. A best-case average electrical power output of 89W (total of 776kWh/year) plus a hot water provision capacity equivalent to ?80% of the total demand are demonstrated, for a whole system capital cost of 27003900. Tracking \\{PTCs\\} are found to be very similar in performance to non-tracking \\{ETCs\\} with an average power output of 89W (776kWh/year) vs. 80W (701kWh/year).

James Freeman; Klaus Hellgardt; Christos N. Markides

2015-01-01T23:59:59.000Z

284

Qualifying Wood Stove Deduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualifying Wood Stove Deduction Qualifying Wood Stove Deduction Qualifying Wood Stove Deduction < Back Eligibility Residential Savings Category Bioenergy Maximum Rebate 500 Program Info Start Date 1/1/1994 State Arizona Program Type Personal Deduction Rebate Amount Total cost, exclusive of taxes, interest and other finance charges Provider Arizona Department of Revenue This incentive allows Arizona taxpayers to deduct the cost of converting an existing wood fireplace to a qualifying wood stove. The cost to purchase and install all necessary equipment is tax deductible, up to a maximum $500 deduction. Qualifying wood stoves must meet the standards of performance for new wood heaters manufactured after July 1990, or sold after July 1992 pursuant to [http://www.epa.gov/oecaerth/resources/policies/monitoring/caa/woodstover...

285

Qualified Energy Property Tax Exemption for Projects over 250 kW (Payment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualified Energy Property Tax Exemption for Projects over 250 kW Qualified Energy Property Tax Exemption for Projects over 250 kW (Payment in Lieu) Qualified Energy Property Tax Exemption for Projects over 250 kW (Payment in Lieu) < Back Eligibility Commercial Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Program Info Start Date 01/01/2010 State Ohio Program Type Property Tax Incentive Rebate Amount 100% property tax exemption; payment in lieu of tax required Provider Ohio Development Services Agency Ohio's Renewable and Advanced Energy Project Property Tax Exemption, enacted with the passage of Ohio S.B. 232 in the summer of 2010, exempts qualified energy projects in Ohio from public utility tangible personal

286

Economic analysis of residential combined solar-heating and hot-water systems  

SciTech Connect

A brief description of a typical residential solar heating and hot water system and typical cost and performance information are presented. The monthly costs and savings of the typical system are discussed. The economic evaluation of solar residential systems is presented in increasing levels of complexity. Utilizing a typical system, the effective interest rate that the purchaser of a system would receive on money invested is shown for all regions of the country. The importance of numerous variables that can make a significant difference on the economics of the system is described so that it can be determined whether the typical system economics are compatible with the particular situation. Methods for calculating the payback period for any non-typical solar system are described. This calculated payback period is then shown to be related to the effective interest rate that the purchaser of the system would receive for a typical economic condition. A nomagraph is presented that performs this calculation. Finally, a method is presented to calculate the effective interest rate that the solar system would provide. It is shown how to develop the relationship between payback period and the effective interest rate for any economic scenario.

None

1980-09-23T23:59:59.000Z

287

"Potential for Combined Heat and Power and District Heating and Cooling from Waste-to-Energy Facilities in the U.S. Learning from the Danish Experience"  

E-Print Network (OSTI)

is used for the generation of electricity. The advantages of district heating using WTE plants are heating and cooling system in Indianapolis. However, there are few U.S. hot water district heating systems,800 district heating and cooling systems, providing 320 million MWh of thermal energy. Currently, 28 of the 88

Shepard, Kenneth

288

An integrated assessment of the energy savings and emissions-reduction potential of combined heat and power  

SciTech Connect

Combined Heat and Power (CHP) systems, or cogeneration systems, generated electrical/mechanical and thermal energy simultaneously, recovering much of the energy normally lost in separate generation. This recovered energy can be used for heating or cooling purposes, eliminating the need for a separate boiler. Significant reductions in energy, criteria pollutants, and carbon emissions can be achieved from the improved efficiency of fuel use. Generating electricity on or near the point of use also avoids transmission and distribution losses and defers expansion of the electricity transmission grid. Several recent developments make dramatic expansion of CHP a cost-effective possibility over the next decade. First, advances in technologies such as combustion turbines, steam turbines, reciprocating engines, fuel cells. and heat-recovery equipment have decreased the cost and improved the performance of CHP systems. Second, a significant portion of the nation's boiler stock will need to be replaced in the next decade, creating an opportunity to upgrade this equipment with clean and efficient CHP systems. Third, environmental policies, including addressing concerns about greenhouse gas emissions, have created pressures to find cleaner and more efficient means of using energy. Finally, electric power market restructuring is creating new opportunities for innovations in power generation and smaller-scale distributed systems such as CHP. The integrated analysis suggests that there is enormous potential for the installation of cost-effective CHP in the industrial, district energy, and buildings sectors. The projected additional capacity by 2010 is 73 GW with corresponding energy savings of 2.6 quadrillion Btus, carbon emissions reductions of 74 million metric tons, 1.4 million tons of avoided SO{sub 2} emissions, and 0.6 million tons of avoided NO{sub x} emissions. The authors estimate that this new CHP would require cumulative capital investments of roughly $47 billion over ten years.

Kaarsberg, T.M.; Elliott, R.N.; Spurr, M.

1999-07-01T23:59:59.000Z

289

Federal Energy Management Program: Qualified List of Energy Service  

NLE Websites -- All DOE Office Websites (Extended Search)

Qualified List of Qualified List of Energy Service Companies to someone by E-mail Share Federal Energy Management Program: Qualified List of Energy Service Companies on Facebook Tweet about Federal Energy Management Program: Qualified List of Energy Service Companies on Twitter Bookmark Federal Energy Management Program: Qualified List of Energy Service Companies on Google Bookmark Federal Energy Management Program: Qualified List of Energy Service Companies on Delicious Rank Federal Energy Management Program: Qualified List of Energy Service Companies on Digg Find More places to share Federal Energy Management Program: Qualified List of Energy Service Companies on AddThis.com... Energy Savings Performance Contracts Assistance & Contacts Resources Laws & Regulations Energy Service Companies

290

Making it Easier to Complete Clean Energy Projects with Qualified...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Making it Easier to Complete Clean Energy Projects with Qualified Energy Conservation Bonds (QECBs) Making it Easier to Complete Clean Energy Projects with Qualified Energy...

291

Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable...  

Energy Savers (EERE)

Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy Bonds (New CREBs) Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy Bonds (New...

292

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.  

SciTech Connect

Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

293

Optimizal design and control strategies for novel Combined Heat and Power (CHP) fuel cell systems. Part II of II, case study results.  

SciTech Connect

Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches.

Colella, Whitney G.

2010-04-01T23:59:59.000Z

294

Qualified Energy Conservation Bond (QECB) Update: New  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2012 8, 2012 Qualified Energy Conservation Bond (QECB) Update: New Guidance from the U.S. Department of Treasury and the Internal Revenue Service Qualified Energy Conservation Bonds (QECBs) are federally-subsidized bonds that enable state, tribal, and local government issuers to borrow money to fund a range of energy conservation projects at very attractive borrowing rates over long contract terms. In June 2012, the U.S. Department of the Treasury (Treasury) and the Internal Revenue Service (IRS) published a notice to clarify what constitutes a qualified project for potential issuers of the approximately $2.5 billion of remaining QECB issuance capacity. The guidance addresses two qualified uses of QECB proceeds-how issuers should measure energy use reductions in publicly-owned buildings and what constitutes a green community program.

295

Negotiating Rates and Contracts for Qualifying Facilities  

E-Print Network (OSTI)

The implementation of a cogeneration project or other qualifying facility (QF) requires the development of contractual relationships with one or more electric utilities. The relationships may involve the application of existing rates and contracts...

Collier, S. E.

296

Requirements and Submission Process for Qualified Software  

Energy.gov (U.S. Department of Energy (DOE))

This document provides a complete list of requirements and submission details to have software qualified for calculating energy and power cost savings for commercial building tax deductions under tax code Section 179D.

297

Requirements and Submission Process for Qualified Software  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requirements and Submission Process for Qualified Software The U.S. Department of Energy (DOE) verifies and maintains the list of software that qualifies for the calculation of the energy and power cost savings for commercial building tax deductions under tax code Section 179D. The software requirements are listed under Internal Revenue Service (IRS) Code §179D (c)(1) and (d) Regulations, Notice 2006-52

298

Supporting qualified database for uncertainty evaluation  

SciTech Connect

Uncertainty evaluation constitutes a key feature of BEPU (Best Estimate Plus Uncertainty) process. The uncertainty can be the result of a Monte Carlo type analysis involving input uncertainty parameters or the outcome of a process involving the use of experimental data and connected code calculations. Those uncertainty methods are discussed in several papers and guidelines (IAEA-SRS-52, OECD/NEA BEMUSE reports). The present paper aims at discussing the role and the depth of the analysis required for merging from one side suitable experimental data and on the other side qualified code calculation results. This aspect is mostly connected with the second approach for uncertainty mentioned above, but it can be used also in the framework of the first approach. Namely, the paper discusses the features and structure of the database that includes the following kinds of documents: 1. The' RDS-facility' (Reference Data Set for the selected facility): this includes the description of the facility, the geometrical characterization of any component of the facility, the instrumentations, the data acquisition system, the evaluation of pressure losses, the physical properties of the material and the characterization of pumps, valves and heat losses; 2. The 'RDS-test' (Reference Data Set for the selected test of the facility): this includes the description of the main phenomena investigated during the test, the configuration of the facility for the selected test (possible new evaluation of pressure and heat losses if needed) and the specific boundary and initial conditions; 3. The 'QR' (Qualification Report) of the code calculation results: this includes the description of the nodalization developed following a set of homogeneous techniques, the achievement of the steady state conditions and the qualitative and quantitative analysis of the transient with the characterization of the Relevant Thermal-Hydraulics Aspects (RTA); 4. The EH (Engineering Handbook) of the input nodalization: this includes the rationale adopted for each part of the nodalization, the user choices, and the systematic derivation and justification of any value present in the code input respect to the values as indicated in the RDS-facility and in the RDS-test. (authors)

Petruzzi, A.; Fiori, F.; Kovtonyuk, A.; D'Auria, F. [Nuclear Research Group of San Piero A Grado, Univ. of Pisa, Via Livornese 1291, 56122 Pisa (Italy)

2012-07-01T23:59:59.000Z

299

Qualified Energy Conservation Bond State-by-State Summary Tables  

Energy.gov (U.S. Department of Energy (DOE))

Provides a list of qualified energy conservation bond state summary tables. Author: Energy Programs Consortium

300

Covered Product Category: Residential Air-Source Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Management Program (FEMP) provides acquisition guidance for residential air-source heat pumps, which is an ENERGY STAR-qualified product category.

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Multi-criteria assessment of combined cooling, heating and power systems located in different regions in Japan  

Science Journals Connector (OSTI)

Abstract As an efficient measure for rational use of energy, the combined cooling, heating and power (CCHP) system plays an increasingly important role in commercial buildings in Japan. In this study, aiming at examining the influences of building type and climate condition on the introduction of CCHP systems, four representative commercial building categories (hotel, hospital, store and office) located in six major climate zones in Japan are compared and evaluated. In order to have a comprehensive understanding about the performances of the assumed CCHP systems, besides simple assessment from energy, economic and environmental aspects, a multi-criteria evaluation method has been employed for the final determination. According to the assessment results, the CCHP systems in hotels and hospitals enjoy better overall performances than those in stores and offices. On the other hand, the potentials of energy-saving and CO2 emission reduction of the CCHP systems in the mild climate zones are smaller than that in other climate zones. In addition, the performances of CCHP systems in stores and offices located in Kagoshima are superior to those in other cities; while, CCHP systems in hospitals and hotels located in Sapporo illustrate better overall performance.

