National Library of Energy BETA

Sample records for qualification final

  1. AGC-2 Irradiation Data Qualification Final Report

    SciTech Connect (OSTI)

    Laurence C. Hull

    2012-07-01

    The Graphite Technology Development Program will run a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The second Advanced Graphite Creep (AGC) experiment (AGC-2) began with Advanced Test Reactor (ATR) Cycle 149A on April 12, 2011, and ended with ATR Cycle 151B on May 5, 2012. The purpose of this report is to qualify AGC-2 irradiation monitoring data following INL Management and Control Procedure 2691, Data Qualification. Data that are Qualified meet the requirements for data collection and use as described in the experiment planning and quality assurance documents. Data that do not meet the requirements are Failed. Some data may not quite meet the requirements, but may still provide some useable information. These data are labeled as Trend. No Trend data were identified for the AGC-2 experiment. All thermocouples functioned throughout the AGC-2 experiment. There was one instance where spurious signals or instrument power interruption resulted in a recorded temperature value being well outside physical reality. This value was identified and labeled as Failed data. All other temperature data are Qualified. All helium and argon gas flow data are within expected ranges. Total gas flow was approximately 50 sccm through the capsule. Helium gas flow was briefly increased to 100 sccm during reactor shutdown. All gas flow data are Qualified. At the start of the experiment, moisture in the outflow gas line increased to 200 ppmv then declined to less than 10 ppmv over a period of 5 days. This increase in moisture coincides with the initial heating of the experiment and drying of the system. Moisture slightly exceeded 10 ppmv three other times during the experiment. While these moisture values exceed the 10 ppmv threshold value, the reported measurements are considered accurate and to reflect moisture conditions in the capsule. All moisture data are Qualified. Graphite creep specimens are subjected to one of three loads, 393 lbf, 491 lbf, or 589 lbf. Loads were consistently within 5% of the specified values throughout the experiment. Stack displacement increased consistently throughout the experiment with total displacement ranging from 1 to 1.5 inches. No anomalous values were identified. During reactor outages, a set of pneumatic rams are used to raise the stacks of graphite creep specimens to ensure the specimens have not become stuck within the test train. This stack raising was performed after all cycles when the capsule was in the reactor. All stacks were raised successfully after each cycle. The load and displacement data are Qualified

  2. AGC-3 IRRADIATION DATA QUALIFICATION FINAL REPORT

    SciTech Connect (OSTI)

    Hull, Laurence

    2014-08-01

    All thermocouples functioned throughout the AGC-3 experiment. There was one interval between Dec 18, 2012 and Dec 20, 2012 where 10 NULL values were reported for various thermocouples. These NULL values were deleted from the database. All temperature data are Qualified. During Oct and Nov 2013, 135,849 helium and argon gas flow values were below 0. These negative gas flow values are not correct and are Failed. The remaining argon, helium, and total gas flow data are within expected ranges and are Qualified. Total gas flow was approximately 50 sccm through the capsule. Helium gas flow was briefly increased to 100 sccm during reactor shutdowns. At the start of the experiment, moisture in the outflow gas line was stuck at a constant value of 335.6174 ppmv for the first cycle. When the capsule was reinstalled in the reactor for Cycle 154B, a new moisture filter was installed. Moisture data from Cycle 152B are Failed. All moisture data from the final three cycles are Qualified. Graphite creep specimens were subjected to one of two loads, 393 lbf or 589 lbf. The experiment plan included three loads, but problems with gas leaks in the rams applying the load to the stacks resulted in lower loads being applied to some of the stacks. While the loads applied are not the loads in the plan, the loads were consistently applied throughout the experiment. Therefore the reported loads are accurate and can be used in analysis of graphite creep. Loads were consistently within 5% of the specified values throughout the experiment. Stack displacement increased consistently throughout the experiment with total displacement ranging from 1 to 1.25 inches. No anomalous values were identified. During reactor outages, a set of pneumatic rams was used to raise the stacks of graphite creep specimens to ensure the specimens had not become stuck within the test train. This stack raising was performed three times; all stacks were raised successfully each time. The load and displacement data are Qualified.

  3. AGC-3 Experiment Irradiation Monitoring Data Qualification Final Report

    SciTech Connect (OSTI)

    Laurence Hull

    2014-10-01

    The Graphite Technology Development Program will run a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The third experiment, Advanced Graphite Creep 3 (AGC 3), began with Advanced Test Reactor (ATR) Cycle 152B on November 27, 2012, and ended with ATR Cycle 155B on April 23, 2014. This report documents qualification of AGC 3 experiment irradiation monitoring data for use by the Very High Temperature Reactor (VHTR) Technology Development Office (TDO) Program for research and development activities required to design and license the first VHTR nuclear plant. Qualified data meet the requirements for data collection and use as described in the experiment planning and quality assurance documents. Failed data do not meet the requirements. Trend data may not meet the requirements, but may still provide some useable information. All thermocouples (TCs) functioned throughout the AGC 3 experiment. There was one interval between December 18, 2012, and December 20, 2012, where 10 NULL values were reported for various TCs. These NULL values were deleted from the Nuclear Data Management and Analysis System database. All temperature data are Qualified for use by the VHTR TDO Program. Argon, helium, and total gas flow data were within expected ranges and are Qualified for use by the VHTR TDO Program. Total gas flow was approximately 50 sccm through the AGC 3 experiment capsule. Helium gas flow was briefly increased to 100 sccm during ATR shutdowns. At the start of the AGC 3 experiment, moisture in the outflow gas line was stuck at a constant value of 335.6174 ppmv for the first cycle (Cycle 152B). When the AGC 3 experiment capsule was reinstalled in ATR for Cycle 154B, a new moisture filter was installed. Moisture data from Cycle 152B are Failed. All moisture data from the final three cycles (Cycles 154B, 155A, and 155B) are Qualified for use by the VHTR TDO Program.

  4. AGR-3/4 Final Data Qualification Report for ATR Cycles 151A through 155B-1

    SciTech Connect (OSTI)

    Pham, Binh T.

    2015-03-01

    This report provides the qualification status of experimental data for the entire Advanced Gas Reactor 3/4 (AGR 3/4) fuel irradiation. AGR-3/4 is the third in a series of planned irradiation experiments conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for the AGR Fuel Development and Qualification Program, which supports development of the advanced reactor technology under the INL ART Technology Development Office (TDO). The main objective of AGR-3/4 irradiation is to provide a known source of fission products for subsequent transport through compact matrix and structural graphite materials due to the presence of designed-to-fail fuel particles. Full power irradiation of the AGR 3/4 test began on December 14, 2011 (ATR Cycle 151A), and was completed on April 12, 2014 (end of ATR Cycle 155B) after 369.1 effective full power days of irradiation. The AGR-3/4 test was in the reactor core for eight of the ten ATR cycles between 151A and 155B. During the unplanned outage cycle, 153A, the experiment was removed from the ATR northeast flux trap (NEFT) location and stored in the ATR canal. This was to prevent overheating of fuel compacts due to higher than normal ATR power during the subsequent Powered Axial Locator Mechanism cycle, 153B. The AGR 3/4 test was inserted back into the ATR NEFT location during the outage of ATR Cycle 154A on April 26, 2013. Therefore, the AGR-3/4 irradiation data received during these 2 cycles (153A and 153B) are irrelevant and their qualification status isnot included in this report. Additionally, during ATR Cycle 152A the ATR core ran at low power for a short enough duration that the irradiation data are not used for physics and thermal calculations. However, the qualification status of irradiation data for this cycle is still covered in this report. As a result, this report includes data from 8 ATR Cycles: 151A, 151B, 152A, 152B, 154A, 154B, 155A, and 155B, as recorded in the Nuclear Data Management and Analysis System (NDMAS). The AGR 3/4 data streams addressed in this report include thermocouple (TC) temperatures, sweep gas data (flow rates, pressure, and moisture content), and Fission Product Monitoring System (FPMS) data (release rates, release to birth rate ratios [R/Bs], and particle failure counts) for each of the twelve capsules in the AGR 3/4 experiment. During Outage Cycle 155A, fourteen flow meters were installed downstream from fourteen FPMS monitors to measure flows from the monitors; qualification status of these data are also included in the report. The final data qualification status for these data streams is determined by a Data Review Committee (DRC) composed of AGR technical leads, Sitewide Quality Assurance (QA), and NDMAS analysts. For ATR Cycles 151A through 154B, the DRC convened on February 12, 2014, reviewed the data acquisition process, and considered whether the data met the requirements for data collection as specified in QA approved INL ART TDO data collection plans. The DRC also examined the results of NDMAS data testing and statistical analyses, and confirmed the qualification status of the data as given in this report. The qualification status of AGR-3/4 irradiation data during the first six cycles were previously reported in INL/EXT-14-31186 document. This report presents data qualification status for the entire AGR-3/4 irradiation.

  5. AGR-2 Final Data Qualification Report for U.S. Capsules - ATR Cycles 147A Through 154B

    SciTech Connect (OSTI)

    Pham, Binh T; Einerson, Jeffrey J

    2014-07-01

    This report provides the data qualification status of AGR-2 fuel irradiation experimental data in four U.S. capsules from all 15 Advanced Test Reactor (ATR) Cycles 147A, 148A, 148B, 149A, 149B, 150A, 150B, 151A, 151B, 152A, 152B, 153A, 153B, 154A, and 154B, as recorded in the Nuclear Data Management and Analysis System (NDMAS). Thus, this report covers data qualification status for the entire AGR-2 irradiation and will replace four previously issued AGR-2 data qualification reports (e.g., INL/EXT-11-22798, INL/EXT-12-26184, INL/EXT-13-29701, and INL/EXT-13-30750). During AGR-2 irradiation, two cycles, 152A and 153A, occurred when the ATR core was briefly at low power, so AGR-2 irradiation data are not used for physics and thermal calculations. Also, two cycles, 150A and 153B, are Power Axial Locator Mechanism (PALM) cycles when the ATR power is higher than during normal cycles. During the first PALM cycle, 150A, the experiment was temporarily moved from the B-12 location to the ATR water canal and during the second PALM cycle, 153B, the experiment was temporarily moved from the B-12 location to the I-24 location to avoid being overheated. During the “Outage” cycle, 153A, seven flow meters were installed downstream from seven Fission Product Monitoring System (FPMS) monitors to measure flows from the monitors and these data are included in the NDMAS database. The AGR-2 data streams addressed in this report include thermocouple (TC) temperatures, sweep gas data (flow rates including new FPM downstream flows, pressure, and moisture content), and FPMS data (release rates and release-to-birth rate ratios [R/Bs]) for each of the four U.S. capsules in the AGR-2 experiment (Capsules 2, 3, 5, and 6). The final data qualification status for these data streams is determined by a Data Review Committee comprised of AGR technical leads, Very High Temperature Reactor (VHTR) Program Quality Assurance (QA), and NDMAS analysts. The Data Review Committee, which convened just before each data qualification report was issued, reviewed the data acquisition process, considered whether the data met the requirements for data collection as specified in QA-approved VHTR data collection plans, examined the results of NDMAS data testing and statistical analyses, and confirmed the qualification status of the data as given in each report. This report performs the following tasks: (1) combine existing qualification status of all AGR-2 data, (2) provide FPMS data qualification update and new release-to-birth ratio (R/B) data calculated using daily calculated birthrates, and (3) revise data qualification status of TC readings for some TCs in Capsule 6 based on their differences relative to calculated temperatures at TC locations. A total of 17,001,695 TC temperature and sweep gas data records were received and processed by NDMAS for four U.S. capsules during AGR-2 irradiation. Of these records, 9,655,474 (56.8% of the total) were determined to be Qualified; 5,792,052 (34.1% of the total) were determined to be Failed; and 1,554,169 (9.1% of the total) were determined to be Trend. For the first nice cycles, from ATR Cycle 147A to 151B, data records are 5- minute or 10-minute averaged values provided on weekly basis in EXCEL spreadsheets. For the last six cycles, ATR Cycle 152A through 154B, data records are instantaneous measurements recorded every minute and provided by .csv text files automatically every 2 hours. Therefore, the number of processed irradiation data was increased substantially from ATR Cycle 152A. For TC temperature data, there were 6,857,675 records and of these data 5,288,249 records (77.1% of the total TC data) were Failed due to TC instrument failures and 418,569 records (6.1% of the total TC data) were Trend due to large differences between TC readings and calculated values. By the end of Cycle 154A, all TCs in the AGR-2 test train failed. The overall percentage of Failed TC records is high, to some extent, because TCs failed toward the end of irradiation when the recording frequency was higher. For sweep gas data, there were 10,1

  6. Chemical Processing Qualification Standard

    Office of Environmental Management (EM)

    6-2010 February 2010 DOE STANDARD CHEMICAL PROCESSING QUALIFICATION STANDARD DOE Defense ... River Operations Office is the sponsor for the Chemical Processing Qualification Standard. ...

  7. FAQS Gap Analysis Qualification Card - Chemical Processing |...

    Office of Environmental Management (EM)

    Chemical Processing FAQS Gap Analysis Qualification Card - Chemical Processing Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences ...

  8. Functional Area Qualification Standard Qualification Cards

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area.

  9. Firearms Qualification Courses Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-01-17

    Provides detailed requirements for qualification with various firearms. Errata Sheet 5-29-02. Cancels DOE M 473.2-1.

  10. Siemens Government Services ESCO Qualification Sheet | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siemens Government Services ESCO Qualification Sheet Siemens Government Services ESCO Qualification Sheet Fact sheet outlines the energy service company (ESCO) qualification for ...

  11. Quality Procedure- Supplier Qualification

    Broader source: Energy.gov [DOE]

    This procedure establishes the responsibilities and process for supplier qualification activities conducted by Environmental Management (EM) Headquarters (HQ) Office of Standards and Quality Assurance in accordance with EM-QA-001, Environmental Management Quality Assurance Program.

  12. Firearms Qualification Courses Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    Defines the required courses of fire for authorized firearms in order to ensure the uniform qualification and requalification of DOE Federal Officers and Security Police Officers by certified Federal and contractor firearms instructors.

  13. Business Case for Technical Qualification Program Accreditation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Case for Technical Qualification Program Accreditation Incentives Business Case for Technical Qualification Program Accreditation Incentives TQP Accreditation standardize ...

  14. Facility Representative Qualification Equivalencies Based on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Representative Qualification Equivalencies Based on Previous Experience Facility Representative Qualification Equivalencies Based on Previous Experience The referenced ...

  15. Functional Area Qualification Standard Gap Analysis Qualification Cards

    Broader source: Energy.gov [DOE]

    FAQS Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  16. Firearms Qualification Courses Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-07-08

    Defines the required courses of fire for authorized firearms in order to ensure the uniform qualification and requalification of DOE Federal Officers and Security Police Officers by certified Federal and contractor firearms instructors. DOE N 251.40, dated 5-3-01, extends this directive until 12-31-01. Cancels DOE M 5632.7-1.

  17. Qualification of Alternative Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualification of Alternative Fuels May 8, 2012 Pyrolysis Oil Workshop Thomas Butcher Sustainable Energy Technologies Department Applications Baseline - Residential and Light Commercial Pressure-atomized burners with 100-150 psi fuel pressure, no fuel heating; Cyclic operation - to 12,000 cycles per year; Fuel filtration to 90 microns or finer; Storage for periods of 1 year, possibly longer; Storage temperature varied; Visible range flame detection for safety; Nitrile seal materials common; Fuels

  18. Firearms Qualification Courses Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-12-01

    The U.S. Department of Energy (DOE) requires all protective force personnel authorized to carry firearms to receive proper firearms training and qualification. The most important part of such training is the proper use of deadly force, which is included in the DOE Basic Security policy officer Program and is available as a separate program through the Safeguards and Security Central Training Academy. Canceled by DOE M 473.2-1 dated 07/08/1997.

  19. ORISE: Training and Qualification Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training and Qualification Programs As a core part of providing effective communication and training to protect the safety of workers, the Oak Ridge Institute for Science and Education (ORISE) works with the U.S. Department of Energy (DOE) to engage in federal and contractor training and qualification management. Through training and qualification programs, ORISE provides technical training expertise to federal and contract workers to ensure field sites are safe and that each project reflects a

  20. Schneider Electric ESCO Qualification Sheet

    Broader source: Energy.gov [DOE]

    Fact sheet outlines the energy service company (ESCO) qualifications for Schneider Electric in relation to the U.S. Department of Energy's (DOEs) energy savings performance contracts (ESPC).

  1. ORISE: Training and Qualification Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    By completing the program-which features qualification standards and corresponding training activities-DOE personnel build knowledge, skills and confidence to carry out...

  2. NORESCO ESCO Qualification Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NORESCO ESCO Qualification Sheet NORESCO ESCO Qualification Sheet Document outlines the energy service company (ESCO) qualifications for NORESCO in relation to the U.S. Department of Energy's (DOEs) energy savings performance contracts (ESPC). PDF icon noresco_escoqual.pdf

  3. Ameresco ESCO Qualification Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ameresco ESCO Qualification Sheet Ameresco ESCO Qualification Sheet Document outlines the energy service company (ESCO) qualifications for Ameresco in relation to the U.S. Department of Energy's (DOEs) energy savings performance contracts (ESPC). PDF icon ameresco_escoqual.pdf

  4. RERTR Fuel Developmemt and Qualification Plan

    SciTech Connect (OSTI)

    Dan Wachs

    2007-01-01

    In late 2003 it became evident that U-Mo aluminum fuels under development exhibited significant fuel performance problems under the irradiation conditions required for conversion of most high-powered research reactors. Solutions to the fuel performance issue have been proposed and show promise in early testing. Based on these results, a Reduced Enrichment Research and Test Reactor (RERTR) program strategy has been mapped to allow generic fuel qualification to occur prior to the end of FY10 and reactor conversion to occur prior to the end of FY14. This strategy utilizes a diversity of technologies, test conditions, and test types. Scoping studies using miniature fuel plates will be completed in the time frame of 2006-2008. Irradiation of larger specimens will occur in the Advanced Test Reactor (ATR) in the United States, the Belgian Reactor-2 (BR2) reactor in Belgium, and in the OSIRIS reactor in France in 2006-2009. These scoping irradiation tests provide a large amount of data on the performance of advanced fuel types under irradiation and allow the down selection of technology for larger scale testing during the final stages of fuel qualification. In conjunction with irradiation testing, fabrication processes must be developed and made available to commercial fabricators. The commercial fabrication infrastructure must also be upgraded to ensure a reliable low enriched uranium (LEU) fuel supply. Final qualification of fuels will occur in two phases. Phase I will obtain generic approval for use of dispersion fuels with density less than 8.5 g-U/cm3. In order to obtain this approval, a larger scale demonstration of fuel performance and fabrication technology will be necessary. Several Materials Test Reactor (MTR) plate-type fuel assemblies will be irradiated in both the High Flux Reactor (HFR) and the ATR (other options include the BR2 and Russian Research Reactor, Dmitrovgrad, Russia [MIR] reactors) in 2008-2009. Following postirradiation examination, a report detailing very-high density fuel behavior will be submitted to the U.S. Nuclear Regulatory Commission (NRC). Assuming acceptable fuel behavior, it is anticipated that NRC will issue a Safety Evaluation Report granting generic approval of the developed fuels based on the qualification report. It is anticipated that Phase I of fuel qualification will be completed prior to the end of FY10. Phase II of the fuel qualification requires development of fuels with density greater than 8.5 g-U/cm3. This fuel is required to convert the remaining few reactors that have been identified for conversion. The second phase of the fuel qualification effort includes both dispersion fuels with fuel particle volume loading on the order of 65 percent, and monolithic fuels. Phase II presents a larger set of technical unknowns and schedule uncertainties than phase I. The final step in the fuel qualification process involves insertion of lead test elements into the converting reactors. Each reactor that plans to convert using the developed high-density fuels will develop a reactor specific conversion plan based upon the reactor safety basis and operating requirements. For some reactors (FRM-II, High-Flux Isotope Reactor [HFIR], and RHF) conversion will be a one-step process. In addition to the U.S. fuel development effort, a Russian fuel development strategy has been developed. Contracts with Russian Federation institutes in support of fuel development for Russian are in place.

  5. Consolidated Edison Solutions, Inc. ESCO Qualification Sheet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet Consolidated Edison Solutions, Inc. ESCO Qualification Sheet Document outlines the energy service company (ESCO) qualifications for ConEdison Solutions. PDF icon ces

  6. FAQS Qualification Card - Chemical Processing | Department of...

    Energy Savers [EERE]

    Chemical Processing FAQS Qualification Card - Chemical Processing A key element for the Department's Technical Qualification Programs is a set of common Functional Area ...

  7. FAQS Gap Analysis Qualification Card – Emergency Management

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  8. Accelerated Stress Testing, Qualification Testing, HAST, Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Stress Testing, Qualification Testing, HAST, Field Experience Accelerated Stress Testing, Qualification Testing, HAST, Field Experience This presentation, which was the ...

  9. Advanced Qualification of Additive Manufacturing Materials Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Qualification of Additive Manufacturing Materials Workshop Advanced Qualification of Additive Manufacturing Materials Workshop WHEN: Jul 20, 2015 8:30 AM - Jul 21, 2015...

  10. FAQS Gap Analysis Qualification Card- Quality Assurance

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  11. FAQS Qualification Card- Construction Management

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  12. FAQS Qualification Card- Aviation Manager

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  13. FAQS Qualification Card – Emergency Management

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  14. FAQS Qualification Card – Waste Management

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  15. FAQS Qualification Card – Facility Representative

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  16. Technical Qualification Program Accreditation Schedule | Department of

    Energy Savers [EERE]

    Energy Schedule Technical Qualification Program Accreditation Schedule Technical Qualification Program (TQP) Accreditation Schedule for CY 2013 and 2014. PDF icon TQP Accreditation Schedule More Documents & Publications Technical Qualification Program Self-Assessment Report - Nevada Site Office - 2009 Technical Qualification Program Self-Assessment Report - Richland Operations Office - 2014 FTCP Corrective Action Plan - Revision 1

  17. FAQS Gap Analysis Qualification Card - Occupational Safety | Department

    Energy Savers [EERE]

    of Energy Occupational Safety FAQS Gap Analysis Qualification Card - Occupational Safety Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard. File Occupational Safety Gap Analysis Qualification Card More Documents & Publications FAQS Gap Analysis Qualification Card - Environmental Restoration FAQS Gap Analysis Qualification Card - Waste Management FAQS Gap Analysis Qualification Card -

  18. TOUGH2 software qualification

    SciTech Connect (OSTI)

    Pruess, K.; Simmons, A.; Wu, Y.S.; Moridis, G.

    1996-02-01

    TOUGH2 is a numerical simulation code for multi-dimensional coupled fluid and heat flow of multiphase, multicomponent fluid mixtures in porous and fractured media. It belongs to the MULKOM ({open_quotes}MULti-KOMponent{close_quotes}) family of codes and is a more general version of the TOUGH simulator. The MULKOM family of codes was originally developed with a focus on geothermal reservoir simulation. They are suited to modeling systems which contain different fluid mixtures, with applications to flow problems arising in the context of high-level nuclear waste isolation, oil and gas recovery and storage, and groundwater resource protection. TOUGH2 is essentially a subset of MULKOM, consisting of a selection of the better tested and documented MULKOM program modules. The purpose of this package of reports is to provide all software baseline documents necessary for the software qualification of TOUGH2.

  19. Energy Systems Group ESCO Qualification Sheet | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Group ESCO Qualification Sheet Energy Systems Group ESCO Qualification Sheet Document outlines the energy service company (ESCO) qualifications for Energy Systems Group in ...

  20. Microsoft Word - Attachment D - Position Qualifications.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D - POSITION QUALIFICATIONS POSITION QUALIFICATIONS NOTE: If accepted, the labor category and minimum position qualifications proposed will be incorporated into (andor replace)...

  1. Protocol, Qualification Standard for the Site Lead Program -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualification Standard for the Site Lead Program - May 2011 Protocol, Qualification Standard for the Site Lead Program - May 2011 May 2011 Qualification Standard for the Site Lead...

  2. Lockheed Martin ESCO Qualification Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lockheed Martin ESCO Qualification Sheet Lockheed Martin ESCO Qualification Sheet Document outlines the energy service company (ESCO) qualifications sheet for Lockheed Martin under the Department of Energy's (DOEs) energy savings performance contract (ESPC). PDF icon Download the ESCO qualifications sheet.

  3. FTCP-08-002, Technical Qualification Program Requalification...

    Energy Savers [EERE]

    More Documents & Publications Technical Qualification Program Self-Assessment Report - Richland Operations Office - 2014 Technical Qualification Program Accreditation Report - ...

  4. Facility Representative Qualification Equivalencies Based on Previous

    Energy Savers [EERE]

    Experience | Department of Energy Facility Representative Qualification Equivalencies Based on Previous Experience Facility Representative Qualification Equivalencies Based on Previous Experience The referenced document has been used by the Department of Energy, Idaho Operations Office (DOE-ID) to grant equivalencies to candidates undergoing qualification as a Facility Representative (FR) using the FR Functional Area Qualification Standards (FAQS). Since the generation of the referenced

  5. Technical Qualification Program Accreditation Objectives and Criteria |

    Energy Savers [EERE]

    Department of Energy Objectives and Criteria Technical Qualification Program Accreditation Objectives and Criteria The program clearly identifies and documents the process used to demonstrate employee technical competence. PDF icon TQP Accreditation Objectives and Criteria More Documents & Publications Technical Qualification Program Self-Assessment Report - Sandia Site Office - 2012 Technical Qualification Program Self-Assessment Report - Richland Operations Office - 2014 Technical

  6. Qualification of Alternative Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualification of Alternative Fuels Qualification of Alternative Fuels Thomas Butcher presentation on May 8, 2012 at the Pyrolysis Oil Workshop on the qualification of alternative fuels. PDF icon pyrolysis_butcher.pdf More Documents & Publications Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England Biodiesel_Fuel_Management_Best_Practices_Report.pdf Known Challenges Associated with the Production, Transportation, Storage and

  7. FAQS Qualification Card - NNSA Package Certification Engineer |

    Energy Savers [EERE]

    Department of Energy NNSA Package Certification Engineer FAQS Qualification Card - NNSA Package Certification Engineer A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety

  8. Technical Qualification Program Accreditation Objectives and...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon TQP Accreditation Objectives and Criteria More Documents & Publications Technical Qualification Program Self-Assessment Report - Sandia Site Office - 2012 Technical ...

  9. Technical Qualification Program Reaccreditation Report - Y-12...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reaccreditation Report - Y-12 Site Office Technical Qualification Program Reaccreditation Report - Y-12 Site Office The accreditation process consists of three distinct activities: ...

  10. Nuclear Safety Specialist Functional Area Qualification Standard

    Energy Savers [EERE]

    83-2007 November 2007 DOE STANDARD NUCLEAR SAFETY SPECIALIST FUNCTIONAL AREA QUALIFICATION ... Center (NTC) * Institute of Nuclear Power Operations (INPO) * American Institute ...

  11. Nuclear Explosives Safety Study Functional Area Qualification...

    Energy Savers [EERE]

    85-2007 September 2007 DOE STANDARD NUCLEAR EXPLOSIVE SAFETY STUDY FUNCTIONAL AREA QUALIFICATION ... bombs, including: * Radar fuses * Contact fuses * Timer fuses * Power supplies b. ...

  12. AVIATION MANAGER QUALIFICATION STANDARD REFERENCE GUIDE

    Energy Savers [EERE]

    Manager Qualification Standard Reference Guide MARCH 2010 i This page is intentionally blank. Table of Contents ii LIST OF FIGURES ..................................................................................................................... iii LIST OF TABLES ....................................................................................................................... iii ACRONYMS

  13. AVIATION SAFETY OFFICER QUALIFICATION STANDARD REFERENCE GUIDE

    Energy Savers [EERE]

    Safety Officer Qualification Standard Reference Guide MARCH 2010 i This page is intentionally blank. Table of Contents ii LIST OF FIGURES ..................................................................................................................... iii LIST OF TABLES ....................................................................................................................... iii ACRONYMS

  14. Component and System Qualification Workshop Proceedings

    Broader source: Energy.gov [DOE]

    Proceedings from the U.S. DOE Hydrogen Component and System Qualification Workshop, held at Sandia National Laboratory in Livermore, CA, on November 4, 2010.

  15. Safety Software Quality Assurance Functional Area Qualification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    72-2011, Safety Software Quality Assurance Functional Area Qualification Standard by Diane Johnson This SSQA FAQS identifies the minimum technical competency requirements for DOE...

  16. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics...

  17. Clark Energy Group ESCO Qualification Sheet

    Broader source: Energy.gov [DOE]

    Document outlines the energy service company (ESCO) qualifications for Clark Energy Group in relation to the U.S. Department of Energy's (DOEs) energy savings performance contracts (ESPC).

  18. Technical Qualification Program Self-Assessment Report - Los...

    Office of Environmental Management (EM)

    3 Technical Qualification Program Self-Assessment Report - Los Alamos Site Office - 2013 This self-assessment of the Technical Qualifications and Federal Technical Capability ...

  19. Technical Qualification Program Self-Assessment Report - Los...

    Office of Environmental Management (EM)

    5 Technical Qualification Program Self-Assessment Report - Los Alamos Field Office - FY15 The FY15 self-assessment of the Technical Qualifications and Federal Technical Capabilit ...

  20. Technical Qualification Program Self-Assessment Report - Los...

    Office of Environmental Management (EM)

    4 Technical Qualification Program Self-Assessment Report - Los Alamos Field Office - FY14 The FY14 self-assessment of the Technical Qualifications Program and Federal Technical ...

  1. FAQS Gap Analysis Qualification Card – Nuclear Explosive Safety Study

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  2. FAQS Gap Analysis Qualification Card – Construction Management

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  3. FAQS Gap Analysis Qualification Card – Nuclear Safety Specialist

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  4. FAQS Gap Analysis Qualification Card – Fire Protection Engineering

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  5. FAQS Gap Analysis Qualification Card – Radiation Protection

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  6. FAQS Gap Analysis Qualification Card – General Technical Base

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  7. FAQS Gap Analysis Qualification Card – Senior Technical Safety Manager

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  8. FAQS Gap Analysis Qualification Card – Technical Training

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  9. Senior Technical Safety Manager Qualification Program Self-Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Senior Technical Safety Manager Qualification Program Self-Assessment - Chief of Nuclear Safety Senior Technical Safety Manager Qualification Program Self-Assessment - Chief of...

  10. FAQS Gap Analysis Qualification Card – Criticality Safety

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  11. FAQS Gap Analysis Qualification Card – Mechanical Systems

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  12. Model Request for Qualifications to Pre-Qualify Energy Service...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request for Qualifications to Pre-Qualify Energy Service Companies Model Request for Qualifications to Pre-Qualify Energy Service Companies This page contains a model Request for ...

  13. FAQS Gap Analysis Qualification Card – Industrial Hygiene

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  14. FAQS Gap Analysis Qualification Card – Facility Representative

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  15. Weapons Quality Assurance Qualification Standard

    Energy Savers [EERE]

    5-2008 September 2008 DOE STANDARD WEAPON QUALITY ASSURANCE QUALIFICATION STANDARD NNSA Weapon Quality Assurance Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1025-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1025-2008 iv INTENTIONALLY BLANK DOE-STD-1025-2008 v

  16. IHE material qualification tests description and criteria

    SciTech Connect (OSTI)

    Slape, R J

    1984-06-01

    This report describes the qualification tests presently being used at Pantex Plant, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory that are required by the Department of Energy prior to the approval for an explosive as an Insensitive High Explosive (IHE) material. The acceptance criteria of each test for IHE qualification is also discussed. 5 references, 10 figures.

