National Library of Energy BETA

Sample records for quadrillion btu note

  1. Table 2.4 Household Energy Consumption by Census Region, Selected Years, 1978-2009 (Quadrillion Btu, Except as Noted)

    U.S. Energy Information Administration (EIA) Indexed Site

    Household 1 Energy Consumption by Census Region, Selected Years, 1978-2009 (Quadrillion Btu, Except as Noted) Census Region 2 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 United States Total (does not include wood) 10.56 9.74 9.32 9.29 8.58 9.04 9.13 9.22 10.01 10.25 9.86 10.55 10.18 Natural Gas 5.58 5.31 4.97 5.27 4.74 4.98 4.83 4.86 5.27 5.28 4.84 4.79 4.69 Electricity 3 2.47 2.42 2.48 2.42 2.35 2.48 2.76 3.03 3.28 3.54 3.89 4.35 4.39 Distillate Fuel Oil and Kerosene 2.19

  2. Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035

    U.S. Energy Information Administration (EIA) Indexed Site

    Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011

  3. Btu)","per Building

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Number of Buildings (thousand)","Floorspace (million square feet)","Floorspace per Building (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per...

  4. First BTU | Open Energy Information

    Open Energy Info (EERE)

    that is consumed by the United States.3 References First BTU First BTU Green Energy About First BTU Retrieved from "http:en.openei.orgwindex.php?titleFirstBT...

  5. Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes Notes Accomodations at Argonne The Argonne contact person for the NUG Meeting is Mike Minkoff of the Mathematics and Computer Science Division. His phone number is (630) 252-7234. Last edited: 2011-04-01 11:41

  6. Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes Notes ERSUG Meeting Summary Notes, November 15, 1999 Here are some highlights from the discussions (excepting the items contributed by ERSUG Chair, Bas Bramms below): During the state of NERSC presentation by Jim Craw a primary topic of discussion was the issue of the processing capabilities of the PVP cluster. Since the upgrade of the batch system processors to SV1s, some concern has been expressed about the relatively poorer processing capabilities of the J90SE processors on the

  7. Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes Notes Why the June 1995 ERSUG Meeting is Important Bill McCurdy describes below a competitive process through which a decision will be made by MICS Division (formerly the OSC) in the June, 1995 timeframe to: (1) possibly move NERSC to Lawrence Berkeley National Laboratory, and (2) redefine to some extent the mission of the Center. All of this would be effected within a significantly reduced cost envelope. The LLNL proposal to keep NERSC where it is and the LBL proposal may soon be

  8. Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes Notes Live Media Streaming via RealPlayer Media streaming of these lectures will be provided via RealPlayer. Users of Windows- or Macintosh-based computers will be able to see and hear the presentation by way of the following procedures. 1. Download and open the slide files onto your computer. 2. Make certain you have the current version of RealPlayer installed. These are available at the Real Free Player Download web site 3. Start the RealPlayer application, and then enter the following

  9. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  10. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4 Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Energy Information Administration Annual Energy Outlook 2014...

  11. BTU International Inc | Open Energy Information

    Open Energy Info (EERE)

    1862 Product: US-based manufacturer of thermal processing equipment, semiconductor packaging, and surface mount assembly. References: BTU International Inc1 This article is a...

  12. Microfabricated BTU monitoring device for system-wide natural...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Microfabricated BTU monitoring device for system-wide natural gas monitoring. Citation Details In-Document Search Title: Microfabricated BTU monitoring device for ...

  13. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  14. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  15. Method for selective detection of explosives in mass spectrometer or ion mobility spectrometer at parts-per-quadrillion level

    DOE Patents [OSTI]

    Ewing, Robert G.; Atkinson, David A.; Clowers, Brian H.

    2015-09-01

    A method for selective detection of volatile and non-volatile explosives in a mass spectrometer or ion mobility spectrometer at a parts-per-quadrillion level without preconcentration is disclosed. The method comprises the steps of ionizing a carrier gas with an ionization source to form reactant ions or reactant adduct ions comprising nitrate ions (NO.sub.3.sup.-); selectively reacting the reactant ions or reactant adduct ions with at least one volatile or non-volatile explosive analyte at a carrier gas pressure of at least about 100 Ton in a reaction region disposed between the ionization source and an ion detector, the reaction region having a length which provides a residence time (tr) for reactant ions therein of at least about 0.10 seconds, wherein the selective reaction yields product ions comprising reactant ions or reactant adduct ions that are selectively bound to the at least one explosive analyte when present therein; and detecting product ions with the ion detector to determine presence or absence of the at least one explosive analyte.