Qiong Wu; Hongbo Ren; Weijun Gao; Jianxing Ren

2014-01-01T23:59:59.000Z

302

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

solar thermal and heat storage on CO 2 emissions and annual energyenergy costs, heat storage does not directly support solar thermal /energy costs. This paper focuses on analysis of the optimal interaction of solar thermal

Marnay, Chris

2010-01-01T23:59:59.000Z

303

Connecting the second exhaust-heat boiler to the operating first one under the conditions of flow circuits of combined-cycle plants with two gas-turbine units and one steam turbine  

Science Journals Connector (OSTI)

Problems arising with connecting the second exhaust-heat boiler to the first exhaust-heat boiler under load in the case of flow circuits of combined-cycle plants of type PGU-450 are considered. Similar problem...

Yu. A. Radin; I. A. Grishin; T. S. Kontorovich

2006-03-01T23:59:59.000Z

304

BUILDING TECHNOLOGIES PROGRAM Tax Deduction Qualified Software  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Deduction Qualified Software IES version 6.3 On this page you'll find information about the IES version 6.3 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 30 March 2011 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; Integrated Environmental Solutions Limited Helix Building, West Of Scotland Science Park,

305

Hiring Qualified Contractors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Energy Assurance » Emergency Preparedness » Community Services » Energy Assurance » Emergency Preparedness » Community Guidelines » Hiring Qualified Contractors Hiring Qualified Contractors Hiring Qualified Contractors No matter how urgent your need for repairs, take the time to hire the right contractors to help you rebuild your home/business. You may need to hire certified technicians to assess your home/business for possible structural, electrical, or natural gas-related safety issues before restoring energy supplies. You may also encounter dishonest or unqualified contractors trying to take advantage of disaster victims. Learn all you can about restoration requirements and your contractor-especially if he or she solicits you. Contact your local city or county building inspectors for information on structural safety codes and standards that may govern the

306

Waste Heat Management Options for Improving Industrial Process Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power.

307

Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant  

SciTech Connect

Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok [Engineering Center of the Ural Power Industry (Russian Federation)

2007-01-15T23:59:59.000Z

308

Qualified List of Energy Service Companies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualified List of Energy Service Companies Qualified List of Energy Service Companies Qualified List of Energy Service Companies October 7, 2013 - 1:46pm Addthis The Federal Energy Management Program (FEMP) established the U.S. Department of Energy (DOE) Qualified List of Energy Service Companies (ESCOs) in accordance with the Energy Policy Act of 1992 and 10 CFR 436. The DOE Qualified List of ESCOs is composed of private industry firms that have submitted an application and been qualified by a qualification review board comprised of DOE staff. FEMP strongly recommends contacting Douglas Eisemann, 703-653-5425, douglas_eisemann@sra.com, with questions before submitting an application for inclusion on the DOE Qualified List of ESCOs. Applying for the DOE Qualified List Applications for the DOE Qualified List are accepted throughout the year.

309

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

thermal absorption solar photo- storage chiller thermalbetween solar thermal collection and storage systems and CHPimpact of solar thermal and heat storage on CO 2 emissions

Marnay, Chris

2010-01-01T23:59:59.000Z

310

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

Environmental Value of Solar Thermal Systems in MicrogridsEnvironmental Value of Solar Thermal Systems in Microgridsa) ABSTRACT The addition of solar thermal and heat storage

Marnay, Chris

2010-01-01T23:59:59.000Z

311

Tax Deduction Qualified Software Tas version 9.3.1  

Energy.gov (U.S. Department of Energy (DOE))

Information about the Tas version 9.3.1 qualified computer software and federal tax incentive requirements for commercial buildings.

312

Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination  

Energy.gov (U.S. Department of Energy (DOE))

Coke calcination is a process that involves the heating of green petroleum coke in order to remove volatile material and purify the coke for further processing. Calcined coke is vital to the...

313

Simulation of processes in natural-circulation circuits of heat-recovery boilers of combined cycle power plants  

Science Journals Connector (OSTI)

Mathematical fundamentals of development of models of natural-circulation circuits of heat-recovery boilers are considered. Processes in the high-pressure circuit of a P-96 boiler are described.

E. K. Arakelyan; A. S. Rubashkin; A. S. Obuvaev; V. A. Rubashkin

2009-02-01T23:59:59.000Z

314

Qualifying Officials Briefing - Y-12 Site Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR SECURITY ADMINISTRATION NUCLEAR SECURITY ADMINISTRATION Y-12 SITE OFFICE Qualifying Officials Briefing 1. Purpose: The Manager, Y-12 Site Office (YSO), will establish the standard for the conduct of training activities by Subject Matter Experts (SMEs) who have been assigned as Qualifying Officials (QO) for the YSO. 2. Terminal Objective: Each QO will receive authorization from the Manager to sign qualification cards for designated competencies. 3. Major Points: a. Primary Responsibility of the QOs - The YSO QOs shall evaluate a trainee in such a manner that he/she achieves some understanding that the trainee knows the substance of the subject being reviewed before signing off on a qual card. The QO must be personally convinced that the trainee knows what is in the standard.

315

Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation  

SciTech Connect

A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

Shabani, Bahman; Andrews, John; Watkins, Simon [School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne (Australia)

2010-01-15T23:59:59.000Z

316

DOE Qualifying Official Training Approaches | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Assistance » Federal Technical Capability Program » Services » Assistance » Federal Technical Capability Program » DOE Qualifying Official Training Approaches DOE Qualifying Official Training Approaches Qualifying Official Training Approaches Idaho Operations Office Livermore Field Office Nevada Field Office NNSA Production Office NNSA Service Center Office of Science, SC-3 Office of Science, Chicago Office of Science, Oak Ridge Savannah River Operations Office Sandia Field Office FTCP FAQS Qualifying Officials list DOE Qualifying Official Approach Matrix Additional Information FTCP History FTCP Members FTCP Plans & Reports FTCP Guiding Documents FTCP Issue Papers FTCP Site Specific Information Workforce Analysis and Staffing Enforcement Guidance Oversight Reporting Security Classification Nuclear Safety Assistance

317

Numerical predictions on fluid flow and heat transfer in U-shaped channel with the combination of ribs, dimples and protrusions under rotational effects  

Science Journals Connector (OSTI)

Abstract Recently, dimple and protrusion structure has been proved as an effective heat transfer augmentation approach on coolant channel due to its advantage on pressure penalty. A compound heat transfer enhancement technique, the combination of ribs, dimples or protrusions, is applied to a U-shaped square channel similar with the gas turbine blade internal passage. Considering the rotational condition of gas turbine blade on operation, the effect of rotation is also investigated for the coolant channel in order to approximate more to the real operation condition. Thus, the objective of this study is to discuss the effect of rotation on fluid flow and heat transfer performance of turbine blade similar U-shaped channel with the combination structure of ribs, dimples or protrusions. The investigated Reynolds number is 1.25 million and considered rotational number includes 0, 0.4 and 0.6. From the results, the fluid patterns of two-pass channel with compound heat transfer enhancement structure are presented for none-rotating and rotating cases. Meanwhile, spatially Nusselt distributions of roughened walls are obtained to reveal the heat transfer rates. Finally, the area averaged Nusselt number ratio and channel friction penalty are evaluated. The results indicate that rib-protrusion structure seems to be the most effective structure while rib-dimple structure has only slight advantage than ribbed channel. Furthermore, the additional friction penalty by dimple and protrusion structure is tiny. It can also be expected that, the thermal performance of this compound structure can be even improved after a denser arrangement of dimple/protrusion structure and optimal shape design.

Zhongyang Shen; Yonghui Xie; Di Zhang

2015-01-01T23:59:59.000Z

318

Journal of Crystal Growth 194 (1998) 321--330 Combined heat transfer in floating zone growth of large silicon  

E-Print Network (OSTI)

of large silicon crystals with radiation on diffuse and specular surfaces Zhixiong Guo , Shigenao Maruyama-8577, Japan Komatsu Electronic Metals Co., Ltd., 2612 Shinomiya, Hiratsuka, Kanagawa 254, Japan Received 30. The radiation element method, REM2, is employed to determine the radiative heat exchange, in which the view

Guo, Zhixiong "James"

319

Simultaneous use of MRM (maximum rectangle method) and optimization methods in determining nominal capacity of gas engines in CCHP (combined cooling, heating and power) systems  

Science Journals Connector (OSTI)

Abstract Energy, economic, and environmental analyses of combined cooling, heating and power (CCHP) systems were performed here to select the nominal capacities of gas engines by combination of optimization algorithm and maximum rectangle method (MRM). The analysis was performed for both priority of providing electricity (PE) and priority of providing heat (PH) operation strategies. Four scenarios (SELL-PE, SELL-PH, No SELL-PE, No SELL-PH) were followed to specify design parameters such as the number and nominal power of prime movers, heating capacities of both backup boiler and energy storage tank, and the cooling capacities of electrical and absorption chillers. By defining an objective function called the Relative Annual Benefit (RAB), Genetic Algorithm optimization method was used for finding the optimal values of design parameters. The optimization results indicated that two gas engines (with nominal powers of 3780 and 3930kW) in SELL-PE scenario, two gas engines (with nominal powers of 5290 and 5300kW) in SELL-PH scenario, one gas engine (with nominal power of 2440kW) in No SELL-PE scenario provided the maximum value of the objective function. Furthermore in No SELL-PE scenario (which had the lowest RAB value in comparison with that for the above mentioned scenarios), thermal energy storage was not required. Due to very low value of RAB, any gas engine in No SELL-PH scenario was not recommended.

Sepehr Sanaye; Navid Khakpaay

2014-01-01T23:59:59.000Z

320

Qualifying Official Training Handout - Sandia Site Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training Handout Training Handout 1 of 2 SSO TQP QO Training Handout Revision 3, 1/10/2012 Responsibilities Qualifying officials (QOs) are responsible for performing the following:  Complete QO training and sign the attestation form and provide it to the requesting supervisor.  Prepare for qualification evaluations by reviewing the qualification standard competencies, applicable references and other necessary materials  Meet with participants to evaluate knowledge level  Conduct evaluations according to the guidance provided in the QO training and this document  Ensure that participants can demonstrate proficiency in the applicable competencies  Document when the participant meets or exceeds the requirements of the applicable competencies

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

SciTech Connect

It has been suggested that enhanced geothermal systems (EGS) may be operated with supercritical CO{sub 2} instead of water as heat transmission fluid (D.W. Brown, 2000). Such a scheme could combine recovery of geothermal energy with simultaneous geologic storage of CO{sub 2}, a greenhouse gas. At geothermal temperature and pressure conditions of interest, the flow and heat transfer behavior of CO{sub 2} would be considerably different from water, and chemical interactions between CO{sub 2} and reservoir rocks would also be quite different from aqueous fluids. This paper summarizes our research to date into fluid flow and heat transfer aspects of operating EGS with CO{sub 2}. (Chemical aspects of EGS with CO{sub 2} are discussed in a companion paper; Xu and Pruess, 2010.) Our modeling studies indicate that CO{sub 2} would achieve heat extraction at larger rates than aqueous fluids. The development of an EGS-CO{sub 2} reservoir would require replacement of the pore water by CO{sub 2} through persistent injection. We find that in a fractured reservoir, CO{sub 2} breakthrough at production wells would occur rapidly, within a few weeks of starting CO{sub 2} injection. Subsequently a two-phase water-CO{sub 2} mixture would be produced for a few years,followed by production of a single phase of supercritical CO{sub 2}. Even after single-phase production conditions are reached,significant dissolved water concentrations will persist in the CO{sub 2} stream for many years. The presence of dissolved water in the production stream has negligible impact on mass flow and heat transfer rates.

