Sample records for qualifying cogenerators qualifying

  1. Negotiating Rates and Contracts for Qualifying Facilities

    E-Print Network [OSTI]

    Collier, S. E.

    The implementation of a cogeneration project or other qualifying facility (QF) requires the development of contractual relationships with one or more electric utilities. The relationships may involve the application of existing rates and contracts...

  2. Tax Deduction Qualified Software

    Broader source: Energy.gov [DOE]

    On this page you'll find information about the EnergyGauge Summit version 3.20 (incorporating DOE-2.1E (v120)) qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  3. Tax Deduction Qualified Software

    Broader source: Energy.gov [DOE]

    On this page you'll find information about the EnergyGauge Summit version 3.22 (incorporating DOE-2.1E (v120)) qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  4. Tax Deduction Qualified Software

    Broader source: Energy.gov [DOE]

    On this page you'll find information about the EnergyGauge Summit version 3.21 (incorporating DOE-2.1E (v120)) qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  5. Qualified Energy Conservation Bonds (Ohio)

    Broader source: Energy.gov [DOE]

    The Ohio Air Quality Development Authority (OAQDA) administers the Qualified Energy Conservation Bonds (QECB) program in Ohio. QECBs have been used by local governments and public universities to...

  6. TQP Qualifying Official Training Approaches - Livermore Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TQP Qualifying Official Training Approaches - Livermore Site Office TQP Qualifying Official Training Approaches - Livermore Site Office A QO is an individual who has the technical...

  7. Qualified Energy Conservation Bonds (QECBs)

    Broader source: Energy.gov [DOE]

    The ''Energy Improvement and Extension Act of 2008'', enacted in October 2008, authorized the issuance of Qualified Energy Conservation Bonds (QECBs) that may be used by state, local and tribal...

  8. Algebra Qualifying Exam August 2010

    E-Print Network [OSTI]

    Passman, Donald S.

    Algebra Qualifying Exam August 2010 Do all 5 problems. 1. Let G be a finite group and let N be a minimal normal subgroup of G. Suppose N = S1 × S2 × · · · × Sr, where each Si is a simple subgroup and where S1 is not abelian. (a) Show that Z(N) = 1, where Z(N) is the center of N, and deduce that each Si

  9. Qualified Energy Conservation Bonds | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    description of qualified energy conservation bonds, including process and mechanics, case studies, utilization trends, barriers, and regulatory and legal issues. Author:...

  10. QUALIFYING EXAMINATION JANUARY 2004 MATH 571 - Prof ...

    E-Print Network [OSTI]

    1910-31-22T23:59:59.000Z

    QUALIFYING EXAMINATION. JANUARY 2004. MATH 571 - Prof. Smith. 1. A space is second countable if it has a countable basis. Let X = R n be the product of ...

  11. QUALIFYING EXAMINATION JANUARY 2001 MATH 571 - Prof ...

    E-Print Network [OSTI]

    1910-10-22T23:59:59.000Z

    QUALIFYING EXAMINATION. JANUARY 2001. MATH 571 - Prof. Smith. I. a) Give the definition of a normal topology. b) Let M be a metric space. Show that the ...

  12. QUALIFYING EXAMINATION JANUARY 2002 MATH 571 - Prof ...

    E-Print Network [OSTI]

    1910-20-40T23:59:59.000Z

    QUALIFYING EXAMINATION. JANUARY 2002. MATH 571 - Prof. Smith. I. Let f : E ? B be a covering of a compact Hausdorff space B. Prove that E is compact if ...

  13. Qualified Energy Conservation Bond Webinars | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    listing of past qualified energy conservation bond webinars and associated files. Author: U.S. Department of Energy Qualified Energy Conservation Webinars Website More Documents &...

  14. Breakthrough in Bioenergy: American Process Sells First RIN-qualified...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakthrough in Bioenergy: American Process Sells First RIN-qualified Cellulosic Ethanol Shipment Breakthrough in Bioenergy: American Process Sells First RIN-qualified Cellulosic...

  15. Qualified Target Industry Tax Refund (Florida)

    Broader source: Energy.gov [DOE]

    The Qualified Target Industry Tax Refund incentive is available for companies that create high wage jobs in targeted high value-added industries. The incentive refunds up to $3,000 per new full...

  16. Qualifying Advanced Energy Manufacturing Investment Tax Credit

    Broader source: Energy.gov [DOE]

    2013 Update: Phase II of the Qualifying Advanced Energy Project is open. Required concept papers are due to the U.S. Department of Energy (DOE) by April 9, 2013. The U.S. DOE will review concept...

  17. Qualified Energy Conservation Bond State-by-State Summary Tables

    Broader source: Energy.gov [DOE]

    Provides a list of qualified energy conservation bond state summary tables. Author: Energy Programs Consortium

  18. Graduate Study in Mathematics: Qualifying Exams & Exam Archive

    E-Print Network [OSTI]

    Academic Programs Undergraduate Graduate Applied Math Actuarial. > Home > Academic Programs > Graduate. Qualifying Exams. The Department of ...

  19. MA Ph.D. Qualifying Exam Directions

    E-Print Network [OSTI]

    Liblit, Ben

    MA Ph.D. Qualifying Exam Fall 2010 Directions: Use careful reasoning to develop the answers to each numerical answers. You may use the LZGS text for reference for this exam. 1. Explain in detail why the mean with the system. Each query type i also generates a small amount of further processing time, with average Si

  20. DOE Qualified List of ESCO Application Cover Letter

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 1, 2015 Thank you for your firm's interest in the Department of Energy's (DOE's) Qualified List of Energy Service Companies. Firms on the qualified list may perform energy...

  1. Tax Deduction Qualified Software Tas version 9.3.1

    Broader source: Energy.gov [DOE]

    Information about the Tas version 9.3.1 qualified computer software and federal tax incentive requirements for commercial buildings.

  2. July 18, 2012 Using Qualified Energy Conservation Bonds for Public

    E-Print Network [OSTI]

    July 18, 2012 Using Qualified Energy Conservation Bonds for Public Building Upgrades: Reducing Energy Bills in the City of Philadelphia Qualified Energy Conservation Bonds (QECBs) are federally Energy Conservation Bond (QECB) is a bond that enables qualified state, tribal and local government

  3. Qualified Energy Conservation Bonds | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to analysis3 News7:ThomasA Qualified

  4. Qualified Energy Conservation Bond (QECB) Update: New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified Energy Conservation Bond (QECB) Update: New

  5. Making it Easier to Complete Clean Energy Projects with Qualified...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are dedicated to trying to make these Qualified Energy Conservation Bonds available to finance clean energy and energy efficiency projects at local levels across the country, but...

  6. Using Qualified Energy Conservation Bonds for Public Building...

    Broader source: Energy.gov (indexed) [DOE]

    Summarizes how the City of Philadelphia leveraged 6.25 million in qualified energy conservation bonds to upgrade the energy efficiency of city buildings. Author: Lawrence Berkeley...

  7. Qualified Energy Conservation Bonds (QECBs) APPENDIX A: QECB...

    Broader source: Energy.gov (indexed) [DOE]

    Qualified energy conservation bonds appendices. Author: U. S. Department of Energy Appendix A: QECB Counsel, Underwriters, Banks and Trustees More Documents & Publications...

  8. Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable...

    Broader source: Energy.gov (indexed) [DOE]

    presentation overview of qualified energy conservation bond and new clean renewable energy bonds, including characteristics, mechanics, allocated volume, and other information....

  9. Qualified Energy Conservation Bonds (QECBs?) & New Clean Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualified Energy Conservation Bonds ("QECBs") & New Clean Renewable Energy Bonds ("New CREBs") Slide 1 DISCLAIMER: The information in this presentation is for informational...

  10. Qualified Energy Conservation Bond (QECB) Update: New Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Lawrence Berkeley National Laboratory Qualified Energy Conservation Bond (QECB) Update: New Guidance from the U.S. Department of Treasury and the Internal Revenue Service...

  11. July 18, 2012 Qualified Energy Conservation Bond (QECB) Update: New

    E-Print Network [OSTI]

    July 18, 2012 Qualified Energy Conservation Bond (QECB) Update: New Guidance from the U.S. Department of Treasury and the Internal Revenue Service Qualified Energy Conservation Bonds (QECBs a range of energy conservation projects at very attractive borrowing rates over long contract terms

  12. Guidance on the Elements Necessary to Qualify as an Energy Conservatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Elements Necessary to Qualify as an Energy Conservation Measure Under an ESPC Guidance on the Elements Necessary to Qualify as an Energy Conservation Measure Under an ESPC...

  13. QUALIFYING EXAMINATION AUGUST 2001 MATH 571 - PROF. J ...

    E-Print Network [OSTI]

    1910-10-82T23:59:59.000Z

    QUALIFYING EXAMINATION. AUGUST 2001. MATH 571 - PROF. J. SMITH. 1.(10 pts) Let X be a compact space and let. A1 ? A2 ?···? Ak ··· be a descending ...

  14. The minimum information for a qualified BioBrick

    E-Print Network [OSTI]

    Zhou, Mubing

    2012-10-11T23:59:59.000Z

    Since the information of many existing BioBricks is incomplete, thus the usage of the BioBricks will be affected. It is necessary to standardize the minimum information required for a qualified BioBrick. Furthermore this ...

  15. DOE Qualified List of ESCO Application Cover Letter

    Broader source: Energy.gov [DOE]

    Document displays the U.S. Department of Energy's (DOE) application cover letter, which thanks a firm for its interest in the DOE Qualified List of Energy Service Companies (ESCOs) and describes the application documents and application review process. Firms on the DOE Qualified List may perform energy savings performance contracting (ESPC) in accordance with the Energy Policy Act of 1992 and 10 CFR 436. Also see the Standard Form 129 and Supplemental Questionnaire.

  16. Qualifying geospatial workflow models for adaptive controlled validity and accuracy

    E-Print Network [OSTI]

    Stock, Kristin

    Qualifying geospatial workflow models for adaptive controlled validity and accuracy Didier Leibovici, Gobe Hobona, Kristin Stock and Mike Jackson Centre for Geospatial Sciences, University.leibovici@nottingham.ac.uk Abstract--Sharing geospatial data and geoprocessing models within a system like GEOSS (Global Earth

  17. Advanced Analysis Qualifying Examination Department of Mathematics and Statistics

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    be a continuous increasing invertible function. Let µF and µF be the Lebesgue-Stieljes measures associated to FNAME: Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University function or characteristic function of A. 2. If a measure is not specified, use Lebesgue measure on R

  18. FREQUENTLY ASKED QUESTIONS ABOUT THE TTP PHD QUALIFYING EXAMINATION (QE)

    E-Print Network [OSTI]

    California at Davis, University of

    FREQUENTLY ASKED QUESTIONS ABOUT THE TTP PHD QUALIFYING EXAMINATION (QE) Pat Mokhtarian, TTP Chair this document helpful. What is the QE and what is its purpose? The QE is the last big hurdle to finishing the PhD dissertation research, and by implication to eventually receive a PhD. We interpret "preparation" to mean two

  19. Using Qualified Energy Conservation Bonds (QECBs) to Fund a Residential Energy Efficiency Loan Program: Case Study on Saint Louis County, MO

    E-Print Network [OSTI]

    Zimring, Mark

    2012-01-01T23:59:59.000Z

    2011 Using Qualified Energy Conservation Bonds (QECBs) toCounty, MO Qualified Energy Conservation Bonds (QECBs) arerange of qualified energy conservation projects. QECBs offer

  20. Tax Deduction Qualified Software DesignBuilder version 4.2.0.054

    Broader source: Energy.gov [DOE]

    Information about the DesignBuilder version 4.2.0.054 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  1. Request for Proposals for Final Energy Service Company Selection from Pre-Qualified Pool Documents

    Broader source: Energy.gov [DOE]

    Information and documents about the Request for Proposals to select an Energy Service Company from a pre-qualified pool.

  2. Qualified Specialists in Industrial Assessment Tools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified Energy Conservation Bond (QECB)

  3. The PhD Qualifying Exam All PhD seeking students are required to attempt the PhD Written Qualifying Exam after their

    E-Print Network [OSTI]

    New Mexico, University of

    The PhD Qualifying Exam All PhD seeking students are required to attempt the PhD Written Qualifying before the beginning of the fall semester. The "Common Exam" that all PhD students must take consists of in August of each year. The "Concentration Exam" tests the PhD student in the specific 2 courses of his

  4. DOE Qualified List of Energy Service Companies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009)|PublishesDOE Qualified List of

  5. DOE Qualifying Official Training Approaches | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009)|PublishesDOE Qualified List

  6. Qualified Software for Calculating Commercial Building Tax Deductions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified Energy Conservation Bond (QECB) Update:Department

  7. Statistically qualified neuro-analytic failure detection method and system

    DOE Patents [OSTI]

    Vilim, Richard B. (Aurora, IL); Garcia, Humberto E. (Idaho Falls, ID); Chen, Frederick W. (Naperville, IL)

    2002-03-02T23:59:59.000Z

    An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.

  8. Tax Deduction Qualified Software Tas version 9.2.1.5

    Broader source: Energy.gov [DOE]

    information about the Tas version 9.2.1.5 qualified computer software and federal tax incentive requirements for commercial buildings

  9. Tax Deduction Qualified Software Tas version 9.2.1.7

    Broader source: Energy.gov [DOE]

    Information about the Tas version 9.2.1.7 qualified computer software and federal tax incentive requirements for commercial buildings.

  10. Tax Deduction Qualified Software Tas version 9.2.1.4

    Broader source: Energy.gov [DOE]

    information about the Tas version 9.2.1.4 qualified computer software and federal tax incentive requirements for commercial buildings

  11. Department of Energys Qualified List of Energy Service Companies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTMENT OF ENERGY'S QUALIFIED LIST OF ENERGY SERVICE COMPANIES June 2015 1 Abengoa Solar, Inc. Amparo Pazos Division Director 1250 Simms Street Unit 101 Lakewood, CO 80401 P:...

  12. Making it Easier to Complete Clean Energy Projects with Qualified Energy Conservation Bonds (QECBs)

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on How to to Complete Clean Energy Projects with Qualified Energy Conservation Bonds (QECBs)

  13. The Utilities' Role in Conservation and Cogeneration

    E-Print Network [OSTI]

    Mitchell, R. C., III

    1982-01-01T23:59:59.000Z

    The electric utility industry is uniquely qualified and positioned to serve as an effective 'deliverer' of energy conservation services and alternative energy supply options, such as cogeneration, rather than merely as a 'facilitator...

  14. Tax Deduction Qualified Software- EnerSim version 9.02

    Broader source: Energy.gov [DOE]

    On this page you'll find information about the EnerSim version 9.02 qualified computer software (buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  15. Tax Deduction Qualified Software DesignBuilder version 3.0.0.105

    Broader source: Energy.gov [DOE]

    On this page you'll find information about the DesignBuilder version 3.0.0.105 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  16. Questions for PhD Qualifying Exam in Algorithms Spring 2014

    E-Print Network [OSTI]

    Madden, Patrick H.

    1 Questions for PhD Qualifying Exam in Algorithms Spring 2014 DIRECTIONS: Please make sure to write with PhD qualifying exam students and the professor who will be administering the exam. The professor will meet with only a single student at a time, and each student i can only meet from start time si to end

  17. Mandatory Disclosure Requirements and Rating Agency Catering: A Study of the Rule Changes for Qualified Special Purpose Entities

    E-Print Network [OSTI]

    van den Berg, Jur

    for Qualified Special Purpose Entities Kevin Koharki The Pennsylvania State University kjk199@psu.edu December

  18. Space qualified nanosatellite electronics platform for photon pair experiments

    E-Print Network [OSTI]

    Cheng, Cliff; Tan, Yue Chuan; Ling, Alexander

    2015-01-01T23:59:59.000Z

    We report the design and implementation of a complete electronics platform for conducting a quantum optics experiment that will be operated on board a 1U CubeSat (a 10 x 10 x 10 cm satellite). The quantum optics experiment is designed to produce polarization-entangled photon pairs using non-linear optical crystals and requires opto-electronic components such as a pump laser, single photon detectors and liquid crystal based polarization rotators in addition to passive optical elements. The platform provides mechanical support for the optical assembly. It also communicates autonomously with the host satellite to provide experiment data for transmission to a ground station. A limited number of commands can be transmitted from ground to the platform enabling it to switch experimental modes. This platform requires less than 1.5W for all operations, and is space qualified. The implementation of this electronics platform is a major step on the road to operating quantum communication experiments using nanosatellites.

  19. Space qualified nanosatellite electronics platform for photon pair experiments

    E-Print Network [OSTI]

    Cliff Cheng; Rakhitha Chandrasekara; Yue Chuan Tan; Alexander Ling

    2015-05-25T23:59:59.000Z

    We report the design and implementation of a complete electronics platform for conducting a quantum optics experiment that will be operated on board a 1U CubeSat (a 10 x 10 x 10 cm satellite). The quantum optics experiment is designed to produce polarization-entangled photon pairs using non-linear optical crystals and requires opto-electronic components such as a pump laser, single photon detectors and liquid crystal based polarization rotators in addition to passive optical elements. The platform provides mechanical support for the optical assembly. It also communicates autonomously with the host satellite to provide experiment data for transmission to a ground station. A limited number of commands can be transmitted from ground to the platform enabling it to switch experimental modes. This platform requires less than 1.5W for all operations, and is space qualified. The implementation of this electronics platform is a major step on the road to operating quantum communication experiments using nanosatellites.

  20. Tax Deduction Qualified Software- Green Building Studio Web Service version 3.4

    Broader source: Energy.gov [DOE]

    Information about the Green Building Studio Web Service version 3.4 qualified computer software, which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  1. Tax Deduction Qualified Software DesignBuilder version 3.0.0...

    Office of Environmental Management (EM)

    this page you'll find information about the DesignBuilder version 3.0.0.105 qualified computer software, which calculates energy and power cost savings that meet federal tax...

  2. Building Technologies Program: Tax Deduction Qualified Software- DOE-2.2 version 47d

    Broader source: Energy.gov [DOE]

    On this page you'll find information about the DOE-2.2 version 47d qualified computer software, which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  3. Tax Deduction Qualified Software DesignBuilder version 3.0.0.097

    Broader source: Energy.gov [DOE]

    On this page you'll find information about the DesignBuilder version 3.0.0.097 qualified computer software, which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  4. Qualified Energy Property Tax Exemption for Projects over 250 kW (Payment in Lieu)

    Broader source: Energy.gov [DOE]

    Ohio's Renewable and Advanced Energy Project Property Tax Exemption, enacted with the passage of Ohio S.B. 232 in the summer of 2010, exempts qualified energy projects in Ohio from public utility...

  5. Qualified Energy Property Tax Exemption for Projects 250 kW or Less

    Broader source: Energy.gov [DOE]

    Ohio's Renewable and Advanced Energy Project Property Tax Exemption, enacted with the passage of Ohio S.B. 232 in the summer of 2010, exempts qualified energy projects in Ohio from public utility...

  6. Tax Deduction Qualified Software - EnergyPlus version 3.1.0.027...

    Broader source: Energy.gov (indexed) [DOE]

    On this page you'll find information about the EnergyPlus version 3.1.0.027 qualified computer software which calculates energy and power cost savings that meet federal tax...

  7. Tax Deduction Qualified Software - EnergyPlus version 3.0.0.028...

    Broader source: Energy.gov (indexed) [DOE]

    On this page you'll find information about the EnergyPlus version 3.0.0.028 qualified computer software which calculates energy and power cost savings that meet federal tax...

  8. Tax Deduction Qualified Software: EnergyPlus version 5.0.0.031...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Deduction Qualified Software: EnergyPlus version 5.0.0.031 Provides required documentation that EnergyPlus version 5.0.0.031 meets Internal Revenue Code 179D, Notice...

  9. Tax Deduction Qualified Software: EnergyPlus version 6.0.0.023...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Deduction Qualified Software: EnergyPlus version 6.0.0.023 Provides required documentation that EnergyPlus version 6.0.0.023 meets Internal Revenue Code 179D, Notice...

  10. QUALIFIED FORECAST OF ENSEMBLE POWER PRODUCTION BY SPATIALLY DISPERSED GRID-CONNECTED PV SYSTEMS

    E-Print Network [OSTI]

    Heinemann, Detlev

    QUALIFIED FORECAST OF ENSEMBLE POWER PRODUCTION BY SPATIALLY DISPERSED GRID- CONNECTED PV SYSTEMS: The contribution of power production by Photovoltaic (PV) systems to the electricity supply is constantly of the electricity grids and for energy trading. This paper presents an approach to predict regional PV power output

  11. Ver. CSI-T HB Sept 2012 INSTRUCTIONS FOR QUALIFYING AS A PPD PROVIDER

    E-Print Network [OSTI]

    Ver. CSI-T HB Sept 2012 INSTRUCTIONS FOR QUALIFYING AS A PPD PROVIDER FOR THE CALIFORNIA SOLAR to the requirements set forth in the CSI-Thermal Program Handbook. BACKGROUND AND REQUIREMENTS Customers participating to PAs as requested Provide technical support to PAs as well as customer support Communicate meter

  12. The TECHNICAL QUALIFYING EVALUATION (TQE) Department of Electrical Engineering and Computer Science

    E-Print Network [OSTI]

    Leiserson, Charles E.

    The TECHNICAL QUALIFYING EVALUATION (TQE) Department of Electrical Engineering and Computer Science are required from an approved TQE grid composed of 9 Groups. Two subjects must be selected from a single Group of B must be obtained to pass the TQE outright. The approved TQE grid is found below with the subject

  13. Rev. 9-29-08 Certification of Tax-Qualified Dependents / Domestic Partner Health & Dental Benefits

    E-Print Network [OSTI]

    Rev. 9-29-08 Certification of Tax-Qualified Dependents / Domestic Partner Health & Dental Benefits of the employee with respect to health and dental plan coverage. This form is to enable the employee the domestic partnership. Prior to completing this form, carefully read the handout entitled "Important Tax

  14. Electrical Engineering Ph.D. Qualifying Examination Guidelines for the Graduate Student

    E-Print Network [OSTI]

    O'Toole, Alice J.

    .), narrow band and broadband matching circuits, low noise amplifiers, noise figure, noise parameters references, opamp design, frequency response, stability and compensation, two-stage amplifiers. #12;f in the first three weeks of the semester using the "Application for the Doctoral Qualifying Examination" form

  15. How to Qualify for NIH Small Business Innovation and Technology Transfer Grants

    E-Print Network [OSTI]

    Berdichevsky, Victor

    How to Qualify for NIH Small Business Innovation and Technology Transfer Grants Professional Auditorium BBCetc is an Ann Arbor-based company that provides Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) proposal development services to technology based

  16. Space-qualified, abuttable packaging for LBNL p-channel CCDs, Part II

    E-Print Network [OSTI]

    California at Berkeley, University of

    Space-qualified, abuttable packaging for LBNL p-channel CCDs, Part II R.W. Besuner1 , C. Baltay2 for 10.5 m pixel, 3.5k x 3.5k p-channel LBNL CCDs. These packages are built around a silicon carbide of 36.8mm square may be packed on a detector pitch as small as 44mm. LBNL-developed Front End

  17. How much can I qualify for? An eligible student may receive a SMART award of up

    E-Print Network [OSTI]

    Rosen, Jay

    How much can I qualify for? An eligible student may receive a SMART award of up to $4,000 for each.260.5700 ACHIEVERS NEW YORK CITY COLLEGE OF TECHNOLOGY CITY TECH O F F I C E O F F I N A N C I A L A I D ACHIEVE. Under the National SMART Grant program, CUNY will identify Pell eligible federal student aid recipients

  18. Long-Term Wisconsin Capital Assets Deferral and Wisconsin-Source Asset Exclusion Qualified Wisconsin Business Certification (Wisconsin)

    Broader source: Energy.gov [DOE]

    WEDC may certify businesses as a “Qualified Wisconsin Business”. The designation allows investors with WI capital gains tax liability to both defer that tax liability and if an investment is...

  19. Tax Deduction Qualified Software TRNSYS version 17.01.0016 TESS Libraries version 17.1.01

    Broader source: Energy.gov [DOE]

    provides information about the TRNSYS version 17.01.0016 and TESS Libraries version 17.1.01 qualified computer software, which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  20. PREPARED TESTIMONY OF ROBERT B. WEISENMILLER, PH.D. Qualifying Facilities: Resource Planning and Avoided Costs Methodology ................................ 1

    E-Print Network [OSTI]

    Calculation and Pricing Options for Qualifying Facilities Submitted by Independent Power Corporation on behalf.............................................................................................. 8 Market Power Assessments) for the Independent Energy Producers Association and the Department of General Services and the Solid Waste Management

  1. Cogeneration

    E-Print Network [OSTI]

    Jenkins, S. C.

    the cogeneration "buzzword" of today. Traditionally, most systems in this industry had been boiler/steam turbine-generator based. But the wider, growing acceptance of gas turbine-generator systems in the pulp and paper industry will be discussed in the first... how gas turbine-generators are finding their place in the new world of environmentally driven cogeneration applications. The pulp and paper industry was one of the pioneers in the application of industrial power generation long before...

  2. Statistical factors to qualify the superconducting magnets for the SSC based on warm/cold correlations

    SciTech Connect (OSTI)

    Kim, K.; Devred, A.; Coles, M.; Tompkins, J.