  17. FAQS Qualification Card – Safeguards and Security

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  18. FAQS Qualification Card – Quality Assurance

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  19. FAQS Qualification Card – Nuclear Safety Specialist

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  20. FAQS Qualification Card- Aviation Safety Officer

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  1. FAQS Qualification Card – Technical Training

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  2. FAQS Qualification Card – Radiation Protection

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  3. FAQS Qualification Card – Mechanical Systems

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  4. FAQS Qualification Card – Fire Protection Engineering

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  5. FAQS Qualification Card – Nuclear Operations Specialist

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  6. FAQS Qualification Card – General Technical Base

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  7. FAQS Qualification Card – Facility Maintenance Management

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  8. FAQS Qualification Card – Environmental Restoration

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  9. FAQS Qualification Card – Criticality Safety

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  10. FAQS Qualification Card- Civil Structural Engineering

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  11. FAQS Qualification Card – Technical Program Manager

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  12. FAQS Qualification Card – Industrial Hygiene

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  13. FAQS Qualification Card – Environment Compliance

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  14. FAQS Qualification Card – Weapon Quality Assurance

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  15. AGR-2 Data Qualification Report for ATR Cycle 154B

    SciTech Connect (OSTI)

    Binh Pham; Jeff Einerson

    2014-01-01

    This report provides the data qualification status of Advanced Gas Reactor-2 (AGR-2) fuel irradiation experimental data from Advanced Test Reactor (ATR) Cycle 154B as recorded in the Nuclear Data Management and Analysis System (NDMAS). This is the last cycle of AGR-2 irradiation, as the test train was pulled from the ATR core during the outage portion of ATR Cycle 155A. The AGR-2 data streams addressed in this report include thermocouple (TC) temperatures, sweep gas data (flow rates including new Fission Product Monitoring (FPM) downstream flows from Fission Product Monitoring System (FPMS) detectors, pressure, and moisture content), and FPMS data (release rates and release-to-birth rate ratios [R/Bs]) for each of the six capsules in the AGR-2 experiment. The final data qualification status for these data streams is determined by a Data Review Committee (DRC) comprised of AGR technical leads, Sitewide Quality Assurance (QA), and NDMAS analysts. The Data Review Committee reviewed the data acquisition process, considered whether the data met the requirements for data collection as specified in QA-approved Very High Temperature Reactor (VHTR) data collection plans, examined the results of NDMAS data testing and statistical analyses, and confirmed the qualification status of the data as given in this report.

  16. Methods Data Qualification Interim Report

    SciTech Connect (OSTI)

    R. Sam Alessi; Tami Grimmett; Leng Vang; Dave McGrath

    2010-09-01

    The overall goal of the Next Generation Nuclear Plant (NGNP) Data Management and Analysis System (NDMAS) is to maintain data provenance for all NGNP data including the Methods component of NGNP data. Multiple means are available to access data stored in NDMAS. A web portal environment allows users to access data, view the results of qualification tests and view graphs and charts of various attributes of the data. NDMAS also has methods for the management of the data output from VHTR simulation models and data generated from experiments designed to verify and validate the simulation codes. These simulation models represent the outcome of mathematical representation of VHTR components and systems. The methods data management approaches described herein will handle data that arise from experiment, simulation, and external sources for the main purpose of facilitating parameter estimation and model verification and validation (V&V). A model integration environment entitled ModelCenter is used to automate the storing of data from simulation model runs to the NDMAS repository. This approach does not adversely change the why computational scientists conduct their work. The method is to be used mainly to store the results of model runs that need to be preserved for auditing purposes or for display to the NDMAS web portal. This interim report demonstrates the currently development of NDMAS for Methods data and discusses data and its qualification that is currently part of NDMAS.

  17. Technical Qualification Program Accreditation Pros and Cons | Department of

    Energy Savers [EERE]

    Energy Pros and Cons Technical Qualification Program Accreditation Pros and Cons Business Case for Accreditation Incentives - Challenge the Enterprise to Foster Confidence and Support of TQP Accreditation TQP Accreditation Lessons Learned PDF icon TQP Accreditation Pros and Cons More Documents & Publications Technical Qualification Program Reaccreditation Report - Y-12 Site Office Technical Qualification Program Reaccreditation Report - Sandia Site Office Technical Qualification Program

  18. Technical Qualification Program Administrative Forms | Department of Energy

    Energy Savers [EERE]

    Administrative Forms Technical Qualification Program Administrative Forms TQP Position Evaluation Questionnaire Form and TQP Resource Management Questionnaire Form PDF icon TQP Position Evaluation Questionnaire Form PDF icon TQP Resource Management Questionnaire Form More Documents & Publications Technical Qualification Program Reaccreditation Report - Sandia Site Office Technical Qualification Program Self-Assessment Report - Oak Ridge Office - 2014 Technical Qualification Program

  19. Constellation NewEnergy ESCO Qualification Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Constellation NewEnergy ESCO Qualification Sheet Constellation NewEnergy ESCO Qualification Sheet Document outlines the energy service company (ESCO) qualifications for Constellation NewEnergy, Inc., in relation to the U.S. Department of Energy's energy savings performance contract. PDF icon Download the Constellation NewEnergy ESCO Qualification Sheet.

  20. CEG Solutions LLC ESCO Qualification Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CEG Solutions LLC ESCO Qualification Sheet CEG Solutions LLC ESCO Qualification Sheet Document outlines the energy service company (ESCO) qualifications for CEG Solutions LLC in relation to the U.S. Department of Energy's (DOE) energy savings performance contracts. PDF icon Download the CEG Solutions qualification sheet.

  1. FAQS Gap Analysis Qualification Card - Civil Structural Engineering |

    Energy Savers [EERE]

    Department of Energy Civil Structural Engineering FAQS Gap Analysis Qualification Card - Civil Structural Engineering Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard. File Civil Structural Engineering Gap Analysis Qualification Card More Documents & Publications DOE-STD-1182-2014 FAQS Qualification Card - Civil Structural Engineering FAQS Job Task Analyses - Civil/Structural

  2. FAQS Gap Analysis Qualification Card - Waste Management | Department of

    Office of Environmental Management (EM)

    Energy Technical Training FAQS Gap Analysis Qualification Card - Technical Training Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard. File Technical Training Gap Analysis Qualification Card More Documents & Publications DOE-STD-1179-2004 DOE-HDBK-1078-94 FAQS Reference Guide - Technical Training Energy

    Waste Management FAQS Gap Analysis Qualification Card - Waste Management

  3. Quality Procedure- Personnel Training and Qualification

    Broader source: Energy.gov [DOE]

    This procedure establishes the requirements for the training and qualification of personnel in the Office of Standards and Quality Assurance, and ensures that office personnel are properly trained and qualified to correctly perform their assigned tasks.

  4. Chapter 9 - Contracting Qualifications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 - Contracting Qualifications Chapter 9 - Contracting Qualifications 9.4 - Contractor Responsibility Determinations PDF icon 9.1_Conflict_of_Interest_0.pdf PDF icon 9.2_Performance_Guarantees_0.pdf PDF icon 9.3_Debarment_and_Suspension_0.pdf More Documents & Publications AcqGuide9pt2.doc� AcqGuide9.3-OPAM AcqGuide9pt1.doc�

  5. Test Cloth Qualification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cloth Qualification Test Cloth Qualification The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Test Cloth Correction Factors -- v2.0 More Documents & Publications

  6. Qualifications | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Qualifications Qualifications The America's Veterans to Tennessee Engineers STEM initiative is for military members just completing their service but still on active duty who want to be nuclear, chemical, mechanical, electrical or civil engineers. To be admitted to the program, participants must: have a high school diploma or equivalent, be departing the service with an "Honorable" discharge, be able to meet admission standards of the chosen institution of higher learning, be

  7. Advanced Qualification of Additive Manufacturing Materials Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July » Advanced Qualification of Additive Manufacturing Materials Workshop Advanced Qualification of Additive Manufacturing Materials Workshop WHEN: Jul 20, 2015 8:30 AM - Jul 21, 2015 7:30 PM WHERE: La Fonda on the Plaza Santa Fe, New Mexico SPEAKER: Multiple speakers CONTACT: Caryll Blount (505) 665-3950 CATEGORY: Science TYPE: Workshop INTERNAL: Calendar Login Event Description Invited speakers from universities and research centers, both US-based and Europe-based, will provide updates on

  8. New geothermal site identification and qualification. Final report

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    This study identifies remaining undeveloped geothermal resources in California and western Nevada, and it estimates the development costs of each. It has relied on public-domain information and such additional data as geothermal developers have chosen to make available. Reserve estimation has been performed by volumetric analysis with a probabilistic approach to uncertain input parameters. Incremental geothermal reserves in the California/Nevada study area have a minimum value of 2,800 grosss MW and a most-likely value of 4,300 gross MW. For the state of California alone, these values are 2,000 and 3,000 gross MW, respectively. These estimates may be conservative to the extent that they do not take into account resources about which little or no public-domain information is available. The average capital cost of incremental generation capacity is estimated to average $3,100/kW for the California/Nevada study area, and $2,950/kW for the state of California alone. These cost estimates include exploration, confirmation drilling, development drilling, plant construction, and transmission-line costs. For the purposes of this study, a capital cost of $2,400/kW is considered competitive with other renewable resources. The amount of incremental geothermal capacity available at or below $2,400/kW is about 1,700 gross MW for the California/Nevada study area, and the same amount (within 50-MW rounding) for the state of California alone. The capital cost estimates are only approximate, because each developer would bring its own experience, bias, and opportunities to the development process. Nonetheless, the overall costs per project estimated in this study are believed to be reasonable.

  9. Construction, Qualification, and Low Rate Production Start-up...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction, Qualification, and Low Rate Production Start-up of a DC Bus Capacitor High ... Construction, Qualification, and Low Rate Production Start-up of a DC Bus Capacitor High ...

  10. FAQS Qualification Card - Occupational Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualification Card - Occupational Safety FAQS Qualification Card - Occupational Safety A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area,

  11. FPL Energy Services ESCO Qualification Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FPL Energy Services ESCO Qualification Sheet FPL Energy Services ESCO Qualification Sheet Document outlines the energy service company (ESCO) qualifications for FPL Energy Services in relation to the U.S. Department of Energy's (DOEs) energy savings performance contract (ESPC). PDF icon fpl_escoqual.pdf

  12. Honeywell International ESCO Qualification Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Honeywell International ESCO Qualification Sheet Honeywell International ESCO Qualification Sheet Document outlines the energy service company (ESCO) qualifications for Honeywell International in relation to the U.S. Department of Energy's (DOEs) energy savings performance contracts (ESPC). PDF icon honeywell_escoqual.pdf

  13. Johnson Controls ESCO Qualification Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Johnson Controls ESCO Qualification Sheet Johnson Controls ESCO Qualification Sheet Document outlines the energy service company (ESCO) qualifications for Johnson Controls in relation to the U.S. Department of Energy's (DOEs) energy savings performance contracts (ESPC). PDF icon johnsoncontrols_escoqual.pdf

  14. Business Case for Technical Qualification Program Accreditation Incentives

    Energy Savers [EERE]

    | Department of Energy Business Case for Technical Qualification Program Accreditation Incentives Business Case for Technical Qualification Program Accreditation Incentives TQP Accreditation standardize the program throughout the Department by ensuring consistent application of TQP requirements. PDF icon Business Case for TQP Accreditation Incentives More Documents & Publications Technical Qualification Program Self-Assessment Report - Los Alamos Site Office - 2007 Technical

  15. Pepco Energy Services ESCO Qualification Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pepco Energy Services ESCO Qualification Sheet Pepco Energy Services ESCO Qualification Sheet Document outlines the energy service company (ESCO) qualifications for Pepco Energy Services in relation to the U.S. Department of Energy's (DOEs) energy savings performance contracts (ESPC). PDF icon pepco_escoqual.pdf

  16. Benham Companies ESCO Qualification Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benham Companies ESCO Qualification Sheet Benham Companies ESCO Qualification Sheet Document outlines the energy service company (ESCO) qualifications for Leidos Engineering (part of Benham Companies) in relation to the U.S. Department of Energy's (DOE) energy savings performance contracts (ESPC). PDF icon benham_escoqual.pdf

  17. Quality Assurance Functional Area Qualification Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-04-22

    Replaced by DOE-1150-2013 This QA Functional Area Qualification Standard establishes common functional area competency requirements for DOE personnel who provide assistance, direction, guidance, oversight, or evaluation of contractor technical QA activities impacting the safe operation of defense nuclear facilities.

  18. Quality Assurance Functional Area Qualification Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-12-02

    The Quality Assurance (QA) Functional Area Qualification Standard (FAQS) establishes common functional area competency requirements for all DOE QA personnel who provide assistance, direction, guidance, oversight, or evaluation of contractor technical activities that could impact the safe operation of DOE’s defense nuclear facilities.

  19. Low-level radioactive waste form qualification testing

    SciTech Connect (OSTI)

    Sohal, M.S.; Akers, D.W.

    1998-06-01

    This report summarizes activities that have already been completed as well as yet to be performed by the Idaho National Engineering and Environmental Laboratory (INEEL) to develop a plan to quantify the behavior of radioactive low-level waste forms. It briefly describes the status of various tasks, including DOE approval of the proposed work, several regulatory and environmental related documents, tests to qualify the waste form, preliminary schedule, and approximate cost. It is anticipated that INEEL and Brookhaven National Laboratory will perform the majority of the tests. For some tests, services of other testing organizations may be used. It should take approximately nine months to provide the final report on the results of tests on a waste form prepared for qualification. It is anticipated that the overall cost of the waste quantifying service is approximately $150,000. The following tests are planned: compression, thermal cycling, irradiation, biodegradation, leaching, immersion, free-standing liquid tests, and full-scale testing.

  20. AGR-2 Data Qualification Interim Report

    SciTech Connect (OSTI)

    Michael L. Abbott

    2010-09-01

    Projects for the very high temperature reactor (VHTR) Technology Development Office program provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program established the NGNP Data Management and Analysis System (NDMAS) to manage and document VHTR data qualification, for storage of the data in a readily accessible electronic form, and to assist in the analysis and presentation of the data. This document gives the status of NDMAS processing and qualification of data associated with the initial reactor cycle (147A) of the second Advanced Gas Reactor (AGR-2) experiment which began on June 21, 2010. Because it is early in the AGR-2 experiment, data from only two AGR-2 data streams are reported on: Fuel Fabrication and Fuel Irradiation data. As of August 1, 2010, approximately 311,000 irradiation data records have been stored in NDMAS, and qualification tests are in progress. Preliminary information indicates that TC 2 in Capsule 2 failed prior to start of the experiment, and NDMAS testing has thus far identified only two invalid data values from the METSO data collection system Data from the Fission Product Monitoring System (FPMS) are not currently processed until after reactor cycle shutdown and have not yet been received. A description of the ATR operating conditions data associated with the AGR-2 experiment (e.g., power levels) are summarized in the AGR-1 data qualification report (INL/EXT-09-16460). Since ATR data are collected under ATR program data quality requirements (i.e., outside the VHTR program), the NGNP program and NDMAS do not take additional actions to qualify these data other than NDMAS capture testing. Data qualification of graphite characterization data collected under the Graphite Technology Development Project is reported in a separate status report (Hull 2010).

  1. Instrumentation and Control Functional Area Qualification Standard

    Energy Savers [EERE]

    NOT MEASUREMENT SENSITIVE DOE-STD-1162-2013 June 2013 DOE STANDARD INSTRUMENTATION AND CONTROL FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. DOE-STD-1162-2013 This document is available on the Department of Energy Technical Standards Program website at http://www.hss.energy.gov/nuclearsafety/ns/techstds/ ii

  2. Safeguards and Security Functional Area Qualification Standard

    Energy Savers [EERE]

    1-2009 May 2009 DOE STANDARD SAFEGUARDS AND SECURITY FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1171-2009 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1171-2009 iii APPROVAL The Federal

  3. Request for Qualifications for Sacramento Landfill

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Request for Qualifications (RFQ) solicits experienced companies to design, permit, finance, build, and operate a solar photovoltaic farm (SPV Farm) on the City of Sacramento’s 28th Street Landfill. Respondents to this RFQ must demonstrate experience and capacity to design, permit, finance, build, and operate a SPV Farm that generates electricity that can be sold for electrical use through a power-purchase agreement. Submittals must be prepared and delivered in accordance with the requirements set forth in this document.

  4. Facility Representative Functional Area Qualification Standard

    Energy Savers [EERE]

    DOE-STD-1151-2010 October 2010 DOE STANDARD FACILITY REPRESENTATIVE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1151-2010 ii This document is available on the Department of Energy Office of Health, Safety and Security Approved DOE Technical Standards Web Site at

  5. Fire Protection Engineering Functional Area Qualification Standard

    Energy Savers [EERE]

    37-2014 April 2014 _______________________________ Supersedes DOE-STD-1137-2007 September 2007 DOE STANDARD FIRE PROTECTION ENGINEERING FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. DOE-STD-1137-2014 ii This document is available on the Department of Energy Technical Standards Program Website at

  6. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Advanced Qualification of Additive Manufacturing Materials (AM) Workshop Our goal is to define opportunities and research gaps within additive manufacturing (AM) and to engage the broader scientific/engineering community to discuss future research directions. thumbnail of thumbnail of Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for Materials Science

  7. High Temperature Materials Interim Data Qualification Report

    SciTech Connect (OSTI)

    Nancy Lybeck

    2010-08-01

    ABSTRACT Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: 1. Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing – 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. 2. Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram – 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  8. Lightning arrestor connector lead magnesium niobate qualification pellet test procedures.

    SciTech Connect (OSTI)

    Tuohig, W.; Mahoney, Patrick A.; Tuttle, Bruce Andrew; Wheeler, Jill Susanne

    2009-02-01

    Enhanced knowledge preservation for DOE DP technical component activities has recently received much attention. As part of this recent knowledge preservation effort, improved documentation of the sample preparation and electrical testing procedures for lead magnesium niobate--lead titanate (PMN/PT) qualification pellets was completed. The qualification pellets are fabricated from the same parent powders used to produce PMN/PT lightning arrestor connector (LAC) granules at HWF&T. In our report, the procedures for fired pellet surface preparation, electrode deposition, electrical testing and data recording are described. The dielectric measurements described in our report are an information only test. Technical reasons for selecting the electrode material, electrode size and geometry are presented. The electrical testing is based on measuring the dielectric constant and dissipation factor of the pellet during cooling from 280 C to 220 C. The most important data are the temperature for which the peak dielectric constant occurs (Curie Point temperature) and the peak dielectric constant magnitude. We determined that the peak dielectric constant for our procedure would be that measured at 1 kHz at the Curie Point. Both the peak dielectric constant and the Curie point parameters provide semi-quantitative information concerning the chemical and microstructural homogeneity of the parent material used for the production of PMN/PT granules for LACs. Finally, we have proposed flag limits for the dielectric data for the pellets. Specifically, if the temperature of the peak dielectric constant falls outside the range of 250 C {+-} 30 C we propose that a flag limit be imposed that will initiate communication between production agency and design agency personnel. If the peak dielectric constant measured falls outside the range 25,000 {+-} 10,000 we also propose that a flag limit be imposed.

  9. Technical Qualification Program Self-Assessment Report - Los Alamos Field

    Energy Savers [EERE]

    Office - 2014 | Department of Energy Los Alamos Field Office - 2014 Technical Qualification Program Self-Assessment Report - Los Alamos Field Office - 2014 This self-assessment for the Verification of the Closure of Federal Training & Qualification Deficiencies was conducted to provide Los Alamos Field Office (NA-LA) management specific information related to effectiveness of the closure actions for Federal Training and Qualification (T &Q) deficiencies identified by a recent

  10. FAQS Qualification Card - Confinement Ventilation and Process Gas

    Energy Savers [EERE]

    Treatment | Department of Energy Confinement Ventilation and Process Gas Treatment FAQS Qualification Card - Confinement Ventilation and Process Gas Treatment A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as

  11. FAQS Qualification Card - Deactivation and Decommissioning | Department of

    Energy Savers [EERE]

    Energy Deactivation and Decommissioning FAQS Qualification Card - Deactivation and Decommissioning A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each

  12. FAQS Qualification Card - Instrumentation and Control | Department of

    Energy Savers [EERE]

    Energy Instrumentation and Control FAQS Qualification Card - Instrumentation and Control A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional

  13. Microsoft Word - Attachment D - Position Qualifications.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D - POSITION QUALIFICATIONS POSITION QUALIFICATIONS NOTE: If accepted, the labor category and minimum position qualifications proposed will be incorporated into (and/or replace) the below listing. Historical Allocation (FTE) DESCRIPTION Program Manager 1 Requirements for the Program Manager include a Bachelors or higher degree in a social science, business, or related field; at least 10 years of supervisory and management experience of which 5 years must be in the operation, administration,

  14. Characterization Of The As-Received Sludge Batch 9 Qualification Sample (Htf-51-15-81)

    SciTech Connect (OSTI)

    Pareizs, J.

    2015-09-30

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) has sent SRNL a 3-L slurried sample of Tank 51H (HTF-51-15-81) to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (potentially after combining with Tank 40H sludge). This report documents the first steps of the qualification process – characterization of the as-received Tank 51H qualification sample. These results will be used to support a reprojection of SB9 by SRR from which final Tank 51H washing, frit development, and Chemical Processing Cell (CPC) activities will be based.

  15. Technical Qualification Program Self-Assessment Report - NNSA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NNSA Production Office - 2014 Technical Qualification Program Self-Assessment Report - NNSA Production Office - 2014 In preparation for the upcoming Chief for Defense Nuclear ...

  16. Technical Qualification Program Self-Assessment Report - Nevada...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada Field Office - 2014 Technical Qualification Program Self-Assessment Report - Nevada Field Office - 2014 This self-assessment examined how the Nevada Field Office (NFO) ...

  17. Technical Qualification Program Self-Assessment Report - Los...

    Office of Environmental Management (EM)

    Site Office - 2007 Technical Qualification Program Self-Assessment Report - Los Alamos Site Office - 2007 The Federal Technical Capability Manual requires periodic self-assessment ...

  18. Technical Qualification Program Self-Assessment Report - Los...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Los Alamos Field Office - 2014 Technical Qualification Program Self-Assessment Report - Los Alamos Field Office - 2014 This self-assessment for the Verification of the Closure of ...

  19. CRAD, NNSA - Federal Employee Training and Qualification Program...

    Office of Environmental Management (EM)

    & Publications CRAD, NNSA - Facility Representatives (FR) Technical Qualification Program Self-Assessment Report - NNSA Production Office - 2014 CRAD, NNSA - Contractor Training...

  20. BLM Manual 2803: Qualifications for Holding FLPMA Grants | Open...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: BLM Manual 2803: Qualifications for Holding FLPMA GrantsPermitting...

  1. New Geothermal Site Identification and Qualification | Open Energy...

    Open Energy Info (EERE)

    Citation Geothermex Inc.. 2004. New Geothermal Site Identification and Qualification. Richmond, CA: California Energy Commission. Report No.: P500-04-051. Contract No.: 500-04-051....

  2. An overview of component qualification using Bayesian statistics...

    Office of Scientific and Technical Information (OSTI)

    using Bayesian statistics and energy methods. Citation Details In-Document Search Title: An overview of component qualification using Bayesian statistics and energy methods. ...

  3. DOE-STD-1176-2004; Chemical Processing Functional Area Qualification...

    Energy Savers [EERE]

    76-2004 January 2004 DOE STANDARD CHEMICAL PROCESSING FUNCTIONAL AREA QUALIFICATION ... River Operations Office is the Sponsor for the Chemical Processing Qualification Standard. ...

  4. Defense Program Equivalencies for Technical Qualification Standard Competencies12/12/1995

    Broader source: Energy.gov [DOE]

    Defense Programs has undertaken an effort to compare the competencies in the GeneralTechnical Base Qualification Standard and the Functional Area Qualification Standards withvarious positions in...

  5. Large Bore Powder Gun Qualification (U)

    SciTech Connect (OSTI)

    Rabern, Donald A.; Valdiviez, Robert

    2012-04-02

    A Large Bore Powder Gun (LBPG) is being designed to enable experimentalists to characterize material behavior outside the capabilities of the NNSS JASPER and LANL TA-55 PF-4 guns. The combination of these three guns will create a capability to conduct impact experiments over a wide range of pressures and shock profiles. The Large Bore Powder Gun will be fielded at the Nevada National Security Site (NNSS) U1a Complex. The Complex is nearly 1000 ft below ground with dedicated drifts for testing, instrumentation, and post-shot entombment. To ensure the reliability, safety, and performance of the LBPG, a qualification plan has been established and documented here. Requirements for the LBPG have been established and documented in WE-14-TR-0065 U A, Large Bore Powder Gun Customer Requirements. The document includes the requirements for the physics experiments, the gun and confinement systems, and operations at NNSS. A detailed description of the requirements is established in that document and is referred to and quoted throughout this document. Two Gun and Confinement Systems will be fielded. The Prototype Gun will be used primarily to characterize the gun and confinement performance and be the primary platform for qualification actions. This gun will also be used to investigate and qualify target and diagnostic modifications through the life of the program (U1a.104 Drift). An identical gun, the Physics Gun, will be fielded for confirmatory and Pu experiments (U1a.102D Drift). Both guns will be qualified for operation. The Gun and Confinement System design will be qualified through analysis, inspection, and testing using the Prototype Gun for the majority of process. The Physics Gun will be qualified through inspection and a limited number of qualification tests to ensure performance and behavior equivalent to the Prototype gun. Figure 1.1 shows the partial configuration of U1a and the locations of the Prototype and Physics Gun/Confinement Systems.

  6. Qualification Plus: Performance and Durability Tests Beyond IEC 61215 (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Jordan, J.; Kempe, M.; Miller, D.; Bosco, N.; Silverman, T.; Hacke, P.; Phillips, N.; Earnest, T.; Romero, R.

    2014-03-01

    Qualification Plus is an accelerated test protocol and quality management system that gives higher confidence in field performance of PV modules compared with conventional qualification testing. The test sequences are being developed as consensus standards, but the early publication of these tests enables the community to begin benefiting from them sooner.

  7. FAQS Qualification Card – Nuclear Explosive Safety Study

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  8. FAQS Qualification Card- Electrical Systems and Safety Oversight

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  9. Technical Qualification Program Self-Assessment Report - Richland

    Energy Savers [EERE]

    Operations Office - 2014 | Department of Energy Richland Operations Office - 2014 Technical Qualification Program Self-Assessment Report - Richland Operations Office - 2014 The Richland Operations Office (RL) Technical Qualification Program Plan establishes a process to objectively determine that individuals performing activities related to the technical support, management, oversight, or operation possess the necessary knowledge, skills, and abilities to perform their assigned duties and

  10. FAQS Qualification Card – Safeguards and Security General Technical Base

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  11. FAQS Qualification Card – Safety Software Quality Assurance

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  12. FAQS Qualification Card – Senior Technical Safety Manager

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  13. Waste Form Qualification Compliance Strategy for Bulk Vitrification

    SciTech Connect (OSTI)

    Bagaasen, Larry M.; Westsik, Joseph H.; Brouns, Thomas M.

    2005-01-03

    The Bulk Vitrification System is being pursued to assist in immobilizing the low-activity tank waste from the 53 million gallons of radioactive waste in the 177 underground storage tanks on the Hanford Site. To demonstrate the effectiveness of the bulk vitrification process, a research and development facility known as the Demonstration Bulk Vitrification System (DBVS) is being built to demonstrate the technology. Specific performance requirements for the final packaged bulk vitrification waste form have been identified. In addition to the specific product-performance requirements, performance targets/goals have been identified that are necessary to qualify the waste form but do not lend themselves to specifications that are easily verified through short-term testing. Collectively, these form the product requirements for the DBVS. This waste-form qualification (WFQ) strategy document outlines the general strategies for achieving and demonstrating compliance with the BVS product requirements. The specific objectives of the WFQ activities are discussed, the bulk vitrification process and product control strategy is outlined, and the test strategy to meet the WFQ objectives is described. The DBVS product performance targets/goals and strategies to address those targets/goals are described. The DBVS product-performance requirements are compared to the Waste Treatment and Immobilization Plant immobilized low-activity waste product specifications. The strategies for demonstrating compliance with the bulk vitrification product requirements are presented.

  14. Technical Qualification Program Self-Assessment Report- Los Alamos Site Office- 2007

    Broader source: Energy.gov [DOE]

    The Federal Technical Capability Manual requires periodic self-assessment of the effectiveness of the implementation of the Manual and the Technical Qualification Program utilizing a defined set of Objectives and Criteria. The assessment documented by this report is the first periodic review conducted at LASO to meet this requirement. The assessment results are intended to establish a base-line on which to develop and improve the program so no final grade was assigned; however, only six of the twelve Objectives were identified as being met.

  15. Equipment qualification issues research and resolution: Status report

    SciTech Connect (OSTI)

    Bonzon, L.L.; Wyant, F.J.; Bustard, L.D.; Gillen, K.T.

    1986-11-01

    Since its inception in 1975, the Qualification Testing Evaluation (QTE) Program has produced numerous results pertinent to equipment qualification issues. Many have been incorporated into Regulatory Guides, Rules, and industry practices and standards. This report summarizes the numerous reports and findings to date. Thirty separate issues are discussed encompassing three generic areas: accident simulation methods, aging simulation methods, and special topics related to equipment qualification. Each issue-specific section contains (1) a brief description of the issue, (2) a summary of the applicable research effort, and (3) a summary of the findings to date.

  16. Technical Qualification Program Self-Assessment Report - Los...

    Office of Environmental Management (EM)

    1 Technical Qualification Program Self-Assessment Report - Los Alamos Site Office - 2011 The purpose of the FTCP TQP self-assessment team evaluation was to conduct a thorough ...

  17. Construction, Qualification, and Low Rate Production Start-up...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of a DC Bus Capacitor High Volume Manufacturing Facility with Capacity to Support 100,000 Electric Drive Vehicles Construction, Qualification, and Low Rate Production Start-up of a...

  18. CRAD, NNSA- Contractor Training and Qualification (T&Q)

    Office of Energy Efficiency and Renewable Energy (EERE)

    CRAD for Contractor Training and Qualification (T&Q). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  19. Testing, Evaluation, and Qualification of Bio-Oil for Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing, Evaluation, and Qualification of Bio-Oil for Heating March 26, 2015 Dr. Thomas A. ... of 20% of the petroleum-derived heating oil in the Northeast with infrastructure ...

  20. Construction, Qualification, and Low Rate Production Start-up...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Capacitor High Volume Manufacturing Facility with Capacity to Support 100,000 Electric Drive Vehicles Construction, Qualification, and Low Rate Production Start-up of a DC Bus ...

  1. SRNL PHASE 1 ASSESSMENT OF THE WTP WASTE QUALIFICATION PROGRAM

    SciTech Connect (OSTI)

    Peeler, D.; Hansen, E.; Herman, C.; Marra, S.; Wilmarth, B.

    2012-03-06

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Project is currently transitioning its emphasis from an engineering design and construction phase toward facility completion, start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements that must be met during the actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program. In general, the waste qualification program involves testing and analysis to demonstrate compliance with waste acceptance criteria, determine waste processability, and demonstrate laboratory-scale unit operations to support WTP operations. The testing and analysis are driven by data quality objectives (DQO) requirements necessary for meeting waste acceptance criteria for transfer of high-level wastes from the tank farms to the WTP, and for ensuring waste processability including proper glass formulations during processing within the WTP complex. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS) which were based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested subject matter experts (SMEs) from SRNL to support a technology exchange with respect to waste qualification programs in which a critical review of the WTP program could be initiated and lessons learned could be shared. The technology exchange was held on July 18-20, 2011 in Richland, Washington, and was the initial step in a multi-phased approach to support development and implementation of a successful waste qualification program at the WTP. The 3-day workshop was hosted by WTP with representatives from the Tank Operations Contractor (TOC) and SRNL in attendance as well as representatives from the US DOE Office of River Protection (ORP) and the Defense Nuclear Facility Safety Board (DNFSB) Site Representative office. The purpose of the workshop was to share lessons learned and provide a technology exchange to support development of a technically defensible waste qualification program. The objective of this report is to provide a review, from SRNL's perspective, of the WTP waste qualification program as presented during the workshop. In addition to SRNL's perspective on the general approach to the waste qualification program, more detailed insight into the specific unit operations presented by WTP during the workshop is provided. This report also provides a general overview of the SRS qualification program which serves as a basis for a comparison between the two programs. Recommendations regarding specific steps are made based on the review and SRNL's lessons learned from qualification of SRS low-activity waste (LAW) and high-level waste (HLW) to support maturation of the waste qualification program leading to WTP implementation.

