Powered by Deep Web Technologies
Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

2

Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035  

U.S. Energy Information Administration (EIA) Indexed Site

Erin Boedecker, Session Moderator Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011 -4.8% 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference High Technology High technology assumptions with more efficient consumer behavior keep buildings energy to just over 20 quadrillion Btu 3 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu

3

An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels  

E-Print Network [OSTI]

is the production of low-BTU gas from a coal gasification reactor for combustion before introduction to the topping cycle gas turbine (Minchener, 1990). Most low-BTU gases are heavily loaded with sulfur-containing compounds which appear to be a major problem... with direct combustion of coal and low-BTU gases (Caraway, 1995). Environmental standards require the removal of these compounds which can be expensive and hazardous when removed from coal in post-combustion processes. However, gasification of coal results...

Carney, Christopher Mark

2012-06-07T23:59:59.000Z

4

EIA - Annual Energy Outlook 2008 - Coal Production  

Gasoline and Diesel Fuel Update (EIA)

Coal Production Coal Production Annual Energy Outlook 2008 with Projections to 2030 Coal Production Figure 93. Coal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 94. U.S. coal production, 2006, 2015, and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Western Coal Production Continues To Increase Through 2030 In the AEO2008 reference case, increasing coal use for electricity generation at existing plants and construction of a few new coal-fired plants lead to annual production increases that average 0.3 percent per year from 2006 to 2015, when total production is 24.5 quadrillion Btu. In the absence of restrictions on CO2 emissions, the growth in coal production

5

EIA - Annual Energy Outlook 2009 - Coal Production  

Gasoline and Diesel Fuel Update (EIA)

Coal Production Coal Production Annual Energy Outlook 2009 with Projections to 2030 Coal Production Figure 78. Coal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 79. U.S. coal production in four cases, 2007, 2015, and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 80. Average minemouth coal prices by regionCoal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Total Coal Production Increases at a Slower Rate Than in the Past In the AEO2009 reference case, increasing coal use for electricity generation at both new and existing plants and the startup of several CTL

6

Imminence of peak in US coal production and overestimation of reserves  

E-Print Network [OSTI]

. The estimated energy ultimate recoverable reserves (URR) from the logistic model is 2750 quadrillion BTU (2900, coal reserves, coal production forecast, peak coal, USA energy, non- linear fitting #12;3 1 reported coal reserves of any nation, containing approximately 28% of the world

Khare, Sanjay V.

7

EIA - Annual Energy Outlook 2008 (Early Release)- Energy Production and  

Gasoline and Diesel Fuel Update (EIA)

Production and Imports Production and Imports Annual Energy Outlook 2008 (Early Release) Energy Production and Imports Figure 5. Total energy production and consumption, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 6. Energy production by fuel, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Net imports of energy are expected to continue to meet a major share of total U.S. energy demand (Figure 5). In the AEO2008 reference case, the net import share of total U.S. energy consumption in 2030 is 29 percent, slightly less than the 30-percent share in 2006. Rising fuel prices over the projection period are expected to spur increases in domestic energy

8

BTU Accounting for Industry  

E-Print Network [OSTI]

convert utility bills to BTUs? All fuels can be measured in terms of BTU content. Natural gas has a million BTUs per thousand cubic feet; propane - 92,000 BTUs per gallon; fuel oil - 140,000 BTUs per gallon; electricity - 3,413 BTUs per KW hour... BTU ACCOUNTING FOR INDUSTRY Robert O. Redd-CPA Seidman & Seidman Grand Rapids, Michigan Today, as never before, American industry needs to identify and control their most criti cal resources. One of these is energy. In 1973 and again in 1976...

Redd, R. O.

1979-01-01T23:59:59.000Z

9

Building Energy Software Tools Directory: BTU Analysis Plus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plus Plus BTU Analysis Plus logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The BTU Analysi Plus program is designed for general heating, air-conditioning, and commerical studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis Plus was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella.

10

Building Energy Software Tools Directory: BTU Analysis REG  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REG REG BTU Analysis REG logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The REG program is designed for general heating, air-conditioning, and light commercial studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis, was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella. Keywords

11

The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations  

E-Print Network [OSTI]

The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates...

Blackwell, L. T.; Crowder, J. T.

1983-01-01T23:59:59.000Z

12

METC ceramic corrosion/erosion studies: turbine-material screening tests in high-temperature, low-Btu, coal-derived-gas combustion products  

SciTech Connect (OSTI)

The Morgantown Energy Technology Center, through its Ceramics Corrosion/Erosion Studies, has participated in the United States Department of Energy's High-Temperature Turbine Technology Program, Ceramic Technology Readiness. The program's overall objective is to advance the turbine firing temperature to a range of 2600/sup 0/ to 3000/sup 0/F (1700 to 1922K) with a reasonable service life using coal or coal-derived fuel. The Ceramics Corrosion/Erosion Studies' major objective was to conduct a screening test for several ceramic materials to assess their probability of survival in turbine applications. The materials were exposed to combustion products from low heating value coal-derived gas and air at several high temperatures and velocities. The combustion product composition and temperatures simulated actual environment that may be found in stationary power generating gas turbines except for the pressure levels. The results of approximately 1000 hours of accumulative exposure time of material at the specific test conditions are presented in this report.

Nakaishi, C.V.; Waltermire, D.M.; Hawkins, L.W.; Jarrett, T.L.

1982-05-01T23:59:59.000Z

13

Production of low BTU gas from biomass  

E-Print Network [OSTI]

and transported with little difficulty. It was decided to use a fluidized bed reactor for the gasification. Fluidized bed reactors offer many advantages when utilized as a medium for gasifi- cation of solid fuels. Some of them are excellent mixing... carbon and graphite. The results showed the equilibrium constant to be a function of temperature alone, independent of carbon source, particle size and other physical properties of the carbon. Brink (1976) studied the pyrolysis and gasifi- cation...

Lee, Yung N.

2012-06-07T23:59:59.000Z

14

Word Pro - S1  

U.S. Energy Information Administration (EIA) Indexed Site

(Quadrillion Btu) Production Trade Stock Change and Other d Consumption Fossil Fuels a Nuclear Electric Power Renew- able Energy b Total Imports Exports Net Imports c Fossil...

15

Low-Btu coal gasification in the United States: company topical. [Brick producers  

SciTech Connect (OSTI)

Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

1983-07-01T23:59:59.000Z

16

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network [OSTI]

ABSTRACT Steam is the most transferring heat from But most steam systems LOWEST PRESSURE STEAM SAVES MORE BTU'S THAN YOU THINK Stafford J. Vallery Armstrong Machine Works Three Rivers, Michigan steam to do the process heating rather than...

Vallery, S. J.

17

Method for producing low and medium BTU gas from coal  

SciTech Connect (OSTI)

A process for producing low and medium BTU gas from carbonizable material is described which comprises: partly devolatizing the material and forming hot incandescent coke therefrom by passing a bed of the same part way through a hot furnace chamber on a first horizontally moving grate while supplying a sub-stoichiometric quantity of air to the same and driving the reactions: C + O/sub 2/ = CO/sub 2/; 2C + O/sub 2/ = 2CO discharging the hot incandescent coke from the end of the first grate run onto a second horizontally moving grate run below the first grate run in the same furnace chamber so as to form a bed thereon, the bed formed on the second grate run being considerably thicker than the bed formed on the first grate run, passing the hot incandescent coke bed on the second grate run further through the furnace chamber in a substantially horizontal direction while feeding air and stream thereto so as to fully burn the coke and in ratio of steam to air driving the following reactions: 2C + O/sub 2/ = 2CO; C + H/sub 2/O = H/sub 2/ + CO; C + 2H/sub 2/O = 2H/sub 2/ + CO/sub 2/; CO + H/sub 2/O = H/sub 2/ + CO/sub 2/ taking off the ash residue of the burned coke and taking off the gaseous products of the reactions.

Mansfield, V.; Francoeur, C.M.

1988-06-07T23:59:59.000Z

18

Property:Geothermal/AnnualGenBtuYr | Open Energy Information  

Open Energy Info (EERE)

AnnualGenBtuYr AnnualGenBtuYr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/AnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 5.3 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 72.5 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 5 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 7 + Americulture Aquaculture Low Temperature Geothermal Facility + 17 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 6.5 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 1.8 +

19

Property:Geothermal/CapacityBtuHr | Open Energy Information  

Open Energy Info (EERE)

CapacityBtuHr CapacityBtuHr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/CapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 0.8 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 10.3 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 2 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 1 + Americulture Aquaculture Low Temperature Geothermal Facility + 2.4 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 3 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.3 +

20

EIS-0007: Low Btu Coal Gasification Facility and Industrial Park  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Facility Automation Products--Systems--Applications--Trends  

E-Print Network [OSTI]

prices depend on energy costs. This variable is further complicated by foreign competition subjected to a different set of regulations. ENERGY CONSUMPTION QUADRILLIONS OF BTU'S Figure 1 INTRODUCTION The task of managing energy within...), it is noted that the industrial portion is dropping at a faster rate than the total, which shows an admirable attention to the crisis. 76 ESL-IE-86-06-15 Proceedings from the Eighth Annual Industrial Energy Technology Conference, Houston, TX, June 17...

Bynum, H. D.

22

U.S. Total Consumption of Heat Content of Natural Gas (BTU per...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

23

Monthly energy review: September 1996  

SciTech Connect (OSTI)

Energy production during June 1996 totaled 5.6 quadrillion Btu, a 0.5% decrease from the level of production during June 1995. Energy consumption during June 1996 totaled 7.1 quadrillion Btu, 2.7% above the level of consumption during June 1995. Net imports of energy during June 1996 totaled 1.6 quadrillion Btu, 4.5% above the level of net imports 1 year earlier. Statistics are presented on the following topics: energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. 37 figs., 59 tabs.

NONE

1996-09-01T23:59:59.000Z

24

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",3,3,3 " 20-49",5,5,4 " 50-99",6,5,4 " 100-249",5,5,4 " 250-499",7,9,7 " 500 and Over",3,2,2 "Total",2,2,2

25

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",2.5,2.5,2.4 " 20-49",5,5,4.3 " 50-99",5.8,5.8,5.3 " 100-249",6.2,6.2,5.3 " 250-499",8.2,8,7.1 " 500 and Over",4.3,3,2.7

26

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Flow, (Quadrillion Btu) Total Energy Flow, (Quadrillion Btu) Total Energy Flow diagram image Footnotes: 1 Includes lease condensate. 2 Natural gas plant liquids. 3 Conventional hydroelectric power, biomass, geothermal, solar/photovoltaic, and wind. 4 Crude oil and petroleum products. Includes imports into the Strategic Petroleum Reserve. 5 Natural gas, coal, coal coke, biofuels, and electricity. 6 Adjustments, losses, and unaccounted for. 7 Natural gas only; excludes supplemental gaseous fuels. 8 Petroleum products, including natural gas plant liquids, and crude oil burned as fuel. 9 Includes 0.01 quadrillion Btu of coal coke net exports. 10 Includes 0.13 quadrillion Btu of electricity net imports. 11 Total energy consumption, which is the sum of primary energy consumption, electricity retail sales, and electrical system energy losses.

27

Analysis of the results of Federal incentives used to stimulate energy production  

SciTech Connect (OSTI)

This study enhances the formulation of a national incentive policy for renewable resource utilization by examining past incentives for traditional energy forms. The research summarized builds on an analysis which estimated that in the years between 1918 and 1977 the Federal government expended $217.4 billion (1977 dollars), representing 33 distinct incentives, for incentives to stimulate energy production. The energy types considered were nuclear, hydroelectricity, coal, oil, natural gas, and electricity. The present study shows that extra production induced by the incentives considered was at least 61 quadrillion Btu (quad). A summary is presented of the results of the 33 incentives in terms of their effects on energy price and quantity as well as on nonquantifiable values such as Federal-state relations, competition, and capital formation. The findings are reported so that the dialog can continue to incorporate the lessons from past incentives to the production of energy from traditional sources into a Federal renewable resource energy policy. They are reported as a budget to serve as a point of departure for future debate centering on the cost of specific Federal actions over relatively short periods.

Cone, B.W.; Sheppard, W.J.; Cole, R.J.

1981-02-01T23:59:59.000Z

28

Toxicological characterization of the process stream from an experimental low Btu coal gasifier  

Science Journals Connector (OSTI)

Samples were obtained from selected positions in the process stream of an experimental low Btu gasifier using a five-stage multicyclone train and...Salmonella mammalian microsome mutagenicity assay) and forin vit...

J. M. Benson; J. O. Hill; C. E. Mitchell…

1982-01-01T23:59:59.000Z

29

Mutagenicity of potential effluents from an experimental low btu coal gasifier  

Science Journals Connector (OSTI)

Potential waste effluents produced by an experimental low Btu coal gasifier were assessed for mutagenic activity inSalmonella...strain TA98. Cyclone dust, tar and water effluents were mutagenic, but only followin...

J. M. Benson; C. E. Mitchell; R. E. Royer…

1982-09-01T23:59:59.000Z

30

,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)",1,"Weekly","12/13/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdw.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdw.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:22 PM"

31

Electrical Generation Using Non-Salable Low BTU Natural Gas  

SciTech Connect (OSTI)

High operating costs are a significant problem for independent operators throughout the U.S. Often, decisions to temporarily idle or abandon a well or lease are dictated by these cost considerations, which are often seen as unavoidable. Options for continuing operations on a marginal basis are limited, but must include non-conventional approaches to problem solving, such as the use of alternative sources of lease power, and scrupulous reduction of non-productive operating techniques and costs. The loss of access to marginal oil and gas productive reservoirs is of major concern to the DOE. The twin difficulties of high operating costs and low or marginal hydrocarbon production often force independent operators to temporarily or permanently abandon existing lease facilities, including producing wells. Producing well preservation, through continued economical operation of marginal wells, must be maintained. Reduced well and lease operating costs are expected to improve oil recovery of the Schaben field, in Ness County, Kansas, by several hundred thousands of barrels of oil. Appropriate technology demonstrated by American Warrior, allows the extension of producing well life and has application for many operators throughout the area.

Scott Corsair

2005-12-01T23:59:59.000Z

32

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 6.3;" 3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",3,3,3

33

High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas  

SciTech Connect (OSTI)

The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

Horner, M.W.

1980-12-01T23:59:59.000Z

34

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Table 1.14 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011 Fiscal Year 7 Crude Oil and Lease Condensate Natural Gas Plant Liquids 1 Natural Gas 2 Coal 3 Total Fossil Fuels 4 Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Million Barrels Quadrillion Btu Percent Million Barrels Quadrillion Btu Percent Trillion Cubic Feet Quadrillion Btu Percent Million Short Tons Quadrillion Btu Percent Quadrillion Btu Percent 2003 R 689 R 4.00 R 33.3 R 94 R 0.35 R 14.9 R 7.08 R 7.81 R 35.5 R 466 R 9.58 R 43.3 R 21.74 R 37.2 2004 R 680 R 3.94 R 33.8 R 105 R .39 R 16.0 R 6.68 R 7.38 R 34.0 R 484 R 9.89 R 43.9 R 21.60 R 37.0

35

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","8/2013" Monthly","8/2013" ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

36

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:46 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

37

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhda.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhda.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:19 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35611,2.49 35976,2.09 36341,2.27 36707,4.31 37072,3.96 37437,3.38 37802,5.47 38168,5.89 38533,8.69 38898,6.73

38

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/16/2013" Daily","12/16/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdd.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:24 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35437,3.82 35438,3.8 35439,3.61 35440,3.92 35443,4 35444,4.01 35445,4.34 35446,4.71 35447,3.91

39

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 6.4;" 4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",3,4,4 ," 50-99",5,5,5 ," 100-249",4,4,3

40

Monthly energy review, July 1990  

SciTech Connect (OSTI)

US total energy consumption in July 1990 was 6.7 quadrillion Btu Petroleum products accounted for 42 percent of the energy consumed in July 1990, while coal accounted for 26 percent and natural gas accounted for 19 percent. Residential and commercial sector consumption was 2.3 quadrillion Btu in July 1990, up 2 percent from the July 1989 level. The sector accounted for 35 percent of July 1990 total consumption, about the same share as in July 1989. Industrial sector consumption was 2.4 quadrillion Btu in July 1990, up 2 percent from the July 1989 level. The industrial sector accounted for 36 percent of July 1990 total consumption, about the same share as in July 1989. Transportation sector consumption of energy was 1.9 quadrillion Btu in July 1990, up 1 percent from the July 1989 level. The sector consumed 29 percent of July 1990 total consumption, about the same share as in July 1989. Electric utility consumption of energy totaled 2.8 quadrillion Btu in July 1990, up 2 percent from the July 1989 level. Coal contributed 53 percent of the energy consumed by electric utilities in July 1990, while nuclear electric power contributed 21 percent; natural gas, 12 percent; hydroelectric power, 9 percent; petroleum, 5 percent; and wood, waste, geothermal, wind, photovoltaic, and solar thermal energy, about 1 percent.

Not Available

1990-10-29T23:59:59.000Z

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

0 Energy Flow, 2011 0 Energy Flow, 2011 (Quadrillion Btu) U.S. Energy Information Administration / Annual Energy Review 2011 3 1 Includes lease condensate. 2 Natural gas plant liquids. 3 Conventional hydroelectric power, biomass, geothermal, solar/photovoltaic, and wind. 4 Crude oil and petroleum products. Includes imports into the Strategic Petroleum Reserve. 5 Natural gas, coal, coal coke, biofuels, and electricity. 6 Adjustments, losses, and unaccounted for. 7 Natural gas only; excludes supplemental gaseous fuels. 8 Petroleum products, including natural gas plant liquids, and crude oil burned as fuel. 9 Includes 0.01 quadrillion Btu of coal coke net imports. 10 Includes 0.13 quadrillion Btu of electricity net imports. 11 Total energy consumption, which is the sum of primary energy consumption, electricity retail

42

Production of Medium BTU Gas by In Situ Gasification of Texas Lignite  

E-Print Network [OSTI]

The necessity of providing clean, combustible fuels for use in Gulf Coast industries is well established; one possible source of such a fuel is to perform in situ gasification of Texas lignite which lies below stripping depths. If oxygen (rather...

Edgar, T. F.

1979-01-01T23:59:59.000Z

43

PROCESS DEVELOPMENT STUDIES ON THE BIOCONVERSION OF CELLULOSE AND PRODUCTION OF ETHANOL  

E-Print Network [OSTI]

PER GALLON ANHYDROUS ETHANOL) ENERGY CONSUMPTION FARMINGmaterial. Table 17 ETHANOL SEPARATION ENERGY REQUIREMENTS *PRODUCTION OF ETHANOL FROM MOLASSES* (ENERGIES ARE IN BTU

Wilke, Charles R.

2011-01-01T23:59:59.000Z

44

The effect of CO? on the flammability limits of low-BTU gas of the type obtained from Texas lignite  

E-Print Network [OSTI]

Chairman of Advisory Committee: Dr. W. N. Heffington An experimental study was conducted to determine if relatively large amounts of CO in a low-BTU gas of the type 2 derived from underground gasification of Texas lignite would cause significant... ? Flammability limit data for three actual samples of low-BTU gas obtained from an in-situ coal gasification experiment (Heffington, 1981). The HHC are higher LIST OF TABLES (Cont'd) PAGE hydrocarbons orimarily C H and C H . ----- 34 I 2 6 3 8' TABLE 5...

Gaines, William Russell

2012-06-07T23:59:59.000Z

45

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

and economic factors 2010 2011 AEO2013 AEO2012 AEO2013 AEO2012 AEO2013 Primary energy production (quadrillion Btu) Petroleum 14.37 15.05 18.70 17.69 17.27 16.82 17.01 Dry...

46

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption grows by 7 percent in the AEO2013 Reference case, from 98 quadrillion Btu in 2011 to 104 quadrillion Btu in 2035-2.5 quadrillion Btu less than in AEO2012-and continues to grow at a rate of 0.6 percent per year, reaching about 108 quadrillion Btu in 2040 (Figure 7). The fossil fuel share of energy consumption falls from 82 percent in 2011 to 78 percent in 2040, as consumption of petroleum-based liquid fuels falls, largely as a result of the incorporation of new fuel efficiency standards for LDVs. figure dataWhile total liquid fuels consumption falls, consumption of domestically produced biofuels increases significantly, from 1.3 quadrillion Btu in 2011 to 2.1 quadrillion Btu in 2040, and its share of

47

EIA - Annual Energy Outlook 2014 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption grows by 12% in the AEO2014 Reference case, from 95 quadrillion Btu in 2012 to 106 quadrillion Btu in 2040-1.3 quadrillion Btu less than in AEO2013 (Figure 8). The fossil fuel share of energy consumption falls from 82% in 2012 to 80% in 2040, as consumption of petroleum-based liquid fuels declines, largely as a result of slower growth in VMT and increased vehicle efficiency. figure dataTotal U.S. consumption of petroleum and other liquids, which was 35.9 quadrillion Btu (18.5 MMbbl/d) in 2012, increases to 36.9 quadrillion Btu (19.5 MMbbl/d) in 2018, then declines to 35.4 quadrillion Btu (18.7 MMbbl/d) in 2034 and remains at that level through 2040. Total consumption of domestically produced biofuels increases slightly through 2022 and then

48

Low/medium-Btu coal-gasification-assessment program for potential users in New Jersey. Final report  

SciTech Connect (OSTI)

Burns and Roe Industrial Services Corporation and Public Service Electric and Gas in association with Scientific Design Company have completed a technical and economic evaluation of coal gasification. The evaluation also addressed the regulatory, institutional, and environmental issues of coal gasification. Two uses of coal-derived medium Btu (MBU) gas were explored: (1) substitute boiler fuel for electric generation and (2) substitute fuel for industrial customers using natural gas. The summary and conclusions of his evaluation are: The Sewaren Generating Station was selected as potentially the most suitable site for the coal gasification plant. The Texaco process was selected because it offered the best combination of efficiency and pilot plant experience; in addition, it is a pressurized process which is advantageous if gas is to be supplied to industrial customers via a pipeline. Several large industrial gas customers within the vicinities of Sewaren and Hudson Generating Stations indicated that MBG would be considered as an alternate fuel provided that its use was economically justified. The capital cost estimates for a 2000 tons/day and a 1000 tons/day gasification plant installed at Sewaren Generating Station are $115.6 million and $73.8 million, in 1980 dollars, respectively. The cost of supplying MBG to industrial customers is competitive with existing pipeline natural gas on a Btu heating value basis for gasifier capacity factors of 35% or higher.

Not Available

1981-05-01T23:59:59.000Z

49

Energy Policy: Independence by 1985 My Be Unreachable Without Btu Tax  

Science Journals Connector (OSTI)

...domestic oil production and the diffi-culties...Countries (OPEC). The decontrol...the Earth Day move-ment...indeed-high enough per-haps to...about by OPEC in late 1973 and early...of oil a day less than...18 miles per gallon by...of oil a day (mbd...consumption in 1973. The added...domestic production of energy...

LUTHER J. CARTER

1976-02-13T23:59:59.000Z

50

Annual Energy Review, 1996  

Gasoline and Diesel Fuel Update (EIA)

that was generated from nonrenewable energy sources and -0.03 quadrillion Btu for hydroelectric pumped storage. Notes: Data are preliminary. Totals may not equal sum of...

51

Chinese Rural Vehicles: An Explanatory Analysis of Technology, Economics, Industrial Organization, Energy Use, Emissions, and Policy  

E-Print Network [OSTI]

diesel fuel consumption in 2000 was 69.5 million metric tons (MMT) 79 (see Table 9-1) or 2.96 quadrillion BTU.

Sperling, Dan; Lin, Zhenhong; Hamilton, Peter

2004-01-01T23:59:59.000Z

52

Word Pro - S8  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Flow, 2013 (Quadrillion Btu) 1 Blast furnace gas and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased...

53

Kosovo: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

","inlineLabel":"","visitedicon":"" Country Profile Name Kosovo Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code XK 3-letter ISO code...

54

Falkland Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

nlineLabel":"","visitedicon":"" Country Profile Name Falkland Islands Population 2,932 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code FK 3-letter ISO code...

55

L:\\main\\pkc\\aeotabs\\aeo2009\\stim_all.wpd  

U.S. Energy Information Administration (EIA) Indexed Site

An Updated Annual Energy Outlook 2009 Reference Case 16 Table A1. Total Energy Supply and Disposition Summary (Quadrillion Btu per Year, Unless Otherwise Noted) Supply,...

56

production | OpenEI  

Open Energy Info (EERE)

production production Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

57

Microfabricated BTU monitoring device for system-wide natural gas monitoring.  

SciTech Connect (OSTI)

The natural gas industry seeks inexpensive sensors and instrumentation to rapidly measure gas heating value in widely distributed locations. For gas pipelines, this will improve gas quality during transfer and blending, and will expedite accurate financial accounting. Industrial endusers will benefit through continuous feedback of physical gas properties to improve combustion efficiency during use. To meet this need, Sandia has developed a natural gas heating value monitoring instrument using existing and modified microfabricated components. The instrument consists of a silicon micro-fabricated gas chromatography column in conjunction with a catalytic micro-calorimeter sensor. A reference thermal conductivity sensor provides diagnostics and surety. This combination allows for continuous calorimetric determination with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This system will find application at remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. Microfabrication techniques will allow the analytical components to be manufactured in production quantities at a low per-unit cost.

Einfeld, Wayne; Manginell, Ronald Paul; Robinson, Alex Lockwood; Moorman, Matthew Wallace

2005-11-01T23:59:59.000Z

58

Assumptions to the Annual Energy Outlook 2001 - Table 4. Coefficients of  

Gasoline and Diesel Fuel Update (EIA)

Coefficients of Linear Equations for Natural Gas- and Coefficients of Linear Equations for Natural Gas- and Oil-Related Methane Emissions Emissions Sources Intercept Variable Name and Units Coefficient Variable Name and Units Coefficient Natural Gas -38.77 Time trend (calendar year) .02003 Dry gas production (thousand cubic feet .02186 Natural Gas Processing -0.9454 Natural gas liquids production (million barrels per day) .9350 Not applicable Natural Gas Transmission and Storage 2.503 Pipeline fuel use (thousand cubic feet) 1.249 Dry gas production (thousand cubic feet) -0.06614 Natural Gas Distribution -58.16 Time trend (calendar year) .0297 Natural gas consumption (quadrillion Btu) .0196 Oil production, Refining, and Transport 0.03190 Oil consumption (quadrillion Btu) .002764 Not applicable Source: Derived from data used in Energy Information Administration, Emissions of Greenhouse Gases in the United States 1999, DOE/EIA-0573(99), (Washington, DC, October 2000).

59

Monthly energy review, July 1994  

SciTech Connect (OSTI)

Energy production during April 1994 totaled 5.5 quadrillion Btu, a 2.2-percent increase from the level of production during April 1993. Coal production increased 11.8 percent, petroleum production fell 4.0 percent, and natural gas production decreased 0.3 percent. All other forms of energy production combined were down 2.9 percent from the level of production during April 1993. Energy consumption during April 1994 totaled 6.7 quadrillion Btu, 1.4 percent above the level of consumption during April 1993. Petroleum consumption increased 3.9 percent, coal consumption rose 1.1 percent, and natural gas consumption decreased 1.5 percent. Consumption of all other forms of energy combined decreased 0.4 percent from the level 1 year earlier. Net imports of energy during April 1994 totaled 1.5 quadrillion Btu, 8.7 percent above the level of net imports 1 year earlier. Net imports of petroleum increased 4.5 percent, and net imports of natural gas were up 18.5 percent. Net exports of coal fell 9.2 percent from the level in April 1993.

Not Available

1994-07-26T23:59:59.000Z

60

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings  

DOE Patents [OSTI]

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

1984-07-03T23:59:59.000Z

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Monthly energy review, May 1995  

SciTech Connect (OSTI)

Energy production during Feb 95 totaled 5.4 quadrillion Btu (Q), 3.1% over Feb 94. Energy consumption totaled 7.4 Q, 0.7% below Feb 94. Net imports of energy totaled 1.3 Q, 5.6% below Feb 94. This publication is divided into energy overview, energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy.

NONE

1995-05-24T23:59:59.000Z

62

EIA - Annual Energy Outlook 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Sector Energy Consumption by Sector Transportation figure data Delivered energy consumption in the transportation sector grows from 27.6 quadrillion Btu in 2010 to 28.8 quadrillion Btu in 2035 in the AEO2012 Reference case (Figure 7). Energy consumption by light-duty vehicles (LDVs) (including commercial light trucks) initially declines in the Reference case, from 16.5 quadrillion Btu in 2010 to 15.7 quadrillion Btu in 2025, due to projected increases in the fuel economy of highway vehicles. Projected energy consumption for LDVs increases after 2025, to 16.3 quadrillion Btu in 2035. The AEO2012 Reference case projections do not include proposed increases in LDV fuel economy standards-as outlined in the December 2011 EPA and NHTSA Notice of Proposed Rulemaking for 2017 and

63

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

5 Non-Combustion Use of Fossil Fuels 5 Non-Combustion Use of Fossil Fuels Total, 1980-2011 As Share of Total Energy Consumption, 1980-2011 By Fuel, 2011 By Petroleum Product, 2011 32 U.S. Energy Information Administration / Annual Energy Review 2011 1 Liquefied petroleum gases and pentanes plus are aggregated to avoid disclosure of proprie- tary information. 2 Distillate fuel oil, residual fuel oil, waxes, and miscellaneous products. (s)=Less than 0.05 quadrillion Btu. Note: See Note 2, "Non-Combustion Use of Fossil Fuels" at end of section. Source: Table 1.15. 1980 1985 1990 1995 2000 2005 2010 0 2 4 6 8 Quadrillion Btu Natural Gas 1980 1985 1990 1995 2000 2005 2010 0 3 6 9 Percent Total Petroleum Products Coal 2.0 1.0 0.9 0.3 0.1 (s) 0.3 LPG¹ Petro- Asphalt Lubri- Petro- Special Other² 0.0 0.6 1.2 1.8 2.4 Quadrillion Btu

64

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Table 14. Comparisons of coal projections, 2011-2040 (million short tons, except where noted) Projection 2011 AEO2013 Reference case Other projections (million short tons) (quadrillion Btu) EVA a ICF b IHSGI INFORUM IEA Exxon- Mobil c (million short tons) (quadrillion Btu) 2025 Production 1,096 1,113 22.54 958 1,104 1,107 1,061 -- -- East of the Mississippi 456 447 -- 402 445 -- -- -- -- West of the Mississippi 639 666 -- 556 659 -- -- -- -- Consumption Electric power 929 929 17.66 786 939 864 -- -- 13 Coke plants 21 22 0.58 22 15 19 -- -- -- Coal-to-liquids -- 6 -- -- 36 -- -- -- -- Other industrial/buildings 49 53 1.69 d 29 72 44 1.96 d -- -- Total consumption (quadrillion Btu) 19.66 -- 19.35 -- -- 18.34 -- -- 13 Total consumption (million short tons) 999 1,010 -- 836 1,061 927 1,015 e -- -- Net coal exports (million short tons) 96 124 -- 118 43 181 46 -- --

65

Second-Generation Biofuel Production from Corn-Ethanol Industry Residues  

Science Journals Connector (OSTI)

The annual global energy demand is about 500 quadrillion BTUs. US ... only consumes the highest amount of supplied global energy i.e.,~100 quadrillion BTUs; but...37...] that, by 2035, its annual liquid consumpti...