    1993-05-01T23:59:59.000Z

    All of the SSC production magnets will be measured at room temperature (warm), but only a fraction of these will be measured at liquid helium temperature (cold). The fractional information will then be analyzed to determine warm acceptance criteria for the field quality of the SSC magnets. Regarding predictors of the field quality based on partial information, there are several observations and studies based on the warm/cold correlation. A different facet of the acceptance test is production control, which interprets the warm/cold correlation to adjust the process parameters. For these applications, we are evaluating statistical techniques relying on asymptotic estimators of the systematic errors and random errors, and their respective confidence intervals. The estimators are useful to qualify the population magnets based on a subset of sample magnets. We present the status of our work, including: (i) a recapitulation of analytic formulas, (ii) a justification based on HERA magnet experience, and (iii) a practical interpretation of these estimators.

  3. QUALIFYING EXAM (SPRING 2002) Answer any six of the following eight questions. You must state clearly any general

    E-Print Network [OSTI]

    Hagen, Thomas

    QUALIFYING EXAM (SPRING 2002) ALGEBRA Answer any six of the following eight questions. You must state clearly any general results you use. 1. Prove that if G is a non-trivial p-group then the center of G is non-trivial. Deduce that every p-group is solvable. 2. Prove that if G is a simple group

  4. Archway Education Professional The University of Georgia is seeking a qualified candidate to serve as the Archway Education Professional in

    E-Print Network [OSTI]

    Arnold, Jonathan

    Archway Education Professional The University of Georgia is seeking a qualified candidate to serve as the Archway Education Professional in Dalton-Whitfield County, Georgia. The Archway Partnership was initiated with the University of Georgia. The Archway Education Professional is a UGA Public Service (Public Service Assistant

  5. COMPUTER/NETWORK SUPPORT ASSISTANT The University Wisconsin -Milwaukee School of Continuing Education is seeking a qualified

    E-Print Network [OSTI]

    Saldin, Dilano

    Education is seeking a qualified student to assist with Network Administration and Computer Support Building at 161 W. Wisconsin Ave., in downtown Milwaukee. Job Description Assist Network Administrator and availability to: scetech@uwm.edu Network Administration and Computer Support School of Continuing Education

  6. Nuclear qualified in-containment electrical connectors and method of connecting electrical conductors

    DOE Patents [OSTI]

    Powell, J. G. (Clifton Park, NY)

    1991-01-01T23:59:59.000Z

    A nuclear qualified in-containment electrical connection comprises an insulated, sheathed instrument lead having electrical conductors extending from one end thereof to provide two exposed lead wires, a watertight cable having electrical conducting wires therein and extending from one end of the cable to provide two lead wires therefrom, two butt splice connectors each connecting the ends of respective ones of the lead wires from the instrument lead and cable, a length of heat shrinkable plastic tubing positioned over each butt splice connector and an adjacent portion of a respective lead wire from the cable and heat shrunk into position, a length of heat shrinkable plastic tubing on the end portion of the instrument lead adjacent the lead wires therefrom and heat shrunk thereon and a length of outer heat shrinkable plastic tubing extending over the end portion of the instrument lead and the heat shrinkable tubing thereon and over the butt splice connectors and a portion of the cable adjacent the cable lead lines, the outer heat shrinkable tubing being heat shrunk into sealing position on the instrument lead and cable.

  7. January 2006 UNL Mathematics Qualifying Exam 852/970 Do seven questions. Of these at least three should be from section A and at least three from

    E-Print Network [OSTI]

    Logan, David

    January 2006 UNL Mathematics Qualifying Exam 852/970 Do seven questions. Of these at least three} such that Pi is a path from si to ti. Question 3. Prove that every planar graph G has (G) 5. Question 4

  8. Using Qualified Energy Conservation Bonds (QECBs) to Fund a Residential Energy Efficiency Loan Program: Case Study on Saint Louis County, MO

    SciTech Connect (OSTI)

    Zimring, Mark

    2011-06-23T23:59:59.000Z

    Qualified Energy Conservation Bonds (QECBs) are federally-subsidized debt instruments that enable state, tribal, and local government issuers to borrow money to fund a range of qualified energy conservation projects. QECBs offer issuers very attractive borrowing rates and long terms, and can fund low-interest energy efficiency loans for home and commercial property owners. Saint Louis County, MO recently issued over $10 million of QECBs to finance the Saint Louis County SAVES residential energy efficiency loan program. The county's experience negotiating QECB regulations and restrictions can inform future issuers.

  9. Coordinator of Operations The University of Georgia is seeking a qualified candidate to serve as the Coordinator of Operations with the

    E-Print Network [OSTI]

    Arnold, Jonathan

    with the University of Georgia. The Archway Partnership has received funding from the Board of Regents to continueCoordinator of Operations The University of Georgia is seeking a qualified candidate to serve to bring the University of Georgia's expertise to communities and to facilitate community interaction

  10. Guidelines on Employment References Effective July 1, 1991, Florida Statute 768.095 provides qualified immunity from civil liability for employers who

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Guidelines on Employment References Effective July 1, 1991, Florida Statute 768.095 provides qualified immunity from civil liability for employers who disclose information relating to the job performance of former employees to the former employees' prospective employers. The statute reads in full: 768

  11. Qualifying Exams Writers List

    E-Print Network [OSTI]

    2014-10-03T23:59:59.000Z

    Wang. DasGupta Garofalo. Donnelly. Smith. Rice. Aug 2005. Dasin. Banuelos. Lipman. Wilkerson. Davis. Petrosyan. McClure. Jan 2005. Lempert. Neugebauer.

  12. Who qualifies for SAGE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (four preferred). Students with a quantitative background and some introduction to geophysics, though they need not be geophysics majors Math and physics majors, and other...

  13. Qualifying Energy Conservation Bonds

    E-Print Network [OSTI]

    Briggs, J.

    2013-01-01T23:59:59.000Z

    ESL-KT-13-12-39 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Allocated Utilized Arizona $ 67 mm $ 16 mm Arkansas $ 30 mm $ 0 mm California $381 mm $275 mm Colorado $ 51 mm $ 43 mm Florida $190 mm... $ 0 mm Georgia $100 mm $ 5 mm Illinois $134 mm $ 50 mm Kansas $ 29 mm $ 29 mm Louisiana $ 45 mm $ 30 mm Michigan $104 mm $ 11 mm Mississippi $ 30 mm $ 0 mm Oklahoma $ 38 mm $ 0 mm Washington $ 68 mm $ 40 mm TEXAS $252 mm $ 16...

  14. Cogeneration/Cogeneration - Solid Waste

    E-Print Network [OSTI]

    Pyle, F. B.

    1980-01-01T23:59:59.000Z

    This paper reviews the rationale for cogeneration and basic turbine types available. Special considerations for cogeneration in conjunction with solid waste firing are outlined. Optimum throttle conditions for cogeneration are significantly...

  15. Cogeneration/Cogeneration - Solid Waste 

    E-Print Network [OSTI]

    Pyle, F. B.

    1980-01-01T23:59:59.000Z

    This paper reviews the rationale for cogeneration and basic turbine types available. Special considerations for cogeneration in conjunction with solid waste firing are outlined. Optimum throttle conditions for cogeneration are significantly...

  16. Networking Qualifying Examination Computer Sciences

    E-Print Network [OSTI]

    Liblit, Ben

    Fleischmann, qui rend toujours de si grands services dans l'analyse industrielle du lait et dans les analyses

  17. Qualifying Exam Jerome E. Mitchell

    E-Print Network [OSTI]

    over ice sheet margins and mapped internal layers in polar firn. The Center for Remote Sensing of Ice experts to skip and misclassify them. The polar science community has developed brute force techniques problem and discuss optimization techniques for minimizing energy to improve boundary detection. 1 #12

  18. Algebra Qualifying Exam January 2007

    E-Print Network [OSTI]

    Passman, Donald S.

    is essential in A, and write B ess A, if and only if B X = 0 for all nonzero subgroups X of A. a. If B1 ess A1 and B2 ess A2, prove that (B1 B2) ess (A1 A2). (5 points) b. If B ess A, and B has no nonzero elements the additive group of rational numbers and suppose that Q ess A, for some abelian group A. Prove that Q = A. (3

  19. Cogeneration Planning

    E-Print Network [OSTI]

    Mozzo, M. A. Jr.

    cogeneration projects for its plants. Of concern to us are rapidly escalating electrical costs plus concern about the future of some utilities to maintain reserve capacity. Our review to date revolves around (1) obtaining low-cost reliable fuel supplies...

  20. If this leave of absence is due to your serious health condition, you will be required to present a release from your physician or other qualified health care provider authorizing you to return to work. If such release is not received,

    E-Print Network [OSTI]

    a release from your physician or other qualified health care provider authorizing you to return to work Mailing Address To Be Completed By the Health Care Provider (If you need a current job description please ask the employee) Name of Health Care Provider Specialty Address Signature Date Completed form should

  1. Cogeneration in Texas

    E-Print Network [OSTI]

    Halicki, T.

    1981-01-01T23:59:59.000Z

    As a result of suggestions made at the 1979 Public Utility Commission of Texas (PUCT) sponsored cogeneration conference, the Commission convened the 1980 Cogeneration Task Force. The Task Force was charged by a Commission Resolution with assisting...

  2. Cogeneration - A Utility Perspective

    E-Print Network [OSTI]

    Williams, M.

    1983-01-01T23:59:59.000Z

    Cogeneration has become an extremely popular subject when discussing conservation and energy saving techniques. One of the key factors which effect conservation is the utility viewpoint on PURPA and cogeneration rule making. These topics...

  3. Using Qualified Energy Conservation Bonds for Public

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Treasury (Treasury). The city leveraged 6.25 million of its QECB allocation to finance half of a 12.6 million initiative to upgrade the energy efficiency of City...

  4. Qualified Energy Conservation Bonds | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    can be used to fund capital expenditures on a variety of projects including: Reducing energy consumption in publically owned buildings Implementing green community programs...

  5. Oral Qualifying Exam Syllabus Nicholas Weininger

    E-Print Network [OSTI]

    codes, minimum-cost span- ning trees. Planarity: Euler's formula, Kuratowski's theorem. Coloring and spanning trees: basic properties, Menger's theorem, Max- Flow-Min-Cut theorem, Matrix-Tree Theorem, Prüfer probabilities, law of total probability, Chebyshev's inequality, Cherno#27; bound, coupling and stochastic

  6. Qualifying RPS State Export Markets (Rhode Island)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Rhode Island as eligible sources towards their RPS targets or goals. For specific...

  7. Qualifying RPS State Export Markets (South Carolina)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in South Carolina as eligible sources towards their RPS targets or goals. For specific...

  8. Qualifying RPS State Export Markets (New Hampshire)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in New Hampshire as eligible sources towards their RPS targets or goals. For specific...

  9. Qualifying RPS State Export Markets (Ohio)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Ohio as eligible sources towards their RPS targets or goals. For specific information...

  10. Qualifying RPS State Export Markets (Mississippi)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Mississippi as eligible sources towards their RPS targets or goals. For specific...

  11. Qualifying RPS State Export Markets (Maine)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Maine as eligible sources towards their RPS targets or goals. For specific...

  12. Qualifying RPS State Export Markets (Montana)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Montana as eligible sources towards their RPS targets or goals. For specific...

  13. Qualifying RPS State Export Markets (Minnesota)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Minnesota as eligible sources towards their RPS targets or goals. For specific...

  14. Qualifying RPS State Export Markets (Nebraska)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Nebraska as eligible sources towards their RPS targets or goals. For specific...

  15. Qualifying RPS State Export Markets (Georgia)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Georgia as eligible sources towards their RPS targets or goals. For specific...

  16. Qualifying RPS State Export Markets (New York)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in New York as eligible sources towards their RPS targets or goals. For specific...

  17. Qualifying RPS State Export Markets (Alabama)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Alabama as eligible sources towards their RPS targets or goals. For specific...

  18. Qualifying RPS State Export Markets (Connecticut)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Connecticut as eligible sources towards their RPS targets or goals. For specific...

  19. Qualifying RPS State Export Markets (Arkansas)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Arkansas as eligible sources towards their RPS targets or goals. For specific...

  20. Qualifying RPS State Export Markets (Oklahoma)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Oklahoma as eligible sources towards their RPS targets or goals. For specific...

  1. Qualifying RPS State Export Markets (Indiana)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Indiana as eligible sources towards their RPS targets or goals. For specific...

  2. Qualifying RPS State Export Markets (Illinois)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Illinois as eligible sources towards their RPS targets or goals. For specific...

  3. Qualifying RPS State Export Markets (Iowa)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Iowa as eligible sources towards their RPS targets or goals. For specific information...

  4. Qualifying RPS State Export Markets (Delaware)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Delaware as eligible sources towards their RPS targets or goals. For specific...

  5. Qualifying RPS State Export Markets (Maryland)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Maryland as eligible sources towards their RPS targets or goals. For specific...

  6. Qualifying RPS State Export Markets (Missouri)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Missouri as eligible sources towards their RPS targets or goals. For specific...

  7. Qualifying RPS State Export Markets (Louisiana)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Louisiana as eligible sources towards their RPS targets or goals. For specific...

  8. Qualifying RPS State Export Markets (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Pennsylvania as eligible sources towards their RPS targets or goals. For specific...

  9. Qualifying RPS State Export Markets (New Jersey)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in New Jersey as eligible sources towards their RPS targets or goals. For specific...

  10. Qualifying RPS State Export Markets (Kentucky)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Kentucky as eligible sources towards their RPS targets or goals. For specific...

  11. Oral Qualifying Exam Syllabus Fernando Louro

    E-Print Network [OSTI]

    systems in discrete and continuous time. Minimum­norm control of time­varying linear systems. Su. Control­Lyapunov functions for LTI systems. Realization theory for linear systems. Observers control of LQ systems. Optimal control using the Maximum Principle. Minor Topic: Asymptotics Asymptotic

  12. Oral Qualifying Exam Syllabus Fernando Louro

    E-Print Network [OSTI]

    systems in discrete and continuous time. Minimum-norm control of time-varying linear systems. Sufficient. Control-Lyapunov functions for LTI systems. Realization theory for linear systems. Observers control of LQ systems. Optimal control using the Maximum Principle. Minor Topic: Asymptotics Asymptotic

  13. Qualifying RPS Market States (Saskatchewan, Canada)

    Broader source: Energy.gov [DOE]

    This entry lists the states with RPS policies that accept generation located in Saskatchewan, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For specific...

  14. Qualifying RPS Market States (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    This entry lists the states with RPS policies that accept generation located in Ontario, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For specific...

  15. Qualifying RPS Market States (Manitoba, Canada)

    Broader source: Energy.gov [DOE]

    This entry lists the states with RPS policies that accept generation located in Manitoba, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For specific...

  16. Qualifying RPS Market States (Quebec, Canada)

    Broader source: Energy.gov [DOE]

    This entry lists the states with RPS policies that accept generation located in Quebec, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For specific...

  17. Qualifying RPS Market States (New Brunswick, Canada)

    Broader source: Energy.gov [DOE]

    This entry lists the states with RPS policies that accept generation located in New Brunswick, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For specific...

  18. Qualifying RPS Market States (Nova Scotia, Canada)

    Broader source: Energy.gov [DOE]

    This entry lists the states with RPS policies that accept generation located in Nova Scotia, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For specific...

  19. Qualifying RPS State Export Markets (West Virginia)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in West Virginia as eligible sources towards their RPS targets or goals. For specific...

  20. Transcript for Qualified Energy Conservation Bonds (QECBs) -...

    Broader source: Energy.gov (indexed) [DOE]

    RFP for an ESCO to come in and look at the project or establish a project through an energy audit and then the public entity will pick the ESCO. And the ESCO is going to...

  1. Qualifying RPS State Export Markets (New Mexico)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in New Mexico as eligible sources towards their RPS targets or goals. For specific...

  2. Vermont Standard Offer for Qualifying SPEED Resources

    Broader source: Energy.gov [DOE]

    '''''Note: The first RFP for the new competitive award process has passed; applications were accepted through May 1, 2013. See the program web site for information regarding future solicitations. '...

  3. BUILDING TECHNOLOGIES PROGRAM Tax Deduction Qualified Software

    Broader source: Energy.gov (indexed) [DOE]

    interior and exterior lighting controls, such as occupancy sensors, time-clocks, and daylight-sensitive photocells for stepped or continuous dimming of electric lighting and the...

  4. Algebra'Qualifying Examination January 2003

    E-Print Network [OSTI]

    Wang, Quidong

    C. Show that cn>-- 1. IB. Prove or give a counterexample: if A; is a field, n a positive integer is not irreducible over any field F. Determine its Galois group over Q and also over the field F --F8 of 8 elements has torsion subgroup of order mi and torsion-free rank m, and that A% has torsion subgroup of order

  5. Qualifying RPS State Export Markets (North Carolina)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in North Carolina as eligible sources towards their RPS targets or goals. For specific...

  6. Qualifying RPS State Export Markets (North Dakota)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in North Dakota as eligible sources towards their RPS targets or goals. For specific...

  7. Qualifying RPS State Export Markets (Massachusetts)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Massachusetts as eligible sources towards their RPS targets or goals. For specific...

  8. Qualifying RPS State Export Markets (Kansas)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Kansas as eligible sources towards their RPS targets or goals. For specific...

  9. Qualifying RPS State Export Markets (Michigan)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Michigan as eligible sources towards their RPS targets or goals. For specific...

  10. Qualifying Facility Wheeling Task Force-- Status Report

    E-Print Network [OSTI]

    Panjavan, S.

    . P.O. Box 1188 Houston, TX 77001 Mr. Dan Hill Coastal Refining Company Nine Greenway Plaza Houston, TX 77046 PUCT ELECTRIC DIVISION STAFF MEMBERS 7800 Shoal Creek Blvd., Suite 400n Austin, TX 78757 Mr. Hal Hughes, Manager of Engineering...

  11. Qualifying Wood Stove Deduction | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCODepartment ofRecipientsandPublicPump SystemsPutting

  12. Qualifying Wood Stove Deduction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to analysis3 News7:ThomasA

  13. Hiring Qualified Contractors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar PowerCommercial Cold Climate

  14. Hiring Qualified Contractors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p a aHilton Alexandria MarkHiring

  15. Cogeneration Project Analysis Update

    E-Print Network [OSTI]

    Robinson, A. M.; Garcia, L. N.

    diverse factors, such as, but no limited to: Fuel Considerations, Heat System Analysis, Electric Power Considerations, Key Technical Project Considerations, and Economic Analysis. INTRODUCTION The cogeneration systems being developed for industrial... power marched upward at a higher rate than fuel, capital equipment cost, and the prime interest rate. Typical Cogeneration System One system has been chosen as typical. This is one of the cogeneration systems which have proliferated over the past...

  16. Cogeneration Development and Market Potential in China

    E-Print Network [OSTI]

    Yang, F.

    2010-01-01T23:59:59.000Z

    China's Power Industry," Cogeneration Technolo- gy, V o l .tion Development," Cogeneration Technol- ogy, V o l . 41, NE Y NATIONAL LABORATORY Cogeneration Development and Market

  17. Biomass cogeneration. A business assessment

    SciTech Connect (OSTI)

    Skelton, J.C.

    1981-11-01T23:59:59.000Z

    This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  18. A Utility-Affiliated Cogeneration Developer Perspective

    E-Print Network [OSTI]

    Ferrar, T. A.

    This paper will address cogeneration from a utility-affiliated cogeneration developer perspective on cogeneration as it relates to the development and consumption of power available from a cogeneration project. It will also go beyond...

  19. Industrial Cogeneration Application

    E-Print Network [OSTI]

    Mozzo, M. A.

    INDUSTRIAL COGENERATION APLLICATION Martin A. Mozzo, Jr., P.E. American Standard, Inc. New York,New York ABSTRACT Cogeneration is the sequential use of a single fuel source to generate electrical and thermal energy. It is not a new technology... been reviewing the potential of cogeneration at some of our key facilities. Our plan is to begin with a Pilot Plant 500 KW steam turbine generator to be install~d and operating in 1986. Key points to be discuss~d in the paper are: 1...

  20. Steam Turbine Cogeneration 

    E-Print Network [OSTI]

    Quach, K.; Robb, A. G.

    2008-01-01T23:59:59.000Z

    Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

  1. Cogeneration and its regulations

    SciTech Connect (OSTI)

    Casten, T.R.; Ross, H.E.

    1981-03-26T23:59:59.000Z

    In the near term, regulators, utility managements, and legislators will grapple with numerous issues surrounding the development of cogeneration projects as sources of electric power. The Federal Energy Regulatory Commission predicts that 12,000 MW of new cogeneration plants will be constructed during the 1980s, and all 50 states are in the process of implementing new regulations pursuant to the Public Utility Regulatory Policies Act. The US utility system's overall fuel efficiency of 29% offers rich opportunities to conserve fuel, reduce costs, and decrease pollution via cogeneration. Policymakers should stop viewing utilities simply as efficiency tax collectors on the one hand and opponents of innovation on the other. In addition to mothballing inefficient central utility stations, the US must rapidly deploy district heating with cogenerated heat; policymakers should look beyond the obsolete stream systems and encourage development of the high-temperature hot-water systems so successful in Europe.

  2. Industrial - Utility Cogeneration Systems

    E-Print Network [OSTI]

    Harkins, H. L.

    1979-01-01T23:59:59.000Z

    Cogeneration may be described as an efficient method for the production of electric power in conjunction with process steam or heat which optimizes the energy supplied as fuel to maximize the energy produced for consumption. In a conventional...

  3. Cogeneration Rules (Arkansas)

    Broader source: Energy.gov [DOE]

    The Cogeneration Rules are enforced by the Arkansas Public Service Commission. These rules are designed to ensure that all power producers looking to sell their power to residents of Arkansas are...

  4. Cogeneration System Design Options

    E-Print Network [OSTI]

    Gilbert, J. S.

    The commercial or industrial firm contemplating cogeneration at its facilities faces numerous basic design choices. The possibilities exist for fueling the system with waste materials, gas, oil, coal, or other combustibles. The choice of boiler...

  5. Steam Turbine Cogeneration

    E-Print Network [OSTI]

    Quach, K.; Robb, A. G.

    2008-01-01T23:59:59.000Z

    Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

  6. Cogeneration Economics and Financial Analysis

    E-Print Network [OSTI]

    Kusik, C. L.; Golden, W. J.; Fox, L. K.

    1983-01-01T23:59:59.000Z

    government for industrial cogeneration. This paper discusses a variety of cogeneration systems applied at specific sites drawn from the major industrial sectors - food, textiles, pulp and paper, chemicals, and petroleum refining. Various technologies...

  7. Regulatory Requirements for Cogeneration Projects

    E-Print Network [OSTI]

    Curry, K. A., Jr.

    1982-01-01T23:59:59.000Z

    for cogeneration, therefore, the discussion will be limited to those portions of each act that affect cogenerators. Since the original cogeneration legislation was passed in 1978 and implemented by the Federal Energy Regulatory Commission (FERC) in 1980... major pieces of legislation that impact cogeneration as well as an outline of the major provisions obtain ed in the Department of Energy Federal Energy Regulatory Commission final rule implementing Section 201 and Section 210 of PURPA. Public Uti...

  8. Baytown Cogeneration Project

    E-Print Network [OSTI]

    Lorenz, M. G.

    2007-01-01T23:59:59.000Z

    The Baytown Cogeneration Project installed a GE 7FA gas turbine generator that produces 160 MW of electricity and 560-klB/hr of superheated 1500-psig steam. All of the steam and electricity are consumed by the ExxonMobil Refinery & Chemical Plant...

  9. Baytown Cogeneration Project 

    E-Print Network [OSTI]

    Lorenz, M. G.

    2007-01-01T23:59:59.000Z

    The Baytown Cogeneration Project installed a GE 7FA gas turbine generator that produces 160 MW of electricity and 560-klB/hr of superheated 1500-psig steam. All of the steam and electricity are consumed by the ExxonMobil Refinery & Chemical Plant...

  10. DISTRIBUTED GENERATION AND COGENERATION POLICY

    E-Print Network [OSTI]

    Director EFFICIENCY, RENEWABLES & DEMAND ANALYSIS DIVISION B.B. Blevins Executive Director DISCLAIMER capacity targets. KEYWORDS Distributed generation, cogeneration, photovoltaics, wind, biomass, combined

  11. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01T23:59:59.000Z

    and Electrical Cogeneration ……………………. …………… 16 2.4.OptimalELECTRICAL AND THERMAL COGENERATION A thesis submitted inFOR ELECTRICAL AND THERMAL COGENERATION A solar tracker and

  12. Superposition, A Unique Cogeneration Opportunity 

    E-Print Network [OSTI]

    Viar, W. L.

    1985-01-01T23:59:59.000Z

    Industrial steam systems provide opportunities for the economic cogeneration of heat energy and shaft power. Progressive plant owners and managers have utilized these potentials. Too often opportunities are not exploited. A plant that is expanding...

  13. A Regulator's View of Cogeneration

    E-Print Network [OSTI]

    Shanaman, S. M.

    1982-01-01T23:59:59.000Z

    of the total national electric generation. In view of the energy requirements of Pennsylvania's industry and the impact of increasing energy costs on employment the Commission directed its technical staff to investigate the potential for industrial cogeneration...

  14. Electric Rate Alternatives to Cogeneration

    E-Print Network [OSTI]

    Sandberg, K. R. Jr.