  16. MU Eneg

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    is included, but an estimated 3.0 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  17. Ordering Information

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    is included, but an estimated 3.4 quadrillion Btu of renewable Note 8; and Table A8. Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  18. AA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    is included, but an estimated 3.0 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  19. DOE/EI-003595/10

    Gasoline and Diesel Fuel Update (EIA)

    is included, but an estimated 3.0 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  20. Ordering Information

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    is included, but an estimated 3.4 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  1. 1) E/ L I

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    is included, but an estimated 3.0 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  2. DOE/EIA-0035(94/01) Ener Revie

    Gasoline and Diesel Fuel Update (EIA)

    is included, but an estimated 3.4 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  3. DOE/ELIA-0035(95/105), Monthly

    Gasoline and Diesel Fuel Update (EIA)

    is included, but an estimated 3.0 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  4. II IIE

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    is included, but an estimated 3.0 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  5. II Now Available State Energy Data Report 1992

    Gasoline and Diesel Fuel Update (EIA)

    is included, but an estimated 3.4 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  6. I.

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    is included, but an estimated 3.0 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  7. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    3 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2015 Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Sector and source Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Energy consumption Residential Propane

  8. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Table A5. Commercial sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2015 Table A5. Commercial sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Key indicators

  9. Property:Geothermal/CapacityBtuHr | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalCapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  10. Property:Geothermal/AnnualGenBtuYr | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalAnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  11. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) Indexed Site

    12:23:06 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  12. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) Indexed Site

    12:23:08 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  13. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) Indexed Site

    12:23:12 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  14. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this draft environmental impact statement that evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky. DOE cancelled this project after publication of the draft.

  15. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value

  16. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and

  17. A Requirement for Significant Reduction in the Maximum BTU Input Rate of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers | Department of Energy A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers Comment that a requirement to reduce the BTU input rate of existing decorative

  18. Commercial low-Btu coal-gasification plant

    SciTech Connect (OSTI)

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The feasibility study consisted of the following tasks: perform preliminary engineering of a gasification facility; provide a definitive full gas cost estimate based upon the preliminary engineering fuel design; determine the preferred source of coal; determine the potential for the disposition of, and income from, by-products; develop a health and safety program; perform an analysis of the risks involved in constructing and operating such a facility; and prepare a Financial Analysis of General Refractories selected Dravo Engineers and Constructors based upon the qualifications of Dravo in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts and, if the present natural gas decontrol plan is not fully implemented, some budgetary risks would occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  19. Subtask 3.16 - Low-BTU Field Gas Application to Microturbines

    SciTech Connect (OSTI)

    Darren Schmidt; Benjamin Oster

    2007-06-15

    Low-energy gas at oil production sites presents an environmental challenge to the sites owners. Typically, the gas is managed in flares. Microturbines are an effective alternative to flaring and provide on-site electricity. Microturbines release 10 times fewer NOx emissions than flaring, on a methane fuel basis. The limited acceptable fuel range of microturbines has prevented their application to low-Btu gases. The challenge of this project was to modify a microturbine to operate on gases lower than 350 Btu/scf (the manufacturer's lower limit). The Energy & Environmental Research Center successfully operated a Capstone C30 microturbine firing gases between 100-300 Btu/scf. The microturbine operated at full power firing gases as low as 200 Btu/scf. A power derating was experienced firing gases below 200 Btu/scf. As fuel energy content decreased, NO{sub x} emissions decreased, CO emissions increased, and unburned hydrocarbons remained less than 0.2 ppm. The turbine was self-started on gases as low as 200 Btu/scf. These results are promising for oil production facilities managing low-Btu gases. The modified microturbine provides an emission solution while returning valuable electricity to the oilfield.

  20. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  1. OTS NOTE

    Office of Legacy Management (LM)

    c3 Alexander Williams FROM: Ed Mitchellcm SUBJECT: Babcock and Wilcox Elimination Recommendation The purpose of this note is to provide you with certain inf regarding the ...

  2. OTS NOTE

    Office of Legacy Management (LM)

    941 OTS NOTE DATE: July 2, 1990 TO: W. Alexander Williams FROM : Don Mackenzie d%? SUBJECT: Elimination of 3 Facilities from NSRAP . + 9 Enclosed are elimination recommendations...

  3. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    SciTech Connect (OSTI)

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  4. Blue Note

    SciTech Connect (OSTI)

    Murray Gibson

    2007-04-27

    Argonne's Murray Gibson is a physicist whose life's work includes finding patterns among atoms. The love of distinguishing patterns also drives Gibson as a musician and Blues enthusiast."Blue" notes are very harmonic notes that are missing from the equal temperament scale.The techniques of piano blues and jazz represent the melding of African and Western music into something totally new and exciting.