  2. An overview of component qualification using Bayesian statistics and energy

    Office of Scientific and Technical Information (OSTI)

    methods. (Technical Report) | SciTech Connect An overview of component qualification using Bayesian statistics and energy methods. Citation Details In-Document Search Title: An overview of component qualification using Bayesian statistics and energy methods. The below overview is designed to give the reader a limited understanding of Bayesian and Maximum Likelihood (MLE) estimation; a basic understanding of some of the mathematical tools to evaluate the quality of an estimation; an

  3. 40 MM Grenade Launcher Qualification Requirements at Department of Energy

    Energy Savers [EERE]

    Sites, IG-0806 | Department of Energy 40 MM Grenade Launcher Qualification Requirements at Department of Energy Sites, IG-0806 40 MM Grenade Launcher Qualification Requirements at Department of Energy Sites, IG-0806 The Department of Energy and its National Nuclear Security Administration (NNSA), operate some of the most sensitive Federal facilities in the United States. Because of the mission requirements, safeguards and security is a top priority at these sites. As part of its security

  4. An overview of component qualification using Bayesian statistics and energy

    Office of Scientific and Technical Information (OSTI)

    methods. (Technical Report) | SciTech Connect Technical Report: An overview of component qualification using Bayesian statistics and energy methods. Citation Details In-Document Search Title: An overview of component qualification using Bayesian statistics and energy methods. The below overview is designed to give the reader a limited understanding of Bayesian and Maximum Likelihood (MLE) estimation; a basic understanding of some of the mathematical tools to evaluate the quality of an

  5. Technical Qualification Program and FTCP Assessment CRADs | Department of

    Energy Savers [EERE]

    Energy and FTCP Assessment CRADs Technical Qualification Program and FTCP Assessment CRADs This document provides guidance and objectives and criteria to support assessments required by DOE O 426.1 Federal Technical Capability (FTC), Section 4. REQUIREMENTS, paragraph b. FTC Program Implementation, subparagraph (7) Self-Assessment. PDF icon FTCP and TQP Assessment CRADs, 2012 More Documents & Publications Technical Qualification Program Self-Assessment Report - Richland Operations Office

  6. Accelerated Stress Testing, Qualification Testing, HAST, Field Experience |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy presentation, which was the opening session of the NREL 2013 Photovoltaic Module Reliability Workshop held on February 26, 2013 in Golden, CO, was presented by John Wohlgemuth. Entitled "Accelerated Stress Testing, Qualification Testing, HAST, Field Experience -- What Do They All Mean?" the presentation details efforts to develop accelerated stress tests beyond the qualification test levels, which are necessary to predict PV module wear-out. The commercial

  7. Tools and techniques for failure analysis and qualification of MEMS.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Tools and techniques for failure analysis and qualification of MEMS. Citation Details In-Document Search Title: Tools and techniques for failure analysis and qualification of MEMS. Many of the tools and techniques used to evaluate and characterize ICs can be applied to MEMS technology. In this paper we discuss various tools and techniques used to provide structural, chemical, and electrical analysis and how these data aid in qualifying MEMS technologies.

  8. Environmental Qualification at Savannah River Site

    SciTech Connect (OSTI)

    Martin, S.A.; Murphy, S.L.; Riley, P.J.; Sharma, M.K.; Sheikh, N.A.; Weister, T.E.

    1992-01-01

    The objective of Environmental Qualification (EQ) is to demonstrate that equipment essential to the mitigation of consequences from, and monitoring of plant conditions following Design Basis Accidents (DBAs) will operate as intended under normal/abnormal and accident environmental conditions over the installed life. For example, if a component is needed to maintain the reactor in a safe shutdown condition during an accident, and if the component is subjected to a harsh environment during that accident, then documentation must be prepared addressing the ability of the equipment to work properly in the accident environment. The requirement for an EQ program at SRS was mandated by the Department of Energy (DOE) K-Reactor Safety Evaluation Report (SER) which requires SRS to: (1) provide a long term plan for an EQ program with DOE approval prior to restart and (2) prepare and submit to DOE, Justifications for Continued Operations, that justify restarting and operating the K-Reactor until a long term compliance can be achieved with DOE approval.

  9. Workshop on environmental qualification of electric equipment

    SciTech Connect (OSTI)

    Lofaro, R.; Gunther, W.; Villaran, M.; Lee, B.S.; Taylor, J.

    1994-05-01

    Questions concerning the Environmental Qualification (EQ) of electrical equipment used in commercial nuclear power plants have recently become the subject of significant interest to the US Nuclear Regulatory Commission (NRC). Initial questions centered on whether compliance with the EQ requirements for older plants were adequate to support plant operation beyond 40 years. After subsequent investigation, the NRC Staff concluded that questions related to the differences in EQ requirements between older and newer plants constitute a potential generic issue which should be evaluated for backfit, independent of license renewal activities. EQ testing of electric cables was performed by Sandia National Laboratories (SNL) under contract to the NRC in support of license renewal activities. Results showed that some of the environmentally qualified cables either failed or exhibited marginal insulation resistance after a simulated plant life of 20 years during accident simulation. This indicated that the EQ process for some electric cables may be non-conservative. These results raised questions regarding the EQ process including the bases for conclusions about the qualified life of components based upon artificial aging prior to testing.

  10. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  11. FTCP-08-001, Methodology for Counting TQP Personnel and Qualifications |

    Energy Savers [EERE]

    Department of Energy 1, Methodology for Counting TQP Personnel and Qualifications FTCP-08-001, Methodology for Counting TQP Personnel and Qualifications FTCP Issue Paper: FTCP-08-001 Approved by FTCP, July 28, 2008 Conference Call PDF icon FTCP-08-001 TQP Personnel and Qualifications More Documents & Publications FTCP-09-001, Safety System Oversight competencies and FAQS Options Technical Qualification Program Self-Assessment Report - Richland Operations Office - 2014 FTCP-09-003,

  12. DOE-STD-1177-2004; Emergency Management Functional Area Qualification...

    Office of Environmental Management (EM)

    ... Management's Qualification Standards Handbook establishes minimum education, training, ... Supporting Knowledge andor Skills a. Discuss the fundamentals of radiation protection as ...

  13. Nondestructive Testing Qualification of Main Circulatory Tube Pipes DU 500

    SciTech Connect (OSTI)

    Tabakova, Bojana M.; Tzokov, Petio

    2004-07-01

    The criteria for safe operation of nuclear energetic installations is given a higher priority in the policy of Kozloduy Nuclear Power Plant. An efficient non-destructive inspection is the key point for the safe service. Kozloduy NPP keeps on making investments in equipment and qualification of specialists in this field. The processes of qualification of the NDT components, important for the nuclear and radiation safety, make considerable improvement in Kozloduy NPP, thanks to the accumulated in the years experience in the activities of NDT inspection qualification, and to the help of our partners Serco Assurance and the Institute of Rzes. The results obtained by ultrasonic non-destructive inspection of circulation tube mains DU 500 WWER 440 type are under discussion in this report. (authors)

  14. LL/ILW: Post-Qualification of Old Waste through Non-Destructive Extraction of Barrels from Cement Shields - 13535

    SciTech Connect (OSTI)

    Oehmigen, Steffen; Ambos, Frank

    2013-07-01

    Currently there is a large number of radioactive waste drums entombed in cement shields at German nuclear power plants. These concrete containers used in the past for the waste are not approved for the final repository. Compliance with current acceptance criteria of the final repository has to be proven by qualification measures on the waste. To meet these criteria, a new declaration and new packing is necessary. A simple non-destructive extraction of about 2000 drums from their concrete shields is not possible. So different methods were tested to find a way of non-destructive extraction of old waste drums from cement shields and therefore reduce the final repository volume and final repository costs by using a container accepted and approved for Konrad. The main objective was to build a mobile system to offer this service to nuclear plant stations. (authors)

  15. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    SciTech Connect (OSTI)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest projected noble metals content for SB7b. Characterization was performed on the Tank 51 SB7b samples and SRNL performed DWPF simulations using the Tank 40 SB7b material. This report documents: (1) The preparation and characterization of the Tank 51 SB7b and Tank 40 SB7b samples. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the SB7b Tank 40 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a nonradioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the SRAT receipt, SRAT product, and SME product. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7b related data together in a single permanent record and to discuss the overall aspects of SB7b processing.

  16. Sludge Washing And Demonstration Of The DWPF Flowsheet In The SRNL Shielded Cells For Sludge Batch 8 Qualification

    SciTech Connect (OSTI)

    Pareizs, J. M.; Crawford, C. L.

    2013-04-26

    The current Waste Solidification Engineering (WSE) practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks to Tank 51. Tank 51 sludge is washed and transferred to Tank 40, the current Defense Waste Processing Facility (DWPF) feed tank. Prior to transfer of Tank 51 to Tank 40, the Savannah River National Laboratory (SRNL) typically simulates the Tank Farm and DWPF processes using a Tank 51 sample (referred to as the qualification sample). WSE requested the SRNL to perform characterization on a Sludge Batch 8 (SB8) sample and demonstrate the DWPF flowsheet in the SRNL shielded cells for SB8 as the final qualification process required prior to SB8 transfer from Tank 51 to Tank 40. A 3-L sample from Tank 51 (the SB8 qualification sample; Tank Farm sample HTF-51-12-80) was received by SRNL on September 20, 2012. The as-received sample was characterized prior to being washed. The washed material was further characterized and used as the material for the DWPF process simulation including a Sludge Receipt and Adjustment Tank (SRAT) cycle, a Slurry Mix Evaporator (SME) cycle, and glass fabrication and chemical durability measurements.

  17. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    SciTech Connect (OSTI)

    Randklev, E.H.

    1993-06-01

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

  18. Decant pump assembly and controls qualification testing - test report

    SciTech Connect (OSTI)

    Staehr, T.W., Westinghouse Hanford

    1996-05-02

    This report summarizes the results of the qualification testing of the supernate decant pump and controls system to be used for in-tank sludge washing in aging waste tank AZ-101. The test was successful and all components are qualified for installation and use in the tank.

  19. Functional Area Qualification Standard Job Task Analyses | Department of

    Energy Savers [EERE]

    Energy Job Task Analyses Functional Area Qualification Standard Job Task Analyses DOE Aviation Manager DOE Aviation Safety Officer Chemical Processing Civil/Structural Engineering Confinement Ventilation and Process Gas Treatment Construction Management Criticality Safety Deactivation and Decommissioning Electrical Systems and Safety Oversight Emergency Management Environmental Compliance Environmental Restoration Facility Representative Fire Protection Engineering General Technical Base

  20. Functional Area Qualification Standard Reference Guides | Department of

    Energy Savers [EERE]

    Energy Reference Guides Functional Area Qualification Standard Reference Guides Aviation Manager Aviation Safety Officer Chemical Processing Civil/Structural Engineering Construction Management Criticality Safety Criticality Safety Support Group, NNSA SC Electrical Systems and Safety Oversight Emergency Management Environmental Compliance Environmental Restoration Facility Maintenance Management Facility Representative Fire Protection Engineering General Technical Base Industrial Hygiene

  1. Functional Area Qualification Standards Review Process | Department of

    Energy Savers [EERE]

    Energy Review Process Functional Area Qualification Standards Review Process Document Available for Download PDF icon Review Process for Technical Standards More Documents & Publications DOE-STD-1176-2004 DOE-TSPP-4-2013, Developing DOE Technical Standards DOE-TSPP-5-2013, Coordination of Technical Standards

  2. Personnel Selection, Qualification, and Training Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-07-12

    To establish selection, qualification, and training requirements for management and operating (M&O) contractor personnel involved in the operation, maintenance, and technical support of Department of Energy and National Nuclear Security Administration Category A and B reactors and non-reactor nuclear facilities. Canceled by DOE O 426.2

  3. High Temperature Materials Interim Data Qualification Report FY 2011

    SciTech Connect (OSTI)

    Nancy Lybeck

    2011-08-01

    Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the Next Generation Nuclear Plant (NGNP) Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim fiscal year (FY) 2011 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under the Nuclear Quality Assurance (NQA)-1 guidelines and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from seven test series within the High Temperature Materials data stream have been entered into the NDMAS vault, including tensile tests, creep tests, and cyclic tests. Of the 5,603,682 records currently in the vault, 4,480,444 have been capture passed, and capture testing is in process for the remaining 1,123,238.

  4. Safeguards and Security General Technical Base Qualification Standard

    Energy Savers [EERE]

    23-2009 July 2009 DOE STANDARD SAFEGUARDS AND SECURITY GENERAL TECHNICAL BASE QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1123-2009 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1123-2009 iii APPROVAL The

  5. Senior Technical Safety Manager Functional Area Qualification Standard

    Energy Savers [EERE]

    MEASUREMENT SENSITIVE DOE-STD-1175-2013 October 2013 DOE STANDARD SENIOR TECHNICAL SAFETY MANAGER FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. DOE-STD-1175-2013 This document is available on the Department of Energy Technical Standards Program Website at

  6. Plutonium metal and oxide container weld development and qualification

    SciTech Connect (OSTI)

    Fernandez, R.; Horrell, D.R.; Hoth, C.W.; Pierce, S.W.; Rink, N.A.; Rivera, Y.M.; Sandoval, V.D.

    1996-01-01

    Welds were qualified for a container system to be used for long-term storage of plutonium metal and oxide. Inner and outer containers are formed of standard tubing with stamped end pieces gas-tungsten-arc (GTA) welded onto both ends. The weld qualification identified GTA parameters to produce a robust weld that meets the requirements of the Department of Energy standard DOE-STD-3013-94, ``Criteria for the Safe Storage of Plutonium Metals and Oxides.``

  7. Nuclear Explosive Safety Study Functional Area Qualification Standard

    Energy Savers [EERE]

    i NOT MEASUREMENT SENSITIVE DOE-STD-1185-2007 CHANGE NOTICE No.1 April 2010 DOE STANDARD NUCLEAR EXPLOSIVE SAFETY STUDY FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1185-2007 ii This document is available on the Department of Energy Technical Standards Program Web Site at

  8. Technical Qualification Program Self-Assessment Report - Los Alamos Site

    Office of Environmental Management (EM)

    Office - 2011 | Department of Energy 11 Technical Qualification Program Self-Assessment Report - Los Alamos Site Office - 2011 The purpose of the FTCP TQP self-assessment team evaluation was to conduct a thorough evaluation of the status of the implementation of the National Nuclear Security Administration (NNSA) LASO TQP. This report documents the activities and results of the team evaluation of the LASO TQP. The overall approach of the TQP self-assessment was to evaluate the personnel,

  9. SLUDGE BATCH 7 ACCEPTANCE EVALUATION: RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB7 QUALIFICATION SAMPLE PREPARED AT SRNL

    SciTech Connect (OSTI)

    Pareizs, J.; Hay, M.

    2011-02-22

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch Seven (SB7) for processing in the Defense Waste Processing Facility (DWPF). The SB7 material is currently in Tank 51 being washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF and is currently being processed as SB6. The radionuclide concentrations were measured or estimated in the Tank 51 SB7 Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from the three liter qualification sample of Tank 51 sludge slurry (HTF-51-10-125) received on September 18, 2010. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. With consultation from the Liquid Waste Organization, the qualification sample was then modified by several washes and decants, which included addition of Pu from H Canyon and sodium nitrite per the Tank Farm corrosion control program. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40. Determining the radionuclide concentrations in this Tank 51 SB7 Qualification Sample is part of the work requested in Technical Task Request (TTR) No. HLW-DWPF-TTR-2010-0031. The radionuclides included in this report are needed for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria (TSR/WAC) Evaluation, and the DWPF Solid Waste Characterization Program (TTR Task I.2). Radionuclides required to meet the Waste Acceptance Product Specifications (TTR Task III.2.) will be measured at a later date after the slurry from Tank 51 has been transferred to Tank 40. Then a sample of the as-processed SB7 will be taken and transferred to SRNL for measurement of these radionuclides. The results presented in this report are those necessary for DWPF to assess if the Tank 51 SB7 sample prepared at SRNL meets the requirements for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria evaluation, and the DWPF Solid Waste Characterization Program. Concentrations are given for thirty-four radionuclides along with total alpha and beta activity. Values for total gamma and total gamma plus beta activities are also calculated.

  10. U.S. Department of Energy Component and System Qualification Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy U.S. Department of Energy Component and System Qualification Workshop U.S. Department of Energy Component and System Qualification Workshop The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the U.S. DOE Component and System Qualification Workshop on November 4, 2010 in Livermore, CA. The goal of the Workshop was to identify key needs, barriers, and actions to facilitate the qualification and listing of hydrogen and fuel cell systems and

  11. Technical Qualification Program Self-Assessment Report- Pacific Northwest Site Office- 2013

    Broader source: Energy.gov [DOE]

    This self-assessment evaluated how well the Technical Qualification and Federal Capability Programs were implemented at the Pacific Northwest Site Office (PNSO).

  12. Technical Qualification Program Self-Assessment Report- Office of River Protection- 2014

    Broader source: Energy.gov [DOE]

    A self-assessment was performed in accordance with TRS-OA-IP-07, Management (Self) Assessment, Rev. 2, where information was retrieved from MGT-QT-PL-01, Technical Qualification Program (TQP) Plan, Rev. 3; MGT-QT-DI-01, Technical Qualification Program: Federal Technical Capability Agent Duties, Rev. 2; technical staff electronic training and qualifications files; and ORP's technical staff hard copy training and qualification files to determine the effectiveness of the implemented program and identify any weaknesses of the existing program at turn-over of responsibilities.

  13. U.S. Department of Energy Hydrogen Component and System Qualification Workshop- Presentations

    Broader source: Energy.gov [DOE]

    These presentations were given at the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  14. DOE-STD-1138-2000; Industrial Hygiene Funcational Area Qualification...

    Office of Environmental Management (EM)

    ... specified for engineers, or scientists in the OPM Qualification Standards Handbook. ... DOE-STD-1138-2000 9 c. Discuss the fundamentals of operating analytical equipment, ...

  15. Final Optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Optics Schematic layout of NIF's final optics assembly (FOA). The suite of optics for one beamline is on the right. The final optics assemblies (FOAs) are the last element of the main laser system and the first of the target area systems. Each FOA contains four integrated optics modules (IOMs) that incorporate beam conditioning, frequency conversion, focusing, diagnostic sampling, and debris shielding capabilities into a single compact assembly. These optics are shown in the figure at

  16. Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Report Document Number 11123-23.Final Field Demonstration of Eco-Friendly Creation of Propped Hydraulic Fractures Contract Number: 11123-23.Final February 16, 2015 Nadji Benrabah (Author) Engineer CSI Technologies 1930 W.W. Thorne Dr. Houston, TX 77073 Phil Van Trump (Principal Investigator) Chief Technology Officer DaniMer Scientific, LLC 1301 Colquitt Highway Bainbridge, GA 39817 2 LEGAL NOTICE This report was prepared by DaniMer Scientific, LLC as an account of work sponsored by the

  17. Final-3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Final Workshop of Department's Inaugural Technology Assessment Final Workshop of Department's Inaugural Technology Assessment July 12, 2011 - 12:01pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs This Wednesday, Under Secretary Steven Koonin will host the sixth and final workshop of the Department's inaugural Quadrennial Technology Review. The aim of the comprehensive assessment is to strengthen and streamline how the

  18. Final EA

    Office of Environmental Management (EM)

    1 Transmission Line Rebuild Project Final Environmental Assessment DEPARTMENT OF ENERGY Bonneville Power Administration ... 2.1.1 Rights-of-way and Easements The first paragraph in ...

  19. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    SciTech Connect (OSTI)

    Russell, Steven, W.; Lundin, Carl, W.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope�������® and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope�������® were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the castings and wrought DSS and tested per ASTM A923 method B (Charpy impact test). Method A (sodium hydroxide etch test) was performed on one half of a fractured Charpy V-notch impact sample and Method C (ferric chloride corrosion weight loss test) was performed on another half. Test results for the three cast lots and one wrought lot indicate that ASTM A923 is relevant for detecting intermetallic phases in cast DSS. In the ASTM A923 round robin study, five laboratories conducted ASTM A923 Methods A & C on cast DSS material and the lab-to-lab reproducibility of the data was determined. Two groups of samples were sent to the participants. Group 1 samples were tested per ASTM A923 Method A, group 2 samples were tested by ASTM A923 Method C. Testing procedures for this round robin study were identical to those used in the ASTM A923 applicability study. Results from this round robin indicate that there is excellent lab-to-lab reproducibility of ASTM A923 with respect to cast DSS and that ASTM A923 could be expanded to cover both wrought and cast DSS. In the ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases, Ten heats of ASTM A890-4A (CD3MN) in the foundry solution annealed condition were tested per ASTM A923 Methods A, B, & C. Testing of these materials per ASTM A923 was used to determine if the foundry solution anneal procedures were adequate to completely eliminate any intermetallic phases, which may have precipitated during the casting and subsequent heat treatment processes. All heats showed no sign of intermetallic phase per Method A, passed minimum Charpy impact energy requirements per Method B (> 40 ft-lbs @ -40�������°C (-40�������°F)), and showed negligible weight loss per Method C (< 10 mdd). These results indicate that the solution annealing procedure used by foundri

  20. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    SciTech Connect (OSTI)

    Russell, Steven, W.; Lundin, Carl, D.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope{reg_sign} and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope{reg_sign} were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the castings and wrought DSS and tested per ASTM A923 method B (Charpy impact test). Method A (sodium hydroxide etch test) was performed on one half of a fractured Charpy V-notch impact sample and Method C (ferric chloride corrosion weight loss test) was performed on another half. Test results for the three cast lots and one wrought lot indicate that ASTM A923 is relevant for detecting intermetallic phases in cast DSS. In the ASTM A923 round robin study, five laboratories conducted ASTM A923 Methods A & C on cast DSS material and the lab-to-lab reproducibility of the data was determined. Two groups of samples were sent to the participants. Group 1 samples were tested per ASTM A923 Method A, group 2 samples were tested by ASTM A923 Method C. Testing procedures for this round robin study were identical to those used in the ASTM A923 applicability study. Results from this round robin indicate that there is excellent lab-to-lab reproducibility of ASTM A923 with respect to cast DSS and that ASTM A923 could be expanded to cover both wrought and cast DSS. In the ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases, Ten heats of ASTM A890-4A (CD3MN) in the foundry solution annealed condition were tested per ASTM A923 Methods A, B, & C. Testing of these materials per ASTM A923 was used to determine if the foundry solution anneal procedures were adequate to completely eliminate any intermetallic phases, which may have precipitated during the casting and subsequent heat treatment processes. All heats showed no sign of intermetallic phase per Method A, passed minimum Charpy impact energy requirements per Method B (> 40 ft-lbs {at} -40 C (-40 F)), and showed negligible weight loss per Method C (< 10 mdd). These results indicate that the solution annealing procedure used by foundries is adequate to produce a product free from intermetallic phases.

  1. FINAL RELEASE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELEASE AWARDEE: ____________________________________________________ The work under Award No. DE-__________________________, dated ______________, between the United States of America (represented by the Department of Energy, National Energy Technology Laboratory, and the undersigned awardee, having been completed and finally accepted , and in consideration of Final Payment thereunder, the United States of America, its officers, agents and employees are hereby released from all liabilities,

  2. Qualification of Three On-line Slurry Monitoring Devices for Application during Waste Retrieval Operations at DOE Sites

    SciTech Connect (OSTI)

    Bontha, Jagannadha R.; Bamberger, Judith A.; Hylton, Tom D.; May, T. H.

    2000-10-18

    Qualification of Three On-line Slurry Monitoring Devices for Application during Waste Retrieval Operations at DOE Sites

  3. Senior Technical Safety Manager Functional Area Qualification Standard

    Energy Savers [EERE]

    75-2006 i NOT MEASUREMENT SENSITIVE DOE-STD-1175-2006 October 2006 DOE STANDARD SENIOR TECHNICAL SAFETY MANAGER FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1175-2006 ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical

  4. Fire Protection Engineering Functional Area Qualification Standard, 2007

    Energy Savers [EERE]

    37-2007 December 2007 Supersedes DOE-STD-1137-2000 July 2000 DOE STANDARD FIRE PROTECTION ENGINEERING FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1137-2007 ii Available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1137-2007

  5. Code qualification of structural materials for AFCI advanced recycling reactors.

    SciTech Connect (OSTI)

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L.

    2012-05-31

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural materials require a variety of experimental facilities that have been seriously degraded in the past. The availability and additional needs for the key experimental facilities are summarized at the end of the report. Detailed information covered in each Chapter is given.

  6. Final Report

    SciTech Connect (OSTI)

    Gurney, Kevin R

    2015-01-12

    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  7. Final Report

    SciTech Connect (OSTI)

    Biros, George

    2014-08-18

    This the final report for the project "Large-Scale Optimization for Bayesian Inference in Complex Systems," for the work in the group of the co-PI George Biros.

  8. Final Report

    SciTech Connect (OSTI)

    DeTar, Carleton

    2012-12-10

    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  9. Resistance Weld Qualification Analysis for Radioactive Waste Canisters

    SciTech Connect (OSTI)

    Gupta, N.K.; Gong, C.

    1995-01-10

    High level radioactive waste canisters are sealed by resistance upset welding to ensure leak tight closures. Resistance welding is fast, uniform, and can be performed remotely to minimize radiation exposure to the operators. Canisters are constructed in accordance with ASME Band PV Code, Section VIII, Division 1, however, the resistance welds are not used in Section VIII. The resistance welds are qualified by analysis using material properties obtained from the test coupons. Burst tests are performed on canister welds to meet ASME Section IX welder qualification requirements. Since burst tests are not used in Section IX for resistance weld qualification, finite element results of canister resistance welds are compared with the finite element analysis results of resistance weld tests in ASME Section IX, QW-196 to establish similarity between the two weld tests. Detailed analyses show that the primary mode of failure in both the tests is shear and, therefore, the use of burst test in place of shear test is acceptable. It is believed that the detailed analyses and results could help in establishing acceptance criteria for resistance upset welding in ASME B&PV Code, Sections VIII, and IX.

  10. The DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    David Petti

    2010-09-01

    The high outlet temperatures and high thermal-energy conversion efficiency of modular High Temperature Gas-cooled Reactors (HTGRs) enable an efficient and cost effective integration of the reactor system with non-electricity generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300°C and 900°C. The Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission-product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete, fundamental understanding of the relationship between the fuel fabrication process and key fuel properties, the irradiation and accident safety performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. An overview of the program and recent progress is presented.

  11. Qualification tests for {sup 192}Ir sealed sources

    SciTech Connect (OSTI)

    Iancso, Georgeta Iliescu, Elena Iancu, Rodica

    2013-12-16

    This paper describes the results of qualification tests for {sup 192}Ir sealed sources, available in Testing and Nuclear Expertise Laboratory of National Institute for Physics and Nuclear Engineering 'Horia Hulubei' (I.F.I.N.-HH), Romania. These sources had to be produced in I.F.I.N.-HH and were tested in order to obtain the authorization from The National Commission for Nuclear Activities Control (CNCAN). The sources are used for gammagraphy procedures or in gammadefectoscopy equipments. Tests, measurement methods and equipments used, comply with CNCAN, AIEA and International Quality Standards and regulations. The qualification tests are: 1. Radiological tests and measurements: dose equivalent rate at 1 m; tightness; dose equivalent rate at the surface of the transport and storage container; external unfixed contamination of the container surface. 2. Mechanical and climatic tests: thermal shock; external pressure; mechanic shock; vibrations; boring; thermal conditions for storage and transportation. Passing all tests, it was obtained the Radiological Security Authorization for producing the {sup 192}Ir sealed sources. Now IFIN-HH can meet many demands for this sealed sources, as the only manufacturer in Romania.

  12. Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114

    SciTech Connect (OSTI)

    Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G.; Adamson, Duane J.; Herman, Connie C.; Peeler, David K.

    2013-07-01

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

  13. U.S. Commits $14 million to U.S. - Ukraine Nuclear Fuel Qualification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Commits $14 million to U.S. - Ukraine Nuclear Fuel Qualification Project U.S. Commits $14 million to U.S. - Ukraine Nuclear Fuel Qualification Project March 15, 2007 - 10:55am Addthis KYIV, Ukraine - U.S. Department of Energy Deputy Secretary Clay Sell today announced that the United States will invest $14 million to provide 42 nuclear fuel assemblies to the South Ukraine Nuclear Power Plant under the U.S.-Ukraine Nuclear Fuel Qualification Project (UNFQP). In

  14. CRAD, NNSA - Federal Employee Training and Qualification Program (FED T&Q)

    Office of Environmental Management (EM)

    | Department of Energy Federal Employee Training and Qualification Program (FED T&Q) CRAD, NNSA - Federal Employee Training and Qualification Program (FED T&Q) CRAD for Federal Employee Training and Qualification Program (FED T&Q). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs. CRADs consist of a Performance Objective that identifies the expectation(s) or requirement(s)

  15. EDS V25 containment vessel explosive qualification test report.

    SciTech Connect (OSTI)

    Rudolphi, John Joseph

    2012-04-01

    The V25 containment vessel was procured by the Project Manager, Non-Stockpile Chemical Materiel (PMNSCM) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the first EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel based on the Code Case is nine (9) pounds TNT-equivalent for up to 637 detonations. This limit is an increase from the 4.8 pounds TNT-equivalency rating for previous vessels. This report describes the explosive qualification tests that were performed in the vessel as part of the process for qualifying the vessel for explosive use. The tests consisted of a 11.25 pound TNT equivalent bare charge detonation followed by a 9 pound TNT equivalent detonation.

  16. FINAL REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FINAL REPORT AEC-ERDA Research Contract AT (11-1) 2174 Columbia University's Nevis Laboratories "Research in Neutron Velocity Spectroscopy" James RainwatGr DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

  17. FINAL REPORT

    Office of Scientific and Technical Information (OSTI)

    FINAL REPORT Analytical and Elemental Analysis of Air and Soil Samples Facility and Public Awareness Partnership (Training/Public Awareness) Congressionally Awarded Grant No. DE-FG02-05ER64045 Submitted to: U.S. Department of Energy Attn: William Henson Submitted by: Alabama A&M University Research Institute (AAMURI) [pic] October 1, 2007 This report reflects a joint training program at the Integrated Environmental Research and Services (IERS) of the Alabama A&M University Research

  18. Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyber Security for Utility Operations NETL Project M63SNL34 Sponsored by the U.S. DOE Office of Energy Assurance Managed by NETL Final Report Period of Performance October, 2003 - April, 2005 Dennis Holstein and John Tengdin, OPUS Publishing Jay Wack and Roger Butler, TecSec, Inc. Timothy Draelos, Sandia National Laboratories 1 Paul Blomgren, SafeNet/Mykotronx April 18, 2005 1 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States

  19. AGR-3/4 Data Qualification Report for ATR Cycles 151A, 151B, 152A, 152B, 154A, and 154B

    SciTech Connect (OSTI)

    Binh T. Pham

    2014-02-01

    This data report provides the qualification status of Advanced Gas Reactor-3/4 (AGR-3/4) fuel irradiation experimental data from Advanced Test Reactor (ATR) Cycles 151A, 151B, 152A, 152B, 154A, and 154B, as recorded in the Nuclear Data Management and Analysis System (NDMAS). Of these cycles, ATR Cycle 152A is a low power cycle that occurred when the ATR core was briefly at low power. The irradiation data are not used for physics and thermal calculation, but the qualification status of these cycle data is still covered in this report. On the other hand, during ATR Cycles 153A (unplanned Outage cycle) and 153B (Power Axial Locator Mechanism [PALM] cycle), the AGR-3/4 was pulled out from the ATR core and stored in the canal to avoid being overheated. Therefore, qualification of the AGR-3/4 irradiation data from these 2 cycles was excluded in this report. By the end of ATR Cycle 154B, AGR-3/4 was irradiated for a total of 264.1 effective full power days. The AGR-3/4 data streams addressed in this report include thermocouple (TC) temperatures, sweep gas data (flow rates, pressure, and moisture content), and Fission Product Monitoring System (FPMS) data (release rates and release-to-birth rate ratios [R/Bs]) for each of the twelve capsules in the AGR-3/4 experiment. The final data qualification status for these data streams is determined by a Data Review Committee (DRC) composed of AGR technical leads, Sitewide Quality Assurance (QA), and NDMAS analysts. The DRC convened on February 12, 2014, reviewed the data acquisition process, and considered whether the data met the requirements for data collection as specified in QA-approved Very High Temperature Reactor (VHTR) Technology Development Office (TDO) data collection plans. The DRC also examined the results of NDMAS data testing and statistical analyses, and confirmed the qualification status of the data as given in this report.