Prachand Shrestha; Anthony L Pometto III…

2012-01-01T23:59:59.000Z

66

Word Pro - S1.lwp  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Energy Consumption per Real Dollar of Gross Domestic Product, 1949-2012 Primary Energy Consumption per Real Dollar of Gross Domestic Product, 1949-2012 (Thousand Btu per Chained (2009) Dollar) Note: See "Real Dollars" in Glossary. Web Page: http://www.eia.gov/totalenergy/data/monthly/#summary. Source: Table 1.7. 16 U.S. Energy Information Administration / Monthly Energy Review November 2013 Table 1.7 Primary Energy Consumption per Real Dollar of Gross Domestic Product Energy Consumption Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP Petroleum and Natural Gas Other Energy a Total Petroleum and Natural Gas Other Energy a Total Quadrillion Btu Billion Chained (2009) Dollars Thousand Btu per Chained (2009) Dollar 1950 ............................ 19.284 15.332 34.616 2,181.9 8.84 7.03 15.86 1955

67

Commercial Buildings Energy Consumption and Expenditures 1992 - Executive  

U.S. Energy Information Administration (EIA) Indexed Site

& Expenditures > Executive Summary & Expenditures > Executive Summary 1992 Consumption & Expenditures Executive Summary Commercial Buildings Energy Consumption and Expenditures 1992 presents statistics about the amount of energy consumed in commercial buildings and the corresponding expenditures for that energy. These data are based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), a national energy survey of buildings in the commercial sector, conducted by the Energy Information Administration (EIA) of the U.S. Department of Energy. Figure ES1. Energy Consumption is Commercial Buidings by Energy Source, 1992 Energy Consumption: In 1992, the 4.8 million commercial buildings in the United States consumed 5.5 quadrillion Btu of electricity, natural gas, fuel oil, and district heat. Of those 5.5 quadrillion Btu, consumption of site electricity accounted for 2.6 quadrillion Btu, or 48.0 percent, and consumption of natural gas accounted for 2.2 quadrillion Btu, or 39.6 percent. Fuel oil consumption made up 0.3 quadrillion Btu, or 4.0 percent of the total, while consumption of district heat made up 0.4 quadrillion Btu, or 7.9 percent of energy consumption in that sector. When the energy losses that occur at the electricity generating plants are included, the overall energy consumed by commercial buildings increases to about 10.8 quadrillion Btu (Figure ES1).

68

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Table 1.5 Energy Consumption, Expenditures, and Emissions Indicators Estimates, Selected Years, 1949-2011 Year Energy Consumption Energy Consumption per Capita Energy Expenditures 1 Energy Expenditures 1 per Capita Gross Output 3 Energy Expenditures 1 as Share of Gross Output 3 Gross Domestic Product (GDP) Energy Expenditures 1 as Share of GDP Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP Carbon Dioxide Emissions 2 per Real Dollar of GDP Quadrillion Btu Million Btu Million Nominal Dollars 4 Nominal Dollars 4 Billion Nominal Dollars 4 Percent Billion Nominal Dollars 4 Percent Billion Real (2005) Dollars 5 Thousand Btu per Real (2005) Dollar 5 Metric Tons Carbon Dioxide per Million Real (2005) Dollars 5 1949 31.982 214 NA NA NA NA 267.2 NA R 1,843.1 R 17.35 R 1,197 1950 34.616 227 NA NA NA NA

69

Annual Energy Review 1994. highlights  

Gasoline and Diesel Fuel Update (EIA)

Quadrillion Quadrillion Btu Highlights: Annual Energy Review 1994 At the halfway mark of this century, coal was the leading source of energy produced in the United States. Now, as we approach the end of the 20th century, coal is still the leading source of energy produced in this country (Figure 1). Between those points of time, however, dramatic changes occurred in the composition of our Nation's energy production. For example, crude oil and natural gas plant liquids production overtook coal production in the early 1950s. That source was matched by natural gas for a few years in the mid-1970s, and then, in the early 1980s, coal regained its prominence. After 1985, crude oil production suffered a nearly steady annual decline. While the fossil fuels moved up and down in their indi-

70

Glossary: Energy-Related Carbon Emissions  

U.S. Energy Information Administration (EIA) Indexed Site

Glossary: Energy-Related Carbon Emissions Glossary: Energy-Related Carbon Emissions Glossary: Energy-Related Carbon Emissions For additional terms, refer to: the Glossary of Emissions of Greenhouse Gases in the United States 1998 for additional greenhouse gas related terms, the Glossary of Manufacturing Consumption of Energy 1994 for additional manufacturing terms, and Appendix F of Manufacturing Consumption of Energy 1994 for descriptions of the major industry groups. British Thermal Unit: The amount of heat required to raise the temperature of 1 pound of water by 1 degree Fahrenheit. One quadrillion Btu is 1015 Btu, or 1.055 exajoules. Btu: See British Thermal Unit. Carbon Dioxide: A colorless, odorless, non-poisonous gas that is a normal part of Earth's atmosphere. Carbon dioxide is a product of fossil-fuel combustion as well as other processes. It is considered a greenhouse gas as it traps heat radiated into the atmosphere and thereby contributes to the potential for global warming.

71

EIA - 2010 International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Analyses> International Energy Outlook 2010 - Highlights Analyses> International Energy Outlook 2010 - Highlights International Energy Outlook 2010 - Highlights print version PDF Logo World marketed energy consumption increases by 49 percent from 2007 to 2035 in the Reference case. Total energy demand in non-OECD countries increases by 84 percent, compared with an increase of 14 percent in OECD countries. In the IEO2010 Reference case, which does not include prospective legislation or policies, world marketed energy consumption grows by 49 percent from 2007 to 2035. Total world energy use rises from 495 quadrillion British thermal units (Btu) in 2007 to 590 quadrillion Btu in 2020 and 739 quadrillion Btu in 2035 (Figure 1). Figure 1. World marketed energy consumption, 2007-2035 (quadrillion Btu) Chart data

72

EIA - Annual Energy Outlook 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption, which was 101.4 quadrillion Btu in 2007, grows by 10 percent in the AEO2012 Reference case, from 98.2 quadrillion Btu in 2010 to 108.0 quadrillion Btu in 2035-6 quadrillion Btu less than the AEO2011 projection for 2035. The fossil fuel share of energy consumption falls from 83 percent of total U.S. energy demand in 2010 to 77 percent in 2035. Biofuel consumption has been growing and is expected to continue to grow over the projection period. However, the projected increase would present challenges, particularly for volumes of ethanol beyond the saturation level of the E10 gasoline pool. Those additional volumes are likely to be slower in reaching the market, as infrastructure and consumer demand adjust. In

73

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Sector Energy Consumption by Sector Transportation figure data Delivered energy consumption in the transportation sector remains relatively constant at about 27 quadrillion Btu from 2011 to 2040 in the AEO2013 Reference case (Figure 6). Energy consumption by LDVs (including commercial light trucks) declines in the Reference case, from 16.1 quadrillion Btu in 2011 to 14.0 quadrillion Btu in 2025, due to incorporation of the model year 2017 to 2025 GHG and CAFE standards for LDVs. Despite the projected increase in LDV miles traveled, energy consumption for LDVs further decreases after 2025, to 13.0 quadrillion Btu in 2035, as a result of fuel economy improvements achieved through stock turnover as older, less efficient vehicles are replaced by newer, more fuel-efficient vehicles. Beyond 2035, LDV energy demand begins to level off

74

EIA - Annual Energy Outlook 2008 (Early Release)-Energy-Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Annual Energy Outlook 2008 (Early Release) Energy Consumption Total primary energy consumption in the AEO2008 reference case increases at an average rate of 0.9 percent per year, from 100.0 quadrillion Btu in 2006 to 123.8 quadrillion Btu in 2030—7.4 quadrillion Btu less than in the AEO2007 reference case. In 2030, the levels of consumption projected for liquid fuels, natural gas, and coal are all lower in the AEO2008 reference case than in the AEO2007 reference case. Among the most important factors resulting in lower total energy demand in the AEO2008 reference case are lower economic growth, higher energy prices, greater use of more efficient appliances, and slower growth in energy-intensive industries. Figure 2. Delivered energy consumption by sector, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

75

Addressing the problem with natural ventilation : producing a guide for designers to integrate natural ventilation into the early stages of building design  

E-Print Network [OSTI]

Currently, the United States alone is responsible for approximately twenty percent of the world's total energy consumption. This consumption is equivalent to roughly 100 quadrillion Btu of energy, or in plainer terms, over ...

Fennessy, Kristian (Kristian M.)

2014-01-01T23:59:59.000Z

76

Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption  

Buildings Energy Data Book [EERE]

1 FY 2007 Federal Primary Energy Consumption (Quadrillion Btu) Buildings and Facilities 0.88 VehiclesEquipment 0.69 (mostly jet fuel and diesel) Total Federal Government...

77

--No Title--  

Buildings Energy Data Book [EERE]

1 FY 2007 Federal Primary Energy Consumption (Quadrillion Btu) Buildings and Facilities 0.88 VehiclesEquipment 0.69 (mostly jet fuel and diesel) Total Federal Government...

78

Word Pro - S2  

Gasoline and Diesel Fuel Update (EIA)

2.1 Energy Consumption by Sector (Quadrillion Btu) Total Consumption by End-Use Sector, 1949-2013 Total Consumption by End-Use Sector, Monthly By Sector, September 2014 22 U.S....

79

USA Energy Demand and World Markets  

Science Journals Connector (OSTI)

In the AEO95 model reference case scenario, the United States is projected to consume 104 quadrillion Btu of primary energy resources in 2010, 19 percent more than in 1993. Primary energy consumption includes ...

Charles E. Brown Ph.D.

2002-01-01T23:59:59.000Z

80

Annual Energy Review 1997  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

in quadrillion Btu, 0.16 net imported electricity from nonrenewable sources; -0.04 hydroelectric pumped storage; and -0.10 ethanol blended into motor gasoline, which is accounted...

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Annual Energy Review 1999  

Gasoline and Diesel Fuel Update (EIA)

in quadrillion Btu, 0.11 net imported electricity from nonrenewable sources; -0.06 hydroelectric pumped storage; and -0.11 ethanol blended into motor gasoline, which is accounted...

82

Energy Information Administration/Annual Energy Review  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

0.05 electricity net imports from fossil fuels. Includes, in quadrillion Btu, -0.09 hydroelectric pumped storage and -0.15 ethanol blended into motor gasoline, which is accounted...

83

Annual Energy Review 2000  

Gasoline and Diesel Fuel Update (EIA)

Includes, in quadrillion Btu, 0.10 electricity net imports from fossil fuels; -0.06 hydroelectric pumped storage; and -0.14 ethanol blended into motor gasoline, which is accounted...

84

Fact #792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012  

Broader source: Energy.gov [DOE]

In the last 30 years, overall energy consumption has grown by about 22 quadrillion Btu. The share of energy consumption by the transportation sector has seen modest growth in that time – from about...

85

Faroe Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

"inlineLabel":"","visitedicon":"" Country Profile Name Faroe Islands Population 48,351 GDP 2,450,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code FO 3-letter...

86

Monaco: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

up":"","inlineLabel":"","visitedicon":"" Country Profile Name Monaco Population 35,352 GDP 5,424,000,000 Energy Consumption Quadrillion Btu 2-letter ISO code MC 3-letter ISO...

87

American Samoa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

inlineLabel":"","visitedicon":"" Country Profile Name American Samoa Population 55,519 GDP Unavailable Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code AS 3-letter ISO...

88

Production  

Science Journals Connector (OSTI)

Production is obtained from proved reserves but the determinants of the scale of production in the industry and country components of the world total are many and complex with some unique to the individual com...

D. C. Ion

1980-01-01T23:59:59.000Z

89

Production  

Broader source: Energy.gov [DOE]

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

90

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

91

Production  

Broader source: Energy.gov [DOE]

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

92

Monthly energy review, January 1994  

SciTech Connect (OSTI)

This publication contains statistical information and data analysis of energy production and consumption within the major energy industries of petroleum, natural gas, coal, electricity, nuclear energy and oil and gas resource development. Energy production during October 1993 totaled 5.5-quadrillion Btu, a 3.0 percent decrease from the level of production during October 1992. Coal production decreased 5.6 percent, petroleum production decreased 3.4 percent, and natural gas production increased 1.9 percent. All other forms of energy production combined were down 6.0 percent from the level of production during October 1992. Energy consumption during October 1993 totaled 6.7 quadrillion Btu, 0.9 percent above the level of consumption during October 1992. Natural gas consumption increased 6.5 percent, coal consumption rose 2.9 percent, and petroleum consumption was down 1.3 percent. Consumption of all other forms of energy combined decreased 5.5 percent from the level of 1 year earlier.

Not Available

1994-01-01T23:59:59.000Z

93

Word Pro - Perspectives.lwp  

Gasoline and Diesel Fuel Update (EIA)

2 2 xvii Energy Perspectives 18.97 in 1970 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 0 30 60 90 120 Quadrillion Btu Figure 1. Energy Overview The United States was self-sufficient in energy until the late 1950s when energy consumption began to outpace domestic production. The Nation imported more energy to fill the gap. In 2002, net imported energy accounted for 26 percent of all energy consumed. Figure 1. Energy Overview Overview Exports Production Imports Consumption 1950 1960 1970 1980 1990 2000 0 5 10 15 20 25 per Chained (1996) Dollar Thousand Btu Figure 3. Energy Use per Dollar of Gross Domestic Product Over the second half of the 20th century, the rate at which energy was consumed per dollar of the economy's output of goods and services fell dramatically. By the end of the century, the rate was half of the mid-century

94

Energy Perspectives - AER 2004, August 2005  

Gasoline and Diesel Fuel Update (EIA)

4 4 xix Energy Perspectives 18.97 in 1970 1950 1960 1970 1980 1990 2000 0 25 50 75 100 125 Quadrillion Btu The United States was self-sufficient in energy until the late 1950s when energy consumption began to outpace domestic production. At that point, the Nation began to import more energy to fill the gap. In 2004, net imported energy accounted for 29 percent of all energy consumed. Figure 1. Energy Overview Overview Exports Production Imports Consumption 1950 1960 1970 1980 1990 2000 0 5 10 15 20 25 per Chained (2000) Dollar Thousand Btu Figure 3. Energy Use per Dollar of Gross Domestic Product After 1970, the amount of energy consumed to produce a dollar's worth of the Nation's output of goods and services trended down. The decline resulted from efficiency improvements and structural changes in the econ-

95

Word Pro - Perspectives.lwp  

Gasoline and Diesel Fuel Update (EIA)

7 7 xix Energy Perspectives 18.97 in 1970 1950 1960 1970 1980 1990 2000 0 20 40 60 80 100 120 Quadrillion Btu The United States was self-sufficient in energy until the late 1950s when energy consumption began to outpace domestic production. At that point, the Nation began to import more energy to fill the gap. In 2007, net imported energy accounted for 29 percent of all energy consumed. Figure 1. Primary Energy Overview Overview Exports Production Imports Consumption 1950 1960 1970 1980 1990 2000 0 5 10 15 20 25 Thousand Btu per Chained (2000) Dolla Figure 3. Energy Use per Dollar of Gross Domestic Product After 1970, the amount of energy consumed to produce a dollar's worth of the Nation's output of goods and services trended down. The decline resulted from efficiency improvements and structural changes in the econ-

96

Word Pro - Perspectives.lwp  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Review 2009 Annual Energy Review 2009 xix 1950 1960 1970 1980 1990 2000 0 20 40 60 80 100 120 Quadrillion Btu The United States was self-sufficient in energy until the late 1950s when energy consumption began to outpace domestic production. At that point, the Nation began to import more energy to meet its needs. In 2009, net imported energy accounted for 24 percent of all energy consumed. Figure 1. Primary Energy Overview Energy Perspectives Overview Exports Production Imports Consumption 1950 1960 1970 1980 1990 2000 0 5 10 15 20 25 Thousand Btu per Chained (2005) Dolla Figure 3. Energy Use per Dollar of Gross Domestic Product After 1970, the amount of energy consumed to produce a dollar's worth of the Nation's output of goods and services trended down. The decline resulted from efficiency improvements and structural changes in the econ-

97

Word Pro - Perspectives.lwp  

Gasoline and Diesel Fuel Update (EIA)

6 6 xix Energy Perspectives 18.97 in 1970 1950 1960 1970 1980 1990 2000 0 20 40 60 80 100 120 Quadrillion Btu The United States was self-sufficient in energy until the late 1950s when energy consumption began to outpace domestic production. At that point, the Nation began to import more energy to fill the gap. In 2006, net imported energy accounted for 30 percent of all energy consumed. Figure 1. Energy Overview Overview Exports Production Imports Consumption 1950 1960 1970 1980 1990 2000 0 5 10 15 20 25 Thousand Btu per Chained (2000) Dolla Figure 3. Energy Use per Dollar of Gross Domestic Product After 1970, the amount of energy consumed to produce a dollar's worth of the Nation's output of goods and services trended down. The decline resulted from efficiency improvements and structural changes in the econ-

98

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption and Expenditures Indicators Estimates Energy Consumption and Expenditures Indicators Estimates Energy Consumption, 1949-2011 Energy Expenditures, 1970-2010 Energy Consumption per Real Dollar² of Gross Domestic Product, 1949-2011 Energy Consumption per Capita, Energy Expenditures per Capita, Energy Expenditures as Share of Gross 1949-2011 1970-2010 Domestic Product and Gross Output,³ 1987-2010 12 U.S. Energy Information Administration / Annual Energy Review 2011 1970 1980 1990 2000 2010 0 500 1,000 1,500 Billion Nominal Dollars¹ 1950 1960 1970 1980 1990 2000 2010 0 20 40 60 80 100 120 Quadrillion Btu 1950 1960 1970 1980 1990 2000 2010 0 5 10 15 20 Thousand Btu per Real (2005) Dollar² ¹ See "Nominal Dollars" in Glossary. ² In chained (2005) dollars, calculated by using gross domestic product implicit price deflators

99

Washability of trace elements in product coals from Illinois mines. Technical report, September 1--November 30, 1993  

SciTech Connect (OSTI)

The existing trace element washability data on Illinois coals are based on float-sink methods, and these data are not applicable to modern froth flotation or column flotation processes. Particularly, there is a lack of washability data on samples from modern preparation plants, as well as other product (as-shipped) coals. The goal of this project is to provide the needed trace element washability data on as-shipped coals that were collected during 1992--1993 from Illinois mines. The results generated by this project will promote Illinois coals for such prospective new markets as feed materials for advanced gasification processes, for synthetic organic chemicals, and to meet new environmental requirements for their use in utility steam generation. During the first quarter, each of 34 project samples were ground to about {approximately}100 mesh size and cleaned by use of a special froth flotation technique (release analysis). The flotation products were analyzed for ash, moisture, and heating value (BTU). The data were then used to construct a series of different-washability curves. For example, these curves can show variation in BTU or combustible recovery as a function of the amount of ash or S rejected, or as a function of the weight of the flotation products. From the relationship between %cumulative BTU and %cumulative weight, nine composite samples each having 80% of the total BTU were prepared from the individual flotation products and submitted for trace element analysis.

Demir, I.; Ruch, R.R.; Harvey, R.D.; Steele, J.D. [Illinois Dept. of Energy and Natural Resources, Springfield, IL (United States). Geological Survey

1993-12-31T23:59:59.000Z

100

Word Pro - S3  

U.S. Energy Information Administration (EIA) Indexed Site

Heat Content of Petroleum Products Supplied by Type Heat Content of Petroleum Products Supplied by Type Total, 1949-2012 Petroleum Products Supplied as Share of Total Energy Consumption, 1949-2012 By Product, October 2013 50 U.S. Energy Information Administration / Monthly Energy Review November 2013 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 10 20 30 40 50 Quadrillion Btu 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 10 20 30 40 50 Percent d 0.074 0.002 0.708 0.244 0.001 0.258 0.022 1.462 0.061 0.033 0.302 Asphalt Aviation Distillate Jet Kerosene Liquefied Lubricants Motor Petroleum Residual Other 0.0 0.5 1.0 1.5 2.0 Quadrillion Btu a Includes renewable diesel fuel (including biodiesel) blended into distil- late fuel oil. b Includes kerosene-type jet fuel only. c Includes fuel ethanol blended into motor gasoline.

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

< Introduction Table 1. Comparison of projections in the AEO2014 and AEO2013 Reference case, 2011-2040 2025 2040 Energy and economic factors 2011 2012 AEO2014 AEO2013 AEO2014 AEO2013 Primary energy production (quadrillion Btu) Crude oil and natural gas plant liquids 15.31 17.08 23.03 18.70 19.99 17.01 Dry natural gas 23.04 24.59 32.57 29.22 38.37 33.87 Coal 22.22 20.60 22.36 22.54 22.61 23.54 Nuclear/Uranium 8.26 8.05 8.15 9.54 8.49 9.44 Hydropower 3.11 2.67 2.84 2.86 2.90 2.92 Biomass 3.90 3.78 5.08 5.27 5.61 6.96 Other renewable energy 1.70 1.97 3.09 2.32 3.89 3.84 Other 0.80 0.41 0.24 0.85 0.24 0.89 Total 78.35 79.15 97.36 91.29 102.09 98.46 Net imports (quadrillion Btu) Petroleum and other liquid fuelsa 18.78 16.55 11.41 15.89 13.65 15.99

102

7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed is to be determined.  

E-Print Network [OSTI]

is to be determined. Assumptions 1 The computers are operated by 4 adult men. 2 The computers consume 40 percent to the amount of electrical energy they consume. Therefore, AC Outside Computer room 4000 Btu/h ( ( ) ( Q Q Q Q. Analysis The unit that will cost less during its lifetime is a better buy. The total cost of a system

Bahrami, Majid

103

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal On This Page Early declines in coal... Long-term outlook for coal... Growth in average... Substantial changes in coal... Concerns about GHG... Early declines in coal production are more than offset by growth after 2014 U.S. coal production declined by 2.3 quadrillion Btu in 2009. In the AEO2011 Reference case, production does not return to its 2008 level until after 2025. Between 2008 and 2014 a potential recovery in coal production is kept in check by continued low natural gas prices and increased generation from renewables and nuclear capacity. After 2014, coal production grows at an average annual rate of 1.1 percent through 2035, with increases in coal use for electricity generation and for the production of synthetic liquids. figure data Western coal production increases through 2035 (Figure 101) but at a much

104

EIA - Annual Energy Outlook 2007 with Projections to 2030 - Market  

Gasoline and Diesel Fuel Update (EIA)

Coal Production Coal Production Annual Energy Outlook 2007 with Projections to 2030 Coal Production Figure 85. Cellulose ethanol production, 2005-2030 (billion gallons per year). Need help, contact the National Energyi Information Center at 202-586-8800. figure data Figure 86. Coal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energyi Information Center at 202-586-8800. figure data Lower Costs, Greater Demand Could Spur Cellulose Ethanol Production For AEO2007, two alternative ethanol cases examine the potential impact on ethanol demand of lower costs for cellulosic ethanol production, in combination with policies that increase sales of FFVs [170]. The reference case projects that 10.5 percent of new light-duty vehicles will be capable

105

Biomass Energy Production Incentive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Energy Production Incentive Biomass Energy Production Incentive Biomass Energy Production Incentive < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate 100,000 per fiscal year per taxpayer; 2.1 million per fiscal year for all taxpayers Program Info Start Date 5/29/2008 State South Carolina Program Type Performance-Based Incentive Rebate Amount 0.01 per kWh / 0.30 per therm Provider South Carolina Energy Office In 2007 South Carolina enacted the ''Energy Freedom and Rural Development Act'', which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt-hour (kWh) for electricity generated or $0.30 per therm (100,000 Btu) for energy produced

106

EIA - International Energy Outlook 2009-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2009 Chapter 1 - World Energy Demand and Economic Outlook In the IEO2009 projections, total world consumption of marketed energy is projected to increase by 44 percent from 2006 to 2030. The largest projected increase in energy demand is for the non-OECD economies. Figure 10. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 11. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 12. Marketed Energy Use by Region, 1990-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

107

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights Overview Figure 1. World energy consumption, 1990-2035. figure data In the IEO2011 Reference case, which does not incorporate prospective legislation or policies that might affect energy markets, world marketed energy consumption grows by 53 percent from 2008 to 2035. Total world energy use rises from 505 quadrillion British thermal units (Btu) in 2008 to 619 quadrillion Btu in 2020 and 770 quadrillion Btu in 2035 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for Economic Cooperation and Development (non-OECD nations),2 where demand is driven by strong long-term economic growth. Energy use in non-OECD nations increases by 85 percent in the Reference case, as compared with an increase of 18 percent for the OECD economies.

108

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Commercial from Market Trends Commercial from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

109

International Energy Outlook 2006 - World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

1: World Energy and Economic Outlook 1: World Energy and Economic Outlook The IEO2006 projections indicate continued growth in world energy use, despite world oil prices that are 35 percent higher in 2025 than projected in last yearÂ’s outlook. Energy resources are thought to be adequate to support the growth expected through 2030. Figure 7. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 8. World Marketed Energy Use: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Table 1. World Marketed Energy Consumption by Country Grouping, 2003-2030 (Quadrillion Btu) Printer friendly version Region 2003 2010 2015 2020 2025 2030 Average Annual Percent Change, 2003-2030

110

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights Overview Figure 1. World energy consumption, 1990-2035. figure data In the IEO2011 Reference case, which does not incorporate prospective legislation or policies that might affect energy markets, world marketed energy consumption grows by 53 percent from 2008 to 2035. Total world energy use rises from 505 quadrillion British thermal units (Btu) in 2008 to 619 quadrillion Btu in 2020 and 770 quadrillion Btu in 2035 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for Economic Cooperation and Development (non-OECD nations),2 where demand is driven by strong long-term economic growth. Energy use in non-OECD nations increases by 85 percent in the Reference case, as compared with an increase of 18 percent for the OECD economies.

111

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Overview In the IEO2013 Reference case, which does not include prospective greenhouse gas reduction policies, coal remains the second largest energy source worldwide. World coal consumption rises at an average rate of 1.3 percent per year, from 147 quadrillion Btu in 2010 to 180 quadrillion Btu in 2020 and 220 quadrillion Btu in 2040 (Figure 70). The near-term increase reflects significant increases in coal consumption by China, India, and other non-OECD countries. In the longer term, growth of coal consumption decelerates as policies and regulations encourage the use of cleaner energy sources, natural gas becomes more economically competitive as a result of shale gas development, and growth of industrial use of coal slows largely as a result of China's industrial activities. Consumption is dominated by

112

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

The IEO2006 projections indicate continued growth in world energy use, despite The IEO2006 projections indicate continued growth in world energy use, despite world oil prices that are 35 percent higher in 2025 than projected in last year's outlook. Energy resources are thought to be adequate to support the growth expected through 2030. The International Energy Outlook 2006 (IEO2006) projects strong growth for worldwide energy demand over the 27-year projection period from 2003 to 2030. Despite world oil prices that are 35 percent higher in 2025 than projected in last year's outlook, world economic growth continues to increase at an average annual rate of 3.8 percent over the projection period, driving the robust increase in world energy use. Total world consumption of marketed energy expands from 421 quadrillion Brit- ish thermal units (Btu) in 2003 to 563 quadrillion Btu in 2015 and then to 722 quadrillion Btu in

113

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Commercial from Market Trends Commercial from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

114

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector diagram image Footnotes: 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net exports. 4 Conventional hydroelectric power, geothermal, solar/PV, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. 6 Includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public.

115

EIA - International Energy Outlook 2007 - World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2007 Chapter 1 - World Energy and Economic Outlook In the IEO2007 reference case, total world consumption of marketed energy is projected to increase by 57 percent from 2004 to 2030. The largest projected increase in energy demand is for the non-OECD region. Figure 8. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 9. World Marketed Energy Use; OECD and Non-OECD, 2004-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 10. Marketed Energy Use in the NON-OECD Economies by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

116

DOE-EIA-0484(2010)  

Gasoline and Diesel Fuel Update (EIA)

World World marketed energy consumption increases by 49 percent from 2007 to 2035 in the Reference case. Total energy demand in the non-OECD countries increases by 84 percent, compared with an increase of 14 percent in the OECD countries. In the IEO2010 Reference case-which reflects a scenario assuming that current laws and policies remain unchanged throughout the projection period-world marketed energy consumption grows by 49 percent from 2007 to 2035. Total world energy use rises from 495 quadrillion British thermal units (Btu) in 2007 to 590 quadrillion Btu in 2020 and 739 quadrillion Btu in 2035 (Figure 1). The global economic recession that began in 2007 and continued into 2009 has had a profound impact on world energy demand in the near term. Total world marketed energy consumption contracted by 1.2 percent in 2008 and by an estimated 2.2 percent in 2009, as manufactur- ing and consumer

117

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

World energy demand and economic outlook World energy demand and economic outlook Overview In the IEO2013 Reference case, world energy consumption increases from 524 quadrillion Btu in 2010 to 630 quadrillion Btu in 2020 and 820 quadrillion Btu in 2040, a 30-year increase of 56 percent (Figure 12 and Table 1). More than 85 percent of the increase in global energy demand from 2010 to 2040 occurs among the developing nations outside the Organization for Economic Cooperation and Development (non-OECD), driven by strong economic growth and expanding populations. In contrast, OECD member countries are, for the most part, already more mature energy consumers, with slower anticipated economic growth and little or no anticipated population growth.7 Figure 12. World total energy consumption, 1990-2040.