Pruess, K.; Spycher, N.

2009-05-01T23:59:59.000Z

322

Unsteady MHD combined convection over a moving vertical sheet in a fluid saturated porous medium with uniform surface heat flux  

Science Journals Connector (OSTI)

The group transformation method is applied for solving the combined convection problem in an unsteady, two-dimensional, laminar, boundary-layer flow of a viscous, incompressible and electrically-conducting fluid along a vertical continuous moving plate ... Keywords: Flow, Group transformation method, MHD, Natural convection, Porous medium

S. M. M. El-Kabeir; A. M. Rashad; Rama Subba Reddy Gorla

2007-08-01T23:59:59.000Z

323

Qualified Software for Calculating Commercial Building Tax Deducations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualified Software for Calculating Commercial Building Tax Qualified Software for Calculating Commercial Building Tax Deducations Qualified Software for Calculating Commercial Building Tax Deducations On this page you'll find a list of qualified computer software for calculating commercial building energy and power cost savings that meet federal tax incentive requirements. To submit software for consideration to be added to this list, please read Requirements and Submission Process for Qualified Software. Qualified Software per IRS Notice 2006-52 as amplified by IRS Notice 2008-40, Section 4 The following software satisfies the requirements under Internal Revenue Service (IRS) Code §179D (c)(1) and (d) Regulations, Notice 2006-52 Section 6, dated June 2, 2006 as amplified by Notice 2008-40, Section 4. See the IRS requirements document for each version of software for details.

324

TQP Qualifying Official Training Approaches - Sandia Site Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandia Site Office TQP Qualifying Official Training Approaches - Sandia Site Office A QO is an individual who has the technical experience andor education in a particular...

325

48C Qualifying Advanced Energy Project Credit Questions | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Credit Questions More Documents & Publications 48C Qualifying Advanced Energy Project Credit Questions FACT SHEET: 48C MANUFACTURING TAX CREDITS Microsoft Word -...

326

ARM - Heat Index Calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that combines air temperature and relative...

327

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.  

SciTech Connect

Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

328

Inter?laboratory variation in sound power levels in qualified reverberant rooms.  

Science Journals Connector (OSTI)

Reverberant acoustic test facilities can be qualified to determine the sound power levels of broadband and tonal noise sources using the procedures defined in Air?Conditioning Heating and Refrigeration Institute (AHRI) Std. 220 Sound Power Testing Using Reverberant Rooms for HVAC Equipment. Member companies from AHRIs Technical Committee on Sound participated in a round robin test program in which tonal noise sources were shipped to and tested in a number of qualified reverberant rooms. This report summarizes the results of this effort. The mean and standard deviations of the sound power levels for multiple locations/orientations of the noise sources in each facility and for all facilities are presented. The standard deviations as a function of frequency for these sources were found to be generally less than the values established for broadband sources and therefore less than those allowed for tonal sources. Based on the comparisons of round robin test results accurate determinations of sound power levels can be made using the substitution method in rooms qualified in accordance with AHRI Std. 220 Technical Committee on Sound Air?Conditioning Heating and Refrigeration Institute

Robert Stabley

2009-01-01T23:59:59.000Z

329

Office of Science, SC-3, Qualifying Official Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science, SC-3 Science, SC-3 Qualifying Official (QO) Training Qualifying Official (QO) Training August 2009 August 2009 1 Updated 8/4/09, 1:20pm, CLS Purpose As an SC-3 Qualifying Official (QO) you are Q y g (Q ) y charged with assuring that the technical personnel whom you are evaluating have met and can apply their competencies of their assigned Technical their competencies of their assigned Technical Qualification Program (TQP) qualification standards. 2 Authorization As such each SC-3 Qualifying Official (QO) has As such, each SC-3 Qualifying Official (QO) has received authorization from SC-3 to sign TQP documents or qualification cards for designated i competencies or standards. Office/Facility Specific Standards OFSs y "Site-specific" Functional Area Qualification Standards FAQS "DOE-wide"

330

Building Technologies Office: Qualified Software for Calculating Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Qualified Software for Calculating Commercial Building Tax Deductions Qualified Software for Calculating Commercial Building Tax Deductions On this page you'll find a list of qualified computer software for calculating commercial building energy and power cost savings that meet federal tax incentive requirements. To submit software for consideration to be added to this list, please read Requirements and Submission Process for Qualified Software. Qualified Software per IRS Notice 2006-52 as amplified by IRS Notice 2008-40, Section 4 The following software satisfies the requirements under Internal Revenue Service (IRS) Code §179D (c)(1) and (d) Regulations, Notice 2006-52 Section 6, dated June 2, 2006 as amplified by Notice 2008-40, Section 4. See the IRS requirements document for each version of software for details.

331

Portland Community College Celebrates Commissioning of Combined...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel...

332

A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications  

SciTech Connect

A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

2014-06-23T23:59:59.000Z

333

Design of the ORC (organic Rankine cycle) condensation temperature with respect to the expander characteristics for domestic CHP (combined heat and power) applications  

Science Journals Connector (OSTI)

Abstract Domestic CHP (combined heat and power) generation is one new application of the ORC (organic Rankine cycle). An environment temperature fluctuation of 40C through the year is common in many areas, where the consumer's demand on heat follows a seasonal cycle. In no demand periods the ORC shall work under lower condensation temperature for more efficient power generation. Off-design operation will be executed, accompanied with a degraded performance of the ORC components especially the expander. The design of the condensation temperature herein becomes crucial. It influences the ORC efficiency in both the CHP and SPG (solo power generation) modes. If the condensation temperature is designed simply based on the CHP mode, the power conversion in the SPG mode will suffer from low expander efficiency. An optimum design of the condensation temperature involves a compromise between the power outputs in the two modes. This paper aims to determine the optimum design condensation temperature for the ORC-CHP system. A new concept, namely the threshold condensation temperature, is introduced and found to be important to the design and operation strategies of the system. The results indicate that via a careful design of the condensation temperature, the annual power output can be increased by 50%.

Jing Li; Gang Pei; Jie Ji; Xiaoman Bai; Pengcheng Li; Lijun Xia

2014-01-01T23:59:59.000Z

334

Nuclear qualified in-containment electrical connectors and method of connecting electrical conductors  

DOE Patents (OSTI)

A nuclear qualified in-containment electrical connection comprises an insulated, sheathed instrument lead having electrical conductors extending from one end thereof to provide two exposed lead wires, a watertight cable having electrical conducting wires therein and extending from one end of the cable to provide two lead wires therefrom, two butt splice connectors each connecting the ends of respective ones of the lead wires from the instrument lead and cable, a length of heat shrinkable plastic tubing positioned over each butt splice connector and an adjacent portion of a respective lead wire from the cable and heat shrunk into position, a length of heat shrinkable plastic tubing on the end portion of the instrument lead adjacent the lead wires therefrom and heat shrunk thereon and a length of outer heat shrinkable plastic tubing extending over the end portion of the instrument lead and the heat shrinkable tubing thereon and over the butt splice connectors and a portion of the cable adjacent the cable lead lines, the outer heat shrinkable tubing being heat shrunk into sealing position on the instrument lead and cable.

Powell, J. G. (Clifton Park, NY)

1991-01-01T23:59:59.000Z

335

Vermont Standard Offer for Qualifying SPEED Resources | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Standard Offer for Qualifying SPEED Resources Vermont Standard Offer for Qualifying SPEED Resources Vermont Standard Offer for Qualifying SPEED Resources < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Maximum Rebate Varies by technology Program Info Start Date 09/30/2009 State Vermont Program Type Performance-Based Incentive Rebate Amount Varies by technology Provider VEPP, Inc. '''''Note: The first RFP for the new competitive award process has passed; applications were accepted through May 1, 2013. See the program web site for information regarding future solicitations. ''''' In May 2009, Vermont enacted legislation requiring all Vermont retail electricity providers to purchase electricity generated by eligible

336

" "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 8.3;" 3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " " "," " ," " "NAICS Code(a)","Subsector and Industry","Establishments(b)","Establishments with Any Cogeneration Technology in Use(c)","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know"

337

Qualified Target Industry Tax Refund (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualified Target Industry Tax Refund (Florida) Qualified Target Industry Tax Refund (Florida) Qualified Target Industry Tax Refund (Florida) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Corporate Tax Incentive Sales Tax Incentive Provider Enterprise Florida The Qualified Target Industry Tax Refund incentive is available for companies that create high wage jobs in targeted high value-added industries. The incentive refunds up to $3,000 per new full-time employee, $6000 in an Enterprise Zone. More tax refunds are available if companies reach certain wage levels. This incentive also includes refunds on corporate income, sales, ad valorem, intangible personal property,

338

2013 FTCP FAQ Standards Qualifying Officials List - Idaho  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. IDAHO OPERATIONS OFFICE . IDAHO OPERATIONS OFFICE Qualifying Officials List Submi ed by: Pinup, DOE-ID TQP Manager and Safety Division Nuclear Energy Robert D. Boston, Deputy Manager Operations Support ames R. Cooper, Deputy Idaho Cleanup Project Revision 3, February 2013 Appr~ Mar~rown. FTCPAiefl Idaho Operations Office 1 of 5 Date Date Date Functional Area Qualifying Officials DOE-ID Qualifying Officials List Revision 3 February 2013 Note: DOE-ID Senior Technical Safety Managers (those in an STSM identified positions that have completed the STSM qualification) may sign for any competency in the DOE-ID Technical Qualification Program Qualification Standards. Other STSM qualified personnel not in identified STSM positions may sign for competencies completed as part of their TQP Qualifications.

339

Qualified Energy Conservation Bonds (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualified Energy Conservation Bonds (Ohio) Qualified Energy Conservation Bonds (Ohio) Qualified Energy Conservation Bonds (Ohio) < Back Eligibility Agricultural Institutional Local Government Municipal/Public Utility Rural Electric Cooperative Schools Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Ohio Program Type Bond Program Provider Ohio Air Quality Development Authority The Ohio Air Quality Development Authority (OAQDA) administers the Qualified Energy Conservation Bonds (QECB) program in Ohio. QECBs have been used by local governments and public universities to finance the installation of energy conserving equipment in publicly owned buildings. Under a QECB financing package, OAQDA authorizes Air Quality Development Bonds for issuance as a Series A federally tax-exempt bond and a Series B

340

Qualified Software for Calculating Commercial Building Tax Deductions  

Energy.gov (U.S. Department of Energy (DOE))

On this page you'll find a list of qualified computer software for calculating commercial building energy and power cost savings that meet federal tax incentive requirements. To submit software for...

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The combined cycle  

Science Journals Connector (OSTI)

Any combination of at least two cyclic processes converting thermal energy (heat) to work forms a combined cycle. In principle, the potential number of ... number of options reduces to a variety of cycles consi...

R. U. Pitt

1995-01-01T23:59:59.000Z

342

Combined Heat and Power Projects  

Energy.gov (U.S. Department of Energy (DOE))

DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles.

343

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

power generation with combined heat and power applications,of carbon tax on combined heat and power adoption by a131(1), 2-25. US Combined Heat and Power Association (

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

344

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

Energy; Grid systems; Optimization; Heat flow; Financialof grid power and by utilizing combined heat and power (CHP)

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

345

Waste Heat Management Options for Improving Industrial Process...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of waste heat streams, and options for recovery including Combined Heat and Power. Waste Heat Management Options for Improving Industrial Process Heating Systems...