  20. Technical Qualification Program Self-Assessment Report- Los Alamos Field Office- FY15

    Broader source: Energy.gov [DOE]

    The FY15 self-assessment of the Technical Qualifications and Federal Technical Capability program was conducted to provide Los Alamos Field Office (NA-LA) management specific information related to effectiveness of the documentation and implementation of these programs.

  1. Technical Qualification Program Self-Assessment Report- Livermore Field Office- 2013

    Broader source: Energy.gov [DOE]

    The purpose of the Livermore Field Office (LFO) Teclmical Qualification Program (TQP) is to ensure that federal teclmical personnel with safety oversight responsibilities at defense nuclear facilities at Lawrence Livermore National Laboratory possess competence commensurate with responsibilities.

  2. Sample results from the interim salt disposition program macrobatch 9 tank 21H qualification samples

    SciTech Connect (OSTI)

    Peters, T. B.

    2015-11-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 9 for the Interim Salt Disposition Program (ISDP). This document reports characterization data on the samples of Tank 21H.

  3. Technical Qualification Program Self-Assessment Report- Y-12 Site Office- 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    The National Nuclear Security Administration Y-12 Site Office (YSO) has successfully implemented a Technical Qualification Program (YSO TQP) that produces highly qualified, technical individuals to execute oversight of site activities and support the site missions.

  4. Technical Qualification Program Self-Assessment Report- Sandia Site Office- 2012

    Broader source: Energy.gov [DOE]

    This self assessment examined how Sandia Site Office (SSO) executes the Technical Qualification Program (TQP) as measured by the current Federal Technical Capability Panel criteria review and approach documents (CRADs) included in the assessment plan.

  5. H.A.R. 13-281 - Rules Governing Professional Qualifications ...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: H.A.R. 13-281 - Rules Governing Professional QualificationsLegal Published NA Year Signed or...

  6. Senior Technical Safety Manager Qualification Program Self-Assessment- Chief of Nuclear Safety

    Broader source: Energy.gov [DOE]

    This Chief of Nuclear Safety (CNS) Report was prepared to summarize the results of the July 2013 CNS self-assessment of the Senior Technical Safety Manager Qualification Program.

  7. Technical Qualification Program Self-Assessment Report- Savannah River Site Office- 2011

    Broader source: Energy.gov [DOE]

    This self assessment evaluates the effective implementation of the Technical Qualification Programs (TQP). The Federal Technical Capability Panel (FTCP) also reviews the results of the TQP self-assessments and determines if further action is necessary on a Departmental level.

  8. 41737 Final

    Office of Scientific and Technical Information (OSTI)

    ULTRA-SUPERCRITICAL PRESSURE CFB BOILER CONCEPTUAL DESIGN STUDY FINAL REPORT Prepared by: Zhen Fan Steve Goidich Archie Robertson Song Wu Issued September 2006 Work Performed Under U.S. Department of Energy Cooperative Agreement No. DE-FC26-03NT41737 Foster Wheeler North America Corp. 12 Peach Tree Hill Road Livingston, NJ 07039 ii Disclaimer "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any

  9. Final Report

    SciTech Connect (OSTI)

    R Paul Drake

    2004-01-12

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.

  10. An analysis of the qualification criteria for small radioactive material shipping packages

    SciTech Connect (OSTI)

    McClure, J.D.

    1983-05-01

    The RAM package design certification process has two important elements, testing and acceptance. These terms sound very similar but they have specific meanings. Qualification testing in the context of this study is the imposition of simulated accident test conditions upon the candidate package design. (Normal transportation environments may also be included.) Following qualification testing, the acceptance criteria provide the performance levels which, if demonstrated, indicate the ability of the RAM package to sustain the severity of the qualification testing sequence and yet maintain specified levels of package integrity. This study has used Severities of Transportation Accidents as a data base to examine the regulatory test criteria which are required to be met by small packages containing Type B quantities of radioactive material (RAM). The basic findings indicate that the present regulatory test standards provide significantly higher levels of protection for the surface transportation modes (truck, rail) than for RAM packages shipped by aircraft. It should also be noted that various risk assessment studies have shown that the risk to the public due to severe transport accidents by surface and air transport modes is very low. A key element in this study was the quantification of the severity of the transportation accident environment and the severity of the present qualification test standards (called qualification test standards in this document) so that a direct comparison could be made between them to assess the effectiveness of the existing qualification test standards. The manner in which this was accomplished is described.

  11. "Order Module--DOE O 426.2, PERSONNEL SELECTION, TRAINING, QUALIFICATION, AND CERTIFICATION REQUIREMENTS FOR DOE NUCLEAR FACILITIES

    Broader source: Energy.gov [DOE]

    "To establish selection, training, qualification, and certification requirements for contractor personnel who can impact the safety basis through their involvement in the operation, maintenance,...

  12. Final Report

    SciTech Connect (OSTI)

    Webb, Robert C.; Kamon, Teruki; Toback, David; Safonov, Alexei; Dutta, Bhaskar; Dimitri, Nanopoulos; Pope, Christopher; White, James

    2013-11-18

    Overview The High Energy Physics Group at Texas A&M University is submitting this final report for our grant number DE-FG02-95ER40917. This grant has supported our wide range of research activities for over a decade. The reports contained here summarize the latest work done by our research team. Task A (Collider Physics Program): CMS & CDF Profs. T. Kamon, A. Safonov, and D. Toback co-lead the Texas A&M (TAMU) collider program focusing on CDF and CMS experiments. Task D: Particle Physics Theory Our particle physics theory task is the combined effort of Profs. B. Dutta, D. Nanopoulos, and C. Pope. Task E (Underground Physics): LUX & NEXT Profs. R. Webb and J. White(deceased) lead the Xenon-based underground research program consisting of two main thrusts: the first, participation in the LUX two-phase xenon dark matter search experiment and the second, detector R&D primarily aimed at developing future detectors for underground physics (e.g. NEXT and LZ).

  13. DOE handbook: Guide to good practices for the selection, training, and qualification of shift supervisors

    SciTech Connect (OSTI)

    1999-04-01

    This Department of Energy (DOE) handbook is approved for use by all DOE Components and their contractors. The Handbook incorporates editorial changes to DOE-STD-1061-93, ``Guide to Good Practices for the Selection, Training, and Qualification of shift Supervisors,`` and supersedes DOE-STD-1061-93. Technical content of this Handbook has not changed from the original technical standard. Changes are primarily editorial improvements, redesignation of the standard to a Handbook, and format changes to conform with current Technical Standards Program procedures. This guide, used in conjunction with a facility-specific job analysis, provides a framework for the selection, training, qualification, and professional development of reactor facility and non-reactor nuclear facility shift supervisors. Training and qualification programs based on this guide should provide assurance that shift supervisors perform their jobs safely and competently.

  14. DOE handbook: Guide to good practices for training and qualification of chemical operators

    SciTech Connect (OSTI)

    1996-03-01

    The purpose of this Handbook is to provide contractor training organizations with information that can be used as a reference to refine existing chemical operator training programs, or develop new training programs where no program exists. This guide, used in conjunction with facility-specific job analyses, will provide a framework for training and qualification programs for chemical operators at DOE reactor and nonreactor facilities. Recommendations for qualification are made in four areas: education, experience, physical attributes, and training. Contents include: initial qualification; administrative training; industrial safety training; specialized skills training; on-the-job training; trainee evaluation; continuing training; training effectiveness evaluation; and program records. Two appendices describe Fundamentals training and Process operations. This handbook covers chemical operators in transportation of fuels and wastes, spent fuel receiving and storage, fuel disassembly, fuel reprocessing, and both liquid and solid low-level waste processing.

  15. FTCP-12-001, Use of "Expert Level" in Qualification Path Forward |

    Energy Savers [EERE]

    Department of Energy 1, Use of "Expert Level" in Qualification Path Forward FTCP-12-001, Use of "Expert Level" in Qualification Path Forward FTCP Issue Paper: FTCP-12-001 Approved by vote at May 15, 2012 meeting; to delete all reference to expert-level knowledge requirements in FAQS. PDF icon FTCP-12-001 Expert-Level More Documents & Publications FTCP Face to Face Meeting - September 13, 2011 FTCP Face to Face Meeting - May 15, 2012 FTCP Biennial Report - Calendar

  16. SLUDGE BATCH 5 ACCEPTANCE EVALUATION RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB5 QUALIFICATION SAMPLE PREPARED AT SRNL

    SciTech Connect (OSTI)

    Bannochie, C; Ned Bibler, N; David Diprete, D

    2008-07-28

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch Five (SB5) for processing in the Defense Waste Processing Facility (DWPF). Part of this SB5 material is currently in Tank 51 being washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40 to complete the formation of SB5. The sludge slurry in Tank 40 has already been qualified for DWPF and is currently being processed as SB4. The radionuclide concentrations were measured or estimated in the Tank 51 SB5 Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from the three liter sample of Tank 51 sludge slurry taken on March 21, 2008. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under direction of the Liquid Waste Organization it was then modified by five washes, six decants, an addition of Pu/Be from Canyon Tank 16.4, and an addition of NaNO2. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Ta Determining the radionuclide concentrations in this Tank 51 SB5 Qualification Sample is part of the work requested in Technical Task Request (TTR) No. HLW-DWPF-TTR-2008-0010. The work with this qualification sample is covered by a Task Technical and Quality Assurance Plan and an Analytical Study Plan. The radionuclides included in this report are needed for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria (TSR/WAC) Evaluation, and the DWPF Solid Waste Characterization Program (TTR Task 2). Radionuclides required to meet the Waste Acceptance Product Specifications (TTR Task 5) will be measured at a later date after the slurry from Tank 51 has been transferred to Tank 40. Then a sample of the as-processed SB5 will be taken and transferred to SRNL for measurement of these radionuclides. Data presented in this report represents the measured or estimated radionuclide concentrations obtained from several standard and special analytical methods performed by Analytical Development (AD) personnel within SRNL. The method for I-129 measurement in sludge is described in detail. Most of these methods were performed on solutions resulting from the dissolutions of the slurry samples. Concentrations are given for twenty-nine radionuclides along with total alpha and beta activity. Values for total gamma and total gamma plus beta activities are also calculated. Results also indicate that 98% of the Tc-99 and 92% of the I-129 that could have been in this sludge batch have been removed by chemical processing steps in the SRS Canyons or Tank Farm.

  17. SLUDGE BATCH 6 ACCEPTANCE EVALUATION: RADIONUCLIDE CONCENTRATIONS IN TANK 51 SB6 QUALIFICATION SAMPLE PREPARED AT SRNL

    SciTech Connect (OSTI)

    Bannochie, C.; Bibler, N.; Diprete, D.

    2010-05-21

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch Six (SB6) for processing in the Defense Waste Processing Facility (DWPF). The SB6 material is currently in Tank 51 being washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF and is currently being processed as SB5. The radionuclide concentrations were measured or estimated in the Tank 51 SB6 Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from the three liter sample of Tank 51 sludge slurry (HTF-51-09-110) taken on October 8, 2009. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under the direction of the Liquid Waste Organization it was then modified by eight washes, nine decants, an addition of Pu from Canyon Tank 16.3, and an addition of NaNO{sub 2}. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40. Determining the radionuclide concentrations in this Tank 51 SB6 Qualification Sample is part of the work requested in Technical Task Request (TTR) No. HLW-DWPF-TTR-2009-0014. The work with this qualification sample is covered by a Task Technical and Quality Assurance Plan and an Analytical Study Plan. The radionuclides included in this report are needed for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria (TSR/WAC) Evaluation, and the DWPF Solid Waste Characterization Program (TTR Task I.2). Radionuclides required to meet the Waste Acceptance Product Specifications (TTR Task II.2.) will be measured at a later date after the slurry from Tank 51 has been transferred to Tank 40. Then a sample of the as-processed SB6 will be taken and transferred to SRNL for measurement of these radionuclides. The results presented in this report are those necessary for DWPF to assess if the Tank 51 SB6 sample prepared at SRNL meets the requirements for the DWPF Radiological Program Evaluation, the DWPF Waste Acceptance Criteria evaluation, and the DWPF Solid Waste Characterization Program. The sample is the same as that on which the chemical composition was reported. Concentrations are given for thirty-four radionuclides along with total alpha and beta activity. Values for total gamma and total gamma plus beta activities are also calculated. Results also indicate that 99% of the Tc-99 and at least 90% of the I-129 that could have been in this sludge batch have been removed by chemical processing steps in the SRS Canyons or Tank Farm.

  18. Technical Qualification Program Self-Assessment Report- Los Alamos Field Office- FY14

    Broader source: Energy.gov [DOE]

    The FY14 self-assessment of the Technical Qualifications Program and Federal Technical Capabilities Program was conducted to provide Los Alamos Field Office (NA-LA) management specific information related to effectiveness of the documentation and implementation of these programs.

  19. Technical Qualification Program and FTCP Self-Assessment Report- Idaho Operations Office- 2015

    Broader source: Energy.gov [DOE]

    The Department of Energy Idaho Operations Office conducted a management self-assessment of the DOE-ID Technical Qualification Program and Federal Technical Capability Program from October 26 thru December 15, 2015. The management self-assessment was conducted by the Assistant Manager, Nuclear and Safety Performance (also the Federal Technical Capabilities Panel Agent) and a Facility Representative.

  20. Technical Qualification Program Self-Assessment Report- Carlsbad Field Office- 2012

    Broader source: Energy.gov [DOE]

    Management Assessment (MA-12-08) was conducted from October 1-31, 2012. The management assessment team evaluated the specific requirement implementation, processes, and performance areas of the CBFO Technical Qualification Program (TQP). The assessment covered the relevant parts of DOE 0 426.1, Federal Technical Capability.

  1. Sample Results from the Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-11

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  2. Sample Results From The Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-20

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  3. Technical Qualification Program Self-Assessment Report- Nevada Site Office- 2009

    Broader source: Energy.gov [DOE]

    An accreditation assessment of the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Technical Qualification Program (TQP) was conducted during the week of October 5-8, 2009. The accreditation of the TQP will enable NSO to demonstrate that they have an effective program in place to ensure the technical competency of the individuals performing these activities.

  4. Technical Qualification Program Self-Assessment Report- Office of Health, Safety and Security- 2014

    Broader source: Energy.gov [DOE]

    Beginning in April 2014, a self-assessment of the Technical Qualification Program (TQP) was performed in the Office of Health, Safety and Security (HSS). The assessment was led by the HSS TQP Manager who is assigned the responsibility for maintaining and implementing the programs.

  5. Personnel Selection, Training, Qualification, and Certification Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-21

    The order establishes selection, training, qualification, and certification requirements for contractor personnel who can impact the safety basis through their involvement in the operation, maintenance, and technical support of Hazard Category 1, 2, and 3 nuclear facilities. Admin Chg 1, dated 7-29-13, supersedes DOE O 426.2.

  6. Personnel Selection, Training, Qualification, and Certification Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-21

    The order establishes selection, training, qualification, and certification requirements for contractor personnel who can impact the safety basis through their involvement in the operation, maintenance, and technical support of Hazard Category 1, 2, and 3 nuclear facilities. Cancels DOE O 5480.20A. Admin Chg 1, dated 7-29-13.

  7. Model Request for Qualifications to Pre-Qualify Energy Service Companies

    Broader source: Energy.gov [DOE]

    This page contains model Request for Qualifications (RFQ) documents intended for use by a state program to pre-qualify Energy Service Companies (ESCOs) to be available for as-needed Energy Savings Performance Contracting (ESPC) services for state and local governments within the state.

  8. Qualification of Innovative High Level Waste Pipeline Unplugging Technologies

    SciTech Connect (OSTI)

    McDaniel, D.; Gokaltun, S.; Varona, J.; Awwad, A.; Roelant, D.; Srivastava, R.

    2008-07-01

    In the past, some of the pipelines have plugged during high level waste (HLW) transfers resulting in schedule delays and increased costs. Furthermore, pipeline plugging has been cited by the 'best and brightest' technical review as one of the major issues that can result in unplanned outages at the Waste Treatment Plant causing inconsistent operation. As the DOE moves toward a more active high level waste retrieval, the site engineers will be faced with increasing cross-site pipeline waste slurry transfers that will result in increased probability of a pipeline getting plugged. Hence, availability of a pipeline unplugging tool/technology is crucial to ensure smooth operation of the waste transfers and in ensuring tank farm cleanup milestones are met. FIU had earlier tested and evaluated various unplugging technologies through an industry call. Based on mockup testing, two technologies were identified that could withstand the rigors of operation in a radioactive environment and with the ability to handle sharp 90 elbows. We present results of the second phase of detailed testing and evaluation of pipeline unplugging technologies and the objective is to qualify these pipeline unplugging technologies for subsequent deployment at a DOE facility. The current phase of testing and qualification comprises of a heavily instrumented 3-inch diameter (full-scale) pipeline facilitating extensive data acquisition for design optimization and performance evaluation, as it applies to three types of plugs atypical of the DOE HLW waste. Furthermore, the data from testing at three different lengths of pipe in conjunction with the physics of the process will assist in modeling the unplugging phenomenon that will then be used to scale-up process parameters and system variables for longer and site typical pipe lengths, which can extend as much as up to 19,000 ft. Detailed information resulting from the testing will provide the DOE end-user with sufficient data and understanding of the technology, and its limitations to aid in the benefit-cost analysis for management decision whether to deploy the technology or to abandon the pipeline as has been done in the past. In conclusion: The ultimate objective of this study is to qualify NuVision's unplugging technology for use at Hanford. Experimental testing has been conducted using three pipeline lengths and three types of blockages. Erosion rates have been obtained and pressure data is being analyzed. An amplification of the inlet pressure has been observed along the pipeline and is the key to determining up to what pipe lengths the technology can be used without surpassing the site pressure limit. In addition, we will attempt to establish what the expected unplugging rates will be at the longer pipe lengths for each of the three blockages tested. Detailed information resulting from the testing will provide the DOE end-user with sufficient data and understanding of the technology, and its limitations so that management decisions can be made whether the technology has a reasonable chance to successfully unplug a pipeline, such as a cross site transfer line or process transfer pipeline at the Waste Treatment Plant. (authors)

  9. Preliminary Assessment of the Hanford Tank Waste Feed Acceptance and Product Qualification Programs

    SciTech Connect (OSTI)

    Herman, C. C.; Adamson, Duane J.; Herman, D. T.; Peeler, David K.; Poirier, Micheal R.; Reboul, S. H.; Stone, M. E.; Peterson, Reid A.; Chun, Jaehun; Fort, James A.; Vienna, John D.; Wells, Beric E.

    2013-04-01

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Savannah River National Laboratory (SRNL) and Pacific Northwest National Laboratory (PNNL) have been chartered to implement a science and technology program addressing Hanford Tank waste feed acceptance and product qualification. As a first step, the laboratories examined the technical risks and uncertainties associated with the planned waste feed acceptance and qualification testing for Hanford tank wastes. Science and technology gaps were identified for work associated with 1) feed criteria development with emphasis on identifying the feed properties and the process requirements, 2) the Tank Waste Treatment and Immobilization Plant (WTP) process qualification program, and 3) the WTP HLW glass product qualification program. Opportunities for streamlining the accetpance and qualification programs were also considered in the gap assessment. Technical approaches to address the science and technology gaps and/or implement the opportunities were identified. These approaches will be further refined and developed as strong integrated teams of researchers from national laboratories, contractors, industry, and academia are brought together to provide the best science and technology solutions. Pursuing the identified approaches will have immediate and long-term benefits to DOE in reducing risks and uncertainties associated with tank waste removal and preparation, transfers from the tank farm to the WTP, processing within the WTP Pretreatment Facility, and in producing qualified HLW glass products. Additionally, implementation of the identified opportunities provides the potential for long-term cost savings given the anticipated facility life of WTP.

  10. Final Report, Volume 4, The Development of Qualification Standards for Cast Super Duplex Stainless Steel (2507 Wrought Equivalent)

    SciTech Connect (OSTI)

    Hariharan, Vasudevan; Lundin, Carl, W.

    2005-09-30

    The objective of the program is to determine the suitability of ASTM A923 ���¢��������Standard Test methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic-Ferritic Stainless Steels���¢������� for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). Different tests were carried out on the materials procured from various steel foundries as stated in the ASTM A923. The foundries were designated as Foundry A, B, C and D. All the materials were foundry solution annealed. Materials from Foundry D were solution heat treated at The University of Tennessee also and then they were subjected to heat treatment schedule which was derived from the testing of wrought DSS to establish the A923 specification. This was possible because the material from the same heat was sufficient for conducting the full scope of heat treatment. This was done prior to carrying out various other tests. Charpy samples were machined. The Ferrite content was measured in all the Charpy samples using Feritscope�������® and ASTM E562 Manual Point Count Method. After the ferrite content was measured the samples were sent to AMC-Vulcan, Inc. in Alabama to conduct the Charpy impact test based on ASTM A923 Test Method B. This was followed by etch testing and corrosion analysis based on ASTM A923 Test Methods A and C respectively at University of Tennessee. Hardness testing using Rockwell B and C was also carried out on these samples. A correlation was derived between all the three test methods and the best method for evaluating the presence of intermetallic in the material was determined. The ferrite content was correlated with the toughness values. Microstructural analysis was carried out on the etch test samples using Scanning Electron Microscopy in order to determine if intermetallic phases were present. The fracture surfaces from Charpy test specimens were also observed under SEM in order to determine the presence of any cracks and whether it was a brittle or a ductile fracture. A correlation was carried out between the ferrite content, hardness values and the type of fracture. SEM was also carried out on the corrosion samples in order to see the difference on the surface after corrosion analysis has been carried out. Energy Dispersive Spectroscopy was carried out on the material acquired from Foundry D in order to determine the variation in the amount of the chemical composition of various elements when the material is subjected to different heat treatment schedules. X-Ray analysis was also carried out in order to verify whether it is possible to identify the different phases present in the material. Volume percentage of ferrite was also calculated from X-Ray diffraction and compared with the Feritscope�������® and ASTM E562 Manual Point Count data in order to determine whether X-Ray Diffraction is a suitable method for carrying out qualitative analysis of different phases present. From the various tests that were conducted, it was concluded that since ASTM A923 Methods adequately identifies the presence of intermetallic phases in A890 ���¢�������� 5A grade Cast Super Duplex Stainless Steel A890 ���¢�������� 5A can be directly included in ASTM A923. Correlation was determined between all the ASTM A923 Test Methods A, B and C and Test Method B were identified as the best method for detecting the presence of detrimental intermetallic phases. The micrographs from the A890-4A grade (now in ASTM A923) were identified as applicable for the A890-5A grade to compare and detect the presence of intermetallic phases. Using these micrographs one can verify whether an A890-5A sample has an unaffected, affected or a possibly

  11. Final Report, Volume 4, The Develpoment of Qualification Standards forCast Super Duplex Stainless Steel (2507 Wrought Equivalent)

    SciTech Connect (OSTI)

    Hariharan, Vasudevan; Lundin, Carl, D.

    2005-09-30

    The objective of the program is to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). Different tests were carried out on the materials procured from various steel foundries as stated in the ASTM A923. The foundries were designated as Foundry A, B, C and D. All the materials were foundry solution annealed. Materials from Foundry D were solution heat treated at The University of Tennessee also and then they were subjected to heat treatment schedule which was derived from the testing of wrought DSS to establish the A923 specification. This was possible because the material from the same heat was sufficient for conducting the full scope of heat treatment. This was done prior to carrying out various other tests. Charpy samples were machined. The Ferrite content was measured in all the Charpy samples using Feritscope{reg_sign} and ASTM E562 Manual Point Count Method. After the ferrite content was measured the samples were sent to AMC-Vulcan, Inc. in Alabama to conduct the Charpy impact test based on ASTM A923 Test Method B. This was followed by etch testing and corrosion analysis based on ASTM A923 Test Methods A and C respectively at University of Tennessee. Hardness testing using Rockwell B and C was also carried out on these samples. A correlation was derived between all the three test methods and the best method for evaluating the presence of intermetallic in the material was determined. The ferrite content was correlated with the toughness values. Microstructural analysis was carried out on the etch test samples using Scanning Electron Microscopy in order to determine if intermetallic phases were present. The fracture surfaces from Charpy test specimens were also observed under SEM in order to determine the presence of any cracks and whether it was a brittle or a ductile fracture. A correlation was carried out between the ferrite content, hardness values and the type of fracture. SEM was also carried out on the corrosion samples in order to see the difference on the surface after corrosion analysis has been carried out. Energy Dispersive Spectroscopy was carried out on the material acquired from Foundry D in order to determine the variation in the amount of the chemical composition of various elements when the material is subjected to different heat treatment schedules. X-Ray analysis was also carried out in order to verify whether it is possible to identify the different phases present in the material. Volume percentage of ferrite was also calculated from X-Ray diffraction and compared with the Feritscope{reg_sign} and ASTM E562 Manual Point Count data in order to determine whether X-Ray Diffraction is a suitable method for carrying out qualitative analysis of different phases present. From the various tests that were conducted, it was concluded that since ASTM A923 Methods adequately identifies the presence of intermetallic phases in A890-5A grade Cast Super Duplex Stainless Steel A890-5A can be directly included in ASTM A923. Correlation was determined between all the ASTM A923 Test Methods A, B and C and Test Method B were identified as the best method for detecting the presence of detrimental intermetallic phases. The micrographs from the A890-4A grade (now in ASTM A923) were identified as applicable for the A890-5A grade to compare and detect the presence of intermetallic phases. Using these micrographs one can verify whether an A890-5A sample has an unaffected, affected or a possibly affected structure. It was also observed that when compared to the A890-4A grade A890-5A grade is more sensitive to heat treatment. From the ferrite and hardness measurement a correlation was developed between toughness, volume percentage ferrite and hardness of the material. From SEM and EDS the type of intermetallic phase present and its chemical composition was determined. The best method for calculating volume percentage ferrite was determined between the Ferits

  12. YFTB_final_rep_FINAL2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Report: High-Resolution Seismicity Study of the Yakima Fold and Thrust Belt Region, Washington Battelle Contract No. 209070 Clifford H. Thurber Department of Geoscience University of Wisconsin-Madison 1215 W. Dayton St. Madison, WI 53706 January 31, 2014 1 Final Report: High-Resolution Seismicity Study of the Yakima Fold and Thrust Belt Region, Washington Battelle Contract No. 209070 Clifford Thurber January 31, 2014 This report presents the final results from this contract to analyze the

  13. Development Of A Macro-Batch Qualification Strategy For The Hanford Tank Waste Treatment And Immobilization Plant

    SciTech Connect (OSTI)

    Herman, Connie C.

    2013-09-30

    The Savannah River National Laboratory (SRNL) has evaluated the existing waste feed qualification strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) based on experience from the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) waste qualification program. The current waste qualification programs for each of the sites are discussed in the report to provide a baseline for comparison. Recommendations on strategies are then provided that could be implemented at Hanford based on the successful Macrobatch qualification strategy utilized at SRS to reduce the risk of processing upsets or the production of a staged waste campaign that does not meet the processing requirements of the WTP. Considerations included the baseline WTP process, as well as options involving Direct High Level Waste (HLW) and Low Activity Waste (LAW) processing, and the potential use of a Tank Waste Characterization and Staging Facility (TWCSF). The main objectives of the Hanford waste feed qualification program are to demonstrate compliance with the Waste Acceptance Criteria (WAC), determine waste processability, and demonstrate unit operations at a laboratory scale. Risks to acceptability and successful implementation of this program, as compared to the DWPF Macro-Batch qualification strategy, include: Limitations of mixing/blending capability of the Hanford Tank Farm; The complexity of unit operations (i.e., multiple chemical and mechanical separations processes) involved in the WTP pretreatment qualification process; The need to account for effects of blending of LAW and HLW streams, as well as a recycle stream, within the PT unit operations; and The reliance on only a single set of unit operations demonstrations with the radioactive qualification sample. This later limitation is further complicated because of the 180-day completion requirement for all of the necessary waste feed qualification steps. The primary recommendations/changes include the following: Collection and characterization of samples for relevant process analytes from the tanks to be blended during the staging process; Initiation of qualification activities earlier in the staging process to optimize the campaign composition through evaluation from both a processing and glass composition perspective; Definition of the parameters that are important for processing in the WTP facilities (unit operations) across the anticipated range of wastes and as they relate to qualification-scale equipment; Performance of limited testing with simulants ahead of the waste feed qualification sample demonstration as needed to determine the available processing window for that campaign; and Demonstration of sufficient mixing in the staging tank to show that the waste qualification sample chemical and physical properties are representative of the transfers to be made to WTP. Potential flowcharts for derivatives of the Hanford waste feed qualification process are also provided in this report. While these recommendations are an extension of the existing WTP waste qualification program, they are more in line with the processes currently performed for SRS. The implementation of these processes at SRS has been shown to offer flexibility for processing, having identified potential processing issues ahead of the qualification or facility processing, and having provided opportunity to optimize waste loading and throughput in the DWPF.

  14. May 5, 2016, FTCP Face to Face Meeting Presentation - S&S Functional Area Qualification Standard

    Office of Environmental Management (EM)

    S&S Functional Area Qualification Standards S&S FAQS * The DOE NTC is currently working on updating the Functional Area Qualification Standards (FAQS) for Safeguards and Security (S&S) Federal personnel. * A steering committee consisting of several S&S Federal members selected from across the complex was formed. * The three Chief Security Officers were briefed, and they all agreed with the steering committee's recommendation to begin developing a Job Task Analysis (JTA) for each

  15. SLUDGE BATCH 4 FOLLOW-UP QUALIFICATION STUDIES TO EVALUATE HYDROGEN GENERATION

    SciTech Connect (OSTI)

    Pareizs, J; David Koopman, D; Dan Lambert, D; Cj Bannochie, C

    2007-08-23

    Follow-up testing was conducted to better understand the excessive hydrogen generation seen in the initial Sludge Batch 4 (SB4) qualification Sludge Receipt and Adjustment Tank/Slurry Mix Evaporator (SRAT/SME) simulation in the Savannah River National Laboratory (SRNL) Shielded Cells. This effort included both radioactive and simulant work. The initial SB4 qualification test produced 0.59 lbs/hr hydrogen in the SRAT, which was just below the DWPF SRAT limit of 0.65 lbs/hr, and the test produced over 0.5 lbs/hr hydrogen in the SME cycle on two separate occasions, which were over the DWPF SME limit of 0.223 lbs/hr.

  16. Reliability Testing Beyond Qualification as a Key Component in Photovoltaic's Progress Toward Grid Parity: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J. H.; Kurtz, S.

    2011-02-01

    This paper discusses why it is necessary for new lower cost PV modules to be tested using a reliability test sequence that goes beyond the Qualification test sequence now utilized for modules. Today most PV modules are warranted for 25 years, but the Qualification Test Sequence does not test for 25-year life. There is no accepted test protocol to validate a 25-year lifetime. This paper recommends the use of long term accelerated testing to compare now designs directly with older designs that have achieved long lifetimes in outdoor exposure. If the new designs do as well or better than the older ones, then it is likely that they will survive an equivalent length of time in the field.

  17. B-Plant D-Filter detector system qualification test report

    SciTech Connect (OSTI)

    Ritter, G.A., Westinghouse Hanford

    1996-08-23

    This report summarizes the results of qualification testing of the B Plant D-Filter Detector System. The purpose of this test was to verify that the system meets the performance requirements and that the unit is ready for field deployment. Testing was performed in the test pit in the 306E Facility. This detector system will be deployed in the B Plant D-Filter to measure beta/gamma dose rates from the filter bank.

  18. Technical Qualification Program Self-Assessment Report- Los Alamos Site Office- 2013

    Broader source: Energy.gov [DOE]

    This self-assessment of the Technical Qualifications and Federal Technical Capability program was conducted to provide Los Alamos Field Office (LAFO) management specific information related to effectiveness of the documentation and implementation of these programs. The conclusion of this assessment is that the areas assessed herein are compliant with the requirements, and that implementation of the requirements has been effective at this Field Office.

  19. Technical Qualification Program Self-Assessment Report- Office of Science- 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Under DOE 426.1, Change 1. Headquarters and Field elements must conduct a self-assessment of Technical Qualification Program (TQP) and Federal Technical Capability Program (FTCP) implementation within their organization at least every four years. These assessments must be conducted in accordance with the requirements of DOE Order (0) 226.1 B, Implementation of Department of Energy Oversight Policy, dated 4-25-11, and the current objectives and criteria approved by the FTCP Chair.