118

EIA - International Energy Outlook 2008-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2008 Chapter 1 - World Energy Demand and Economic Outlook In the IEO2008 projections, total world consumption of marketed energy is projected to increase by 50 percent from 2005 to 2030. The largest projected increase in energy demand is for the non-OECD economies. Figure 9. World Marketed EnergyConsumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 10. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 11. Marketed Energy Use in the Non-OECD Economies by Region, 1990-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

119

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Transportation sector energy demand Transportation sector energy demand Growth in transportation energy consumption flat across projection figure data The transportation sector consumes 27.1 quadrillion Btu of energy in 2040, the same as the level of energy demand in 2011 (Figure 70). The projection of no growth in transportation energy demand differs markedly from the historical trend, which saw 1.1-percent average annual growth from 1975 to 2011 [126]. No growth in transportation energy demand is the result of declining energy use for LDVs, which offsets increased energy use for heavy-duty vehicles (HDVs), aircraft, marine, rail, and pipelines. Energy demand for LDVs declines from 16.1 quadrillion Btu in 2011 to 13.0 quadrillion Btu in 2040, in contrast to 0.9-percent average annual growth

120

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Residential from Market Trends Residential from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

In the IEO2007 reference case, total world consumption of marketed energy is projected In the IEO2007 reference case, total world consumption of marketed energy is projected to increase by 57 percent from 2004 to 2030. The largest projected increase in energy demand is for the non-OECD region. The IEO2007 reference case-which reflects a scenario where current laws and policies remain unchanged throughout the projection period-projects strong growth for worldwide energy demand from 2004 to 2030. Total world consumption of marketed energy is projected to increase from 447 quadrillion Btu in 2004 to 559 quadrillion Btu in 2015 and then to 702 quadrillion Btu in 2030-a 57-percent increase over the projection period (Table 1 and Figure 8). The largest projected increase in energy demand is for the non-OECD region. Generally, countries outside the OECD 3 have higher projected economic growth rates and more rapid population growth

122

International Energy Outlook 2011 - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2011 International Energy Outlook 2011 Release Date: September 19, 2011 | Next Scheduled Release Date: June 10, 2013 | Report Number: DOE/EIA-0484(2011) No International Energy Outlook will be released in 2012. The next edition of the report is scheduled for release in Spring 2013 Highlights International Energy Outlook 2011 cover. In the IEO2011 Reference case, which does not incorporate prospective legislation or policies that might affect energy markets, world marketed energy consumption grows by 53 percent from 2008 to 2035. Total world energy use rises from 505 quadrillion British thermal units (Btu) in 2008 to 619 quadrillion Btu in 2020 and 770 quadrillion Btu in 2035 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for

123

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

energy consumption is projected to increase by 71 percent from 2003 to 2030. energy consumption is projected to increase by 71 percent from 2003 to 2030. Fossil fuels continue to supply much of the energy used worldwide, and oil remains the dominant energy source. In the International Energy Outlook 2006 (IEO2006) ref- erence case, world marketed energy consumption increases on average by 2.0 percent per year from 2003 to 2030. Although world oil prices in the reference case, which remain between $47 and $59 per barrel (in real 2004 dollars), dampen the growth in demand for oil, total world energy use continues to increase as a result of robust economic growth. Worldwide, total energy use grows from 421 quadrillion British thermal units (Btu) in 2003 to 563 quadrillion Btu in 2015 and 722 quadrillion Btu in 2030 (Figure 1). The most rapid growth in energy demand from 2003 to 2030 is projected for nations outside the Organization

124

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

0 Primary Energy Consumption by Source and Sector, 2011 0 Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) U.S. Energy Information Administration / Annual Energy Review 2011 37 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solar/photovoltaic, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. 6 Includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public. Includes 0.1 quadrillion Btu of electricity net

125

DOE/EIA-0304 Survey of Large Combustors:  

U.S. Energy Information Administration (EIA) Indexed Site

304 304 Survey of Large Combustors: Report on Alternative- Fuel Burning Capabilities of Large Boilers in 1979 U.S. Department of Energy Energy information Administration Office of Energy Markets and End Use Energy End Use Division Introduction During recent years, total annual industrial energy consumption in the United States has been approximated at 25 to 26 quadrillion British thermal units (Btu).^- Manufacturin g is by far the largest components totaling 12.9 quadrillion Btu of purchased fuels and electricity for heat and power during 1979.2 QJ this amount, 10.5 quadrillion Btu was accounted for by purchased fuels alone (e.g., fuel oil, coal, natural gas, etc.). Other than fuel consumption by type and industrial classificati on, very little information existed on specific fuel consumption characterist

126

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption, which was 101.7 quadrillion Btu in 2007, grows by 21 percent in the AEO2011 Reference case, from 94.8 quadrillion Btu in 2009 to 114.3 quadrillion Btu in 2035, to about the same level as in the AEO2010 projection in 2035. The fossil fuel share of energy consumption falls from 84 percent of total U.S. energy demand in 2009 to 78 percent in 2035, reflecting the impacts of CAFE standards and provisions in the American Recovery and Reinvestment Act of 2009 (ARRA), Energy Improvement and Extension Act of 2008 (EIEA2008), Energy Independence and Security Act of 2007 (EISA2007), and State legislation. Although the situation is uncertain, EIA's present view of the projected rates of technology development and market penetration of cellulosic

127

International Energy Outlook 2013 - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

International Energy Outlook 2013 International Energy Outlook 2013 Release Date: July 25, 2013 | Next Release Date: July 2014 (See release cycle changes) | correction | Report Number: DOE/EIA-0484(2013) Highlights International Energy Outlook 2011 cover. The International Energy Outlook 2013 (IEO2013) projects that world energy consumption will grow by 56 percent between 2010 and 2040. Total world energy use rises from 524 quadrillion British thermal units (Btu) in 2010 to 630 quadrillion Btu in 2020 and to 820 quadrillion Btu in 2040 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for Economic Cooperation and Development (OECD),2 known as non-OECD, where demand is driven by strong, long-term economic growth. Energy use in non-OECD countries increases by 90 percent; in OECD countries, the increase

128

Annual Energy Outlook 2013 Early Release Reference Case  

Gasoline and Diesel Fuel Update (EIA)

3 3 Future of U.S. Domestic Oil and Gas Production For International Energy Forum January 21, 2013 | Riyadh, KSA By Adam Sieminski, Administrator Annual Energy Outlook 2013 projections to 2040 2 * Growth in energy production outstrips consumption growth * Crude oil production rises sharply over the next decade * Motor gasoline consumption reflects more stringent fuel economy standards * The U.S. becomes a net exporter of natural gas in the early 2020s * U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040 Adam Sieminski January 21, 2013 Growth in energy production outstrips growth in consumption leading to reduction in net imports 3 U.S. energy production and consumption quadrillion Btu

129

Catalytic reactor for low-Btu fuels  

DOE Patents [OSTI]

An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

2009-04-21T23:59:59.000Z

130

Annual Energy Outlook 2013 Early Release Reference Case  

Gasoline and Diesel Fuel Update (EIA)

International Monetary Fund International Monetary Fund January 14, 2013 | Washington, DC By Adam Sieminski, Administrator Annual Energy Outlook 2013 projections to 2040 2 * Growth in energy production outstrips consumption growth * Crude oil production rises sharply over the next decade * Motor gasoline consumption reflects more stringent fuel economy standards * The U.S. becomes a net exporter of natural gas in the early 2020s * U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040 Adam Sieminski January 14, 2013 Growth in energy production outstrips growth in consumption leading to reduction in net imports 3 U.S. energy production and consumption quadrillion Btu Source: EIA, Annual Energy Outlook 2013 Early Release

131

Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.  

SciTech Connect (OSTI)

Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized with ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4) Moderate ammonia flux. The advantages of producing acetic acid by fermentation include its appropriateness for small-scale production, lower cost feedstocks, low energy membrane-based purification, and lower temperature and pressure requirements. Potential energy savings of using fermentation are estimated to be approximately 14 trillion Btu by 2020 from a reduction in natural gas use. Decreased transportation needs with regional plants will eliminate approximately 200 million gallons of diesel consumption, for combined savings of 45 trillion Btu. If the fermentation process captures new acetic acid production, savings could include an additional 5 trillion Btu from production and 7 trillion Btu from transportation energy.

Snyder, S. W.; Energy Systems

2010-02-08T23:59:59.000Z

132

Harvesting feedlot manure for fuel production  

SciTech Connect (OSTI)

Field investigations were conducted to determine the variation of manure quality as a function of depth in the manure pack, the quantity of feedlot manure that can be harvested with elevating scrapers and wheel loader, and the yield of reasonable high-quality feedlot manure for biogas plant feedstock. Feedlot manure quality (ash, heat of combustion, and S content) varied with vertical location in the manure pack. Loose surface manure had the highest quality for these purposes. Heat of combustion was closely related with ash and moisture contents, it averaged 8302 Btu per pound on a dry ash-free basis for all samples. The majority of the manure pack could be collected with an elevating scraper to yield a feedstock with 30% ash and a heat of combustion of 8800 Btu per pound on a dry ash-free basis. Feedlot manure collected by the elevating scraper is much higher in quality for essentially all uses than the 1-2 inch, thick manure/soil interfacial layer. The quantity and quality of feedlot manure that can be collected from feedlots in the vicinity of a proposed biogas production plant in southeastern Colorado are reported.

Sweeten, J.M.; Higgins, A.; Spindler, D.; Undersander, D.J.; Egg, R.P.; Reddell, D.L.

1981-01-01T23:59:59.000Z

133

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

IFRI IFRI March 14, 2013 | Paris, France by Adam Sieminski, Administrator Annual Energy Outlook 2013 projections to 2040 2 * Growth in energy production outstrips consumption growth * Crude oil production rises sharply over the next decade * Motor gasoline consumption reflects more stringent fuel economy standards * The U.S. becomes a net exporter of natural gas in the early 2020s * U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040 Adam Sieminski , IFRI March 14, 2013 U.S. energy use grows slowly over the projection reflecting improving energy efficiency and slow, extended economic recovery 3 U.S. primary energy consumption quadrillion Btu Adam Sieminski , IFRI March 14, 2013 History Projections 2011 36% 20%

134

Status and outlook for shale gas and tight oil development in the U.S.  

Gasoline and Diesel Fuel Update (EIA)

Platts - North American Crude Marketing Conference Platts - North American Crude Marketing Conference March 01, 2013 | Houston, TX by Adam Sieminski, Administrator Annual Energy Outlook 2013 projections to 2040 Adam Sieminski , Platts, March 01, 2013 2 * Growth in energy production outstrips consumption growth * Crude oil production rises sharply over the next decade * Motor gasoline consumption reflects more stringent fuel economy standards * The U.S. becomes a net exporter of natural gas in the early 2020s * U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040 U.S. energy use grows slowly over the projection reflecting improving energy efficiency and slow, extended economic recovery 3 U.S. primary energy consumption quadrillion Btu

135

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect (OSTI)

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

136

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" 6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

137

Table N5.2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" 2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

138

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

3 3 Energy Information Administration / Annual Energy Outlook 2013 Table A1. Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise noted) Supply, disposition, and prices Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Production Crude oil and lease condensate ............................ 11.59 12.16 15.95 14.50 13.47 13.40 13.12 0.3% Natural gas plant liquids ........................................ 2.78 2.88 4.14 4.20 3.85 3.87 3.89 1.0% Dry natural gas ...................................................... 21.82 23.51 27.19 29.22 30.44 32.04 33.87 1.3% Coal 1 ...................................................................... 22.04 22.21 21.74 22.54 23.25 23.60 23.54 0.2%

139

EIA - Annual Energy Outlook 2007 with Projections to 2030 - Market Trends-  

Gasoline and Diesel Fuel Update (EIA)

Energy Demand Energy Demand Annual Energy Outlook 2007 with Projections to 2030 Energy Demand Figure 33. Energy use per capita and per dollar of gross domestic product, 1980-2030 (index, 1980 = 1). Need help, contact the National Energyi Information Center at 202-586-8800. figure data Figure 34. Primary energy use by fuel, 2005-2030 (quadrillion Btu). Need help, contact the National Energyi Information Center at 202-586-8800. figure data Average Energy Use per Person Increases Through 2030 The future path of U.S. energy demand will depend on trends in population, economic growth, energy prices, and technology adoption. AEO2007 cases developed to illustrate the uncertainties associated with those factors include low and high economic growth cases, low and high price cases, and

140

Energy Perspectives, Total Energy - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections this will be filled with a highchart PREVIOUSNEXT Energy Perspectives 1949-2011 September 2012 PDF | previous editions Release Date: September 27, 2012 Introduction Energy Perspectives is a graphical overview of energy history in the United States. The 42 graphs shown here reveal sweeping trends related to the Nation's production, consumption, and trade of energy from 1949 through 2011. Energy Flow, 2011 (Quadrillion Btu) Total Energy Flow diagram image For footnotes see here. Energy can be grouped into three broad categories. First, and by far the largest, is the fossil fuels-coal, petroleum, and natural gas. Fossil fuels have stored the sun's energy over millennia past, and it is primarily

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

C:\WEBSHARE\WWWROOT\eppats\errataeppats.wpd  

Gasoline and Diesel Fuel Update (EIA)

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants with Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants with Advanced Technology Scenarios 10/12/2001 The Gross Domestic Product rows in Tables C2 on pages 110 -111, and D2 on pages 164 -165 are corrected as follows: Table C2. Energy Consumption by Sector and Source (Continued) (Quadrillion Btu per Year, Unless Otherwise Noted) Sector and Source 1999 Projections 2005 2010 Reference Reference with Emissions Limits Advanced Technology Advanced Technology with Emissions Limits Reference Reference with Emissions Limits Advanced Technology Advanced Technology with Emissions Limits Total Energy Consumption Distillate Fuel . . . . . . . . . . . . . . . . . . . . . . . . 7.53 8.77 8.67 8.58 8.49 9.51 9.39 9.02 8.91 Kerosene . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.15 0.13 0.13 0.13 0.13

142

AEO2011:Total Energy Supply, Disposition, and Price Summary | OpenEI  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary Total Energy Supply, Disposition, and Price Summary Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption disposition energy exports imports Supply Data application/vnd.ms-excel icon AEO2011:Total Energy Supply, Disposition, and Price Summary- Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

143

Word Pro - S1.lwp  

U.S. Energy Information Administration (EIA) Indexed Site

Selected years of data from 1949 through 1972 have been added to this table. For all years of data from 1949 through 2013, see the "Web Page" cited above. Table 1.4b Primary Energy Exports by Source and Total Net Imports (Quadrillion Btu) Exports Net Imports a Coal Coal Coke Natural Gas Petroleum Biofuels d Electricity Total Total Crude Oil b Petroleum Products c Total 1950 Total ...................... 0.786 0.010 0.027 0.202 0.440 0.642 NA 0.001 1.465 0.448 1955 Total ...................... 1.465 .013 .032 .067 .707 .774 NA .002 2.286 .504 1960 Total ...................... 1.023 .009 .012 .018 .413 .431 NA .003 1.477 2.710 1965 Total ...................... 1.376 .021 .027 .006 .386 .392 NA .013 1.829 4.063 1970 Total ...................... 1.936 .061 .072 .029 .520 .549 NA

144

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal exec summary Executive Summary Assuming no additional constraints on CO2 emissions, coal remains the largest source of electricity generation in the AEO2011 Reference case because of continued reliance on existing coal-fired plants. EIA projects few new central-station coal-fired power plants, however, beyond those already under construction or supported by clean coal incentives. Generation from coal increases by 25 percent from 2009 to 2035, largely as a result of increased use of existing capacity; however, its share of the total generation mix falls from 45 percent to 43 percent as a result of more rapid increases in generation from natural gas and renewables over the same period. See more Mkt trends Market Trends U.S. coal production declined by 2.3 quadrillion Btu in 2009. In the

145

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window-Related Energy Consumption in the US Window-Related Energy Consumption in the US Residential and Commercial Building Stock Joshua Apte and Dariush Arasteh, Lawrence Berkeley National Laboratory LBNL-60146 Abstract We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate

146

EIA - Annual Energy Outlook 2008 - Energy Demand  

Gasoline and Diesel Fuel Update (EIA)

Energy Demand Energy Demand Annual Energy Outlook 2008 with Projections to 2030 Energy Demand Figure 40. Energy use per capita and per dollar of gross domestic product, 1980-2030 (index, 1980 = 1). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 41. Primary energy use by fuel, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Average Energy Use per Person Levels Off Through 2030 Because energy use for housing, services, and travel in the United States is closely linked to population levels, energy use per capita is relatively stable (Figure 40). In addition, the economy is becoming less dependent on energy in general. Energy intensity (energy use per 2000 dollar of GDP) declines by an average

147

Window-Related Energy Consumption in the US Residential andCommercial Building Stock  

SciTech Connect (OSTI)

We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate that future window technologies offer energy savings potentials of up to 3.9 Quads.

Apte, Joshua; Arasteh, Dariush

2006-06-16T23:59:59.000Z

148

THERMAL BUILDING PERFORMANCE OPTIMIZATION USING SPATIAL ARCHETYPES  

E-Print Network [OSTI]

is spent for heating and cooling systems, see Figure 1.2. Figure 1.1 Primary energy consumption by sector, 1970-2020 in quadrillion Btu (EIA, 2001) Figure 1.2 Residential Primary Energy Consumption by end use encouragement, love and support #12;1 CHAPTER 1 INTRODUCTION 1.1. Energy Consumption Energy conscious building

Papalambros, Panos

149

DuPont Energy Innovations  

E-Print Network [OSTI]

21 1 6 2 9 9 U. S. Primary Energy Consumption by Source and Sector, 2007 (Quadrillion BTU) Source energy flat with 1990 levels. Progress: · Consumption down 7 percent overall as compared to 1990. · SinceDuPont Energy Innovations University of Delaware Energy Institute Inauguration September 19, 2008

Firestone, Jeremy

150

Covered Product Category: Commercial Boiler | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commercial Boiler Commercial Boiler Covered Product Category: Commercial Boiler October 7, 2013 - 10:27am Addthis What's Covered All Federal purchases of hot water or steam boilers (using either oil or gas) with a rated capacity (Btu/h) of 300,000-10,000,000 must meet or exceed FEMP-designated thermal efficiencies. FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial boilers, which is a FEMP-designated product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Energy Efficiency Requirements for Commercial Boilers Table 1 displays the FEMP-designated minimum efficiency requirements for

151

Annual Energy Outlook with Projections to 2025-Table 1. Summary of results  

Gasoline and Diesel Fuel Update (EIA)

Table 1. Summary of results Table 1. Summary of results Energy/Economic Factors 2000 2001 2025 Reference Low Economic Growth High Economic Growth Low World Oil Price High World Oil Price Primary Production (quadrillion Btu) Petroleum 15.14 14.94 15.05 14.38 15.45 14.12 15.92 Natural Gas 19.50 19.97 27.47 25.24 28.72 26.99 27.99 Coal 22.58 23.97 29.29 27.81 31.08 29.18 29.74 Nuclear Power 7.87 8.03 8.43 8.43 8.43 8.43 8.43 Renewable Energy 5.96 5.33 8.78 8.26 9.38 8.82 8.76 Other 1.09 0.57 0.80 0.80 0.83 0.81 0.82 Total Primary Production 72.15 72.81 89.83 84.93 93.90 88.36 91.66 Net Imports (quadrillion Btu) Petroleum (including SPR) 22.28 23.29 41.23 37.63 45.82 44.06 37.97 Natural Gas 3.62 3.73 7.93 6.93 9.29 7.63 8.01 Coal/Other (- indicates export) -0.84 -0.54 0.27 0.22 0.38 0.26 0.27 Total Net Imports 25.06 26.48 49.43 44.78 55.49 51.96 46.25 Discrepancy -2.18 1.99 0.19

152

Annual Energy Outlook 2002 with Projections to 2020 - Table 1  

Gasoline and Diesel Fuel Update (EIA)

Welcome to the Annual Energy Outlook 2002 with Projections to 2020. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Welcome to the Annual Energy Outlook 2002 with Projections to 2020. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Annual Energy Outlook 2002 with Projections to 2020 Table 1. Summary of results for five cases Sensitivity Factors 1999 2000 2020 Reference Low Economic Growth High Economic Growth Low World Oil Price High World Oil Price Primary Production (quadrillion Btu) Petroleum 15.06 15.04 15.95 15.52 16.39 14.40 17.73 Natural Gas 19.20 19.59 29.25 27.98 29.72 28.54 30.03 Coal 23.15 22.58 28.11 26.88 30.08 27.58 29.04 Nuclear Power 7.74 8.03 7.49 7.38 7.49 7.31 7.58 Renewable Energy 6.69 6.46 8.93 8.59 9.37 8.90 8.97 Other 1.66 1.10 0.93 0.91 0.73 0.40 1.06 Total Primary Production 73.50 72.80 90.66 87.26 93.79 87.13 94.40 Net Imports (quadrillion Btu)

153

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0 312 Beverage and Tobacco Products 0 1 0 0 1 0 321 Wood Products 0 218 * 13 199 6 321113 Sawmills 0 100 * 5 94 1 3212 Veneer, Plywood, and Engineered Woods 0 95 * 6 87 2 321219 Reconstituted Wood Products 0 52 0 6 46 1 3219 Other Wood Products

154

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Refining Industry Petroleum Refining Industry Carbon Emissions in the Petroleum Refining Industry The Industry at a Glance, 1994 (SIC Code: 2911) Total Energy-Related Emissions: 79.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.5% -- Nonfuel Emissions: 16.5 MMTC Total First Use of Energy: 6,263 trillion Btu -- Pct. of All Manufacturers: 28.9% Nonfuel Use of Energy Sources: 3,110 trillion Btu (49.7%) -- Naphthas and Other Oils: 1,328 trillion Btu -- Asphalt and Road Oil: 1,224 trillion Btu -- Lubricants: 416 trillion Btu Carbon Intensity: 12.75 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey", "Monthly Refinery Report" for 1994, and Emissions of Greenhouse Gases in the United States 1998.

155

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

2 U.S. Government Energy Consumption by Source, Fiscal Years 1975-2011 2 U.S. Government Energy Consumption by Source, Fiscal Years 1975-2011 Total U.S. Government Energy Consumption By Major Energy Source By Selected Petroleum Product 26 U.S. Energy Information Administration / Annual Energy Review 2011 Jet Fuel 1 Distillate fuel oil and residual fuel oil. 2 Includes ethanol blended into motor gasoline. Note: U.S. Government's fiscal year was October 1 through September 30, except in 1975 and 1976 when it was July 1 through June 30. Source: Table 1.12. 1975 1980 1985 1990 1995 2000 2005 2010 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Quadrillion Btu 1975 1980 1985 1990 1995 2000 2005 2010 0.0 0.2 0.4 0.6 0.8 Quadrillion Btu 1.57 1.38 1.40 1.36 1.38 1.37 1.42 1.45 1.43 1.48 1.45 1.41 1.47 1.36 1.46 1.44 1.46 1.29 1.25 1.18 1.13 1.11 1.09 1.04 1.01 0.99 1.00 1.04 1.14 1.19 1.16 1.07 1.09 1.12 1.09

156

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

marketed energy consumption is projected to increase by 57 percent marketed energy consumption is projected to increase by 57 percent from 2004 to 2030. Total energy demand in the non-OECD countries increases by 95 percent, compared with an increase of 24 percent in the OECD countries. In the IEO2007 reference case-which reflects a scenario where current laws and policies remain unchanged throughout the projection period-world marketed energy consumption is projected to grow by 57 percent over the 2004 to 2030 period. Total world energy use rises from 447 quadrillion British thermal units (Btu) in 2004 to 559 quadrillion Btu in 2015 and then to 702 qua- drillion Btu in 2030 (Figure 1). Global energy demand grows despite the relatively high world oil and natural gas prices that are projected to persist into the mid-term outlook. The most rapid growth in energy demand from 2004 to 2030 is projected for nations outside

157

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2004 Highlights World energy consumption is projected to increase by 54 percent from 2001 to 2025. Much of the growth in worldwide energy use is expected in the developing world in the IEO2004 reference case forecast. Figure 2. World Marketed Energy Consumption, 1970-2025 (Quadrillion Btu). Having Problems, call the National Energy Information Center at 202-586-8600. Figure Data Figure 3. World Marketed Energy Consumption by Region, 1970-2025 (Quadrillion Btu). Having problems, call the National Energy Information Center at 202-586-8600. Figure Data Figure 4. Comparison of 2003 and 2004 World Oil Price Projections, 1970-2025 (2002 Dollars per Barrel). Figure Data Figure 5. World Marketed Energy Consumption by Energy Source, 1970-2025 (Quadrilliion Btu). Need help, call the National Energy Information Center at 202-596-8600.

158

Analysis of the results of Federal incentives used to stimulate energy production  

SciTech Connect (OSTI)

The research program analyzed the Federal incentives used to stimulate nuclear, hydro, coal, gas, oil, and electricity production in order to supply what was learned to the selection of an incentives strategy to induce new energy production from renewable resources. Following the introductory chapter, Chapter 2 examines the problem of estimating effects from a theoretical perspective. Methods of quantifying and identifying the many interactive effects of government actions are discussed. Chapter 3 presents a generic analysis of the result of Federal incentives. Chapters 4 through 9 deal with incentives to energy forms - nuclear, hydro, coal, oil, gas, and electricity. Chapter 10 summarizes the estimated results of the incentives, which are presented in terms of their quantity and price impacts. The incentive costs per million Btu of induced energy production is also discussed. Chapter 11 discusses the parity issue, that is an equivalence between Federal incentives to renewable resources and to traditional energy resources. Any analysis of incentives for solar needs will profit from an analysis of the costs of solar incentives per million Btu compared with those for traditional energy forms. Chapter 12 concludes the analysis, discussing the history of traditional energy incentives as a guide to solar-energy incentives. 216 references, 38 figures, 91 tables.

Cone, B.W.; Emery, J.C.; Fassbender, A.G.

1980-06-01T23:59:59.000Z

159

Natural Gas Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market  

U.S. Energy Information Administration (EIA) Indexed Site

Processing: The Crucial Link Between Natural Gas Production Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market Energy Information Administration, Office of Oil and Gas, January 2006 1 The natural gas product fed into the mainline gas transportation system in the United States must meet specific quality measures in order for the pipeline grid to operate properly. Consequently, natural gas produced at the wellhead, which in most cases contains contaminants 1 and natural gas liquids, 2 must be processed, i.e., cleaned, before it can be safely delivered to the high-pressure, long-distance pipelines that transport the product to the consuming public. Natural gas that is not within certain specific gravities, pressures, Btu content range, or water content levels will

160

Investigations on catalyzed steam gasification of biomass. Appendix A. Feasibility study of methane production via catalytic gasification of 2000 tons of wood per day  

SciTech Connect (OSTI)

A study has been made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL). The plant is designed to process 2000 tons per day of dry wood to SNG. Plant production is 21.6 MM scfd of SNG with a HHV of 956 Btu per scf. All process and support facilities necessary to convert wood to SNG are included. The plant location is Newport, Oregon. The capital cost for the plant is $95,115,000 - September, 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. For utility financing, the gas production costs are respectively $5.09, $5.56, $6.50, and $8.34 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton delivered to the plant at a moisture content of 49.50 wt %. For private investor financing, the corresponding product costs are $6.62, $7.11, $8.10, and $10.06 per MM Btu. The cost calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for by-product char is 58.3%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

162

Investigations on catalyzed steam gasification of biomass: feasibility study of methane production via catalytic gasification of 200 tons of wood per day  

SciTech Connect (OSTI)

This report is a result of an additional study made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The report has as its basis the original 2000 tons of wood per day study generated from process development unit testing performed by the Pacific Northwest Laboratory. The goal of this additional work was to determine the feasibility of a smaller scale plant one-tenth the size of the original or 200 tons of dry wood feed per day. Plant production based on this wood feed is 2.16 MM Scfd of SNG with a HHV of 956 Btu per Scf. All process and support facilities necessary to convert wood to SNG are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $26,680,000 - September 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood prices represent the cost of unchipped wood delivered to the plant site. For utility financing, the gas production costs are, respectively, $14.34, $14.83, $15.86, and $17.84 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $18.76, $19.26, $20.28, and $22.31 per MM Btu for the corresponding wood costs. The costs calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for char is 57.4%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

163

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

3 3 Table G1. Heat contents Fuel Units Approximate heat content Coal 1 Production .................................................. million Btu per short ton 20.136 Consumption .............................................. million Btu per short ton 19.810 Coke plants ............................................. million Btu per short ton 26.304 Industrial .................................................. million Btu per short ton 23.651 Residential and commercial .................... million Btu per short ton 20.698 Electric power sector ............................... million Btu per short ton 19.370

164

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1997-Jan 01/10 3.79 01/17 4.19 01/24 2.98 01/31 2.91 1997-Feb 02/07 2.53 02/14 2.30 02/21 1.91 02/28 1.82 1997-Mar 03/07 1.86 03/14 1.96 03/21 1.91 03/28 1.84 1997-Apr 04/04 1.88 04/11 1.98 04/18 2.04 04/25 2.14 1997-May 05/02 2.15 05/09 2.29 05/16 2.22 05/23 2.22 05/30 2.28 1997-Jun 06/06 2.17 06/13 2.16 06/20 2.22 06/27 2.27 1997-Jul 07/04 2.15 07/11 2.15 07/18 2.24 07/25 2.20 1997-Aug 08/01 2.22 08/08 2.37 08/15 2.53 08/22 2.54 08/29 2.58

165

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.194 2.268 1994 Jan-17 to Jan-21 2.360 2.318 2.252 2.250 2.305 1994 Jan-24 to Jan-28 2.470 2.246 2.359 2.417 2.528 1994 Jan-31 to Feb- 4 2.554 2.639 2.585 2.383 2.369 1994 Feb- 7 to Feb-11 2.347 2.411 2.358 2.374 2.356 1994 Feb-14 to Feb-18 2.252 2.253 2.345 2.385 2.418 1994 Feb-21 to Feb-25 2.296 2.232 2.248 2.292 1994 Feb-28 to Mar- 4 2.208 2.180 2.171 2.146 2.188 1994 Mar- 7 to Mar-11 2.167 2.196 2.156 2.116 2.096 1994 Mar-14 to Mar-18 2.050 2.104 2.163 2.124 2.103 1994 Mar-21 to Mar-25 2.055 2.107 2.077 1.981 2.072 1994 Mar-28 to Apr- 1 2.066 2.062 2.058 2.075 1994 Apr- 4 to Apr- 8 2.144 2.069 2.097 2.085 2.066 1994 Apr-11 to Apr-15 2.068 2.089 2.131 2.163 2.187

166

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.347 2.355 2.109 2.111 1.941 2.080 1.963 1.693 1.619 1.721 1.771 1.700 1995 1.426 1.439 1.534 1.660 1.707 1.634 1.494 1.557 1.674 1.790 1.961 2.459 1996 2.483 2.458 2.353 2.309 2.283 2.544 2.521 2.049 1.933 2.481 3.023 3.645 1997 3.067 2.065 1.899 2.005 2.253 2.161 2.134 2.462 2.873 3.243 3.092 2.406 1998 2.101 2.263 2.253 2.465 2.160 2.168 2.147 1.855 2.040 2.201 2.321 1.927 1999 1.831 1.761 1.801 2.153 2.272 2.346 2.307 2.802 2.636 2.883 2.549 2.423 2000 2.385 2.614 2.828 3.028 3.596 4.303 3.972 4.460 5.130 5.079 5.740 8.618 2001 7.825 5.675 5.189 5.189 4.244 3.782 3.167 2.935 2.213 2.618 2.786 2.686

167

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-17 to Jan-21 2.019 2.043 2.103 1994 Jan-24 to Jan-28 2.162 2.071 2.119 2.128 2.185 1994 Jan-31 to Feb- 4 2.217 2.258 2.227 2.127 2.118 1994 Feb- 7 to Feb-11 2.137 2.175 2.162 2.160 2.165 1994 Feb-14 to Feb-18 2.140 2.145 2.205 2.190 2.190 1994 Feb-21 to Feb-25 2.180 2.140 2.148 2.186 1994 Feb-28 to Mar- 4 2.148 2.134 2.122 2.110 2.124 1994 Mar- 7 to Mar-11 2.129 2.148 2.143 2.135 2.125 1994 Mar-14 to Mar-18 2.111 2.137 2.177 2.152 2.130 1994 Mar-21 to Mar-25 2.112 2.131 2.117 2.068 2.087 1994 Mar-28 to Apr- 1 2.086 2.082 2.083 2.092 1994 Apr- 4 to Apr- 8 2.124 2.100 2.116 2.100 2.086 1994 Apr-11 to Apr-15 2.095 2.099 2.123 2.155 2.183 1994 Apr-18 to Apr-22 2.187 2.167 2.174 2.181 2.169

168

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

169

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

170

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12 1.72 1999 1.85 1.77 1.79 2.15 2.26 2.30 2.31 2.80 2.55 2.73 2.37 2.36 2000 2.42 2.66 2.79 3.04 3.59 4.29 3.99 4.43 5.06 5.02 5.52 8.90 2001 8.17 5.61 5.23 5.19 4.19 3.72 3.11 2.97 2.19 2.46 2.34 2.30 2002 2.32 2.32 3.03 3.43 3.50 3.26 2.99 3.09 3.55 4.13 4.04 4.74 2003 5.43 7.71 5.93 5.26 5.81 5.82 5.03 4.99 4.62 4.63 4.47 6.13 2004 6.14 5.37 5.39 5.71 6.33 6.27 5.93 5.41 5.15 6.35 6.17 6.58 2005 6.15 6.14 6.96 7.16 6.47 7.18 7.63 9.53 11.75 13.42 10.30 13.05

171

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/24 1.869 12/31 1.943 1994-Jan 01/07 1.935 01/14 1.992 01/21 2.006 01/28 2.088 1994-Feb 02/04 2.133 02/11 2.135 02/18 2.148 02/25 2.149 1994-Mar 03/04 2.118 03/11 2.125 03/18 2.139 03/25 2.113 1994-Apr 04/01 2.107 04/08 2.120 04/15 2.140 04/22 2.180 04/29 2.165 1994-May 05/06 2.103 05/13 2.081 05/20 2.076 05/27 2.061 1994-Jun 06/03 2.134 06/10 2.180 06/17 2.187 06/24 2.176 1994-Jul 07/01 2.256 07/08 2.221 07/15 2.172 07/22 2.137 07/29 2.207

172

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.116 2.168 2.118 2.139 2.038 2.150 2.083 2.031 2.066 2.037 1.873 1.694 1995 1.490 1.492 1.639 1.745 1.801 1.719 1.605 1.745 1.883 1.889 1.858 1.995 1996 1.964 2.056 2.100 2.277 2.307 2.572 2.485 2.222 2.272 2.572 2.571 2.817 1997 2.393 1.995 1.978 2.073 2.263 2.168 2.140 2.589 3.043 3.236 2.803 2.286 1998 2.110 2.312 2.312 2.524 2.249 2.234 2.220 2.168 2.479 2.548 2.380 1.954 1999 1.860 1.820 1.857 2.201 2.315 2.393 2.378 2.948 2.977 3.055 2.586 2.403 2000 2.396 2.591 2.868 3.058 3.612 4.258 3.981 4.526 5.335 5.151 5.455 7.337 2001 6.027 5.441 5.287 5.294 4.384 3.918 3.309 3.219 2.891 3.065 3.022 2.750

173

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177 2.175 2.205 2.297 2.317 2.582 2.506 2.120 2.134 2.601 2.862 3.260 1997 2.729 2.016 1.954 2.053 2.268 2.171 2.118 2.484 2.970 3.321 3.076 2.361 1998 2.104 2.293 2.288 2.500 2.199 2.205 2.164 1.913 2.277 2.451 2.438 1.953 1999 1.851 1.788 1.829 2.184 2.293 2.373 2.335 2.836 2.836 3.046 2.649 2.429 2000 2.392 2.596 2.852 3.045 3.604 4.279 3.974 4.467 5.246 5.179 5.754 8.267 2001 7.374 5.556 5.245 5.239 4.315 3.867 3.223 2.982 2.558 2.898 2.981 2.748

174

Fumigation of a diesel engine with low Btu gas  

SciTech Connect (OSTI)

A 0.5 liter single-cylinder, indirect-injection diesel engine has been fumigated with producer gas. Measurements of power, efficiency, cylinder pressure, and emissions were made. At each operating condition, engine load was held constant, and the gas-to-diesel fuel ratio was increased until abnormal combustion was encountered. This determined the maximum fraction of the input energy supplied by the gas, E/sub MAX/, which was found to be dependent upon injection timing and load. At light loads, E/sub MAX/ was limited by severe efficiency loss and missfire, while at heavy loads it was limited by knock or preignition. Fumigation generally increased ignition delay and heat release rates, but peak pressures were not strongly influenced. Efficiency was slightly decreased by fumigation as were NO/sub X/ and particle emissions while CO emissions were increased.