346

Using Qualified Energy Conservation Bonds (QECBs) to Fund a Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Qualified Energy Conservation Bonds (QECBs) to Fund a Residential Using Qualified Energy Conservation Bonds (QECBs) to Fund a Residential Energy Efficiency Loan Program: Case Study on Saint Louis County, MO Title Using Qualified Energy Conservation Bonds (QECBs) to Fund a Residential Energy Efficiency Loan Program: Case Study on Saint Louis County, MO Publication Type Policy Brief Authors Zimring, Mark Secondary Title Clean Energy Program Policy Brief Publisher LBNL Place Published Berkeley Year of Publication 2011 Pagination 7 Date Published 06/2011 Abstract Qualified Energy Conservation Bonds (QECBs) are federally-subsidized debt instruments that enable state, tribal, and local government issuers to borrow money to fund a range of qualified energy conservation projects. QECBs offer issuers very attractive borrowing rates and long terms, and can fund low-interest energy efficiency loans for home and commercial property owners. Saint Louis County, MO recently issued over $10 million of QECBs to finance the Saint Louis County SAVES residential energy efficiency loan program. The county's experience negotiating QECB regulations and restrictions can inform future issuers.

347

January 10, 2012, Qualifying Official Training Slides - Sandia Site Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training Patty Wagner Manager Manager SSO TQP QO Training Revision 5, January 10, 2012 1 Overview Overview * Why are you here? Why are you here? * What are your duties? L L d * Lessons Learned * What are my expectations? * Summary SSO TQP QO Training Revision 5, January 10, 2012 2 Why are you here? Why are you here? * The Site Office Manager will assign qualifying g g q y g officials to sign TQP or site-specific qualification cards to verify that the TQP candidate possesses the required level of knowledge or skills (DOE O the required level of knowledge or skills. (DOE O 426.1, Sec 5.b.(5)) * SSO TQP Procedure, Section 5.6.1, Qualifying , , y g Officials complete training provided by SSO Manager The rigor of any qualification program relies on the * The rigor of any qualification program relies on the integrity, knowledge, and skills of the qualifying

348

Extending the erosion-corrosion service life of the tube system of heat-recovery boilers used as part of combined-cycle plants  

Science Journals Connector (OSTI)

We present the results from an analysis of damageability and determination of dominating mechanisms through which thinning occurs to the metal of elements used in the tube system of heat recovery boilers used as ...

G. V. Tomarov; A. V. Mikhailov; E. V. Velichko; V. A. Budanov

2010-01-01T23:59:59.000Z

349

Design and modeling of 110MWe liquefied natural gas-fueled combined cooling, heating and power plants for building applications  

Science Journals Connector (OSTI)

Abstract Decentralized, liquefied natural gas-fueled, trigeneration plants are considered as alternatives to centralized, electricity-only generating power plants to improve efficiency and minimize running costs. The proposed system is analyzed in terms of efficiency and cost. Electrical power is generated with a gas turbine, while waste heat is recovered and utilized effectively to cover heating and cooling needs for buildings located in the vicinity of the plant. The high quality of cooling energy carried in the LNG fluid is used to cool the air supply to the air compressor. Waste heat is recovered with heat exchangers to generate useful heating in the winter period, while in the summer period an integrated double-effect absorption chiller converts waste heat to useful cooling. For the base system (10MWe), net electrical efficiency is up to 36.5%, while the primary energy ratio reaches 90%. The payback period for the base system is 4 years, for a lifecycle cost of 221.6 million euros and an investment cost of 13 million euros. The base system can satisfy the needs of more than 21,000 average households, while an equivalent conventional system can only satisfy the needs of 12,000 average households.

Alexandros Arsalis; Andreas Alexandrou

2015-01-01T23:59:59.000Z

350

Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Qualified Plug-In Qualified Plug-In Electric Drive Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on AddThis.com... More in this section...

351

Tax Deduction Qualified Software DesignBuilder version 4.2.0.054  

Energy.gov (U.S. Department of Energy (DOE))

Information about the DesignBuilder version 4.2.0.054 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

352

Request for Proposals for Final Energy Service Company Selection from Pre-Qualified Pool Documents  

Energy.gov (U.S. Department of Energy (DOE))

Information and documents about the Request for Proposals to select an Energy Service Company from a pre-qualified pool.

353

Covered Product Category: Residential Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance across a variety of product categories, including geothermal heat pumps, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

354

FirstEnergy (West Penn Power)- Residential Solar Water Heating Program (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

West Penn Power, a First Energy utility, provides rebates to residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a rebate of up...

355

FTCP FAQ Standards Qualifying Officials List - Savannah River Operations Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SR TQP Functional Area Qualifying Officials SR TQP Functional Area Qualifying Officials Functional Area Name Phone Organization Chemical Processing Pat Suggs 803-208-2908 AMWDP I Ci vi] Structural Engineering Mike Dholakia 803-208-1228 AMWDP Brent Gutierrez 803-208-2969 AMWDP I Construction Management Robert Baker 803-644-3711 AMWDP William Huxford 803-952-4281 NNSA Criticality Safety Glenn Christenbury 803-208-3737 NNSA Norm Shepard 803-208-3618 AMNMSP Deactivation and Decommissioning Angelia Adams 803-952-8593 AMCP Helen Belencan 803-952-8696 AMCP Electrical Systems Fred Brown 803-208-2529 AMWDP Michael Mikolanis 803-208-1223 AMWDP Marc Woodworth 803-208-3966 AMNMSP Emergency Management Cindy Brizes 803-952-4290 NNSA Howard Burgess 803-952-5538 OS SES Environmental Compliance ·A very Hammett 803-952-7805 AMCP

356

Department of Energy's Qualified List of Energy Service Companies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEPARTMENT OF ENERGY'S QUALIFIED LIST OF ENERGY SERVICE COMPANIES DEPARTMENT OF ENERGY'S QUALIFIED LIST OF ENERGY SERVICE COMPANIES November 2013 1 Abengoa Solar Inc. Mr E. Kenneth May Chief Technology Officer 11500 West 13 th Ave Lakewood, CO 80215 P: 303-928-8500 F: 303-928-8510 E-mail: ken.may@solar.abengoa.com Web site: www.abengoasolar.com ABM Industries Michael W. Bartlett Director, Federal Energy Suite 650 1725 Duke Street Alexandria, VA 22314 P: 612-581-8230 F: 703-739-1150 E-mail: Michael.bartlett@abm.com Web site: www.abm.com ADI Energy Mr John Rizzo President 2348 Post Road Warwick, RI 02886 P: 401-524-5334 F: 206-666-2163 E-mail: jrizzo@adienergy.com Web site: www.ADIEnergy.com Advanced Energy Systems, Inc. Mr Jim Quan President / CEO 1416 Broadway St Ste C Fresno, CA 93721 P: 559-237-1044

357

The thermodynamic efficiency of the condensing process circuits of binary combined-cycle plants with gas-assisted heating of cycle air  

Science Journals Connector (OSTI)

The thermal efficiencies of condensing-type circuits of binary combined-cycle plants containing one, two, and three ... gas turbine unit, and with preheating of cycle air are analyzed by way of comparison ... ini...

V. P. Kovalevskii

2011-09-01T23:59:59.000Z

358

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

Modeling with Combined Heat and Power Applications,End-Use Survey combined heat and power Consolidated Edisonengine genset with combined heat and power (CHP) and power

Stadler, Michael

2009-01-01T23:59:59.000Z

359

Duquesne Light Company - Residential Solar Water Heating Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date 11/30/2009 Expiration Date 03/31/2013 State Pennsylvania Program Type Utility Rebate Program Rebate Amount $286/system Provider Duquesne Light Company Duquesne Light provides rebates to its residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a flat rebate of $286 per qualifying system. Various equipment, installation, contractor, and warranty requirements apply, as summarized above and described in more detail in program documents. Customers must

360

Identifying and Indoctrinating Qualifying Officials - Nevada Site Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IDENTIFYING AND INDOCTRINATING QUALIFYING OFFICIALS (QO) QOs verify and certify Technical Qualification Program (TQP) participant qualifications. QOs are identified and indoctrinated as follows: QO IDENTIFICATION AND INDOCTRINATION PROCESS STEPS Process Steps/Work Instructions Step Who Does It What Happens 1 Designating Supervisor/Federal Technical Capability (FTC) Agent/TQP Manager NOMINATE an individual to serve as a QO. CONSIDER the nominee's technical and personal skills, knowledge, experience, and past performance, and ability to evaluate a TQP participant's attainment or equivalency of assigned competencies. 2 QO Nominee COMPLETE assigned QO orientation training and the expectations briefing with the FTC Agent. NOTE: The QO orientation training is provided by the

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Qualifying RPS Market States (Newfoundland and Labrador, Canada) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Newfoundland and Labrador, Canada) Newfoundland and Labrador, Canada) Qualifying RPS Market States (Newfoundland and Labrador, Canada) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Newfoundland and Labrador Program Type Renewables Portfolio Standards and Goals This entry lists the states with RPS policies that accept generation located in Newfoundland and Labrador, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be

362

Qualifying RPS State Export Markets (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida) Florida) Qualifying RPS State Export Markets (Florida) < Back Eligibility Commercial Developer Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Florida as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the

363

Qualifying RPS Market States (Saskatchewan, Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saskatchewan, Canada) Saskatchewan, Canada) Qualifying RPS Market States (Saskatchewan, Canada) < Back Eligibility Developer Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Saskatchewan Program Type Renewables Portfolio Standards and Goals This entry lists the states with RPS policies that accept generation located in Saskatchewan, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

364

HEAT RECOVERY FROM WASTE WATER BY MEANS OF A RECUPERATIVE HEAT EXCHANGER AND A HEAT PUMP  

Science Journals Connector (OSTI)

ABSTRACT The useful heat of warm waste water is generally transferred to cold water using a recuperative heat exchanger. Depending on its design, the heat exchanger is able to utilise up to 90% of the waste heat potential available. The electric energy needed to operate such a system is more than compensated for by an approximately 50-fold gain of useful heat. To increase substantially the waste heat potential available and the amount of heat recovered, the system for recuperative heat exchange can be complemented by a heat pump. Such a heat recovery system on the basis of waste water is being operated in a public indoor swimming pool. Here the recuperative heat exchanger accounts for about 60%, the heat pump for about 40% of the toal heat reclaimed. The system consumes only 1 kWh of electric energy to supply 8 kWh of useful heat. In this way the useful heat of 8 kWh is compensated for by the low consumption of primary energy of 2.8 kWh. Due to the installation of an automatic cleaning device, the heat transfer surfaces on the waste water side avoid deposits so that the troublesome maintenance work required in other cases on the heat exchangers is not required. KEYWORDS Shower drain water, recuperative heat recovery, heat recovery by means of a heat pump, combination of both types of heat recovery, automatic cleaning device for the heat exchangers, ratio of useful heat supply vs. electric energy consumption, economic consideration.

K. Biasin; F.D. Heidt

1988-01-01T23:59:59.000Z

365

Coal-Fuelled Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Combined cycle power plant, when used as a generic ... which converts heat into mechanical energy in a combined gas and steam turbine process. Combined cycle processes with coal gasification or coal combustion .....

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

366

Making it Easier to Complete Clean Energy Projects with Qualified Energy Conservation Bonds (QECBs)  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on How to to Complete Clean Energy Projects with Qualified Energy Conservation Bonds (QECBs)

367

How to Qualify for NIH Small Business Innovation and Technology Transfer Grants  

E-Print Network (OSTI)

How to Qualify for NIH Small Business Innovation and Technology Transfer Grants Professional) and Small Business Technology Transfer (STTR) proposal development services to technology based

Berdichevsky, Victor

368

Tax Deduction Qualified Software Tas version 9.2.1.4  

Energy.gov (U.S. Department of Energy (DOE))

information about the Tas version 9.2.1.4 qualified computer software and federal tax incentive requirements for commercial buildings

369

Tax Deduction Qualified Software Tas version 9.2.1.7  

Energy.gov (U.S. Department of Energy (DOE))

Information about the Tas version 9.2.1.7 qualified computer software and federal tax incentive requirements for commercial buildings.