  20. Results of a literature review on the environmental qualification of low-voltage electric cables

    SciTech Connect (OSTI)

    Lofaro, R.; Lee, B.; Villaran, M.; Gleason, J.; Aggarwal, S.

    1995-12-31

    In the design of nuclear power plants in the US, safety-related electric equipment must be qualified to provide reasonable assurance it can withstand the effects of a design basis event (DBE) and still be able to perform its prescribed safety function, even if the accident were to occur at the end of its service life. The requirement for environmental qualification (EQ) originates from the General Design Criteria in the Code of Federal Regulations, Title 10, Part 50 (10 CFR 50). The acceptable method of performing the qualification of this equipment has evolved over the years, starting with the NRC Division of Operating Reactors (DOR) Guidelines, which were issued in Bulletin 79--01B, and NUREG-0588 requirements and ending with the current EQ Rule, 10 CFR 50.49. While the EQ methods described in these documents have the same overall objective, there are some notable differences for which a clear technical basis has not been established. One difference is the preaging requirement for equipment prior to LOCA testing. In addition, specific issues related to current EQ practices have been raised by the US NRC which need to be addressed. These issues, which are discussed in detail later in this paper, are related to the sources of conservatism and uncertainty in IEEE Standard 323--1974, which is the qualification standard currently endorsed by the NRC. To address these issues, the NRC Office of Nuclear Reactor Regulation (NRR) implemented a Task Action Plan (TAP), and the Office of Nuclear Reactor Research (RES) initiated a complementary research program. The current focus of this program is on the qualification of low-voltage instrumentation and control cables. These cables were selected since they are not typically replaced on a routine basis, and their degradation could impact plant safety.

  1. General Technical Base Qualification Standard (DOE Defense Nuclear Facilities Technical Personnel)

    Energy Savers [EERE]

    DOE-STD-1146-2007 December 2007 DOE STANDARD GENERAL TECHNICAL BASE QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1146-2007 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1146-2007 iv INTENTIONALLY BLANK

  2. SRS SLUDGE BATCH QUALIFICATION AND PROCESSING; HISTORICAL PERSPECTIVE AND LESSONS LEARNED

    SciTech Connect (OSTI)

    Cercy, M.; Peeler, D.; Stone, M.

    2013-09-25

    This report provides a historical overview and lessons learned associated with the SRS sludge batch (SB) qualification and processing programs. The report covers the framework of the requirements for waste form acceptance, the DWPF Glass Product Control Program (GPCP), waste feed acceptance, examples of how the program complies with the specifications, an overview of the Startup Program, and a summary of continuous improvements and lessons learned. The report includes a bibliography of previous reports and briefings on the topic.

  3. Guide to good practices for training and qualification of instructors. DOE handbook

    SciTech Connect (OSTI)

    1996-03-01

    Purpose of this guide is to provide contractor training organizations with information that can be used to verify the adquacy and/or modify existing instructor training programs, or to develop new training programs. It contains good practices for the training and qualification of technical instructors and instructional technologists at DOE reactor and non-reactor nuclear facilities. It addresses the content of initial and continuing instructor training programs, evaluation of instructor training programs, and maintenance of instructor training records.

  4. Construction, Qualification, and Low Rate Production Start-up of a DC Bus

    Broader source: Energy.gov (indexed) [DOE]

    Capacitor High Volume Manufacturing Facility with Capacity to Support 100,000 Electric Drive Vehicles | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt029_ape_sawyer_2012_p.pdf More Documents & Publications Construction, Qualification, and Low Rate Production Start-up of a DC Bus Capacitor High Volume Manufacturing Facility with Capacity to Support 100,000 Electric Drive Vehicles

  5. Construction, Qualification, and Low Rate Production Start-up of a DC Bus

    Broader source: Energy.gov (indexed) [DOE]

    Capacitor High Volume Manufacturing Facility with Capacity to Support 100,000 Electric Drive Vehicles | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt029_ape_sawyer_2011_p.pdf More Documents & Publications Construction, Qualification, and Low Rate Production Start-up of a DC Bus Capacitor High Volume Manufacturing Facility with Capacity to Support 100,000 Electric Drive Vehicles

  6. Qualification of data obtained during a severe accident. Illustrative examples from TMI-2 evaluations

    SciTech Connect (OSTI)

    Rempe, Joy L.; Knudson, Darrell L.

    2015-02-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) Pressurized Water Reactor (PWR) and the Daiichi Units 1, 2, and 3 Boiling Water Reactors (BWRs) provide unique opportunities to evaluate instrumentation exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during the TMI-2 accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. Post-TMI-2 instrumentation evaluation programs focused on data required by TMI-2 operators to assess the condition of the reactor and containment and the effect of mitigating actions taken by these operators. Prior efforts also focused on sensors providing data required for subsequent forensic evaluations and accident simulations. This paper provides additional details related to the formal process used to develop a qualified TMI-2 data base and presents data qualification details for three parameters: reactor coolant system (RCS) pressure; containment building temperature; and containment pressure. These selected examples illustrate the types of activities completed in the TMI-2 data qualification process and the importance of such a qualification effort. These details are described to facilitate implementation of a similar process using data and examinations at the Daiichi Units 1, 2, and 3 reactors so that BWR-specific benefits can be obtained.

  7. DOE handbook: Guide to good practices for training and qualification of maintenance personnel

    SciTech Connect (OSTI)

    1996-03-01

    The purpose of this Handbook is to provide contractor training organizations with information that can be used to verify the adequacy of and/or modify existing maintenance training programs, or to develop new training programs. This guide, used in conjunction with facility-specific job analyses, provides a framework for training and qualification programs for maintenance personnel at DOE reactor and nonreactor nuclear facilities. Recommendations for qualification are made in four areas: education, experience, physical attributes, and training. The functional positions of maintenance mechanic, electrician, and instrumentation and control technician are covered by this guide. Sufficient common knowledge and skills were found to include the three disciplines in one guide to good practices. Contents include: qualifications; on-the-job training; trainee evaluation; continuing training; training effectiveness evaluation; and program records. Appendices are included which relate to: administrative training; industrial safety training; fundamentals training; tools and equipment training; facility systems and component knowledge training; facility systems and component skills training; and specialized skills training.

  8. Final EIS Volume 3

    Energy Savers [EERE]

    Volume 3 Final Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center DOE/EIS-0226 January 2010 The West Valley Site Comment Response Document Final Environmental Impact Statement for AVAILABILITY OF THE FINAL EIS FOR DECOMMISSIONING AND/OR LONG- TERM STEWARDSHIP AT THE WEST VALLEY DEMONSTRATION PROJECT AND WESTERN NEW YORK NUCLEAR SERVICE CENTER For further information on this Final

  9. Microsoft Word - HV-BPL Final Report to NETL.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEAT TREATMENT PROCEDURE QUALIFICATION Final Technical Report The Pennsylvania State University University Park, PA Work Performed Under Contract No. DE-FC07-99ID13841 Work Prepared for U.S. Department of Energy ii This material is based upon work supported by the U.S. Department of Energy under Award No. DE-FC07-99ID13841 Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Department of

  10. SRNL PHASE 1 ASSESSMENT OF THE WAC/DQO AND UNIT OPERATIONS FOR THE WTP WASTE QUALIFICATION PROGRAM

    SciTech Connect (OSTI)

    Peeler, D.; Adamson, D.; Bannochie, C.; Cozzi, A.; Eibling, R.; Hay, M.; Hansen, E.; Herman, D.; Martino, C.; Nash, C.; Pennebaker, F.; Poirier, M.; Reboul, S.; Stone, M.; Taylor-Pashow, K.; White, T.; Wilmarth, B.

    2012-05-16

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is currently transitioning its emphasis from a design and construction phase toward start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements related to actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program to be implemented to support the WTP. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS), based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested the utilization of subject matter experts from SRNL to support a technology exchange to perform a review of the WTP waste qualification program, discuss the general qualification approach at SRS, and to identify critical lessons learned through the support of DWPF's sludge batch qualification efforts. As part of Phase 1, SRNL subject matter experts in critical technical and/or process areas reviewed specific WTP waste qualification information. The Phase 1 review was a collaborative, interactive, and iterative process between the two organizations. WTP provided specific analytical procedures, descriptions of equipment, and general documentation as baseline review material. SRNL subject matter experts reviewed the information and, as appropriate, requested follow-up information or clarification to specific areas of interest. This process resulted in multiple teleconferences with key technical contacts from both organizations resolving technical issues that lead to the results presented in this report. This report provides the results of SRNL's Phase 1 review of the WAC-DQO waste acceptance criteria and processability parameters, and the specific unit operations which are required to support WTP waste qualification efforts. The review resulted in SRNL providing concurrence, alternative methods, or gap identification for the proposed WTP analytical methods or approaches. For the unit operations, the SRNL subject matter experts reviewed WTP concepts compared to what is used at SRS and provided thoughts on the outlined tasks with respect to waste qualification. Also documented in this report are recommendations and an outline on what would be required for the next phase to further mature the WTP waste qualification program.

  11. National Science Bowl Finals

    ScienceCinema (OSTI)

    None

    2010-09-01

    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ... ,,"RSEs for Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ...

  13. Final Project Report

    SciTech Connect (OSTI)

    Wang, Qiang; Dandy, David S.

    2015-05-15

    This is the final technical report of the DOE project DE-FG02-07ER46448 awarded to Colorado State University.

  14. DOE Final Report

    SciTech Connect (OSTI)

    Hinzman, Larry D.; Long, James; Newby, Greg B.

    2014-01-08

    This final report contains a summary of work accomplished in the establishment of a Climate Data Center at the International Arctic Research Center, University of Alaska Fairbanks.

  15. Standard for the qualification of high capacity fossil fuel fired plant operators

    SciTech Connect (OSTI)

    Axtman, W.

    1996-12-31

    The American Society of Mechanical Engineers, at the request of the U.S. Environmental Protection Agency (EPA) and, in recognition of the needs and benefits associated with standard qualifications of operators of high capacity fossil fuel fired plants, established the Qualifications of High Capacity Fossil Fuel Fired Operator (QFO) Committee in 1994. The purpose of the QFO Committee is to develop and maintain such a standard for operators. This standard includes qualifications, duties, responsibilities and the certification requirements for operators as appropriate to The Clean Air Act as amended in 1990 for fossil fuel fired plants with inputs equal to or greater than 10,000 Btu/hr. This Standard does not cover the certification or validation of fossil plant operating procedures, operating practices, facility performance, nor compliance with any particular permit requirement. This standard recognizes the titles or positions to which any particular fossil plant operator may apply, will vary within a facility. Therefore, this standard does not attempt to identify the individual who is required to obtain certification in any class designation. The fossil plant owner is urged to contact the local jurisdiction in which the fossil plant is located in this regard. This standard does not in itself require certification but rather it serves as a means for complying with federal, state, and local regulations which require operators of fossil fuel fired boilers with inputs equal to or greater than 10,000,000 But/hr to be certified. Safety codes and standards are intended to enhance public health and safety. Revisions to this Standard result from committee considerations of factors such as technological advances, new data, and changing environmental and industry needs. Revisions do not imply that previous editions of this standard were inadequate.

  16. Tank 30 and 37 Supernatant Sample Cross-Check and Evaporator Feed Qualification Analysis-2012

    SciTech Connect (OSTI)

    Oji, L. N.

    2013-03-07

    This report summarizes the analytical data reported by the F/H and Savannah River National Laboratories for the 2012 cross-check analysis for high level waste supernatant liquid samples from SRS Tanks 30 and 37. The intent of this Tank 30 and 37 sample analyses was to perform cross-checks against routine F/H Laboratory analyses (corrosion and evaporator feed qualification programs) using samples collected at the same time from both tanks as well as split samples from the tanks.

  17. Instrument Qualification of Custom Fabricated Water Activity Meter for Hot Cell Use

    SciTech Connect (OSTI)

    McCoskey, Jacob K.

    2014-01-22

    This report describes a custom fabricated water activity meter and the results of the qualification of this meter as described in the laboratory test plan LAB-PLN-11-00012, Testing and Validation of an Enhanced Acquisition and Control System. It was calibrated against several NaOH solutions of varying concentrations to quantify the accuracy and precision of the instrument at 20 °C and 60 °C. Also, a schematic and parts list of the equipment used to make the water activity meter will be presented in this report.

  18. Quality Assurance Program Plan for AGR Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    W. Ken Sowder

    2004-02-01

    Quality Assurance Plan (QPP) is to document the Idaho National Engineering and Environmental Laboratory (INEEL) Management and Operating (M&O) Contractor’s quality assurance program for AGR Fuel Development and Qualification activities, which is under the control of the INEEL. The QPP is an integral part of the Gen IV Program Execution Plan (PEP) and establishes the set of management controls for those systems, structures and components (SSCs) and related quality affecting activities, necessary to provide adequate confidence that items will perform satisfactorily in service.

  19. Results Of Initial Analyses Of The Salt (Macro) Batch 9 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T.

    2015-10-08

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 9 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 9 composite sample indicates that the material does not display any unusual characteristics. Further results on the chemistry and other tests will be issued in the future.

  20. Results of initial analyses of the salt (macro) batch 9 tank 21H qualification samples

    SciTech Connect (OSTI)

    Peters, T. B.

    2015-10-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 9 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 9 composite sample indicates that the material does not display any unusual characteristics or observations, such as floating solids, the presence of large amount of solids, or unusual colors. Further results on the chemistry and other tests will be issued in the future.

  1. GLASS FABRICATION AND ANALYSIS LITERATURE REVIEW AND METHOD SELECTION FOR WTP WASTE FEED QUALIFICATION

    SciTech Connect (OSTI)

    Peeler, D.

    2013-06-27

    Scope of the Report The objective of this literature review is to identify and review documents to address scaling, design, operations, and experimental setup, including configuration, data collection, and remote handling that would be used during waste feed qualification in support of the glass fabrication unit operation. Items addressed include: ď‚· LAW and HLW glass formulation algorithms; ď‚· Mixing and sampling; ď‚· Rheological measurements; ď‚· Heat of hydration; ď‚· Glass fabrication techniques; ď‚· Glass inspection; ď‚· Composition analysis; ď‚· Use of cooling curves; ď‚· Hydrogen generation rate measurement.

  2. DOE-STD-1135-99 Guidance for Nuclear Criticality Safety Engineer Training and Qualification

    Energy Savers [EERE]

    5-99 September 1999 DOE STANDARD GUIDANCE FOR NUCLEAR CRITICALITY SAFETY ENGINEER TRAINING AND QUALIFICATION U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the

  3. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION SAMPLES

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2012-03-26

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 5 for the Integrated Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 5 strategy are identified. Results of the analyses of the Tank 21H samples from this report in conjunction with the findings of the previous report, indicates that the material does not display any unusual characteristics.

  4. Qualification Requirements of Guided Ultrasonic Waves for Inspection of Piping in Light Water Reactors

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Doctor, Steven R.; Bond, Leonard J.

    2013-08-01

    Guided ultrasonic waves (GUW) are being increasingly used for both NDT and monitoring of piping. GUW offers advantages over many conventional NDE technologies due to the ability to inspect large volumes of piping components without significant removal of thermal insulation or protective layers. In addition, regions rendered inaccessible to more conventional NDE technologies may be more accessible using GUW techniques. For these reasons, utilities are increasingly considering the use of GUWs for performing the inspection of piping components in nuclear power plants. GUW is a rapidly evolving technology and its usage for inspection of nuclear power plant components requires refinement and qualification to ensure it is able to achieve consistent and acceptable levels of performance. This paper will discuss potential requirements for qualification of GUW techniques for the inspection of piping components in light water reactors (LWRs). The Nuclear Regulatory Commission has adopted ASME Boiler and Pressure Vessel Code requirements in Sections V, III, and XI for nondestructive examination methods, fabrication inspections, and pre-service and in-service inspections. A Section V working group has been formed to place the methodology of GUW into the ASME Boiler and Pressure Vessel Code but no requirements for technique, equipment, or personnel exist in the Code at this time.

  5. Examination of a Junction-Box Adhesion Test for Use in Photovoltaic Module Qualification (Presentation)

    SciTech Connect (OSTI)

    Miller, D. C.; Wohlgemuth, J. H.

    2012-08-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of its adhesion system. The details of the proposed test will be described, in addition to the preliminary results obtained using representative materials and components. The described discovery experiments examine moisture-cured silicone, foam tape, and hot-melt adhesives used in conjunction with PET or glass module 'substrates.' To be able to interpret the results, a set of material-level characterizations was performed, including thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. PV j-boxes were adhered to a substrate, loaded with a prescribed weight, and then placed inside an environmental chamber (at 85C, 85% relative humidity). Some systems did not remain attached through the discovery experiments. Observed failure modes include delamination (at the j-box/adhesive or adhesive/substrate interface) and phase change/creep. The results are discussed in the context of the application requirements, in addition to the plan for the formal experiment supporting the proposed modification to the qualification test.

  6. Examination of a Junction-Box Adhesion Test for Use in Photovoltaic Module Qualification: Preprint

    SciTech Connect (OSTI)

    Miller, D. C.; Wohlgemuth, J. H.

    2012-08-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of its adhesion system. The details of the proposed test will be described, in addition to the preliminary results obtained using representative materials and components. The described discovery experiments examine moisture-cured silicone, foam tape, and hot-melt adhesives used in conjunction with PET or glass module 'substrates.' To be able to interpret the results, a set of material-level characterizations was performed, including thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. PV j-boxes were adhered to a substrate, loaded with a prescribed weight, and then placed inside an environmental chamber (at 85C, 85% relative humidity). Some systems did not remain attached through the discovery experiments. Observed failure modes include delamination (at the j-box/adhesive or adhesive/substrate interface) and phase change/creep. The results are discussed in the context of the application requirements, in addition to the plan for the formal experiment supporting the proposed modification to the qualification test.

  7. Characterization of the SRNL-Washed tank 51 sludge batch 9 qualification sample

    SciTech Connect (OSTI)

    Pareizs, J. M.

    2016-01-01

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) sent SRNL a 3-L sample of Tank 51H slurry to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (after combining with Tank 40H sludge). SRNL has washed the Tank 51H sample per the Tank Farm washing strategy as of October 20, 2015. A part of the qualification process is extensive radionuclide and chemical characterization of the SRNL-washed Tank 51H slurry. This report documents the chemical characterization of the washed slurry; radiological characterization is in progress and will be documented in a separate report. The analytical results of this characterization are comparable to the Tank Farm projections. Therefore, it is recommended that SRNL use this washed slurry for the ongoing SB9 qualification activities.

  8. Guide to good practices for the selection, training, and qualification of shift technical advisors

    SciTech Connect (OSTI)

    1993-02-01

    The DOE Guide to Good Practices For the Selection, Training, and Qualification of Shift Technical Advisors can be used by any DOE nuclear facility that has implemented the shift technical advisor (STA) position. DOE Order 5480.20A, Personnel Selection, Qualification and Training Requirements for DOE Nuclear Facilities, states that only Category A reactors must have a shift technical advisor. However, many DOE nuclear facilities have implemented the shift technical advisor position to provide independent on-shift technical advice and counsel to the shift operating personnel to help determine cause and mitigation of facility accidents. Those DOE nuclear facilities that have implemented or are going to implement the shift technical advisor position will find this guide useful. This guide addresses areas that may be covered by other training programs. In these cases, it is unnecessary (and undesirable) to duplicate these areas in the STA training program as long as the specific skills and knowledge essential for STAs are addressed. The guide is based on the premise that the trainee has not completed any facility-specific training other than general employee training.

  9. Join Us: 2013 National Clean Energy Business Plan Competition Finals |

    Energy Savers [EERE]

    P. Holdren and Nancy Sutley About Us John P. Holdren and Nancy Sutley Most Recent Green Button Giving Millions of Americans Better Handle on Energy Costs March 22

    Johnson Controls ESCO Qualification Sheet Johnson Controls ESCO Qualification Sheet Document outlines the energy service company (ESCO) qualifications for Johnson Controls in relation to the U.S. Department of Energy's (DOEs) energy savings performance contracts (ESPC). PDF icon johnsoncontrols_escoqual.pdf

    Energy.gov at the

  10. Final EIS Available

    Broader source: Energy.gov [DOE]

    DOE has published a Final Environmental Impact Statement (EIS) that considers all timely public comments on the Draft EIS and identifies DOE’s preferred project alternative(s). The U.S....

  11. Aurora final report

    SciTech Connect (OSTI)

    Robert, Dross; Amedeo, Conti

    2013-12-06

    Final Technical report detailing the work done by Nuvera and its partners to fulfill the goals of the program "Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks" (a.k.a. AURORA)

  12. CFC Charity Fair Finale

    Broader source: Energy.gov [DOE]

    Finish out the 2012 CFC with the Charity Fair Finale! Buy cookies, participate in a putt-putt golf game, eat some popcorn, and meet and talk with CFC charity representatives.

  13. CX-100 Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SAND2008-4648 Unlimited Release Printed July 2008 Blade System Design Studies Phase II: Final Project Report Derek S. Berry TPI Composites, Inc. 373 Market Street Warren, RI 02885...

  14. Blackout Final Implementation Report

    Energy Savers [EERE]

    Final Report on the Implementation of the Task Force Recommendations U.S.-Canada Power System Outage Task Force Natural Resources Canada U.S. Department of Energy September 2006 Final Report on the Implementation of the Task Force Recommendations U.S.-Canada Power System Outage Task Force September 2006 Natural Resources Canada U.S. Department of Energy Acknowledgments This document was prepared by staff of Natural Resources Canada and the U.S. Department of Energy. The principal contributors

  15. Microsoft Word - TQP 1 31 Final w signatures.docx

    Office of Environmental Management (EM)

    Los Alamos Site Office Technical Qualification Program Self-Assessment Report U.S. Department of Energy National Nuclear Security Administration January 10-13, 2011 This page ...

  16. Microsoft Word - Merit Review Guide FINAL JULY 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    qualifications when selecting reviewers: 1. The individual's scientific or technical education and experience (at least 5 years of experience in a relevant field); 2. The...

  17. Data Qualification Report: Calculated Porosity and Porosity-Derived Values for Lithostratigraphic Units for use on the Yucca Mountain Project

    SciTech Connect (OSTI)

    P. Sanchez

    2001-05-30

    The qualification is being completed in accordance with the Data Qualification Plan DQP-NBS-GS-000006, Rev. 00 (CRWMS M&O 2001). The purpose of this data qualification activity is to evaluate for qualification the unqualified developed input and porosity output included in Data Tracking Number (DTN) M09910POROCALC.000. The main output of the analyses documented in DTN M09910POROCALC.000 is the calculated total porosity and effective porosity for 40 Yucca Mountain Project boreholes. The porosity data are used as input to Analysis Model Report (AMR) 10040, ''Rock Properties Model'' (MDL-NBS-GS-000004, Rev. 00), Interim Change Notice [ICN] 02 (CRWMS M&O 2000b). The output from the rock properties model is used as input to numerical physical-process modeling within the context of a relationship developed in the AMR between hydraulic conductivity, bound water and zeolitic zones for use in the unsaturated zone model. In accordance with procedure AP-3.15Q, the porosity output is not used in the direct calculation of Principal Factors for post-closure safety or disruptive events. The original source for DTN M09910POROCALC.000 is a Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) report, ''Combined Porosity from Geophysical Logs'' (CRWMS M&O 1999a and hereafter referred to as Rael 1999). That report recalculated porosity results for both the historical boreholes covered in Nelson (1996), and the modern boreholes reported in CRWMS M&O (1996a,b). The porosity computations in Rael (1999) are based on density-porosity mathematical relationships requiring various input parameters, including bulk density, matrix density and air and/or fluid density and volumetric water content. The main output is computed total porosity and effective porosity reported on a foot-by-foot basis for each borehole, although volumetric water content is derived from neutron data as an interim output. This qualification report uses technical assessment and corroboration to evaluate the original subject DTN. Rael (1999) provides many technical details of the technical assessment and corroboration methods and partially satisfies the intent of the qualification plan for this analysis. Rael presents a modified method based on Nelson (1996) to recompute porosity and porosity-derived values and uses some of the same inputs. Rael's (1999) intended purpose was to document porosity output relatively free of biases introduced by differing computational methods or parameter selections used for different boreholes. The qualification report necessarily evaluates the soundness of the pre-Process Validation and Re-engineering (PVAR) analyses and methodology, as reported in Rael (1999).

  18. Qualification of the Nippon Instrumentation for use in Measuring Mercury at the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Edwards, T.; Mahannah, R.

    2011-07-05

    The Nippon Mercury/RA-3000 system installed in 221-S M-14 has been qualified for use. The qualification was a side-by-side comparison of the Nippon Mercury/RA-3000 system with the currently used Bacharach Mercury Analyzer. The side-by-side testing included standards for instrument calibration verifications, spiked samples and unspiked samples. The standards were traceable back to the National Institute of Standards and Technology (NIST). The side-by-side work included the analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples. With the qualification of the Nippon Mercury/RA-3000 system in M-14, the DWPF lab will be able to perform a head to head comparison of a second Nippon Mercury/RA-3000 system once the system is installed. The Defense Waste Processing Facility (DWPF) analyzes receipt and product samples from the Sludge Receipt and Adjustment Tank (SRAT) to determine the mercury (Hg) concentration in the sludge slurry. The SRAT receipt is typically sampled and analyzed for the first ten SRAT batches of a new sludge batch to obtain an average Hg concentration. This average Hg concentration is then used to determine the amount of steam stripping required during the concentration/reflux step of the SRAT cycle to achieve a less than 0.6 wt% Hg in the SRAT product solids. After processing is complete, the SRAT product is sampled and analyzed for mercury to ensure that the mercury concentration does not exceed the 0.45 wt% limit in the Slurry Mix Evaporator (SME). The DWPF Laboratory utilizes Bacharach Analyzers to support these Hg analyses at this facility. These analyzers are more than 10 years old, and they are no longer supported by the manufacturer. Due to these difficulties, the Bacharach Analyzers are to be replaced by new Nippon Mercury/RA-3000 systems. DWPF issued a Technical Task Request (TTR) for the Savannah River National Laboratory (SRNL) to assist in the qualification of the new systems. SRNL prepared a task technical and quality assurance (TT&QA) plan that outlined the activities that are necessary and sufficient to meet the objectives of the TTR. In addition, TT&QA plan also included a test plan that provided guidance to the DWPF Lab in collecting the data needed to qualify the new Nippon Mercury/RA-3000 systems.

  19. Final 2011 Supplement Analysis of the 2005 Final SWEIS | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Below are links to the final comments response and final determination documents: Final SA Of the 2005 Site-Wide EIS For Continued Operation of LLNL Comments Response Document, ...

  20. Results Of Initial Analyses Of The Macrobatch 7 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L. II

    2013-07-08

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Salt (Macro) Batch 7 for the Interim Salt Disposition Program (ISDP) through ARP/MCU. This document reports the initial results of the analyses of samples of Tank 21H. Further results on the chemistry and other tests will be issued in the future. No issues with the projected Salt Batch 7 strategy are identified, other than the presence of visible quantities of dark colored solids. Based upon a SRNL settling test, the solids should settle well within the months-long settling period to be employed in Tank 21H. However, SRNL recommends analyzing the solids to provide input to OLI modeling in order to evaluate the impacts of these solids to present and future salt batches.

  1. Final Technical Report

    SciTech Connect (OSTI)

    Gilbert, Chris

    2014-11-13

    The project, �Capital Investment to Fund Equipment Purchases and Facility Modifications to Create a Sustainable Future for EnergyXchange� served to replace landfill gas energy with alternative energy resources, primarily solar and wood waste. This is the final project closeout report.

  2. Final Technical Report

    SciTech Connect (OSTI)

    Maxwell, Mike, J., P.E.

    2012-08-30

    The STI product is the Final Technical Report from ReliOn, Inc. for contract award DE-EE0000487: Recovery Act PEM Fuel Cell Systems Providing Emergency Reserve and Backup Power. The program covered the turnkey deployment of 431 ReliOn fuel cell systems at 189 individual sites for AT&T and PG&E with ReliOn functioning as the primary equipment supplier and the project manager. The Final Technical Report provides an executive level summary, a comparison of the actual accomplishments vs. the goals and objectives of the project, as well as a summary of the project activity from the contract award date of August 1, 2009 through the contract expiration date of December 31, 2011. Two photos are included in the body of the report which show hydrogen storage and bulk hydrogen refueling technologies developed as a result of this program.

  3. Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Troxell, W; Batchelor, A

    2012-11-28

    Final report for the formation of faculty and education establishing Colorado State's Smart Grid Integration Center

  4. FINAL TECHNICAL REPORT Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FINAL TECHNICAL REPORT Department of Energy Research Grant DE-FG03-88ER13845 A005 ENERGY CAPTURE AND USE IN PLANTS AND BACTERIA Paul D. Boyer, Principal Investigator University of California, Los Angeles Overall oro_ress _ v The project has centered on elucidation of the mechanism of ATP synthase. The metabolic importance ofATP and thecomplexity oftheATP synthase havemade theproblem particularly important and challenging. Over thepasttwo decades, withDOE and USPHS support, my laboratory hashad

  5. Final Technical Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2015 Final Technical Report January 1, 2010 - January 24, 2015 Principal Author: Radisav D. Vidic Grant Number: DE-FE0000975 Sustainable Management of Flowback Water during Hydraulic Fracturing of Marcellus Shale for Natural Gas Production Submitted to: U.S. Department of Energy National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 Submitted by: University of Pittsburgh Department of Civil and Environmental Engineering Pittsburgh, PA 15261-2294 Disclaimer

  6. Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification MST Solids Sample

    SciTech Connect (OSTI)

    Washington, A. L. II; Peters, T. B.

    2013-09-19

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 7 processing. The Marcrobatch 7 material was received with visible fine particulate solids, atypical for these samples. The as received material was allowed to settle for a period greater than 24 hours. The supernatant was then decanted and utilized as our clarified feed material. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test using the clarified feed material. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake after filtration from H-Tank Farm (HTF) feed salt solution. The results of these analyses are reported and are within historical precedent.

  7. AGR-2 Data Qualification Report for ATR Cycles 147A, 148A, 148B, and 149A

    SciTech Connect (OSTI)

    Michael L. Abbott; Keith A. Daum

    2011-08-01

    This report presents the data qualification status of fuel irradiation data from the first four reactor cycles (147A, 148A, 148B, and 149A) of the on-going second Advanced Gas Reactor (AGR-2) experiment as recorded in the NGNP Data Management and Analysis System (NDMAS). This includes data received by NDMAS from the period June 22, 2010 through May 21, 2011. AGR-2 is the second in a series of eight planned irradiation experiments for the AGR Fuel Development and Qualification Program, which supports development of the very high temperature gas-cooled reactor (VHTR) under the Next Generation Nuclear Plant (NGNP) Project. Irradiation of the AGR-2 test train is being performed at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) and is planned for 600 effective full power days (approximately 2.75 calendar years) (PLN-3798). The experiment is intended to demonstrate the performance of UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Data qualification status of the AGR-1 experiment was reported in INL/EXT-10-17943 (Abbott et al. 2010).

  8. FINAL TECHNICAL REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ^ DOE/ER/60200- T1 DE-Af03-84ER60200 DE87 014546 K-Edge Subtraction Angiography With Synchrotron X-Rays The following material represents a summary of the accomplish- ments of the project DE-AT03-84ER60200 over a period of 02/01/84 to 01/31/87. The Ultimate aim was the development of an angiographic method and appropriate equipment for imaging with x-rays the coronary arteries in a non-invasive manner. Successive steps involved studies with phantoms, live animals and finally with human subjects.