Ahmadi, M.; Kittelson, D.B.

1985-01-01T23:59:59.000Z

175

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,025 1,023 2010's 1,028 1,025 1,026 1,024...

176

Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,033 1,023 1,024 2010's 1,015 1,021 1,022 1,016...

177

Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,010 1,010 1,007 2010's 1,006 1,009 1,014 1,029...

178

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,023 1,022 2010's 1,021 1,017 1,015 1,022...

179

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,024 1,024 1,025 1,027 1,026 1,024 1,025 1,024 1,025 1,024 1,025 2014 1,027 1,022 1,028 1,026 1,029 1,032 1,033...

180

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,050 1,049 1,047 1,048 1,048 1,046 1,041 1,044 1,043 1,045 1,044 2014 1,044 1,044 1,045 1,044 1,038 1,036 1,038...

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005...

182

Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043...

183

Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,017 1,017 1,019 1,018 1,018 1,020 1,020 1,020 1,018 1,017 1,016 1,017 2014 1,017 1,017 1,019 1,023 1,022 1,023 1,025...

184

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,040 1,041 2010's 1,034 1,031 1,032 1,037...

185

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,034 1,033 1,033 1,035 1,035 1,038 1,037 1,044 1,045 1,044 1,043 1,044 2014 1,044 1,042 1,041 1,050 1,047 1,048 1,053...

186

Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,064 1,062 1,046 2010's 1,044 1,047 1,032 1,028...

187

Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,039 1,031 2010's 1,033 1,024 1,029 1,034...

188

Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,002 1,001 1,001 1,001 1,002 1,003 1,003 1,002 1,002 1,001 1,001 1,000 2014 1,002 1,004 1,001 1,002 1,001 1,001 1,001...

189

Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,032 1,027 1,032 1,028 1,031 1,033 1,030 1,031 1,037 1,032 1,029 2014 1,029 1,030 1,030 1,030 1,033 1,030 1,031...

190

Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,018...

191

Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012...

192

Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,039 1,037 1,034 1,031 1,032 1,031 1,033 1,039 1,032 1,029 1,034 2014 1,033 1,033 1,032 1,034 1,032 1,033 1,033...

193

Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,010 1,012 1,011 1,017 1,020 1,020 1,023 1,021 1,014 1,013 1,013 2014 1,013 1,012 1,010 1,034 1,041 1,044 1,029...

194

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,052 1,059 1,044 2010's 1,045 1,038 1,043 1,046...

195

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1993 Dec-20 to Dec-24 1.894 1.830 1.859 1.895 1993 Dec-27 to Dec-31 1.965 1.965 1.943 1.901 1994 Jan- 3 to Jan- 7 1.883 1.896 1.962 1.955 1.980 1994 Jan-10 to Jan-14 1.972 2.005 2.008 1.966 2.010 1994 Jan-17 to Jan-21 2.006 1.991 1.982 2.000 2.053 1994 Jan-24 to Jan-28 2.095 2.044 2.087 2.088 2.130 1994 Jan-31 to Feb- 4 2.157 2.185 2.157 2.075 2.095 1994 Feb- 7 to Feb-11 2.115 2.145 2.142 2.135 2.140 1994 Feb-14 to Feb-18 2.128 2.125 2.175 2.160 2.155 1994 Feb-21 to Feb-25 2.160 2.130 2.138 2.171 1994 Feb-28 to Mar- 4 2.140 2.128 2.112 2.103 2.111 1994 Mar- 7 to Mar-11 2.116 2.133 2.130 2.130 2.120 1994 Mar-14 to Mar-18 2.114 2.137 2.170 2.146 2.130 1994 Mar-21 to Mar-25 2.117 2.134 2.120 2.086 2.112

196

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.130 2.072 2.139 1994 Jan-17 to Jan-21 2.196 2.131 2.115 2.148 2.206 1994 Jan-24 to Jan-28 2.283 2.134 2.209 2.236 2.305 1994 Jan-31 to Feb- 4 2.329 2.388 2.352 2.252 2.198 1994 Feb- 7 to Feb-11 2.207 2.256 2.220 2.231 2.236 1994 Feb-14 to Feb-18 2.180 2.189 2.253 2.240 2.254 1994 Feb-21 to Feb-25 2.220 2.168 2.179 2.221 1994 Feb-28 to Mar- 4 2.165 2.146 2.139 2.126 2.144 1994 Mar- 7 to Mar-11 2.149 2.168 2.160 2.144 2.132 1994 Mar-14 to Mar-18 2.109 2.142 2.192 2.164 2.136 1994 Mar-21 to Mar-25 2.107 2.129 2.115 2.050 2.077 1994 Mar-28 to Apr- 1 2.076 2.072 2.070 2.087 1994 Apr- 4 to Apr- 8 2.134 2.090 2.109 2.093 2.081 1994 Apr-11 to Apr-15 2.090 2.099 2.128 2.175 2.196

197

Development of Gas Turbine Combustors for Low BTU Gas  

Science Journals Connector (OSTI)

Large-capacity combined cycles with high-temperature gas turbines burning petroleum fuel or LNG have already ... the other hand, as the power generation technology utilizing coal burning the coal gasification com...

I. Fukue; S. Mandai; M. Inada

1992-01-01T23:59:59.000Z

198

Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu to 31.8 quadrillion Btu), slower than the 1.2 percent average rate from 1975 to 2009. The slower growth is a result of changing demographics, increased LDV fuel economy, and saturation of personal travel demand.[1] References [1] ↑ 1.0 1.1 AEO2011 Transportation Sector Retrieved from "http://en.openei.org/w/index.php?title=Transportation&oldid=378906" What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

199

EIA - International Energy Outlook 2007 - Highlights Section  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2007 Highlights World marketed energy consumption is projected to increase by 57 percent from 2004 to 2030. Total energy demand in the non-OECD countries increases by 95 percent, compared with an increase of 24 percent in the OECD countries. Figure 1. World Marketed Energy Consumption by Region, 2004-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 2. Average Annual Growth in Delivered Energy Consumption by Region and End-use Sector, 2004-2030 (Percent per Year). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 3. Industrial Sector Delivered Energy Consumption by Region, 2004-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

200

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal In the IEO2007 reference case, world coal consumption increases by 74 percent from 2004 to 2030, international coal trade increases by 44 percent from 2005 to 2030, and coal's share of world energy consumption increases from 26 percent in 2004 to 28 percent in 2030. In the IEO2007 reference case, world coal consumption increases by 74 percent over the projection period, from 114.4 quadrillion Btu in 2004 to 199.0 quadrillion Btu in 2030 (Figure 54). Coal consumption increases by 2.6 per- cent per year on average from 2004 to 2015, then slows to an average increase of 1.8 percent annually from 2015 to 2030. World GDP and primary energy consumption also grow more rapidly in the first half than in the second half of the projections, reflecting a gradual slowdown of economic growth in non-OECD Asia. Regionally, increased use of coal in non-OECD

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Electricity Flow, (Quadrillion Btu) Electricity Flow, (Quadrillion Btu) Electricity Flow diagram image Footnotes: 1 Blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived fuels). 3 Data collection frame differences and nonsampling error. Derived for the diagram by subtracting the "T & D Losses" estimate from "T & D Losses and Unaccounted for" derived from Table 8.1. 4 Electric energy used in the operation of power plants. 5 Transmission and distribution losses (electricity losses that occur between the point of generation and delivery to the customer) are estimated

202

Tips: Heating and Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Heating and Cooling Tips: Heating and Cooling Tips: Heating and Cooling May 30, 2012 - 7:38pm Addthis Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Heating and cooling your home uses more energy and costs more money than any other system in your home -- typically making up about 54% of your

203

 

Gasoline and Diesel Fuel Update (EIA)

Hydroelectricity and Other Renewable Resources Hydroelectricity and Other Renewable Resources The renewable energy share of total world energy consumption is expected to remain unchanged at 8 percent through 2025, despite a projected 56-percent increase in consumption of hydroelectricity and other renewable resources. In the International Energy Outlook 2003 (IEO2003) reference case, moderate growth in the worldÂ’s consumption of hydroelectricity and other renewable energy resources is projected over the next 24 years. Renewable energy sources are not expected to compete economically with fossil fuels in the mid-term forecast. In the absence of significant government policies aimed at reducing the impacts of carbon-emitting energy sources on the environment, it will be difficult to extend the use of renewables on a large scale. IEO2003 projects that consumption of renewable energy worldwide will grow by 56 percent, from 32 quadrillion Btu in 2001 to 50 quadrillion Btu in 2025 (Figure 69).

204

EIA - International Energy Outlook 2008-Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2008 Chapter 4 - Coal In the IEO2008 reference case, world coal consumption increases by 65 percent and international coal trade increases by 53 percent from 2005 to 2030, and coalÂ’s share of world energy consumption increases from 27 percent in 2005 to 29 percent in 2030. Figure 46. World Coal Consumption by Country Grouping, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 47. Coal Share of World Energy Consumption by Sector, 2005, 2015, and 2030 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 48. OECD Coal Consumption by Region, 1980, 2005, 2015, and 2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

205

International Energy Outlook 1999 - Coal  

Gasoline and Diesel Fuel Update (EIA)

coal.jpg (1776 bytes) coal.jpg (1776 bytes) CoalÂ’s share of world energy consumption falls slightly in the IEO99 forecast. Coal continues to dominate many national fuel markets in developing Asia, but it is projected to lose market share to natural gas in some other areas of the world. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1996. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union. In Western Europe, coal consumption declined by 30

206

EIA - International Energy Outlook 2007 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2007 Chapter 5 - Coal In the IEO2007 reference case, world coal consumption increases by 74 percent from 2004 to 2030, international coal trade increases by 44 percent from 2005 to 2030, and coalÂ’s share of world energy consumption increases from 26 percent in 2004 to 28 percent in 2030. Figure 54. World Coal Consumption by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy at 202-586-8800. Figure Data Figure 55. Coal Share of World Energy Consumption by Sector, 2004, 2015, and 2030 (Percent). Need help, contact the National Energy at 202-586-8800. Figure Data In the IEO2007 reference case, world coal consumption increases by 74 percent over the projection period, from 114.4 quadrillion Btu in 2004 to

207

EIA - International Energy Outlook 2009-Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2009 Chapter 4 - Coal In the IEO2009 reference case, world coal consumption increases by 49 percent from 2006 to 2030, and coalÂ’s share of world energy consumption increases from 27 percent in 2006 to 28 percent in 2030. Figure 42. World Coal Consumption by Country Grouping, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 43. Coal Share of World Energy Consumption by Sector, 2006, 2015, and 2030 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 44. OECD Coal Consumption by Region, 1980, 2006, 2015, and 2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

208

International Energy Outlook 2000 - Highlights  

Gasoline and Diesel Fuel Update (EIA)

bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage HIGHLIGHTS World energy consumption is projected to increase by 60 percent from 1997 to 2020. Recent price developments in world oil markets and economic recovery in Southeast Asia have altered projections relative to last yearÂ’s report. In the reference case projections for the International Energy Outlook 2000 (IEO2000), world energy consumption increases by 60 percent over a 23-year forecast period, from 1997 to 2020. Energy use worldwide increases from 380 quadrillion British thermal units (Btu) in 1997 to 608 quadrillion Btu in 2020 (Figure 2 and Table 1). Many developments in 1999 are reflected in this yearÂ’s outlook. Shifting short-term world oil markets, the beginnings

209

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Transportation from Executive Summary Transportation from Executive Summary With more efficient light-duty vehicles, motor gasoline consumption declines while diesel fuel use grows, even as more natural gas is used in heavy-duty vehicles figure data The AEO2013 Reference case incorporates the GHG and CAFE standards for LDVs [6] through the 2025 model year. The increase in vehicle efficiency reduces LDV energy use from 16.1 quadrillion Btu in 2011 to 14.0 quadrillion Btu in 2025, predominantly motor gasoline (Figure 6). LDV energy use continues to decline through 2036, then levels off until 2039 as growth in population and vehicle miles traveled offsets more modest improvement in fuel efficiency. Furthermore, the improved economics of natural gas as a fuel for heavy-duty vehicles result in increased use that offsets a portion of diesel fuel

210

Renewable Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA renewable electricity Renewable Energy Consumption world Data text/csv icon total_renewable_electricity_net_consumption_2005_2009billion_kwh.csv (csv, 8.5 KiB) text/csv icon total_renewable_electricity_net_consumption_2005_2009quadrillion_btu.csv (csv, 8.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

211

renewable electricity | OpenEI  

Open Energy Info (EERE)

electricity electricity Dataset Summary Description Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA renewable electricity Renewable Energy Consumption world Data text/csv icon total_renewable_electricity_net_consumption_2005_2009billion_kwh.csv (csv, 8.5 KiB) text/csv icon total_renewable_electricity_net_consumption_2005_2009quadrillion_btu.csv (csv, 8.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

212

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

7 7 U.S. Energy Information Administration | Annual Energy Outlook 2013 Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2013 Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Sector and source Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Energy consumption Residential Propane .............................................................. 0.53 0.53 0.52 0.52 0.52 0.52 0.52 -0.0% Kerosene ............................................................ 0.03 0.02 0.01 0.01 0.01 0.01 0.01 -1.8% Distillate fuel oil ................................................... 0.58 0.59 0.51 0.45 0.40 0.36 0.32 -2.1%

213

International Energy Outlook 2000 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Although coal use is expected to be displaced by natural gas in some parts of the world, Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2020. Coal continues to dominate many national fuel markets in developing Asia. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1997. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union (FSU). In Western Europe, coal consumption declined by 33 percent between 1985 and 1997, displaced in considerable measure by

214

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Transportation from Executive Summary Transportation from Executive Summary With more efficient light-duty vehicles, motor gasoline consumption declines while diesel fuel use grows, even as more natural gas is used in heavy-duty vehicles figure data The AEO2013 Reference case incorporates the GHG and CAFE standards for LDVs [6] through the 2025 model year. The increase in vehicle efficiency reduces LDV energy use from 16.1 quadrillion Btu in 2011 to 14.0 quadrillion Btu in 2025, predominantly motor gasoline (Figure 6). LDV energy use continues to decline through 2036, then levels off until 2039 as growth in population and vehicle miles traveled offsets more modest improvement in fuel efficiency. Furthermore, the improved economics of natural gas as a fuel for heavy-duty vehicles result in increased use that offsets a portion of diesel fuel

215

EIA - International Energy Outlook 2009 - Highlights Section  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2009 Highlights World marketed energy consumption is projected to increase by 44 percent from 2006 to 2030. Total energy demand in the non-OECD countries increases by 73 percent, compared with an increase of 15 percent in the OECD countries. Figure 1. World Marketed Energy Consumption, 2006-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 2. World Marketed Energy Use by Fuel Type, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 3. World Oil Prices in the IEO2009 and IEO2008 Reference Cases, 1980-2030 (2007 dollars per barrel). Need help, contact the National Energy Information Center at 202-586-8800.

216

EIA - International Energy Outlook 2009-Industrial Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Industrial Sector Energy Consumption Industrial Sector Energy Consumption International Energy Outlook 2009 Chapter 6 - Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by an average of 1.4 percent per year from 2006 to 2030 in the IEO2009 reference case. Much of the growth is expected to occur in the developing non-OECD nations. Figure 63. OECD and Non-OECD Industrial Sector Energy Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 64. World Industrial Sector Energy Consumption by Fuel, 2006 and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

217

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights World energy consumption is projected to increase by 57 percent from 2002 to 2025. Much of the growth in worldwide energy use in the IEO2005 reference case forecast is expected in the countries with emerging economies. Figure 1. World Marketed Energy Consumptiion by Region, 1970-2025. Need help, contact the National Energy Information Center at 202-586-8800. Figure Data In the International Energy Outlook 2005 (IEO2005) reference case, world marketed energy consumption is projected to increase on average by 2.0 percent per year over the 23-year forecast horizon from 2002 to 2025—slightly lower than the 2.2-percent average annual growth rate from 1970 to 2002. Worldwide, total energy use is projected to grow from 412 quadrillion British thermal units (Btu) in 2002 to 553 quadrillion Btu in

218

Slide 1  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Forum Renewable Energy Forum Beijing, China May 27, 2010 David Sandalow Assistant Secretary for Policy and International Affairs U.S. Department of Energy 0 100 200 300 400 500 600 1980 1985 1990 1995 2000 2005 Quadrillion Btu China China and the United States together consume around 40% of the world's energy... 37% Rest of the world United States 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 1980 1984 1988 1992 1996 2000 2004 2008 CO 2 Emissions from Energy Consumption (million MtCO 2 ) ...and together account for more than 40% of global GHG emissions. 42% China Rest of the world United States 2003 projection 2006 projection 0 20 40 60 80 100 120 140 160 180 1970 1980 1990 2000 2010 2020 2030 Quadrillion Btu 2010 projection Actual energy consumption China's energy demand

219

Renewable Energy Generation | OpenEI  

Open Energy Info (EERE)

Generation Generation Dataset Summary Description Total annual renewable electricity net generation by country, 1980 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA Renewable Energy Generation world Data text/csv icon total_renewable_electricity_net_generation_1980_2009billion_kwh.csv (csv, 37.3 KiB) text/csv icon total_renewable_electricity_net_generation_1980_2009quadrillion_btu.csv (csv, 43 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

220

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Efficiency from Executive Summary Efficiency from Executive Summary With more efficient light-duty vehicles, motor gasoline consumption declines while diesel fuel use grows, even as more natural gas is used in heavy-duty vehicles figure data The AEO2013 Reference case incorporates the GHG and CAFE standards for LDVs [6] through the 2025 model year. The increase in vehicle efficiency reduces LDV energy use from 16.1 quadrillion Btu in 2011 to 14.0 quadrillion Btu in 2025, predominantly motor gasoline (Figure 6). LDV energy use continues to decline through 2036, then levels off until 2039 as growth in population and vehicle miles traveled offsets more modest improvement in fuel efficiency. Furthermore, the improved economics of natural gas as a fuel for heavy-duty vehicles result in increased use that offsets a portion of diesel fuel

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table A4. Residential sector key indicators and consumption  

Gasoline and Diesel Fuel Update (EIA)

3 3 U.S. Energy Information Administration | Annual Energy Outlook 2013 Reference case Table A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2013 Table A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Key indicators Households (millions) Single-family ....................................................... 82.85 83.56 91.25 95.37 99.34 103.03 106.77 0.8% Multifamily ........................................................... 25.78 26.07 29.82 32.05 34.54 37.05 39.53 1.4%

222

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Overview Figure 65. World coal consumption by region, 1980-2035 figure dataIn the IEO2011 Reference case, which does not include prospective greenhouse gas reduction policies, world coal consumption increases by 50 percent, from 139 quadrillion Btu in 2008 to 209 quadrillion Btu in 2035 (Figure 65). Although world coal consumption increases at an average rate of 1.5 percent per year from 2008 to 2035, the growth rates by region are uneven, with total coal consumption for OECD countries remaining near 2008 levels and coal consumption in non-OECD countries increasing at a pace of 2.1 percent per year. As a result, increased use of coal in non-OECD countries accounts for nearly all the growth in world coal consumption over the period. In 2008, coal accounted for 28 percent of world energy consumption (Figure

223

International Energy Outlook 2001 - Highlights  

Gasoline and Diesel Fuel Update (EIA)

To Forecasting Home Page EIA Homepage Highlights picture of a printer Printer Friendly Version (PDF) World energy consumption is projected to increase by 59 percent from 1999 to 2020. Much of the growth in worldwide energy use is expected in the developing world in the IEO2001 reference case forecast. In the reference case projections for the International Energy Outlook 2001 (IEO2001), world energy consumption is projected to increase by 59 percent over a 21-year forecast horizon, from 1999 to 2020. Worldwide energy use grows from 382 quadrillion British thermal units (Btu) in 1999 to 607 quadrillion Btu in 2020 (Figure 2 and Table 1). Many developments in 2000 influenced this yearÂ’s outlook, including persistently high world oil prices, stronger than anticipated economic recovery in southeast Asia, and

224

EIA - International Energy Outlook 2008 - Highlights Section  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2008 Highlights World marketed energy consumption is projected to increase by 50 percent from 2005 to 2030.Total energy demand in the non-OECD countries increases by 85 percent,compared with an increase of 19 percent in the OECD countries. Figure 1. World Marketed Energy Consumption, 2005-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 2. World Marketed Energy Use by Fuel Type, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 3. World Oil Prices in Two Cases, 1980-2030 (nominal dollars per barrel). Need help, contact the National Energy Information Center at 202-586-8800.

225

International Energy Outlook 1999 - Highlights  

Gasoline and Diesel Fuel Update (EIA)

highlights.gif (3388 bytes) highlights.gif (3388 bytes) World energy consumption is projected to increase by 65 percent from 1996 to 2020. The current economic problems in Asia and Russia have lowered projections relative to last year’s report. In the reference case projections for this International Energy Outlook 1999 (IEO99), world energy consumption reaches 612 quadrillion British thermal units (Btu) by 2020 (Figure 2 and Table 1)—an increase of 65 percent over the 24-year projection period. The IEO99 projection for the world’s energy demand in 2020 is about 4 percent (almost 30 quadrillion Btu) lower than last year’s projection. The downward revision is based on events in two parts of the world: Asia and Russia. In Asia, the economic crisis that began in early 1997 persisted throughout 1998, as economic

226

Slide 1  

U.S. Energy Information Administration (EIA) Indexed Site

World's Demand for World's Demand for Liquid Fuels A Roundtable Discussion A New Climate For Energy EIA 2009 Energy Conference April 7, 2009 Washington, DC 2 World Marketed Energy Use by Fuel Type 0 50 100 150 200 250 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 Quadrillion Btu Liquids Natural Gas Coal Renewables Nuclear History Projections Source: EIA, IEO2008 36% 23% 6% 8% 29% 33% 24% 8% 6% 27% 3 World Liquids Consumption by End-Use Sector, 2005, 2015, and 2030 0 50 100 150 200 250 2005 2015 2030 Quadrillion Btu Building Industrial Transportation Electric Power Source: EIA, IEO2008 4 $0 $50 $100 $150 $200 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 Light Sweet Crude Oil (2007 $/B) Reference Case High World Oil Price Low World Oil Price World Oil Prices in Three Price Cases, AEO2009 - Real Prices History Projections Source: EIA, AEO2009, NYMEX

227

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

F1. Primary Energy Consumption and Delivered Total Energy, 2010 F1. Primary Energy Consumption and Delivered Total Energy, 2010 (Quadrillion Btu) U.S. Energy Information Administration / Annual Energy Review 2011 347 Primary Energy Consumption by Source 1 Delivered Total Energy by Sector 8 1 Includes electricity net imports, not shown separately. 2 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 3 Excludes supplemental gaseous fuels. 4 Includes less than 0.1 quadrillion Btu of coal coke net exports. 5 Conventional hydroelectric power, geothermal, solar/PV, wind, and biomass. 6 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public. 7 Calculated as the primary energy consumed by the electric power sector minus the

228

Coal consumption | OpenEI  

Open Energy Info (EERE)

consumption consumption Dataset Summary Description Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords coal Coal consumption EIA world Data text/csv icon total_coal_consumption_1980_2009quadrillion_btu.csv (csv, 38.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

229

Word Pro - Untitled1  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Sector Energy Consumption by Sector THIS PAGE INTENTIONALLY LEFT BLANK Figure 2.0 Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) U.S. Energy Information Administration / Annual Energy Review 2011 37 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solar/photovoltaic, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. 6 Includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to

230

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

World energy demand and economic outlook World energy demand and economic outlook Overview In the IEO2011 Reference case, world energy consumption increases by 53 percent, from 505 quadrillion Btu in 2008 to 770 quadrillion Btu in 2035 (Table 1). In the near term, the effects of the global recession of 2008-2009 curtailed world energy consumption.8 As nations recover from the downturn, however, world energy demand rebounds in the Reference case and increases strongly as a result of robust economic growth and expanding populations in the world's developing countries. OECD member countries are, for the most part, more advanced energy consumers.9 Energy demand in the OECD economies grows slowly over the projection period, at an average annual rate of 0.6 percent, whereas energy consumption in the non-OECD

231

Energy-Related Carbon Emissions, by Industry, 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Efficiency Page > Energy Energy-Related Carbon Emissions > Total Table Energy Efficiency Page > Energy Energy-Related Carbon Emissions > Total Table Total Energy-Related Carbon Emissions for Manufacturing Industries, 1994 Carbon Emissions (million metric tons) Carbon Intensity SIC Code Industry Group Total Net Electricity Natural Gas Petro- leum Coal Other (MMTC/ Quadrillion Btu) Total 371.7 131.1 93.5 87.3 56.8 3.1 17.16 20 Food and Kindred Products 24.4 9.8 9.1 W W 0.1 20.44 21 Tobacco Products W 0.1 W W W W W 22 Textile Mill Products 8.7 5.5 1.7 0.6 1.0 * 28.21 23 Apparel and Other Textile Products W 1.3 0.4 W W W W 24 Lumber and Wood Products 4.9 3.4 0.7 W W 0.2 9.98 25 Furniture and Fixtures 1.6 1.1 0.3 * 0.1 0.1 23.19 26 Paper and Allied Products 31.6 11.0 8.3 4.3 7.8 0.3 11.88

232

Efficient Energy Utilization in the Industrial Sector - Case Studies  

E-Print Network [OSTI]

require. Recent figures for the distribution of energy indi cate that the industrial sector consumes about 44% of the total with about 2/3 of that for combustion and the remainder for raw materials. This repre sents about 24 quadrillion BTU's per year... 16 years to a possible 70 quqd rillion BTU's. The total energy consumption wi~l continue to grow over the next 16 years as shown in Figure 2. Again, under moderate economic growth, energy gnowth will average about 3 percent per year. For exa...

Davis, S. R.

1984-01-01T23:59:59.000Z

233

Carbon Emissions: Iron and Steel Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Iron and Steel Industry Iron and Steel Industry Carbon Emissions in the Iron and Steel Industry The Industry at a Glance, 1994 (SIC Code: 3312) Total Energy-Related Emissions: 39.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 10.7% -- Nonfuel Emissions: 22.2 MMTC Total First Use of Energy: 1,649 trillion Btu -- Pct. of All Manufacturers: 7.6% Nonfuel Use of Energy: 886 trillion Btu (53.7%) -- Coal: 858 trillion Btu (used to make coke) Carbon Intensity: 24.19 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 39.9 Coal 22.7

234

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

235

Geothermal source potential and utilization for alcohol production  

SciTech Connect (OSTI)

A study was conducted to assess the technical and economic feasibility of using a potential geothermal source to drive a fuel grade alcohol plant. Test data from the well at the site indicated that the water temperature at approximately 8500 feet should approach 275/sup 0/F. However, no flow data was available, and so the volume of hot water that can be expected from a well at this site is unknown. Using the available data, numerous fuel alcohol production processes and various heat utilization schemes were investigated to determine the most cost effective system for using the geothermal resource. The study found the direct application of hot water for alcohol production based on atmospheric processes using low pressure steam to be most cost effective. The geothermal flow rates were determined for various sizes of alcohol production facility using 275/sup 0/F water, 235/sup 0/F maximum processing temperature, 31,000 and 53,000 Btu per gallon energy requirements, and appropriate process approach temperatures. It was determined that a 3 million gpy alcohol plant is the largest facility that can practically be powered by the flow from one large geothermal well. An order-of-magnitude cost estimate was prepared, operating costs were calculated, the economic feasibility of the propsed project was examined, and a sensitivity analysis was performed.

Austin, J.C.

1981-11-01T23:59:59.000Z

236

Conversion of forest residues to a methane-rich gas. Detailed economic feasibility study  

SciTech Connect (OSTI)

An economic evaluation of the application of the multi-solid fluid reactor design to wood gasification was completed. The processing options examined include plant capacity, production of a high-Btu (1006 Btu/SCF HHV) gas versus an intermediate-Btu gas (379 Btu/SCF HHV), and operating pressure. 9 figs., 29 tabs.

Not Available

1986-03-01T23:59:59.000Z

237

Wood pellet production  

SciTech Connect (OSTI)

Southern Energy Limited's wood pellet refinery, Bristol, Florida, produces wood pellets for fuel from scrap wood from a nearby sawmill and other hog fuel delivered to the plant from nearby forest lands. The refinery will provide 50,000 tons of pellets per year to the Florida State Hospital at Chattahoochee to fire recently converted boilers in the central power plant. The pellets are densified wood, having a moisture content of about 10% and a heating value of 8000 Btu/lb. They are 0.5 inches in diameter and 2 to 3 inches in length.

Moore, J.W.

1983-08-01T23:59:59.000Z

238

Annual Energy Outlook 2011: With Projections to 2035  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2011 Annual Energy Outlook 2011 Table G1. Heat Rates Fuel Units Approximate Heat Content Coal 1 Production . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.933 Consumption . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.800 Coke Plants . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 26.327 Industrial . . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 21.911 Residential and Commercial . . . . . . . . . . million Btu per short ton 21.284 Electric Power Sector . . . . . . . . . . . . . . . million Btu per short ton 19.536 Imports . . . . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton

239

Word Pro - S1.lwp  

U.S. Energy Information Administration (EIA) Indexed Site

b b Primary Energy Net Imports (Quadrillion Btu) Total, 1949-2012 By Major Source, 1949-2012 Total, Monthly By Major Source, Monthly U.S. Energy Information Administration / Monthly Energy Review November 2013 9 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 -5 0 5 10 15 20 25 30 35 Natural Gas Crude Oil a Petroleum Products b Coal Crude Oil a 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 -5 0 5 10 15 20 25 0 -5 Petroleum Products b Coal Natural Gas J F MA M J J A S O N D J F MA M J J A S O N D J F MA M J J A S O N D 0.0 0.5 1.0 1.5 2.0 2011 2012 2013 2011 2012 2013 J F MA M J J A S O N D J F MA M J J A S O N D J F MA M J J A S O N D -0.5 0.0 0.5 1.0 1.5 2.0 -0.5 a Crude oil and lease condensate. Includes imports into the Strategic Petroleum Reserve, which began in 1977. b Petroleum products, unfinished oils, pentanes plus, and gasoline blending components. Does not include biofuels.

240

Word Pro - S3  

U.S. Energy Information Administration (EIA) Indexed Site

a Heat Content of Petroleum Consumption by End-Use Sector, 1949-2012 a Heat Content of Petroleum Consumption by End-Use Sector, 1949-2012 (Quadrillion Btu) Residential and Commercial a Sectors, Selected Products Industrial a Sector, Selected Products Transportation Sector, Selected Products 56 U.S. Energy Information Administration / Monthly Energy Review November 2013 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 1 2 3 Distillate Fuel Oil LPG b Kerosene Residual Fuel Oil LPG b 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0.0 0.5 1.0 1.5 2.0 2.5 Distillate Fuel Oil Asphalt and Road Oil 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 5 10 15 20 Distillate Fuel Oil d Jet Fuel e Motor Gasoline c a Includes combined-heat-and-power plants and a small number of electricity-only plants. b Liquefied petroleum gases. c Beginning in 1993, includes fuel ethanol blended into motor gasoline.