370

Tax Deduction Qualified Software Tas version 9.2.1.5  

Energy.gov (U.S. Department of Energy (DOE))

information about the Tas version 9.2.1.5 qualified computer software and federal tax incentive requirements for commercial buildings

371

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Water Heater: up to $275 Heat Pump Replacement: $400 Provider Rock Hill Utilities Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed above. If both the water heater and heat pump are purchased then the customer may qualify for the Great Rate program. The Great Rate program will add a 25% discount to a

372

HEAT AND MOISTURE TRANSFER THROUGH CLOTHING  

E-Print Network (OSTI)

J. & Cheng, X. -Y. 2005. Heat and moisture transfer withof the combined diffusion of heat and water vapor throughMathematical simulation of heat and moisture transfer in a

Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

2009-01-01T23:59:59.000Z

373

Qualifying RPS Market States (Manitoba, Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manitoba, Canada) Manitoba, Canada) Qualifying RPS Market States (Manitoba, Canada) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Manitoba Program Type Renewables Portfolio Standards and Goals This entry lists the states with RPS policies that accept generation located in Manitoba, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

374

Qualifying Officials Designation Letter - Savannah River Operations Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOEP IUUI DOEP IUUI United States Government Department of Energy (DOE) memorandum Savannah River Operations Office (SR) DATE: REPLY TO ATTN OF: SUBJECT: NOV 3 o 2010 MGR (Moody, 2-9468) Technical Qualification Program (TQP) Qualifying Officials (QO) ro: DISTRIBUTION Each employee whose name appears on the attached listings is designated as a TQP QO. You were chosen by your supervisor because you have demonstrated an in-depth level of knowledge and abilities in the functional area or functional competency for which you are designated. As a designated TQP QO, you play a significant role in the qualification process of TQP participants and have a grave responsibility for maintaining the intent and integrity of the program. Your signature on the qualification record validates the

375

Qualifying RPS State Export Markets (District of Columbia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

District of Columbia) District of Columbia) Qualifying RPS State Export Markets (District of Columbia) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State District of Columbia Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in District of Columbia as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state

376

Qualifying RPS State Export Markets (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island) Rhode Island) Qualifying RPS State Export Markets (Rhode Island) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Rhode Island as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

377

Qualifying RPS State Export Markets (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware) Delaware) Qualifying RPS State Export Markets (Delaware) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Delaware as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

378

ENERGY STAR Qualified Commercial Clothes Washers | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Clothes Washers Commercial Clothes Washers Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer » Data ENERGY STAR Qualified Commercial Clothes Washers Dataset Summary Description Tags Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness 0 No votes yet Ease of Access 0 No votes yet Dataset Additional Information Resource Type Metadata Date Responsible Party Contact Email State Access Constraints Bbox East Long Bbox North Lat Bbox South Lat Bbox West Long Coupled Resource Reference Date(s) Frequency Of Update Guid Licence Metadata Language Provider Spatial Spatial Data Service Type Spatial Reference System Temporal Coverage From Temporal Coverage To Download Information XML Used by automated programs capable of handling raw XML files.

379

Qualifying RPS State Export Markets (New Hampshire) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Hampshire) New Hampshire) Qualifying RPS State Export Markets (New Hampshire) < Back Eligibility Developer Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Hampshire Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in New Hampshire as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state

380

Qualifying RPS State Export Markets (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut) Connecticut) Qualifying RPS State Export Markets (Connecticut) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Connecticut as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Qualifying RPS State Export Markets (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama) Alabama) Qualifying RPS State Export Markets (Alabama) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Alabama as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

382

Qualifying RPS State Export Markets (Massachusetts) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts) Massachusetts) Qualifying RPS State Export Markets (Massachusetts) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Massachusetts Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Massachusetts as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

383

Qualifying RPS State Export Markets (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky) Kentucky) Qualifying RPS State Export Markets (Kentucky) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Kentucky as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

384

Qualifying RPS State Export Markets (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia) Virginia) Qualifying RPS State Export Markets (Virginia) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Virginia as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

385

Qualifying RPS State Export Markets (North Carolina) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carolina) Carolina) Qualifying RPS State Export Markets (North Carolina) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in North Carolina as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

386

Qualifying RPS State Export Markets (New Jersey) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jersey) Jersey) Qualifying RPS State Export Markets (New Jersey) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Jersey Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in New Jersey as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

387

Qualifying RPS Market States (Ontario, Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ontario, Canada) Ontario, Canada) Qualifying RPS Market States (Ontario, Canada) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Ontario Program Type Renewables Portfolio Standards and Goals This entry lists the states with RPS policies that accept generation located in Ontario, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

388

Qualifying RPS State Export Markets (New Mexico) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Mexico) New Mexico) Qualifying RPS State Export Markets (New Mexico) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Mexico Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in New Mexico as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

389

ENERGY STAR Qualified Gas Furnaces | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Furnaces Gas Furnaces Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer » Data ENERGY STAR Qualified Gas Furnaces Dataset Summary Description Gas Furnaces that have earned the ENERGY STAR are more efficient than standard models. ENERGY STAR is the trusted symbol for energy efficiency helping consumers save money and protect the environment through energy-efficient products and practices. More information on ENERGY STAR is available at www.energystar.gov. Tags {Furnaces,"Energy Star",products,"energy efficiency",efficient,"greenhouse gas emissions",climate,utility,utilities,household,savings,labels,partners,certification} Dataset Ratings Overall 0 No votes yet Data Utility

390

Qualifying RPS State Export Markets (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia) Georgia) Qualifying RPS State Export Markets (Georgia) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Georgia as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

391

Qualifying Officials Designation Form - Savannah River Operations Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SR 359 (Rev 1.0-2011) SR 359 (Rev 1.0-2011) SRM 300.1-1 C11ap1er 6. Sectiai 6.1 Request to Add/Remove TQP Qualifying Official (QO) Designation QO or Candidate (Print Name) Requesting Supervisor (Print Name) Supervisor (Signature) !control Number OHCM- I Date 0 Add the following QO designation(s) 0 Remove the following QO designation(s) Functional Area Print "ALL" or List Applicable Competencies 1 2 3 4 - I 5 --~-+ 6 7 8 9 10 Addition or Removal of the QO Designation is based on the following event, qualification, training or expertise: (Attach additional sheets if required) Comments r" 11..1"\ '-'-··--· '"''·-- \t ""' "alllt:/ r" lvl"\ l"11\jll01UIC/ ua1e AM/OD Approval (Print Name) AM/OD (Signature) Date

392

Qualifying RPS State Export Markets (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kansas) Kansas) Qualifying RPS State Export Markets (Kansas) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Kansas as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

393

Qualifying RPS State Export Markets (New York) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New York) New York) Qualifying RPS State Export Markets (New York) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in New York as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

394

Qualifying RPS Market States (Nova Scotia, Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nova Scotia, Canada) Nova Scotia, Canada) Qualifying RPS Market States (Nova Scotia, Canada) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nova Scotia Program Type Renewables Portfolio Standards and Goals This entry lists the states with RPS policies that accept generation located in Nova Scotia, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

395

Qualifying RPS State Export Markets (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois) Illinois) Qualifying RPS State Export Markets (Illinois) < Back Eligibility Developer Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Illinois Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Illinois as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance targets may be met by out-of-state generation. In addition to geographic

396

Qualifying RPS State Export Markets (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine) Maine) Qualifying RPS State Export Markets (Maine) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Maine as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

397

Qualifying RPS State Export Markets (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana) Indiana) Qualifying RPS State Export Markets (Indiana) < Back Eligibility Developer Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Indiana as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance targets may be met by out-of-state generation. In addition to geographic

398

Qualifying RPS Market States (Prince Edward Island, Canada) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prince Edward Island, Canada) Prince Edward Island, Canada) Qualifying RPS Market States (Prince Edward Island, Canada) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Prince Edward Island Program Type Renewables Portfolio Standards and Goals This entry lists the states with RPS policies that accept generation located in Prince Edward Island, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an

399

Qualifying RPS State Export Markets (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma) Oklahoma) Qualifying RPS State Export Markets (Oklahoma) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Oklahoma Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Oklahoma as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

400

ENERGY STAR Qualified Room Air Conditioners | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Room Air Conditioners Room Air Conditioners Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer » Data ENERGY STAR Qualified Room Air Conditioners Dataset Summary Description Room Air Conditioners that have earned the ENERGY STAR are more efficient than standard models. ENERGY STAR is the trusted symbol for energy efficiency helping consumers save money and protect the environment through energy-efficient products and practices. More information on ENERGY STAR is available at www.energystar.gov. Tags {"Room Air Conditioners","Energy Star",products,"energy efficiency",efficient,"greenhouse gas emissions",climate,utility,utilities,household,savings,labels,partners,certification}

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Qualifying RPS Market States (Quebec, Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quebec, Canada) Quebec, Canada) Qualifying RPS Market States (Quebec, Canada) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Quebec Program Type Renewables Portfolio Standards and Goals This entry lists the states with RPS policies that accept generation located in Quebec, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

402

Qualifying RPS State Export Markets (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Dakota) North Dakota) Qualifying RPS State Export Markets (North Dakota) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in North Dakota as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

403

Qualifying RPS Market States (New Brunswick, Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Brunswick, Canada) New Brunswick, Canada) Qualifying RPS Market States (New Brunswick, Canada) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Jersey Program Type Renewables Portfolio Standards and Goals This entry lists the states with RPS policies that accept generation located in New Brunswick, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of

404

Qualifying RPS State Export Markets (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont) Vermont) Qualifying RPS State Export Markets (Vermont) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Vermont as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

405

Qualifying RPS State Export Markets (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa) Iowa) Qualifying RPS State Export Markets (Iowa) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Iowa as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

406

Value of electrical heat boilers and heat pumps for wind power integration  

E-Print Network (OSTI)

Value of electrical heat boilers and heat pumps for wind power integration Peter Meibom Juha of using electrical heat boilers and heat pumps as wind power integration measures relieving the link between the heat and power production in combined heat and power plants. Each of these measures has

407

Tax Deduction Qualified Software DesignBuilder version 3.0.0.105  

Energy.gov (U.S. Department of Energy (DOE))

On this page you'll find information about the DesignBuilder version 3.0.0.105 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

408

Tax Deduction Qualified Software- EnerSim version 9.02  

Energy.gov (U.S. Department of Energy (DOE))

On this page you'll find information about the EnerSim version 9.02 qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

409

Covered Product Category: Residential Heat Pump Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including residential heat pump water heaters, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

410

Efficiency combined cycle power plant  

SciTech Connect

This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

Pavel, J.; Meyers, G.A.; Baldwin, T.S.