  9. Clean Fleet Final Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    2 P r o j e c t D e s i g n a n d I m p l e m e n t a t i o n FINAL REPORT December 1995 December 1995 This information was prepared by Battelle Memorial Institute, Columbus Operations, through sponsorship by various companies and associations, the South Coast Air Quality Management District (District), and the California Energy Commission (Commission). Battelle has endeavored to produce a high quality study consistent with its contract commitments. However, because of the research and/or

  10. Clean Fleet Final Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    3 V e h i c l e M a i n t e n a n c e a n d D u r a b i l i t y FINAL REPORT December 1995 December 1995 December 1995 This information was prepared by Battelle Memorial Institute, Columbus Operations, through sponsor- ship by various companies and associations, the South Coast Air Quality Management District (District), and the California Energy Commission (Commission). Battelle has endeavored to produce a high quality study consistent with its contract commitments. However, because of the

  11. Reactor Testing and Qualification: Prioritized High-level Criticality Testing Needs

    SciTech Connect (OSTI)

    S. Bragg-Sitton; J. Bess; J. Werner; G. Harms; S. Bailey

    2011-09-01

    Researchers at the Idaho National Laboratory (INL) were tasked with reviewing possible criticality testing needs to support development of the fission surface power system reactor design. Reactor physics testing can provide significant information to aid in development of technologies associated with small, fast spectrum reactors that could be applied for non-terrestrial power systems, leading to eventual system qualification. Several studies have been conducted in recent years to assess the data and analyses required to design and build a space fission power system with high confidence that the system will perform as designed [Marcille, 2004a, 2004b; Weaver, 2007; Parry et al., 2008]. This report will provide a summary of previous critical tests and physics measurements that are potentially applicable to the current reactor design (both those that have been benchmarked and those not yet benchmarked), summarize recent studies of potential nuclear testing needs for space reactor development and their applicability to the current baseline fission surface power (FSP) system design, and provide an overview of a suite of tests (separate effects, sub-critical or critical) that could fill in the information database to improve the accuracy of physics modeling efforts as the FSP design is refined. Some recommendations for tasks that could be completed in the near term are also included. Specific recommendations on critical test configurations will be reserved until after the sensitivity analyses being conducted by Los Alamos National Laboratory (LANL) are completed (due August 2011).

  12. Tank 49H salt batch supernate qualification for ARP/MCU

    SciTech Connect (OSTI)

    Nash, C. A.; Peters, T.; Fink, S.; Foster, T.

    2008-08-25

    This report covers the laboratory testing and analyses of Tank 49H Qualification Sample Sets A and C, performed in support of initial radioactive operations of Actinide Removal Process (ARP) and Modular Caustic-Side Solvent Extraction Unit (MCU). Major goals of this work include checking that Tank 49H was well mixed after the last receipt of Tank 23H, characterizing Tank 49H supernate after solids are settled so that its composition can be compared to waste acceptance and hazard criteria, verifying actinide and strontium adsorption with a small scale test using monosodium titanate (MST) and filtration, checking MCU solvent performance when applied to the liquid produced from MST contact, and verifying that in-tank settling after a minimum of 30 days was at least as good or better at reducing solids content after a Tank 49H to Tank 50H transfer occurred than what was observed in less time in the lab. The first four items were covered by Sample Set A. The fifth item was covered by Sample Set C, which had several analyses after compositing as required in the nuclear criticality safety evaluation (NCSE).

  13. Trial Run of a Junction-Box Attachment Test for Use in Photovoltaic Module Qualification (Presentation)

    SciTech Connect (OSTI)

    Miller, D.; Deibert, S.; Wohlgemuth, J.

    2014-06-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development and manufacturing process control. There are historical incidences of adverse effects (e.g., fires), caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp-heat', 'thermal-cycle', or 'creep' tests within the IEC qualification protocol is proposed to verify the basic robustness of the adhesion system. The details of the proposed test are described, in addition to a trial run of the test procedure. The described experiments examine 4 moisture-cured silicones, 4 foam tapes, and a hot-melt adhesive used in conjunction with glass, KPE, THV, and TPE substrates. For the purpose of validating the experiment, j-boxes were adhered to a substrate, loaded with a prescribed weight, and then subjected to aging. The replicate mock-modules were aged in an environmental chamber (at 85 deg C/85% relative humidity for 1000 hours; then 100 degrees C/<10% relative humidity for 200 hours) or fielded in Golden, Miami, and Phoenix for 1 year. Attachment strength tests, including pluck and shear test geometries, were also performed on smaller component specimens.

  14. SAMPLE RESULTS FROM THE INTERIM SALT DISPOSITION PROGRAM MACROBATCH 8 TANK 21H QUALIFICATION SAMPLES

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L.

    2015-01-13

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 8 for the Interim Salt Disposition Program (ISDP). An Actinide Removal Process (ARP) and several Extraction-Scrub- Strip (ESS) tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP and the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). No issues with the projected Salt Batch 8 strategy are identified. A demonstration of the monosodium titanate (MST) (0.2 g/L) removal of strontium and actinides provided acceptable average decontamination factors for plutonium of 2.62 (4 hour) and 2.90 (8 hour); and average strontium decontamination factors of 21.7 (4 hour) and 21.3 (8 hour). These values are consistent with results from previous salt batch ARP tests. The two ESS tests also showed acceptable performance with extraction distribution ratios (D{sub (Cs)}) values of 52.5 and 50.4 for the Next Generation Solvent (NGS) blend (from MCU) and NGS (lab prepared), respectively. These values are consistent with results from previous salt batch ESS tests. Even though the performance is acceptable, SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed in order to improve our predictive capabilities for the ESS tests.

  15. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II

    SciTech Connect (OSTI)

    Unknown

    2002-02-08

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumented and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.

  16. Final Scientific EFNUDAT Workshop

    ScienceCinema (OSTI)

    None

    2011-10-06

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluationCross section measurementsExperimental techniquesUncertainties and covariancesFission propertiesCurrent and future facilities  International Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco CalvianiSamuel AndriamonjeEric BerthoumieuxCarlos GuerreroRoberto LositoVasilis Vlachoudis Workshop Assistant: Géraldine Jean

  17. Final Scientific EFNUDAT Workshop

    ScienceCinema (OSTI)

    None

    2011-10-06

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluationCross section measurementsExperimental techniquesUncertainties and covariancesFission propertiesCurrent and future facilities  International Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco CalvianiSamuel AndriamonjeEric BerthoumieuxCarlos GuerreroRoberto LositoVasilis Vlachoudis Workshop Assistant: Géraldine Jean

  18. Final Progress Report

    SciTech Connect (OSTI)

    Josef Michl

    2011-10-31

    In this project we have established guidelines for the design on organic chromophores suitable for producing high triplet yields via singlet fission. We have proven their utility by identifying a chromophore of a structural class that had never been examined for singlet fission before, 1,3-diphenylisobenzofuran, and demonstrating in two independent ways that a thin layer of this material produces a triplet yield of 200% within experimental error. We have also designed a second chromophore of a very different type, again of a structural class that had not been examined for singlet fission before, and found that in a thin layer it produces a 70% triplet yield. Finally, we have enhanced the theoretical understanding of the quantum mechanical nature of the singlet fission process.

  19. FINAL/ SCIENTIFIC TECHNICAL REPORT

    SciTech Connect (OSTI)

    McDonald, Henry; Singh, Suminderpal

    2006-08-28

    The overall objective of the Chattanooga fuel cell demonstrations project was to develop and demonstrate a prototype 5-kW grid-parallel, solid oxide fuel cell (SOFC) system that co-produces hydrogen, based on Ion America’s technology. The commercial viability of the 5kW SOFC system was tested by transporting, installing and commissioning the SOFC system at the Alternative Energy Laboratory at the University of Tennessee – Chattanooga. The system also demonstrated the efficiency and the reliability of the system running on natural gas. This project successfully contributed to the achievement of DOE technology validation milestones from the Technology Validation section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. Results of the project can be found in the final technical report.

  20. ESPC ENABLE Final Proposal Requirements

    Broader source: Energy.gov [DOE]

    Document describes the final proposal requirements for consideration by an energy service company (ESCO) for an agency’s Request for Quote/Notice of Opportunity or final proposal. If selected to perform a site investment grade audit, the ESCO will be required to present the findings from the IGA and a project price to the agency in the form of a final proposal.

  1. Title XVII Final Rule | Department of Energy

    Energy Savers [EERE]

    Final Rule Title XVII Final Rule PDF icon Title XVII Final Rule More Documents & Publications Final Rule (December 4, 2009) Notice of Proposed Rulemaking (August 6, 2009) Final Rule (October 23, 2007)

  2. Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L. II

    2013-08-08

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 7 for the Interim Salt Disposition Program (ISDP). An ARP and several ESS tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP/MCU. No issues with the projected Salt Batch 7 strategy are identified, other than the presence of visible quantities of dark colored solids. A demonstration of the monosodium titanate (0.2 g/L) removal of strontium and actinides provided acceptable 4 hour average decontamination factors for Pu and Sr of 3.22 and 18.4, respectively. The Four ESS tests also showed acceptable behavior with distribution ratios (D(Cs)) values of 15.96, 57.1, 58.6, and 65.6 for the MCU, cold blend, hot blend, and Next Generation Solvent (NGS), respectively. The predicted value for the MCU solvent was 13.2. Currently, there are no models that would allow a prediction of extraction behavior for the other three solvents. SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed. While no outstanding issues were noted, the presence of solids in the samples should be investigated in future work. It is possible that the solids may represent a potential reservoir of material (such as potassium) that could have an impact on MCU performance if they were to dissolve back into the feed solution. This salt batch is intended to be the first batch to be processed through MCU entirely using the new NGS-MCU solvent.

  3. Final Technical Report

    SciTech Connect (OSTI)

    Velasco, Mayda

    2013-11-01

    This work is focused on the design and construction of novel beam diagnostic and instrumentation for charged particle accelerators required for the next generation of linear colliders. Our main interest is in non-invasive techniques. The Northwestern group of Velasco has been a member of the CLIC Test Facility 3 (CTF3) collaboration since 2003, and the beam instrumentation work is developed mostly at this facility1. This 4 kW electron beam facility has a 25-170 MeV electron LINAC. CTF3 performed a set of dedicated measurements to finalize the development of our RF-Pickup bunch length detectors. The RF-pickup based on mixers was fully commissioned in 2009 and the RF-pickup based on diodes was finished in time for the 2010-11 data taking. The analysis of all the data taken in by the summer of 2010 was finish in time and presented at the main conference of the year, LINAC 2010 in Japan.

  4. Final Report to DOE

    SciTech Connect (OSTI)

    Ismail Gultepe

    2012-05-15

    This final report summarizes the accomplished goals and provide a list of the publications and presentations made during the project. The goals of the project were accomplished through the various publications submitted to Journals and presentations done at the DOE and international meetings and conferences. The 8 journal articles related to the goals of this project were accepted or submitted. The 23 presentations related to goals of the project were presented at the meetings. There were some minor changes regarding to project goals because of issues encountered during the analysis of the data. For example, a total water probe sensor mounted on the Convair-580 that can be used for defining mixed phase conditions and parameterization, had some problems to estimate magnitude of total water mass, and this resulted in issues providing an accurate parameterization for cloud fraction. Variability related aerosol number concentrations and their composition for direct and indirect effects were studied and published. Results were given to explain aerosol and ice microphysical effects on climate change studies. It is suggested that developed parameterizations should consider the variability in aerosol and ice parameters over the Arctic regions.

  5. Final Technical Report

    SciTech Connect (OSTI)

    Alexander Pigarov

    2012-06-05

    This is the final report for the Research Grant DE-FG02-08ER54989 'Edge Plasma Simulations in NSTX and CTF: Synergy of Lithium Coating, Non-Diffusive Anomalous Transport and Drifts'. The UCSD group including: A.Yu. Pigarov (PI), S.I. Krasheninnikov and R.D. Smirnov, was working on modeling of the impact of lithium coatings on edge plasma parameters in NSTX with the multi-species multi-fluid code UEDGE. The work was conducted in the following main areas: (i) improvements of UEDGE model for plasma-lithium interactions, (ii) understanding the physics of low-recycling divertor regime in NSTX caused by lithium pumping, (iii) study of synergistic effects with lithium coatings and non-diffusive ballooning-like cross-field transport, (iv) simulation of experimental multi-diagnostic data on edge plasma with lithium pumping in NSTX via self-consistent modeling of D-Li-C plasma with UEDGE, and (v) working-gas balance analysis. The accomplishments in these areas are given in the corresponding subsections in Section 2. Publications and presentations made under the Grant are listed in Section 3.

  6. Final Technical Report

    SciTech Connect (OSTI)

    Alexander Fridman

    2005-06-01

    This DOE project DE-FC36-04GO14052 ''Plasma Pilot Plant Test for Treating VOC Emissions from Wood Products Plants'' was conducted by Drexel University in cooperation with Georgia-Pacific (G-P) and Kurchatov Institute (KI). The objective of this project was to test the Plasma Pilot Plant capabilities in wood industry. The final goal of the project was to replace the current state-of-the-art, regenerative thermal oxidation (RTO) technology by Low-Temperature Plasma Technology (LTPT) in paper and wood industry for Volatile Organic Components (VOC) destruction in High Volume Low Concentration (HVLC) vent emissions. MetPro Corporation joined the team as an industrial partner from the environmental control business and a potential leader for commercialization. Concurrent Technology Corporation (CTC) has a separate contract with DOE for this technology evaluation. They prepared questionnaires for comparison of this technology and RTO, and made this comparison. These data are presented in this report along with the description of the technology itself. Experiments with the pilot plant were performed with average plasma power up to 3.6 kW. Different design of the laboratory and pilot plant pulsed coronas, as well as different analytical methods revealed many new peculiarities of the VOC abatement process. The work reported herein describes the experimental results for the VOCs removal efficiency with respect to energy consumption, residence time, water effect and initial concentration.

  7. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 5 QUALIFICATION

    SciTech Connect (OSTI)

    Pareizs, J; Cj Bannochie, C; Damon Click, D; Dan Lambert, D; Michael Stone, M; Bradley Pickenheim, B; Amanda Billings, A; Ned Bibler, N

    2008-11-10

    Sludge Batch 5 (SB5) is predominantly a combination of H-modified (HM) sludge from Tank 11 that underwent aluminum dissolution in late 2007 to reduce the total mass of sludge solids and aluminum being fed to the Defense Waste Processing Facility (DWPF) and Purex sludge transferred from Tank 7. Following aluminum dissolution, the addition of Tank 7 sludge and excess Pu to Tank 51, Liquid Waste Operations (LWO) provided the Savannah River National Laboratory (SRNL) a 3-L sample of Tank 51 sludge for SB5 qualification. SB5 qualification included washing the sample per LWO plans/projections (including the addition of a Pu/Be stream from H Canyon), DWPF Chemical Process Cell (CPC) simulations, waste glass fabrication (vitrification), and waste glass chemical durability evaluation. This report documents: (1) The washing (addition of water to dilute the sludge supernatant) and concentration (decanting of supernatant) of the Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF CPC simulation using the washed Tank 51 sample. This includes a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid is added to the sludge to destroy nitrite and remove mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit is added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters for the CPC processing were based on work with a non radioactive simulant. (3) Vitrification of a portion of the SME product and Product Consistency Test (PCT) evaluation of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This work is controlled by a Task Technical and Quality Assurance Plan (TTQAP) , and analyses are guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF.

  8. Proposed Junction-Box Stress Test (Using an Added Weight) for Use During the Module Qualification (Presentation)

    SciTech Connect (OSTI)

    Miller, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.

    2012-02-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. Furthermore, there are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of the j-box adhesion system. The details of the proposed test are described, in addition to the preliminary results conducted using representative materials and components.

  9. MTX final report

    SciTech Connect (OSTI)

    Hooper, E.B.; Allen, S.L.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Fenstermacher, M.E.; Foote, J.H.; Hoshino, K.

    1994-01-01

    The MTX experiment was proposed in 1986 to apply high frequency microwaves generated by a free-electron laser (FEL) to electron cyclotron resonance heating (ECRH) in a high field, high density tokamak. As the absorption of microwaves at the electron cyclotron resonance requires high frequencies, the opportunity of applying a free-electron laser has appeal as the device is not limited to frequencies in the microwave or long millimeter wavelength regions, in contrast to many other sources. In addition, the FEL is inherently a high power source of microwaves, which would permit single units of 10 MW or more, optimum for reactors. Finally, it was recognized early in the study of the application of the FEL based on the induction linear accelerator, that the nonlinear effects associated with the intense pulses of microwaves naturally generated would offer several unique opportunities to apply ECRH to current drive, MHD control, and other plasma effects. It was consequently decided to adapt the induction accelerator based FEL to heating and controlling the tokamak, and to conduct experiments on the associated physics. To this end, the Alcator C tokamak was moved from the Massachusetts Institute of Technology (MIT) to the Lawrence Livermore National Laboratory where it was installed in Building 431 and operated from March, 1989, until the conclusion of the experiment in October, 1992. The FEL, based on the ETA-11 accelerator and IMP wiggler was brought into operation by the LLNL Electron Beam Group and power injected into the tokamak during an experimental run in the Fall, 1989. Following an upgrade by the MTX group, a second experimental run was made lasting from the Winter, 1992 through the end of the experiment. Significant contributions to the ECRH experiments were made by the Japan Atomic Energy Research Institute (JAERI).

  10. EA-1918: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Final Rule, 10 CFR 433, “Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings”

  11. EA-1637: Final Environmental Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    10 CFR 431 Energy Conservation Program for Commerical and Industrial Equipment: Packaged Terminal Air Conditioner and Packaged Terminal Heat Pump Energy Conservation Standards; Final Rule

  12. LIVE_NSB_final.wmv

    ScienceCinema (OSTI)

    None

    2010-09-01

    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  13. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE August 9, 2012 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Committee Business ...................................................................................................................................... 4 Attachments

  14. CCSTF - Final Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CCSTF - Final Report CCSTF - Final Report PDF icon Carbon Capture and Storage Task Force - Final Report More Documents & Publications Before the Subcommittee on Energy -- House ...

  15. DEVELOPMENT QUALIFICATION AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE

    SciTech Connect (OSTI)

    SAMS TL; EDGE JA; SWANBERG DJ; ROBBINS RA

    2011-01-13

    Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

  16. Final Report Strings 2014

    SciTech Connect (OSTI)

    Witten, Edward

    2015-10-21

    DOE Final Report “Strings 2014” PI: Edward Witten, Institute for Advanced Study, Princeton, NJ 08540 CO-PI: Igor Klebanov, Princeton University, Princeton, NJ 08540 DOE Grant Number: DE-SC0011919 The Strings 2014 meeting was held at Princeton University in June 2014, co-sponsored by Princeton University and the Institute for Advanced Study. Plenary lectures at Strings 2014 were held in Richardson Auditorium of Princeton University. This comfortable and spacious facility easily accommodated the 616 participants registered participants at Strings 2014. The rental fee for the auditorium was $11,000. This grant provided $5,500 from the Department of Energy to pay for one-half of the cost of the facility rental and videotaping. Speakers were supported with funds from the National Science Foundation Clay Mathematics Institute, the Institute for Advanced Study and Princeton University. The organization of Strings 2014 consisted of an International Organizing Committee of 60 prominent scientists around the world, and a Local Advisory Committee consisting of an additional 15 distinguished scientists from neighboring institutions. Additionally, the Local Organizing Committee assisted them with about 15 members (mostly faculty at Princeton University and the Institute for Advanced Study). These groups (which are listed at the end of this narrative) offered important input concerning the selection of speakers and helped to ensure that the speakers were selected from the broadest possible pool. The conference was held on June 23-7 at Princeton University and the Institute for Advanced Study. The 616 registered participants included 272 participants from the United States and 344 from 32 institutions outside of the U.S. We believe that we were successful at providing a stimulating and up-to-date overview of research in string theory and its relations to other areas of physics and mathematics, ranging from geometry to quantum field theory, condensed matter physics, and more. There were a total of 45 plenary speakers and 27 speakers at parallel sessions. (Parallel sessions were held at the Institute for Advanced Study.) Overall the speakers did an excellent job of presenting their topics and some presented surprising and novel results. The talks at Strings 2014 were videotaped and are available on the conference website: http://physics.princeton.edustrings2014/Talk_titles.shtml. One important facet of Strings 2014 and one of the reasons it was so well-attended was that it had a strong educational component. The week before the meeting, there was a summer school, Prospects in Theoretical Physics (PiTP), held at the Institute for Advanced Study on the subject of string theory. 260 graduate students attended both PiTP and Strings 2014. The group consisted of 25 females and 235 males; 208 graduate students and 52 postdocs. 129 participants were from the United States, and 131 participants came from institutions in 25 countries outside of the U.S. The Institute for Advanced Study substantially subsidized the summer school for students. Over two dozen students had the chance to give short (six minute) talks at the “gong shows” that were held at PiTP and Strings 2014, and nearly 60 students and postdocs made poster presentations at Strings 2014.

  17. Nuclear power plant cable materials : review of qualification and currently available aging data for margin assessments in cable performance.

    SciTech Connect (OSTI)

    Celina, Mathias Christopher; Gillen, Kenneth Todd; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostlyinert' aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section - a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original qualification testing data alone. The non-availability of conclusive predictions for the aging conditions of 40-year-old cables implies that the same levels of uncertainty will remain for any re-qualification or extended operation of these cables. The highly variable aging behavior of the range of materials employed also implies that simple, standardized aging tests are not sufficient to provide the required aging data and performance predictions for all materials. It is recommended that focused studies be conducted that would yield the material aging parameters needed to predict aging behaviors under low dose, low temperature plant equivalent conditions and that appropriately aged specimens be prepared that would mimic oxidatively-aged 40- to 60- year-old materials for confirmatory LOCA performance testing. This study concludes that it is not sufficient to expose materials to rapid, high radiation and high temperature levels with subsequent LOCA qualification testing in order to predictively quantify safety margins of existing infrastructure with regard to LOCA performance. We need to better understand how cable jacketing and insulation materials have degraded over decades of power plant operation and how this aging history relates to service life prediction and the performance of existing equipment to withstand a LOCA situation.

  18. Final ECR 2008 Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final ECR 2008 Report Final ECR 2008 Report Final ECR 2008 Report PDF icon Environmental Conflict Resolution Third Annual Report January 2009 More Documents & Publications Environmental Conflict Resolution 2009 ECR FINAL REPORT 2010 test

  19. Final Technical Report

    SciTech Connect (OSTI)

    Stenzel, Reiner; Urrutia, J. Manuel

    2009-09-08

    The nonlinear physics of electron magnetohydrodynamics (EMHD) in plasmas. Time-varying wave magnetic field exceeding the background magnetic field produces highly nonlinear whistler mode since the wave dispersion depends on the total magnetic field. There exists no theory for such whistler modes. The present experimental work is the first one to explore this regime of nonlinear whistlers. A field-reversed configuration has been found which has the same vortex topology as an MHD spheromak, termed a whistler spheromak. Whistler mirrors have compressed and twisted field lines propagating in the whistler mode. Their helicity properties have been studied. Whistler spheromaks and mirrors have different propagation and damping characteristics. Wave collisions have been studied. Head-on collisions of two whistler spheromaks form a stationary field-reversed configuration (FRC) without helicity. When whistler spheromaks are excited the toroidal current flows mainly in the toroidal null line. It is only carried by electrons since ion currents and displacement currents are negligible. A change in the poloidal (axial) magnetic field induces a toroidal electric field which drives the current. Magnetic energy is dissipated and converted into electron kinetic energy. This process is called magnetic reconnection in 2D geometries, which are simplifications for theoretical convenience but rarely occur in nature. A crucial aspect of reconnection is its rate, determined by the electron collisionality. Regular Coulomb collisions can rarely account for the observed reconnection rates. In the present experiments we have also observed fast reconnection and explained it by electron transit time damping in the finite-size null layer. Electrons move faster than a whistler spheromak, hence transit through the toroidal null line where they are freely accelerated. The transit time is essentially the collision time but no particle collisions are required. Strong electron heating and visible light emissions are only observed in whistler spheromaks and FRCs but not in mirrors or asymmetric configurations lacking magnetic null lines. The collisionless electron energization in a toroidal null line usually produces non-Maxwellian distributions. Off the null axis electrons gain more perpendicular than parallel energy. Distributions with T{sub {perpendicular}} > T{sub {parallel}} lead to whistler instabilities which have been observed. A whistler spheromak is a source of high-frequency whistler emissions. These are usually small amplitude whistlers propagating in a complicated background magnetic field. The waves are emitted from a moving source. High frequency whistlers propagate faster than the spheromak, thus partly move ahead of it and partly in the reverse direction. In test wave experiments wave growth opposite to the direction of the hot electron flow has been observed, confirming that Doppler-shifted cyclotron resonance instabilities account for the emission process. Propagating whistler mirrors produce no significant instabilities except when they interact with other fields which exhibit null lines. For example, a whistler mirror has been launched against a stationary FRC, resulting in strong FRC heating and whistler instabilities. In the whistler mirror configuration the antenna near-zone field produces a toroidal null line outside the coil which can also become a source for whistler emissions. Finally, nonlinear EMHD research has been extended to initially unmagnetized plasmas where a new nonlinear skin depth has been discovered. When a small-amplitude oscillating magnetic field is applied to a plasma the field penetration is governed by the skin depth, collisional or collisionless depending on frequency, collision frequency and plasma frequency. However, when the magnetic field increases the electrons become magnetized and the field penetration occurs in the whistler mode if the cyclotron frequency exceeds the oscillating frequency. This phenomenon has been observed. A loop antenna creates a dipole field which is frozen into the plasma for a half cycle and becomes the background field for the wave launched by the next half cycle. The field topology consists of field-reversed dipoles of decreasing strength with distance. The propagation region depends on field amplitude but not on the skin depth. Our research has been published in 13 scientific papers.

  20. NAABB Full Final Report Section I

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REPORT SECTION I FULL FINAL REPORT SECTION I FULL FINAL REPORT SECTION I Program Overview Table of Contents Executive Summary ......

  1. EIS-0481: Final Programmatic Environmental Impact Statement ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Final Programmatic Environmental Impact Statement EIS-0481: Final Programmatic Environmental Impact Statement Engineered High Energy Crop Programs Programmatic Environmental ...

  2. EIS-0459: Final Programmatic Environmental Impact Statement ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Programmatic Environmental Impact Statement EIS-0459: Final Programmatic Environmental Impact Statement Hawaii Clean Energy Programmatic Environmental Impact Statement DOE ...

  3. AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics

    SciTech Connect (OSTI)

    Sun, K. X.

    2011-05-31

    This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

  4. FinalProgramReportfinal.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 8, 2004 Paul Wambach EH-53/270 Corporate Square Building U. S. Department of Energy 1000 Independence Avenue, SW Germantown, MD 20585-0270 CONTRACT NO. DE-AC05-00OR22750: FY04 FINAL REPORT FOR THE FORMER RADIATION WORKER MEDICAL SURVEILLANCE PROGRAM AT ROCKY FLATS The enclosed subject final report prepared by Joe M. Aldrich is submitted as stated in the Fiscal Year 2004 Field Work Proposal for the Former Radiation Worker Medical Surveillance Program at Rocky Flats. This is the final

  5. Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    David Petti

    2014-06-01

    Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO2 particle fuel up to about 10% FIMA and 1150°C, UO2 fuel is known to have limitations because of CO formation and kernel migration at the high burnups, power densities, temperatures, and temperature gradients that may be encountered in the prismatic modular HTGRs. With uranium oxycarbide (UCO) fuel, the kernel composition is engineered to prevent CO formation and kernel migration, which are key threats to fuel integrity at higher burnups, temperatures, and temperature gradients. Furthermore, the recent poor fuel performance of UO2 TRISO fuel pebbles measured in Chinese irradiation testing in Russia and in German pebbles irradiated at 1250°C, and historic data on poorer fuel performance in safety testing of German pebbles that experienced burnups in excess of 10% FIMA [1] have each raised concern about the use of UO2 TRISO above 10% FIMA and 1150°C and the degree of margin available in the fuel system. This continues to be an active area of study internationally.

  6. Final Report: Axion "Roadmap" Workshop

    SciTech Connect (OSTI)

    Rosenberg, Leslie J

    2013-03-19

    Final report for "Vistas in Axion Physics: A Roadmap for Theoretical and Experimental Axion Physics through 2025", which was held at the University of Washington, INT, from April 23 - 26, 2012.

  7. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River and Plateau Committee February 12, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE February 12, 2013 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Land Transition between Programs and Contractors .................................................................................... 1 Committee Business

  8. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 4, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD PUBLIC INVOLVEMENT AND COMMUNICATION COMMITTEE November 4, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Public Information Materials ........................................................................................................................ 1 Tri-Party

  9. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 12, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE November 12, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 100 F-Area Record of Decision .................................................................................................................... 1 Central Plateau Inner Area Cleanup

  10. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 13, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE November 13, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Tank Farm Vapor Issues (joint w/ HSEP) .................................................................................................... 1 Direct Feed Low-Activity Waste Treatment

  11. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE February 11, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Waste Treatment and Immobilization Plant Progress Update ...................................................................... 1 Cesium Storage Follow-up

  12. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 10, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE March 10, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Central Plateau Inner Area Guidelines .......................................................................................................... 1 2014/15 Budget and RL Cleanup, Lifecycle

  13. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 11, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE March 11, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Cesium Treatment and Disposition Issue Manager Update .......................................................................... 2 Waste Treatment Plant Issue Manager Update

  14. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE April 14, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 River Corridor Progress ................................................................................................................................ 2 Committee Business

  15. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 15, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE April 15, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 C-Farm Closure Swim Lanes ........................................................................................................................ 2 PHOENIX Tank Farms Application

  16. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 13, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE May 13, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Waste Isolation Pilot Plant Update (joint w/ RAP) ....................................................................................... 1 Cesium Treatment and Disposition Issue Manager Update

  17. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 11, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE August 11, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 207-A Retention Basin .................................................................................................................................. 2 Transuranic Waste Milestones

  18. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 23, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE September 23, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Low-Activity Waste Pretreatment System Critical Decision - 1 .................................................................. 3 A and AX Farms Retrieval

  19. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 8, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE December 8, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Update on 100-D/H Proposed Plan ............................................................................................................... 2 WA-1 Remedial Investigation/Feasibility

  20. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 18, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD HEALTH, SAFETY, AND ENVIRONMENTAL PROTECTION COMMITTEE June 18, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Tank Farm Vapors Advice Response ............................................................................................................ 1 Effectiveness of

  1. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 9, 2016 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE February 9, 2016 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Groundwater Update ..................................................................................................................................... 2 Update on 618-10 Burial Ground

  2. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 10, 2016 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE February 10, 2016 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Safety Culture (joint w/HSEP) ...................................................................................................................... 2 Grand Challenge Proposal for Direct

  3. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 15, 2016 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE March 15, 2016 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Environmental Restoration and Disposal Facility Vertical Expansion ......................................................... 2 Committee Business

  4. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, and Environmental Protection Committee January 7, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD HEALTH, SAFETY, AND ENVIRONEMTNAL PROTECTION COMMITTEE January 7, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Tank Farm Vapors Advice

  5. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health, Safety and Environmental Protection Committee January 10, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD HEALTH SAFETY AND ENVIRONMENTAL PROTECTION COMMITTEE January 10, 2013 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Update on the Employees Concern Program

  6. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 9, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD HEALTH, SAFETY AND ENVIRONMENTAL PROTECTION COMMITTEE August 9, 2012 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Draft Advice - Integrated Safety Management ............................................................................................ 2 DOE-RL Maintenance

  7. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 11, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD HEALTH, SAFETY AND ENVIRONMENTAL PROTECTION COMMITTEE October 11, 2012 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Worker Training............................................................................................................................................ 1

  8. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 7, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD PUBLIC INVOLVEMENT AND COMMUNICATION COMMITTEE April 7, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 TPA Public Involvement Survey .................................................................................................................. 2 WTP Communications

  9. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 3, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD PUBLIC INVOLVEMENT COMMITTEE September 3, 2014 Pasco, WA Topics in this Meeting Summary Welcome ....................................................................................................................................................... 1 PIC Role Framing ......................................................................................................................................... 1 State of the Site Meetings

  10. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Committee September 4, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD PUBLIC INVOLVEMENT & COMMUNICATION COMMITTEE September 4, 2013 Kennewick, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Public Involvement Strategic Planning ......................................................................................................... 1 300

  11. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 8, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD PUBLIC INVOLVEMENT AND COMMUNICATION COMMITTEE September 8, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 TPA Public Involvement ............................................................................................................................... 1 TPA

  12. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 3, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD PUBLIC INVOLVEMENT AND COMMUNICATION COMMITTEE November 3, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Tri-Party Agreement Agency Public Involvement ....................................................................................... 2 Waste Treatment Plant

  13. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 10, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD PUBLIC INVOLVEMENT COMMITEE December 10, 2013 Richland, WA Topics in this Meeting Summary Welcome ....................................................................................................................................................... 1 Strategic Public Involvement - Tool Time! .................................................................................................. 3 100-F Area Public Involvement

  14. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE October 7, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Consortium for Risk Evaluation and Stakeholder Participation Hanford Site-wide Risk Review Project Discussion

  15. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 6, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE March 6, 2013 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Briefing on Post-2015 Priorities ................................................................................................................... 1 Update on Deep Vadose Zone Remediation

  16. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE August 7, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 RCRA Class III Modifications ...................................................................................................................... 2 Environmental Restoration Disposal Facility

  17. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE October 9, 2012 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Natural Resource Damage Assessment (NRDA) Injury Assessment Plan ................................................... 3 100 Area Schedule for Documents/Decisions

  18. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE November 6, 2012 Richland, WA Topics in this Meeting Summary Opening ........................................................................................................................................... 1 F-Reactor Area Operable Unit ........................................................................................................ 1 Plutonium Finishing Plant (PFP) Update

  19. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 13, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE November 13, 2013 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Update on Work in the River Corridor ......................................................................................................... 1 Briefing on the Plutonium Finishing

  20. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE February 13, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 DOE Framework Topic Briefing: Direct Feed Low-Activity Waste ............................................................ 1 System Plan 7

  1. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 7, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE November 7, 2012 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Update on Double-Shell Tank AY-102 ........................................................................................................ 1 Update on Single-Shell Tank Retrievals

  2. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 8, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE October 8, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Safety Culture Improvement Efforts (joint w/ HSEP) .................................................................................. 1 Waste Treatment and Immobilization Plant Progress

  3. Verification Of The Defense Waste Processing Facility's (DWPF) Process Digestion Methods For The Sludge Batch 8 Qualification Sample

    SciTech Connect (OSTI)

    Click, D. R.; Edwards, T. B.; Wiedenman, B. J.; Brown, L. W.