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Buildings Energy Data Book: 1.4 Environmental Data  

Buildings Energy Data Book [EERE]

8 8 2010 Carbon Dioxide Emission Coefficients for Buildings (MMT CO2 per Quadrillion Btu) (1) All Residential Commercial Buildings Buildings Buildings Coal Average (2) 95.35 95.35 95.35 Natural Gas Average (2) 53.06 53.06 53.06 Petroleum Products Distillate Fuel Oil/Diesel 73.15 - - Kerosene 72.31 - - Motor Gasoline 70.88 - - Liquefied Petroleum Gas 62.97 - - Residual Fuel Oil 78.80 - - Average (2) 69.62 68.45 71.62 Electricity Consumption (3) Average - Primary (4) 57.43 57.43 57.43 Average - Site (5) 178.3 179.1 177.9 New Generation Gas Combined Cycle - Site (6) 112.5 112.5 112.5 Gas Combustion Turbine - Site (6) 171.4 171.4 171.4 Stock Gas Generator - Site (7) 133.9 133.9 133.9 All Fuels (3) Average - Primary 56.23 55.79 56.77 Average - Site 111.4 105.6 118.7 Note(s): Source(s): 1) Emissions assume complete combustion from energy consumption, excluding gas flaring, coal mining, and cement production. The

242

RMOTC - Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production Production RMOTC Pumpjack in action During the process of the sale of NPR-3, RMOTC will focus on maximizing the value of the NPR-3 site and will continue with its Production Optimization Projects. NPR-3 includes 9,481 acres with more than 400 oil-producing wells. Current oil production is at approximately 240 barrels of oil per day. In July 2013, RMOTC began working on a number of Production Optimization Projects within the NPR-3 field, with the goal to optimize and improve flow and efficiency. Production Optimization Projects include repairing and replacing existing infrastructure with new infrastructure in order to optimize current wells and bring additional wells online. These Production Optimization Projects will continue throughout 2013 and are focused on improving current production and creating revenue for the America tax payer.

243

PRODUCTS & MATERIALS  

Science Journals Connector (OSTI)

...1995-96 Spectrum Chemical and Safety Prod-ucts Catalog features products for molecular and life science laboratories and cleanroom environments. Spectrum Chemical Manu-facturing. Circle 150. SCIENCE * VOL. 268 * 23 JUNE 1995

1995-06-23T23:59:59.000Z

244

Word Pro - S1.lwp  

U.S. Energy Information Administration (EIA) Indexed Site

Table 1.2 Primary Energy Production by Source (Quadrillion Btu) Fossil Fuels Nuclear Electric Power Renewable Energy a Total Coal b Natural Gas (Dry) Crude Oil c NGPL d Total Hydro- electric Power e Geo- thermal Solar/ PV Wind Bio- mass Total 1950 Total .................. 14.060 6.233 11.447 0.823 32.563 0.000 1.415 NA NA NA 1.562 2.978 35.540 1955 Total .................. 12.370 9.345 14.410 1.240 37.364 .000 1.360 NA NA NA 1.424 2.784 40.148 1960 Total .................. 10.817 12.656 14.935 1.461 39.869 .006 1.608 (s) NA NA 1.320 2.928 42.803 1965 Total .................. 13.055 15.775 16.521 1.883 47.235 .043 2.059 .002 NA NA 1.335 3.396 50.674 1970 Total .................. 14.607 21.666 20.401 2.512 59.186 .239 2.634 .006 NA NA 1.431 4.070 63.495 1975 Total ..................

245

U.S. Energy Information Administration | Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2011 Annual Energy Outlook 2011 Energy Information Administration / Annual Energy Outlook 2011 1 Table C1. Total Energy Supply, Disposition, and Price Summary (Quadrillion Btu per Year, Unless Otherwise Noted) Supply, Disposition, and Prices 2009 Projections 2015 2025 2035 Low Oil Price Reference High Oil Price Low Oil Price Reference High Oil Price Low Oil Price Reference High Oil Price Production Crude Oil and Lease Condensate . . . . . . . . . . 11.34 12.35 12.51 12.76 11.19 12.64 15.18 9.32 12.80 15.31 Natural Gas Plant Liquids . . . . . . . . . . . . . . . . 2.57 2.88 2.86 2.90 3.50 3.55 3.62 3.85 3.92 3.86 Dry Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . 21.50 23.05 23.01 23.23 24.24 24.60 25.20 26.91 27.00 27.63 Coal 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.58 20.63 20.94 20.83 23.30 23.64 24.98 23.82 26.01 30.33 Nuclear Power . . . . . . . .

246

Window-Related Energy Consumption in the US Residential and Commercial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window-Related Energy Consumption in the US Residential and Commercial Window-Related Energy Consumption in the US Residential and Commercial Building Stock Title Window-Related Energy Consumption in the US Residential and Commercial Building Stock Publication Type Report LBNL Report Number LBNL-60146 Year of Publication 2006 Authors Apte, Joshua S., and Dariush K. Arasteh Call Number LBNL-60146 Abstract We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate that future window technologies offer energy savings potentials of up to 3.9 Quads.

247

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | Annual Energy Outlook 2013 U.S. Energy Information Administration | Annual Energy Outlook 2013 Energy Information Administration / Annual Energy Outlook 2013 Table A1. Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise noted) Supply, disposition, and prices Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Production Crude oil and lease condensate ............................ 11.59 12.16 15.95 14.50 13.47 13.40 13.12 0.3% Natural gas plant liquids ........................................ 2.78 2.88 4.14 4.20 3.85 3.87 3.89 1.0% Dry natural gas ...................................................... 21.82 23.51 27.19 29.22 30.44 32.04 33.87 1.3% Coal 1 ...................................................................... 22.04 22.21 21.74 22.54 23.25 23.60 23.54 0.2%

248

Energy Information Administration / Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 1 Table A1. Total Energy Supply and Disposition Summary (Quadrillion Btu per Year, Unless Otherwise Noted) Supply, Disposition, and Prices Reference Case Annual Grow th 2007-2030 (percent) 2006 2007 2010 2015 2020 2025 2030 Production Crude O il and Lease Conden sate . . . . . . . . . . . 10.80 10.73 12.18 12.40 14.02 15.64 15.98 1.7% Natural Gas Plant Liquids . . . . . . . . . . . . . . . . . . 2.36 2.41 2.52 2.50 2.52 2.56 2.55 0.3% Dry Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . 18.99 19.84 20.87 20.83 22.02 23.81 24.28 0.9% Coal 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.79 23.50 24.21 24.56 24.41 25.05 26.79 0.6% Nuclear Power . . . . . . . . . . . . . . . . . . . . . . . . . . 8.21 8.41 8.45 8.68 9.00 9.05 9.44 0.5% Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.87 2.46 2.67 2.94 2.95 2.96 2.97 0.8% Biomass 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.97 3.23 4.20 5.16 6.49 7.86

249

Word Pro - S1.lwp  

Gasoline and Diesel Fuel Update (EIA)

Monthly Energy Review December 2013 Monthly Energy Review December 2013 Table 1.4a Primary Energy Imports by Source (Quadrillion Btu) Imports Coal Coal Coke Natural Gas Petroleum Biofuels c Electricity Total Crude Oil a Petroleum Products b Total 1950 Total ...................... 0.009 0.011 0.000 1.056 0.830 1.886 NA 0.007 1.913 1955 Total ...................... .008 .003 .011 1.691 1.061 2.752 NA .016 2.790 1960 Total ...................... .007 .003 .161 2.196 1.802 3.999 NA .018 4.188 1965 Total ...................... .005 .002 .471 2.654 2.748 5.402 NA .012 5.892 1970 Total ...................... .001 .004 .846 2.814 4.656 7.470 NA .021 8.342 1975 Total ...................... .024 .045 .978 8.721 4.227 12.948 NA .038 14.032 1980 Total ...................... .030 .016 1.006 11.195 3.463 14.658 NA .085 15.796 1985 Total

250

L:\main\pkc\aeotabs\aeo2008\appa.wpd  

Gasoline and Diesel Fuel Update (EIA)

8 8 1 Table A1. Total Energy Supply and Disposition Summary (Quadrillion Btu per Year, Unless Otherwise Noted) Supply, Disposition, and Prices Reference Case Annual Growth 2006-2030 (percent) 2005 2006 2010 2015 2020 2025 2030 Production Crude Oil and Lease Condensate . . . . . . . . . . . . 10.99 10.80 12.71 13.05 13.76 12.89 12.12 0.5% Natural Gas Plant Liquids . . . . . . . . . . . . . . . . . . 2.33 2.36 2.21 2.22 2.27 2.24 2.18 -0.3% Dry Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . 18.60 19.04 19.61 19.91 20.28 20.24 20.41 0.3% Coal 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.19 23.79 23.31 24.33 25.61 28.43 31.16 1.1% Nuclear Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.16 8.21 8.31 8.41 9.15 9.68 9.89 0.8% Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.70 2.89 2.92 3.00 3.00 3.00 3.00 0.2% Biomass 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.83 2.97 4.11 4.44

251

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | Annual Energy Outlook 2013 1 Table C1. Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise noted) Supply, disposition, and prices 2011 Projections 2020 2030 2040 Low oil price Reference High oil price Low oil price Reference High oil price Low oil price Reference High oil price Production Crude oil and lease condensate .................... 12.16 15.22 15.95 16.61 11.89 13.47 15.07 9.99 13.12 14.63 Natural gas plant liquids ................................ 2.88 3.98 4.14 4.24 3.79 3.85 3.99 3.69 3.89 4.08 Dry natural gas .............................................. 23.51 26.44 27.19 27.61 28.09 30.44 31.87 30.91 33.87 36.61 Coal 1 ............................................................. 22.21

252

Annual Energy Outlook 2011: With Projections to 2035  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2011 Annual Energy Outlook 2011 Energy Information Administration / Annual Energy Outlook 2011 1 Table B1. Total Energy Supply, Disposition, and Price Summary (Quadrillion Btu per Year, Unless Otherwise Noted) Supply, Disposition, and Prices 2009 Projections 2015 2025 2035 Low Economic Growth Reference High Economic Growth Low Economic Growth Reference High Economic Growth Low Economic Growth Reference High Economic Growth Production Crude Oil and Lease Condensate . . . . . . . . . . 11.34 12.53 12.51 12.55 12.44 12.64 12.62 12.13 12.80 12.87 Natural Gas Plant Liquids . . . . . . . . . . . . . . . . 2.57 2.79 2.86 2.89 3.39 3.55 3.70 3.59 3.92 4.11 Dry Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . 21.50 22.50 23.01 23.30 23.58 24.60 25.54 24.92 27.00 30.16 Coal 1 . . . . . . . . . . . . . . . . . . . . . . . . .

253

L:\main\pkc\aeotabs\aeo2012\appa.wpd  

Gasoline and Diesel Fuel Update (EIA)

Table A1. Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise noted) Supply, disposition, and prices Reference case Annual growth 2010-2035 (percent) 2009 2010 2015 2020 2025 2030 2035 Production Crude oil and lease condensate . . . . . . . . . . . . . 11.35 11.59 13.46 14.46 13.80 13.69 13.15 0.5% Natural gas plant liquids . . . . . . . . . . . . . . . . . . . 2.57 2.78 3.30 3.63 3.68 3.71 3.65 1.1% Dry natural gas . . . . . . . . . . . . . . . . . . . . . . . . . . 21.09 22.10 24.23 25.81 26.63 27.43 28.51 1.0% Coal 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.63 22.08 20.50 21.18 22.51 22.78 23.51 0.3% Nuclear / uranium 2 . . . . . . . . . . . . . . . . . . . . . . . . 8.36 8.44 8.68 9.28 9.60 9.55 9.35 0.4% Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.67 2.51 2.90 2.94 2.97 3.01 3.06 0.8% Biomass 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.72 4.05

254

Annual Energy Outlook 2008: With Projections to 2030-Appendixes  

Gasoline and Diesel Fuel Update (EIA)

8 8 115 Appendix A Reference Case Table A1. Total Energy Supply and Disposition Summary (Quadrillion Btu per Year, Unless Otherwise Noted) Supply, Disposition, and Prices Reference Case Annual Growth 2006-2030 (percent) 2005 2006 2010 2015 2020 2025 2030 Production Crude Oil and Lease Condensate . . . . . . . . . . . . 10.99 10.80 12.76 13.25 13.40 12.99 12.04 0.5% Natural Gas Plant Liquids . . . . . . . . . . . . . . . . . . 2.33 2.36 2.27 2.29 2.31 2.17 2.11 -0.5% Dry Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . 18.60 19.04 19.85 20.08 20.24 20.17 20.00 0.2% Coal 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.19 23.79 23.97 24.48 25.20 26.85 28.63 0.8% Nuclear Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.16 8.21 8.31 8.41 9.05 9.50 9.57 0.6% Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.70 2.89 2.92 2.99 3.00 3.00 3.00 0.2% Biomass 2 . . . . . . . . . . . . . . . . . . . . . . .

255

Annual Energy Outlook 2009: With Projections to 2030  

Gasoline and Diesel Fuel Update (EIA)

9 9 109 Appendix A Reference Case Table A1. Total Energy Supply and Disposition Summary (Quadrillion Btu per Year, Unless Otherwise Noted) Supply, Disposition, and Prices Reference Case Annual Growth 2007-2030 (percent) 2006 2007 2010 2015 2020 2025 2030 Production Crude Oil and Lease Condensate . . . . . . . . . . . . 10.80 10.73 12.19 12.40 14.06 15.63 15.96 1.7% Natural Gas Plant Liquids . . . . . . . . . . . . . . . . . . 2.36 2.41 2.58 2.55 2.57 2.62 2.61 0.3% Dry Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . 18.99 19.84 20.95 20.88 22.08 23.87 24.26 0.9% Coal 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.79 23.50 24.21 24.49 24.43 25.11 26.93 0.6% Nuclear Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.21 8.41 8.45 8.68 8.99 9.04 9.47 0.5% Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.87 2.46 2.67 2.94 2.95 2.96 2.97 0.8% Biomass 2 . . . . . . . . . . . . . . . . . . . . . . . .

256

Appendix A  

U.S. Energy Information Administration (EIA) Indexed Site

. Total energy supply, disposition, and price summary . Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise noted) Supply, disposition, and prices Reference case Annual growth 2012-2040 (percent) 2011 2012 2020 2025 2030 2035 2040 Production Crude oil and lease condensate ............................ 12.20 13.87 20.36 19.19 17.71 16.81 16.00 0.5% Natural gas plant liquids ........................................ 3.11 3.21 3.54 3.84 3.98 4.08 3.99 0.8% Dry natural gas ...................................................... 23.04 24.59 29.73 32.57 35.19 36.89 38.37 1.6% Coal 1 ...................................................................... 22.22 20.60 21.70 22.36 22.61 22.68 22.61 0.3% Nuclear / uranium 2 ................................................. 8.26 8.05 8.15 8.15 8.18 8.23 8.49 0.2%

257

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2013 Annual Energy Outlook 2013 1 Table B1. Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise noted) Supply, disposition, and prices 2011 Projections 2020 2030 2040 Low economic growth Reference High economic growth Low economic growth Reference High economic growth Low economic growth Reference High economic growth Production Crude oil and lease condensate .................... 12.16 15.95 15.95 15.99 12.93 13.47 13.79 12.69 13.12 13.37 Natural gas plant liquids ................................ 2.88 4.10 4.14 4.20 3.80 3.85 3.92 3.86 3.89 3.95 Dry natural gas .............................................. 23.51 26.58 27.19 27.80 29.33 30.44 31.92 32.46 33.87 35.32 Coal 1 ............................................................. 22.21

258

PRODUCTS & MATERIALS  

Science Journals Connector (OSTI)

...Phar-macia Biotech. Circle 141. Cell Culture Production The CellCube offers the fastest, most com-pact system available for high-volume...culture production, according to the manu-facturer. The CellCube not only saves up to four times the space of roller bottles...

1995-08-04T23:59:59.000Z

259

Development of technology in the production of fertilizers in ammoniation-granulation plants. Progress report No. 12, September 1980. Final report  

SciTech Connect (OSTI)

Work conducted to demonstrate procedures and equipment to conserve about 83% of fuel oil used for drying and generating steam in the ammoniation-granulation plants is reported. The general mechanism of granulation is examined. Conventional ammoniation-granulation plants are described and the new pipe-cross reactor system is described and schematics of their design are presented. Results of some demonstration tests reveal that an average of 785,000 Btu's per ton of production is eliminated with the installation of the TVA pipe-cross reactor process. It also reduces atmospheric emissions. Data on investment cost and payback period of the installation of a pipe-cross reactor in an existing TVA granulation fertilizer plant are presented.

Not Available

1980-09-01T23:59:59.000Z

260

U.S. Energy-Related Carbon Dioxide Emissions, 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

product (GDP) and energy is measured in Btu to allow for the summing of all energy forms (energyGDP or BtuGDP). On an economy-wide level, it is reflective of both energy...

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

New Products  

Science Journals Connector (OSTI)

...security of unmatched sample traceability. Manufactured from high-quality polypropylene in a fully automated class-7 cleanroom environment ensures the laser-etched alphanumeric tubes exhibit absolute product consistency, near-zero contaminants...

2013-01-11T23:59:59.000Z

262

New Products  

Science Journals Connector (OSTI)

...bind cells and biomolecules through passive hydrophobic interactions. Molded from ultrapure polystyrene in a class 100,000 cleanroom production environment, the untreated culture plates are supplied with lids in individual sterile packs. The plates include...

2013-06-28T23:59:59.000Z

263

Production Materials  

Science Journals Connector (OSTI)

It is obvious that we must bring a number of things into our controlled environment besides clean conditioned air, equipment, and ultrapure water. If we are to do any production work, or research involving the pr...

M. Kozicki; S. Hoenig; P. Robinson

1991-01-01T23:59:59.000Z

264

New Products  

Science Journals Connector (OSTI)

...Finally, as a personal pipetting system, Liquidator 96 fits any benchtop or laminar-flow cabinet making it suitable for cleanroom conditions. Mettler Toledo For info: 800-472-4646 www.mt.com/liquidator Electronically submit your new product...

2014-01-03T23:59:59.000Z

265

Forest Products  

Broader source: Energy.gov [DOE]

Purchased energy remains the third largest manufacturing cost for the forest products industry–despite its extensive use of highly efficient co-generation technology. The industry has worked with...

266

NEW PRODUCTS:  

Science Journals Connector (OSTI)

......also be used with other heating elements and probes...content of diesel and heating oils. A highly specific titration...requirements for fuel oil products are consistently...de- scriptions, and prices are included for columns......

New Products

1979-12-01T23:59:59.000Z

267

New Products  

Science Journals Connector (OSTI)

...the area scanned. When the earth's thermal gradient appears, the vibrating mirror...Write for a Product Data Sheet giving specifications, typical drying perform-ance, and...pebble-bed heaters and electrical insulation at elevated temperatures. (Minneapolis-Honeywell...

Joshua Stern

1961-11-10T23:59:59.000Z

268

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

269

On Methods for the Large-Scale Production of Hydrogen from Water  

Science Journals Connector (OSTI)

Off-peak power would give sufficiently cheap hydrogen with classical electrolyzers. Emerging technology could produce it at between $0.85 and $2.90 (106 Btu)-1 for electricity costs (bulk purchase) between 2 and ...

J. O’M. Bockris

1975-01-01T23:59:59.000Z

270

Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology  

E-Print Network [OSTI]

for U.S. EPA Energy Star. AHAM. 2003. Energy ConsumptionScottsdale, Arizona: In-Stat. AHAM (Association of HomeAcronyms and Abbreviations AFUE AHAM ASHP ASHRAE REF UEC Btu

Sanchez, Marla

2010-01-01T23:59:59.000Z

271

Word Pro - S2.lwp  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Energy Consumption for Heat, Power, and Electricity Generation, 2006 Manufacturing Energy Consumption for Heat, Power, and Electricity Generation, 2006 By Selected End Use¹ By Energy Source 48 U.S. Energy Information Administration / Annual Energy Review 2011 1 Excludes inputs of unallocated energy sources (5,820 trillion Btu). 2 Heating, ventilation, and air conditioning. Excludes steam and hot water. 3 Excludes coal coke and breeze. 4 Liquefied petroleum gases. 5 Natural gas liquids. (s)=Less than 0.05 quadrillion Btu. Source: Table 2.3. 3.3 1.7 0.7 0.2 0.2 0.2 (s) Process Heating Machine Drive Facility HVAC² Process Cooling and Refrigeration Electrochemical Processes Facility Lighting Conventional Electricity Generation 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Quadrillion Btu 5.5 2.9 1.0 0.3 0.1 0.1 Natural Gas Net Electricity Coal³ Residual Fuel Oil Distillate

272

New Products  

Science Journals Connector (OSTI)

...syrris.com Crimping Tool The La-Pha-Pack stainless steel cleanroom crimping tools are designed for a controlled, low-effort...product range is ideal for highly sensitive chromatography cleanroom applications where it is essential that the environment remains...

2011-01-14T23:59:59.000Z

273

New Products  

Science Journals Connector (OSTI)

...qiagen.com Crimping Tool The La-Pha-Pack stainless steel cleanroom crimping tools are designed for a controlled, low-effort...product range is ideal for highly sensitive chromatography cleanroom applications where it is essential that the environment remains...

2011-01-21T23:59:59.000Z

274

New Products  

Science Journals Connector (OSTI)

...three regulated d-c power supplies, a digital...Product Data Sheet giving specifications, typical drying perform-ance...than 4 lb. Nominal power consumption is less...heaters and electrical insulation at elevated temperatures...and 0.01 xsec. Power source is a 5-Mw...

Joshua Stern

1961-11-10T23:59:59.000Z

275

Broiler Production.  

E-Print Network [OSTI]

,","efficient broiler production. ,. . , .: I-A +>+ Panels or translucent plastic curtains which close and open easily when weather varies are helpful in providing comfortable temperatures for the birds. A damper is needed so that ridge ventilatm can be dosed... easily during ooM weather. inclement weather. However, poultry housing costs should be kept within a range whereby earnings can justify the investment. Location Orient the house with the long axis run- ning east and west to prevent the early morn...

Cawley, W. O.; Wormeli, B. C.; Quisenberry, J. H.

1962-01-01T23:59:59.000Z

276

Utilization of Illinois coal gasification slags for production of ultra-lightweight aggregates. Final technical report, September 1, 1992--August 31, 1993  

SciTech Connect (OSTI)

This research was aimed at testing and developing the expansion potential of solid residues (slag) from gasification of Illinois coals to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are manufactured by pyroprocessing perlite or vermiculite ores and have unit weights in the 5--12 lb/ ft{sup 3} range. These materials sell for approximately $200/ton ($1.00/ft{sup 3}) and have numerous applications. The incentive for this effort was based on previous experimental results in which lightweight aggregates (LWA) with unit weights of 25--55 lb/ft{sup 3} were produced from Illinois slag using a direct-fired furnace. In this program, bench-scale expansion tests conducted with two Illinois coal slags resulted in product unit weights of 12 and 18.5 lb/ ft{sup 3}, thus confirming the feasibility of producing ULWA from Illinois slags. During initial pilot vertical shaft furnace test runs, two Illinois slags were expanded to generate products with unit weights of 12.5--26.5 and 20--52 lb/ ft{sup 3}. Further attempts to lower the product unit weights resulted in fusion of the slag. This problem could be overcome by methods including surface treatment of the slag, blending the slag with other materials, or utilization of indirect firing methods. To lower the product unit weights, an indirect-fired horizontal shaft furnace was used and products with unit weights of 12.4--52.0 lb/ft{sup 3} were generated, thus indicating that this method can be used to produce a wide range of expanded products. A large batch of expanded slag was produced using an 18-in. diameter x 12-ft long indirect-fired pilot furnace. A sample from this batch was characterized. Specimens of insulating concrete made from expanded slag had a unit weight 43.3 lb/ft{sup 3} and thermal conductivity of 1.34 Btu-in./h/ft{sup 2}/{degrees}F. This compares well with a value of 1. 2 Btu-in./h/ft{sup 2}/{degrees}F for insulating concrete of a similar weight made from perlite, as per ASTM C 332-82.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Zimmerle, T. [Silbrico Corp. (United States)

1993-12-31T23:59:59.000Z

277

Small (5 million Btu/h) and large (300 million Btu/h) thermal test rigs for coal and coal slurry burner development  

SciTech Connect (OSTI)

NEI International Combustion Ltd. of Derby, England, now operates two thermal test rigs for the development of burners capable of handling coal-water slurries (CWS). A general description of the large rig and its capacity was given. Also, the necessary conversions of the equipment to handle CWS were described. Information on the properties of the CWS was included. This consisted of chemical analysis of the parent coal and the slurry, sieve analysis of a dry sample, and viscosity versus temperature data of the CWS. The process of design development of the burner was outlined. Ten illustrations were presented, including schematic diagrams of equipment and graphs of data.

Allen, J.W.; Beal, P.R.; Hufton, P.F.

1983-01-01T23:59:59.000Z

278

OpenEI - Nonelectric  

Open Energy Info (EERE)

for Nonelectric Use by Energy Use Sector and Energy Source, for Nonelectric Use by Energy Use Sector and Energy Source, 2004 - 2008 http://en.openei.org/datasets/node/54 This dataset provides annual renewable energy consumption (in quadrillion Btu) for nonelectric use in the United States by energy use sector and energy source between 2004 and 2008. The data was compiled and published by EIA; the spreadsheet provides more details about specific sources for data used in the analysis.

License
Type of License: 

279

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

41 41 Table E1. Estimated Primary Energy Consumption in the United States, Selected Years, 1635-1945 (Quadrillion Btu) Year Fossil Fuels Renewable Energy Electricity Net Imports Total Coal Natural Gas Petroleum Total Conventional Hydroelectric Power Biomass Total Wood 1 1635 NA - - - - NA - - (s) (s) - - (s) 1645 NA - - - - NA - - 0.001 0.001 - - 0.001 1655 NA - - - - NA - - .002 .002 - - .002 1665 NA - - - - NA - - .005 .005 - - .005 1675 NA - - - - NA - - .007 .007 - - .007 1685 NA - - - - NA - - .009 .009 - - .009 1695 NA - - - - NA - - .014 .014 - - .014 1705 NA - - - - NA - - .022 .022 - - .022 1715 NA - - - - NA - - .037 .037 - - .037

280

Transformational Manufacturing | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transformational Manufacturing Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and transformational technology to improve the efficiency and competitiveness of domestic manufacturing while reducing its carbon footprint. The lab's efforts concentrate on sustainable manufacturing, applied nanotechnology and distributed energy, with an emphasis on transitioning science discoveries to the market.

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sugar Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sugar Production Sugar Production Name: Lauren Location: N/A Country: N/A Date: N/A Question: This is the experiment I did: our class took 6 sugars, placed them in test tubes and put three drops of yeast in each test tube. we then placed them in the incubator for one day and the next day looked at our results. the purpose was to find out with sugar would produce the most carbon dioxide. two of the sugars that we tested were LACTOSE and STARCH. my question is, why are lactose and starch the only sugars who didn't produce any, or very very little, carbon dioxide? and how is this process related to glycolysis? Replies: Bacteria and yeast are very efficient with their enzyme systems. They don't make enzymes they can't use. Yeast don't have the enzymes necessary to metabolize lactose. Starch is a complex sugar and yeast needs certain enzymes to break starch down into sugar. Every chemical reaction needs its own enzyme.

282

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

Municipal Solid Waste-Sewage Sludge. b 4.15 SCF CH 4 / cu ftUP I j methane 31.5 scf sludge 18.61b water 161b Btu/scfsewer 65.3 lb ( 7.9 gal) sludge ash 1.74 lb stack emissions

Haven, Kendall F.

2011-01-01T23:59:59.000Z

283

CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY  

SciTech Connect (OSTI)

Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

Zhen Fan

2006-05-30T23:59:59.000Z

284

Production Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Welcome Welcome The Production Services site contains links to each of the division's groups with descriptions of their services. Our goal is to update this website frequently to reflect ongoing service upgrades which, by planning and design, are added so that we can continue to meet your needs in a constantly changing work environment. Note: The Graphic Design Studio has been relocated to the second floor in the north wing of the Research Support Building 400. The telephone number remains the same, X7288. If you have any questions, please call supervisor, Rick Backofen, X6183. Photography Photography services are available at no charge to BNL and Guest users. See a list of the complete range of photography services available. Video Video services are available at no charge to BNL and Guest users. See a list of the complete range of video services available.

285

Product lines for digital information products.  

E-Print Network [OSTI]

??Digital information products are an important class of widely used digital products, whose core benefit is the delivery of information or education (e.g., electronic books,… (more)

Pankratius, Victor

2007-01-01T23:59:59.000Z

286

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

287

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

A5. Commercial sector key indicators and consumption A5. Commercial sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Key indicators Total floorspace (billion square feet) Surviving ............................................................. 79.3 80.2 87.0 91.9 96.2 100.7 106.4 1.0% New additions ..................................................... 1.8 1.5 2.1 2.0 2.0 2.3 2.4 1.6% Total ................................................................. 81.1 81.7 89.1 93.9 98.1 103.0 108.8 1.0% Energy consumption intensity (thousand Btu per square foot) Delivered energy consumption ........................... 105.6 105.2 100.4 98.1 97.2 95.8 93.8 -0.4%

288

Buildings Energy Data Book: 1.5 Generic Fuel Quad and Comparison  

Buildings Energy Data Book [EERE]

1 1 Key Definitions Quad: Quadrillion Btu (10^15 or 1,000,000,000,000,000 Btu) Generic Quad for the Buildings Sector: One quad of primary energy consumed in the buildings sector (includes the residential and commercial sectors), apportioned between the various primary fuels used in the sector according to their relative consumption in a given year. To obtain this value, electricity is converted into its primary energy forms according to relative fuel contributions (or shares) used to produce electricity in the given year. Electric Quad (Generic Quad for the Electric Utility Sector): One quad of primary energy consumed at electric utility power plants to supply electricity to end-users, shared among various fuels according to their relative contribution in

289

Appendix A  

U.S. Energy Information Administration (EIA) Indexed Site

A5. Commercial sector key indicators and consumption A5. Commercial sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2012-2040 (percent) 2011 2012 2020 2025 2030 2035 2040 Key indicators Total floorspace (billion square feet) Surviving ............................................................. 80.2 80.8 87.1 91.9 96.2 100.8 106.5 1.0% New additions ..................................................... 1.5 1.6 2.1 2.0 2.0 2.3 2.4 1.6% Total ................................................................. 81.7 82.4 89.1 93.9 98.2 103.1 108.9 1.0% Energy consumption intensity (thousand Btu per square foot) Delivered energy consumption ........................... 105.2 100.7 98.5 96.7 95.6 94.6 93.9 -0.3%

290

WABASH RIVER IMPPCCT, INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES  

SciTech Connect (OSTI)

In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the Gasification Engineering Corporation and an Industrial Consortium are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an Early Entrance Coproduction Plant located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, financial, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility Study and conceptual design for an integrated demonstration facility and for fence-line commercial plants operated at The Dow Chemical Company or Dow Corning Corporation chemical plant locations (i.e. the Commercial Embodiment Plant or CEP) (2) Research, development, and testing to address any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Ltd., plant in West Terre Haute, Indiana. During the reporting period work was furthered to support the development of capital and operating cost estimates associated with the installation of liquid or gas phase methanol synthesis technology in a Commercial Embodiment Plant (CEP) utilizing the six cases previously defined. In addition, continued development of the plant economic model was accomplished by providing combined cycle performance data. Performance and emission estimates for gas turbine combined cycles was based on revised methanol purge gas information. The economic model was used to evaluate project returns with various market conditions and plant configurations and was refined to correct earlier flaws. Updated power price projections were obtained and incorporated in the model. Sensitivity studies show that break-even methanol prices which provide a 12% return are 47-54 cents/gallon for plant scenarios using $1.25/MM Btu coal, and about 40 cents/gallon for most of the scenarios with $0.50/MM Btu petroleum coke as the fuel source. One exception is a high power price and production case which could be economically attractive at 30 cents/gallon methanol. This case was explored in more detail, but includes power costs predicated on natural gas prices at the 95th percentile of expected price distributions. In this case, the breakeven methanol price is highly sensitive to the required project return rate, payback period, and plant on-line time. These sensitivities result mainly from the high capital investment required for the CEP facility ({approx}$500MM for a single train IGCC-methanol synthesis plant). Finally, during the reporting period the Defense Contractor Audit Agency successfully executed an accounting audit of Global Energy Inc. for data accumulated over the first year of the IMPPCCT project under the Cooperative Agreement.