1990-06-12T23:59:59.000Z

411

Marshfield Utilities - Heat Pump Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marshfield Utilities - Heat Pump Rebate Program Marshfield Utilities - Heat Pump Rebate Program Marshfield Utilities - Heat Pump Rebate Program < Back Eligibility Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Ground Source Heat Pump: $550 Provider Marshfield Utilities Marshfield Utilities offers cash-back rewards for Ground Source Heat Pumps, as well as Focus on Energy program incentives. A rebate of $550 will be given to customers who purchase and install qualifying Ground Source Heat Pumps. Systems must meet the equipment standards of the program in order to receive a rebate. Contact Marshfield Utilities for more information and program requirements. Customers should view the Focus on Energy program web

412

EnergyUnited - Residential Energy Efficient Heat Pump Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergyUnited - Residential Energy Efficient Heat Pump Rebate EnergyUnited - Residential Energy Efficient Heat Pump Rebate Program EnergyUnited - Residential Energy Efficient Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate 2 per dwelling Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Heat Pumps (14 SEER): $150 Heat Pumps (15 SEER +): $300 Provider EnergyUnited EnergyUnited offers rebates to residential customers who upgrade to high efficiency heat pumps. Rebates range from $150 - $300, varying by efficiency. The rebate form can be found on the program website and must be completed by the installing HVAC contractor. Each unit will require a separate form in order to qualify for rebates. Systems must be

413

Covered Product Category: Light Commercial Heating and Cooling  

Energy.gov (U.S. Department of Energy (DOE))

Federal purchases of light commercial heating and cooling equipment must be ENERGY STARqualified. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. This product overview explains how to meet energy-efficiency requirements for Federal purchases of light commercial heating and cooling equipment and how to maximize energy savings throughout products' useful lives.

414

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

美国能源部(DOE) 美国能源部(DOE) 工业技术项目(ITP) 工业分布式能源: 热电联产 (CHP) Richard Sweetser 高级顾问 美国能源部大西洋中西部清洁能源应用中心 2011年5月5-6日|劳伦斯伯克利国家实验室,伯克利市,加州 32% 利用高效的能源管理措施和新兴节 能技术帮助工厂节能 促进热电联产和其他分布式能源 解决方案的广泛商用 10% 制造业 能源系统 33% 未来新兴产业 研发工作,主要针对美国高能耗产 业中最重要的领域以及跨行业中可 应用到多个工业领域的生产活动 25% 工业分布式能源 工业技术

415

Combined Heat and Power (CHP) Technology Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for June 30 Results: High Efficiency through Advanced Thermodynamics High-performance computing model operational for advanced combustion reciprocating engine ...

416

Combined Heat and Power (CHP) Systems  

Energy.gov (U.S. Department of Energy (DOE))

The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light...

417

Combined Heat and Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

nitrogen oxide (NOx) gas-fired burner for the U.S. small industrial plant, school, and health care facility boiler market. Partners: CMCE, Inc., Santa Clara, CA, and Altex...

418

Demonstration of Combined Zero-Valent Iron and Electrical Resistance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Combined Zero-Valent Iron and Electrical Resistance Heating for In Situ Trichloroethene Remediation. Demonstration of Combined Zero-Valent Iron and Electrical...

419

Optimization of Performance Qualifiers during Oil Well Drilling  

Science Journals Connector (OSTI)

Abstract An optimization analysis of the drilling process constitutes a powerful tool for operating under desired pressure levels (inside operational window) and, simultaneously, maximizing the rate of penetration, which must be harmonized with the conflicting objective of minimizing the specific energy. The drilling efficiency is improved as the rate of penetration is increased, however, there are conflicts with performance qualifiers, such as down hole tool life, footage, vibrations control, directional effectiveness and hydraulic scenarios. Concerning hydraulic effects, the minimization of the specific energy must be constrained by annulus bottom hole pressure safe region, using the operational window, placed above porous pressure and below fracture pressure. Under a conventional oil well drilling task, the pore pressure (minimum limit) and the fracture pressure (maximum limit) define mud density range and pressure operational window. During oil well drilling, several disturbances affect bottom hole pressure; for example, as the length of the well increases, the bottom hole pressure varies for growing hydrostatic pressure levels. In addition, the pipe connection procedure, performed at equal time intervals, stopping the drill rotation and mud injection, mounting a new pipe segment, restarting the drill fluid pump and rotation, causes severe fluctuations in well fluids flow, changing well pressure. Permeability and porous reservoir pressure governs native reservoir fluid well influx, affecting flow patterns inside the well and well pressure. The objective being tracked is operating under desired pressure levels, which assures process safety, also reducing costs. In this scenario, optimization techniques are important tools for narrow operational windows, commonly observed at deepwater and pre-salt layer environments. The major objective of this paper is developing an optimization methodology for minimizing the specific energy, also assuring safe operation (inside operational window), despite the inherent process disturbances, under a scenario that maximization of ROP (rate of penetration) is a target.

Mrcia Peixoto Vega; Marcela Galdino de Freitas; Andr Leibsohn Martins

2014-01-01T23:59:59.000Z

420

Tax Deduction Qualified Software: EnergyPlus version 4.0.0.024  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Deduction Qualified Software Tax Deduction Qualified Software EnergyPlus version 4.0.0.024 On this page you'll find information about the EnergyPlus version 4.0.0.024 qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 22 October 2009 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; U. S. Department of Energy EE-2J, Building Technologies Program 1000 Independence Avenue, SW

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Qualified Energy Property Tax Exemption for Projects 250 kW or Less |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualified Energy Property Tax Exemption for Projects 250 kW or Less Qualified Energy Property Tax Exemption for Projects 250 kW or Less Qualified Energy Property Tax Exemption for Projects 250 kW or Less < Back Eligibility Commercial Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Home Weatherization Water Wind Program Info Start Date 01/01/2010 State Ohio Program Type Property Tax Incentive Rebate Amount 100% exemption Provider Ohio Development Services Agency Ohio's Renewable and Advanced Energy Project Property Tax Exemption, enacted with the passage of Ohio S.B. 232 in the summer of 2010, exempts qualified energy projects in Ohio from public utility tangible personal property taxes and real property taxes*. Before passage of S.B. 232, a renewable energy facility in Ohio that sold electricity to a third-party

422

Tax Deduction Qualified Software - EnerSim version 9.02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Deduction Qualified Software Tax Deduction Qualified Software EnerSim version 9.02 On this page you'll find information about the EnerSim version 9.02 qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 16 December 2009 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; Southern Company Services 241 Ralph McGill Boulevard Atlanta, Georgia 30308 (2) The name, email address, and telephone number of the person to

423

Tax Deduction Qualified Software - EnergyPlus version 3.1.0.027...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On this page you'll find information about the EnergyPlus version 3.1.0.027 qualified computer software which calculates energy and power cost savings that meet federal tax...

424

Tax Deduction Qualified Software - EnergyPlus version 3.0.0.028...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On this page you'll find information about the EnergyPlus version 3.0.0.028 qualified computer software which calculates energy and power cost savings that meet federal tax...

425

Tax Deduction Qualified Software DesignBuilder version 3.0.0...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

this page you'll find information about the DesignBuilder version 3.0.0.105 qualified computer software (www.buildings.energy.govqualifiedsoftware.html), which calculates energy...

426

Tax Deduction Qualified Software- Green Building Studio Web Service version 3.4  

Energy.gov (U.S. Department of Energy (DOE))

Information about the Green Building Studio Web Service version 3.4 qualified computer software, which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

427

Tax Deduction Qualified Software DesignBuilder version 3.0.0.097  

Energy.gov (U.S. Department of Energy (DOE))

On this page you'll find information about the DesignBuilder version 3.0.0.097 qualified computer software, which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

428

Building Technologies Program: Tax Deduction Qualified Software- DOE-2.2 version 47d  

Energy.gov (U.S. Department of Energy (DOE))

On this page you'll find information about the DOE-2.2 version 47d qualified computer software, which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

429

Improvements to the Cooling Power of a Space Qualified Two-Stage Stirling Cycle Cooler  

Science Journals Connector (OSTI)

A long life two stage cooler has been developed at the Rutherford Appleton Laboratory (RAL) for space purposes. This cooler has been qualified for space use by Matra Marconi Space Systems (MMS). This cooler is us...

T. W. Bradshaw; A. H. Orlowska; C. Jewell; B. G. Jones; S. Scull

1997-01-01T23:59:59.000Z

430

Gulf Power - Solar Thermal Water Heating Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Florida Program Type Utility Rebate Program Provider Energy Efficiency '''''This program reopened on October 3, 2011 for 2012 applications. Funding is limited and must be reserved through online application before the installation of qualifying solar water heating systems. See Gulf Power's [http://www.gulfpower.com/renewable/solarThermal.asp Solar Water Heating] web site for more information.''''' Gulf Power offers a Solar Thermal Water Heating rebate to customers who install water heaters. This program started after the original pilot

431

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Alabama Program Type Utility Loan Program Rebate Amount 7% interest rate 5 or 10 year pay schedule maximum of $12,000 Provider Sand Mountain Electric Cooperative The Sand Mountain Electric Cooperative offers a heat pump loan program to eligible residential members. To qualify, members must have had power with Sand Mountain Electric Cooperative for at least one year, have the home electric bill and deeds in the same name, and pass a credit check. Heat pumps must be installed by a [http://www.smec.coop/heatpumpcontractors.htm

432

Intermountain Gas Company (IGC) - Gas Heating Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Intermountain Gas Company (IGC) - Gas Heating Rebate Program Intermountain Gas Company (IGC) - Gas Heating Rebate Program Intermountain Gas Company (IGC) - Gas Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Furnace: $200/unit Provider Customer Service The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system using another energy source. New furnaces must meet a minimum AFUE efficiency rating of 90%, and the home must have been built at least three years prior to the furnace conversion to qualify for the rebate. Visit IGC's program web site for more

433

Methods for providing heat to electric operated LNG plant.  

E-Print Network (OSTI)

??Hammerfest LNG plant, located at Melkya outside Hammerfest, is supplied with heat and power from an on-site combined heat and power (CHP-) plant. This natural (more)

Tangs, Cecilie Magrethe

2010-01-01T23:59:59.000Z

434

Heat Pump Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heaters Water Heaters Heat Pump Water Heaters May 4, 2012 - 5:21pm Addthis A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for me? Heat pump water heaters can be two to three times more energy efficient than conventional electric storage water heaters. Heat pump water heaters work in locations that remain in the 40º-90ºF range year-round. Most homeowners who have heat pumps use them to heat and cool their homes. But a heat pump also can be used to heat water -- either as stand-alone water heating system, or as combination water heating and space conditioning system. How They Work Heat pump water heaters use electricity to move heat from one place to another instead of generating heat directly. Therefore, they can be two to

435

Geothermal Heat Pumps- Heating Mode  

Energy.gov (U.S. Department of Energy (DOE))

In winter, fluid passing through this vertical, closed loop system is warmed by the heat of the earth; this heat is then transferred to the building.

436

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Washington) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Washington) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 05/01/2012 State District of Columbia Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is

437

Beaches Energy Services - Solar Water Heating Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Beaches Energy Services - Solar Water Heating Rebate Program Beaches Energy Services - Solar Water Heating Rebate Program Beaches Energy Services - Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate One rebate per customer Rebates will not exceed purchase price Program Info State Florida Program Type Utility Rebate Program Rebate Amount Solar Water Heater: $500 Provider Beaches Energy Services Beaches Energy Services offers a solar water heating rebate to their residential customers. This $500 rebate applies to new systems which are properly installed and certified. New construction and solar pool heating systems do not qualify for the rebate payment. Systems must be installed by a licensed Florida contractor and must be FSEC certified. Rebates will not

438

Characterization of industrial process waste heat and input heat streams  

SciTech Connect

The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

1984-05-01T23:59:59.000Z

439

Cowlitz County PUD - H2 AdvantagePlus Residential Heat Pump Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cowlitz County PUD - H2 AdvantagePlus Residential Heat Pump Program Cowlitz County PUD - H2 AdvantagePlus Residential Heat Pump Program Cowlitz County PUD - H2 AdvantagePlus Residential Heat Pump Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Heat Pumps: $450 - $1,800 Conversion from Electric Forced Air Furnace: $1,400 - $1,900 Duct Sealing: $50 - $350 Heat Pump Controls: $300 Provider Cowlitz County Public Utility District Cowlitz County PUD will provide rebates to customer homeowners who have a PUD-qualified heat pump dealer upgrade their heating system with the installation of a premium efficiency heat pump system, in accordance with the PUD's rigid set of installation standards, and who upgrade their

440

Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach...  