    2013-03-18

    This report contains the results and comparison of data generated from inductively coupled plasma – atomic emission spectroscopy (ICP-AES) analysis of Aqua Regia (AR), Sodium Peroxide/Sodium Hydroxide Fusion Dissolution (PF) and Cold Chem (CC) method digestions and Cold Vapor Atomic Absorption analysis of Hg digestions from the DWPF Hg digestion method of Sludge Batch 8 (SB8) Sludge Receipt and Adjustment Tank (SRAT) Receipt and SB8 SRAT Product samples. The SB8 SRAT Receipt and SB8 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB8 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 7b (SB7b), to form the SB8 Blend composition.

  4. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 7A QUALIFICATION

    SciTech Connect (OSTI)

    Pareizs, J.; Billings, A.; Click, D.

    2011-07-08

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non-radioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7a related data together in a single permanent record and to discuss the overall aspects of SB7a processing.

  5. Technical considerations related to interim source-term assumptions for emergency planning and equipment qualification. [PWR; BWR

    SciTech Connect (OSTI)

    Niemczyk, S.J.; McDowell-Boyer, L.M.

    1982-09-01

    The source terms recommended in the current regulatory guidance for many considerations of light water reactor (LWR) accidents were developed a number of years ago when understandings of many of the phenomena pertinent to source term estimation were relatively primitive. The purpose of the work presented here was to develop more realistic source term assumptions which could be used for interim regulatory purposes for two specific considerations, namely, equipment qualification and emergency planning. The overall approach taken was to adopt assumptions and models previously proposed for various aspects of source term estimation and to modify those assumptions and models to reflect recently gained insights into, and data describing, the release and transport of radionuclides during and after LWR accidents. To obtain illustrative estimates of the magnitudes of the source terms, the results of previous calculations employing the adopted assumptions and models were utilized and were modified to account for the effects of the recent insights and data.

  6. Neutronics qualification of the Jules Horowitz reactor fuel by interpretation of the VALMONT experimental program - Transposition of the uncertainties on the reactivity of JHR with JEF2.2 and JEFF3.1.1

    SciTech Connect (OSTI)

    Leray, O.; Hudelot, J. P.; Antony, M.; Doederlein, C.; Santamarina, A.; Bernard, D.; Vaglio-Gaudard, C.

    2011-07-01

    The new European material testing Jules Horowitz Reactor (JHR), currently under construction in Cadarache center (CEA France), will use LEU (20% enrichment in {sup 235}U) fuels (U{sub 3}Si{sub 2} for the start up and UMoAl in the future) which are quite different from the industrial oxide fuel, for which an extensive neutronics qualification database has been established. The HORUS3D/N neutronics calculation scheme, used for the design and safety studies of the JHR, is being developed within the framework of a rigorous verification-validation-qualification methodology. In this framework, the experimental VALMONT (Validation of Aluminium Molybdenum uranium fuel for Neutronics) program has been performed in the MINERVE facility of CEA Cadarache (France), in order to qualify the capability of HORUS3D/N to accurately calculate the reactivity of the JHR reactor. The MINERVE facility using the oscillation technique provides accurate measurements of reactivity effect of samples. The VALMONT program includes oscillations of samples of UAl{sub x}/Al and UMo/Al with enrichments ranging from 0.2% to 20% and Uranium densities from 2.2 to 8 g/cm{sup 3}. The geometry of the samples and the pitch of the experimental lattice ensure maximum representativeness with the neutron spectrum expected for JHR. By comparing the effect of the sample with the one of a known fuel specimen, the reactivity effect can be measured in absolute terms and be compared to computational results. Special attention was paid to the rigorous determination and reduction of the experimental uncertainties. The calculational analysis of the VALMONT results was performed with the French deterministic code APOLLO2. A comparison of the impact of the different calculation methods, data libraries and energy meshes that were tested is presented. The interpretation of the VALMONT experimental program allowed the qualification of JHR fuel UMoAl8 (with an enrichment of 19.75% {sup 235}U) by the Minerve-dedicated interpretation tool: PIMS. The effect of energy meshes and evaluations put forward the JEFF3.1.1/SHEM scheme that leads to a better calculation of the reactivity effect of VALMONT samples. Then, in order to quantify the impact of the uncertainties linked to the basic nuclear data, their propagation from the cross section measurement to the final computational result was analysed in a rigorous way by using a nuclear data re-estimation method based on Gauss-Newton iterations. This study concludes that the prior uncertainties due to nuclear data (uranium, aluminium, beryllium and water) on the reactivity of the Begin Of Cycle (BOC) for the JHR core reach 1217 pcm at 2{sigma}. Now, the uppermost uncertainty on the JHR reactivity is due to aluminium. (authors)

  7. GUM Analysis for SIMS Isotopic Ratios in BEP0 Graphite Qualification Samples, Round 2

    SciTech Connect (OSTI)

    Gerlach, David C.; Heasler, Patrick G.; Reid, Bruce D.

    2009-01-01

    This report describes GUM calculations for TIMS and SIMS isotopic ratio measurements of reactor graphite samples. These isotopic ratios are used to estimate reactor burn-up, and currently consist of various ratios of U, Pu, and Boron impurities in the graphite samples. The GUM calculation is a propagation of error methodology that assigns uncertainties (in the form of standard error and confidence bound) to the final estimates.

  8. AGR-2 Data Qualification Report for ATR Cycles 149B, 150A, 150B, 151A, and 151B

    SciTech Connect (OSTI)

    Michael L. Abbott; Binh T. Pham

    2012-06-01

    This report provides the data qualification status of AGR-2 fuel irradiation experimental data from Advanced Test Reactor (ATR) cycles 149B, 150A, 150B, 151A, and 151B), as recorded in the Nuclear Data Management and Analysis System (NDMAS). The AGR-2 data streams addressed include thermocouple temperatures, sweep gas data (flow rate, pressure, and moisture content), and fission product monitoring system (FPMS) data for each of the six capsules in the experiment. A total of 3,307,500 5-minute thermocouple and sweep gas data records were received and processed by NDMAS for this period. There are no AGR-2 data for cycle 150A because the experiment was removed from the reactor. Of these data, 82.2% were determined to be Qualified based on NDMAS accuracy testing and data validity assessment. There were 450,557 Failed temperature records due to thermocouple failures, and 138,528 Failed gas flow records due to gas flow cross-talk and leakage problems that occurred in the capsules after cycle 150A. For FPMS data, NDMAS received and processed preliminary release rate and release-to-birth rate ratio (R/B) data for the first three reactor cycles (cycles 149B, 150B, and 151B). This data consists of 45,983 release rate records and 45,235 R/B records for the 12 radionuclides reported. The qualification status of these FPMS data has been set to In Process until receipt of QA-approved data generator reports. All of the above data have been processed and tested using a SAS®-based enterprise application software system, stored in a secure Structured Query Language database, and made available on the NDMAS Web portal (http://ndmas.inl.gov) for both internal and external VHTR project participants.

  9. FINAL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Systems » FIMS Data Validation FIMS Data Validation FIMS Data Validation The Facility Information Management System (FIMS) is the Department's official repository of real property data. The Department relies on the FIMS data for real property decision-making and accounting of its $86B in assets. Maintaining accurate and credible data in FIMS is critical to efficient operations and resource planning. Department of Energy Order 430.1B Real Property Asset Management requires FIMS data

  10. ERDA-1537: Final Environmental Impact Statement | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ERDA-1537: Final Environmental Impact Statement ERDA-1537: Final Environmental Impact Statement The Department of Energy (DOE) limits electronic access to certain NEPA documents on ...

  11. EIS-0161: Final Programmatic Environmental Impact Statement ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    61: Final Programmatic Environmental Impact Statement EIS-0161: Final Programmatic Environmental Impact Statement The Department of Energy (DOE) limits electronic access to certain ...

  12. EA-1535: Final Programmatic Environmental Assessment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Final Programmatic Environmental Assessment EA-1535: Final Programmatic Environmental ... More Documents & Publications EA-1535: Finding of No Significant Impact EA-1037: ...

  13. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal ...

  14. EIS-0229: Final Programmatic Environmental Impact Statement ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Final Programmatic Environmental Impact Statement EIS-0229: Final Programmatic Environmental Impact Statement The Department of Energy (DOE) limits electronic access to certain ...

  15. EIS-0269: Final Programmatic Environmental Impact Statement ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    69: Final Programmatic Environmental Impact Statement EIS-0269: Final Programmatic Environmental Impact Statement The Department of Energy (DOE) limits electronic access to certain ...

  16. Final Rule (October 23, 2007)

    Broader source: Energy.gov [DOE]

    Loan Guarantees for Projects That Employ Innovative Technologies; Final Rule: On May 16, 2007, the Department of Energy (DOE or the Department) published a Notice of Proposed Rulemaking and opportunity for comment (NOPR) to establish regulations for the loan guarantee program authorized by Title XVII of the Energy Policy Act of 2005 (Title XVII or the Act).

  17. BP-12 Final Models Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MB, XLS) Tier 2 Module of RAM RAM Tier 2 Pricing Module (4.8 MB, XLS) Tool Kit Files (TPP) ToolKit v4.8.1 BP-12 Final Studies Release 4-Aug-11 (12.5 MB, XLS) Risk Mod Output...

  18. MINIMARS conceptual design: Final report

    SciTech Connect (OSTI)

    Lee, J.D.

    1986-09-01

    This volume contains the following sections: (1) fueling systems; (2) blanket; (3) alternative blanket concepts; (4) halo scraper/direct converter system study and final conceptual design; (5) heat-transport and power-conversion systems; (6) tritium systems; (7) minimars air detritiation system; (8) appropriate radiological safety design criteria; and (9) cost estimate. (MOW)

  19. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health, Safety, and Environmental Protection Committee November 8, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD HEALTH SAFETY AND ENVIRONMENTAL PROTECTION COMMITTEE November 8, 2012 Richland, WA Topics in this Meeting Summary Opening ............................................................................................................................................................ 1 DOE-ORP's Response to HAB Advice #258 (Safety at the Waste Treatment and Immobilization Plant [WTP]) -

  20. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE May 6, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Advice Development: 100-F Remedial Investigation and Feasibility Study (RI/FS) and Proposed Plan Revision 0

  1. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 11, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE December 11, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 100-F Area ROD, Follow-up to HAB Advice #280 ..................................................................................... 1 Central Plateau Inner Area Cleanup Principles

  2. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 12, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE May 12, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 242-Z (McCluskey Room) Update ............................................................................................................... 1 200 Area Groundwater and 100 N Apatite Barrier

  3. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 22, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE September 22, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Consortium for Risk Evaluation with Stakeholder Participation Hanford Site-Wide Risk Review Project Interim Progress Report (joint w/ Oregon Hanford Cleanup Board members)

  4. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 9, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE December 9, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Update on the Status of Double-Shell Tank AY-102.................................................................................... 1 Safety Culture (joint w/ HSEP)

  5. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 10, 2015 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD HEALTH, SAFETY, AND ENVIRONMENTAL PROTECTION COMMITTEE December 10, 2015 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Enterprise Assessment of Safety Culture at the Waste Treatment and Immobilization Plant (joint w/ TWC)

  6. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 12, 2016 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE January 12, 2016 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Draft Advice on the 100-D/H Proposed Plan ................................................................................................ 1 Letter on Consortium for Risk Evaluation

  7. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 15, 2016 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE March 15, 2016 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Waste Treatment Plant (WTP) Progress and Communication Approach (Joint w/PIC) .............................. 2 Issue Manager Update on Cesium Management Resulting from Low Activity Waste

  8. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 5, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD PUBLIC INVOLVEMENT & COMMUNICATION COMMITTEE June 5, 2013 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Results of Recent Hanford Public Involvement Surveys .............................................................................. 2 Planning for the State of the Site

  9. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 7, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE January 7, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Briefing on 100-F Remedial Investigation/Feasibility Study and Proposed Plan (Revision 0) .................... 1 Briefing on the Annual Hanford Site Groundwater Monitoring Report

  10. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 8, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE January 8, 2013 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Tri-Party Agreement (TPA) Change Package............................................................................................... 1 100 F/IU Operable Unit Proposed Plan Draft A and

  11. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 11, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE February 11, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Briefing on the Resource Conservation and Recovery Act Class 3 Modifications ...................................... 2 Committee Discussion on 100-D&H Remedial

  12. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE April 8, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Draft Advice: 100-D&H Proposed Plan, Draft A ......................................................................................... 2 Status Update on the Resource Conservation and Recovery

  13. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE April 9, 2013 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Briefing on 300 Area Remedial Investigation/Feasibility Study and Proposed Plan Revision 0 ................. 1 Briefing on ROD Development for 100-F Area

  14. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE May 8, 2012 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Draft Advice - 300 Area Remedial Investigation/Feasibility Study and Proposed Plan .............................. 1 Cleanup Integration/Planning

  15. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 10, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE June 10, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Briefing on Interim Storage of Transuranic and Mixed Waste at the Central Waste Complex .................... 1 Update on the Plutonium Finishing Plant

  16. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE January 9, 2013 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Update on Double-Shell Tank AY-102 (joint with PIC) .............................................................................. 1 Issue Manager Framing: Radiation Damage to Concrete at the Waste

  17. Final Meeting Summary Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 1 Health, Safety and Environmental Protection Committee May 8, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD HEALTH, SAFETY, AND ENVIRONMENTAL PROTECTION COMMITTEE May 8, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Hanford Site Policies and Procedures for Worker Injuries and Illnesses (joint w/ TWC)

  18. Final Draft *** Final Draft *** Final Draft Hanford Advisory Board 2013 Program of Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Draft *** Final Draft *** Final Draft Hanford Advisory Board 2013 Program of Work 9/6/12 Page 1 of 15 Topic Relevant Document or Decision Policy Level Issue Action 1 Committee Assignment Timing Comments Cross Cutting Site wide permit Permit TBD Tracking RAP, TWC, PIC, HSEP Post-release of the permit. Review agency response to advice and respond accordingly; Review response to public comment; Want to see follow up on issues HAB raised in advice. LTS - Closure plans and transition of segments to

  19. Expedited technology demonstration project final report: final forms

    SciTech Connect (OSTI)

    Hopper, R W

    1999-05-01

    ETDP Final Forms was an attempt to demonstrate the fabrication and performance of a ceramic waste form immobilizing the hazardous and radioactive elements of the MSO/SR mineral residues. The ceramic material had been developed previously. The fabrication system was constructed and functioned as designed except for the granulator. Fabrication of our particular ceramic, however, proved unsatisfactory. The ceramic material design was therefore changed toward the end of the project, replacing nepheline with zircon as the sink for silica. Preliminary results were encouraging, but more development is needed. Fabrication of the new ceramic requires major changes in the processing: Calcination and granulation would be replaced by spray drying; and sintering would be at higher temperature. The main goal of the project--demonstrating the fabrication and performance of the waste form--was not achieved. This report summarizes Final Forms' activities. The problem of immobilizing the MSO/SR mineral residues is discussed.

  20. Analysis of tank 4 (FTF-4-15-22, 23) surface and subsurface supernatant samples in support of enrichment control, corrosion control and evaporator feed qualification programs

    SciTech Connect (OSTI)

    Oji, L. N.

    2015-09-09

    This report provides the results of analyses on Savannah River Site Tank 4 surface and subsurface supernatant liquid samples in support of the Enrichment Control Program (ECP), the Corrosion Control Program (CCP) and the Evaporator Feed Qualification (EFQ) Program. The purpose of the ECP sample taken from Tank 4 in August 2015 was to determine if the supernatant liquid would be “acceptable feed” to the 2H and 3H evaporator systems.

  1. Risk-Informed Safety Margin Characterization Case Study: Selection of Electrical Equipment to Be Subjected to Environmental Qualification

    SciTech Connect (OSTI)

    D. P. Blanchard; R. W. Youngblood

    2014-06-01

    The Risk-Informed Safety Margin Characterization (RISMC) pathway of the DOE’s Light Water Reactor Sustainability (LWRS) program focuses on advancing the state of the art in safety analysis and risk assessment to support decision-making on nuclear power plant operation well beyond the originally designed lifetime of the plants (i.e., beyond 60 years). Among the issues being addressed in RISMC is the significance of SSC aging and how confident we are about our understanding of its impact on the margin between the loads SSCs are expected to see during normal operation and accident conditions, and the SSC capacities (their ability to resist those loads) as the SSCs age. In this paper, a summary is provided of a case study that examines SSC aging from an environmental qualification (EQ) perspective. The case study illustrates how the state of knowledge regarding SSC margin can be characterized given the overall integrated plant design, and was developed to demonstrate a method for deciding on which cables to focus, which cables are not so important from an environmental qualification margin standpoint, and what plant design features or operating characteristics determine the role that environmental qualification plays in establishing a safety case on which decisions regarding margin can be made. The selection of cables for which demonstration of margin with respect to aging and environmental challenges uses a technique known as Prevention Analysis. Prevention Analysis is a Boolean method for optimal selection of SSCs (that is, those combinations of SSCs both necessary and sufficient to meet a predetermined selection criterion) in a manner that allows demonstration that plant-level safety can be demonstrated by the collection of selected SSCs alone. Choosing the set of SSCs that is necessary and sufficient to satisfy the safety objectives, and demonstrating that the safety objectives can be met effectively, determines where resources are best allocated to assure SSC performance margin. The paper describes the resulting component types that were selected by Prevention Analysis and identifies the accident sequence characteristics that cause these component types to be important from an EQ and aging perspective (and, hence, worthwhile evaluating the extent of safety margin). In addition, component types not selected as needing significant margin from an EQ and aging perspective are discussed and an engineering rationale is developed justifying the lack of need to apply resources to demonstrating margin for these component types. This rationale is in terms of design features of the plant and operating characteristics that make these component types less important from an EQ and aging perspective. While the case study focuses on EQ and aging of equipment and cables located inside the containment of this PWR, the prevention analysis method is demonstrated to be an effective technique for identification of minimal collections of components that would be effective in managing safety for a variety of issues associated with aging and long-term operation of the fleet of plants.

  2. Supplemental Immobilization Cast Stone Technology Development and Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey; Pierce, Eric M.; Cozzi, Alex; Chung, Chul-Woo; Swanberg, David J.

    2013-05-31

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). The pretreatment facility will have the capacity to separate all of the tank wastes into the HLW and LAW fractions, and the HLW Vitrification Facility will have the capacity to vitrify all of the HLW. However, a second immobilization facility will be needed for the expected volume of LAW requiring immobilization. A number of alternatives, including Cast Stone—a cementitious waste form—are being considered to provide the additional LAW immobilization capacity.

  3. Simulations of neutralized final focus

    SciTech Connect (OSTI)

    Welch, D.R.; Rose, D.V.; Genoni, T.C.; Yu, S.S.; Barnard, J.J.

    2005-01-18

    In order to drive an inertial fusion target or study high energy density physics with heavy ion beams, the beam radius must be focused to < 3 mm and the pulse length must be compressed to < 10 ns. The conventional scheme for temporal pulse compression makes use of an increasing ion velocity to compress the beam as it drifts and beam space charge to stagnate the compression before final focus. Beam compression in a neutralizing plasma does not require stagnation of the compression, enabling a more robust method. The final pulse shape at the target can be programmed by an applied velocity tilt. In this paper, neutralized drift compression is investigated. The sensitivity of the compression and focusing to beam momentum spread, plasma, and magnetic field conditions is studied with realistic driver examples. Using the 3D particle-in-cell code, we examine issues associated with self-field generation, stability, and vacuum-neutralized transport transition and focusing.

  4. Final Green Zia Award Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Nuclear Security Administration Home Final Environmental Assessment for the Transfer of the Kansas City Plant The National Nuclear Security Administration (NNSA) has issued a finding that the transfer of the Kansas City Plant at the Bannister Federal Complex in Kansas City, Missouri, to a new owner would have no significant impact on the environment. After more than 60 years, the Kansas City Plant has started relocating from its current location at the Bannister Federal Complex in

  5. Final Design RM | Department of Energy

    Energy Savers [EERE]

    Final Design RM Final Design RM The Final Design (FD) Review Module (RM) is a tool that assists Department of Energy (DOE) federal project review teams in evaluating the technical sufficiency of the final design prior to CD-3 approval. The FD RM focuses on the engineering design, technology, safety, and quality assurance to determine whether it meets overall design commitments, technical and safety requirements. PDF icon Final Design RM More Documents & Publications Seismic Design

  6. Qualification of Daiichi Units 1, 2, and 3 Data for Severe Accident Evaluations - Process and Illustrative Examples from Prior TMI-2 Evaluations

    SciTech Connect (OSTI)

    Rempe, Joy Lynn; Knudson, Darrell Lee

    2014-09-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) Pressurized Water Reactor (PWR) and the Daiichi Units 1, 2, and 3 Boiling Water Reactors (BWRs) provide unique opportunities to evaluate instrumentation exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during the TMI-2 accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This initial review focused on the set of sensors deemed most important by post-TMI-2 instrumentation evaluation programs. Instrumentation evaluation programs focused on data required by TMI-2 operators to assess the condition of the reactor and containment and the effect of mitigating actions taken by these operators. In addition, prior efforts focused on sensors providing data required for subsequent forensic evaluations and accident simulations. To encourage the potential for similar activities to be completed for qualifying data from Daiichi Units 1, 2, and 3, this report provides additional details related to the formal process used to develop a qualified TMI-2 data base and presents data qualification details for three parameters: primary system pressure; containment building temperature; and containment pressure. As described within this report, sensor evaluations and data qualification required implementation of various processes, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design to instruments easily removed from the TMI-2 plant for evaluations. As documented in this report, results from qualifying data for these parameters led to key insights related to TMI-2 accident progression. Hence, these selected examples illustrate the types of activities completed in the TMI-2 data qualification process and the importance of such a qualification effort. These details are documented in this report to facilitate implementation of similar process using data and examinations at the Daiichi Units 1, 2, and 3 reactors so that BWR-specific benefits can be obtained.

  7. Trial-Run of a Junction-Box Attachment Test for Use in Photovoltaic Module Qualification: Preprint

    SciTech Connect (OSTI)

    Miller, D. C.; Deibert, S. L.; Wohlgemuth, J. H.

    2014-06-01

    Engineering robust adhesion of the junction box (j-box) is a hurdle typically encountered by photovoltaic module manufacturers during product development and manufacturing process control. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp-heat,' 'thermal-cycle,' or 'creep' tests within the IEC qualification protocol is proposed to verify the basic robustness of the adhesion system. The details of the proposed test are described, in addition to a trial-run of the test procedure. The described experiments examine four moisture-cured silicones, four foam tapes, and a hot-melt adhesive used in conjunction with glass, KPE, THV, and TPE substrates. For the purpose of validating the experiment, j-boxes were adhered to a substrate, loaded with a prescribed weight, and then subjected to aging. The replicate mock-modules were aged in an environmental chamber (at 85 degrees C/85% relative humidity for 1000 hours; then 100 degrees C/<10% relative humidity for 200 hours) or fielded in Golden (CO), Miami (FL), and Phoenix (AZ) for one year. Attachment strength tests, including pluck and shear test geometries, were also performed on smaller component specimens.

  8. VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY'S (DWPF) PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 7A QUALIFICATION SAMPLE

    SciTech Connect (OSTI)

    Click, D.; Edwards, T.; Jones, M.; Wiedenman, B.

    2011-03-14

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO{sub 3} acid dissolution (i.e., DWPF Cold Chem Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestions of Sludge Batch 7a (SB7a) SRAT Receipt and SB7a SRAT Product samples. The SB7a SRAT Receipt and SB7a SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constituates the SB7a Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 6 (SB6), to form the Sb7a Blend composition.

  9. Literature review of environmental qualification of safety-related electric cables: Summary of past work. Volume 1

    SciTech Connect (OSTI)

    Subudhi, M.

    1996-04-01

    This report summarizes the findings from a review of published documents dealing with research on the environmental qualification of safety-related electric cables used in nuclear power plants. Simulations of accelerated aging and accident conditions are important considerations in qualifying the cables. Significant research in these two areas has been performed in the US and abroad. The results from studies in France, Germany, and Japan are described in this report. In recent years, the development of methods to monitor the condition of cables has received special attention. Tests involving chemical and physical examination of cable`s insulation and jacket materials, and electrical measurements of the insulation properties of cables are discussed. Although there have been significant advances in many areas, there is no single method which can provide the necessary information about the condition of a cable currently in service. However, it is possible that further research may identify a combination of several methods that can adequately characterize the cable`s condition.

  10. Qualification of the Savannah River National Laboratories Coulometer, Model SRNL-Rev. 2 (Serial # SRNL-003 Coulometer) for use in Process 3401a, Plutonium Assay by Controlled Coulometer

    SciTech Connect (OSTI)

    Tandon, Lav; Colletti, Lisa M.; Drake, Lawrence R.; Lujan, Elmer J. W.; Garduno, Katherine

    2012-08-22

    This report discusses the process used to prove in the SRNL-Rev.2 coulometer for isotopic data analysis used in the special plutonium material project. In May of 2012, the PAR 173 coulometer system that had been the workhorse of the Plutonium Assay team since the early 1970s became inoperable. A new coulometer system had been purchased from Savannah River National Laboratory (SRNL) and installed in August of 2011. Due to funding issues the new system was not qualified at that time. Following the failure of the PAR 173, it became necessary to qualify the new system for use in Process 3401a, Plutonium Assay by Controlled Coulometry. A qualification plan similar to what is described in PQR -141a was followed. Experiments were performed to establish a statistical summary of the performance of the new system by monitoring the repetitive analysis of quality control sample, PEOL, and the assay of plutonium metals obtained from the Plutonium Exchange Program. The data for the experiments was acquired using work instructions ANC125 and ANC195. Figure 1 shows approximately 2 years of data for the PEOL material obtained using the PAR 173. The required acceptance criteria for the sample are that it returns the correct value for the quality control material of 88.00% within 2 sigma (95% Confidence Interval). It also must meet daily precision standards that are set from the historical data analysis of decades of data. The 2 sigma value that is currently used is 0.146 % as evaluated by the Statistical Science Group, CCS-6. The average value of the PEOL quality control material run in 10 separate days on the SRNL-03 coulometer is 87.98% with a relative standard deviation of 0.04 at the 95% Confidence interval. The date of data acquisition is between 5/23/2012 to 8/1/2012. The control samples are run every day experiments using the coulometer are carried out. It is also used to prove an instrument is in statistical control before any experiments are undertaken. The total number of replicate controls run with the new coulometer to date, is n=18. This value is identical to that calculated by the LANL statistical group for this material from data produced by the PAR 173 system over the period of October 2007 to May 2011. The final validation/verification test was to run a blind sample over multiple days. AAC participates in a plutonium exchange program which supplies blind Pu metal samples to the group on a regular basis. The Pu material supplied for this study was ran using the PAR 173 in the past and more recently with the new system. Table 1a contains the values determined through the use of the PAR 173 and Table 1b contains the values obtained with the new system. The Pu assay value obtained on the SRNL system is for paired analysis and had a value of 98.88+/-0.07% RSD at 95% CI. The Pu assay value (decay corrected to July 2012) of the material determined in prior measurements using the PAR173 is 99.05 +/- 0.06 % RSD at 95% CI. We believe that the instrument is adequate to meet the needs of the program.

  11. Final Information Quality Bulletin for Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Information Quality Bulletin for Peer Review Final Information Quality Bulletin for Peer Review Final Information Quality Bulletin for Peer Review PDF icon Final Information ...

  12. Hanford_FinalReport_20140130

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Hanford workers begin cleaning out historic McCluskey Room Hanford workers begin cleaning out historic McCluskey Room Addthis Description Workers have entered one of the most hazardous rooms at the Hanford Site in Washington state to begin final cleanup of a room that became known to workers over the years by the name of a worker injured there in a Cold War-era accident. The first reentry on Monday, September 8, 2014, consisted mostly surveying the room. More information:

  13. Field practice internship final report

    SciTech Connect (OSTI)

    Foster, T.

    1994-05-01

    This field practice internship final report gives an overview of the field practice, which was completed at the Oak Ridge Y-12 Plant, Martin Marietta Energy Systems, Inc., Environmental Management Department, Oak Ridge, Tennessee. The field practice focused on the completion of the Superfund Amendments and Reauthorization Act (SARA) Title III, Emergency Planning and Community Right-to-Know Act Section 312, Tier II Report. The field practice internship was conducted on a full-time basis between December 13, 1993 through February 18, 1994. Sheila Poligone, Emergency Planning and Community Right-to-Know Act (EPCRA) Coordinator served as the field practice preceptor.

  14. Final Rule (December 4, 2009)

    Broader source: Energy.gov [DOE]

    Loan Guarantees for Projects that Employ Innovative Technologies: On October 23, 2007, the Department of Energy published a final rule establishing regulations for the loan guarantee program authorized by Section 1703 of Title XVII of the Energy Policy Act of 2005. Section 1703 of Title XVII authorizes the Secretary of Energy to make loan guarantees for projects that “avoid, reduce, or sequester air pollutants or anthropogenic emissions of greenhouse gases; and employ new or significantly improved technologies as compared to commercial technologies in service in the United States at the time the guarantee is issued.”

  15. Virtualized Network Control. Final Report

    SciTech Connect (OSTI)

    Ghani, Nasir

    2013-02-01

    This document is the final report for the Virtualized Network Control (VNC) project, which was funded by the United States Department of Energy (DOE) Office of Science. This project was also informally referred to as Advanced Resource Computation for Hybrid Service and TOpology NEtworks (ARCHSTONE). This report provides a summary of the project's activities, tasks, deliverable, and accomplishments. It also provides a summary of the documents, software, and presentations generated as part of this projects activities. Namely, the Appendix contains an archive of the deliverables, documents, and presentations generated a part of this project.

  16. UM-ASU Final Report

    Office of Scientific and Technical Information (OSTI)

    8 21 UM-ASU Final Report Assessing the Role of Iron Sulfides in the Long Term Sequestration of Uranium by Sulfate-Reducing Bacteria Grant Number: DE-SC0001642 December 31, 2013 Report Period: September 1, 2009 to August 31, 2013 Kim F. Hayes (PI), Yuqiang Bi, Julian Carpenter, and Sung Pil Hyun University of Michigan Bruce E. Rittmann (co-PI), Chen Zhou, Raveender Vannela Arizona State University James A. Davis (co-I) LBNL Executive Summary This four-year project's overarching aim was to

  17. [Experimental nuclear physics]. Final report

    SciTech Connect (OSTI)

    1991-04-01

    This is the final report of the Nuclear Physics Laboratory of the University of Washington on work supported in part by US Department of Energy contract DE-AC06-81ER40048. It contains chapters on giant dipole resonances in excited nuclei, nucleus-nucleus reactions, astrophysics, polarization in nuclear reactions, fundamental symmetries and interactions, accelerator mass spectrometry (AMS), ultra-relativistic heavy ions, medium energy reactions, work by external users, instrumentation, accelerators and ion sources, and computer systems. An appendix lists Laboratory personnel, a Ph. D. degree granted in the 1990-1991 academic year, and publications. Refs., 41 figs., 7 tabs.