Doug Strickland

2001-09-28T23:59:59.000Z

291

Assessing economic impacts of clean diesel engines. Phase 1 report: U.S.- or foreign-produced clean diesel engines for selected light trucks  

SciTech Connect (OSTI)

Light trucks' share of the US light vehicle market rose from 20% in 1980 to 41% in 1996. By 1996, annual energy consumption for light trucks was 6.0 x 10{sup 15} Btu (quadrillion Btu, or quad), compared with 7.9 quad for cars. Gasoline engines, used in almost 99% of light trucks, do not meet the Corporate Average Fuel Economy (CAFE) standards. These engines have poor fuel economy, many getting only 10--12 miles per gallon. Diesel engines, despite their much better fuel economy, had not been preferred by US light truck manufacturers because of problems with high NO{sub x} and particulate emissions. The US Department of Energy, Office of Heavy Vehicle Technologies, has funded research projects at several leading engine makers to develop a new low-emission, high-efficiency advanced diesel engine, first for large trucks, then for light trucks. Recent advances in diesel engine technology may overcome the NO{sub x} and particulate problems. Two plausible alternative clean diesel (CD) engine market penetration trajectories were developed, representing an optimistic case (High Case) and an industry response to meet the CAFE standards (CAFE Case). However, leadership in the technology to produce a successful small, advanced diesel engine for light trucks is an open issue between U.S. and foreign companies and could have major industry and national implications. Direct and indirect economic effects of the following CD scenarios were estimated by using the Standard and Poor's Data Resources, Inc., US economy model: High Case with US Dominance, High Case with Foreign Dominance, CAFE Case with US Dominance, and CAFE Case with Foreign Dominance. The model results demonstrate that the economic activity under each of the four CD scenarios is higher than in the Base Case (business as usual). The economic activity is highest for the High Case with US dominance, resulting in maximum gains in such key indicators as gross domestic product, total civilian employment, and federal government surplus. Specifically, the cumulative real gross domestic product surplus over the Base Case during the 2000--2022 period is about $56 x 10{sup 9} (constant 1992 dollars) under this high US dominance case. In contrast, the real gross domestic product gains under the high foreign dominance case would be only about half of the above gains with US dominance.

Teotia, A.P.; Vyas, A.D.; Cuenca, R.M.; Stodolsky, F.

1999-11-02T23:59:59.000Z

292

Production of Butyric Acid and Butanol from Biomass  

SciTech Connect (OSTI)

Environmental Energy Inc has shown that BUTANOL REPLACES GASOLINE - 100 pct and has no pollution problems, and further proved it is possible to produce 2.5 gallons of butanol per bushel corn at a production cost of less than $1.00 per gallon. There are 25 pct more Btu-s available and an additional 17 pct more from hydrogen given off, from the same corn when making butanol instead of ethanol that is 42 pct more Btu-s more energy out than it takes to make - that is the plow to tire equation is positive for butanol. Butanol is far safer to handle than gasoline or ethanol. Butanol when substituted for gasoline gives better gas mileage and does not pollute as attested to in 10 states. Butanol should now receive the same recognition as a fuel alcohol in U.S. legislation as ethanol. There are many benefits to this technology in that Butanol replaces gasoline gallon for gallon as demonstrated in a 10,000 miles trip across the United States July-August 2005. No modifications at all were made to a 1992 Buick Park Avenue; essentially your family car can go down the road on Butanol today with no modifications, Butanol replaces gasoline. It is that simple. Since Butanol replaces gasoline more Butanol needs to be made. There are many small farms across America which can grow energy crops and they can easily apply this technology. There is also an abundance of plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry with 10 million metric tons of corn byproducts that pose significant environmental problems. Whey lactose presents another waste management problem, 123,000 metric tons US, which can now be turned into automobile fuel. The fibrous bed bioreactor - FBB - with cells immobilized in the fibrous matrix packed in the reactor has been successfully used for several organic acid fermentations, including butyric and propionic acids with greatly increased reactor productivity, final product concentration, and product yield. Other advantages of the FBB include efficient and continuous operation without requiring repeated inoculation, elimination of cell lag phase, good long-term stability, self cleaning and easier downstream processing. The excellent reactor performance of the FBB can be attributed to the high viable cell density maintained in the bioreactor as a result of the unique cell immobilization mechanism within the porous fibrous matrix Since Butanol replaces gasoline in any car today - right now, its manufacturing from biomass is the focus of EEI and in the long term production of our transportation fuel from biomass will stabilize the cost of our fuel - the underpinning of all commerce. As a Strategic Chemical Butanol has a ready market as an industrial solvent used primarily as paint thinner which sells for twice the price of gasoline and is one entry point for the Company into an established market. However, butanol has demonstrated it is an excellent replacement for gasoline-gallon for gallon. The EEI process has made the economics of producing butanol from biomass for both uses very compelling. With the current costs for gasoline at $3.00 per gallon various size farmstead turn-key Butanol BioRefineries are proposed for 50-1,000 acre farms, to produce butanol as a fuel locally and sold locally. All butanol supplies worldwide are currently being produced from petroleum for $1.50 per gallon and selling for $3.80 wholesale. With the increasing price of gasoline it becomes feasible to manufacture and sell Butanol as a clean-safe replacement for gasoline. Grown locally - sold locally at gas prices. A 500 acre farm at 120 bushels corn per acre would make $150,000 at $2.50 per bushel for its corn, when turned into 150,000 gallons Butanol per year at 2.5 gallons per bushel the gross income would be $430,000. Butanol-s advantage is the fact that no other agricultural product made can be put directly into your gas tank without modifying your car. The farmer making and selling locally has no overhead for shippi

David E. Ramey; Shang-Tian Yang

2005-08-25T23:59:59.000Z

293

Covered Product Category: Cool Roof Products  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance across a variety of product categories, including cool roof products, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

294

Coal gasification power generation, and product market study. Topical report, March 1, 1995--March 31, 1996  

SciTech Connect (OSTI)

This Western Research Institute (WRI) project was part of a WRI Energy Resource Utilization Program to stimulate pilot-scale improved technologies projects to add value to coal resources in the Rocky Mountain region. The intent of this program is to assess the application potential of emerging technologies to western resources. The focus of this project is on a coal resource near the Wyoming/Colorado border, in Colorado. Energy Fuels Corporation/Kerr Coal Company operates a coal mine in Jackson County, Colorado. The coal produces 10,500 Btu/lb and has very low sulfur and ash contents. Kerr Coal Company is seeking advanced technology for alternate uses for this coal. This project was to have included a significant cost-share from the Kerr Coal Company ownership for a market survey of potential products and technical alternatives to be studied in the Rocky Mountain Region. The Energy Fuels Corporation/Kerr Coal Company and WRI originally proposed this work on a cost reimbursable basis. The total cost of the project was priced at $117,035. The Kerr Coal Company had scheduled at least $60,000.00 to be spent on market research for the project that never developed because of product market changes for the company. WRI and Kerr explored potential markets and new technologies for this resource. The first phase of this project as a preliminary study had studied fuel and nonfuel technical alternatives. Through related projects conducted at WRI, resource utilization was studied to find high-value materials that can be targeted for fuel and nonfuel use and eventually include other low-sulfur coals in the Rocky Mountain region. The six-month project work was spread over about a three-year period to observe, measure, and confirm over time-any trends in technology development that would lead to economic benefits in northern Colorado and southern Wyoming from coal gasification and power generation.

Sheesley, D.; King, S.B.

1998-12-31T23:59:59.000Z

295

Sulfidation-oxidation of advanced metallic materials in simulated low-Btu coal-gasifier environments  

Science Journals Connector (OSTI)

The corrosion behavior of structural alloys in complex multicomponent gas environments is of considerable interest for their effective utilization in coal conversion schemes. Little understanding...

T. C. Tiearney Jr.; K. Natesan

1982-02-01T23:59:59.000Z

296

Understanding Utility Rates or How to Operate at the Lowest $/BTU  

E-Print Network [OSTI]

:F.~:brP'RQJ~:Cr::::::::: ::: :::] by LONE STAR GAS COMPANY JIM PHILLIPS, P.E., CEM IEQUIPMENT D A T Ai IENERGY DAT Ai KW Gas Rate: $4.86 per MCFGenerator Size: 5"00 Coqen Rate: $3.00 Iper MCF Recoverable Heat: 4.3' MMBH I _ Fuel Consumption: 8.0 MCFH Electric Rate $6.80 per...:F.~:brP'RQJ~:Cr::::::::: ::: :::] by LONE STAR GAS COMPANY JIM PHILLIPS, P.E., CEM IEQUIPMENT D A T Ai IENERGY DAT Ai KW Gas Rate: $4.86 per MCFGenerator Size: 5"00 Coqen Rate: $3.00 Iper MCF Recoverable Heat: 4.3' MMBH I _ Fuel Consumption: 8.0 MCFH Electric Rate $6.80 per...

Phillips, J. N.

297

Aesculap, Inc. Air Products  

E-Print Network [OSTI]

Aesculap, Inc. Air Products Air Products Foundation Alaric Compliance Services, LLC Alvin H. Butz & Herger, Inc. Sodexo Campus Services Sodexo Inc. and Affiliates Stupp Bros., Inc. Sugarbush Products, Inc

Napier, Terrence

298

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights World energy consumption is projected to increase by 58 percent from 2001 to 2025. Much of the growth in worldwide energy use is expected in the developing world in the IEO2003 reference case forecast. In the International Energy Outlook 2003 (IEO2003) reference case, world energy consumption is projected to increase by 58 percent over a 24-year forecast horizon, from 2001 to 2025. Worldwide, total energy use is projected to grow from 404 quadrillion British thermal units (Btu) in 2001 to 640 quadrillion Btu in 2025 (Figure 2). As in past editions of this report, the IEO2003 reference case outlook continues to show robust growth in energy consumption among the developing nations of the world (Figure 3). The strongest growth is projected for developing Asia, where demand for energy is expected to more than double over the forecast period. An average annual growth rate of 3 percent is projected for energy use in developing Asia, accounting for nearly 40 percent of the total projected increment in world energy consumption and 69 percent of the increment for the developing world alone.

299

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Table 1. Comparison of projections in the AEO2012 and AEO2011 Reference case, 2009-2035 2025 2035 Energy and economic factors 2009 2010 AEO2012 AEO2011 AE2012 AEO2011 Primary energy (quadrillion Btu) Petroleum 13.93 14.37 17.48 16.19 16.81 16.72 Dry natural gas 21.09 22.10 26.63 24.60 28.51 27.00 Coal 21.63 22.08 22.51 23.64 23.51 26.01 Nuclear power 8.36 8.44 9.60 9.17 9.35 9.14 Hydropower 2.67 2.51 2.97 3.04 3.06 3.09 Biomass 3.72 4.05 6.73 7.20 9.68 8.63 Other renewable energy 1.11 1.34 2.13 2.58 2.80 3.22 Other 0.47 0.64 0.76 0.88 0.88 0.78 Total 72.97 75.52 88.79 87.29 94.59 94.59 Net imports (quadrillion Btu) Liquid fuels 20.90 20.35 16.33 19.91 16.22 19.85

300

from Isotope Production Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium 2:32 Isotope cancer treatment...

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

E E Low Oil Price case projections * World energy consumption * Gross domestic product This page inTenTionally lefT blank 217 U.S. Energy Information Administration | International Energy Outlook 2013 Low Oil Price case projections Table E1. World total primary energy consumption by region, Low Oil Price case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 117.0 120.2 122.3 128.2 132.1 135.5 140.0 146.7 0.7 United States a 94.9 97.9 97.9 101.6 102.9 103.6 105.3 108.8 0.4 Canada 13.7 13.5 14.4 15.2 16.2 17.1 17.8 18.6 1.1 Mexico/Chile 8.4 8.8 10.0 11.4 12.9 14.8 16.8 19.3 2.7 OECD Europe 80.0 82.5 83.1 88.0 91.8 94.7 97.4 100.0 0.6 OECD Asia 37.7 39.6 41.1 44.7 46.6 47.9 49.0 49.7 0.8 Japan 21.0 22.1 22.0 23.6 24.3 24.4 24.4 23.9

302

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Low Economic Growth case projections Low Economic Growth case projections * World energy consumption * Gross domestic product This page inTenTionally lefT blank 203 U.S. Energy Information Administration | International Energy Outlook 2013 Low Economic Growth case projections Table C1. World total primary energy consumption by region, Low Economic Growth case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 117.0 120.2 119.9 122.1 124.1 125.9 129.0 133.9 0.4 United States a 94.9 97.9 95.9 96.4 96.1 95.3 95.7 97.3 0.0 Canada 13.7 13.5 14.2 14.7 15.6 16.5 17.3 18.2 1.0 Mexico/Chile 8.4 8.8 9.8 10.9 12.3 14.1 16.0 18.3 2.5 OECD Europe 80.0 82.5 82.1 85.3 88.0 90.1 91.6 93.0 0.4 OECD Asia 37.7 39.6 40.3 42.7 43.9 44.6 45.0 45.0 0.4 Japan 21.0 22.1 21.6 22.5 22.8 22.6

303

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

D D High Oil Price case projections * World energy consumption * Gross domestic product This page inTenTionally lefT blank 209 U.S. Energy Information Administration | International Energy Outlook 2013 High Oil Price case projections Table D1. World total primary energy consumption by region, High Oil Price case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 117.0 120.2 119.5 124.2 128.2 131.8 136.7 144.7 0.6 United States a 94.9 97.9 96.0 99.4 100.9 101.4 103.0 107.3 0.3 Canada 13.7 13.5 13.9 14.3 15.3 16.4 17.6 19.0 1.1 Mexico/Chile 8.4 8.8 9.6 10.5 12.0 14.0 16.1 18.5 2.5 OECD Europe 80.0 82.5 80.5 83.3 86.3 88.6 90.5 92.3 0.4 OECD Asia 37.7 39.6 39.3 41.1 42.4 43.5 44.3 44.5 0.4 Japan 21.0 22.1 21.0 21.6 21.9 22.0 21.8 21.0

304

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

High Economic Growth case projections High Economic Growth case projections * World energy consumption * Gross domestic product This page inTenTionally lefT blank 197 U.S. Energy Information Administration | International Energy Outlook 2013 High Economic Growth case projections Table B1. World total primary energy consumption by region, High Economic Growth case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 117.0 120.2 122.0 129.8 134.8 139.5 146.0 155.6 0.9 United States a 94.9 97.9 97.9 104.2 106.8 108.7 112.5 118.9 0.6 Canada 13.7 13.5 14.2 14.7 15.6 16.5 17.2 18.2 1.0 Mexico/Chile 8.4 8.8 9.8 10.9 12.4 14.3 16.3 18.6 2.5 OECD Europe 80.0 82.5 82.2 85.7 88.9 91.3 93.4 95.4 0.5 OECD Asia 37.7 39.6 40.0 42.1 43.5 44.8 45.9 46.8 0.6 Japan 21.0 22.1 21.3 21.9

305

PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I  

E-Print Network [OSTI]

welded together like sewer pipe. Biogas production from theintends to convert the biogas into electricity. The wasteproduce 7.6 million Btu of biogas annually. This estimate

Case, C.W.

2011-01-01T23:59:59.000Z

306

Wood Chip Gasification in a Commercial Downdraft Gasifier  

Science Journals Connector (OSTI)

Fixed bed and moving bed gasifiers for the production of low Btu gas...1 After the war, the need for gasifiers dwindled although the Swedes continued their development...

Walter P. Walawender; S. M. Chern; L. T. Fan

1985-01-01T23:59:59.000Z

307

Sulfidation of coal gasifier heat exchanger alloys  

Science Journals Connector (OSTI)

Three steels, viz., INCOLOY* 800H, Fecralloy,† and AlSI 310, were exposed to a simulated low Btu coal gasifier product gas at 450 °C. Sulfidation...

S. R. J. Saunders; S. Schlierer

1986-03-01T23:59:59.000Z

308

U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

3 Table G1. Heat contents Fuel Units Approximate heat content Coal 1 Production ... million Btu per short ton 20.136 Consumption...

309

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization PROPERTIES OF CONCRETE CONTAINING SCRAP TIRE RUBBER in a variety of rubber and plastic products, thermal incineration of waste tires for production of electricity rubber in asphalt mixes, (ii) thermal incineration of worn-out tires for the production of electricity

Wisconsin-Milwaukee, University of

310

Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production  

E-Print Network [OSTI]

#12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

Narasayya, Vivek

311

FCT Hydrogen Production: Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

312

MODIS Land Products Subsets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MODIS ASCII Subset Products - FTP Access MODIS ASCII Subset Products - FTP Access All of the MODIS ASCII Subsets are available from the ORNL DAAC's ftp site. The directory structure of the ftp site is based on the abbreviated names for the MODIS Products. Terra MODIS products are abbreviated "MOD", Aqua MODIS products are abbreviated "MYD" and combined Terra and Aqua MODIS products are abbreviated "MCD". The abbreviated names also include the version number (also known as collection). For specific products, please refer to the following table: Product Acronym Spatial Resolution Temporal Frequency Terra V005 SIN Aqua V005 SIN Terra/Aqua Combined V005 SIN Surface Reflectance SREF 500 m 8 day composites MOD09A1 MYD09A1 ---------- Land Surface Temperature and Emissivity TEMP 1 km 8 day composites MOD11A2 MYD11A2 ----------

313

Hydrogen Production- Current Technology  

Broader source: Energy.gov [DOE]

The development of clean, sustainable, and cost-competitive hydrogen production processes is key to a viable future clean energy economy. Hydrogen production technologies fall into three general...

314

State Energy Production Estimates  

U.S. Energy Information Administration (EIA) Indexed Site

State Energy Production Estimates 1960 Through 2012 2012 Summary Tables Table P1. Energy Production Estimates in Physical Units, 2012 Alabama 19,455 215,710 9,525 0 Alaska 2,052...

315

MODIS Land Product Subsets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Validation > MODIS Land Subsets Validation > MODIS Land Subsets MODIS Land Product Subsets Overview Earth, Western Hemisphere The goal of the MODIS Land Product Subsets project is to provide summaries of selected MODIS Land Products for the community to use for validation of models and remote-sensing products and to characterize field sites. Output files contain pixel values of MODIS land products in text format and in GeoTIFF format. In addition, data visualizations (time series plots and grids showing single composite periods) are available. MODIS Land Product Subsets Resources The following MODIS Land Product Subsets resources are maintained by the ORNL DAAC: MODIS Land Products Offered Background Citation Policy Methods and formats MODIS Sinusoidal Grid - Google Earth KMZ Classroom Exercises

316

MECS 2006- Forest Products  

Broader source: Energy.gov [DOE]

Manufacturing Energy and Carbon Footprint for Forest Products (NAICS 321, 322) Sector with Total Energy Input, October 2012 (MECS 2006)

317

By-Products Utilization  

E-Print Network [OSTI]

Fellow at the UWM-CBU. His research interests include the use of coal fly ash, coal bottom ash, and usedCenter for By-Products Utilization USE OF UNDER-UTILIZED COAL- COMBUSTION PRODUCTS IN PERMEABLE-Utilized Coal-Combustion Products in Permeable Roadway Base Construction 1 (MS #LV-R67) Use of Under

Wisconsin-Milwaukee, University of

318

By-Products Utilization  

E-Print Network [OSTI]

) coal-ash and by replacing up to 9% of aggregates with wet-collected, low-lime, coarse coal-ash. Cast of coal fly ash, coal bottom ash, and used foundry sand in concrete and cast-concrete productsCenter for By-Products Utilization PROPERTIES OF CAST-CONCRETE PRODUCTS MADE WITH FBC ASH

Wisconsin-Milwaukee, University of

319

Productivity & Energy Flow  

E-Print Network [OSTI]

1 Productivity & Energy Flow Ecosystem approach, focuses: on flow of energy, water, and nutrients (capture) of energy by autotrophs Gross (total) Net (total ­ costs) Secondary productivity- capture of energy by herbivores http://sciencebitz.com/?page_id=204 What Controls the Primary Productivity

Mitchell, Randall J.

320

Covered Product Categories  

Broader source: Energy.gov [DOE]

Federal agencies are required by law to purchase products that are designated by the Federal Energy Management Program (FEMP-designated) or qualified by ENERGY STAR. Choose a product category for information about purchasing, installing, and using energy-efficient products.

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Aluminum: Reducing chloride emissions from aluminum production  

SciTech Connect (OSTI)

Reynolds Metals Company (RMC), with assistance from a NICE{sup 3} grant, is developing for commercialization a closed-loop control process that greatly reduces chlorine emissions and increases plant efficiency while maintaining metal quality. The process still utilizes chlorine to remove impurities during aluminum processing, but is more effective than current methods. With the new technology chlorine in the stack is monitored and input chlorine is adjusted continuously. This optimization of chlorine use results in substantially less waste because less chlorine has to be bought or produced by aluminum manufacturers. This innovation is a significant improvement over conventional aluminum treatments, in which chlorine is injected in a more costly and wasteful manner. By the year 2010, the new technology has the potential to reduce the energy it takes to create chlorine by 8.4 billion Btu per year and to cut greenhouse gas emissions by 1,377 tons per year.

Simon, P.

1999-09-29T23:59:59.000Z

322

Wood Products 201213 Student Handbook  

E-Print Network [OSTI]

Wood Products 201213 Student Handbook Ecosystem Science and Management College ........................................................................................................................... 2 Wood Products Undergraduate Program ...................................................................................................................................................... 3 Careers for Wood Products Majors

Boyer, Elizabeth W.

323

Tight Product Balance Pushes Up Product Spread (Spot Product - Crude  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Gasoline inventories indicate how tight the gasoline product market is in any one region. When the gasoline market is tight, it affects the portion of gasoline price is the spread between spot product price and crude oil price. Note that in late 1998-and early 1999 spreads were very small when inventories were quite high. Contrast summers of 1998 or 1999 with summer 2000. Last summer's tight markets, resulting low stocks and transition to Phase 2 RFG added price pressure over and above the already high crude price pressure on gasoline -- particularly in the Midwest. As we ended last winter, gasoline inventories were low, and the spread between spot prices and crude oil were higher than typical as a result. Inventories stayed well below average and the spread during the

324

Coal Production 1992  

SciTech Connect (OSTI)

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

Not Available

1993-10-29T23:59:59.000Z

325

Accelerate Energy Productivity 2030  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy, the Council on Competitiveness, and the Alliance to Save Energy are teaming up for Accelerate Energy Productivity 2030, an initiative to double U.S. energy productivity by 2030. This effort continues support for the goal the President set in his 2013 State of the Union address to double energy productivity, measured by GDP per unit of energy use, from the 2010 level by 2030.

326

MODIS Land Products Subsets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction Introduction The goal of the MODIS Land Product Subsets project is to provide summaries of selected MODIS Land Products for the community to use for validation of models and remote-sensing products, and to characterize field sites. The MODIS Land Product Subsets are derived from MODIS products that were generated with Collection 4 or later algorithms. Please be advised that these products are subject to continual review and revision. The MODIS land product subsets are provided in ASCII and GeoTIFF format. The subsets are stored as individual text(ASCII) files, each file represents one field site and one MODIS product.The ASCII data covers 7x7 km of the field site. These ASCII files contain comma-delimited rows of parameter values (image bands) for each pixel in the selected area. Each row in the file will contain data from one 8-day, 16-day, or annual period (depending on the temporal frequency of the data product represented).

327

Biogas Production Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biogas Production Technologies Ruihong Zhang, Professor Biological and Agricultural Engineering University of California, Davis Email: rhzhang@ucdavis.edu Biogas and Fuel Cell...

328

Forest Products (2010 MECS)  

Broader source: Energy.gov [DOE]

Manufacturing Energy and Carbon Footprint for Forest Products Sector (NAICS 321, 322) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014

329

Forest Products Industry Profile  

Broader source: Energy.gov [DOE]

Wood and paper products meet the everyday needs of consumers and businesses. They provide materials essential for communication, education, packaging, construction, shelter, sanitation, and protection.

330

Challenge # 1. Feedstock & Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Target Market 2. Temporal Supply of Biomass 3. Feedstock Conditioning 4. Utilities & Resources Challenge 1. Feedstock & Production Energy Efficiency & Renewable Energy...

331

Morphometry and lacustrine productivity  

Science Journals Connector (OSTI)

productivity even while denying any di- probably does much to explain why deep, .... stratification does not develop in the epi- limnion, upward ... Fundamentals.

2000-01-04T23:59:59.000Z

332

Coalbed Methane Production  

U.S. Energy Information Administration (EIA) Indexed Site

NA Not Available; W Withheld to avoid disclosure of individual company data. Notes: Coalbed Methane production data collected in conjunction with proved reserves data on Form...

333

Product Pipeline Reports Tutorial  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Forms> Petroleum Survey Forms Tutorial Product Pipeline Reports Tutorial Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player...

334

Crude Oil Domestic Production  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net...

335

Furfuryl alcohol cellular product  

DOE Patents [OSTI]

Self-extinguishing rigid foam products are formed by polymerization of furfuryl alcohol in the presence of a lightweight, particulate, filler, zinc chloride and selected catalysts.

Sugama, T.; Kukacka, L.E.

1982-05-26T23:59:59.000Z

336

The evaluation of a coal-derived liquid as a feedstock for the production of high-density aviation turbine fuel  

SciTech Connect (OSTI)

The conversion of coal-derived liquids to transportation fuels has been the subject of many studies sponsored by the US Department of Energy and the US Department of Defense. For the most part, these studies evaluated conventional petroleum processes for the production of specification-grade fuels. Recently, however, the interest of these two departments expanded to include the evaluation of alternate fossil fuels as a feedstock for the production of high-density aviation turbine fuel. In this study, we evaluated five processes for their ability to produce intermediates from a coal-derived liquid for the production of high-density turbine fuel. These processes include acid-base extraction to reduce the heteroatom content of the middle distillate and the atmospheric and vacuum gas oils, solvent dewaxing to reduce the paraffin (alkane) content of the atmospheric and vacuum gas oils, Attapulgus clay treatment to reduce the heteroatom content of the middle distillate, coking to reduce the distillate range of the vacuum gas oil, and hydrogenation to remove heteroatoms and to saturate aromatic rings in the middle distillate and atmospheric gas oil. The chemical and physical properties that the US Air Force considers critical for the development of high-denisty aviation turbine fuel are specific gravity and net heat of combustion. The target minimum values for these properties are a specific gravity of at least 0.85 and a net heat of combustion of at least 130,000 Btu/gal. In addition, the minimum hydrogen content is 13.0 wt %, the maximum freeze point is {minus}53{degrees}F ({minus}47{degrees}C), the maximum amount of aromatics is about 25 to 30 vol %, and the maximum amount of paraffins is 10 vol %. 13 refs., 20 tabs.

Thomas, K.P.; Hunter, D.E.

1989-08-01T23:59:59.000Z

337

State Energy Production Data  

Gasoline and Diesel Fuel Update (EIA)

State Energy Data System State Energy Data System Production Estimates Technical Notes For 1960-2011 Estimates Table of Contents Section 1. Introduction ................................................................................................................... 1 Section 2. Coal ............................................................................................................................... 5 Section 3. Crude Oil ....................................................................................................................... 7 Section 4. Natural Gas (Marketed Production) .............................................................................. 9 Section 5. Renewable Energy and Nuclear Energy ..................................................................... 13

338

By-Products Utilization  

E-Print Network [OSTI]

SELF-COMPACTING CONCRETE By Tarun R. Naik, Rudolph N. Kraus, and Yoon-moon Chun Report No. CBU-2004 of Limestone Quarry By-Products for Developing Economical Self-Compacting Concrete Principle Investigator Name. For this proposed project, self-compacting concrete mixtures will be developed for prototype production that utilize

Wisconsin-Milwaukee, University of

339

By-Products Utilization  

E-Print Network [OSTI]

SELF-COMPACTING CONCRETE By Tarun R. Naik and Rakesh Kumar Report No. CBU-2003-15 REP-509 April 2003 CONCRETE April 2003 REP-509 #12;ii Use of Limestone Quarry By-Products for Developing Economical Self-Compacting in the production of economical self-compacting concrete. OBJECTIVE: The primary objective of this project

Wisconsin-Milwaukee, University of

340

Products from Marine Algae  

Science Journals Connector (OSTI)

... from an extensive survey of the literature, on many aspects of the study of marine algae. The chief emphasis is, however, on commercial products derived from ... . The chief emphasis is, however, on commercial products derived from algae, the chemicals themselves, their processes of extraction and utilization in industry and as sources ...

E. M. BURROWS

1970-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization CLEAN COAL BY-PRODUCTS UTILIZATION IN ROADWAY, EMBANKMENTS-fueled plants, particularly use of eastern coals, has lead to the use of clean coal and using advanced sulfur dioxide control technologies. Figure 1 shows clean coal technology benefits(2) . In 1977, the concept

Wisconsin-Milwaukee, University of

342

By-Products Utilization  

E-Print Network [OSTI]

-Milwaukee, P.O. Box 784, Milwaukee, WI 53201 d Project Manager, Illinois Clean Coal Institute * Director UWM products containing clean coal ash compared to conventional coal ash. Utilization of clean coal ash is much products that utilize clean coal ash. With increasing federal regulations on power plant emissions, finding

Wisconsin-Milwaukee, University of

343

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization USE OF CLEAN COAL ASH AS SETTING TIME REGULATOR IN PORTLAND OF WISCONSIN ­ MILWAUKEE #12;2 Use of Clean Coal Ash as Setting Time Regulator in Portland Cement by Zichao Wu as setting time regulator for portland cement production. In this paper a source of clean coal ash (CCA

Wisconsin-Milwaukee, University of

344

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R #12;1 HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R. Naik, Shiw S. Singh, and Bruce for manufacture of cement-based products using ashes generated from combustion of high-sulfur coals. A clean coal

Wisconsin-Milwaukee, University of

345

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization APPLICATION OF SCRAP TIRE RUBBER IN ASPHALTIC MATERIALS: STATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. PRODUCING CRUMB RUBBER MODIFIER (CRM) FROM USED TIRES . . . . . 3 2.1 PRODUCTION OF CRM THE UNIVERSITY OF WISCONSIN - MILWAUKEE #12;APPLICATION OF SCRAP TIRE RUBBER IN ASPHALTIC MATERIALS: STATE

Wisconsin-Milwaukee, University of

346

By-Products Utilization  

E-Print Network [OSTI]

include workability, water requirement, bleeding, segregation, air content, time of set, and temperature with and without by-products, and soil and groundwater remediation technologies including bioremediation. ACI for power production. Its combustion in electric power plants produces large amounts of fly ash and bottom

Wisconsin-Milwaukee, University of

347

By-Products Utilization  

E-Print Network [OSTI]

-strength materials (CLSM); and, future research needs. The fresh concrete properties discussed are workability, water with and without by-products, and soil and groundwater remediation technologies including bioremediation. ACI for power production. Its combustion in electric power plants produces large amounts of fly ash and bottom

Wisconsin-Milwaukee, University of

348

Phenomenology of ``Onium'' Production  

E-Print Network [OSTI]

The phenomenology of heavy quarkonia production in hadron collisions is reviewed. The theoretical predictions are compared to data. Commonly used production models are shown to fail in explaining all the experimental findings. The shortcomings of these models are analysed and possible improvements are discussed.

Matteo Cacciari

1995-05-18T23:59:59.000Z

349

Gulf Coast Distillate Production  

Gasoline and Diesel Fuel Update (EIA)

4 of 15 4 of 15 Notes: PADD 3 is a major source of supply for the East Coast. This graph shows how during the winter of 1997-1998 when distillate stocks were very high, production fell back. In contrast, we entered the winter of 1996-1997 with very low stocks, and refineries reached record production levels as they tried to build stocks late in the season. Notice that production is normally reduced in January as distillate stocks are used to meet demand and as refineries begin maintenance and turnovers, which continue into February. This January is no different. There is room for some production increases in January and February, if refineries postpone maintenance. But postponing maintenance and turnarounds can create problems when the gasoline production season begins in March and April.