    "ELECTRIC RATE ALTERNATIVES TO COGENERATION" K. R. SANDBERG, JR. INDUSTRIAL ACCOUNTS MANAGER - TEXAS GULF STATES UTILITIES COMPANY BEAUMONT, TEXAS ABSTRACT This paper discusses electric rate slternatives to cogeneration for the industrisl... PERSPECTIVE Gulf States Utilities was incorporated in 1925 and is primarily in the business of generating. transmitting and distributing electricity to 555.000 customers in southeast Texas and south Louisiana. The service area extends 350 miles westward...

  15. Cogeneration: An Industrial Steam and Power Option

    E-Print Network [OSTI]

    Orlando, J. A.; Stewart, M. M.; Roberts, J. R.

    Industrial facilities of all sizes have the ability to reduce and better control both power and steam costs with a cogeneration system. Unlike the larger systems that sell almost all of the cogenerated power to a regulated electric utility...

  16. Cogeneration Can Add To Your Profits

    E-Print Network [OSTI]

    Gerlaugh, H. E.

    1983-01-01T23:59:59.000Z

    for installing a cogeneration plant. In this paper, the performance and cost characteristics of various types of cogeneration plants, with emphasis on gas turbine plants, will be described together with their matching to the site energy requirements...

  17. EPRI Cogeneration Models -- DEUS and COPE

    E-Print Network [OSTI]

    Mauro, R.; Hu, S. D.

    1983-01-01T23:59:59.000Z

    In the Fall of 1978, the Electric Power Research Institute (EPRI) initiated a program for the design and evaluation of alternate cogeneration systems. The primary objective of the study is to analyze the overall system value of cogeneration. A...

  18. Small Power Production and Cogeneration (Maine)

    Broader source: Energy.gov [DOE]

    Maine's Small Power Production and Cogeneration statute says that any small power producer or cogenerator may generate or distribute electricity through his private property solely for his own use,...

  19. The Developer's Role in the Cogeneration Business

    E-Print Network [OSTI]

    Whiting, M. Jr.

    Although cogeneration technology is well-established, the business is new and still taking shape. Cogeneration projects involve a diverse mix of organizations, including equipment suppliers, engineering and construction firms, fuel suppliers...

  20. January 10, 2012, Qualifying Official Training Slides - Sandia...

    Broader source: Energy.gov (indexed) [DOE]

    Training Patty Wagner Manager Manager SSO TQP QO Training Revision 5, January 10, 2012 1 Overview Overview * Why are you here? Why are you here? * What are your duties? L L d *...

  1. Qualifying RPS State Export Markets (District of Columbia)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in District of Columbia as eligible sources towards their RPS targets or goals. For...

  2. TQP Qualifying Official Training Approaches- Nevada Site Office

    Broader source: Energy.gov [DOE]

    A QO is an individual who has the technical experience and/or education in a particular technical area and who, with the necessary training, is authorized to sign qualification cards for designated competencies.

  3. Qualifying RPS Market States (Prince Edward Island, Canada)

    Broader source: Energy.gov [DOE]

    This entry lists the states with RPS policies that accept generation located in Prince Edward Island, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For...

  4. Qualifying RPS Market States (Newfoundland and Labrador, Canada)

    Broader source: Energy.gov [DOE]

    This entry lists the states with RPS policies that accept generation located in Newfoundland and Labrador, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. ...

  5. PHD QUALIFYING EXAM PROCEDURES IN THE BIOENGINEERING DEPARTMENT

    E-Print Network [OSTI]

    Quake, Stephen R.

    , or as Research Assistant). The student must have a graduate Stanford GPA of 3.5 to be eligible for the exam imaging, computer graphics, mathematics, robotics, polymer physics). The student should discuss

  6. TQP Qualifying Official Training Approaches- Idaho Operations Office

    Broader source: Energy.gov [DOE]

    A QO is an individual who has the technical experience and/or education in a particular technical area and who, with the necessary training, is authorized to sign qualification cards for designated competencies.

  7. DOE Qualified List of ESCO Application Cover Letter

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services Supervisor U.S. Department of Energy Federal Energy Management Program, EE-5S 1000 Independence Avenue, SW Washington, DC 20585-0121 ATTN: QL Please note, that your...

  8. Chicago Office (SC-CH) Integrated Support Center Qualifying Official...

    Broader source: Energy.gov (indexed) [DOE]

    discussions on the printed Standard or use another method at your discretion Keep in mind that your at your discretion. Keep in mind that your notes may be viewed by an auditor....

  9. TQP Qualifying Official Training Approaches- NNSA Production Office

    Broader source: Energy.gov [DOE]

    A QO is an individual who has the technical experience and/or education in a particular technical area and who, with the necessary training, is authorized to sign qualification cards for designated competencies.

  10. TQP Qualifying Official Training Approaches- Sandia Site Office

    Broader source: Energy.gov [DOE]

    A QO is an individual who has the technical experience and/or education in a particular technical area and who, with the necessary training, is authorized to sign qualification cards for designated competencies.

  11. Department of Energy's Qualified List of Energy Service Companies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    101 Lakewood, CO 80401 P: 303-928-8500 F: 303-233-2418 E-mail: amparo.pazos@abengoa.com Web site: www.abengoasolar.com ABM Government Services, a wholly owned subsidiary of ABM...

  12. TQP Qualifying Official Training Approaches- Office of Science, SC-3

    Broader source: Energy.gov [DOE]

    A QO is an individual who has the technical experience and/or education in a particular technical area and who, with the necessary training, is authorized to sign qualification cards for designated competencies.

  13. TQP Qualifying Official Training Approaches- Savannah River Operations Office

    Broader source: Energy.gov [DOE]

    A QO is an individual who has the technical experience and/or education in a particular technical area and who, with the necessary training, is authorized to sign qualification cards for designated competencies.

  14. TQP Qualifying Official Training Approaches- NNSA Service Center

    Broader source: Energy.gov [DOE]

    A QO is an individual who has the technical experience and/or education in a particular technical area and who, with the necessary training, is authorized to sign qualification cards for designated competencies.

  15. Breakthrough in Bioenergy: American Process Sells First RIN-qualified

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future of CSP: Challenges and OpportunitiesPitch

  16. Operations Risk Management by Planning Optimally the Qualified ...

    E-Print Network [OSTI]

    2007-07-31T23:59:59.000Z

    with the volume of transaction demand and with the capacity of work provided by ... †University of Edinburgh, JCMB, Kings Building, West Mains Road, UK, .... model, which are equality constraints with variables on both sides of the equations.

  17. DOE Qualified Energy Service Companies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009)|Publishes RoadmapLightingProject

  18. DOE Qualified List of ESCOs Application Forms | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009)|Publishes

  19. Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to analysis3 News7:Thomas

  20. Qualified Energy Conservation Bond (QECB) Update: New Guidance from the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev nextEnergyCanadian HydropowerU.S. Department of

  1. Qualified Specialists in Industrial Assessment Tools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev nextEnergyCanadian HydropowerU.S. Department

  2. Using Qualified Energy Conservation Bonds for Public Building Upgrades:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAXFact SheetConditionsOwnersUsing

  3. TQP Qualifying Official Training Approaches - Office of Science, Chicago |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department of EnergyFOR IMMEDIATETMACWins L| Department

  4. Systems and Networking Ph.D. Qualifier Exam Sample Answers, Spring 2007 Systems and Networking Ph.D. Qualifier Exam

    E-Print Network [OSTI]

    Hou, Y. Thomas

    : Failure-Oblivious Computing Rinard et al. propose failure-oblivious computing as a technique for surviving. The effect the error will be limited to truncating the line in the logs. Probably, appending some garbage

  5. Data:60244d05-cdf2-4dfc-8985-9d436828c873 | Open Energy Information

    Open Energy Info (EERE)

    Commercial Description: Availability: This schedule is available to customers with cogeneration andor small power production facilities which qualify under the commission's...

  6. Data:95d854c5-30e4-4268-8295-45b55e1719a2 | Open Energy Information

    Open Energy Info (EERE)

    & Electric Co Effective date: End date if known: Rate name: LQF - Large Capacity Cogeneration and Small Power Production Qualifying Facilities Sector: Description: Source or...

  7. Data:D51f416f-9ec2-45dc-af8a-81e714aebbf2 | Open Energy Information

    Open Energy Info (EERE)

    Commercial Description: Availability: This schedule is available to customers with cogeneration andor small power production facilities which qualify under the commission's...

  8. Data:Fdf48ae2-53ac-413b-9e71-8d3f566442e1 | Open Energy Information

    Open Energy Info (EERE)

    Service Minimum Demand Charge) Sector: Industrial Description: Customers with cogeneration andor small power production facilities which qualify under Section 210 of the...

  9. Data:F96b42f3-f536-4df3-9bd4-8871e9e3d5c6 | Open Energy Information

    Open Energy Info (EERE)

    Commercial Description: Availability: This schedule is available to customers with cogeneration andor small power production facilities which qualify under the commission's...

  10. Data:81913c11-d1e4-4fcb-b360-3b25cfa5cf19 | Open Energy Information

    Open Energy Info (EERE)

    service at transmission, substation and primary level service for qualifying cogeneration facilities. Facilities Charge, per kW of facilities demand: 5.50 Wholesale Demand...

  11. Data:94eed7a8-c03d-446c-ab38-09909e8e3de5 | Open Energy Information

    Open Energy Info (EERE)

    service at transmission, substation and primary level service for qualifying cogeneration facilities. Facilities Charge, per kW of facilities demand: 1.75 Wholesale Demand...

  12. Data:E708e6eb-22a5-4460-b954-099e4aee83a9 | Open Energy Information

    Open Energy Info (EERE)

    Service Minimum Demand Charge) Sector: Industrial Description: Customers with cogeneration andor small power production facilities which qualify under Section 210 of the...

  13. Data:6fbc445b-a637-408d-a130-8a4f60db51ce | Open Energy Information

    Open Energy Info (EERE)

    service at transmission, substation and primary level service for qualifying cogeneration facilities. Facilities Charge, per kW of facilities demand: 5.75 Wholesale Demand...

  14. Data:C1344d67-c952-4af4-aaa7-ca224611f186 | Open Energy Information

    Open Energy Info (EERE)

    20110901 End date if known: Rate name: Schedule 43 - Small Power Production or Cogeneration (100 KW or Less) Sector: Description: AVAILAE3LE Available only to qualifying small...

  15. An Assessment of Economic Analysis Methods for Cogeneration Systems

    E-Print Network [OSTI]

    Bolander, J. N.; Murphy, W. E.; Turner, W. D.

    1985-01-01T23:59:59.000Z

    Cogeneration feasibility studies were conducted for eleven state agencies of Texas. A net present value (NPV) analysis was used to evaluate candidate cogeneration systems and select the optimum system. CELCAP, an hour-by-hour cogeneration analysis...

  16. A Feasibility Study of Fuel Cell Cogeneration in Industry

    E-Print Network [OSTI]

    Phelps, S. B.; Kissock, J. K.

    Up until now, most of the literature on fuel cell cogeneration describes cogeneration at commercial sites. In this study, a PC25C phosphoric acid fuel cell cogeneration system was designed for an industrial facility and an economic analysis...

  17. Industrial Plant Objectives and Cogeneration System Development

    E-Print Network [OSTI]

    Kovacik, J. M.

    1983-01-01T23:59:59.000Z

    cogen eration facility. APPLICATION CONSIDERATIONS FOR COGENERATION CYCLES Cogeneration is the term popularly used to describe energy supply systems where turbines gene rate power (kW or hpj while providing thermal energy for use in process areas... HEAT 15% 48% BOILER CONOENSER ASSOC. LOSSES LOSSES FIG. 2 - FUEL UTILIZATION EFFECTIVENESS The three types of topping cogeneration cycles usually encountered in industrial practice are steam turbine, gas turbine, and combined cycles...

  18. Cogeneration- The Rest of the Story

    E-Print Network [OSTI]

    Gilbert, J. S.

    COGENERATION - THE REST OF THE STORY JOEL S. GILBERT, P.E. Director, Energy Group Dames & Moore Atlanta, Georgia ABSTRACI Everyone is praising the daylights out of cogeneration these days. And while it may be the best energy system... have professionalism, ethics and car gone? Why is it that only five of the past 100 cogeneration evaluations we reVIewed were conservative and fair representations? This paper illustrates a step-by-step approach to checking the accuracy of a...

  19. Design and Evaluation of Alternative Cogeneration Systems 

    E-Print Network [OSTI]

    Mauro, R. L.; Hu, S. D.

    1982-01-01T23:59:59.000Z

    in formation on cogeneration. The utility, industry and government representatives at the 1'10rkshop strongly agreed on the following points: (1) ? "Since technical and economic aspects of dual energy use are site-specific, it makes Iittle sense... by Synergic Resources Corp. EUCT INDUSTRIAL APPLICATIONS - COGENERATION Fig. 1 Overview of Evaluation of Alternate Technologies for Dual Energy Use Systems Table lA CHARACTERISTICS OF COGENERATION SYSTEMS STUDIED ~or,"" AlellCAN EMU...

  20. Sweet-Talking the Climate? Evaluating Sugar Mill Cogeneration and Climate Change Financing in India

    E-Print Network [OSTI]

    Ranganathan, Malini; Haya, Barbara; Kirpekar, Sujit

    2005-01-01T23:59:59.000Z

    2004).   Bagasse  Cogeneration  ??  Global  Review  and ?Promotion  of  biomass  cogeneration  with  power  export WADE  2004.   Bagasse  Cogeneration  –  Global  Review  and 

  1. Cogeneration development and market potential in China

    SciTech Connect (OSTI)

    Yang, F.; Levine, M.D.; Naeb, J. [Lawrence Berkeley Lab., CA (United States); Xin, D. [State Planning Commission of China, Beijing, BJ (China). Energy Research Inst.

    1996-05-01T23:59:59.000Z

    China`s energy production is largely dependent on coal. China currently ranks third in global CO{sub 2} emissions, and rapid economic expansion is expected to raise emission levels even further in the coming decades. Cogeneration provides a cost-effective way of both utilizing limited energy resources and minimizing the environmental impacts from use of fossil fuels. However, in the last 10 years state investments for cogeneration projects in China have dropped by a factor of 4. This has prompted this study. Along with this in-depth analysis of China`s cogeneration policies and investment allocation is the speculation that advanced US technology and capital can assist in the continued growth of the cogeneration industry. This study provides the most current information available on cogeneration development and market potential in China.

  2. Cogeneration Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place:Wind EnergyCieloClydeCogeneration

  3. Petroleum Coke: A Viable Fuel for Cogeneration 

    E-Print Network [OSTI]

    Dymond, R. E.

    1992-01-01T23:59:59.000Z

    . Increasing environmental concerns could disrupt historic markets and threaten coker operations. This would create opportunities for alternate end-uses such as cogeneration projects. The Pace Consultants Inc. continuously monitors and reports on the petroleum...

  4. Evaluating Sites for Industrial Cogeneration in Chicago

    E-Print Network [OSTI]

    Fowler, G. L.; Baugher, A. H.

    1982-01-01T23:59:59.000Z

    and hospital complexes; and new, densely populated residential developments that have large thermal and electric demands. Potential sites have been evaluated as part of a project to encourage industrial cogeneration applications in Chicago. Energy...

  5. Design Considerations for Large Industrial Cogeneration Systems

    E-Print Network [OSTI]

    Kovacik, J. M.

    1979-01-01T23:59:59.000Z

    available to fully exploit this technology be fully understood. This paper will review the considerations required to develop meaningful cogeneration systems. Turbine types, ratings, steam conditions and other parameters will be discussed and their impact...

  6. Heat Recovery Design Considerations for Cogeneration Systems 

    E-Print Network [OSTI]

    Pasquinelli, D. M.; Burns, E. D.

    1985-01-01T23:59:59.000Z

    The design and integration of the heat recovery section, which includes the steam generation, auxiliary firing, and steam turbine modules, is critical to the overall performance and economics of cogeneration, systems. In gas turbine topping...

  7. Heat Recovery Design Considerations for Cogeneration Systems

    E-Print Network [OSTI]

    Pasquinelli, D. M.; Burns, E. D.

    The design and integration of the heat recovery section, which includes the steam generation, auxiliary firing, and steam turbine modules, is critical to the overall performance and economics of cogeneration, systems. In gas turbine topping...

  8. EPRI Cogeneration Models -- DEUS and COPE 

    E-Print Network [OSTI]

    Mauro, R.; Hu, S. D.

    1983-01-01T23:59:59.000Z

    portion of the study involved the development of a simulation model for evaluation of cogeneration systems on a site specific basis. Dual Energy Use Systems (DEUS) model contains an extensive data base with which to cost and size many different...

  9. Management decisions for cogeneration : a survey analysis

    E-Print Network [OSTI]

    Radcliffe, Robert R.

    1982-01-01T23:59:59.000Z

    This study explores the underlying factors in the decision by private, private non-profit, and public sector facility owners to invest in cogeneration technology. It employs alpha factor analysis techniques to develop ...

  10. Management decisions for cogeneration : executive summary

    E-Print Network [OSTI]

    Radcliffe, Robert R.

    1982-01-01T23:59:59.000Z

    This report summarizes two interdependent studies which explore the underlying factors in the decision by private, private non-profit, and public sector facility owners to invest in cogeneration technology. They employ ...

  11. The Integration of Cogeneration and Space Cooling

    E-Print Network [OSTI]

    Phillips, J.

    1987-01-01T23:59:59.000Z

    Cogeneration is the production of electrical and thermal energy from a single fuel source. In comparison, electric power generation rejects the useful heat energy into lakes or other heat sinks. Electric generation alone provides approximately 30...

  12. Design Considerations for Large Industrial Cogeneration Systems 

    E-Print Network [OSTI]

    Kovacik, J. M.

    1979-01-01T23:59:59.000Z

    available to fully exploit this technology be fully understood. This paper will review the considerations required to develop meaningful cogeneration systems. Turbine types, ratings, steam conditions and other parameters will be discussed and their impact...

  13. Absorption Cooling Optimizes Thermal Design for Cogeneration

    E-Print Network [OSTI]

    Hufford, P. E.

    1986-01-01T23:59:59.000Z

    Contrary to popular concept, in most cases, thermal energy is the real VALUE in cogeneration and not the electricity. The proper consideration of the thermal demands is equal to or more important than the electrical demands. High efficiency two...

  14. Coal-Fired Fluidized Bed Combustion Cogeneration

    E-Print Network [OSTI]

    Thunem, C.; Smith, N.

    COAL-FIRED FLUIDIZED BED COMBUSTION COGENERATION Cabot Thunem, P.E Norm Smith, P.E. Stanley Consultants, Inc. Muscatine, Iowa ABSTRACT The availability of an environmentally accep table multifuel technology, such as fluidized bed... combustion, has encouraged many steam producers/ users to investigate switching from oil or gas to coal. Changes in federal regulations encouraging cogeneration have further enhanced the economic incentives for primary fuel switching. However...

  15. Cogeneration Considerations in the 1980's 

    E-Print Network [OSTI]

    Kovacik, J. M.

    1980-01-01T23:59:59.000Z

    fired industrial using noncondensing turbines to co fuel supplies. generate power prior to delivery of steam to the STEAM TURBINE GAS TURBINE POWER COGENERATION COGENERATION GENERATION SYSTEM SYSTEM ?1% 2% 15% OTHER BOILER 84% 75% POWER POWER... condensing steam turbine cycle based on the steam conditions and feedwater heating cycle noted. GAS TURBINE CYCLES Gas turbine cycles provide the opportunity to generate a larger power output per unit of heat re quired in process relative...

  16. Combined Cycle Cogeneration at NALCO Chemical

    E-Print Network [OSTI]

    Thunem, C. B.; Jacobs, K. W.; Hanzel, W.

    centrifugal chilling capacity expansion were integrated into the model. The gas turbine selection procedure is out lined. Bid evaulation procedure involved a life cycle cost comparison wherein the bid specification responses for each model turbine were... ~ STEAM USE - LB/HR Figure 1 ? NALCO CHEMICAL COMPANY, NAPERVILLE FACILITIES STEAM USE PROFILE Cogeneration Approach Three modes of cogeneration are typically available. These are steam cycle, gas turbine, and reciprocating engine. Preliminary...

  17. Cogeneration using a thermionic combustor

    SciTech Connect (OSTI)

    Miskolczy, G.; Lieb, D.

    1982-08-01T23:59:59.000Z

    Thermionic energy conversion is well adapted to cogeneration with high temperature processes which require direct heating. Such processes are found in the metals, glass and petroleum industries. A case study has been made for applying thermionic energy converters to a walking beam steel slab reheat furnace. The objective is to replace the present burners with thermionic combustors which provide electricity while supplying direct heat at the same temperature and heat release conditions as the original burners. The combustor utilizes a thermionic converter design which has demonstrated stable output for long periods using a natural gas burner. Combustion air is used to cool the collectors. A computer program was formulated to facilitate the analysis of the thermionic combustor. The design of the thermionic combustor is described. The performance of the thermionic modules is calculated based on varying furnace production rates.

  18. The Role of Feasibility Analysis in Successful Cogeneration 

    E-Print Network [OSTI]

    Wulfinghoff, D. R.

    1986-01-01T23:59:59.000Z

    market considerations leave potential designers and owners unaware of the variety of problems that can cause failure of cogeneration systems or reduce their profitability. Studies of operating and failed cogeneration plants show that feasibility analyses...

  19. Advanced Cogeneration Control, Optimization, and Management: A Case Study 

    E-Print Network [OSTI]

    Hinson, F.; Curtin, D.

    1988-01-01T23:59:59.000Z

    The performance of cogeneration power plants can now be assessed on line in real time using a distributed microprocessor-based data acquisition and control system. A representative implementation is described for cogeneration power in a food...

  20. TWO-PHASE FLOW TURBINE FOR COGENERATION, GEOTHERMAL,

    E-Print Network [OSTI]

    TWO-PHASE FLOW TURBINE FOR COGENERATION, GEOTHERMAL, SOLAR AND OTHER APPLICATIONS Prepared For REPORT (FAR) TWO-PHASE FLOW TURBINE FOR COGENERATION, GEOTHERMAL, SOLAR AND OTHER APPLICATIONS EISG://www.energy.ca.gov/research/index.html. #12;Page 1 Two-Phase Flow Turbine For Cogeneration, Geothermal, Solar And Other Applications EISG

  1. Large-Scale Eucalyptus Energy Farms and Power Cogeneration1

    E-Print Network [OSTI]

    Standiford, Richard B.

    Large-Scale Eucalyptus Energy Farms and Power Cogeneration1 Robert C. Noronla2 The initiation of a large-scale cogeneration project, especially one that combines construction of the power generation supplemental fuel source must be sought if the cogeneration facility will consume more fuel than

  2. Electrical Cost Reduction Via Steam Turbine Cogeneration

    E-Print Network [OSTI]

    Ewing, T. S.; Di Tullio, L. B.

    ELECTRICAL COST REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used... to replace pressure reducing valves with turbine generator sets in applications with flows as low as 4000 pounds of steam per hour. These systems produce electricity for $0.01 to $.02 per kWh (based on current costs of gas and oil); system cost is between...

  3. Cogenerating Photovoltaic and Thermal Solar Collector

    E-Print Network [OSTI]

    Su, Xiao

    · Solar Energy and Alternative Energy can contribute to the energy supply ­ Renewable, doesn't emitCogenerating Photovoltaic and Thermal Solar Collector Jinny Rhee and Jim Mokri COE Faculty Development Grant 9/26, 2008 #12;Motivation · Many Contemporary Applications use power and heat ­ Power

  4. Fundamentals of a Third-Party Cogeneration Project

    E-Print Network [OSTI]

    Grantham, F.; Stovall, D.

    ----------------- FUNDAMENTALS OF A THIRD-PARTY COGENERATION PROJECT Frank. Grantham and Darrell Stovall Time Energy Systems, Inc., Houston, Texas ABSTRACT There is an increasing number of 2-10 ~W cogeneration projects involving retrofits... at institutional and industrial installations. This type of project requires that the cogeneration equipment be (al designed and sized to match the electrical and thermal usage of the facility and (b) retrofitted or integrated physically with the facility...

  5. The Role of Feasibility Analysis in Successful Cogeneration

    E-Print Network [OSTI]

    Wulfinghoff, D. R.

    THE ROLE OF FEASIBILITY ANALYSIS IN SUCCESSFUL COGENERATION Donald R. Wulfinghoff, P.E. Wulfinghoff Energy Services, Inc. Wheaton, ABSTRACT Although the energy crisis 'has given new impetus to cogeneration, many of the considerations... that led to its decline during the 20th century still remain. The long hiatus of cogeneration, its reintroduction in new forms, and the emergence of new market considerations leave potential designers and owners unaware of the variety of problems...

  6. Alternate Energy Production, Cogeneration, and Small Hydro Facilities (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation aims to encourage the development of alternative energy, cogeneration, and small hydropower facilities. The statute requires utilities to enter into long-term contracts with these...

  7. argayash cogeneration plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    share a concern for other non-cogeneratingcustomers and the protect... Williams, M. 23 Simulation and optimization of cogeneration power plant operation using an Energy...

  8. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01T23:59:59.000Z

    significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy,for efficient energy production. Solar thermal plants, such

  9. Cogeneration handbook for the petroleum refining industry. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1984-02-01T23:59:59.000Z

    This Handbook deals only with industrial cogeneration, that is, simultaneous production of both heat and electricity at the industrial plant site. The cogenerator has the option of either selling all cogenerated power to the utility while simultaneously purchasing power to satisfy his plant demand, or directly supplying the plant demand with cogenerated power, thus displacing utility-supplied power. This Handbook provides the refinery plant manager or company energy coordinator with a framework for making a preliminary assessment of the feasibility and viability of cogeneration at a particular plant. The handbook is intended to provide an understanding of the potential of several standardized cogeneration systems, as well as their limitations. However, because the decision to cogenerate is very site specific, the handbook cannot provide all of the answers. It does attempt, however, to bring to light the major issues that should be addressed in the decision-making process. The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. 39 figures, 37 tables.