Energy Savers (EERE)

source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit, but supplemental heat is provided by a combined DHW and...

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Design of Heat Exchanger for Heat Recovery in CHP Systems  

E-Print Network (OSTI)

The objective of this research is to review issues related to the design of heat recovery unit in Combined Heat and Power (CHP) systems. To meet specific needs of CHP systems, configurations can be altered to affect different factors of the design...

Kozman, T. A.; Kaur, B.; Lee, J.

442

GRR/Section 7-FD-c - PURPA Qualifying Facility Certification Process | Open  

Open Energy Info (EERE)

7-FD-c - PURPA Qualifying Facility Certification Process 7-FD-c - PURPA Qualifying Facility Certification Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-FD-c - PURPA Qualifying Facility Certification Process 07FDCPURPAQualifyingFacilityCertificationProcess.pdf Click to View Fullscreen Contact Agencies Federal Energy Regulatory Commission Regulations & Policies Public Utilities Regulatory Policy Act 18 CFR 292 18 CFR 131.80 18 CFR 381 Triggers None specified Click "Edit With Form" above to add content 07FDCPURPAQualifyingFacilityCertificationProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

443

Energy Department Sets Tougher Standards for Clothes Washers to Qualify for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sets Tougher Standards for Clothes Washers to Sets Tougher Standards for Clothes Washers to Qualify for the ENERGY STAR® Label Energy Department Sets Tougher Standards for Clothes Washers to Qualify for the ENERGY STAR® Label December 19, 2005 - 4:49pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced tougher standards for clothes washers to qualify for the ENERGY STAR® label, which lets American families identify which clothes washers save the most energy and use the least water. The new standards take effect January 1, 2007, and will increase the efficiency of new clothes washers up to 37 percent. The more energy-efficient clothes washers will have the potential to save up to $70 million in energy bills and 8.9 billion gallons of water each year. "With these tougher ENERGY STAR® standards, families will be able to

444

Heating Oil Reserve | Department of Energy  

Energy Savers (EERE)

Energy Support Center issued a solicitation to companies willing to provide the storage tanks, heating stocks, or a combination. Contracts were awarded and, by October 13, 2000,...

445

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

446

Minnesota Power - Solar-Thermal Water Heating Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program < Back Eligibility Commercial Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-family unit: $2,000 Two- to three-family units: $4,000 Multi-family units (four or more): $10,000 Businesses: $25,000 Program Info Start Date 03/2010 Expiration Date 12/31/2013 State Minnesota Program Type Utility Rebate Program Rebate Amount 25% of costs Provider Minnesota Power Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings; $10,000 for buildings

447

Bio-Heating Oil Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bio-Heating Oil Tax Credit (Personal) Bio-Heating Oil Tax Credit (Personal) Bio-Heating Oil Tax Credit (Personal) < Back Eligibility Commercial Residential Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Maximum Rebate $500 per year Program Info Start Date 01/01/2008 State Maryland Program Type Personal Tax Credit Rebate Amount $0.03/gallon of biodiesel Provider Revenue Administration Division Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It may not be refunded or carried over to subsequent years. In order to qualify for the tax credit, the heating oil must be at least 5% biodiesel sourced from U.S. Environmental Protection Agency (EPA) approved feedstocks or be accepted

448

Bio-Heating Oil Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bio-Heating Oil Tax Credit (Corporate) Bio-Heating Oil Tax Credit (Corporate) Bio-Heating Oil Tax Credit (Corporate) < Back Eligibility Commercial Industrial Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Maximum Rebate $500 per year Program Info Start Date 01/01/2008 State Maryland Program Type Corporate Tax Credit Rebate Amount $0.03/gallon Provider Revenue Administration Division Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It may not be refunded or carried over to subsequent years. In order to qualify for the tax credit, the heating oil must be at least 5% biodiesel sourced from U.S. Environmental Protection Agency (EPA) approved feedstocks or be accepted

449

Heating and cooling system  

SciTech Connect

Heating and cooling of dwelling houses and other confined spaces is facilitated by a system in which thermal energy is transported between an air heating and cooling system in the dwelling and a water heat storage sink or source, preferably in the form of a swimming pool or swimming pool and spa combination. Special reversing valve circuitry and the use of solar collectors and liquid-to-liquid heat exchangers on the liquid side of the system , and special air valves and air modules on the air side of the system, enhance the system's efficiency and make it practical in the sense that systems employing the invention can utilize existing craft skills and building financing arrangements and building codes, and the like, without major modification.

Krumhansl, M.U.

1982-10-12T23:59:59.000Z

450

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

451

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

3 * November 2010 3 * November 2010 Electricity Natural Gas Power Heat Natural Gas or Biogas Tri-Generation Fuel Cell Hydrogen Natural Gas Converted to hydrogen on site via steam-methane reforming electrolyzer peak burner heat sink FC SYSTEM + H 2 Renewables H 2 -FC H 2 -storage 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) * Grid electricity (hourly) * Fuel prices * Water price 0 2 4

452

Model Request for Qualifications to Pre-Qualify Energy Service Companies  

Energy.gov (U.S. Department of Energy (DOE))

This page contains model Request for Qualifications (RFQ) documents intended for use by a state program to pre-qualify Energy Service Companies (ESCOs) to be available for as-needed Energy Savings Performance Contracting (ESPC) services for state and local governments within the state.

453

Policy Guidance Memorandum #37 Procedures for Excepted Service Exceptionally Well Qualified (EWQ) Appointments  

Energy.gov (U.S. Department of Energy (DOE))

DOE received a new hiring flexibility under the Consolidated Appropriations Act of 2014 that allows us to appoint up to 120 exceptionally well qualified (EWQ) individuals to scientific, engineering, or other critical technical positions without regard to chapter 33 of title 5, USC.

454

Rev. 9-29-08 Certification of Tax-Qualified Dependents / Domestic Partner Health & Dental Benefits  

E-Print Network (OSTI)

Rev. 9-29-08 Certification of Tax-Qualified Dependents / Domestic Partner Health & Dental Benefits of the employee with respect to health and dental plan coverage. This form is to enable the employee the domestic partnership. Prior to completing this form, carefully read the handout entitled "Important Tax

455

Covered Product Category: Ground-Source Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground-Source Heat Pumps Ground-Source Heat Pumps Covered Product Category: Ground-Source Heat Pumps October 7, 2013 - 10:32am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including ground-source heat pumps (GSHPs), which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

456

Covered Product Category: Ground-Source Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Covered Product Category: Ground-Source Heat Pumps Covered Product Category: Ground-Source Heat Pumps Covered Product Category: Ground-Source Heat Pumps October 7, 2013 - 10:32am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including ground-source heat pumps (GSHPs), which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases

457

Waste Heat Recapture from Supermarket Refrigeration Systems  

SciTech Connect

The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

Fricke, Brian A [ORNL

2011-11-01T23:59:59.000Z

458

Qualified Energy Conservation Bond (QECB) Update: New Guidance from the U.S. Department of Treasury and the Internal Revenue Service  

Energy.gov (U.S. Department of Energy (DOE))

Provides a summary of the June 2012 U.S. Department of Treasury clarification of what constitutes a qualified project for potential issuers of qualified energy conservation bond capacity. Author: Lawrence Berkeley National Laboratory

459

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho) Idaho) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Idaho) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 05/01/2012 State Idaho Program Type Non-Profit Rebate Program The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

460

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon) Oregon) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Oregon) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 5/1/2012 State Oregon Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana) Montana) Northwest Energy Efficiency Alliance - Smart Water Heat Rebate Program (Montana) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 5/1/2012 State Montana Program Type Non-Profit Rebate Program Provider Northwest Energy Efficiency Project The Northwest Energy Efficiency Alliance (NEEA) is offering a rebate program for homeowners who purchase and install an eligible heat pump water heater. A rebate of $750 is offered for qualifying heat pump water heater units. New units must replace an existing electric water heater and must be installed by a Smart Water Heat oriented contractor. New construction is also eligible for the rebate. All program requirements for equipment and installation must be met in order to receive rebates. Incentives are

462

Heat Stroke  

NLE Websites -- All DOE Office Websites (Extended Search)

stress, from exertion or hot environments, places stress, from exertion or hot environments, places workers at risk for illnesses such as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body becomes unable to control its temperature, and can cause death or permanent disability. Symptoms ■ High body temperature ■ Confusion ■ Loss of coordination ■ Hot, dry skin or profuse sweating ■ Throbbing headache ■ Seizures, coma First Aid ■ Request immediate medical assistance. ■ Move the worker to a cool, shaded area. ■ Remove excess clothing and apply cool water to their body. Heat Exhaustion The body's response to an excessive loss of water and salt, usually through sweating. Symptoms ■ Rapid heart beat ■ Heavy sweating ■ Extreme weakness or fatigue ■

463

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

heating heating Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of solar space heating technology.)[1] Contents 1 Space Heating 2 Passive Solar Space Heating 3 Active Solar Space Heating 4 References Space Heating A solar space-heating system can consist of a passive system, an active system, or a combination of both. Passive systems are typically less costly and less complex than active systems. However, when retrofitting a building, active systems might be the only option for obtaining solar energy. Passive Solar Space Heating Passive solar space heating takes advantage of warmth from the sun through design features, such as large south-facing windows, and materials in the floors or walls that absorb warmth during the day and release that warmth

464

STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIE STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER...

465

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

466

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

467

Tax Deduction Qualified Software - EnergyPlus version 3.1.0.027  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergyPlus version 3.1.0.027 EnergyPlus version 3.1.0.027 On this page you'll find information about the EnergyPlus version 3.1.0.027 qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 8 May 2009 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; U. S. Department of Energy EE-2J, Building Technologies Program 1000 Independence Avenue, SW Washington, DC 20585-0121 http://www.energyplus.gov

468

Tax Deduction Qualified Software TRACE 700 version 6.3.0  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3.0 3.0 On this page you'll find information about the TRACE 700 version 6.3.0 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 11 September 2013 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; Trane 3600 Pammel Creek Road La Crosse, WI 54601 http://www.trane.com/trace (2) The name, email address, and telephone number of the person to contact for

469

Building Technologies Program: Tax Deduction Qualified Software - EnergyGauge Summit version 3.14  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 On this page you'll find information about the EnergyGauge Summit version 3.14 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 21 December 2007 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; Florida Solar Energy Center 1679 Clearlake Road Cocoa, Florida 39922 www.energygauge.com (2) The name, email address, and telephone number of the person to contact for further

470

Building Technologies Program: Tax Deduction Qualified Software - DOE-21.E version 119  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E version 119 E version 119 On this page you'll find information about the DOE-21.E version 119 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 2 July 2007 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; Software developed by LBNL. Software tested and documentation submitted by The Weidt Group 5800 Baker Road Minnetonka, MN 55345 (2) The name, email address, and telephone number

471

Building Technologies Program: Tax Deduction Qualified Software - EnergyPlus version 2.2.0.023  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2.2.0.023 2.2.0.023 On this page you'll find information about the EnergyPlus version 2.2.0.023 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 12 June 2008 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; U. S. Department of Energy EE-2J, Building Technologies Program 1000 Independence Avenue, SW Washington, DC 20585-0121 http://www.energyplus.gov