  18. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 6 QUALIFICATION

    SciTech Connect (OSTI)

    Pareizs, J.; Pickenheim, B.; Bannochie, C.; Billings, A.; Bibler, N.; Click, D.

    2010-10-01

    Prior to initiating a new sludge batch in the Defense Waste Processing Facility (DWPF), Savannah River National Laboratory (SRNL) is required to simulate this processing, including Chemical Process Cell (CPC) simulation, waste glass fabrication, and chemical durability testing. This report documents this simulation for the next sludge batch, Sludge Batch 6 (SB6). SB6 consists of Tank 12 material that has been transferred to Tank 51 and subjected to Low Temperature Aluminum Dissolution (LTAD), Tank 4 sludge, and H-Canyon Pu solutions. Following LTAD and the Tank 4 addition, Liquid Waste Operations (LWO) provided SRNL a 3 L sample of Tank 51 sludge for SB6 qualification. Pu solution from H Canyon was also received. SB6 qualification included washing the sample per LWO plans/projections (including the addition of Pu from H Canyon), DWPF CPC simulations, waste glass fabrication (vitrification), and waste glass characterization and chemical durability evaluation. The following are significant observations from this demonstration. Sludge settling improved slightly as the sludge was washed. SRNL recommended (and the Tank Farm implemented) one less wash based on evaluations of Tank 40 heel projections and projections of the glass composition following transfer of Tank 51 to Tank 40. Thorium was detected in significant quantities (>0.1 wt % of total solids) in the sludge. In past sludge batches, thorium has been determined by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS), seen in small quantities, and reported with the radionuclides. As a result of the high thorium, SRNL-AD has added thorium to their suite of Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) elements. The acid stoichiometry for the DWPF Sludge Receipt and Adjustment Tank (SRAT) processing of 115%, or 1.3 mol acid per liter of SRAT receipt slurry, was adequate to accomplish some of the goals of SRAT processing: nitrite was destroyed to below 1,000 mg/kg and mercury was removed to below the DWPF target with 750 g of steam per g of mercury. However, rheological properties did not improve and were above the design basis. Hydrogen generation rates did not exceed DWPF limits during the SRAT and Slurry Mix Evaporator (SME) cycles. However, hydrogen generation during the SRAT cycle approached the DWPF limit. The glass fabricated with the Tank 51 SB6 SME product and Frit 418 was acceptable with respect to chemical durability as measured by the Product Consistency Test (PCT). The PCT response was also predictable by the current durability models of the DWPF Product Composition Control System (PCCS). It should be noted, however, that in the first attempt to make glass from the SME product, the contents of the fabrication crucible foamed over. This may be a result of the SME product's REDOX (Reduction/Oxidation - Fe{sup 2+}/{Sigma}Fe) of 0.08 (calculated from SME product analytical results). The following are recommendations drawn from this demonstration. In this demonstration, at the request of DWPF, SRNL caustic boiled the SRAT contents prior to acid addition to remove water (to increase solids concentration). During the nearly five hours of caustic boiling, 700 ppm of antifoam was required to control foaming. SRNL recommends that DWPF not caustic boil/concentrate SRAT receipt prior to acid addition until further studies can be performed to provide a better foaming control strategy or a new antifoam is developed for caustic boiling. Based on this set of runs and a recently completed demonstration with the SB6 Waste Acceptance Product Specifications (WAPS) sample, it is recommended that DWPF not add formic acid at the design addition rate of two gallons per minute for this sludge batch. A longer acid addition time appears to be helpful in allowing slower reaction of formic acid with the sludge and possibly decreases the chance of a foam over during acid addition.

  19. GDB - Human Genome Database final report

    SciTech Connect (OSTI)

    Talbot, C. Conover, Jr.

    2002-01-08

    This is the DOE final report for the GDB, Human Genome Database, project at the Johns Hopkins University.

  20. Final Report: "Collaborative Project. Understanding the Chemical...

    Office of Scientific and Technical Information (OSTI)

    Report: "Collaborative Project. Understanding the Chemical Processes That Affect Growth ... Title: Final Report: "Collaborative Project. Understanding the Chemical Processes That ...

  1. Microsoft Word - FINAL_TECHNICAL_REPORT.doc

    Office of Scientific and Technical Information (OSTI)

    ......... 27 Figure 16 Comparison between simulation and experimental results: (a) Top view of final simulated inclusion locations. ...

  2. Fort Polk EEAP. Final report

    SciTech Connect (OSTI)

    Busch, R.D.; Scheuch, K.E.; Shishman, T.T.

    1986-07-17

    This Final Presentation provides a summary of the work done under Increments A, B, E, and G of the Energy Engineering Analysis Program (EEAP) for Fort Polk Louisiana. The work was accomplished under Contract DACA63-80-C-0166 plus modifications with the Fort Worth District, Corps of Engineers. The vast majority of consumed energy at Fort Polk consists of electricity and natural gas. In FY75, Fort Polk used 48,399,000 kWh of electricity at a cost of $600,000. During that same period, 782,637 MCF of natural gas was purchased for $484,000. The total FY75 energy use was 1,368,327 MBtu.

  3. Strategic Asia 2002 Final Report

    SciTech Connect (OSTI)

    Richard Ellings; Aaron Friedberg; Michael Wills

    2002-09-01

    The Strategic Asia Program made considerable progress over the course of 2002--the program's first year with support from the Department of Energy--and completed all its tasks on schedule and within budget. Following a planning meeting in Washington in February 2002, a team of leading specialists wrote a series of original assessments regarding the impact of September 11 on the strategic environment in Asia, examining how perceptions and strategies of countries in the region changed following the terrorist attacks. The final products, Strategic Asia 2002-03: Asian Aftershocks and its accompanying executive summary, were published in September 2002. The program's research findings (some of which are summarized) were presented to policymakers in Washington and elsewhere throughout the year, and almost 2,000 copies of the book had been distributed by mid-2003.

  4. 2009 ECR FINAL REPORT 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 ECR FINAL REPORT 2010 2009 ECR FINAL REPORT 2010 2009 ECR FINAL REPORT 2010 2009 ECR FINAL REPORT 2010 PDF icon 2009 ECR Report More Documents & Publications test Final ECR...

  5. IRIS Final Technical Progress Report

    SciTech Connect (OSTI)

    M. D. Carelli

    2003-11-03

    OAK-B135 This NERI project, originally started as the Secure Transportable Autonomous Light Water Reactor (STAR-LW) and currently known as the International Reactor Innovative and Secure (IRIS) project, had the objective of investigating a novel type of water-cooled reactor to satisfy the Generation IV goals: fuel cycle sustainability, enhanced reliability and safety, and improved economics. The research objectives over the three-year (1999-2002) program were as follows: First year: Assess various design alternatives and establish main characteristics of a point design; Second year: Perform feasibility and engineering assessment of the selected design solutions; Third year: Complete reactor design and performance evaluation, including cost assessment These objectives were fully attained and actually they served to launch IRIS as a full fledged project for eventual commercial deployment. The program did not terminate in 2002 at the end of the NERI program, and has just entered in its fifth year. This has been made possible by the IRIS project participants which have grown from the original four member, two-countries team to the current twenty members, nine countries consortium. All the consortium members work under their own funding and it is estimated that the value of their in-kind contributions over the life of the project has been of the order of $30M. Currently, approximately 100 people worldwide are involved in the project. A very important constituency of the IRIS project is the academia: 7 universities from four countries are members of the consortium and five more US universities are associated via parallel NERI programs. To date, 97 students have worked or are working on IRIS; 59 IRIS-related graduate theses have been prepared or are in preparation, and 41 of these students have already graduated with M.S. (33) or Ph.D. (8) degrees. This ''final'' report (final only as far as the NERI program is concerned) summarizes the work performed in the first four years of IRIS, from October 1999 to October 2003. It provides a panoramic of the project status and design effort, with emphasis on the current status, since two previous reports have very extensively documented the work performed, from inception to early 2002.

  6. SRC-I Demonstration Plant Analytical Laboratory. Final technical report

    SciTech Connect (OSTI)

    Hamilton, R.F.; Klusaritz, M.; Maroulis, P.J.; Moyer, J.D.; Parees, D.M.; Skinner, R.W.; Sydlik, E.; Tewari, K.C.; Tiedge, W.F.; Znaimer, S.

    1983-09-01

    This report describes planning and methods development activities to establish an SRC-I Coal Liquefaction Demonstration Plant analytical laboratory. Laboratory requirements are listed and methods qualification/development activities are described for the following areas: microanalytical carbon, hydrogen, chlorine, nitrogen, and sulfur procedures; ash determination; GC/MS and GC/FID analyses; metals analyses; and GC-simulated distillation. 2 references, 64 figures, 108 tables.

  7. Qualification of JEFF3.1.1 library for high conversion reactor calculations using the ERASME/R experiment

    SciTech Connect (OSTI)

    Vidal, J. F.; Noguere, G.; Peneliau, Y.; Santamarina, A.

    2012-07-01

    With its low CO{sub 2} production, Nuclear Energy appears to be an efficient solution to the global warming due to green-house effect. However, current LWR reactors are poor uranium users and, pending the development of Fast Neutron Reactors, alternative concepts of PWR with higher conversion ratio (HCPWR) are being studied again at CEA, first studies dating from the middle 80's. In these French designs, low moderation ratio has been performed by tightening the lattice pitch, achieving a conversion ratio of 0.8-0.9 with a MOX fuel coming from PWR UOX recycling. Theses HCPWRs are characterized by a harder neutron spectrum and the calculation uncertainties on the fundamental neutronics parameters are increased by a factor 3 regarding a standard PWR lattice, due to the major contribution of the Plutonium isotopes and of the epithermal energy range to the reaction rates. In order to reduce these uncertainties, a 3-year experimental validation program called ERASME has been performed by CEA from 1984 to 1986 in the EOLE reactor. Monte Carlo analysis of the ERASME/R experiments with the Monte Carlo code TRIPOLI4 allowed the qualification of the recommended JEFF.3.1.1 library for major neutronics parameters. K{sub eff} of the MOX under-moderated lattice is over-predicted by 440 {+-} 830 pcm (2{sigma}); the conversion ratio, indicator of the good use of uranium, is also slightly over-predicted: 2 % {+-} 4 % (2{sigma}) and the same for B4C absorber rods worth and soluble boron worth, over-predicted by 2 %, both in the 2 standard deviations range. The radial fission maps of heterogeneities (water-holes, B4C and fertile rods) are well reproduced: maximal (C-E)/E dispersion is 1.3 %, maximal power peak error is 2.7 %. The void reactivity worth is the only parameter poorly calculated with an overprediction of +12.4% {+-} 1.5%. ERASME/R analysis of MOX reactivity, void effect and spectral indexes will contribute to the reevaluation of {sup 241}Am and Plutonium isotopes nuclear data for the next library JEFF3.2. (authors)

  8. Hawaii Clean Energy Final PEIS Summary

    Energy Savers [EERE]

    HAWAI'I CLEAN ENERGY FINAL PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENT SUMMARY U.S. DEPARTMENT OF ENERGY Office of Electricity Delivery and Energy Reliability Office of Energy Efficiency and Renewable Energy (DOE/EIS-0459) SEPTEMBER 2015 COVER SHEET TITLE: Hawai i Clean Energy Final Programmatic Environmental Impact Statement (Final PEIS) RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE), Offices of Electricity Delivery and Energy Reliability (OE) and Energy Efficiency and Renewable

  9. Portsmouth Decommissioning and Decontamination Project Director's Final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Findings and Order | Department of Energy Decommissioning and Decontamination Project Director's Final Findings and Order Portsmouth Decommissioning and Decontamination Project Director's Final Findings and Order Portsmouth Decommissioning and Decontamination (D&D) Project Director's Final Findings and Order defines the steps for identifying a range of technical alternatives for the D&D and waste disposition components of the project, and reaching formal decisions on how best to

  10. Clark Public Utilities Impact Evaluation Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clark Public Utilities Impact Evaluation Final Report - July 2015 - Home Energy Reports Memorandum 1375 Walnut Street Suite 200 Boulder, CO 80302 303-728-2500 To: Lauren Gage...

  11. Community Power Works Final Report and Conclusions

    SciTech Connect (OSTI)

    Baumel, Christie

    2015-03-09

    This is the final technical report for the City of Seattle's Community Power Works program, funded through the US DOE Better Buildings grant program.

  12. Technical Assessment Team Issues Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , 2015 Technical Assessment Team Issues Final Report This week the Department of Energy's Technical Assessment Team (TAT) visited Carlsbad and met with federal and contractor staff ...

  13. Cell Total Activity Final Estimate.xls

    Office of Legacy Management (LM)

    WSSRAP Cell Total Activity Final Estimate (calculated September 2002, Fleming) (Waste streams & occupied cell volumes from spreadsheet titled "cell waste volumes-8.23.02 with ...

  14. EIS-0146: Final Programmatic Environmental Impact Statement ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0146: Final Programmatic Environmental Impact Statement Clean Coal Technology Demonstration Program The proposed action evaluated in this PEIS is to continue the Clean Coal ...

  15. Bureau of Land Management - Final Programmatic Environmental...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Report: Bureau of Land Management - Final Programmatic Environmental Impact Statement for Geothermal Leasing in the...

  16. Paducah Gaseous Diffusion Plant Final Environmental Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Point of contact for more information: Robert Smith, Department of Energy-Paducah PDF icon Paducah Gaseous Diffusion Plant Final Environmental Assessment for Potential Land and ...

  17. Microsoft Word - Final Report.doc

    Office of Scientific and Technical Information (OSTI)

    Report Title and Type: FINAL PROJECT TECHNICAL NARRATIVE REPORT Report Period: SEPTEMBER ... Within a tight crude oil supply market, this project demonstrates the ability to maintain ...

  18. EIS-0251: Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Department of the Navy Final Environmental Impact Statement for a Container System for the Management of Naval Spent Nuclear Fuel (November 1996)

  19. EA-1212-SA-01: Final Supplement Analysis

    Broader source: Energy.gov [DOE]

    Final Supplement Analysis for the Environmental Assessment for the Lease of Land for the Development of a Research Park at Los Alamos National Laboratory

  20. CONTRACTOR LEGAL MANAGEMENT REQUIREMENTS: APPLYING THE FINAL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attached is Acquisition Letter 2013-07, which provides suggested modification language. (The Final Rule's revisions are administrative in nature. Regarding costs contractors have ...

  1. Critical Materials Workshop Final Participant List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of Energy Satish Vishnubhatla Danfoss David Waldeck U of Pittsburgh Frederick Walker Air Products Critical Materials Workshop April 3, 2012 Arlington, VA Final ...

  2. Final Report - Hydrogen Delivery Infrastructure Options Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report - Hydrogen Delivery Infrastructure Options Analysis Final Report - Hydrogen Delivery Infrastructure Options Analysis This report, by the Nexant team, documents an in-depth...

  3. Final Conservation Billing Credit Policy Supplement Background...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Customers subject to I-937 must acquire conservation independent of BPA's conservation acquisition efforts. In 2007, as BPA was finalizing its Regional Dialogue Policy, several...

  4. Final Complex Transformation Supplemental Programmatic Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Tommy Rhea Seda Rhodes Narc Ribot Alison Rice Pamela Richard Linda Richards Don ... Seitz E. W. Seols Lee Sessions Sue Severin Anne Shainline Chapter 15 Final Complex ...

  5. Final Technical Report on Radioxenon Event Analysis

    SciTech Connect (OSTI)

    Ely, James H.; Cooper, Matthew W.; Hayes, James C.; Heimbigner, Tom R.; McIntyre, Justin I.; Schrom, Brian T.

    2013-03-15

    This is a final deliverable report for the Advanced Spectral Analysis for Radioxenon project with a focus on radioxenon event categorization.

  6. EIS-0083: Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Final Northeast Regional Environmental Impact Statement; The Potential Conversion of Forty-Two Powerplants From Oil to Coal or Alternate Fuels

  7. Final Report Package_Winnebago

    SciTech Connect (OSTI)

    Carolyn Stewart, Director, Red Mountain Energy Partners

    2006-10-31

    The Winnebago Tribe of Nebraska energy options study results will be used to advance the Tribe’s near term energy management objectives. The array of energy options identified allows the Tribe to select those activities that best fit its energy strategies, goals and objectives. During the course of the study, Red Mountain analyzed both energy options and energy organizational alternatives suitable for the Tribe, presented findings to the Tribal Council, and made recommendations regarding each. Work products delivered to the Tribe, and provided in the Final Report included: • A matrix of energy management options applicable to the Tribe, which provided descriptions of particular conservation, efficiency, weatherization, and demand management alternatives. The matrix also provided insight about relative costs of the alternatives, cost/benefit efficacy, ease of implementation, resources for implementing, and observations about each. • A matrix of utility service options applicable to the Tribe, describing each of the four alternatives described above. The matrix also provided insight about key benefits of each option, required resources, costs and timeframe for implementation, funding sources and analysis, and key issues for consideration. • Discussion guides prepared for each meeting between the Energy Committee and Council, and the Tribe’s contractor, Red Mountain Energy Partners, which included preliminary analysis and findings. • A Position Description for the Energy Manager position, which was reviewed by the Tribal HR Department, and used by the Tribe to develop a position posting. • A Utility Code designed for Winnebago to use in establishing its Utility Board, and, ultimately, to provide guidance for the Board’s further development. • A project summary book developed to include all key information, deliverables and utility provider data for the project. Winnebago’s growth trends and expansion plans require the Tribe to play a more active role in assuring that safe, reliable, affordable, and clean energy is available to meet the Reservation’s present and future needs. In considering alternatives to meet these needs, the Tribe intends to maintain alignment between its growth goals, and cultural values of sustainable, environmental stewardship.

  8. Final report on SNAC 11

    SciTech Connect (OSTI)

    Huber, Patrick

    2013-06-26

    This report details how the $5,000 DOE grant to support the workshop titled “Sterile Neutrinos at the Crossroads” (or SNAC11) was allocated and spent. The SNAC11 workshop covered three days during which there were 28 talks, multiple discussion sessions, a poster session with 9 posters delivered, and an impromptu public lecture on the OPERA superluminal neutrino result by the former project manager of OPERA (this was the first official OPERA talk on the subject in North America). The workshop scientific agenda can be viewed at http://www.cpe.vt.edu/snac/program.html. Emerging out of the workshop discussions, was the idea to write a comprehensive white paper describing the current state of the light sterile neutrino. This effort soon became an international collaboration. The final document, titled “Light Sterile Neutrinos: A White Paper” has nearly 200 authors, is 267 pages long, and cites 730 unique references. It has been posted the preprint archive as arXiv:1204.5379 [hep-ph]. Workshop local organizing committee co-chairs, Patrick Huber and Jonathan Link, are the white paper’s head editors. The white paper’s sections and section editors are as follows: 1. Theory and Motivation (Gabriela Barenboim, Valencia and Werner Rodejohann, MPI Heidelberg) 2. Astrophysical Evidence (Kev Abazajian, UC Irvine and Yvonne Wong, Aachen) 3. Evidence from Oscillation Experiments (Joachim Kopp, FNAL and Bill Louis, LANL) 4. Global Picture (Thierry Lasserre, CEA Saclay and Thomas Schwetz, MPI Heidelberg) 5. Requirements for Future Measurements (Bonnie Fleming, Yale and Joe Formaggio, MIT) 6. Appendix: Possible Future Experiments (Patrick Huber, Virginia Tech and Jon Link, Virginia Tech) In all 56 people participated in the workshop, of these 11 were young scientists. The workshop was covered in a feature article in Science (Science, 334, (2011), 304-306.). The DOE award was spent, as budgeted, as contractual services to VT CPE, which is the unit within the University which organizes conferences. Specifically, the travel cost of the speakers P. Langacker, K. Schreckenbach and P. Vogel was covered as well as bus transportation to KURF and to/from the airport.

  9. Electric chiller handbook. Final report

    SciTech Connect (OSTI)

    1998-02-01

    Electric chillers have dominated the market for large commercial cooling systems due to their history of reliable, economical operation. The phaseout of CFCs and deregulation of the utility industry are two factors that significantly impact the chiller market. The CFC phaseout is resulting in the upgrading or replacement of thousands of electric chillers nationwide. In a deregulated environment, utilities are finding increasing need to provide services that can win and retain new customers. Utility representatives need current information on applying and selecting cost-effective chiller systems. The objective of this report was to develop a comprehensive handbook that helps utility technical and marketing staff, their customers, and design professionals evaluate and select the best options for chilled-water systems in commercial buildings. Investigators used a variety of industry data sources to develop market-share information for electric and gas chiller systems and to determine applications according to building age, type, and region. Discussions with chiller manufacturers provided information on product availability, performance, and ownership cost. Using EPRI`s COMTECH software, investigators performed comprehensive cost analyses for placement of large and small chillers in three representative cities. Case studies of actual installations support these analyses. Electric Chiller Handbook provides a single source of current information on all major issues associated with chiller selection and application. Key issues include chiller availability and markets, rated performance, future viability of various refrigerant options, the cost-effectiveness of alternative chillers, and chilled-water system optimization. The Handbook also describes available hardware, outlines the features and costs of gas-fired competitive systems, and provides methods and comparisons of life-cycle costing of various chiller system options. Analyses of chiller features and economics show that electric chillers are preferable to gas chillers in the large majority of applications, consistent with current market trends. Furthermore, today`s chillers offer a wide range of efficiencies and refrigerant options to serve cooling system needs for the 20-year lifetime of the chiller. Finally, new higher-efficiency models of electric chillers offer very attractive paybacks.

  10. Santa Barbara Final Technical Report

    SciTech Connect (OSTI)

    Hacker, Angela; Hansen, Sherman; Watkins, Ashley

    2013-11-30

    This report serves as the Final Report for Santa Barbara County’s Energy Efficiency and Conservation Block Grant (EECBG) BetterBuildings Neighborhood Program (BBNP) award from the U.S. Department of Energy (DOE). This report explains how DOE BBNP funding was invested to develop robust program infrastructure designed to help property owners complete energy improvements, thereby generating substantial outcomes for the local environment and economy. It provides an overview of program development and design within the grant period, program accomplishments and challenges to date, and a plan for the future sustainability of emPower, the County’s innovative clean energy and building efficiency program. During the grant period, Santa Barbara County’s emPower program primarily targeted 32,000 owner occupied, single family, detached residential homes over 25 years old within the County. In order to help these homeowners and their contractors overcome market barriers to completing residential energy improvements, the program developed and promoted six voluntary, market-based service areas: 1) low cost residential financing (loan loss reserve with two local credit unions), 2) residential rebates, 3) local customer service, 4) expert energy advising, 5) workforce development and training, and 6) marketing, education and outreach. The main goals of the program were to lower building energy use, create jobs and develop a lasting regional building performance market. These services have generated important early outcomes and lessons after the program’s first two years in service. The DOE BBNP funding was extended through October 2014 to enable Santa Barbara County to generate continued outcomes. In fact, funding related to residential financing remains wholly available for the foreseeable future to continue offering Home Upgrade Loans to approximately 1,300 homeowners. The County’s investment of DOE BBNP funding was used to build a lasting, effective, and innovative program design that has earned statewide recognition and distinction. As a result of the County’s leadership, the California Energy Commission (CEC) and the California Public Utilities Commission (PUC) offered over $5 million in funding to continue realizing ongoing returns on the initial investment made in developing emPower, alongside remaining (extended) DOE BBNP funds. These new funding sources, accepted by the County Board of Supervisors on June 25, 2013, also allow the program to expand its innovative energy solutions to the broader region, including Ventura and San Luis Obispo Counties.

  11. EA-1979: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Assessment EA-1979: Final Environmental Assessment Summit Wind Farm; Summit, South Dakota Western Area Power Administration (Western) issued a final EA that ...

  12. EA-1984: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Assessment EA-1984: Final Environmental Assessment Disposition of Five Signature Properties at Idaho National Laboratory This Final EA evaluates the impacts of...

  13. Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive Program Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive Program This document contains the Final ...

  14. EIS-0312: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Impact Statement EIS-0312: Final Environmental Impact Statement Fish and Wildlife Implementation Plan In this final environmental impact statement (FEIS), with...

  15. Microsoft PowerPoint - Final translated version of Tsinghua Speech...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final translated version of Tsinghua Speech Microsoft PowerPoint - Final translated version of Tsinghua Speech PDF icon Microsoft PowerPoint - Final translated version of Tsinghua ...

  16. EA-1728: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Assessment EA-1728: Final Environmental Assessment Final Environmental Assessment for Integrated Vegetation Management of the Hanford Site, Richland, WA This EA...

  17. EIS-0306: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Impact Statement EIS-0306: Final Environmental Impact Statement Treatment and Management of Sodium-Bonded Spent Nuclear Fuel DOE prepared a Final EIS that...

  18. EIS-0290: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Impact Statement EIS-0290: Final Environmental Impact Statement Advanced Mixed Waste Treatment Project (AMWTP) The AMWTP Final EIS assesses the potential ...

  19. EIS-0370: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Impact Statement EIS-0370: Final Environmental Impact Statement Windy Gap Firming Project, Colorado Download Document PDF icon EIS-0370: Final Environmental ...

  20. EIS-0440: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Impact Statement EIS-0440: Final Environmental Impact Statement Quartzsite Solar Energy Project The Final Environmental Impact Statement (FEIS) consists of a ...

  1. EIS-0015: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15: Final Environmental Impact Statement EIS-0015: Final Environmental Impact Statement U.S. Spent Fuel Policy PDF icon EIS-0015: Final Environmental Impact Statement, volume 1 PDF ...

  2. EA-1818: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Final Environmental Assessment EA-1818: Final Environmental Assessment Pettisville ... More Documents & Publications EA-1818: Finding of No Significant Impact EA-1820: Final ...

  3. EA-1008: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1008: Final Environmental Assessment EA-1008: Final Environmental Assessment Continued ... Environmental Assessment EA-1236: Finding of No Significant Impact EA-1956: Final

  4. EIS-0337: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Impact Statement EIS-0337: Final Environmental Impact Statement West Valley Demonstration Project Waste Management The purpose of the Final West Valley ...

  5. Attachment C - Summary GHG Emissions Data FINAL | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Summary GHG Emissions Data FINAL Attachment C - Summary GHG Emissions Data FINAL File Attachment C - Summary GHG Emissions Data FINAL More Documents & Publications Attachment C

  6. Attachment C Summary GHG Emissions Data FINAL | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary GHG Emissions Data FINAL Attachment C Summary GHG Emissions Data FINAL File Attachment-C-Summary-GHG-Emissions-Data-FINAL.xlsx More Documents & Publications Attachment C -

  7. EIS-0511: Final Environmental Impact Statement | Department of...

    Office of Environmental Management (EM)

    1: Final Environmental Impact Statement EIS-0511: Final Environmental Impact Statement Aguirre Offshore GasPort Project, Puerto Rico FERC issued a Final EIS with 10 cooperating...

  8. EIS-0102: Final Environmental Impact Statement | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    83 Wholesale Power Rate EIS-0102: Final Environmental Impact Statement More Documents & Publications EIS-0071: Final Environmental Impact Statement EIS-0202: Final Environmental...

  9. EIS-0486: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Impact Statement EIS-0486: Final Environmental Impact Statement Plains & Eastern Clean Line Transmission Project DOE prepared this Final EIS to evaluate the ...

  10. EIS-0503: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Impact Statement EIS-0503: Final Environmental Impact Statement New England Clean Power Link, Vermont DOE prepared this Final EIS to evaluate the potential ...

  11. EIS-0488: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Impact Statement EIS-0488: Final Environmental Impact Statement The Federal Energy Regulatory Commission (FERC) issued a final EIS for a proposal to expand the ...

  12. Supplemental Analysis for the Final Environmental Impact Statement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplemental Analysis for the Final Environmental Impact Statement Supplemental Analysis for the Final Environmental Impact Statement Supplemental Analysis for the Final ...

  13. EIS-0499: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Impact Statement EIS-0499: Final Environmental Impact Statement Great Northern Transmission Line Project, Minnesota DOE prepared this Final EIS to evaluate the ...

  14. Evaluation of the Better Buildings Neighborhood Program, Final...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of the Better Buildings Neighborhood Program, Final Synthesis Report, Volume 1 Final Report: Evaluation of the Better Buildings Neighborhood Program, Final Synthesis ...

  15. Microsoft Word - CCE_Final_Rule_02-07-11 _Final Word_.docx | Department of

    Energy Savers [EERE]

    Energy CCE_Final_Rule_02-07-11 _Final Word_.docx Microsoft Word - CCE_Final_Rule_02-07-11 _Final Word_.docx Energy Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and Commercial and Industrial Equipment PDF icon Microsoft Word - CCE_Final_Rule_02-07-11 _Final Word_.docx More Documents & Publications Federal Register Vol. 76 No. 44, 12422-12505 - Energy Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and

  16. Mechanical Systems Qualification Standard

    Energy Savers [EERE]

    (IDIQ Attachment J-8) | Department of Energy Plan and Savings Calculations Methods Outline (IDIQ Attachment J-8) Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ Attachment J-8) Document outlines measurement and verification planning and savings calculation methods for an energy savings performance contract. Microsoft Office document icon mv_plan_outline.doc More Documents & Publications Post-Installation Report Outline (IDIQ Attachment J-9) Annual Report

  17. Ameresco ESCO Qualification Sheet

    Energy Savers [EERE]

    customer value and environmental sustainability through energy efficiency measures, alternative energy infrastructure solutions, and innovative facility renewal strategies....

  18. Innovative Manufacturing Initiative Recognition Day - Final Participant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Listing | Department of Energy Day - Final Participant Listing Innovative Manufacturing Initiative Recognition Day - Final Participant Listing PDF icon imi_recogitionday_participants.pdf More Documents & Publications Innovative Manufacturing Initiative Recognition Day 2015 AMO Peer Review Agenda CX-100154 Categorical Exclusion Determination

  19. Microsoft Word - Airport_EA_Final.doc

    National Nuclear Security Administration (NNSA)

    515 Final Environmental Assessment for Proposed Closure of the Airport Landfills Within Technical Area 73 at Los Alamos National Laboratory, Los Alamos, New Mexico May 22, 2005 Department of Energy National Nuclear Security Administration Los Alamos Site Office Final EA for Proposed Closure of the Airport Landfills within TA-73 at LANL Page iii of viii Contents Acronyms and Terms .................................................................................................................. vi

  20. AGR-2 IRRADIATION TEST FINAL AS-RUN REPORT

    SciTech Connect (OSTI)

    Blaise, Collin

    2014-07-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test contained six independently controlled and monitored capsules. Each U.S. capsule contained 12 compacts of either UCO or UO2 AGR coated fuel. No fuel particles failed during the AGR-2 irradiation. Final burnup values on a per compact basis ranged from 7.26 to 13.15% FIMA (fissions per initial heavy-metal atom) for UCO fuel, and 9.01 to 10.69% FIMA for UO2 fuel, while fast fluence values ranged from 1.94 to 3.47´1025 n/m2 (E >0.18 MeV) for UCO fuel, and from 3.05 to 3.53´1025 n/m2 (E >0.18 MeV) for UO2 fuel. Time-average volume-average (TAVA) temperatures on a capsule basis at the end of irradiation ranged from 987°C in Capsule 6 to 1296°C in Capsule 2 for UCO, and from 996 to 1062°C in UO2-fueled Capsule 3. By the end of the irradiation, all of the installed thermocouples (TCs) had failed. Fission product release-to-birth (R/B) ratios were quite low. In the UCO capsules, R/B values during the first three cycles were below 10-6 with the exception of the hotter Capsule 2, in which the R/Bs reached 2´10-6. In the UO2 capsule (Capsule 3), the R/B values during the first three cycles were below 10-7. R/B values for all following cycles are not reliable due to gas flow and cross talk issues.