  10. Black liquor gasifier/gas turbine cogeneration

    SciTech Connect (OSTI)

    Consonni, S. [Politecnico di Milano (Italy). Dept. di Energetica; Larson, E.D.; Keutz, T.G. [Princeton Univ., NJ (United States); Berglin, N. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Heat and Power Technology

    1998-07-01T23:59:59.000Z

    The kraft process dominates pulp and paper production worldwide. Black liquor, a mixture of lignin and inorganic chemicals, is generated in this process as fiber is extracted from wood. At most kraft mills today, black liquor is burned in Tomlinson boilers to produce steam for on-site heat and power and to recover the inorganic chemicals for reuse in the process. Globally, the black liquor generation rate is about 85,000 MW{sub fuel} (or 0.5 million tonnes of dry solids per day), with nearly 50% of this in North America. The majority of presently installed Tomlinson boilers will reach the end of their useful lives during the next 5 to 20 years. As a replacement for Tomlinson-based cogeneration, black liquor-gasifier/gas turbine cogeneration promises higher electrical efficiency, with prospective environmental, safety, and capital cost benefits for kraft mills. Several companies are pursuing commercialization of black liquor gasification for gas turbine applications. This paper presents results of detailed performance modeling of gasifier/gas turbine cogeneration systems using different black liquor gasifiers modeled on proposed commercial designs.

  11. A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY Scott B. Phelps and J. Kelly Kissock

    E-Print Network [OSTI]

    Kissock, Kelly

    A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY Scott B. Phelps and J. Kelly Kissock of the literature on fuel cell cogeneration describes cogeneration at commercial sites. In this study, a PC25C phosphoric acid fuel cell cogeneration system was designed for an industrial facility and an economic

  12. EIS-0201: Coyote Springs Cogeneration Project Morrow Count, Oregon

    Broader source: Energy.gov [DOE]

    This environmental impact statement analyzes the protential impacts of the Coyote Springs Cogeneration Project, a proposed natural gas-fired cogeneration power plant near Boardman, Oregon. The proposed power plant would be built on a 22-acre site in the Port of Morrow Industrial Park. The plant would have two combustion turbines that would generate 440 average megawatts of energy when completed.

  13. New cogeneration plant provides steam for Oxnard papermaking facility

    SciTech Connect (OSTI)

    Price, K.R. (Thermal Energy Systems, Engineering Div., Procter and Gamble Co., Winston Hill Technical Center, Cincinnati, OH (US)); Anderson, W.A. (Utilities Dept., Oxnard Plant, Procter and Gamble Co., Oxnard, CA (US))

    1991-07-01T23:59:59.000Z

    In January 1990, the Proctor and Gamble Co.'s Oxnard, Calif., papermaking facility started up Cogen Two, the newest of the company's four gas-turbine-based cogeneration plants. In addition to reviewing Cogen Two project specifics, this article demonstrates the success of state-of-the-art cogeneration systems and the important role these systems play in the pulp and paper industry.

  14. Industrial cogeneration optimization program. Volume II. Appendix A. Conceptual designs and preliminary equipment specifications. Appendix B. Characterization of cogeneration systems (near-term technology). Appendix C. Optimized cogeneration systems

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This appendix to a report which evaluates the technical, economic, and institutional aspects of industrial cogeneration for conserving energy in the food, chemical, textile, paper, and petroleum industries contains data, descriptions, and diagrams on conceptual designs and preliminary equipment specifications for cogeneration facilities; characterization of cogeneration systems in terms of fuel utilization, performance, air pollution control, thermal energy storage systems, and capital equipment costs; and optimized cogeneration systems for specific industrial plants. (LCL)

  15. The Onsite Fuel Cell Cogeneration System

    E-Print Network [OSTI]

    Woods, R. R.; Cuttica, J. J.; Trimble, K. A.

    THE ONSITE FUEL CELL COGENERATION SYSTEM R. Root Woods, John J. Cuttica and Karen A. Trimble Gas Research Institute, Chicago, Illinois ABSTRACT This paper describes the experiences and results of the major field test of forty-six 40kW onsite... fuel cell power plants in the U.S. and Japan through 1985. The field test is a cooperative effort between the Gas Research Institute, gas and electric utility companies, private sector companies, and the U.S. Department of Energy and Department...

  16. Petbow Cogeneration Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy International Limited JumpPetbow Cogeneration Ltd Jump to:

  17. Microgy Cogeneration Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickey Hot SpringsMicrocell CorpCogeneration

  18. Building Technologies Program: Tax Deduction Qualified Software- EnerSim version 07.11.30

    Broader source: Energy.gov [DOE]

    Provides required documentation that EnerSim version 07.11.30 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  19. Building Technologies Program: Tax Deduction Qualified Software- Green Building Studio Web Service version 3.0

    Broader source: Energy.gov [DOE]

    Provides required documentation that Green Building Studio Web Service version 3.0 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  20. Department of Energys Qualified List of Energy Service Companies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    101 Lakewood, CO 80401 P: 303-928-8500 F: 303-233-2418 E-mail: amparo.pazos@abengoa.com Web site: www.abengoasolar.com ABM Government Services, a wholly owned subsidiary of ABM...

  1. Building Technologies Program: Tax Deduction Qualified Software ? Green Building Studio Web Service version 3.1

    Broader source: Energy.gov [DOE]

    Provides required documentation that Green Building Studio Web Service version 3.1 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  2. Building Technologies Program: Tax Deduction Qualified Software- EnergyPlus version 1.4.0.025

    Broader source: Energy.gov [DOE]

    Provides required documentation that EnergyPlus version 1.4.0.025 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  3. Building Technologies Program: Tax Deduction Qualified Software- EnergyPlus version 2.1.0.023

    Broader source: Energy.gov [DOE]

    Provides required documentation that EnergyPlus version 2.1.0.023 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  4. Building Technologies Program: Tax Deduction Qualified Software- EnergyPlus version 2.2.0.023

    Broader source: Energy.gov [DOE]

    Provides required documentation that EnergyPlus version 2.1.0.023 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  5. Building Technologies Program: Tax Deduction Qualified Software- EnergyPlus version 1.3.0.018

    Broader source: Energy.gov [DOE]

    Provides required documentation that EnergyPlus version 1.3.0.018 version 130 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  6. Building Technologies Program: Tax Deduction Qualified Software- EnergyPlus version 2.0.0.025

    Broader source: Energy.gov [DOE]

    Provides required documentation that EnergyPlus version 2.0.0.025 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  7. Tax Deduction Qualified Software: EnergyPlus version 4.0.0.024

    Broader source: Energy.gov [DOE]

    Provides required documentation that EnergyPlus version 4.0.0.024 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  8. Excepted Service Authority for Exceptionally Well Qualified (EWQ) EQ Pay Plan Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-21T23:59:59.000Z

    To establish requirements and responsibilities for the employment and compensation of individuals when using the following DOE excepted service authority: Section 313 division D of the Consolidated Appropriations Act of 2014 (Public Law 113-76), hereafter referred to as appointment authority EWQ and pay plan EQ.

  9. Excepted Service Authority for Exceptionally Well Qualified (EWQ) EQ Pay Plan Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-05T23:59:59.000Z

    This draft has been scheduled for final review before the Directives Review Board on 01/15/2015. All major comments and concerns should be provided to your DRB representative by 01/13/2015, following your organization process. If you do not know who your representative is, please see the list of DRB members. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-1014).

  10. Excepted Service Authority for Exceptionally Well Qualified (EWQ) EQ Pay Plan Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-03-10T23:59:59.000Z

    The order establishes requirements and responsibilities for the employment and compensation of individuals using Section 313 division D of the Consolidated Appropriations Act of 2014 (Public Law 113-76). Does not cancel other directives

  11. DOE Guidance on the Elements Necessary to Qualify as an Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    measure" (ECM) for the purpose of a federal energy savings performance contract (ESPC). espcecmbundlingguidance.pdf More Documents & Publications Guidance on New...

  12. The Department of Mechanical and Aerospace Engineering is seeking qualified contract instructors for the following courses

    E-Print Network [OSTI]

    Dawson, Jeff W.

    , turbojet, turbofan and rocket; cycle analysis and optimization for gas turbine power plant; inter; cavitation. Velocity triangles. Euler equation: impulse and reaction. Radial pumps and compressors: analysis-design performance; stall and surge. Axial turbines. Current design practice. Prerequisite: MAAE 3300. Lectures three

  13. Qualifying Vehicles for Low Emitting, Fuel Efficient Vehicle Discount (50 points or better)

    E-Print Network [OSTI]

    Nelson, Tim

    MH batteries) +1 ZEV 2.9 3.3 52 2001 01_TS HONDA INSIGHT 1.0L 3, manual ULEV I 61 68 53 2001 01_TS HONDA INSIGHT 1.0L 3, manual LEV I 61 68 52 2001 02_SUB HONDA CIVIC GX 1.7L 4, auto [CNG] SULEV II 31 34 53 2002 01_TS HONDA INSIGHT 1.0L 3, auto CVT SULEV II 57 56 57 2002 01_TS HONDA INSIGHT 1.0L 3, manual ULEV I

  14. Tax Deduction Qualified Software: EnergyPlus version 7.0.0.036

    Broader source: Energy.gov (indexed) [DOE]

    exterior lighting controls." (ix) Daylighting (sidelighting, skylights, or tubular daylight devices). "The EnergyPlus software models sidelighting, skylights, and tubular...

  15. Tax Deduction Qualified Software: EnergyPlus version 5.0.0.031

    Broader source: Energy.gov (indexed) [DOE]

    exterior lighting controls." (ix) Daylighting (sidelighting, skylights, or tubular daylight devices). "The EnergyPlus software models sidelighting, skylights, and tubular...

  16. Tax Deduction Qualified Software: TRACE 700 version 6.3.0

    Broader source: Energy.gov (indexed) [DOE]

    to control lighting." (ix) Daylighting (sidelighting, skylights, or tubular daylight devices). "The TRACE 700 software can model daylighting." (x) Improved fan system...

  17. Tax Deduction Qualified Software - EnergyPlus version 3.0.0.028

    Broader source: Energy.gov (indexed) [DOE]

    exterior lighting controls." (ix) Daylighting (sidelighting, skylights, or tubular daylight devices). "The EnergyPlus software models sidelighting, skylights, and tubular...

  18. Tax Deduction Qualified Software TRACE 700 version 6.3.0

    Broader source: Energy.gov (indexed) [DOE]

    to control lighting." (ix) Daylighting (sidelighting, skylights, or tubular daylight devices). "The TRACE 700 software can model daylighting." (x) Improved fan system...

  19. Tax Deduction Qualified Software: EnergyPlus version 6.0.0.023

    Broader source: Energy.gov (indexed) [DOE]

    exterior lighting controls." (ix) Daylighting (sidelighting, skylights, or tubular daylight devices). "The EnergyPlus software models sidelighting, skylights, and tubular...

  20. Tax Deduction Qualified Software - EnergyPlus version 3.1.0.027

    Broader source: Energy.gov (indexed) [DOE]

    exterior lighting controls." (ix) Daylighting (sidelighting, skylights, or tubular daylight devices). "The EnergyPlus software models sidelighting, skylights, and tubular...

  1. Optimization Qualifer Exam University of Wisconsin-Madison Fall 2010 Qualifier Exam

    E-Print Network [OSTI]

    Liblit, Ben

    at plant p P is cp. The plants P are of two types--nuclear plants N and coal-fired plants C. (P = N C be met in each period. · To meet environmental regulations, if 2 or more coal generation plants costs $ t per unit (where t is a parameter). Because of equipment constraints, no more than 8 units

  2. Qualifying Paper: Randomized Experiments In An Introductory Statistics Course: Comparing the

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    offered in Spring 2008-09 as a response to a growing demand for new and modernized general education suggest that video projects facilitate a longer and/or broader retention of the material, while also

  3. Tax Deduction Qualified Software: EnergyPlus version 8.0.0.008

    Broader source: Energy.gov [DOE]

    Provides required documentation that EnergyPlus version 8.0.0.008 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  4. Tax Deduction Qualified Software: EnergyPlus version 7.2.0.006

    Broader source: Energy.gov [DOE]

    Provides required documentation that EnergyPlus version 7.2.0.006 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  5. Building Technologies Program: Tax Deduction Qualified Software- DOE-21.E version 119

    Broader source: Energy.gov [DOE]

    Provides required documentation that DOE-21.E version 119 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  6. Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.9

    Broader source: Energy.gov [DOE]

    Provides required documentation that TRACE 700 version 6.2.9 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  7. Building Technologies Program: Tax Deduction Qualified Software- DOE-21.E-JJH version 130

    Broader source: Energy.gov [DOE]

    Provides required documentation that DOE-2.1E-JJH version 130 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  8. Temporary Architecture and Allied Arts Shop Technician TO QUALIFY YOU MUST HAVE

    E-Print Network [OSTI]

    Oregon, University of

    INCLUDE: - Supervise and assist students with CNC router table. - Supervise and assist students. 5. Describe your experience with CNC routers, and Laser Cutters. Please submit resume

  9. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.50

    Broader source: Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.50 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  10. Computer Sciences @ Wisconsin OS Qualifier: Fall 2011 Instructions: Answer all six questions.

    E-Print Network [OSTI]

    Liblit, Ben

    to improve the security of a system, as in the VAX VMM security kernel. a) Both VMware and the VAX security kernel use ring compression to implement

  11. 2013 Kentucky State Science & Engineering Fair Awards to students who qualified from the

    E-Print Network [OSTI]

    Cooper, Robin L.

    , Meadowthorpe Elementary Microbiology 2nd Charlie Frederick, Ashland Elementary Physics and Astronomy 2nd Ronit, Dunbar Southern Association of Clinical Microbiology Award 1st Charlie Frederick, Ashland Elementary

  12. Optimization Qualifer Exam University of Wisconsin-Madison Fall 2014 Qualifier Exam

    E-Print Network [OSTI]

    Liblit, Ben

    September 15, 2014 GENERAL INSTRUCTIONS: 1. Answer each question in a separate book. 2. Indicate on the cover of each book the area of the exam, your code number, and the question answered in that book. On one of your books list the numbers of all the questions answered. Do not write your name on any answer

  13. Standard practice for evaluating and qualifying oil field and refinery corrosion inhibitors using rotating cage

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    1.1 This practice covers a generally accepted procedure to use the rotating cage (RC) for evaluating corrosion inhibitors for oil field and refinery applications. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  14. Standard guide for evaluating and qualifying oilfield and refinery corrosion inhibitors in the laboratory

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    1.1 This guide covers some generally accepted laboratory methodologies that are used for evaluating corrosion inhibitors for oilfield and refinery applications in well defined flow conditions. 1.2 This guide does not cover detailed calculations and methods, but rather covers a range of approaches which have found application in inhibitor evaluation. 1.3 Only those methodologies that have found wide acceptance in inhibitor evaluation are considered in this guide. 1.4 This guide is intended to assist in the selection of methodologies that can be used for evaluating corrosion inhibitors. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.

  15. Department of Energys Qualified List of Energy Service Companies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Street Lawrence, KS 66044 P: 785- 218-6549 E-mail: jhurla@360energyengineers.com Web site: www.360energyengineers.com Abengoa Solar Inc. Amparo Pazos Division Director 1250...

  16. Avoided Costs and Competitive Negotiations for Power from Qualifying Facilities in Texas

    E-Print Network [OSTI]

    Panjavan, S.; Al-Jabir, A.

    Industrial Energy Technology Conference, Houston, TX, April 22-23, 1992 Table 2: Utilities' Avoidable Generating Units Capacity On-line Utility (MW) Unit Type Fuel Date COA* Cps* BEPC LCRA CPL HLP TNP TU WTU none 70 208 88 89 219 152 645... on avoided cost because the avoidable units based on natural gas power plants will cost less than avoidable units based on solid-fueled power plants. 50 ESL-IE-92-04-08 Proceedings from the 14th National Industrial Energy Technology Conference, Houston...

  17. Comprehensive online Atomic Database Management System (DBMS) with Highly Qualified Computing Capabilities

    E-Print Network [OSTI]

    Tahat, Amani

    2011-01-01T23:59:59.000Z

    The intensive need of atomic data is expanding continuously in a wide variety of applications (e.g. fusion energy and astrophysics, laser-produced, plasma researches, and plasma processing).This paper will introduce our ongoing research work to build a comprehensive, complete, up-to-date, user friendly and online atomic Database Management System (DBMS) namely called AIMS by using SQLite (http://www.sqlite.org/about.html)(8). Programming language tools and techniques will not be covered here. The system allows the generation of various atomic data based on professional online atomic calculators. The ongoing work is a step forward to bring detailed atomic model accessible to a wide community of laboratory and astrophysical plasma diagnostics. AIMS is a professional worldwide tool for supporting several educational purposes and can be considered as a complementary database of IAEA atomic databases. Moreover, it will be an exceptional strategy of incorporating the output data of several atomic codes to external ...

  18. The Department of Electronics is seeking qualified contract instructors for the following courses: Summer Term 2014

    E-Print Network [OSTI]

    Carleton University

    Utilization Electricity, hydrocarbons and hydrogen. Renewables, biofuels and biogas technologies. Distribu

  19. Building Technologies Program: Tax Deduction Qualified Software- VisualDOE version 4.1 build 0002

    Broader source: Energy.gov [DOE]

    Provides required documentation that VisualDOE version 4.1 build 0002 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  20. Tax Deduction Qualified Software: EnergyPlus Version 8.2.0

    Broader source: Energy.gov [DOE]

    On this page you'll find information about the EnergyPlus version 8.2.0, which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings.

  1. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.41

    Broader source: Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.41 meets Internal Revenue Code §179D, Notice 2006-52, dated April 10, 2009, for calculating commercial building energy and power cost savings.

  2. Qualifying dielectric elastomer actuators for usage in complex and compliant robot kinematics

    E-Print Network [OSTI]

    Leyendecker, Sigrid

    the roboticist point of view Actual (energy autarkic) robotic systems suffer from severely limited dynamical

  3. Tax Deduction Qualified Software: EnergyPlus version 8.1.0.009

    Broader source: Energy.gov [DOE]

    Provides required documentation that EnergyPlus version 8.1.0.009 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  4. DOE Guidance on the Elements Necessary to Qualify as an Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    clarification that multiple ECMs under the same ESPC may be "bundled" when evaluating lifecycle cost-effectiveness. Additionally, this document clarifies that an ESPC may include,...

  5. 11.A GENERAL 11.A.01 Approval and qualification. The term "Qualified Person

    E-Print Network [OSTI]

    US Army Corps of Engineers

    or Journeyman Electrician may hold, depending on work being performed, and should be identified in the appropriate AHA. Journeyman/Apprentice ratio shall be in accordance with State, Local and Host Nation Electrician may hold, or USACE sponsored local training programs (e.g., hydropower training program): #12;EM

  6. 11.A GENERAL 11.A.01 Approval and qualification. The term "Qualified Person",

    E-Print Network [OSTI]

    US Army Corps of Engineers

    or Journeyman Electrician may hold, depending on work being performed, and should be identified in the appropriate AHA. Journeyman/Apprentice ratio shall be in accordance with State, Local and Host Nation/Licenses that a Master or Journeyman Electrician may hold, or USACE sponsored local training programs: #12;EM 385-1-1 XX

  7. Electrical and Computer Engineering Ph.D. Qualifying Examination Topics 2006/2007

    E-Print Network [OSTI]

    . The steady-state, transient, and frequency response of linear and non-linear circuits. The analysis, and with antennas and radiating systems. Electronic Circuits Basic circuit-analysis methods, such as the application-signal, and piecewise-linear circuit models. Familiarity with circuit elements (diodes, bipolar and field

  8. Qualifying Exam Syllabus for Henrique Bursztyn Proposed date: August 31, 2:15pm

    E-Print Network [OSTI]

    Bursztyn, Henrique

    . Arveson (Chair), A. Weinstein, N. Reshetikhin, R. Littlejohn (Physics) Advanced Topic: Poisson Geometry, symplectomorphims, lagrangian submanifolds, generating functions; Normal forms and Darboux-Moser-Weinstein theory of Classical Mechanics. Minor Topic: Banach Algebras Invertible elements, spectrum, Gelfand-Mazur's theorem

  9. Qualifying Exam Syllabus for Henrique Bursztyn Proposed date: August 31, 2:15pm

    E-Print Network [OSTI]

    Bursztyn, Henrique

    . Arveson (Chair), A. Weinstein, N. Reshetikhin, R. Littlejohn (Physics) Advanced Topic: Poisson Geometry, symplectomorphims, lagrangian submanifolds, generating functions; Normal forms and Darboux-Moser-Weinstein theory Mechanics. Minor Topic: Banach Algebras Invertible elements, spectrum, Gelfand-Mazur's theorem, spectral

  10. Energy Department Sets Tougher Standards for Clothes Washers to Qualify for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogen and FuelDefense asDepartmentandPaducahin

  11. Qualifying exam, Spring 2007, Day 1 All problems are worth 10 points.

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    matrix over k can be conjugated to one in the Jordan canonical form. Problem 2. Let P1, P2, P3, P4 S where the Gauss curvature and the absolute value of mean curvature are bounded below by 1 r2 and 1 r

  12. Building Technologies Program: Tax Deduction Qualified Software- EnergyGauge Summit version 3.13

    Broader source: Energy.gov [DOE]

    Provides required documentation that EnergyGauge Summit version 3.13 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  13. Building Technologies Program: Tax Deduction Qualified Software- EnergyGauge Summit version 3.11

    Broader source: Energy.gov [DOE]

    Provides required documentation that EnergyGauge Summit version 3.11 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  14. Building Technologies Program: Tax Deduction Qualified Software- EnergyGauge Summit version 3.14

    Broader source: Energy.gov [DOE]

    Provides required documentation that EnergyGauge Summit version 3.14 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  15. Tax Deduction Qualified Software: EnergyPlus version 8.1.0.009...

    Broader source: Energy.gov (indexed) [DOE]

    1.0.009 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings. qsenergyplusv8.1.0.009...

  16. Tax Deduction Qualified Software: EnergyPlus Version 8.3.0

    Broader source: Energy.gov [DOE]

    Provides required documentation that EnergyPlus version 8.3.0 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  17. DOE Guidance on the Elements Necessary to Qualify as an Energy Conservation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOE FuelProgram | Department

  18. Model Request for Qualifications to Pre-Qualify Energy Service Companies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProducts | Department of| Department ofDepartment of

  19. Cogeneration Project Overview: J. M. Huber Corporation, Borger, Texas

    E-Print Network [OSTI]

    Dickinson, T. W.; Gibson, G. L.

    1982-01-01T23:59:59.000Z

    The cogeneration of electricity by industrial plants can, if properly structured, benefit not only the plant owners but also the electric utilities which serve them. The technical and economic feasibility of such projects, however, has been shown...

  20. An Assessment of Industrial Cogeneration Potential in Pennsylvania 

    E-Print Network [OSTI]

    Hinkle, B. K.; Qasim, S.; Ludwig, E. V., Jr.

    1983-01-01T23:59:59.000Z

    such as atmospheric fluidized bed combustion, coal-gasification combined cycles, fuel cells and bottoming cycles were analyzed in addition to the economic assessment of conventional cogeneration systems; Industry-specific rates of market penetration were developed...

  1. Evaluation of Technology Risk in Project Cogeneration Project Returns

    E-Print Network [OSTI]

    Thoennes, C. M.

    The economic returns of a cogeneration project are a direct function of the project margin, that is, the difference between revenues and expenses. Revenues and expenses, of course, are made up of both variable and fixed components. The revenues...

  2. The Dynamics of Cogeneration or "The PURPA Ameoba"

    E-Print Network [OSTI]

    Polsky, M. P.

    commissions, utilities, and cogenerators) can be characterized as very dynamic. State Utility Commissions are struggling to implement rational policies to deal with the very complex matrix of issues and concerns. Utilities attitudes have changed...

  3. Cogeneration systems and processes for treating hydrocarbon containing formations

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Fowler, Thomas David (Houston, TX); Karanikas, John Michael (Houston, TX)

    2009-12-29T23:59:59.000Z

    A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.

  4. The Effect of Variable Quality Fuels on Cogeneration Plant Performance 

    E-Print Network [OSTI]

    Ahner, D. J.; Oliva, J. J.

    1986-01-01T23:59:59.000Z

    The variable energy characteristics of solid wastes, biomass and other low grade fuels, when utilized in cogeneration applications, introduce several additional plant design considerations. The effects of longer term heating value and/or quantity...

  5. Co-Generation at a Practical Plant Level

    E-Print Network [OSTI]

    Feuell, J.

    1980-01-01T23:59:59.000Z

    The Steam Turbine: A basic description of how a steam turbine converts available heat into mechanical energy to define the formulae used for the cost comparisons in the subsequent examples. Co-Generation: Comparison between condensing cycle...

  6. Industrial cogeneration optimization program. Final report, September 1979

    SciTech Connect (OSTI)

    Davis, Jerry; McWhinney, Jr., Robert T.