350

FCT Hydrogen Production: Hydrogen Production R&D Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production R&D Hydrogen Production R&D Activities to someone by E-mail Share FCT Hydrogen Production: Hydrogen Production R&D Activities on Facebook Tweet about FCT Hydrogen Production: Hydrogen Production R&D Activities on Twitter Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Google Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Delicious Rank FCT Hydrogen Production: Hydrogen Production R&D Activities on Digg Find More places to share FCT Hydrogen Production: Hydrogen Production R&D Activities on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts

351

Coal combustion products (CCPs  

Broader source: Energy.gov (indexed) [DOE]

combustion products (CCPs) combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an important contribution in this regard. Fossil Energy Research Benefits Coal Combustion Products Fossil Energy Research Benefits

352

Monthly Biodiesel Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Biodiesel Production Monthly Biodiesel Production Report November 2013 With Data for September 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Monthly Biodiesel Production Report This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

353

Biomass-Derived Energy Products and Co-Products Market  

E-Print Network [OSTI]

Biomass-Derived Energy Products and Co-Products Market This report identifies the bio-fuels and co & Earth Science & Technology ­ University of Hawai`i at Manoa #12;Biomass-Derived Energy Products and Co agency thereof. #12;Biomass Derived Energy Products and Co- Products Market and Off-take Study Hawaii

354

MODIS Land Products Subsets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction Introduction Collection 5 The MODIS data from the Terra and Aqua satellites are being reprocessed using revised algorithms beginning in September 2006. This new set of MODIS Products is called Collection 5. To view the product changes that took place in going from Collection 4 to Collection 5, please visit the following Web site: http://landweb.nascom.nasa.gov/cgi-bin/QA_WWW/newPage.cgi?fileName=MODLAND_C005_changes The ORNL DAAC provides subsets of the Collection 5 MODIS Land Products. Investigators from around the world have shown a great deal of interest in this activity, asking that over 1000 field and flux tower sites be included in Collection 5 subsetting (up from 280 sites for Collection 4 MODIS subsetting). Availability of the Collection 5 Data Products

355

MODIS Land Products Subsets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data for Selected Field Sites (n=1147) Data for Selected Field Sites (n=1147) Obtain MODIS data for areas centered on selected field sites or flux towers from around the world. The goal of the MODIS Subsets for Selected Field Sites is to prepare summaries of selected MODIS Land Products for the community to use for validation of models and remote sensing products and to characterize field sites. Search for data: By Site from a Map Server from Google Earth (Install Google Earth) From FTP site (ASCII) Methods Data products were first subsetted from one or more 1200x1200-km MODIS tiles to 25 x 25-km arrays by the MODIS Science Data Support Team (MODAPS). These products were further subsetted (7x7) and reformatted from their native HDF-EOS to ASCII using version 2.2 of the MODIS Reprojection Tool (MRT) in combination with code developed at the ORNL DAAC.

356

JGI - Product Offerings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Product Offerings Product Offerings Scientific Program Product Brief Description Deliverables FY14 target cycle time (median), days FY14 target cycle time (75th %), days Fungal Minimal Draft Low coverage whole genome shotgun sequencing for evaluation. May turn into a standard draft or improved standard draft. Assembly. Annotation optional (JGI portal); raw data submitted to SRA 250 400 Fungal Resequencing SNP and short indel calls, rearrangement detection, population analysis. Text file of SNPs (incl location in genome, coding/vs non, syn vs non-syn aa change etc) and structural rearrangements, alignment files, tracks for upload to genome browser and fastq files; raw data submitted to SRA 140 200 Fungal Standard Draft Whole genome shotgun sequencing. Exact scope items and quality of finished product depend on genome. Selected genomes will be improved based on feasibility and scientific merit. Assembly, annotation (JGI Portal + Genbank); raw data submitted to SRA 250 400

357

Fundamentals of Designing Products  

Science Journals Connector (OSTI)

The term “design” has many connotations. Essentially it is the process of devising a product that fulfills as completely as possible the total requirements of the user, while satisfying the needs of the fabric...

Dominick V. Rosato P.E.; Donald V. Rosato PH.D.…

2000-01-01T23:59:59.000Z

358

Domestic Uranium Production Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

6. Employment in the U.S. uranium production industry by category, 2003-13 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18...

359

Composite production riser assessment  

E-Print Network [OSTI]

The performance of a deep water composite production riser from a system perspective is presented, and its advantages are articulated through comparisons with a typical steel riser under identical service conditions. The composite riser joints...

Kim, Won Ki

2007-09-17T23:59:59.000Z

360

Production of Shale Oil  

E-Print Network [OSTI]

Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan...

Loper, R. D.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy production from corn  

Science Journals Connector (OSTI)

Several physical and chemical factors limit the production of biofuels, such as the complex process required for the conversion of plant biomass into ethanol. For example, fossil energy inputs needed for the prod...

Jessica Zhang; Sarah Palmer; David Pimentel

2012-04-01T23:59:59.000Z

362

Hydrogen Production Methods  

Science Journals Connector (OSTI)

As hydrogen appears to be a potential solution for a carbon-free society, its production plays a critical role in showing how well it fulfills the criteria of being environmentally benign and sustainable. Of c...

Ibrahim Dincer; Anand S. Joshi

2013-01-01T23:59:59.000Z

363

Hydrogen Production Methods  

Science Journals Connector (OSTI)

Commercially available hydrogen production methods such as steam reforming of natural gas, ... process that are based on fossil hydrocarbons and methods in the stage of development, like thermolysis ... radiolysi...

Y. Yürüm

1995-01-01T23:59:59.000Z

364

Bacterial Fermentative Hydrogen Production  

Broader source: Energy.gov [DOE]

Presentation by Melanie Mormile, Missouri University of Science and Technology, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

365

Central Versus Distributed Production  

Broader source: Energy.gov [DOE]

Central, semi-central, and distributed production facilities are expected to play a role in the evolution and long-term use of hydrogen as an energy carrier. The different resources and processes...

366

By-Products Utilization  

E-Print Network [OSTI]

-Products Utilization E-mail: ymchun@uwm.edu and F. D. Botha Project Manager, Illinois Clean Coal Institute 5776 Coal, University of Wisconsin-Milwaukee, Milwaukee, WI, USA. 4 Project Manager, Illinois Clean Coal Institute

Wisconsin-Milwaukee, University of

367

Geothermal Electricity Production  

Science Journals Connector (OSTI)

...georef;1974029979 development economics geothermal energy global production...space heating and cooling and water desalination, and (for the long term) to...produLced in thermiial stations. Economics and Rate of Developnment The National...

Geoffrey R. Robson

1974-04-19T23:59:59.000Z

368

Synthetic Nitrogen Products  

Science Journals Connector (OSTI)

The cost for making hydrogen by steam reforming of natural gas depends primarily on the cost of natural gas. Several sources estimate the hydrogen production cost, excluding capital charges (in US$ per million BT...

Gary R. Maxwell

2012-01-01T23:59:59.000Z

369

By-Products Utilization  

E-Print Network [OSTI]

%) were used in producing the concrete mixtures. The water to cementitious materials ratio was kept with and without by-products, and soil and groundwater remediation technologies including bioremediation. ACI

Wisconsin-Milwaukee, University of

370

Solar Hydrogen Production  

Science Journals Connector (OSTI)

The common methods of hydrogen production impose many concerns regarding the decline in...2...emission, and ecological impacts. Subsequently, all the downstream industries that consume hydrogen involve the aforem...

Ibrahim Dincer; Anand S. Joshi

2013-01-01T23:59:59.000Z

371

EIA Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Drilling Productivity Report Drilling Productivity Report For Center on Global Energy Policy, Columbia University October 29, 2013 | New York, NY By Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources Adam Sieminski, EIA Drilling Productivity Report October 29, 2013 2 0 5 10 15 20 25 30 35 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 2000 2002 2004 2006 2008 2010 2012 Eagle Ford (TX) Bakken (MT & ND) Granite Wash (OK & TX) Bonespring (TX Permian) Wolfcamp (TX Permian) Spraberry (TX Permian) Niobrara-Codell (CO) Woodford (OK)

372

Oil Reserves and Production  

Science Journals Connector (OSTI)

...research-article Oil Reserves and Production Eric Drake The growth of world energy requirements over the last...remaining proved recoverable reserves will probably decline continuously...to grow. The declining reserves will be insufficient to...

1974-01-01T23:59:59.000Z

373

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals  

SciTech Connect (OSTI)

This report presents the results of the research and development conducted on an Advanced Hydrogasification Process (AHP) conceived and developed by Arizona Public Service Company (APS) under U.S. Department of Energy (DOE) contract: DE-FC26-06NT42759 for Substitute Natural Gas (SNG) production from western coal. A double-wall (i.e., a hydrogasification contained within a pressure shell) down-flow hydrogasification reactor was designed, engineered, constructed, commissioned and operated by APS, Phoenix, AZ. The reactor is ASME-certified under Section VIII with a rating of 1150 pounds per square inch gage (psig) maximum allowable working pressure at 1950 degrees Fahrenheit ({degrees}F). The reaction zone had a 1.75 inch inner diameter and 13 feet length. The initial testing of a sub-bituminous coal demonstrated ~ 50% carbon conversion and ~10% methane yield in the product gas under 1625{degrees}F, 1000 psig pressure, with a 11 seconds (s) residence time, and 0.4 hydrogen-to-coal mass ratio. Liquid by-products mainly contained Benzene, Toluene, Xylene (BTX) and tar. Char collected from the bottom of the reactor had 9000-British thermal units per pound (Btu/lb) heating value. A three-dimensional (3D) computational fluid dynamic model simulation of the hydrodynamics around the reactor head was utilized to design the nozzles for injecting the hydrogen into the gasifier to optimize gas-solid mixing to achieve improved carbon conversion. The report also presents the evaluation of using algae for carbon dioxide (CO{sub 2}) management and biofuel production. Nannochloropsis, Selenastrum and Scenedesmus were determined to be the best algae strains for the project purpose and were studied in an outdoor system which included a 6-meter (6M) radius cultivator with a total surface area of 113 square meters (m{sup 2}) and a total culture volume between 10,000 to 15,000 liters (L); a CO{sub 2} on-demand feeding system; an on-line data collection system for temperature, pH, Photosynthetically Activate Radiation (PAR) and dissolved oxygen (DO); and a ~2 gallons per minute (gpm) algae culture dewatering system. Among the three algae strains, Scenedesmus showed the most tolerance to temperature and irradiance conditions in Phoenix and the best self-settling characteristics. Experimental findings and operational strategies determined through these tests guided the operation of the algae cultivation system for the scale-up study. Effect of power plant flue gas, especially heavy metals, on algae growth and biomass adsorption were evaluated as well.

Sun, Xiaolei; Rink, Nancy

2011-04-30T23:59:59.000Z

374

Ethanol production from lignocellulose  

DOE Patents [OSTI]

This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

Ingram, Lonnie O. (Gainesville, FL); Wood, Brent E. (Gainesville, FL)

2001-01-01T23:59:59.000Z

375

Pretreated densified biomass products  

SciTech Connect (OSTI)

A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

2014-03-18T23:59:59.000Z

376

Grid-based Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grid-based Production Grid-based Production Grid-based Production PDSF is a Tier 2 site for ALICE and as such has the infrastructure in place to run automated grid-based ALICE production jobs. The main components of this infrastructure are listed below. Grid-Enabled Storage Elements There are currently a set of 10 servers running XRootD with a total capacity of 720TB. Included in XRootD are the data transfer tools used to transfer the input and output files for the production jobs running at PDSF. In addition to the 10 servers there is also the XRootD redirector which is currently running on pc1801.nersc.gov (pdsf5.nersc.gov). VO Box A VO (Virtual Organization) box is a dedicated node (palicevo1.nersc.gov) that coordinates the production. It runs the grid-monitoring tool MonALISA, the AliEn grid framework software, a Condor-G client and does job

377

Productivity prediction model based on Bayesian analysis and productivity console  

E-Print Network [OSTI]

in poor planning and defies effective control of time and budgets in project management. In this research, we have built a productivity prediction model which uses productivity data from an ongoing project to reevaluate the initial productivity estimate...

Yun, Seok Jun

2005-08-29T23:59:59.000Z

378

Intermediate inputs and economic productivity  

Science Journals Connector (OSTI)

...US sectoral-level production functions. Both the...316) and plastics and rubber-(326). The relationship...coefficients of the production function sum to a quantity...inputs were used in the production process. 16 This estimate...products 326 plastics and rubber products 327 non-metallic...

2013-01-01T23:59:59.000Z

379

JGI Lab Ergo Products Catalog  

E-Print Network [OSTI]

35 Page 1 of 35 Laboratory Ergonomics Product Arm Supports/Page 2 of 35 Laboratory Ergonomics Product Features/OptionsPage 3 of 35 Laboratory Ergonomics Product SoftEdge Corners

Alexandre, Melanie

2010-01-01T23:59:59.000Z

380

Weekly Coal Production Estimation Methodology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weekly Coal Production Estimation Methodology Step 1 (Estimate total amount of weekly U.S. coal production) U.S. coal production for the current week is estimated using a ratio...

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Technology's Impact on Production  

SciTech Connect (OSTI)

As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

Rachel Amann; Ellis Deweese; Deborah Shipman

2009-06-30T23:59:59.000Z

382

Covered Product Categories (Fact Sheet)  

SciTech Connect (OSTI)

Overview of the U.S. Department of Energy Federal Energy Management Program Energy-Efficient Product Procurement Program and its designated product category list.

Not Available

2011-08-01T23:59:59.000Z

383

Energy Production | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Production Energy Production Below is information about the student activitylesson plan from your search. Grades K-4, 5-8 Subject Energy Choices and Society, Geothermal, Solar,...

384

Accelerate Energy Productivity 2030 Launch  

Office of Energy Efficiency and Renewable Energy (EERE)

Today, the Department of Energy kicked off Accelerate Energy Productivity 2030. This initiative supports President Obama’s goal to double our energy productivity by 2030.

385

MTBE Production Economics  

Gasoline and Diesel Fuel Update (EIA)

MTBE Production MTBE Production Economics Tancred C. M. Lidderdale Contents 1. Summary 2. MTBE Production Costs 3. Relationship between price of MTBE and Reformulated Gasoline 4. Influence of Natural Gas Prices on the Gasoline Market 5. Regression Results 6. Data Sources 7. End Notes 1. Summary Last year the price of MTBE (methyl tertiary butyl ether) increased dramatically on two occasions (Figure 1) (see Data Sources at end of article.): 1. Between April and June 2000, the price (U.S. Gulf Coast waterborne market) of MTBE rose from $1.00 per gallon to over $1.60 per gallon. This represented an increase in the price premium for MTBE over the wholesale price of conventional gasoline from its normal (1995 though 2000 average) $0.26 per gallon to $0.60 per gallon. The MTBE

386

NREL: Learning - Hydrogen Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production Production The simplest and most common element, hydrogen is all around us, but always as a compound with other elements. To make it usable in fuel cells or otherwise provide energy, we must expend energy or modify another energy source to extract it from the fossil fuel, biomass, water, or other compound in which it is found. Nearly all hydrogen production in the United States today is by steam reformation of natural gas. This, however, releases carbon dioxide in the process and trades one relatively clean fuel for another, with associated energy loss, so it does little to meet national energy needs. Hydrogen can also be produced by electrolysis-passing an electrical current through water to break it into hydrogen and oxygen-but electrolysis is inefficient and is only as clean

387

A Quantum Production Model  

E-Print Network [OSTI]

The production system is a theoretical model of computation relevant to the artificial intelligence field allowing for problem solving procedures such as hierarchical tree search. In this work we explore some of the connections between artificial intelligence and quantum computation by presenting a model for a quantum production system. Our approach focuses on initially developing a model for a reversible production system which is a simple mapping of Bennett's reversible Turing machine. We then expand on this result in order to accommodate for the requirements of quantum computation. We present the details of how our proposition can be used alongside Grover's algorithm in order to yield a speedup comparatively to its classical counterpart. We discuss the requirements associated with such a speedup and how it compares against a similar quantum hierarchical search approach.

Luís Tarrataca; Andreas Wichert

2015-02-06T23:59:59.000Z

388

Structuring product development processes  

Science Journals Connector (OSTI)

This paper proposes operational frameworks for structuring product development processes. The primary objective of this research is to develop procedures to minimize iterations during the development process which adversely affect development time and costs. Several procedures are introduced to restructure the development process. The computation of the corresponding product development times is facilitated by two Markov models addressing different types of learning. The methodologies are employed to identify a set of managerial concerns in restructuring the product development processes. The developed framework has become an integral part of a re-engineering project for the development of rocket engines at Rocketdyne Division of Rockwell International. Throughout the paper, the methodologies are illustrated with the help of this process.

Reza Ahmadi; Thomas A. Roemer; Robert H. Wang

2001-01-01T23:59:59.000Z

389

Home Fruit Production - Figs.  

E-Print Network [OSTI]

TDOC Z TA245.7 B873 NO.1591 B-1591 Texas Agricultural Extension Service HOM? FRUIT PRODUCTION FIGS LIBRARY SEP 2 7 1988 ( A&M Univer it Texas Agricultural Extension Service. Zerle L. Carpenter, Director. The Texas A&M University System.... College Station, Texas / (Blank Pa.ge -ill Original BBDetial . r .. ; :.' l , ::; .: .? HOME FRUIT PRODUCTION - FIGS Calvin G. Lyons and George Ray McEachern* Figs have been a part of Texas homesteads since the early development of the state...

Lyons, Calvin G.; McEachern, George Ray

1987-01-01T23:59:59.000Z

390

Product sustainability: organisational considerations  

Science Journals Connector (OSTI)

The paper discusses organisational aspects that need to be considered when developing sustainable products, services and product-services. Managing business sustainability, and within it sustainable solutions development, is a complex and evolving issue and there is no bible that effectively helps companies to do this. To progress towards sustainability, there will need to be a clear vision, commitment, objectives and strategy driven from the top. Organisational structures will need to be created that enable learning and change in a dynamic setting. Higher levels of net sustainable value will need to be delivered through more sustainable solutions based on robust management systems, and this will mean innovation (Charter and Clark, 2003).

Martin Charter; Tom Clark

2008-01-01T23:59:59.000Z

391

Table 1. U.S. Biodiesel Production Capacity and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Biodiesel Production Capacity and Production Biodiesel Production Capacity and Production (million gallons) Period 2011 January 2,114 35 February 2,104 40 March 2,081 60 April 2,101 71 May 2,064 77 June 2,069 81

392

Weekly Coal Production by State  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly Coal Production Weekly Coal Production Data for week ended: December 14, 2013 | Release date: December 19, 2013 | Next release date: December 30, 2013 For the week ended December 14, 2013: U.S. coal production totaled approximately 18.9 million short tons (mmst) This production estimate is 3.1% higher than last week's estimate and 2.9% lower than the production estimate in the comparable week in 2012 Coal production east of the Mississippi River totaled 8.2 mmst Coal production west of the Mississippi River totaled 10.8 mmst U.S. year-to-date coal production totaled 957.1 mmst, 1.9% lower than the comparable year-to-date coal production in 2012 EIA revises its weekly estimates of state-level coal production using Mine Safety and Health Administration (MSHA) quarterly coal production data.

393

Energy Resources Available to the United States, 1985 to 2000  

Science Journals Connector (OSTI)

...a point, we can substitute mon-ey in the...4 a ton, and natural gas at /$0.16 a...world petroleum and gas produc-tion has...Btu's); and Syngas he United States...Btu's. Alaskan natural gas will cost $4 to...

Earl T. Hayes

1979-01-19T23:59:59.000Z

394

EFFECTS OF COFIRING LIGNIN AND BIOSOLIDS WITH COAL ON FIRESIDE PERFORMANCE AND COMBUSTION PRODUCTS  

SciTech Connect (OSTI)

Lignin, derived from municipal solid waste and biosolid feedstocks using Masada Resource Group's patented CES OxyNol{trademark} process, and acidified biosolids were evaluated as supplemental fuels with coal for producing steam and electricity. Tests were conducted in a pilot-scale (550,000-Btu/hr [580-MJ/hr]) combustion system to evaluate the effects of coal characteristics, blend mixture (on a dry wt% basis) and furnace exit gas temperature (FEGT) on boiler heat-exchange surface slagging and fouling, NO{sub x} and SO{sub x} production, fly ash characteristics, and combustion efficiency. The effects of blending lignin and acidified biosolids with coal on fuel handling and pulverization characteristics were also addressed. An 80 wt% Colorado--20 wt% subbituminous Powder River Basin coal blend from the Tennessee Valley Authority Colbert Steam Plant, hereafter referred to as the Colbert coal, and a bituminous Pittsburgh No. 8 coal were tested. The lignin and acidified biosolids were characterized by possessing higher moisture content and lower carbon, hydrogen, and heating values relative to the coals. Ash contents of the fuels were similar. The lignin also possessed higher concentrations of TiO{sub 2}, CaO, and SO{sub 3} and lower concentrations of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, K{sub 2}O, and N relative to the coals. The sulfur content of lignin could be reduced through a more thorough washing and drying of the lignin in an efficient commercial-scale dewatering device. Acidified biosolids were distinguished by higher concentrations of P{sub 2}O{sub 5} and MgO and lower SiO{sub 2} and Al{sub 2}O{sub 3} relative to the other fuels. Trace element concentrations, especially for Cr, Pb, Hg, and Ni, were generally greater in the lignin and acidified biosolid fuels relative to the Colbert coal. Maximum trace element emission factors were calculated for 95:5 Colbert coal--lignin and 90:5:5 Colbert coal--lignin--acidified biosolid blends and compared to U.S. Environmental Protection Agency emission factors for pulverized coal-fired units that are unequipped with pollution control devices. Calculated maximum trace element emission factors for the fuel blends were generally less than or within the range of those for the uncontrolled coal-fired units, except for Cr and Pb which were greater.

Kevin C. Galbreath

2002-08-01T23:59:59.000Z

395

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) Note: The Btu conversion factors used for primary electricity are 10,197 Btu/KWh, 10,173 Btu/KWh, and 9,919 Btu/KWh for 1998, 2002, and 2006, respectively. Sources: Energy Information Administration, Form EIA-846, Manufacturing Energy Consumption Surveys, 1998, 2002, and 2006. and Monthly Energy Review November 2005, and September 2009 DOE/EIA-0035(2005, 2009),Table A6. MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,468 1,572 1,665 312 Beverage and Tobacco Products 156 156 166 313 Textile Mills 457 375 304 314 Textile Product Mills 85 94 110 315 Apparel 84 54 27 316 Leather and Allied Products 14

396

MODIS Land Products Subsets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presentations Presentations Web and Web Services based tool that provides Subsets and Visualization of MODIS land products to facilitate land validation and field site characterization. S.K. Santhana Vannan; R. B. Cook; B. E. Wilson. AGU Fall Meeting, San Francisco, CA, December 14-18 2009 MODIS Land Product Subsets,S.K. Santhana Vannan; R. B. Cook. November, 2009 MODIS Web Service, S.K. Santhana Vannan. ORNL DAAC UWG Meeting, May 2009 Subsetting Tools for MODIS Land Products: Time-series data for field sites, R. B. Cook, S. M. Margle, S. K. Santhana Vannan, S. K. Holladay, and T. W. Beaty. Global Vegetation Workshop, Missoula MT, August 8-10, 2006 MODIS ASCII Subsets, R. B. Cook. May 2006 Subsets of Remote Sensing Products for AmeriFlux Sites: MODIS ASCII Subsets, AmeriFlux Annual Meeting, R. B. Cook, S. M. Margle, S. K. Holladay, F. A. Heinsch, and C. B. Schaaf. October 5-7, 2004, Boulder, Colorado

397

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

2. U.S. uranium mine production and number of mines and sources, 2003-2012 2. U.S. uranium mine production and number of mines and sources, 2003-2012 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Underground (estimated contained thousand pounds U3O8) W W W W W W W W W W Open Pit (estimated contained thousand pounds U3O8) 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching (thousand pounds U3O8) W W 2,681 4,259 W W W W W W Other1 (thousand pounds U3O8) W W W W W W W W W W Total Mine Production (thousand pounds U3O8) E2,200 2,452 3,045 4,692 4,541 3,879 4,145 4,237 4,114 4,335 Number of Operating Mines Underground 1 2 4 5 6 10 14 4 5 6 Open Pit 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching 2 3 4 5 5 6 4 4 5 5 Other Sources1 1 1 2 1 1 1 2 1 1 1

398

Cost Containment and Productivity  

E-Print Network [OSTI]

Cost Containment and Productivity Faculty Assembly Presentation January 22, 2013 Arthur G. Ramicone, CFO David N. DeJong, Vice Provost, Academic Planning and Resources Management #12;Cost Containment Resources to Enhance the Student Experience · Reduce the Cost and Complexity of Administrative Operations

Jiang, Huiqiang

399

Chemical Signals Production  

E-Print Network [OSTI]

Chemical Signals · Types · Production · Transmission · Reception · Reading: Ch 10 except boxes 10.1 and 10.2 #12;What is chemical communication? · Movement of molecules from sender to receiver · Methods compounds are volatile. - 5-20 carbon compounds - carbon (MW=12) + hydrogen is less dense than oxygen (MW

Wilkinson, Gerald S.

400

Ecoefficiency in consumer products  

Science Journals Connector (OSTI)

...resulted from the systematic review of all of our product...weight compared to the standard bottle. Even seemingly...system is based on a standard footprint for packs which...pack sizes has become standard at S. C. Johnson Wax...integrated within the business plan and will then be reflected...

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

By-Products Utilization  

E-Print Network [OSTI]

ECONOMICAL SELF-COMPACTING CONCRETE By Tarun R. Naik, Rudolph N. Kraus, Yoon-moon Chun, Fethullah Canpolat #12;USE OF FLY ASH AND LIMESTONE QUARRY BY-PRODUCTS FOR DEVELOPING ECONOMICAL SELF-COMPACTING CONCRETE material in the development of economical self-compacting concrete (SCC). Class C fly ash was also used

Wisconsin-Milwaukee, University of

402

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization SELF-COMPACTING CONCRETE (SCC) OR SELF- LEVELING CONCRETE (SLC - MILWAUKEE #12;2 SELF-COMPACTING CONCRETE (SCC) OR SELF ­LEVELING CONCRETE (SLC) INTRODUCTION Self-compacting as the concrete which can be placed and compacted into every corner of a form work, purely by means of its self

Wisconsin-Milwaukee, University of

403

By-Products Utilization  

E-Print Network [OSTI]

SELF-COMPACTING CONCRETE By Tarun R. Naik, Rudolph N. Kraus, Yoon-moon Chun, Fethullah Canpolat ECONOMICAL SELF-COMPACTING CONCRETE by Tarun R. Naik* , Rudolph N. Kraus** , Yoon-moon Chun*** , Fethullah of limestone-quarry by-product material in the development of economical self-compacting concrete (SCC). Class

Wisconsin-Milwaukee, University of

404

By-Products Utilization  

E-Print Network [OSTI]

ash. Paving applications, such as Roller Compacted Concrete for industrial plants, parking lots be used in Self-Consolidating Concrete applications. This type of concrete requires additional fines that concrete Bricks, Blocks, and Paving Stones can also be made with the Corn Products' coal ash. Additionally

Wisconsin-Milwaukee, University of

405

Air Products effective way  

E-Print Network [OSTI]

PE O A e s a b O T A O ENNST Overview Air Products effective way standard me Departm Shipping has recently y of shipping eans. Air Pro ontainer that es of this pro onduct mark eep accelera eep the cost tilize widely a earch and m m visited Air er needs wer model was cr m approache ms

Demirel, Melik C.

406

By-Products Utilization  

E-Print Network [OSTI]

­ Milwaukee, Milwaukee, WI and Ronald H. Carty Director Illinois Clean Coal Institute Carterville, IL ABSTRACT, Naik and Singh [16] summarized various applications of fly ash generated from conventional and clean coal technologies. Uses of coal combustion by- products can be categorized into three classes: high-volum

Wisconsin-Milwaukee, University of

407

By-Products Utilization  

E-Print Network [OSTI]

of coal in conventional and/ or advanced clean coal technology combustors. These include fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) by-products from advanced clean coal technology clean coal technology combustors. Over 60% of the CCBs are generated as fly ash. An estimate

Wisconsin-Milwaukee, University of

408

By-Products Utilization  

E-Print Network [OSTI]

shrinkage; durability; freezing and thawing; recycling; sludge; wastewater treatment; wood cellulose fibersCenter for By-Products Utilization RECYCLING OF PULP AND PAPER MILL RESIDUALS TO INCREASE FREEZING College of Engineering and Applied Science THE UNIVERSITY OF WISCONSIN ­ MILWAUKEE #12;Recycling of Pulp

Wisconsin-Milwaukee, University of

409

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization GREENER CONCRETE FROM WOOD FLY ASH AND COAL FLY ASH By Tarun R CONCRETE FROM WOOD FLY ASH AND COAL FLY ASH By Tarun R. Naik, Rudolph N. Kraus, Shiw S. Singh, Lori-Lynn C mixtures were developed using blends of wood FA and Class C coal FA. Two levels of blended ash

Wisconsin-Milwaukee, University of

410

By-Products Utilization  

E-Print Network [OSTI]

,and Bruce W. Ramme CBU-1996-08 REP-283 July 1996 Presented andPublished at the American Coal Ash Association's Twelfth International Coal Ash Use Symposium,Orlando,FL,January 26-30, 1997. Department of Civil-sulfurcoal combustionby-products generated by using both conventional and clean coal technologies. A clean coal ash

Wisconsin-Milwaukee, University of

411

By-Products Utilization  

E-Print Network [OSTI]

-specification ash generated from the combustion of high- sulfure coal. The coal combustion products used of the project indicate that high-carbon coal ash can be successfully used in porous base course applications is a Research Associate at the UWM-CBU. His research interests include the use of coal fly ash, coal bottom ash

Wisconsin-Milwaukee, University of

412

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST Report No.CBU-1996-07 July 1996 Presented and Published at the American Coal Ash Association's Twelfth International Coal Ash Use Symposium, Orlando, FL, January 26-30, 1997. Department of Civil Engineering

Wisconsin-Milwaukee, University of

413

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization GREENER CONCRETE FROM WOOD FLY ASH AND COAL FLY ASH By Tarun R OF WISCONSIN­MILWAUKEE #12;1 GREENER CONCRETE FROM WOOD FLY ASH AND COAL FLY ASH Synopsis: This investigation coal FA. Two levels of blended ash of approximately 25% and 35% were used. The effect of source of wood

Wisconsin-Milwaukee, University of

414

Production of Synthetic Rubber  

Science Journals Connector (OSTI)

... the Society of Chemical Industry. It has long been the desire of chemists to synthesise rubber by a method which would permit of cheap ... by a method which would permit of cheap production on a large scale, and very many attempts have been made to do this. ...

1912-06-20T23:59:59.000Z

415

Covered Product Category: Computers  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including computers, which are covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

416

By-Products Utilization  

E-Print Network [OSTI]

in a combination with a number of fuels including coal, petroleum coke, natural gas, etc. In the mid 1990s, the unit was firing a combination of coal and petroleum coke to generate energy. It has been established;1 PROJECT 1 - COAL COMBUSTION BY-PRODUCTS: CHARACTERIZATION AND USE OPTIONS Introduction An AFBC system

Wisconsin-Milwaukee, University of

417

By-Products Utilization  

E-Print Network [OSTI]

wood with supplementary fuels such as coal, oil, natural gas, and coke by pulp and paper mills and wood, knots, chips, etc. with other supplementary fuels such as coal, oil, natural gas, and coke to generateCenter for By-Products Utilization DEVELOPMENT OF CLSM USING COAL ASH AND WOOD ASH, A SOURCE OF NEW

Wisconsin-Milwaukee, University of

418

By-Products Utilization  

E-Print Network [OSTI]

with supplementary fuels such as coal, oil, natural gas, and coke by pulp and paper mills and wood, such as bark, twigs, knots, chips, etc. with other supplementary fuels such as coal, oil, natural gas, and cokeCenter for By-Products Utilization CLSM CONTAINING MIXTURES OF COAL ASH AND A NEW POZZOLANIC

Wisconsin-Milwaukee, University of

419

Hydrogen Production Infrastructure Options Analysis  

Broader source: Energy.gov [DOE]

Presentation on hydrogen production and infrastructure options presented at the DOE Transition Workshop.