472

Building Technologies Program: Tax Deduction Qualified Software - EnergyPlus version 2.1.0.023  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1.0.023 1.0.023 On this page you'll find information about the EnergyPlus version 2.1.0.023 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 7 December 2007 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; U. S. Department of Energy EE-2J, Building Technologies Program 1000 Independence Avenue, SW Washington, DC 20585-0121 www.energyplus.gov (2) The name, email address, and telephone number

473

Tax Deduction Qualified Software: EnergyPlus version 8.0.0.008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergyPlus version 8.0.0.008 EnergyPlus version 8.0.0.008 On this page you'll find information about the EnergyPlus version 8.0.0.008 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 28 May 2013 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; U. S. Department of Energy EE-2J, Building Technologies Program 1000 Independence Avenue, SW Washington, DC 20585-0121

474

Building Technologies Program: Tax Deduction Qualified Software - VisualDOE version 4.1 build 0002  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VisualDOE version 4.1 build 0002 VisualDOE version 4.1 build 0002 On this page you'll find information about the VisualDOE version 4.1 build 0002 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 11 September 2006 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; Architectural Energy Corporation 2540 Frontier Avenue, Suite 201 Boulder, Colorado 80301 (2) The name, email address, and telephone

475

Tax Deduction Qualified Software: EnergyPlus version 5.0.0.031  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5.0.0.031 5.0.0.031 On this page you'll find information about the EnergyPlus version 5.0.0.031 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 06 June 2010 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; U. S. Department of Energy EE-2J, Building Technologies Program 1000 Independence Avenue, SW Washington, DC 20585-0121 http://www.energyplus.gov

476

Building Technologies Program: Tax Deduction Qualified Software - TRACE 700 version 6.1.2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 On this page you'll find information about the TRACE 700 version 6.1.2 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 9 November 2007 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; TRANE, A Division of American Standard 3600 Pammel Creek Road LaCrosse, Wisconsin 54601 www.tranecds.com (2) The name, email address, and telephone number of the person to contact for further

477

Tax Deduction Qualified Software: EnergyPlus version 7.1.0.012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1.0.012 1.0.012 On this page you'll find information about the EnergyPlus version 7.1.0.012 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 25 June 2012 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; U. S. Department of Energy EE-2J, Building Technologies Program 1000 Independence Avenue, SW Washington, DC 20585-0121 http://www.energyplus.gov

478

Tax Deduction Qualified Software Tas version 9.2.1.6  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 On this page you'll find information about the Tas version 9.2.1.6 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 30 July 2013 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; Environmental Design Solutions Ltd. 13-14 Cofferidge Close Stony Stratford Milton Keynes Buckinghamshire MK11 1BY http://www.edsl.net (2) The name, email address, and telephone number of the

479

Building Technologies Program: Tax Deduction Qualified Software - EnerSim version 07.11.30  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnerSim version 07.11.30 EnerSim version 07.11.30 On this page you'll find information about the EnerSim version 07.11.30 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 6 December 2007 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; Southern Company Services 241 Ralph McGill Boulevard Atlanta, Georgia 30308 (2) The name, email address, and telephone number of the person to contact for further

480

Building Technologies Program: Tax Deduction Qualified Software - DOE-21.E-JJH version 130  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E-JJH version 130 E-JJH version 130 On this page you'll find information about the DOE-2.1E-JJH version 130 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 5 November 2007 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; Software developed by LBNL and Hirsch & Associates. Software tested and documentation submitted by The Weidt Group 5800 Baker Road Minnetonka, MN 55345

Note: This page contains sample records for the topic "qualifying combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Tax Deduction Qualified Software Tas version 9.2.1.5  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 On this page you'll find information about the Tas version 9.2.1.5 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 19 February 2013 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; Environmental Design Solutions Ltd. 13-14 Cofferidge Close Stony Stratford Milton Keynes Buckinghamshire MK11 1BY http://www.edsl.net (2) The name, email address, and telephone number of the

482

Tax Deduction Qualified Software: EnergyPlus version 6.0.0.023  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6.0.0.023 6.0.0.023 On this page you'll find information about the EnergyPlus version 6.0.0.023 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 29 October 2010 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; U. S. Department of Energy EE-2J, Building Technologies Program 1000 Independence Avenue, SW Washington, DC 20585-0121 http://www.energyplus.gov

483

Tax Deduction Qualified Software: EnergyPlus version 7.2.0.006  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2.0.006 2.0.006 On this page you'll find information about the EnergyPlus version 7.2.0.006 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 6 November 2012 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; U. S. Department of Energy EE-2J, Building Technologies Program 1000 Independence Avenue, SW Washington, DC 20585-0121 http://www.energyplus.gov

484

Tax Deduction Qualified Software - EnergyPlus version 3.0.0.028  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3.0.0.028 3.0.0.028 On this page you'll find information about the EnergyPlus version 3.0.0.028 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 15 January 2009 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; U. S. Department of Energy EE-2J, Building Technologies Program 1000 Independence Avenue, SW Washington, DC 20585-0121 http://www.energyplus.gov

485

Building Technologies Program: Tax Deduction Qualified Software - EnergyPlus version 1.3.0.018  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3.0.018 3.0.018 On this page you'll find information about the EnergyPlus version 1.3.0.018 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 23 June 2006 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; U. S. Department of Energy EE-2J, Building Technologies Program 1000 Independence Avenue, SW Washington, DC 20585-0121 www.energyplus.gov (2) The name, email address, and telephone number

486

Building Technologies Program: Tax Deduction Qualified Software - Hourly Analysis Program (HAP) version 4.40  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hourly Analysis Program (HAP) version 4.40.0.61 Hourly Analysis Program (HAP) version 4.40.0.61 On this page you'll find information about the HAP version 4.40.0.61 qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 10 April 2009 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; Carrier / United Technologies Corporation Carrier Software Systems Bldg TR-4, Room 400A P. O. Box 4808 Syracuse, New York 13221

487

Building Technologies Program: Tax Deduction Qualified Software - Green Building Studio Web Service version 3.0  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 On this page you'll find information about the Green Building Studio Web Service version 3.0 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 19 September 2007 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; Green Building Studio, Inc. 444 Tenth Street, Suite 300 Santa Rosa, California 95401 www.greenbuildingstudio.com (2) The name, email address, and

488

Building Technologies Program: Tax Deduction Qualified Software - Hourly Analysis Program (HAP) version 4.31  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 On this page you'll find information about the Hourly Analysis Program (HAP) version 4.31 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 17 August 2006 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; Carrier / United Technologies Corporation Carrier Software Systems Bldg TR-4, Room 400A P. O. Box 4808 Syracuse, New York 13221 (2) The name, email address, and

489

Building Technologies Program: Tax Deduction Qualified Software - Hourly Analysis Program (HAP) version 4.34  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 On this page you'll find information about the Hourly Analysis Program (HAP) version 4.34 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 10 August 2007 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; Carrier / United Technologies Corporation Carrier Software Systems Bldg TR-4, Room 400A P. O. Box 4808 Syracuse, New York 13221 (2) The name, email address, and

490

Building Technologies Program: Tax Deduction Qualified Software - EnergyGauge Summit version 3.13  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 On this page you'll find information about the EnergyGauge Summit version 3.13 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 23 November 2007 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; Florida Solar Energy Center 1679 Clearlake Road Cocoa, Florida 39922 www.energygauge.com (2) The name, email address, and telephone number of the person to contact for further

491

Tax Deduction Qualified Software - Green Building Studio Web Service version 3.4  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Building Studio Web Service version 3.4 Green Building Studio Web Service version 3.4 On this page you'll find information about the Green Building Studio Web Service version 3.4 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 16 October 2008 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; Autodesk, Inc. 444 Tenth Street, Suite 300 Santa Rosa, California 95401 http://www.autodesk.com

492

Building Technologies Program: Tax Deduction Qualified Software - EnergyGauge Summit version 3.11  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 On this page you'll find information about the EnergyGauge Summit version 3.11 (incorporating DOE-2.1E version 120) qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 6 August 2007 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; Florida Solar Energy Center 1679 Clearlake Road Cocoa, Florida 39922 www.energygauge.com (2) The name, email address, and telephone

493

Building Technologies Program: Tax Deduction Qualified Software - EnergyPlus version 2.0.0.025  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0.0.025 0.0.025 On this page you'll find information about the EnergyPlus version 2.0.0.025 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 2 May 2007 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; U. S. Department of Energy EE-2J, Building Technologies Program 1000 Independence Avenue, SW Washington, DC 20585-0121 www.energyplus.gov (2) The name, email address, and telephone number

494

Tax Deduction Qualified Software: Trace 700 version 6.2.10  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2.10 2.10 On this page you'll find information about the TRACE 700 version 6.2.10 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 11 March 2013 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; Trane 3600 Pammel Creek Road La Crosse, WI 54601 http://www.trane.com/trace (2) The name, email address, and telephone number of the person to contact for

495

Building Technologies Program: Tax Deduction Qualified Software - TRACE 700 version 6.1.0.0  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0.0 0.0 On this page you'll find information about the TRACE 700 version 6.1.0.0 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 18 December 2006 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; TRANE, A Division of American Standard 3600 Pammel Creek Road LaCrosse, Wisconsin 54601 www.tranecds.com (2) The name, email address, and telephone number of the person to contact for further

496

Building Technologies Program: Tax Deduction Qualified Software - TRACE 700 version 6.1.1.0  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1.0 1.0 On this page you'll find information about the TRACE 700 version 6.1.1.0 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 26 June 2007 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; TRANE, A Division of American Standard 3600 Pammel Creek Road LaCrosse, Wisconsin 54601 www.tranecds.com (2) The name, email address, and telephone number of the person to

497

Building Technologies Program: Tax Deduction Qualified Software - EnergyPlus version 1.4.0.025  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4.0.025 4.0.025 On this page you'll find information about the EnergyPlus version 1.4.0.025 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 1 November 2006 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; U. S. Department of Energy EE-2J, Building Technologies Program 1000 Independence Avenue, SW Washington, DC 20585-0121 www.energyplus.gov (2) The name, email address, and telephone number

498

Building Technologies Program: Tax Deduction Qualified Software - Hourly Analysis Program (HAP) version 4.41  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hourly Analysis Program (HAP) version 4.41.0.6 Hourly Analysis Program (HAP) version 4.41.0.6 On this page you'll find information about the HAP version 4.41.0.6 qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings. Date Documentation Received by DOE: 10 April 2009 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements. (1) The name, address, and (if applicable) web site of the software developer; Carrier / United Technologies Corporation Carrier Software Systems Bldg TR-4, Room 400A P. O. Box 4808 Syracuse, New York 13221

499

Jobs, sustainable heating coming to Vermont city | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city March 15, 2010 - 6:07pm Addthis A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo Joshua DeLung What will the project do? Their new woodchip-fired combined heat and power system will heat the Capitol Complex, the city's schools, City Hall and as many as 156 other buildings in the downtown area. Montpelier, Vt., netted $8 million in American Recovery and Reinvestment Act funding in January for a woodchip-fired combined heat and power system. The money will help build a 1.8 million kWh-generating plant that will heat the Capitol Complex, the city's schools, City Hall and as many

500

Jobs, sustainable heating coming to Vermont city | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city March 15, 2010 - 6:07pm Addthis A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo Joshua DeLung What will the project do? Their new woodchip-fired combined heat and power system will heat the Capitol Complex, the city's schools, City Hall and as many as 156 other buildings in the downtown area. Montpelier, Vt., netted $8 million in American Recovery and Reinvestment Act funding in January for a woodchip-fired combined heat and power system. The money will help build a 1.8 million kWh-generating plant that will heat the Capitol Complex, the city's schools, City Hall and as many