    1980-01-01T23:59:59.000Z

    This study program is part of the DOE Integrated Industry Cogeneration Program to optimize, evaluate, and demonstrate cogeneration systems, with direct participation of the industries most affected. One objective is to characterize five major energy-intensive industries with respect to their energy-use profiles. The industries are: petroleum refining and related industries, textile mill products, paper and allied products, chemicals and allied products, and food and kindred products. Another objective is to select optimum cogeneration systems for site-specific reference case plants in terms of maximum energy savings subject to given return on investment hurdle rates. Analyses were made that define the range of optimal cogeneration systems for each reference-case plant considering technology applicability, economic factors, and energy savings by type of fuel. This study also provides guidance to other parts of the program through information developed with regard to component development requirements, institutional and regulatory barriers, as well as fuel use and environmental considerations. (MCW)

  7. The Cogeneration Plant: Meeting Long-Term Objectives

    E-Print Network [OSTI]

    Greenwood, R. W.

    In order to meet economic objectives of cogeneration projects, reliable operation must be achieved. The key to successful operation is proper preparation beginning at the economic justification stage and continuing through conceptual design...

  8. Case Studies of Industrial Cogeneration in the U. S. 

    E-Print Network [OSTI]

    Limaye, D. R.; Isser, S.; Hinkle, B.; Hough, T.

    1980-01-01T23:59:59.000Z

    This paper describes the results of a survey and evaluation of plant-specific information on industrial cogeneration. The study was performed as part of a project sponsored by the Electric Power Research Institute to evaluate Dual Energy Use Systems...

  9. EIS-0349: Cherry Point Co-generation Project

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to support BP West Coast Products, LLC proposal to construct and operate a 720-megawatt, natural-gas-fired, combined-cycle cogeneration facility on land adjacent to its BP Cherry Point Refinery.

  10. Co-Generation at a Practical Plant Level 

    E-Print Network [OSTI]

    Feuell, J.

    1980-01-01T23:59:59.000Z

    The Steam Turbine: A basic description of how a steam turbine converts available heat into mechanical energy to define the formulae used for the cost comparisons in the subsequent examples. Co-Generation: Comparison between condensing cycle...

  11. An Assessment of Industrial Cogeneration Potential in Pennsylvania

    E-Print Network [OSTI]

    Hinkle, B. K.; Qasim, S.; Ludwig, E. V., Jr.

    1983-01-01T23:59:59.000Z

    such as atmospheric fluidized bed combustion, coal-gasification combined cycles, fuel cells and bottoming cycles were analyzed in addition to the economic assessment of conventional cogeneration systems; Industry-specific rates of market penetration were developed...

  12. High Efficiency Gas Turbines Overcome Cogeneration Project Feasibility Hurdles 

    E-Print Network [OSTI]

    King, J.

    1988-01-01T23:59:59.000Z

    Cogeneration project feasibility sometimes fails during early planning stages due to an electrical cycle efficiency which could be improved through the use of aeroderivative gas turbine engines. The aeroderivative engine offers greater degrees...

  13. Guidelines for Assessing the Feasibility of Small Cogeneration Systems

    E-Print Network [OSTI]

    Whiting, M., Jr.

    1984-01-01T23:59:59.000Z

    , hospitals, colleges, and shopping centers. This paper will present guidelines for assessing the feasibility of cogeneration for small to medium sized energy users, and it will describe the commercially available technologies that can be utilized....

  14. Natural Gas Procurement Challenges for a Project Financed Cogeneration Facility 

    E-Print Network [OSTI]

    Good, R. L.; Calvert, T. B.; Pavlish, B. A.

    1988-01-01T23:59:59.000Z

    A decision to project finance a 110 megawatt combined cycle cogeneration facility in 1986 in place of conventional internal financing greatly changed the way in which natural gas was normally procured by Union Carbide Corporation. Natural gas supply...

  15. Cogeneration Personal Property Tax Credit (District of Columbia)

    Broader source: Energy.gov [DOE]

    The District of Columbia Council created a personal property tax exemption for solar energy systems and cogeneration systems within the District by enacting B19-0749 in December of 2012.

  16. Cogeneration: The Need for Utility-Industry Cooperation

    E-Print Network [OSTI]

    Limaye, D. R.

    1982-01-01T23:59:59.000Z

    in industrial cogeneration pro jects. Utilities viewed cogeneration as competition and were concerned about the loss of their base load. In a recent survey of utilities, conducted by EPRI as a part of case studies of industrial cogen eration (3), utilities.... EVALUATION OF COOPERATIVE EFFORTS In a current EPRI project to evaluate cogenera tion alternatives, Synergic Resources Corporation is developing a computerized evaluation tool to assess the costs and benefits of alternative insti tutional arrangements...

  17. Guidelines for Assessing the Feasibility of Small Cogeneration Systems 

    E-Print Network [OSTI]

    Whiting, M., Jr.

    1984-01-01T23:59:59.000Z

    % Or more of the variable opera ting costs of a cogeneration system, an inexpen sive fuel can be a very significant benefit. Using current technology, the gas turbine and diesel co generation systems cannot handle these low cost fuels. However..., the capital cost of a solid fuel burning installation is very high, especially for small systems. In addition, steam turbines have the lowest electric output for a given thermal out put; and gas turbines and diesels can cogenerate at least ten times...

  18. Evaluating Benefits with Independent and Cogenerated Power Production

    E-Print Network [OSTI]

    Ahner, D. J.

    EVALUATING BENEFITS WITH INDEPENDENT AND COGENERATED POWER PRODUCTION D.J. Ahner, Manager, Power Production Engineering, Power Technologies, Inc., ABSTRACT New generation planning concepts must be developed which recognize an expanded list... of "stakeholders", (e.g. IPP's, ?cogenerators, industrial hosts, utility shareholders and rate payers), and additional technical issues (e.g. generation dispatch, transmission, wheeling, etc.) associated with independent power generation. This paper...

  19. Reliability, Availability and Maintainability Considerations for Gas Turbine Cogeneration Systems

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Focke, A. B.

    1984-01-01T23:59:59.000Z

    RELIABILITY, AVAILABILITY AND MAINTAINABILITY CONSIDERATIONS FOR GAS TURBINE COGENERATION SYSTEMS Gyrus B. Meher-Homji and Alfred B. Focke Boyce Engineering International, Inc. Houston, Texas ABSTRACT The success of a cogeneration system... the choice of the number of gas turbines and waste heat recovery units to be utilized down to small components, such as pumps, dampers, hea t exchangers and auxiliary systems. . Rand M studies must be initiated in the conceptual phases of the project...

  20. The effect of cogeneration on system reliability indices

    E-Print Network [OSTI]

    Soethe, John Robert

    1985-01-01T23:59:59.000Z

    section were assumed to receive full capacity credit. This means that the 880MW spinning reserve level was not changed when cogeneration was added and the released capacities determined. Five 100MW cogenerators with no capacity credit are now assumed... Reserves - Summer 1 oad Case Full Capacity Credit Spinning ltcserve iield Constant Spinning Released Reserve Capacity EUK ((('A') (h1WJ~MWII KUK (M EVII r) +MWJ (IvtW) No Capacity Credit Spinning Rcscrvc fncrcascd Spinning Released Reserve Capar...

  1. Utility & Regulatory Factors Affecting Cogeneration & Independent Power Plant Design & Operation

    E-Print Network [OSTI]

    Felak, R. P.

    UTILITY & REGULATORY FACTORS AFFECTiNG COGENERATION & INDEPENDENT POWER PLANT DESIGN & OPERATION Richard P. Felak General Electric Company Schenectady, New York ABSTRACT In specifying a cogeneration or independent power plant, the owner... should be especially aware of the influences which electric utilities and regulatory bodies will have on key parameters such as size, efficiency, design. reliability/ availabilitY, operating capabilities and modes, etc. This paper will note examples...

  2. Gas Turbine Cogeneration Plant for the Dade County Government Center 

    E-Print Network [OSTI]

    Michalowski, R. W.; Malloy, M. K.

    1985-01-01T23:59:59.000Z

    GAS TURBINE COGENERATION PLANT FOR THE DADE COUNTY GOVERNMENT CENTER Roger W. Michalowski Michael K. Malloy Thermo Electron Corporation GEC Rolls-Royce Waltham, Massachusetts ABSTRACT A government complex consisting of a number of State... expansion plans, the system will efficiently produce additional electricity when chilled water demands are low. Houston, Texas The cogeneration plant consists of a Rolls-Royce gas turbine-generator set and a waste-heat recovery system which recovers...

  3. Identifying Energy Systems that Maximize Cogeneration Savings

    E-Print Network [OSTI]

    Ahner, D. J.

    Ies whIch have Inherent constraInts or lImItatIons In meetIng these objectIves should be e11mlnated as opt10ns. Under such var1able condItIons Independent systems have slgnlf1cant advantage due to the1 r Inherent flexlb111ty 1n matchIng wIde var1at10...IDENTIFYING ENERGY SYSTEMS THAT MAXIMIZE COGENERATION SAVINGS DAVID J. AHNER Manager Systems Eng1neer1ng Schenectady. New York ABSTRACT Th1s paper d1scusses the max1m1z1ng of Reg10nal cogenerat10n Energy Sav1ngs ut1l1z1ng var10us...

  4. Klickitat Cogeneration Project : Final Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; Klickitat Energy Partners

    1994-09-01T23:59:59.000Z

    To meet BPA`s contractual obligation to supply electrical power to its customers, BPA proposes to acquire power generated by Klickitat Cogeneration Project. BPA has prepared an environmental assessment evaluating the proposed project. Based on the EA analysis, BPA`s proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 for the following reasons: (1)it will not have a significant impact land use, upland vegetation, wetlands, water quality, geology, soils, public health and safety, visual quality, historical and cultural resources, recreation and socioeconomics, and (2) impacts to fisheries, wildlife resources, air quality, and noise will be temporary, minor, or sufficiently offset by mitigation. Therefore, the preparation of an environmental impact statement is not required and BPA is issuing this FONSI (Finding of No Significant Impact).

  5. E-Print Network 3.0 - advanced technology cogeneration Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Columbia University... ) A future must for WTEs: Co-generation of electricity and district heating or cooling Brescia 12;Waste... -to-Energy Plant (1998) Co-generation Power plant...

  6. Small-Scale Industrial Cogeneration: Design Using Reciprocating Engines and Absorption Chillers 

    E-Print Network [OSTI]

    Wagner, J. R.

    1985-01-01T23:59:59.000Z

    This paper describes a packaged cogeneration system designed for light industrial applications (i.e., situations where a user wants a maximum of 1 MW of cogenerated electricity). The design employs reciprocating engines fueled with natural gas...

  7. Cogeneration Energy Profitability from the Energy User and Third-Party Viewpoint

    E-Print Network [OSTI]

    Polsky, M. P.

    1984-01-01T23:59:59.000Z

    between the prime mover efficiency and cogeneration operating profits is given. Optimum sizing philosophies for the cogeneration plant from both the energy user and the third party positions are presented. Several unique graphs are provided to illustrate...

  8. Evaluation of diurnal thermal energy storage combined with cogeneration systems

    SciTech Connect (OSTI)

    Somasundaram, S.; Brown, D.R.; Drost, M.K.

    1992-11-01T23:59:59.000Z

    This report describes the results of an evaluation of thermal energy storage (TES) integrated with simple gas turbine cogeneration systems. The TES system captures and stores thermal energy from the gas turbine exhaust for immediate or future generation of process heat. Integrating thermal energy storage with conventional cogeneration equipment increases the initial cost of the combined system; but, by decoupling electric power and process heat production, the system offers the following two significant advantages: (1) Electric power can be generated on demand, irrespective of the process heat load profile, thus increasing the value of the power produced; (2) Although supplementary firing could be used to serve independently varying electric and process heat loads, this approach is inefficient. Integrating TES with cogeneration can serve the two independent loads while firing all fuel in the gas turbine. The study evaluated the cost of power produced by cogeneration and cogeneration/TES systems designed to serve a fixed process steam load. The value of the process steam was set at the levelized cost estimated for the steam from a conventional stand-alone boiler. Power costs for combustion turbine and combined-cycle power plants were also calculated for comparison. The results indicated that peak power production costs for the cogeneration/TES systems were between 25% and 40% lower than peak power costs estimated for a combustion turbine and between 15% and 35% lower than peak power costs estimated for a combined-cycle plant. The ranges reflect differences in the daily power production schedule and process steam pressure/temperature assumptions for the cases evaluated. Further cost reductions may result from optimization of current cogeneration/TES system designs and improvement in TES technology through future research and development.

  9. SS 2006 Selected Topics CMR Minimal infinite cogeneration-closed subcategories.

    E-Print Network [OSTI]

    Ringel, Claus Michael

    SS 2006 Selected Topics CMR Minimal infinite cogeneration-closed subcategories. Claus Michael C is finite. Finally, C is cogeneration-closed, provided it is also closed under submodules. Given subcategory containing X . Theorem. Let C be an infinite cogeneration-closed subcategory of mod . Then C

  10. THE GROWTH OF A C0-SEMIGROUP CHARACTERISED BY ITS COGENERATOR

    E-Print Network [OSTI]

    THE GROWTH OF A C0-SEMIGROUP CHARACTERISED BY ITS COGENERATOR TANJA EISNER AND HANS ZWART Abstract cogenerator V (or the Cayley transform of the generator) or its resolvent. In particular, we extend results of its cogenerator. As is shown by an example, the result is optimal. For analytic semigroups we show

  11. Texasgulf solar cogeneration program. Mid-term topical report

    SciTech Connect (OSTI)

    Not Available

    1981-02-01T23:59:59.000Z

    The status of technical activities of the Texasgulf Solar Cogeneration Program at the Comanche Creek Sulfur Mine is described. The program efforts reported focus on preparation of a system specification, selection of a site-specific configuration, conceptual design, and facility performance. Trade-off studies performed to select the site-specific cogeneration facility configuration that would be the basis for the conceptual design efforts are described. Study areas included solar system size, thermal energy storage, and field piping. The conceptual design status is described for the various subsystems of the Comanche Creek cogeneration facility. The subsystems include the collector, receiver, master control, fossil energy, energy storage, superheat boiler, electric power generation, and process heat subsystems. Computer models for insolation and performance are also briefly discussed. Appended is the system specification. (LEW)

  12. Cogeneration Design Considerations for a Major Petrochemical Facility

    E-Print Network [OSTI]

    Good, R. L.

    generators. Each deaerator is a 100% spare for the other. The deaerators are piped so as to allow the needs of the cogeneration facility and the process plant to be serviced from either. The complete cogeneration facility will be monitored and controlled... TO CPL ~ _ A _/ 69 KV :::---- _ f!, r-/ ""- _ ~~ r-/ TO CPL SUBSTf\\ T I ON..-----.o ~ 0 ? 0 ~ O~ "'V 0 V-LJ--\\.J 0----------. SUBST AT ION TR--113J\\ AS 113A 6,? 6, . / AS 1138 45/60/67.2 MVA 45/60/67.2 MVA TR-1138 5S 113813.8 KV 13.8 KV Ij\\ 6 U if...

  13. Operating and Maintaining a 465MW Cogeneration Plant

    E-Print Network [OSTI]

    Theisen, R. E.

    OPERATING AND HAINTAINING A 465MW COGENERATION PLANT -- R. E. Theisen Plant Hanager CoGen Lyondell PSE Inc. Houston, Texas ABSTRACT The on-line av ilability of the five Fr me-7E gas turbine generators installed at the 465MW Lyondell... Cogeneration Plant was 90% and 95.2% respectively for the first two years of operation (1986-87). The 140~~ st am turbine generator availability was well over 98% each year. Such favorable results are due primarily to the (1) formal training programs...

  14. Bagasse-based cogeneration projects in Kenya. Export trade information

    SciTech Connect (OSTI)

    Kenda, W.; Shrivastava, V.K.

    1992-03-01T23:59:59.000Z

    A Definitional Mission team evaluated the prospects of the US Trade and Development Program (TDP) funding a feasibility study that would assist the Government of Kenya in developing power cogeneration plants in three Kenyan sugar factories and possibly two more that are now in the planning stage or construction. The major Kenyan sugar producing region around Kisumu, on Lake Victoria has climatic conditions that permit cane growing operations ideally suitable for cogeneration of power in sugar factories. The total potentially available capacity from the proposed rehabilitation of the three mills will be approximately 25.15 MW, or 5.7 percent of total electricity production.

  15. The Influence of Regulation on the Decision to Cogenerate

    E-Print Network [OSTI]

    King, J. L. II

    recent contracts have been signed for 850 MW of power to be del ivered by mid-1987. In addition, there are more than 4,500 MW in identified, potential projects that could become operational in the next two years. Texas has a continuing need... will center on the amount of capacity the state needs and who will supply it, utilities or cogenerators. A fair and efficient method of allocation quantities between the util ities and the cogenerators is not yet well establ ished in Texas. However...

  16. Cogeneration handbook for the pulp and paper industry. [Contains glossary

    SciTech Connect (OSTI)

    Griffin, E.A.; Moore, N.L.; Fassbender, L.L.; Garrett-Price, B.A.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

    1984-03-01T23:59:59.000Z

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the pulp and paper industry. Appendices B and O provide specific information that will be called out in subsequent chapters.

  17. Cogeneration Partnerships -- A "Win-Win" Approach for All Parties 

    E-Print Network [OSTI]

    Steigelmann, W.; Campbell, V.

    1999-01-01T23:59:59.000Z

    -and under some circumstances even increase its overall revenue stream. The basic concept is as follows: a JPSCo-owned Cogeneration Plant will supply: (1) electricity to the JPSCo grid, and (2) ""energy products"" (such as chilled water, steam, or hot water...

  18. SECO - Dow Corning's Wood Fueled Industrial Cogeneration Project

    E-Print Network [OSTI]

    Betts, W. D.

    1982-01-01T23:59:59.000Z

    In 1979, Dow Corning Corporation decided to build a wood fueled steam and electric cogeneration (SECO) power plant at Midland, Michigan. This decision was prompted by the high cost of oil and natural gas, an abundant supply of wood in mid Michigan...

  19. SECO - Dow Corning's Wood Fueled Industrial Cogeneration Project 

    E-Print Network [OSTI]

    Betts, W. D.

    1982-01-01T23:59:59.000Z

    In 1979, Dow Corning Corporation decided to build a wood fueled steam and electric cogeneration (SECO) power plant at Midland, Michigan. This decision was prompted by the high cost of oil and natural gas, an abundant supply of wood in mid Michigan...

  20. Gr\\"obner bases of ideals cogenerated by Pfaffians

    E-Print Network [OSTI]

    De Negri, Emanuela

    2010-01-01T23:59:59.000Z

    We characterise the class of one-cogenerated Pfaffian ideals whose natural generators form a Gr\\"obner basis with respect to any anti-diagonal term-order. We describe their initial ideals as well as the associated simplicial complexes, which turn out to be shellable and thus Cohen-Macaulay. We also provide a formula for computing their multiplicity.

  1. Managing Abnormal Operation through Process Integration and Cogeneration Systems

    E-Print Network [OSTI]

    Kamrava, Serveh

    2014-08-05T23:59:59.000Z

    & Webster Company, Linde company method. *“Part of this chapter is reprinted with permission from “Managing abnormal operation through process integration and cogeneration systems” by Serveh... (75% for ethane to 28% for hydrogenated gasoline). In Linde method ethylene and propylene is produced from ethane to naphta hydrocarbons by thermal cracking method. Ethylene efficiency is different for different feedstock. For gasoline, naphta...

  2. Cogeneration and Distributed Generation1 This appendix describes cogeneration and distributed generating resources. Also provided is an

    E-Print Network [OSTI]

    expansion and loads needing additional electrical reliability or power quality. This introductory section of the barriers to the development of cogeneration. The final section describes solar photovoltaic technology. · Reliability upgrade for systems susceptible to outages. · Alternative to the expansion of transmission

  3. Cogeneration: Economic and technical analysis. (Latest citations from the INSPEC database). NewSearch

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The bibliography contains citations concerning economic and technical analyses of cogeneration systems. Topics include electric power generation, industrial cogeneration, use by utilities, and fuel cell cogeneration. The citations explore steam power station, gas turbine and steam turbine technology, district heating, refuse derived fuels, environmental effects and regulations, bioenergy and solar energy conversion, waste heat and waste product recycling, and performance analysis. (Contains a minimum of 120 citations and includes a subject term index and title list.)

  4. Cogeneration: Economic and technical analysis. (Latest citations from the INSPEC database). Published Search

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The bibliography contains citations concerning economic and technical analyses of cogeneration systems. Topics include electric power generation, industrial cogeneration, use by utilities, and fuel cell cogeneration. The citations explore steam power station, gas turbine and steam turbine technology, district heating, refuse derived fuels, environmental effects and regulations, bioenergy and solar energy conversion, waste heat and waste product recycling, and performance analysis.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Cogeneration for industrial and mixed-use parks. Volume 1. A handbook for utilities. Final report

    SciTech Connect (OSTI)

    Schiller, S.R.; Minicucci, D.D.; Tamaro, R.F.

    1986-05-01T23:59:59.000Z

    The purpose of this handbook is to assist utility personnel in identifying existing or planned mixed-use and industrial parks as potential cogeneration plant sites. This handbook describes a process for evaluating the potential of a given site for cogeneration. The process involves a set of screenings, based on selection criteria and some basic analyses, to identify sites which have the highest likelihood of supporting a successful cogeneration project. Also included in the handbook are worksheets and case studies.

  6. Small-scale biomass fueled cogeneration systems - A guidebook for general audiences

    SciTech Connect (OSTI)

    Wiltsee, G.

    1993-12-01T23:59:59.000Z

    What is cogeneration and how does it reduce costs? Cogeneration is the production of power -- and useful heat -- from the same fuel. In a typical biomass-fueled cogeneration plant, a steam turbine drives a generator, producing electricity. The plant uses steam from the turbine for heating, drying, or other uses. The benefits of cogeneration can mostly easily be seen through actual samples. For example, cogeneration fits well with the operation of sawmills. Sawmills can produce more steam from their waste wood than they need for drying lumber. Wood waste is a disposal problem unless the sawmill converts it to energy. The case studies in Section 8 illustrate some pluses and minuses of cogeneration. The electricity from the cogeneration plant can do more than meet the in-house requirements of the mill or manufacturing plant. PURPA -- the Public Utilities Regulatory Policies Act of 1978 -- allows a cogenerator to sell power to a utility and make money on the excess power it produces. It requires the utility to buy the power at a fair price -- the utility`s {open_quotes}avoided cost.{close_quotes} This can help make operation of a cogeneration plant practical.

  7. 773revision:2002-01-18modified:2002-01-19 Cotorsion theories cogenerated by 1-free abelian groups

    E-Print Network [OSTI]

    Shelah, Saharon

    773revision:2002-01-18modified:2002-01-19 Cotorsion theories cogenerated by 1-free abelian groups of the cotorsion class singly cogenerated by a torsion-free group G. Cotorsion theories were introduced by Salce

  8. Case Studies of Industrial Cogeneration in the U. S.

    E-Print Network [OSTI]

    Limaye, D. R.; Isser, S.; Hinkle, B.; Hough, T.

    1980-01-01T23:59:59.000Z

    -specific basis on the major technical, economic Evaluation of Dual Energy Use Systems (DEUS). and institutional aspects of these systems. WHAT IS DEUS? THE EPRI DEUS PROJECT Cogeneration has been traditionally defined as The Electric Power Research Institute... (EPRI) the simultaneous production of electricity and conducted a Dual Energy Use Systems Workshop in stearn. Recently, the definition has been broadened September 1977 to develop information useful to to include the simultaneous production...

  9. Gas Turbine Cogeneration Plant for the Dade County Government Center

    E-Print Network [OSTI]

    Michalowski, R. W.; Malloy, M. K.

    in downtown Miami presents significant construction scheduling, environmental, and engineering challenges. Issues such as space limitations, emissions, noise pollution, and maintenance have been carefully addressed and successfully resolved. INTRODUCTION... CONSTRUCTION : I Another true challenge of implementing th~ Dade cogeneration system is in the area of scheduling and construction. The building to house the cogen~ration 139 ESL-IE-85-05-25 Proceedings from the Seventh National Industrial Energy...

  10. High Efficiency Gas Turbines Overcome Cogeneration Project Feasibility Hurdles

    E-Print Network [OSTI]

    King, J.

    HIGH EFFICIENCY GAS TlJR1HNES OVERCOME COGENFRATION PROJECT FEASIBILITY HURDLES JIM KING Gas Turbine Perfonumce Engineer STEVART &: STEVENSON SERVICES. INC. Houston. TelUlS ABSTRACT Cogeneration project feasibility sometimes fails... during early planning stages due to an electrical cycle efficiency which could be improved through the use of aeroderivative gas turbine engines. The aeroderivative engine offers greater degrees of freedom in terms of power augmentation through...

  11. Optimum Operation of In-Plant Cogeneration Systems

    E-Print Network [OSTI]

    Craw, I. A.; Foster, D.; Reidy, K. D.

    which plant simulation model and a mathematical optimization package can determine the optimum settings for control variables of the power plant and eliminate uncertainties associated with achieving the minimum cost operation. TENSA Services.... The systems have been developed over a 20 year period culminating with real time data collection and performance monitoring and real time optimization for a variety of plants, including heat and power cogeneration plants. ICI has found that they have...