420

Energy and Financial Markets Overview: Crude Oil Price Formation  

U.S. Energy Information Administration (EIA) Indexed Site

John Maples John Maples 2011 EIA Energy Conference April 26, 2011 Transportation and the Environment Light-duty vehicle combined Corporate Average Fuel Economy Standards (CAFE) in three cases, 2005-2035 2 0 20 40 60 80 2005 2010 2015 2020 2025 2030 2035 miles per gallon Source: EIA, Annual Energy Outlook 2011 CAFE6 CAFE3 Reference John Maples, April 26, 2011 Light-duty vehicle delivered energy consumption and total transportation carbon dioxide emissions, 2005-2035 3 0 5 10 15 20 2005 2010 2015 2020 2025 2030 2035 Reference CAFE3 CAFE6 quadrillion Btu 0 500 1000 1500 2000 2500 2005 2010 2015 2020 2025 2030 2035 million metric tons carbon dioxide equivalent Source: EIA, Annual Energy Outlook 2011 John Maples, April 26, 2011 Distribution of new light-duty vehicle sales by price, 2010 and 2025 (2009$) 4 Source: EIA, Annual Energy Outlook 2011

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Microsoft PowerPoint - Sweetnam NG Disc Slides - April 7 2010 final.ppt [Compatibility Mode]  

U.S. Energy Information Administration (EIA) Indexed Site

Gas: Gas: U.S. Markets in a Global Context 2010 Energy Conference U.S. Energy Information Administration Johns Hopkins University - SAIS p y April 7, 2010 - Washington, DC Natural Gas: U.S. Markets is a Global Context, April 7, 2010 Richard Newell, March 2, 2010 1 Richard Newell, SAIS, December 14, 2009 1 April 7, 2010 Washington, DC Discussion Outline * Setting the context * Demand/supply outlook for 3 regions - United States United States - OECD Europe - China * Evolution of the global gas market - Expected trade flows - Pricing and contract issues - Key uncertainties Natural Gas: U.S. Markets is a Global Context, April 7, 2010 2 Natural gas is expected to provide about 23% of the world's energy needs 250 History Projections world energy consumption quadrillion Btu 200 Liquids (including biofuels)

422

Slide 1  

U.S. Energy Information Administration (EIA) Indexed Site

Energy in the Energy in the Transportation and Power Sectors April 7 th , 2009 Energy Information Administration 2009 Energy Conference: A New Climate for Energy Energy Information Administration 0 20 40 60 80 100 120 1980 1990 2000 2010 2020 2030 Nuclear Natural Gas Liquid Fuels Coal Renewables (excl liquid biofuels) Renewable energy to contribute a growing share of supply History Projections Liquid Biofuels quadrillion Btu Source: EIA Annual Energy Outlook 2009 Reference Case Renewable Energy in The Transportation and Power Sectors * David Humbird National Renewable Energy Laboratory * Bob Dineen Renewable Fuels Association * Denise Bode American Wind Energy Association * Bryan Hannegan Electric Power Research Institute Transportation Power 0 5 10 15 20 25 1970 1980 1990 2000 2010 2020 2030 Industrial Transportation

423

AEO2011: Renewable Energy Generation by Fuel - Midwest Reliability Council  

Open Energy Info (EERE)

West West Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 101, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Fuel midwest Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Midwest Reliability Council / West- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

424

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

Upstate New York Upstate New York Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 105, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Upstate New York Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / Upstate New York- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed

425

Renewable Energy Consumption by Energy Use Sector and Energy Source, 2004 -  

Open Energy Info (EERE)

by Energy Use Sector and Energy Source, 2004 - by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

426

AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation  

Open Energy Info (EERE)

Delta Delta Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 109, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Delta EIA Renewable Energy Generation SERC Reliability Corporation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation / Delta- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment

427

source | OpenEI  

Open Energy Info (EERE)

source source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 17, and contains only the reference case. The dataset uses quadrillion Btu. The data is broken down into marketed renewable energy, residential, commercial, industrial, transportation and electric power. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Renewable Energy Consumption Residential sector source transportation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Consumption by Sector and Source- Reference Case (xls, 105 KiB) Quality Metrics Level of Review Peer Reviewed Comment

428

Renewable Energy Consumption for Electricity Generation by Energy Use  

Open Energy Info (EERE)

Electricity Generation by Energy Use Electricity Generation by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by energy source (e.g. biomass, geothermal, etc.) This data was compiled and published by the Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords biomass Commercial Electric Power Electricity Generation geothermal Industrial PV Renewable Energy Consumption solar wind Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Elec_.Gen_EIA.Aug_.2010.xls (xls, 19.5 KiB) Quality Metrics Level of Review Some Review

429

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

430

AEO2011: Energy Consumption by Sector and Source - Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption mountain region Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Mountain- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

431

AEO2011: Renewable Energy Generation by Fuel - Texas Regional Entity |  

Open Energy Info (EERE)

Texas Regional Entity Texas Regional Entity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 98, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Fuel Texas Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Texas Regional Entity- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

432

PowerPoint Presentation  

Broader source: Energy.gov (indexed) [DOE]

th U.S.-China Energy Efficiency Forum th U.S.-China Energy Efficiency Forum Welcoming Remarks David Danielson Assistant Secretary Energy Efficiency and Renewable Energy U.S. Department of Energy Dr. David Danielson, Assistant Secretary The 4th U.S. - China Energy Efficiency Forum 3 - 1 2 3 4 5 6 7 8 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010 U.S. and China : World's Largest Energy Consumers and Emitters Total CO2 from Energy Consumption (Gt) Source: World Bank Indicators. CO2 Emissions from Fuel Combustion (2012 Edition), IEA, Paris. U.S. 5.4 China 7.3 Global Energy Consumption - 100 200 300 400 500 600 Quadrillion Btu Rest of the World 38% 4 0 10 20 30 40 50 60 70 80 90 1980 1985 1990 1995 2000 2005 2010 0 50 100 150 200

433

East South Central | OpenEI  

Open Energy Info (EERE)

East South Central East South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 6, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Commercial East South Central EIA Electric Power Energy Consumption Industrial Residential transportation Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - East South Central- Reference Case (xls, 297.5 KiB) Quality Metrics Level of Review Peer Reviewed

434

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

Northeast Northeast Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 102, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Northeast Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / Northeast- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

435

Building Technologies Office: Commercial Building Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Development Research and Development Photo of NREL researcher Jeff Tomberlin working on a data acquisition panel at the Building Efficiency Data Acquisition and Control Laboratory at NREL's Thermal Test Facility. The Building Technology Program funds research that can dramatically improve energy efficiency in commercial buildings. Credit: Dennis Schroeder, NREL PIX 20181 The Building Technologies Office (BTO) invests in technology research and development activities that can dramatically reduce energy consumption and energy waste in buildings. Buildings in the United States use nearly 40 quadrillion British thermal units (Btu) of energy for space heating and cooling, lighting, and appliances, an amount equivalent to the annual amount of electricity delivered by more than 3,800 500-megawatt coal-fired power plants. The BTO technology portfolio aims to help reduce building energy requirements by 50% through the use of improved appliances; windows, walls, and roofs; space heating and cooling; lighting; and whole building design strategies.

436

Delta | OpenEI  

Open Energy Info (EERE)

Delta Delta Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 109, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Delta EIA Renewable Energy Generation SERC Reliability Corporation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation / Delta- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment

437

West | OpenEI  

Open Energy Info (EERE)

West West Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 108, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Reliability First Corporation Renewable Energy Generation West Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Reliability First Corporation / West- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed Comment

438

undefined | OpenEI  

Open Energy Info (EERE)

undefined undefined Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 112, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords undefined Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation / Central- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

439

Word Pro - S1.lwp  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Primary Energy Consumption (Quadrillion Btu) By Source, a 1949-2012 By Source, a Monthly Total, January-August By Source, a August 2013 a Small quantities of net imports of coal coke and electricity are not shown. Web Page: http://www.eia.gov/totalenergy/data/monthly/#summary. Source: Table 1.3. 6 U.S. Energy Information Administration / Monthly Energy Review November 2013 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 15 30 45 Petroleum Natural Gas Coal Nuclear Electric Power Renewable Energy J F M A M J J A S O N D J F M A M J J A S O N D J F M A M

440

Appendix A  

U.S. Energy Information Administration (EIA) Indexed Site

A4. Residential sector key indicators and consumption A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2012-2040 (percent) 2011 2012 2020 2025 2030 2035 2040 Key indicators Households (millions) Single-family ....................................................... 78.99 79.28 85.71 89.73 93.56 96.99 100.37 0.8% Multifamily ........................................................... 28.13 28.24 30.55 32.18 33.98 35.82 37.61 1.0% Mobile homes ..................................................... 6.58 6.41 5.70 5.46 5.29 5.14 5.03 -0.9% Total ................................................................. 113.70 113.93 121.96 127.38

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Southeastern | OpenEI  

Open Energy Info (EERE)

Southeastern Southeastern Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 111, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation SERC Reliability Corporation Southeastern Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation / Southeastern- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed

442

Westchester | OpenEI  

Open Energy Info (EERE)

Westchester Westchester Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 103, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Fuel Westchester Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / NYC-Westchester- Reference Case (xls, 118.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

443

AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation  

Open Energy Info (EERE)

Virginia-Carolina Virginia-Carolina Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 113, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Carolina EIA Renewable Energy Generation SERC Reliability Corporation Virginia Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation / Virginia-Carolina- Reference Case (xls, 118.9 KiB) Quality Metrics

444

Solar Thermal/PV | OpenEI  

Open Energy Info (EERE)

Thermal/PV Thermal/PV Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

445

AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation  

Open Energy Info (EERE)

Southeastern Southeastern Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 111, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation SERC Reliability Corporation Southeastern Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation / Southeastern- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed

446

AEO2011: Renewable Energy Generation by Fuel - Reliability First  

Open Energy Info (EERE)

East East Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 106, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released July 25th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO East EIA Renewable Energy Generation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Reliability First Corporation / East- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

447

International Energy Outlook 2006 - Highlights  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2006 Highlights World energy consumption is projected to increase by 71 percent from 2003 to 2030. Fossil fuels continue to supply much of the energy used worldwide, and oil remains the dominant energy source. Figure 1. World Marketed Energy Consumption by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data In the International Energy Outlook 2006 (IEO2006) reference case, world marketed energy consumption increases on average by 2.0 percent per year from 2003 to 2030. Although world oil prices in the reference case, which remain between $47 and $59 per barrel (in real 2004 dollars), dampen the growth in demand for oil, total world energy use continues to increase as a

448

Slide 1  

Gasoline and Diesel Fuel Update (EIA)

Workshop on Biofuels Projections in the Annual Energy Outlook Workshop on Biofuels Projections in the Annual Energy Outlook March 20, 2013 | Washington, DC By Howard Gruenspecht, Deputy Administrator Biofuels in the United States: Context and Outlook Topics addressed * Current role of biofuels * Biofuels outlook 2 Howard Gruenspecht, Biofuels in the United States: Context and Outlook March 20, 2013 Liquid biofuels currently provide about 1 percent of total U.S. energy 3 0 20 40 60 80 100 120 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 U.S. primary energy consumption quadrillion Btu Source: EIA, Annual Energy Outlook 2013 Early Release History 2011 36% 20% 26% 8% 8% 1% Shares of total U.S. energy Nuclear Oil and other liquids Liquid biofuels Natural gas

449

AEO2011: Energy Consumption by Sector and Source - New England | OpenEI  

Open Energy Info (EERE)

New England New England Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption New England Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - New England- Reference Case (xls, 297.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

450

AEO2011: Energy Consumption by Sector and Source - West South Central |  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 7, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption West South Central Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - West South Central- Reference Case (xls, 297.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

451

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

7 7 U.S. Energy Information Administration | Annual Energy Outlook 2013 Reference case Energy Information Administration / Annual Energy Outlook 2013 Table A17. Renewable energy consumption by sector and source (quadrillion Btu per year) Sector and source Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Marketed renewable energy 1 Residential (wood) ............................................... 0.44 0.45 0.44 0.44 0.45 0.45 0.45 0.1% Commercial (biomass) ........................................ 0.11 0.13 0.13 0.13 0.13 0.13 0.13 0.0% Industrial 2 ............................................................. 2.32 2.18 2.53 2.67 2.82 3.08 3.65 1.8% Conventional hydroelectric ................................. 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0%

452

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration / Annual Energy Outlook 2013 Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Sector and source Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Energy consumption Residential Propane .............................................................. 0.53 0.53 0.52 0.52 0.52 0.52 0.52 -0.0% Kerosene ............................................................ 0.03 0.02 0.01 0.01 0.01 0.01 0.01 -1.8% Distillate fuel oil ................................................... 0.58 0.59 0.51 0.45 0.40 0.36 0.32 -2.1% Liquid fuels and other petroleum subtotal ......... 1.14 1.14 1.05 0.98 0.93 0.89 0.86 -1.0%

453

EIA - International Energy Outlook 2009-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2009 Chapter 7 - Transportation Sector Energy Consumption In the IEO2009 reference case, transportation energy use in the non-OECD countries increases by an average of 2.7 percent per year from 2006 to 2030, as compared with an average of 0.3 percent per year for the OECD countries. Figure 69. OECD and Non-OECD Transportation Sector Liquids Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure data Over the next 25 years, world demand for liquids fuels is projected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2009 reference case, the transportation share of

454

Energy Overview  

Gasoline and Diesel Fuel Update (EIA)

Overview Overview for CNA Panel Discussion May 8, 2013 | Crystal City, VA by Howard Gruenspecht, Deputy Administrator Non-OECD nations drive the increase in energy demand 2 world energy consumption quadrillion Btu Source: EIA, International Energy Outlook 2011 0 100 200 300 400 500 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 Non-OECD OECD 244 260 482 288 History Projections 2008 Howard Gruenspecht , CNA Panel May 8, 2013 Growth in income and population drive rising energy use; energy intensity improvements moderate increases in energy demand 3 average annual change (2008-2035) percent per year Source: EIA, International Energy Outlook 2011 -4 -3 -2 -1 0 1 2 3 4 5 6 7 U.S. OECD Europe Japan South Korea China India Brazil Middle East Africa Russia

455

Word Pro - Untitled1  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity THIS PAGE INTENTIONALLY LEFT BLANK Figure 8.0 Electricity Flow, 2011 (Quadrillion Btu) U.S. Energy Information Administration / Annual Energy Review 2011 219 1 Blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived fuels). 3 Data collection frame differences and nonsampling error. Derived for the diagram by subtracting the "T & D Losses" estimate from "T & D Losses and Unaccounted for" derived from Table 8.1. 4 Electric energy used in the operation of power plants. 5 Transmission and distribution losses (electricity losses that occur between the point of

456

Commercial Building Research and Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Research and Research and Development Commercial Building Research and Development Photo of NREL researcher Jeff Tomberlin working on a data acquisition panel at the Building Efficiency Data Acquisition and Control Laboratory at NREL's Thermal Test Facility. The Building Technologies Office (BTO) invests in technology research and development activities that can dramatically reduce energy consumption and energy waste in buildings. Buildings in the United States use nearly 40 quadrillion British thermal units (Btu) of energy for space heating and cooling, lighting, and appliances, an amount equivalent to the annual amount of electricity delivered by more than 3,800 500-megawatt coal-fired power plants. The BTO technology portfolio aims to help reduce building energy requirements by 50% through the use of improved appliances; windows,

457

Presentation title: This can be up to 2 lines  

U.S. Energy Information Administration (EIA) Indexed Site

energy use is projected to grow rapidly over the next 25 years in the energy use is projected to grow rapidly over the next 25 years in the Reference case projection from EIA's latest International Energy Outlook 1 Howard Gruenspecht, Meeting China's Energy Demand, EIA Annual Conference Washington DC, April 27, 2011 energy consumption in China quadrillion Btu Source: EIA, International Energy Outlook 2010 0 20 40 60 80 100 120 140 160 180 200 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 1% 6% 70% 3% 20% Coal Nuclear Renewables Natural gas Petroleum and other liquids Projections History 2007 10% 3% 62% 6% 19% EIA projections over the past decade have tended to underestimate the

458

Renewable Energy Consumption for Nonelectric Use by Energy Use Sector and  

Open Energy Info (EERE)

Nonelectric Use by Energy Use Sector and Nonelectric Use by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description This dataset provides annual renewable energy consumption (in quadrillion Btu) for nonelectric use in the United States by energy use sector and energy source between 2004 and 2008. The data was compiled and published by EIA; the spreadsheet provides more details about specific sources for data used in the analysis. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Nonelectric Renewable Energy Consumption Residential transportation Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Non-Elec.Gen_EIA.Aug_.2010.xls (xls, 27.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

459

AEO2011: Energy Consumption by Sector and Source - Middle Atlantic | OpenEI  

Open Energy Info (EERE)

Middle Atlantic Middle Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 2, and contains only the reference case. The dataset uses quadrillion btu. The energy consumption data is broken down by sector (residential, commercial, industrial, transportation, electric power) as well as source, and also provides total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA middle atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Middle Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment

460

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Berkeley Lab/3M Team Demonstrate Potential to Significantly Reduce Building Berkeley Lab/3M Team Demonstrate Potential to Significantly Reduce Building Lighting Energy Use Berkeley Lab/3M Team Demonstrate Potential to Significantly Reduce Building Lighting Energy Use Daylighting is the strategy of admitting light from the sun and sky to reduce the use of electric lighting in buildings. Since lighting energy use represents 13 percent of the total primary energy used by buildings in the United States (5.42 quadrillion Btu in 2010), these technologies can play a significant role towards meeting U.S. and state energy-efficiency and greenhouse gas emission-reduction goals. Conventional windows cannot provide useful daylight beyond about one to one-and-a-half times the head height of a window because interior shades, when lowered to control direct

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fuel | OpenEI  

Open Energy Info (EERE)

Fuel Fuel Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 103, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Fuel Westchester Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / NYC-Westchester- Reference Case (xls, 118.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

462

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Southwest Southwest Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 116, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Southwest Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Southwest (xls, 119.1 KiB) Quality Metrics Level of Review Peer Reviewed

463

Reliability First Corporation | OpenEI  

Open Energy Info (EERE)

Reliability First Corporation Reliability First Corporation Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 110, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Gateway Reliability First Corporation SERC Reliability Corporation Data application/vnd.ms-excel icon AEO2011:Renewable Energy Generation by Fuel - SERC Reliability Corporation / Gateway- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed

464

Energy and Economic Impacts From Recent Energy Conservation Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy and Economic Impacts From Recent Energy Conservation Standards Energy and Economic Impacts From Recent Energy Conservation Standards Speaker(s): Gregory Rosenquist Date: August 10, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Louis-Benoit Desroches In the last several years, there has been a significant growth in the activities of the Department of Energy's Appliance and Commercial Equipment Standards program. EETD's Energy Efficiency Standards group has been heavily involved in the analyses supporting recently published federal energy conservation standards, for a diverse set of appliances and commercial equipment. In this talk, I will review the EES group's efforts supporting these energy conservation standards. Collectively, they are estimated to save the nation between 14.15 to 15.17 quads (quadrillion Btu)

465

Hydroelectric Conventional | OpenEI  

Open Energy Info (EERE)

Hydroelectric Conventional Hydroelectric Conventional Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

466

AEO2011: Renewable Energy Generation by Fuel - United States | OpenEI  

Open Energy Info (EERE)

United States United States Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 120, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation United States Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - United States- Reference Case (xls, 119.5 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

467

MSW Biogenic | OpenEI  

Open Energy Info (EERE)

MSW Biogenic MSW Biogenic Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

468

Other Biomass | OpenEI  

Open Energy Info (EERE)

Other Biomass Other Biomass Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

469

SERC Reliability Corporation | OpenEI  

Open Energy Info (EERE)

SERC Reliability Corporation SERC Reliability Corporation Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 113, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Carolina EIA Renewable Energy Generation SERC Reliability Corporation Virginia Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation / Virginia-Carolina- Reference Case (xls, 118.9 KiB) Quality Metrics

470

North | OpenEI  

Open Energy Info (EERE)

North North Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 114, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA North Renewable Energy Generation Southwest Power Pool Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Southwest Power Pool / North- Reference Case (xls, 118.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

471

Energy Generation | OpenEI  

Open Energy Info (EERE)

Generation Generation Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 103, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Fuel Westchester Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / NYC-Westchester- Reference Case (xls, 118.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

472

AEO2011: Energy Consumption by Sector and Source - East South Central |  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 6, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Commercial East South Central EIA Electric Power Energy Consumption Industrial Residential transportation Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - East South Central- Reference Case (xls, 297.5 KiB) Quality Metrics Level of Review Peer Reviewed

473

Western Electricity Coordinating | OpenEI  

Open Energy Info (EERE)

Western Electricity Coordinating Western Electricity Coordinating Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 117, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO California EIA Renewable Energy Generation Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / California (xls, 119.2 KiB) Quality Metrics Level of Review Peer Reviewed

474

Slide 1  

Gasoline and Diesel Fuel Update (EIA)

Workshop Workshop Institute of Medicine, National Academy of Sciences January 24, 2013 | Washington, DC By Howard Gruenspecht, Deputy Administrator Biofuels in the United States: Context and Outlook Topics addressed * Current role of biofuels * Biofuels outlook - EIA's Annual Energy Outlook 2013 Reference case * Biofuels and fuel market segmentation * Biofuels in the context of multiple policy issues 2 Howard Gruenspecht January 24, 2013 Liquid biofuels currently provide about 1 percent of total U.S. energy 3 0 20 40 60 80 100 120 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 U.S. primary energy consumption quadrillion Btu Source: EIA, Annual Energy Outlook 2013 Early Release History 2011 36% 20% 26% 8% 8%

475

Appendix A  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration / Annual Energy Outlook 2014 Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Sector and source Reference case Annual growth 2012-2040 (percent) 2011 2012 2020 2025 2030 2035 2040 Energy consumption Residential Propane .............................................................. 0.51 0.51 0.42 0.40 0.38 0.36 0.35 -1.3% Kerosene ............................................................ 0.02 0.01 0.00 0.00 0.00 0.00 0.00 -2.5% Distillate fuel oil ................................................... 0.53 0.51 0.46 0.41 0.37 0.34 0.31 -1.7% Liquid fuels and other petroleum subtotal ......... 1.05 1.02 0.89 0.82 0.75 0.70 0.66 -1.5%

476

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Share of energy used by appliances and consumer electronics increases in Share of energy used by appliances and consumer electronics increases in U.S. homes RECS 2009 - Release date: March 28, 2011 Over the past three decades, the share of residential electricity used by appliances and electronics in U.S. homes has nearly doubled from 17 percent to 31 percent, growing from 1.77 quadrillion Btu (quads) to 3.25 quads. This rise has occurred while Federal energy efficiency standards were enacted on every major appliance, overall household energy consumption actually decreased from 10.58 quads to 10.55 quads, and energy use per household fell 31 percent. Federal energy efficiency standards have greatly reduced consumption for home heating Total energy use in all U.S. homes occupied as primary residences decreased slightly from 10.58 quads in 1978 to 10.55 quads in 2005 as reported by the

477

AEO2011: Renewable Energy Generation by Fuel - Reliability First  

Open Energy Info (EERE)

Michigan Michigan Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 107, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Michigan Reliability First Corporation Renewable Energy Generation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Reliability First Corporation / Michigan- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed

478

AEO2011: Renewable Energy Consumption by Sector and Source | OpenEI  

Open Energy Info (EERE)

Consumption by Sector and Source Consumption by Sector and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 17, and contains only the reference case. The dataset uses quadrillion Btu. The data is broken down into marketed renewable energy, residential, commercial, industrial, transportation and electric power. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Renewable Energy Consumption Residential sector source transportation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Consumption by Sector and Source- Reference Case (xls, 105 KiB) Quality Metrics Level of Review Peer Reviewed

479

sector | OpenEI  

Open Energy Info (EERE)

sector sector Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 5, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption sector South Atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - South Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

480

mountain region | OpenEI  

Open Energy Info (EERE)

mountain region mountain region Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption mountain region Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Mountain- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

Note: This page contains sample records for the topic "quadrillion btu production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

AEO2011: Renewable Energy Generation by Fuel - Midwest Reliability Council  

Open Energy Info (EERE)

East East Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 100, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Fuel midwest Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Midwest Reliability Council / East- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

482

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources (Redirected from USA) Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA

483

Upstate New York | OpenEI  

Open Energy Info (EERE)

Upstate New York Upstate New York Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 105, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Upstate New York Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / Upstate New York- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed

484

Expanding the Use of Biogas with Fuel Cell Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

eere.energy.gov eere.energy.gov Biogas with Fuel Cells Workshop National Renewable Energy Laboratory Golden, Colorado Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 6/11/2012 Expanding the Use of Biogas with Fuel Cell Technologies U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector Renewable Electric Power Energy 8% Coal 21% Nuclear Energy 9% Industrial Residential & Commercial Petroleum 37% Natural Gas 25% Transportation Total U.S. Energy = 98 Quadrillion Btu/yr Source: Energy Information Administration, Annual Energy Review 2010, Table 1.3 Fuel Cells can apply to diverse sectors Share of Energy Consumed by Major Sectors of the Economy, 2010 Electric Power 29% Residential 16% Commercial 13%

485

Hydrogen & Fuel Cells - Program Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Program Overview - - Program Overview - Sunita Satyapal Program Manager 2012 Annual Merit Review and Peer Evaluation Meeting May 14, 2012 Petroleum 37% Natural Gas 25% Coal 21% Nuclear Energy 9% Renewable Energy 8% Transportation Residential & Commercial Industrial Electric Power 2 U.S. Energy Consumption Total U.S. Energy = 98 Quadrillion Btu/yr Source: Energy Information Administration, Annual Energy Review 2010, Table 1.3 U.S. Primary Energy Consumption by Source and Sector Residential 16% Commercial 13% Industrial 22% Transportation 20% Electric Power 29% Share of Energy Consumed by Major Sectors of the Economy, 2010 Fuel Cells can apply to diverse sectors 3 Fuel Cells - An Emerging Global Industry Clean Energy Patent Growth Index [1] shows that fuel cell patents lead in the clean

486

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Northwest Power Pool Area Northwest Power Pool Area Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 118, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. This dataset contains data for the northwest power pool area of the U.S. Western Electricity Coordinating Council (WECC). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Northwest Power Pool Area Renewable Energy Generation WECC Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Northwest Power Pool Area - Reference (xls, 119.3 KiB)

487

Buildings Energy Data Book: 1.4 Environmental Data  

Buildings Energy Data Book [EERE]

1 1 EPA Criteria Pollutant Emissions Coefficients (Million Short Tons/Delivered Quadrillion Btu, unless otherwise noted) All Buildings | SO2 0.402 0.042 | 0.130 NOx 0.164 0.063 | 0.053 CO 0.057 0.283 | 0.018 Note(s): Source(s): Electricity Electricity (1) Site Fossil Fuel (2) (per primary quad) (1) 1) Emissions of SO2 are 28% lower for 2002 than 1994 estimates since Phase II of the 1990 Clean Air Act Amendments began in 2000. Buildings energy consumption related SO2 emissions dropped 65% from 1994 to 2011. 2) Includes natural gas, petroleum liquid fuels, coal, and wood. EPA, 1970-2010 National Emissions Inventory, Average Annual Emissions, All Criteria Pollutants, October 2012; and EIA, Annual Energy Outlook 2011 Early Release, Jan. 2012, Summary Reference Case Tables, Table A2, p. 3-5 for energy consumption

488

AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation  

Open Energy Info (EERE)

Central Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 112, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords undefined Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation / Central- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

489

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA Natural Gas Reserves 6,928,000,000,000 Cubic Meters (cu m) 6 2010 CIA World Factbook

490

OpenEI - MSW Biogenic  

Open Energy Info (EERE)

Renewable Energy Renewable Energy Consumption by Energy Use Sector and Energy Source, 2004 - 2008 http://en.openei.org/datasets/node/51 Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls License

491

New England | OpenEI  

Open Energy Info (EERE)

England England Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption New England Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - New England- Reference Case (xls, 297.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

492

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

A4. Residential sector key indicators and consumption A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Key indicators Households (millions) Single-family ....................................................... 82.85 83.56 91.25 95.37 99.34 103.03 106.77 0.8% Multifamily ........................................................... 25.78 26.07 29.82 32.05 34.54 37.05 39.53 1.4% Mobile homes ..................................................... 6.60 6.54 6.45 6.60 6.75 6.88 7.02 0.2% Total ................................................................. 115.23 116.17 127.52 134.02 140.63 146.96 153.32

493

AEO2011: Energy Consumption by Sector and Source - South Atlantic | OpenEI  

Open Energy Info (EERE)

South Atlantic South Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 5, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption sector South Atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - South Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

494

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

Long Island Long Island Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 104, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Long Island Renewable Energy Generation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / Long Island- Reference Case (xls, 118.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment

495

Nonelectric | OpenEI  

Open Energy Info (EERE)

Nonelectric Nonelectric Dataset Summary Description This dataset provides annual renewable energy consumption (in quadrillion Btu) for nonelectric use in the United States by energy use sector and energy source between 2004 and 2008. The data was compiled and published by EIA; the spreadsheet provides more details about specific sources for data used in the analysis. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Nonelectric Renewable Energy Consumption Residential transportation Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Non-Elec.Gen_EIA.Aug_.2010.xls (xls, 27.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2004 - 2008

496

Slide 0  

U.S. Energy Information Administration (EIA) Indexed Site

This presentation was prepared by Navigant Consulting, Inc. exclusively for the benefit of the Energy This presentation was prepared by Navigant Consulting, Inc. exclusively for the benefit of the Energy Information Administration, Department of Energy. This presentation is incomplete without reference to, and should be viewed solely in conjunction with the oral briefing provided by Navigant Consulting. April 2008. 2 Table of Contents Energy Efficiency Challenges and Solutions New and Emerging Energy Efficient Technologies » Overview » Examples Market Acceptance of Technologies 3 Energy Efficiency Challenges and Solutions 4 Energy demand in the United States is projected to increase 21% by 2030, with the largest increase in the commercial sector. Forecast for Energy Demand Quadrillion Btu per Year Source: Annual Energy Outlook 2008 with Projections to 2030 (Revised Early Release), http://www.eia.doe.gov/oiaf/aeo/.

497

Residential | Open Energy Information  

Open Energy Info (EERE)

Residential Residential Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends In the AEO2011 Reference case, residential energy use per capita declines by 17.0 percent from 2009 to 2035 (Figure 58). Delivered energy use stays relatively constant while population grows by 26.7 percent during the period. Growth in the number of homes and in average square footage leads to increased demand for energy services, which is offset in part by efficiency gains in space heating, water heating, and lighting equipment. Population shifts to warmer and drier climates also reduce energy demand for space heating.[1] Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy

498

OpenEI - Other Biomass  

Open Energy Info (EERE)

by Energy Use Sector and Energy Source, 2004 - 2008 by Energy Use Sector and Energy Source, 2004 - 2008 http://en.openei.org/datasets/node/51 Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls License

499

Building Technologies Program Planning Summary  

Broader source: Energy.gov (indexed) [DOE]

Building Technologies Program Planning Summary Building Technologies Program Planning Summary Introduction The U.S. Department of Energy's (DOE) Building Technologies Program (BTP) works in partnership with industry, state, municipal, and other federal organizations to achieve the goals of marketable net-zero energy buildings. Such buildings are extremely energy efficient, ideally producing as much energy as they use over the course of a year. BTP also works with stakeholders and federal partners to meet any remaining energy needs for their buildings through on-site renewable energy systems. Drivers Population growth and economic expansion, along with an accompanying increase in energy demand, are expected to drive energy consumption in buildings to more than 50 quadrillion Btu (quads)

500

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

coal Residential coal Residential market trends icon Market Trends In the AEO2011 Reference case, residential energy use per capita declines by 17.0 percent from 2009 to 2035 (Figure 58). Delivered energy use stays relatively constant while population grows by 26.7 percent during the period. Growth in the number of homes and in average square footage leads to increased demand for energy services, which is offset in part by efficiency gains in space heating, water heating, and lighting equipment. Population shifts to warmer and drier climates also reduce energy demand for space heating. See more issues Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy consumption. The residential sector accounted for 57 percent of that energy