  12. Cogeneration System Size Optimization Constant Capacity and Constant Demand Models

    E-Print Network [OSTI]

    Wong-Kcomt, J. B.; Turner, W. C.

    proposed to select a combined heat and power (CHP) or cogeneration system and to evaluate its optimal size. Here, "optimal" size means the nominal system size (in kW ) that minimizes the total e equivalent annual cost (TEAC) to own, operate... ratio (HPR l ). Thus, Canton et.al (2) have developed a graphical method to visualize different operating scenarios. Hay (3) and the AGA Manual (I) consider the following operation modes for a plant with variable CHP loads. Each operation mode...

  13. Cogeneration: The Need for Utility-Industry Cooperation 

    E-Print Network [OSTI]

    Limaye, D. R.

    1982-01-01T23:59:59.000Z

    to implement cogeneration (D. The objectives of the EPRI project, called "Evaluation of Dual Energy Use Systems (DEUS) Appli cations" are to (.!!.): ? Develop a methodology to assess cogen eration options, with explicit consid eration of utility... Development Act of 1980. 7. Synergic Resources Corporation, Evaluation of Dual Energy Use Systems: Volume I, Executive Summary, Draft Report, March 1981. 8. Synergic Resources Corporation, Evaluation of Dual Energy Use Systems (DEUS) Applications...

  14. BEHAVIOURAL REALISM IN A TECHNOLOGY EXPLICIT ENERGY-ECONOMY MODEL: THE ADOPTION OF INDUSTRIAL COGENERATION IN CANADA

    E-Print Network [OSTI]

    COGENERATION IN CANADA by Nicholas J. Rivers B.Eng., Memorial University of Newfoundland, 2000 RESEARCH PROJECT: Behavioural realism in a technology explicit energy-economy model: The adoption of industrial cogeneration the results. The model showed that industrial cogeneration is a relatively unknown technology to many firms

  15. 814revision:2003-09-26modified:2003-09-29 ON THE COGENERATION OF COTORSION PAIRS

    E-Print Network [OSTI]

    Shelah, Saharon

    814revision:2003-09-26modified:2003-09-29 ON THE COGENERATION OF COTORSION PAIRS PAUL C. EKLOF modules, then C is cogenerated by a set. We show that () is the best result provable in ZFC in case R has a countable spectrum: the Uniformization Principle UP+ implies that C is not cogenerated by a set whenever C

  16. The global dimension of the endomorphism ring of a generator-cogenerator for a hereditary artin algebra

    E-Print Network [OSTI]

    Ringel, Claus Michael

    The global dimension of the endomorphism ring of a generator-cogenerator for a hereditary artin a -module which is both a generator and a cogenerator. We are going to describe the possibilities is called a generator if any projective module belongs to add M; it is called a cogenerator if any injective

  17. Potential for cogeneration in Maryland. The potential for large-scale commercial and industrial cogeneration in Maryland. Volume 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    The purpose of the document is to present, in considerable detail, the data, assumptions, analytical processes, and results of the evaluation of large-scale cogeneration market potential in Maryland through the year 2005. The approach is to discuss each major step in the analysis, present data collected, and present analytical model outputs. Analytical results and model outputs are presented for each of the other utilities serving portions of the State (PEPCO, DP L, and Potomac Edison Co.).

  18. SOFC Modeling for the Simulation of Residential Cogeneration Michael J. Carl

    E-Print Network [OSTI]

    Victoria, University of

    SOFC Modeling for the Simulation of Residential Cogeneration Systems by Michael J. Carl B means, without permission of the author. #12;ii Supervisory Committee SOFC Modeling for the Simulation made to the fuel cell power module (FCPM) within the SOFC cogeneration simulation code developed under

  19. BIOMASS AND BLACK LIQUOR GASIFIER/GAS TURBINE COGENERATION AT PULP AND PAPER MILLS

    E-Print Network [OSTI]

    BIOMASS AND BLACK LIQUOR GASIFIER/GAS TURBINE COGENERATION AT PULP AND PAPER MILLS ERIC D. LARSON modeling of gasifier/gas turbine pulp-mill cogeneration systemsusing gasifier designs under commercial gasification. The use of biomass fuels with gas turbines could transform a typical pulp mill from a net

  20. Integrated Chemical Complex and Cogeneration Analysis System: Energy Conservation and Greenhouse Gas Management Solutions

    E-Print Network [OSTI]

    Pike, Ralph W.

    19f Integrated Chemical Complex and Cogeneration Analysis System: Energy Conservation and Cogeneration Analysis System is an advanced technology for energy conservation and pollution prevention, Beaumont, TX 77710, hopperjr@hal.lamar.edu, yawscl@hal.lamar.edu Key words; Energy Conservation, Greenhouse

  1. Standard practice for evaluating and qualifying oil field and refinery corrosion inhibitors using the rotating cylinder electrode

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    1.1 This practice covers a generally accepted procedure to use the rotating cylinder electrode (RCE) for evaluating corrosion inhibitors for oil field and refinery applications in defined flow conditions. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  2. Building Technologies Program: Tax Deduction Qualified Software- Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1

    Broader source: Energy.gov [DOE]

    Provides required documentation that Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  3. Last Name First Name DeptID Dept EmailPhone NSLS-II Site Access Qualified

    E-Print Network [OSTI]

    Ohta, Shigemi

    Guests 0001A Auto-Term BNL ESH 1/9/2014 PS ESH 3/26/2014 ESH-740 3/11/2014 GERT 8/18/2012 Abad Richard MPGUEST MP Guests 0003A Auto-Term BNL ESH 6/24/2013 PS ESH 3/26/2014 ESH-740 3/11/2014 GERT 8/18/2012 Abel Bruce PSGUEST Photon Sci. Guest bruce_abel@mail.aesys.net Q8095 Auto-Term BNL ESH 5/20/2013 PS ESH 7

  4. Building Technologies Program: Tax Deduction Qualified Software-EnergyGauge Summit version 3.1 build 2

    Broader source: Energy.gov [DOE]

    Provides required documentation that EnergyGauge Summit version 3.1 build 2 meets Internal Revenue Code §179D, Notice 2006-52, dated January 31, 2007, for calculating commercial building energy and power cost savings.

  5. GUIDANCE FOR ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANT GRANTEES ON Qualified Energy Conservation Bonds and New Clean Renewable Energy Bonds.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003 Intellectual PropertytoServices »

  6. Spatiotemporal evolution of dielectric driven cogenerated dust density waves

    SciTech Connect (OSTI)

    Sarkar, Sanjib; Bose, M. [Department of Physics, Jadavpur University, Kolkata 700032 (India)] [Department of Physics, Jadavpur University, Kolkata 700032 (India); Mukherjee, S. [FCIPT, Institute for Plasma Research, Gandhinagar 382428 (India)] [FCIPT, Institute for Plasma Research, Gandhinagar 382428 (India); Pramanik, J. [Kharagpur College, Kharagpur 721305, West Bengal (India)] [Kharagpur College, Kharagpur 721305, West Bengal (India)

    2013-06-15T23:59:59.000Z

    An experimental observation of spatiotemporal evolution of dust density waves (DDWs) in cogenerated dusty plasma in the presence of modified field induced by glass plate is reported. Various DDWs, such as vertical, oblique, and stationary, were detected simultaneously for the first time. Evolution of spatiotemporal complexity like bifurcation in propagating wavefronts is also observed. As dust concentration reaches extremely high value, the DDW collapses. Also, the oblique and nonpropagating mode vanishes when we increase the number of glass plates, while dust particles were trapped above each glass plates showing only vertical DDWs.

  7. Negotiating a Favorable Cogeneration Contract with your Utility Company

    E-Print Network [OSTI]

    Lark, D. H.; Flynn, J.

    call the "ESCO" stage. An electric utility that becomes an "ESCO" -- or "Energy Service Company" -- no longer serves as just a hard seller of electricity. As an "ESCO", they assume a new role as designer and marketer of energy services that meet... an "ESCO", talk to them about your coge eration project as an investment opportunity. Maybe they'll want to finance it for you. Or even operate and maintain it for you on a con tract. ~ Good luck in your cogeneration nego iations with your local...

  8. Natural Gas Procurement Challenges for a Project Financed Cogeneration Facility

    E-Print Network [OSTI]

    Good, R. L.; Calvert, T. B.; Pavlish, B. A.

    NATURAL GAS PROCUREKENT CHALLENGES FOR A PROJECT FINANCED COGENERATION FACILITY R.L. Good, T.B. Calve~t and B.A. Pavlish Union Ca~bide Corpo~ation Houston, Texas ABSTRACT A decision to p~oject finance a 110 megawatt combined cycle cogene... the various natural gas supply p~oposals that ultimately ~esulted in the final cont~actu~al a~~angements. While the information p~esented will be deliberately non-specific to the supplie~s involved or the cont~actual terms, the discussion will cove...

  9. Alternatives to Industrial Cogeneration: A Pinch Technology Perspective

    E-Print Network [OSTI]

    Karp, A.

    and the process heat sink. Whe~ the. heat engine is integrated with the process 1n th1S way, the total energy requirements exceed ~hose of the stand-alone process by an amount that 1S essentially equal to the work produced. Compared to the stand-alone case..., and other energy recovery approaches can playa part in defining alternatives to cogeneration, strategies that confine themselves to such measures are unnecessarily restrictive. Indeed, strategies that rely on a particular technology presume to know...

  10. Georgetown University atmospheric fluidized bed boiler cogeneration system

    SciTech Connect (OSTI)

    Podbielski, V.; Shaff, D.P.

    1991-08-01T23:59:59.000Z

    This report presents the results of one year of operation of the cogeneration system capability of the Georgetown University coal- fired, atmospheric fluidized-bed (AFB) boiler. The AFB was designed and installed under a separate contract with the US Department of Energy. The AFB project funded by DOE to demonstrate that high sulfur coal could be burned in an environmentally acceptable manner in a urban environment such as Georgetown. In addition, operational data from the unit would assist the industry in moving directly into design and construction of commercially warranted industrial size AFB boilers. 9 figs., 3 tabs.

  11. Potential for cogeneration in Maryland. The potential for small-scale cogeneration in Maryland. Volume 2. Technical documentation

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    The purpose of the document is to present, in considerable detail, the data, assumptions, analytical processes, and results of the evaluation of small-scale cogeneration market potential in Maryland through the year 2005. The approach is to discuss each major step in the analysis, present data collected, and present analytical model outputs. In the interest of brevity, many of the model outputs are presented for only one utility (BG E), although comparable modeling results were prepared and are available for each of the other utilities serving portions of the State (PEPCO, DP L, and Potomac Edison Co.).

  12. A Simplified Self-Help Approach to Sizing of Small-Scale Cogeneration Systems

    E-Print Network [OSTI]

    Somasundaram, S.; Turner, W. D.

    1987-01-01T23:59:59.000Z

    ESL-TR-87/07-04 A Simplified Self-Help Approach to Sizing of Small-Scale Cogeneration Systems A SIMPLIFIED SELF-HELP APPROACH TO SIZING OF SMALL-SCALE COGENERATION SYSTEMS A Report Submitted to The Energy Efficiency Division Public Utility... simplified and a self-help approach to determining the economic feasibility of a small-scale Cogeneration system. It has been compiled for use by the energy managers/physical plant directors of various Texas state agencies, so that an initial screening...

  13. The growth of a C_0-semigroup characterised by its cogenerator

    E-Print Network [OSTI]

    Eisner, Tanja

    2008-01-01T23:59:59.000Z

    We characterise contractivity, boundedness and polynomial boundedness for a C_0-semigroup on a Banach space in terms of its cogenerator V (or the Cayley transform of the generator) or its resolvent. In particular, we extend results of Gomilko and Brenner, Thomee and show that polynomial boundedness of a semigroup implies polynomial boundedness of its cogenerator. As is shown by an example, the result is optimal. For analytic semigroups we show that the converse holds, i.e., polynomial boundedness of the cogenerators implies polynomial boundedness of the semigroup. In addition, we show by simple examples in (C^2,\\|\\cdot\\|_p), p \

  14. Solar cogeneration: Cimarron River station, Central Telephone and Utilities-Western Power

    SciTech Connect (OSTI)

    Harder, J.E.

    1981-04-01T23:59:59.000Z

    The site-specific conceptual design progress is described for a solar central receiver cogeneration facility at a Kansas utility. The process is described which led to the selection of the preferred solar cogeneration facility. The status of the conceptual design is presented. The evaluation of system performance is described. A test program is described that is to determine the magnitude of impact that local environmental factors have on collector system performance and to measure the direct normal insolation at the cogeneration facility site. The system specification is appended. (LEW)

  15. Waste-to-Energy Cogeneration Project, Centennial Park

    SciTech Connect (OSTI)

    Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

    2014-04-29T23:59:59.000Z

    The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

  16. BP Cherry Point Cogeneration Project, Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2003-09-19T23:59:59.000Z

    BP West Coast Products, LLC (BP or the Applicant) proposes to construct and operate a nominal 720-megawatt (MW), natural-gas-fired, combined-cycle cogeneration facility next to the existing BP Cherry Point Refinery in Whatcom County, Washington. The Applicant also owns and operates the refinery, but the cogeneration facility and the refinery would be operated as separate business units. The cogeneration facility and its ancillary infrastructure would provide steam and 85 MW of electricity to meet the operating needs of the refinery and 635 MW of electrical power for local and regional consumption. The proposed cogeneration facility would be located between Ferndale and Blaine in northwestern Whatcom County, Washington. The Canadian border is approximately 8 miles north of the proposed project site. The Washington State Energy Facility Site Evaluation Council (EFSEC) has jurisdiction over the evaluation of major energy facilities including the proposed project. As such, EFSEC will recommend approval or denial of the proposed cogeneration facility to the governor of Washington after an environmental review. On June 3, 2002, the Applicant filed an Application for Site Certification (ASC No. 2002-01) with EFSEC in accordance with Washington Administrative Code (WAC) 463-42. On April 22, 2003, the Applicant submitted an amended ASC that included, among other things, a change from air to water cooling. With the submission of the ASC and in accordance with the State Environmental Policy Act (SEPA) (WAC 463-47), EFSEC is evaluating the siting of the proposed project and conducting an environmental review with this Environmental Impact Statement (EIS). Because the proposed project requires federal agency approvals and permits, this EIS is intended to meet the requirements under both SEPA and the National Environmental Policy Act (NEPA). The Bonneville Power Administration (Bonneville) and U.S. Army Corps of Engineers (Corps) also will use this EIS as part of their respective decision-making processes associated with the Applicant's request to interconnect to Bonneville's transmission system and proposed location of the project within wetland areas. Therefore, this Draft EIS serves as the environmental review document for SEPA and for NEPA as required by Bonneville for the interconnection and the Corps for its 404 individual permit. The EIS addresses direct, indirect, and cumulative impacts of the proposed project, and potential mitigation measures proposed by the Applicant, as well as measures recommended by EFSEC. The information and resulting analysis presented in this Draft EIS are based primarily on information provided by the Applicant in the ASC No. 2002-01 (BP 2002). Where additional information was used to evaluate the potential impacts associated with the proposed action, that information has been referenced. EFSEC's environmental consultant, Shapiro and Associates, Inc., did not perform additional studies during the preparation of this Draft EIS.

  17. Evaluation and Design of Utility Co-Owned Cogeneration Systems for Industrial Parks

    E-Print Network [OSTI]

    Hu, D. S.; Tamaro, R. F.; Schiller, S. R.

    1984-01-01T23:59:59.000Z

    The Electric Power Research Institute, EPRI, is currently evaluating the potential of utility co-owned cogeneration facilities in industrial parks. This paper describes part of the work performed by one of EPRI's contractors, Impell Corporation...

  18. Electric utility forecasting of customer cogeneration and the influence of special rates

    E-Print Network [OSTI]

    Pickel, Frederick H.

    1979-01-01T23:59:59.000Z

    Cogeneration, or the simultaneous production of heat and electric or mechanical power, emerged as one of the main components of the energy conservation strategies in the past decade. Special tax treatment, exemptions from ...

  19. Energy Value vs. Energy Cost: A Fundamental Concept of Economics Applied to Cogeneration

    E-Print Network [OSTI]

    Viar, W. L.

    1983-01-01T23:59:59.000Z

    fraction. The importance of the distinction is discussed, and a technique for accurate determination of the two factors is described. Specific examples involving cogeneration in an industrial steam power system will be presented. This will include...

  20. Control Engineering Practice 10 (2002) 615624 Stabilizer design for industrial co-generation systems

    E-Print Network [OSTI]

    Marquez, Horacio J.

    2002-01-01T23:59:59.000Z

    design; HN optimization; Co-generation systems; Boiler control; Industrial applications 1. Introduction temperature. A simple diagram of the current boiler control system is shown in Fig. 2. From a control systems

  1. Evaluation of Industrial Energy Options for Cogeneration, Waste Heat Recovery and Alternative Fuel Utilization

    E-Print Network [OSTI]

    Hencey, S.; Hinkle, B.; Limaye, D. R.

    1980-01-01T23:59:59.000Z

    This paper describes the energy options available to Missouri industrial firms in the areas of cogeneration, waste heat recovery, and coal and alternative fuel utilization. The project, being performed by Synergic Resources Corporation...

  2. Marginal Cost of Steam and Power from Cogeneration Systems Using a Rational Value-Allocation Procedure 

    E-Print Network [OSTI]

    Kumana, J. D.; Al-Gwaiz, M. M.

    2004-01-01T23:59:59.000Z

    The problem of pricing steam and power from cogeneration systems has confounded engineers, economists, and accountants for a very long time. Normal industry practice is to fix the cost of one (usually power) at its local market price, and calculate...

  3. Optimization of Combustion Efficiency for Supplementally Fired Gas Turbine Cogenerator Exhaust Heat Receptors

    E-Print Network [OSTI]

    Waterland, A. F.

    1984-01-01T23:59:59.000Z

    A broad range of unique cogeneration schemes are being installed or considered for application in the process industries involving gas turbines with heat recovery from the exhaust gas. Depending on the turbine design, exhaust gases will range from...

  4. Computer-Aided Design Reveals Potential of Gas Turbine Cogeneration in Chemical and Petrochemical Plants

    E-Print Network [OSTI]

    Nanny, M. D.; Koeroghlian, M. M.; Baker, W. J.

    1984-01-01T23:59:59.000Z

    Gas turbine cogeneration cycles provide a simple and economical solution to the problems created by rising fuel and electricity costs. These cycles can be designed to accommodate a wide range of electrical, steam, and process heating demands...

  5. Simulation and optimization of cogeneration power plant operation using an Energy Optimization Program

    E-Print Network [OSTI]

    Zhou, Jijun

    2001-01-01T23:59:59.000Z

    The operation of a combined cycle cogeneration power plant system is complicated because of the complex interactions among components as well as the dynamic nature of the system. Studies of plant operation through experiments in such a sensitive...

  6. Sensitivity Analysis of Factors Effecting the Financial Viability of Cogeneration Projects

    E-Print Network [OSTI]

    Clunie, J. F.

    1984-01-01T23:59:59.000Z

    Cogeneration represents an alternative available for industry to take advantage of energy conservation through simultaneous generation of thermal energy and electricity. A positive regulatory climate can further contribute to economic viability...

  7. Optimization of Combustion Efficiency for Supplementally Fired Gas Turbine Cogenerator Exhaust Heat Receptors 

    E-Print Network [OSTI]

    Waterland, A. F.

    1984-01-01T23:59:59.000Z

    A broad range of unique cogeneration schemes are being installed or considered for application in the process industries involving gas turbines with heat recovery from the exhaust gas. Depending on the turbine design, exhaust gases will range from...

  8. Design and Economic Evaluation of Thermionic Cogeneration in a Chlorine-Caustic Plant 

    E-Print Network [OSTI]

    Miskolezy, G.; Morgan, D.; Turner, R.

    1985-01-01T23:59:59.000Z

    The study shows that it is feasible to equip a chlorine-caustic plant with thermionic cogeneration. Thermionic combustors replace the existing burners of the boilers used to raise steam for the evaporators, and are capable of generating...

  9. Computer-Aided Design Reveals Potential of Gas Turbine Cogeneration in Chemical and Petrochemical Plants 

    E-Print Network [OSTI]

    Nanny, M. D.; Koeroghlian, M. M.; Baker, W. J.

    1984-01-01T23:59:59.000Z

    Gas turbine cogeneration cycles provide a simple and economical solution to the problems created by rising fuel and electricity costs. These cycles can be designed to accommodate a wide range of electrical, steam, and process heating demands...

  10. Modelling Residential-Scale Combustion-Based Cogeneration in Building Simulation

    SciTech Connect (OSTI)

    Ferguson, A.; Kelly, N.; Weber, A.; Griffith, B.

    2009-03-01T23:59:59.000Z

    This article describes the development, calibration and validation of a combustion-cogeneration model for whole-building simulation. As part of IEA Annex 42, we proposed a parametric model for studying residentialscale cogeneration systems based on both Stirling and internal combustion engines. The model can predict the fuel use, thermal output and electrical generation of a cogeneration device in response to changing loads, coolant temperatures and flow rates, and control strategies. The model is now implemented in the publicly-available EnergyPlus, ESP-r and TRNSYS building simulation programs. We vetted all three implementations using a comprehensive comparative testing suite, and validated the model's theoretical basis through comparison to measured data. The results demonstrate acceptable-to-excellent agreement, and suggest the model can be used with confidence when studying the energy performance of cogeneration equipment in non-condensing operation.

  11. Marginal Cost of Steam and Power from Cogeneration Systems Using a Rational Value-Allocation Procedure

    E-Print Network [OSTI]

    Kumana, J. D.; Al-Gwaiz, M. M.

    2004-01-01T23:59:59.000Z

    that their approach gives more realistic values for marginal steam and power costs, and yields superior results compared to conventional methods. It is recommended as the first step before energy optimization analysis for the process is undertaken. REFERENCES... companies operate in either modes 1a or 2a, as electric utility companies are loathe to purchase surplus power from a cogenerator unless it is priced substantially below the utility?s own cheapest marginal cost of production. Usually, the cogenerator...

  12. Small-Scale Industrial Cogeneration: Design Using Reciprocating Engines and Absorption Chillers

    E-Print Network [OSTI]

    Wagner, J. R.

    SMALL-SCALE INDUSTRIAL COGENERATION: DESIGN USING RECIPROCATING ENGINES AND ABSORPTION CHILLER Joseph R. Wagner Mechanical Technology Incorporated Latham, ABSTRACT This paper describes a packaged cogeneration system designed for light... to drive an absorption chiller. This approach yields a variety of unique advantages, including: (1) ability to satisfy the needs of facil ities that have a low ratio of thermal-to-electric energy needs, and which have significant. refriger ation loads...

  13. Decentralised optimisation of cogeneration in virtual power plants

    SciTech Connect (OSTI)

    Wille-Haussmann, Bernhard; Erge, Thomas; Wittwer, Christof [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg (Germany)

    2010-04-15T23:59:59.000Z

    Within several projects we investigated grid structures and management strategies for active grids with high penetration of renewable energy resources and distributed generation (RES and DG). Those ''smart grids'' should be designed and managed by model based methods, which are elaborated within these projects. Cogeneration plants (CHP) can reduce the greenhouse gas emissions by locally producing heat and electricity. The integration of thermal storage devices is suitable to get more flexibility for the cogeneration operation. If several power plants are bound to centrally managed clusters, it is called ''virtual power plant''. To operate smart grids optimally, new optimisation and model reduction techniques are necessary to get rid with the complexity. There is a great potential for the optimised management of CHPs, which is not yet used. Due to the fact that electrical and thermal demands do not occur simultaneously, a thermally driven CHP cannot supply electrical peak loads when needed. With the usage of thermal storage systems it is possible to decouple electric and thermal production. We developed an optimisation method based on mixed integer linear programming (MILP) for the management of local heat supply systems with CHPs, heating boilers and thermal storages. The algorithm allows the production of thermal and electric energy with a maximal benefit. In addition to fuel and maintenance costs it is assumed that the produced electricity of the CHP is sold at dynamic prices. This developed optimisation algorithm was used for an existing local heat system with 5 CHP units of the same type. An analysis of the potential showed that about 10% increase in benefit is possible compared to a typical thermally driven CHP system under current German boundary conditions. The quality of the optimisation result depends on an accurate prognosis of the thermal load which is realised with an empiric formula fitted with measured data by a multiple regression method. The key functionality of a virtual power plant is to increase the value of the produced power by clustering different plants. The first step of the optimisation concerns the local operation of the individual power generator, the second step is to calculate the contribution to the virtual power plant. With small extensions the suggested MILP algorithm can be used for an overall EEX (European Energy Exchange) optimised management of clustered CHP systems in form of the virtual power plant. This algorithm has been used to control cogeneration plants within a distribution grid. (author)

  14. Analysis of Homogeneous Charge Compression Ignition (HCCI) Engines for Cogeneration Applications

    SciTech Connect (OSTI)

    Aceves, S; Martinez-Frias, J; Reistad, G

    2004-04-30T23:59:59.000Z

    This paper presents an evaluation of the applicability of Homogeneous Charge Compression Ignition Engines (HCCI) for small-scale cogeneration (less than 1 MWe) in comparison to five previously analyzed prime movers. The five comparator prime movers include stoichiometric spark-ignited (SI) engines, lean burn SI engines, diesel engines, microturbines and fuel cells. The investigated option, HCCI engines, is a relatively new type of engine that has some fundamental differences with respect to other prime movers. Here, the prime movers are compared by calculating electric and heating efficiency, fuel consumption, nitrogen oxide (NOx) emissions and capital and fuel cost. Two cases are analyzed. In Case 1, the cogeneration facility requires combined power and heating. In Case 2, the requirement is for power and chilling. The results show that the HCCI engines closely approach the very high fuel utilization efficiency of diesel engines without the high emissions of NOx and the expensive diesel fuel. HCCI engines offer a new alternative for cogeneration that provides a unique combination of low cost, high efficiency, low emissions and flexibility in operating temperatures that can be optimally tuned for cogeneration systems. HCCI engines are the most efficient technology that meets the oncoming 2007 CARB NOx standards for cogeneration engines. The HCCI engine appears to be a good option for cogeneration systems and merits more detailed analysis and experimental demonstration.

  15. Cogeneration: Economic and technical analysis. (Latest citations from the INSPEC - The Database for Physics, Electronics, and Computing). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The bibliography contains citations concerning economic and technical analyses of cogeneration systems. Topics include electric power generation, industrial cogeneration, use by utilities, and fuel cell cogeneration. The citations explore steam power station, gas turbine and steam turbine technology, district heating, refuse derived fuels, environmental effects and regulations, bioenergy and solar energy conversion, waste heat and waste product recycling, and performance analysis. (Contains a minimum of 104 citations and includes a subject term index and title list.)

  16. Combustion converter development for topping and cogeneration applications

    SciTech Connect (OSTI)

    Goodale, D.; Lieb, D.; Miskolczy, G.; Moffat, A.

    1983-08-01T23:59:59.000Z

    This paper discusses the development of combustion-heated thermionic converters. Combustion applications pose a materials problem that does not exist for thermionic converters used in the vacuum of outer space. The high-temperature components of a thermionic converter must be protected from the oxidizing terrestrial environment. A layer of silicon carbide provides the most satisfactory protective coating, or ''hot shell,'' for the emitter and lead of a combustion-heated thermionic converter. Four areas of work aimed at developing combustion heated thermionic converters will be discussed: improving the performance of the two-inch torispherical converter, modifications to the converter so that it may be used in multi-converter modules, the construction of a thermionic cogeneration test furnace, and a converter life test in an oil-fired furnace.

  17. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect (OSTI)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01T23:59:59.000Z

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  18. PV/cogeneration hybrid system nets large contract

    SciTech Connect (OSTI)

    Not Available

    1987-09-01T23:59:59.000Z

    Alpha Solarco Inc. announced on May 18, 1987 the signing of two $175 million exclusive development contracts with the Pawnee and Otoe-Missouria Tribes of Oklahoma to build two 70,000-kilowatt photovoltaic electric generating stations on Tribal lands in Oklahoma to supply Indian and other requirements. The projects, to be built in four phases, will each consists of 35,000 kilowatts of photovoltaic generating capacity to be supplied by the company's proprietary Modular Solar-Electric Photovoltaic Generator (MSEPG), and 35,000 kilowatts of gas-fired cogeneration. Alpha Solarco is starting to build and finance itself a 500-kilowatt demonstration plant as the initial step in the first project. This plant will be used to demonstrate that proven MSEPG design and technology can be integrated in electric utility systems, either as a base-load generator for small utilities, or as a peak-shaving device for large ones.

  19. 1992 National census for district heating, cooling and cogeneration

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    District energy systems are a major part of the energy use and delivery infrastructure of the United States. With nearly 6,000 operating systems currently in place, district energy represents approximately 800 billion BTU per hour of installed thermal production capacity, and provides over 1.1 quadrillion BTU of energy annually -- about 1.3% of all energy used in the US each year. Delivered through more that 20,000 miles of pipe, this energy is used to heat and cool almost 12 billion square feet of enclosed space in buildings that serve a diverse range of office, education, health care, military, industrial and residential needs. This Census is intended to provide a better understanding of the character and extent of district heating, cooling and cogeneration in the United States. It defines a district energy system as: Any system that provides thermal energy (steam, hot water, or chilled water) for space heating, space cooling, or process uses from a central plant, and that distributes the energy to two or more buildings through a network of pipes. If electricity is produced, the system is a cogenerating facility. The Census was conducted through surveys administered to the memberships of eleven national associations and agencies that collectively represent the great majority of the nation`s district energy system operators. Responses received from these surveys account for about 11% of all district systems in the United States. Data in this report is organized and presented within six user sectors selected to illustrate the significance of district energy in institutional, community and utility settings. Projections estimate the full extent of district energy systems in each sector.

  20. Advanced gas engine cogeneration technology for special applications

    SciTech Connect (OSTI)

    Plohberger, D.C.; Fessl, T.; Gruber, F.; Herdin, G.R. [Jenbacher Energiesystem AG, Jenbach (Austria)

    1995-10-01T23:59:59.000Z

    In recent years gas Otto-cycle engines have become common for various applications in the field of power and heat generation. Gas engines are chosen sometimes even to replace diesel engines, because of their clean exhaust emission characteristics and the ample availability of natural gas in the world. The Austrian Jenbacher Energie Systeme AG has been producing gas engines in the range of 300 to 1,600 kW since 1960. The product program covers state-of-the-art natural gas engines as well as advanced applications for a wide range of alterative gas fuels with emission levels comparable to Low Emission (LEV) and Ultra Low Emission Vehicle (ULEV) standards. In recent times the demand for special cogeneration applications is rising. For example, a turnkey cogeneration power plant for a total 14.4 MW electric power and heat output consisting of four JMS616-GSNLC/B spark-fired gas engines specially tuned for high altitude operation has been delivered to the well-known European ski resort of Sestriere. Sestriere is situated in the Italian Alps at an altitude of more than 2,000 m above sea level. The engines feature a turbocharging system tuned to an ambient air pressure of only 80 kPa to provide an output and efficiency of each 1.6 MW and up to 40% {at} 1,500 rpm, respectively. The ever-increasing demand for lower pollutant emissions in the US and some European countries initiates developments in new exhaust aftertreatment technologies. Thermal reactor and Selective Catalytic Reduction (SCR) systems are used to reduce tailpipe CO and NO{sub x} emissions of engines. Both SCR and thermal reactor technology will shift the engine tuning to achieve maximum efficiency and power output. Development results are presented, featuring the ultra low emission potential of biogas and natural gas engines with exhaust aftertreatment.

  1. Evaluation of diurnal thermal energy storage combined with cogeneration systems. Phase 2

    SciTech Connect (OSTI)

    Somasundaram, S.; Brown, D.R.; Drost, M.K.

    1993-07-01T23:59:59.000Z

    This report describes the results of a study of thermal energy storage (TES) systems integrated with combined-cycle gas turbine cogeneration systems. Integrating thermal energy storage with conventional cogeneration equipment increases the initial cost of the combined system; but, by decoupling electric power and process heat production, the system offers two significant advantages. First, electric power can be generated on demand, irrespective of the process heat load profile, thus increasing the value of the power produced. Second, although supplementary firing could be used to serve independently varying electric and process heat loads, this approach is inefficient. Integrating TES with cogeneration can serve the two independent loads while firing all fuel in the gas turbine. An earlier study analyzed TES integrated with a simple-cycle cogeneration system. This follow-on study evaluated the cost of power produced by a combined-cycle electric power plant (CC), a combined-cycle cogeneration plant (CC/Cogen), and a combined-cycle cogeneration plant integrated with thermal energy storage (CC/TES/Cogen). Each of these three systems was designed to serve a fixed (24 hr/day) process steam load. The value of producing electricity was set at the levelized cost for a CC plant, while the value of the process steam was for a conventional stand-alone boiler. The results presented here compared the costs for CC/TES/Cogen system with those of the CC and the CC/Cogen plants. They indicate relatively poor economic prospects for integrating TES with a combined-cycle cogeneration power plant for the assumed designs. The major reason is the extremely close approach temperatures at the storage media heaters, which makes the heaters large and therefore expensive.

  2. Cogeneration System Analysis Summary Reports for Texas Woman’s University, Denton, Texas

    E-Print Network [OSTI]

    Turner, W. D.; Murphy, W. E.; Hartman, R.; Heffington, W. M.; Bolander, J. N.; Propp, A. D.

    1985-01-01T23:59:59.000Z

    obtained from the waste heat of the prime mover (a gas turbine or a diesel engine). The overall efficiency of the Cogeneration system ranges from 70 to 85 percent. This efficiency is compared with that of approximately 35 percent for a conventional power... of the Cogeneration system was assumed to be 20 years. Also, long-term bond interest was assumed to be 8 percent in the net present value (NPV) analysis. The optimum system for TWU was found to be a 3.7 MW (megawatt) gas turbine with a heat recovery steam generator...

  3. Cogeneration System Analysis Summary Reports for Texas Woman’s University, Denton, Texas 

    E-Print Network [OSTI]

    Turner, W. D.; Murphy, W. E.; Hartman, R.; Heffington, W. M.; Bolander, J. N.; Propp, A. D.

    1985-01-01T23:59:59.000Z

    of the Cogeneration system was assumed to be 20 years. Also, long-term bond interest was assumed to be 8 percent in the net present value (NPV) analysis. The optimum system for TWU was found to be a 3.7 MW (megawatt) gas turbine with a heat recovery steam generator.... The gas turbine system could be installed at one of various sites on the campus. The installed cost would be Findings approximately $850/KW or about $3,145,000. The electricity ? generated by the Cogeneration system would cost about 6.14

  4. Decentralized electricity, cogeneration, and conservation options. [Conference paper

    SciTech Connect (OSTI)

    Hemphill, R.F. Jr.; Maguire, M.J.

    1980-01-01T23:59:59.000Z

    An early evaluation o the Home Insulation Program indicates that it is possible to carry on major conservation programs that result in a substantial saving to Tennessee Valley Authority (TVA) customers both from reduced electric bills and from reduction in electric system cost. The evidence from the TVA program strongly indicates that many utilities could realize benefits for themselves and their customers by implementing a comprehensive program for decentralized electricity, load management, cogeneration, and conservation. Of course, any financial benefit to the utility would be contingent on the treatment of costs associated with these programs on the balance sheet, on the income statement, and in allowable rate of return calculations. In particular, utility financing of customer installation of energy conservation and renewable energy systems must be treated in a manner that allows the utility to earn an acceptable rate of return. The Pacific Power and Light (PPL) Residential Energy Efficiency Rider is an example of how this can be handled. The program is beneficial to the utility because the entire cost of the weatherization measure can be added to the rate base with the customer paying the carrying charges on the capital. The customer benefits from the borrowing at the utility's cost of capital until the time of sale, at which time the value of the improvements is realized as a higher sale price for the house. While the value of such programs must be calculated on an individual basis, the authors feel that many utilities, particularly those that are in a position that makes it difficult to add new conventional capacity, could profit from the implementation of these programs. 1 reference, 2 figures, 6 tables.

  5. Economics of high performance steam systems (HPSS) cogeneration: A handbook

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    This guidebook aims to farther industry's knowledge of HPSS and their potential benefits. It is also intended to provide industrial end-users with a basis for judging the merits of HPSS under various site-specific conditions by outlining the economics of HPSS and conventional cogeneration systems compared to boilers under representative sets of industrial process conditions. Electric utility companies have experimented with steam pressures in the range of 5,000 psig and temperatures up to 1,200[degrees]F, but generally have remained with more conservative throttle conditions of 2,400 psig, 1,000[degrees]F to improve reliability. Most industrial applications have used steam throttle conditions below 900 psig and 900[degrees]F. Yet thermodynamic analysis shows that in a steam turbine generator, the amount of electricity generated per pound of steam increases as the inlet steam temperature and pressure are increased. Furthermore, the incremental electricity that is generated by raising the steam temperature and pressure is produced in a highly efficient manner. Efforts in this direction explain why, recently, some industrial projects have been built with steam turbine inlet turbine conditions of 1,500 psig and above. The HPSS concept goes one step further: It is based on a high-temperature steam generator capable of producing 1,500[degrees]F superheated steam and a high-speed steam turbine-generator. By utilizing the HPSS system as a topping'' system, high-pressure steam can be expanded from 1,500[degrees]F to the traditional temperatures used by industry.

  6. Economics of high performance steam systems (HPSS) cogeneration: A handbook

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    This guidebook aims to farther industry`s knowledge of HPSS and their potential benefits. It is also intended to provide industrial end-users with a basis for judging the merits of HPSS under various site-specific conditions by outlining the economics of HPSS and conventional cogeneration systems compared to boilers under representative sets of industrial process conditions. Electric utility companies have experimented with steam pressures in the range of 5,000 psig and temperatures up to 1,200{degrees}F, but generally have remained with more conservative throttle conditions of 2,400 psig, 1,000{degrees}F to improve reliability. Most industrial applications have used steam throttle conditions below 900 psig and 900{degrees}F. Yet thermodynamic analysis shows that in a steam turbine generator, the amount of electricity generated per pound of steam increases as the inlet steam temperature and pressure are increased. Furthermore, the incremental electricity that is generated by raising the steam temperature and pressure is produced in a highly efficient manner. Efforts in this direction explain why, recently, some industrial projects have been built with steam turbine inlet turbine conditions of 1,500 psig and above. The HPSS concept goes one step further: It is based on a high-temperature steam generator capable of producing 1,500{degrees}F superheated steam and a high-speed steam turbine-generator. By utilizing the HPSS system as a ``topping`` system, high-pressure steam can be expanded from 1,500{degrees}F to the traditional temperatures used by industry.

  7. Cogeneration : A Regulatory Guide to Leasing, Permitting, and Licensing in Idaho, Montana, Oregon, and Washington.

    SciTech Connect (OSTI)

    Deshaye, Joyce; Bloomquist, R.Gordon

    1992-12-01T23:59:59.000Z

    This guidebook focuses on cogeneration development. It is one of a series of four guidebooks recently prepared to introduce the energy developer to the federal, state and local agencies that regulate energy facilities in Idaho, Montana, Oregon, and Washington (the Bonneville Power Administration Service Territory). It was prepared specifically to help cogeneration developers obtain the permits, licenses and approvals necessary to construct and operate a cogeneration facility. The regulations, agencies and policies described herein are subject to change. Changes are likely to occur whenever energy or a project becomes a political issue, a state legislature meets, a preexisting popular or valuable land use is thought threatened, elected and appointed officials change, and new directions are imposed on states and local governments by the federal government. Accordingly, cogeneration developers should verify and continuously monitor the status of laws and rules that might affect their plans. Developers are cautioned that the regulations described herein may only be a starting point on the road to obtaining all the necessary permits.

  8. Guideline for implementing Co-generation based on Biomass waste from

    E-Print Network [OSTI]

    Guideline for implementing Co-generation based on Biomass waste from Thai Industries - through-generation based on Biomass waste from Thai Industries - through implementation and organisation of Industrial biomasse ressourcer fra det omkringliggende nærområde kan erhverves, og hvilke der er interessante

  9. Combined Heat and Power (CHP), also known as cogeneration, is the concurrent production of electricity or

    E-Print Network [OSTI]

    About CHP Combined Heat and Power (CHP), also known as cogeneration, is the concurrent production of energy. CHP is a type of distributed generation, which, unlike central station generation, is located fuel in a furnace or boiler to produce thermal energy, consumers use CHP to provide these energy

  10. External review of the thermal energy storage (TES) cogeneration study assumptions. Final report

    SciTech Connect (OSTI)

    Lai, B.Y.; Poirier, R.N. [Chicago Bridge and Iron Technical Services Co., Plainfield, IL (United States)

    1996-08-01T23:59:59.000Z

    This report is to provide a detailed review of the basic assumptions made in the design, sizing, performance, and economic models used in the thermal energy storage (TES)/cogeneration feasibility studies conducted by Pacific Northwest Laboratory (PNL) staff. This report is the deliverable required under the contract.

  11. A design approach to a risk review for fuel cell-based distributed cogeneration systems 

    E-Print Network [OSTI]

    Luthringer, Kristin Lyn

    2004-09-30T23:59:59.000Z

    A risk review of a fuel cell-based distributed co-generation (FC-Based DCG) system was conducted to identify and quantify the major technological system risks in a worst-case scenario. A risk review entails both a risk ...

  12. Biomass cogeneration, Port Townsend, Washington Study by Honors 220c, Energy & Environment,

    E-Print Network [OSTI]

    Biomass cogeneration, Port Townsend, Washington Study by Honors 220c, Energy & Environment, Humans Townsend Biomass Power Plant When considering the slash sources that will be used to fuel the Port Townsend from the current 84,000 dry tons to 184,000 dry tons with the new biomass plant addition (Wise, 2012

  13. Global dimensions of endomorphism algebras for generator-cogenerators over $m$-replicated algebras

    E-Print Network [OSTI]

    Lv, Hongbo

    2008-01-01T23:59:59.000Z

    Let $A$ be a finite dimensional hereditary algebra over a field $k$ and $A^{(m)}$ be the $m$-replicated algebra of $A$. We investigate the possibilities for the global dimensions of the endomorphism algebras of generator-cogenerators over $m$-replicated algebra $A^{(m)}$.

  14. A design approach to a risk review for fuel cell-based distributed cogeneration systems

    E-Print Network [OSTI]

    Luthringer, Kristin Lyn

    2004-09-30T23:59:59.000Z

    A risk review of a fuel cell-based distributed co-generation (FC-Based DCG) system was conducted to identify and quantify the major technological system risks in a worst-case scenario. A risk review entails both a risk assessment and a risk...

  15. EIS-0221: Proposed York County Energy Partners Cogeneration Facility, York County, PA

    Broader source: Energy.gov [DOE]

    The Department of Energy prepared this environmental impact statement to assess the environmental and human health impacts associated with construction and operation of the York County Energy Partners, L.P. Cogeneration Facility on a 38- acre parcel in North Codorus Township, York County, Pennsylvania.

  16. Development and use of an interactive computer simulation for generalized technical and economic assessments of cogeneration systems

    E-Print Network [OSTI]

    Baxter, Geoffrey R.

    1997-01-01T23:59:59.000Z

    comprehensive sensitivity analysis were completed to demonstrate the employment of the simulation program. The simulation can model cogeneration systems using either a gas turbine, internal combustion (IC) engine or steam turbine prime mover for both electrical...

  17. Development and use of an interactive computer simulation for generalized technical and economic assessments of cogeneration systems 

    E-Print Network [OSTI]

    Baxter, Geoffrey R.

    1997-01-01T23:59:59.000Z

    comprehensive sensitivity analysis were completed to demonstrate the employment of the simulation program. The simulation can model cogeneration systems using either a gas turbine, internal combustion (IC) engine or steam turbine prime mover for both electrical...

  18. BEHAVIOURAL REALISM IN A TECHNOLOGY EXPLICIT ENERGY-ECONOMY MODEL: THE ADOPTION OF INDUSTRIAL COGENERATION IN CANADA

    E-Print Network [OSTI]

    COGENERATION IN CANADA Prepared for: OFFICE OF ENERGY EFFICIENCY NATURAL RESOURCES CANADA Prepared by: NIC technology decision. A survey of 259 industrial firms in Canada was administered in 2002 and a discrete

  19. EA-1605: Biomass Cogeneration and Heating Facilities at the Savannah River Site; Aiken, Allendale and Barnwell Counties, South Carolina

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts of the proposed construction and operation of new biomass cogeneration and heating facilities at the Savannah River Site (SRS).

  20. Cogeneration: Economic and technical analysis. (Latest citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    The bibliography contains citations concerning economic and technical analyses of cogeneration systems. Topics include electric power generation, industrial cogeneration, use by utilities, and fuel cell cogeneration. The citations explore steam power station, gas turbine and steam turbine technology, district heating, refuse derived fuels, environmental effects and regulations, bioenergy and solar energy conversion, waste heat and waste product recycling, and performance analysis. (Contains a minimum of 89 citations and includes a subject term index and title list.)

  1. Cogeneration: Economic and technical analysis. (Latest citations from the INSPEC: Information Services for the Physics and Engineering Communities database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The bibliography contains citations concerning economic and technical analyses of cogeneration systems. Topics include electric power generation, industrial cogeneration, use by utilities, and fuel cell cogeneration. The citations explore steam power station, gas turbine and steam turbine technology, district heating, refuse derived fuels, environmental effects and regulations, bioenergy and solar energy conversion, waste heat and waste product recycling, and performance analysis. (Contains a minimum of 102 citations and includes a subject term index and title list.)

  2. COGEN3: A Computer System for Design, Costing and Economic Optimization of Cogeneration Projects

    E-Print Network [OSTI]

    Manuel, E. H., Jr.

    1984-01-01T23:59:59.000Z

    plies electrioity (some or all of which Fay be The Electric Power Research Institute (EPRI) pnrchased) and thermal energy. As shown in the has spousored several research projects on cogen figure. the thermal energy may inolude stbam at eration.... These projects have ranged from market several pressures (P)' and both the electridty and forecasting to hardware design to case studies of steam reqnirements may vary with time (t). iudividual cog-eneration projects. EPRI sponsored the development of COGEN3...

  3. Energy Value vs. Energy Cost: A Fundamental Concept of Economics Applied to Cogeneration 

    E-Print Network [OSTI]

    Viar, W. L.

    1983-01-01T23:59:59.000Z

    power in a machine such as a steam turbine, while supplying valid process loads with the exhaust steam. The reversed sequence is right also: supply the process heat and then the shaft power. While not complying with everyone's definition of dual-energy.... It is recognized that cogeneration, or dual-energy use, means different things to different people. As the term is used in this discussion, it refers to the frequently applied industrial practice of simultaneously or sequentially developing mechanical shaft...

  4. Combined biomass and black liquor gasifier/gas turbine cogeneration at pulp and paper mills

    SciTech Connect (OSTI)

    Larson, E.D.; Kreutz, T.G. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies; Consonni, S. [Politecnico di Milano, Milan (Italy). Dipt. di Energetica

    1999-07-01T23:59:59.000Z

    Kraft pulp and paper mills generate large quantities of black liquor and byproduct biomass suitable for gasification. These fuels are used today for onsite cogeneration of heat and power in boiler/steam turbine systems. Gasification technologies under development would enable these fuels to be used in gas turbines. This paper reports results of detailed full-load performance modeling of pulp-mill cogeneration systems based on gasifier/gas turbine technologies. Pressurized, oxygen-blown black liquor gasification, the most advanced of proposed commercial black liquor gasifier designs, is considered, together with three alternative biomass gasifier designs under commercial development (high-pressure air-blown, low-pressure air-blown, and low-pressure indirectly-heated). Heavy-duty industrial gas turbines of the 70-MW{sub e} and 25-MW {sub e} class are included in the analysis. Results indicate that gasification-based cogeneration with biomass-derived fuels would transform a typical pulp mill into significant power exporter and would also offer possibilities for net reductions in emissions of carbon dioxide relative to present practice.

  5. Q. For the 2005 Standards there is a new compliance credit for "ducts buried in attic insulation." What must be done to qualify for that credit?

    E-Print Network [OSTI]

    Q. For the 2005 Standards there is a new compliance credit for "ducts buried in attic insulation installation of insulation and duct sealing. When taking the buried duct credit, a minimum of R-30 insulation-4.2 duct insulation. Only the portions of duct runs that are directly on or within 3.5 inches

  6. Health Data Available at the Chicago Census RDC Confidential (restricted-use) versions of NCHS and AHRQ data are available to qualified

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    : · Examining how the provisions of care through health care safely nets affect health outcomes for children1 Health Data Available at the Chicago Census RDC Confidential (restricted-use) versions of NCHS RDC) located at the Federal Reserve Bank of Chicago.1 Confidential versions of health data include

  7. Past Topics for the Ph.D. Preliminary Qualifying Examination 2002: Development of an Implant System to Treat Patent Foramen Ovale

    E-Print Network [OSTI]

    Berdichevsky, Victor

    to Treat Patent Foramen Ovale You have just taken a position as the head of research and development for a cardiovascular device company. They have been given a grant to develop an implantable system to treat patent

  8. Last Name First Name DeptID Dept EmailPhone Workers Who Are Not Qualified for Access to NSLS-II

    E-Print Network [OSTI]

    Homes, Christopher C.

    -II ActiveBNL Appointment Status: Ackerman Andrew PSAB ES&H ackerman@bnl.gov344-5431 19551 Active BNL ESH 7/27/2012 PS ESH 1/9/2014 ESH-740 GERT 11/27/2013 Allaire Marc LSUGUEST LSU GUEST allaire@bnl.gov U9012 Active BNL ESH 3/18/2013 PS ESH ESH-740 GERT 3/13/2013 Arai Yuji LSUGUEST LSU GUEST yarai@illinois.edu344

  9. Schl-7054-traucht-02/11 The Sanibel-Captiva Rotary Club is seeking qualified candidates to apply for the Jimmy Traucht

    E-Print Network [OSTI]

    Roy, Subrata

    for the Jimmy Traucht Scholarship for students who will be attending the University of Florida during the 2011 to enroll in an ethics course before they graduate. Sanibel-Captiva Rotary Club 2011-2012 Jimmy Traucht ROTARY CLUB JIMMY TRAUCHT SCHOLARSHIP University of Florida 2011-2012 APPLICATION Personal Information

  10. Topics for Matrix Analysis (Math 430) Portion of Qualifying Exams Possible Text: Matrix Analysis and Applied Linear Algebra by Carl D. Meyer, SIAM, 2000.

    E-Print Network [OSTI]

    Maryland, Baltimore County, University of

    and Applied Linear Algebra by Carl D. Meyer, SIAM, 2000. Emphasis is on general theory of matrices rather than

  11. Assessment of the Technical Potential for Micro-Cogeneration in Small Commerical Buildings across the United States: Preprint

    SciTech Connect (OSTI)

    Griffith, B.

    2008-05-01T23:59:59.000Z

    This paper presents an assessment of the technical potential for micro-cogeneration in small commercial buildings throughout the United States. The cogeneration devices are simulated with the computer program EnergyPlus using models developed by Annex 42, a working group of the International Energy Agency's Energy Efficiency in Buildings and Community Systems (IEA/ECBCS). Although the Annex 42 models were developed for residential applications, this study applies them to small commercial buildings, assumed to have a total floor area of 500 m2 or less. The potential for micro-cogeneration is examined for the entire existing stock of small U.S. commercial buildings using a bottom-up method based on 1,236 EnergyPlus models.

  12. Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II

    SciTech Connect (OSTI)

    Vasenda, S.K.; Hassler, C.C.

    1992-06-01T23:59:59.000Z

    Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

  13. Operating flexibility and economic benefits of a dual-fluid cycle 501-kb gas turbine engine in cogeneration applications

    SciTech Connect (OSTI)

    Jones, J.L.; Flynn, B.R.; Strother, J.R.

    1982-01-01T23:59:59.000Z

    The flexibility of the Dual-Fluid Cycle 501-KB engine in accomodating to time varying process steam demand and peaking power requirements is described. Economic aspects of this engine in cogeneration applications are discussed relative to ownership by a utility, a process steam user or a third party. A specific installation is described for a Dual-Fluid Cycle unit operating in combination with two basic 501-KB cogeneration units. The resultant cost of electrical power for this installation is compared to local commercial rates. 4 refs.

  14. Advanced cogeneration and absorption chillers potential for service to Navy bases. Final report

    SciTech Connect (OSTI)

    Andrews, J.W.; Butcher, T.A.; Leigh, R.W.; McDonald, R.J.; Pierce, B.L.

    1996-04-01T23:59:59.000Z

    The US military uses millions of Btu`s of thermal energy to heat, cool and deliver process thermal energy to buildings on military bases, much of which is transmitted through a pipeline system incorporating thousands of miles of pipe. Much of this pipeline system is in disrepair and is nearing the end of its useful life, and the boilers which supply it are old and often inefficient. In 1993, Brookhaven National Laboratory (BNL) proposed to SERDP a three-year effort to develop advanced systems of coupled diesel cogenerators and absorption chillers which would be particularly useful in providing a continuation of the services now provided by increasingly antiquated district systems. In mid-February, 1995, BNL learned that all subsequent funding for our program had been canceled. BNL staff continued to develop the Program Plan and to adhere to the requirements of the Execution Plan, but began to look for ways in which the work could be made relevant to Navy and DoD energy needs even without the extensive development plan formerly envisioned. The entire program was therefore re-oriented to look for ways in which small scale cogeneration and absorption chilling technologies, available through procurement rather than development, could provide some solutions to the problem of deteriorated district heating systems. The result is, we believe, a striking new approach to the provision of building services on military bases: in many cases, serious study should be made of the possibility that the old district heating system should be removed or abandoned, and small-scale cogenerators and absorption chillers should be installed in each building. In the remainder of this Summary, we develop the rationale behind this concept and summarize our findings concerning the conditions under which this course of action would be advisable and the economic benefits which will accrue if it is followed. The details are developed in the succeeding sections of the report.

  15. Improving the Thermal Output Availability of Reciprocating Engine Cogeneration Systems by Mechanical Vapor Compression 

    E-Print Network [OSTI]

    Becker, F. E.; DiBella, F. A.; Lamphere, F.

    1986-01-01T23:59:59.000Z

    of these surveys hav been performed by and/or for the Department of En rgy (DOE) or the Gas Research Institute (GRI). Tree assessments of cogeneration system potential (one each conducted by Dun & Bradstreet Technical Econo mic Services; Hagler, Bailly... in the 500- or 1000-kW size, there could be a mar ket for as many as 10,000 to 15,000 units. An analysis by Dun & Bradstreet Technical Economic S~rvices (2) indicates that a substantial number, approximately 4700 of the 20,800 industries used...

  16. Cogeneration and beyond: The need and opportunity for high efficiency, renewable community energy systems

    SciTech Connect (OSTI)

    Gleason, T.C.J.

    1992-06-01T23:59:59.000Z

    The justification, strategies, and technology options for implementing advanced district heating and cooling systems in the United States are presented. The need for such systems is discussed in terms of global warming, ozone depletion, and the need for a sustainable energy policy. Strategies for implementation are presented in the context of the Public Utilities Regulatory Policies Act and proposed new institutional arrangements. Technology opportunities are highlighted in the areas of advanced block-scale cogeneration, CFC-free chiller technologies, and renewable sources of heating and cooling that are particularly applicable to district systems.

  17. Co-generation: a new energy system to generate both steam and electricity

    SciTech Connect (OSTI)

    Carraway, P.M.; Kloth, T.L.; Bull, A.D.

    1981-01-01T23:59:59.000Z

    A discussion is presented of the installation and operation of a co-generation system at Tenneco's Fee ''C'' Lease, whereby hot combustion gas from a turbine fueled by gas or lease crude will be used to generate steam for enhanced recovery, with the same turbine providing the power to generate electricity for sale to a utility. A summary is also given of the history of the project, some of the contractual requirements, the physical layout of the system, component descriptions, environmental considerations, and the composition of the final system.

  18. 250 MW single train CFB cogeneration facility. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    This Technical Progress Report (Draft) is submitted pursuant to the Terms and Conditions of Cooperative Agreement No. DE-FC21-90MC27403 between the Department of Energy (Morgantown Energy Technology Center) and York County Energy Partners, L.P. a wholly owned project company of Air Products and Chemicals, Inc. covering the period from January 1994 to the present for the York County Energy Partners CFB Cogeneration Project. The Technical Progress Report summarizes the work performed during the most recent year of the Cooperative Agreement including technical and scientific results.

  19. Cogeneration System Analysis Summary Reports for Austin State Hospital, Austin, Texas

    E-Print Network [OSTI]

    Turner, W. D.; Murphy, W. E.; Hartman, R.; Heffington, W. M.; Bolander, J. N.; Propp, A. D.

    1985-01-01T23:59:59.000Z

    's current tariff concerning standby power. Standby power is the capacity that the utility must have in the event the Cogeneration plant has an unscheduled down-time. 24 Findings The campus would purchase excess electrical power from the utility when needed... not pass then this analysis would be void. It was also assumed that a standby power charge of $5.20 per kw of peak demand would be levied each month by the utility company. This assumption is based on the utility's current tariff concerning standby power...

  20. "Matrix/Modular" - An Approach to Analyzing Cogeneration Opportunities in Industry

    E-Print Network [OSTI]

    Canty, W. R.

    1979-01-01T23:59:59.000Z

    of capital charges, fixed costs and variable costs, i.e., fuel costs at source such as coal at mine-mouth, fuel transportation costs, on-site facilities costs, off-site facilities costs, etc. These modules can then be evaluated in a "matrix of alternatives.... This brings the coal from the mine to the site, and the evaluation of the fuel unloading/handling module may now proceed. If the cogeneration site is small or the land proposed for coal storage and handling is better used for process unit construction...

  1. PERFORMANCE OF BLACK LIQUOR GASIFIER/GAS TURBINE COMBINED CYCLE COGENERATION IN mE KRAFT PULP

    E-Print Network [OSTI]

    PERFORMANCE OF BLACK LIQUOR GASIFIER/GAS TURBINE COMBINED CYCLE COGENERATION IN mE KRAFT PULP high-temperature gasifiers for gas turbine applications. ABB and MTCr/Stonechem are developing low-load performance of gasifier/gas turbine systemsincorporating the four above-noted gasifier designs are reported

  2. Kern River Cogeneration Company Box 80478, Bakers'field, CA 93380 (661) 615-4630 Neil E. Burgess, Executive Director

    E-Print Network [OSTI]

    with enhanced Dry Low NOx (DLNI +) combustors, four (4) unfired heat recovery steam generators (HRSGs), each the operation of the combustion gas turbine units at Kern River Cogeneration Company in an extended startup mode as the normal two hour startup period. The 12 hour startup period is used to tune the units, typically following

  3. Sycamore Cogeneration Company Box 80598, Bakersfield, CA 93380 (661) 615-4630 Neil E. Burgess, Executive Director

    E-Print Network [OSTI]

    ) unfired heat recovery steam generators (HRSGs), each capable of generating up to 450,000 pounds per hour (lb/hr) of steam for delivery to the adjacent oilfield operator for use in enhanced oil recovery of the combustion gas turbine units at Sycamore Cogeneration Company in an extended startup mode. The petition

  4. JV 38-APPLICATION OF COFIRING AND COGENERATION FOR SOUTH DAKOTA SOYBEAN PROCESSORS

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-11-01T23:59:59.000Z

    Cogeneration of heat and electricity is being considered by the South Dakota Soybean Processors for its facility in Volga, South Dakota, and a new facility to be located in Brewster, Minnesota. The Energy & Environmental Research Center has completed a feasibility study, with 40% funding provided from the U.S. Department of Energy's Jointly Sponsored Research Program to determine the potential application of firing biomass fuels combined with coal and comparative economics of natural gas-fired turbines. Various biomass fuels are available at each location. The most promising options based on availability are as follows. The economic impact of firing 25% biomass with coal can increase return on investment by 0.5 to 1.5 years when compared to firing natural gas. The results of the comparative economics suggest that a fluidized-bed cogeneration system will have the best economic performance. Installation for the Brewster site is recommended based on natural gas prices not dropping below a $4.00/MMBtu annual average delivered cost. Installation at the Volga site is only recommended if natural gas prices substantially increase to $5.00/MMBtu on average. A 1- to 2-year time frame will be needed for permitting and equipment procurement.

  5. The New Approach to Strategic Energy Planning

    E-Print Network [OSTI]

    Friedman, N. R.

    typically include: ? Dual-fuel alternatives ? Renegotiation of energy supply contracts ? Bidding or commodity option contracts for current or future energy needs ? Cogeneration, either as a self-generator, qualifying facility, or independent... power producer ? New technology applications such as adjustable speed drives and new, highly efficient electric or gas drying options ? Draw upon your experience as an energy producer to enter or to at least examine alternatives for entering...

  6. FERC allows higher rate of return for independent projects: the Ocean State power project

    SciTech Connect (OSTI)

    Not Available

    1987-06-01T23:59:59.000Z

    The Federal Energy Regulatory Commission ruling last February to allow a private owners of a powerplant to receive a higher rate of return than normal electric utilities if they assumed the risks of cogeneration without qualifying under the Public Utility Regulatory Policies Act also leaves an out for unusual situations. The key to the decisions was an acknowledgement that those assuming higher risk deserve higher compensation. The incentive package is unique in the way it handles cost recovery and availability contracts.

  7. Carbonate fuel cell system development for industrial cogeneration. Final report Mar 80-Aug 81

    SciTech Connect (OSTI)

    Schnacke, A.W.; Reinstrom, R.M.; Najewicz, D.J.; Dawes, M.H.

    1981-09-01T23:59:59.000Z

    A survey of various industries was performed to investigate the feasibility of using natural gas-fueled carbonate fuel cell power plants as a cogeneration heat and power source. Two applications were selected: chlorine/caustic soda and aluminum. Three fuel processor technologies, conventional steam reforming, autothermal reforming and an advanced steam reformer concept were used to define three thermodynamic cycle concepts for each of the two applications. Performance and economic studies were conducted for the resulting systems. The advanced steam reformer was found among those studied to be most attractive and was evaluated further and compared to internally reforming the fuel within the fuel cell anodes. From the results of the studies it was concluded that the issues most affecting gas-fired carbonate fuel cell power plant commercial introduction are fuel cell and stack development, fuel reformer technology and the development of reliable, cost-effective heat transfer equipment.

  8. Thermionic-cogeneration-burner assessment study. Second quarterly technical progress report, January-March 1983

    SciTech Connect (OSTI)

    Not Available

    1983-01-01T23:59:59.000Z

    The performance analysis work continued with the completion of the programming of the mathematical model and with the start of a series of parametric analyses. Initial studies predict that approximately 25 to 30% of the heat contained in the flue gas can be passed through the thermionic converters (TEC) and then be converted at 12 to 15% efficiency into electrical power. This results in up to 17 kWe per 1 million Btu/h burner firing rate. This is a 4 to 10 percent energy saving over power produced at the utility. The thermal burner design and construction have been completed, as well as initial testing on the furnace and preheat systems. The following industries are still considered viable options for use of the thermionic cogeneration burner: chlor-alkali, alumina-aluminum, copper refining, steel and gray iron, industries using resistance heating, electrolytic industries and electrochemical industries. Information gathered on these industries is presented.

  9. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991

    SciTech Connect (OSTI)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01T23:59:59.000Z

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  10. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    SciTech Connect (OSTI)

    Greene, Sherrell R [ORNL; Flanagan, George F [ORNL; Borole, Abhijeet P [ORNL

    2009-03-01T23:59:59.000Z

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  11. Microturbine cogeneration

    SciTech Connect (OSTI)

    Brandon, R.J.; Snoek, C.W.

    2000-07-01T23:59:59.000Z

    A Canadian government research agency has developed a heat recovery system, in partnership with a commercial firm, for use with microturbines. These small recuperated gas turbines are becoming commercially available and offer potential as the basis for small-scale combined heat and power (CHP) systems. The agency has developed a series of microturbine field trial projects with several Canadian gas and electric utilities. This paper reports results from the heat recovery prototype testing together with a description of the planned field trial program and the heat recovery system design.

  12. Cogeneration Economics

    E-Print Network [OSTI]

    Mongon, A.

    1984-01-01T23:59:59.000Z

    ~gy plticu ov~ the lat decade ha mad~ ~n~gy ~6Mc..i~cy an Vnpolttant ~conomic. 6ae.-to/t 60/t mMt ~n~gy U~. Th~ 6ae.-t that combin~d 6t~am -~~e.-tJt.iWI1 '/'ch~u aM nM!tiy tw.{.c~ a "~n~gy e6Mc..ient" a tJtaeii.;t{.onai conden-6ation tU!tbinu h...M h~p~d to ma~~ cogen~on inc.Jteaingly ~e.-t.ive. Cog~n~on t~chnoiogy ha continued to Vnp/tov~ a6 mo/t~ e6Mc..i~nt and low~ coU 6y6teJM hav~ been dev~opp~d. Th~ 6haM 06. indutJtiai 6 g~n~on capawy a6 compalt~d to total. pltOdue.-t.ion va...

  13. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect (OSTI)

    Unknown

    2003-01-01T23:59:59.000Z

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

  14. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. [Argonne National Lab., IL (United States); Gerritsen, W.; Stewart, A.; Robinson, K. [Rockwell International Corp., Canoga Park, CA (United States)

    1991-02-01T23:59:59.000Z

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock & Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  15. Model of penetration of coal boilers and cogeneration in the paper industry

    SciTech Connect (OSTI)

    Reister, D.B.

    1982-01-01T23:59:59.000Z

    A model has been developed to forecast the penetration of coal boilers and cogeneration of electricity in the paper industry. Given the demand for energy services (process steam and electricity) by the paper industry, the Penetration Model forecasts the demand for purchased fuel and electricity. The model splits the demand for energy service between energy carriers (coal, fuel oil/natural gas, bark, and spent liquor) on the basis of the installed capacity of 16 types of boilers (combinations of four types of energy carriers and four types of throttle conditions). Investment in new boilers is allocated by an empirical distribution function among the 16 types of boilers on the basis of life cycle cost. In the short run (5 years), the Penetration Model has a small price response. The model has a large price response in the long run (30 years). For constant fuel prices, the model forecasts a 19-percent share for coal and a 65-percent share for residual oil in the year 2000. If the real price of oil and gas doubles by the year 2000, the model forecasts a 68-percent share for coal and a 26-percent share for residual oil.

  16. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. (Argonne National Lab., IL (United States)); Gerritsen, W.; Stewart, A.; Robinson, K. (Rockwell International Corp., Canoga Park, CA (United States))

    1991-02-01T23:59:59.000Z

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  17. Technology Jobs Tax Credit (New Mexico)

    Broader source: Energy.gov [DOE]

    This credit has two parts: a basic credit and an additional credit, each equal to 4% of the qualified expenditures on qualified research at a qualified facility. The credit amount doubles for...

  18. MASSACHUSETTS DRIVES PERFORMANCE MEASUREMENT | Department of...

    Energy Savers [EERE]

    qualifying cold climate ductless mini-split heat pumps; 1,000 for qualifying heat pump water heaters; and 75% up to 16,000 for qualifying wood pellet boilersfurnaces) covered...

  19. Assessment of the possibilities of electricity and heat co-generation from biomass in Romania's case

    SciTech Connect (OSTI)

    Matei, M.

    1998-07-01T23:59:59.000Z

    This paper examines the use of biomass for electricity (and heat) production. The objectives of the works developed by RENEL--GSCI were to determine the Romanian potential biomass resources available in economic conditions for electricity production from biomass, to review the routes and the available equipment for power generation from biomass, to carry out a techno-economic assessment of different systems for electricity production from biomass, to identify the most suitable system for electricity and heat cogeneration from biomass, to carry out a detailed techno-economic assessment of the selected system, to perform an environmental impact assessment of the selected system and to propose a demonstration project. RENEL--GSCI (former ICEMENERG) has carried out an assessment concerning Romania's biomass potential taking into account the forestry and wood processing wastes (in the near term) and agricultural wastes (in mid term) as well as managing plantations (in the long term). Comparative techno-economical evaluation of biomass based systems for decentralized power generation was made. The cost analysis of electricity produced from biomass has indicated that the system based on boiler and steam turbine of 2,000 kW running on wood-wastes is the most economical. A location for a demonstration project with low cost financing possibilities and maximum benefits was searched. To mitigate the electricity cost it was necessary to find a location in which the fuel price is quite low, so that the low yield of small installation can be balanced. In order to demonstrate the performances of a system which uses biomass for electricity and heat generation, a pulp and paper mill which needed electricity and heat, and, had large amount of wood wastes from industrial process was found as the most suitable location. A technical and economical analysis for 8 systems for electricity production from bark and wood waste was performed.

  20. Guidance for Energy Efficiency and Conservation Block Grant Grantees...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grant Grantees on Qualified Energy Conservation Bonds and New Clean Renewable Energy Bonds Guidance for Energy Efficiency and Conservation Block Grant Grantees on Qualified Energy...

  1. Data:1c76b19b-d001-4c8e-9c82-86496f5d6a53 | Open Energy Information

    Open Energy Info (EERE)

    21, 2005, whose capacity is available during peak periods. Emergency generation and other demand response projects do not qualify for this Rider. However, peaking units qualify for...

  2. Policy Guidance Memorandum #37 Procedures for Excepted Service...

    Energy Savers [EERE]

    7 Procedures for Excepted Service Exceptionally Well Qualified (EWQ) Appointments Policy Guidance Memorandum 37 Procedures for Excepted Service Exceptionally Well Qualified (EWQ)...

  3. Energy Department Sets Tougher Standards for Clothes Washers...

    Office of Environmental Management (EM)

    Sets Tougher Standards for Clothes Washers to Qualify for the ENERGY STAR Label Energy Department Sets Tougher Standards for Clothes Washers to Qualify for the ENERGY STAR...

  4. Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Sanchez, Marla Christine

    2008-01-01T23:59:59.000Z

    using the energy consumption test data collected by theon manufacturer energy consumption test data for qualifiedTo date, energy consumption test data for non-qualified

  5. Savings estimates for the United States Environmental Protection Agency?s ENERGY STAR voluntary product labeling program

    E-Print Network [OSTI]

    Sanchez, Marla Christine

    2008-01-01T23:59:59.000Z

    using the energy consumption test data collected by US EPAon manufacturer energy consumption test data for qualifiedTo date, energy consumption test data for non-qualified

  6. Farmers Electric Cooperative (Kalona)- Renewable Energy Purchase Rate

    Broader source: Energy.gov [DOE]

    Farmers Electric Cooperative offers a production incentive to members that install qualifying wind and solar electricity generating systems. Qualifying grid-tied solar and wind energy systems are...

  7. Duquesne Light Company- Residential Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Duquesne Light provides rebates to its residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a flat rebate of $286 per qualifying...

  8. Data:23094a41-b5ae-46fb-953a-8559db175625 | Open Energy Information

    Open Energy Info (EERE)

    process and remains constant during the term that the Customer qualifies for the Rider. TERMS AND CONDITIONS The customer who qualifies for this Rider receives the billing credit...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    BrownfieldGrayfield Tax Credit Program (Iowa) The BrownfieldGrayfield Tax Credit Program offers qualifying projects tax credits of 24% for qualifying costs of a Brownfield...

  10. BONNEVILLE POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress Payment Calculator The Progress Payment Calculator allows utilities to submit detailed information for the qualifying pre-approved progress payments. In order to qualify...

  11. Tax Incentives

    Broader source: Energy.gov (indexed) [DOE]

    of 1992, allows owners of qualified over a 10-year period. Qualified wind wind turbines (indexed for inflation). - The federal Renewable Electricity Production Tax Credit...

  12. Policy Flash 2013-64 Acquisition Letter 10 and Class Deviation...

    Energy Savers [EERE]

    4 Acquisition Letter 10 and Class Deviation for Nondisplacement of Qualified Workers Policy Flash 2013-64 Acquisition Letter 10 and Class Deviation for Nondisplacement of Qualified...

  13. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    SciTech Connect (OSTI)

    Duffy, T.; Schneider, P.

    1996-01-01T23:59:59.000Z

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  14. Cogeneration of Electricity and Potable Water Using The International Reactor Innovative And Secure (IRIS) Design

    SciTech Connect (OSTI)

    Ingersoll, D.T.; Binder, J.L.; Kostin, V.I.; Panov, Y.K.; Polunichev, V.; Ricotti, M.E.; Conti, D.; Alonso, G.

    2004-10-06T23:59:59.000Z

    The worldwide demand for potable water has been steadily growing and is projected to accelerate, driven by a continued population growth and industrialization of emerging countries. This growth is reflected in a recent market survey by the World Resources Institute, which shows a doubling in the installed capacity of seawater desalination plants every ten years. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh/m3 of produced desalted water. At current U.S. water use rates, a dedicated 1000 MW power plant for every one million people would be required to meet our water needs with desalted water. Nuclear energy plants are attractive for large scale desalination application. The thermal energy produced in a nuclear plant can provide both electricity and desalted water without the production of greenhouse gases. A particularly attractive option for nuclear desalination is to couple a desalination plant with an advanced, modular, passively safe reactor design. The use of small-to-medium sized nuclear power plants allows for countries with smaller electrical grid needs and infrastructure to add new electrical and water capacity in more appropriate increments and allows countries to consider siting plants at a broader number of distributed locations. To meet these needs, a modified version of the International Reactor Innovative and Secure (IRIS) nuclear power plant design has been developed for the cogeneration of electricity and desalted water. The modular, passively safe features of IRIS make it especially well adapted for this application. Furthermore, several design features of the IRIS reactor will ensure a safe and reliable source of energy and water even for countries with limited nuclear power experience and infrastructure. The IRIS-D design utilizes low-quality steam extracted from the low-pressure turbine to boil seawater in a multi-effect distillation desalination plant. The desalination plant is based on the horizontal tube film evaporation design used successfully with the BN-350 nuclear plant in Aktau, Kazakhstan. Parametric studies have been performed to optimize the balance of plant design. Also, an economic analysis has been performed, which shows that IRIS-D should be able to provide electricity and clean water at highly competitive costs.

  15. Gasification of kraft black liquor and use of the products in combined cycle cogeneration. Final report, Phase II

    SciTech Connect (OSTI)

    Kelleher, E.G.

    1985-07-01T23:59:59.000Z

    This Phase II study of kraft black liquor gasification and use of the product gases in combined cycle cogeneration based on combustion gas turbines was motivated by the very promising results of the Phase I feasibility study. The Phase I study indicated that the alternative technology to the Tomlinson recovery furnace had the potential of improving the energy efficiency and safety of combusting black liquor, reducing the capital and operating costs, increasing the electric power output, and providing an economical system for incremental kraft capacity additions. During Phase II, additional bench-scale experiments were run, pilot-scale experiments were conducted, equipment systems were investigated, and performance and economics were reanalyzed. All of the objectives of the Phase II project were met. Recommendations are summarized.

  16. *Qualified Individual with a Disability: An individual with a disability as defined under the Americans with Disabilities Act who satisfies the requisite skill, experience, education and other job-related requirements of the

    E-Print Network [OSTI]

    Barrash, Warren

    DECISION If you decide to complete the form, please be sure to enter the Position Title and Search Number. This information will not be used for hiring, placement, or other decisions related to the terms and conditions

  17. Better Buildings Low Income Peer Exchange CallFeaturing: Case study on integration of income-qualified programs into Michigans Better Buildings program Call Slides and Discussion Summary, April 14, 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for Consumers anymoreEnergy DataSector14,

  18. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01T23:59:59.000Z

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  19. Radiation Monitoring Equipment Procedure: 7.513 Created: 10/30/2013 Version: 1.0 Revised

    E-Print Network [OSTI]

    Jia, Songtao

    counter, we recommend maintaining a service contract with the manufacturer or qualified outside service

  20. Natural Gas Utilities Options Analysis for the Hydrogen

    E-Print Network [OSTI]

    , carbon sequestration) > However, it depends greatly on whether fuel cells qualify within renewable