  5. Blue Note

    ScienceCinema (OSTI)

    Murray Gibson

    2010-01-08

    Argonne's Murray Gibson is a physicist whose life's work includes finding patterns among atoms. The love of distinguishing patterns also drives Gibson as a musician and Blues enthusiast."Blue" notes are very harmonic notes that are missing from the equal temperament scale.The techniques of piano blues and jazz represent the melding of African and Western music into something totally new and exciting.

  6. Annual Energy Review 2000

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes 0.07 quadrillion Btu coal coke net imports and 0.10 electricity net imports from fossil fuels. Includes, in quadrillion Btu, 0.10 electricity net imports from fossil...

  7. Energy Information Administration/Annual Energy Review

    Gasoline and Diesel Fuel Update (EIA)

    in quadrillion Btu, 0.04 coal coke net imports and 0.05 electricity net imports from fossil fuels. Includes, in quadrillion Btu, -0.09 hydroelectric pumped storage and -0.15...

  8. Low-Btu coal gasification in the United States: company topical. [Brick producers

    SciTech Connect (OSTI)

    Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

    1983-07-01

    Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

  9. U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,032 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  10. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 6.3;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" "

  11. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 6.4;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" "

  12. Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu )

    U.S. Energy Information Administration (EIA) Indexed Site

    Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu ) NAICS 1 Code Manufacturing Group Coal Coal Coke and Breeze 2 Natural Gas Distillate Fuel Oil LPG 3 and NGL 4 Residual Fuel Oil Net Electricity 5 Other 6 Shipments of Energy Sources 7 Total 8 311 Food 147 1 638 16 3 26 251 105 (s) 1,186 312 Beverage and Tobacco Products 20 0 41 1 1 3 30 11 -0 107 313 Textile Mills 32 0 65 (s) (s) 2 66 12 -0 178 314 Textile Product Mills 3 0 46 (s) 1 Q 20 (s) -0 72 315 Apparel 0 0 7 (s) (s)

  13. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  14. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  15. Table 3.1 Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu) Year Coal 1 Natural Gas 2 Crude Oil 3 Fossil Fuel Composite 4 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Percent Change 7 1949 0.21 1.45 0.05 0.37 0.44 3.02 0.26 1.81 – – 1950 .21 1.41 .06 .43 .43 2.95 [R] .26 1.74 -3.6 1951 .21 1.35 .06 .40 .44 2.78 .26 1.65 -5.4 1952 .21 1.31 [R] .07 .45 .44 2.73 .26 1.63 -1.0 1953 .21 1.29 .08 .50 .46 2.86 .27 1.69 3.3 1954 .19 1.18 .09 .55 .48 2.94 .28 1.70 .7 1955

  16. Combined compressed air storage-low BTU coal gasification power plant

    DOE Patents [OSTI]

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  17. Monthly energy review, December 1985. 1985 Annual data and summaries

    SciTech Connect (OSTI)

    Not Available

    1986-03-26

    US energy production during 1985 was 64.7 quadrillion British thermal units (Btu), 1.4% below the record level attained in 1984. US consumption of energy totaled 73.8 quadrillion Btu, about the same as in 1984 but well below the 78.9 quadrillion Btu consumed during the peak year of 1979. Net imports of energy fell from 9.0 quadrillion Btu in 1984 to 7.8 quadrillion Btu in 1985, a 12.8% decline that brought net imports to the second lowest level since the 1973-1974 oil embargo. Net imports remained significantly below the all-time high of 18.0 quadrillion Btu reached in 1977.

  18. Presentation Title

    U.S. Energy Information Administration (EIA) Indexed Site

    Center for Strategic and International Studies May 11, 2016 | Washington, DC By Adam Sieminski, Administrator Key findings in the IEO2016 Reference case * World energy consumption increases from 549 quadrillion Btu in 2012 to 629 quadrillion Btu in 2020 and then to 815 quadrillion Btu in 2040, a 48% increase (1.4%/year). Non-OECD Asia (including China and India) account for more than half of the increase. * The industrial sector continues to account for the largest share of delivered energy

  19. Presentation Title

    U.S. Energy Information Administration (EIA) Indexed Site

    Schlumberger June 23, 2016 | Cambridge, MA By Adam Sieminski, Administrator Key findings in the IEO2016 Reference case * World energy consumption increases from 549 quadrillion Btu in 2012 to 629 quadrillion Btu in 2020 and then to 815 quadrillion Btu in 2040, a 48% increase (1.4%/year). Non-OECD Asia (including China and India) account for more than half of the increase. * The industrial sector continues to account for the largest share of delivered energy consumption; the world industrial

  20. IEO2016 World Chapter

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration | International Energy Outlook 2016 Chapter 1 World energy demand and economic outlook Overview The International Energy Outlook 2016 (IEO2016) Reference case projects significant growth in worldwide energy demand over the 28-year period from 2012 to 2040. Total world consumption of marketed energy expands from 549 quadrillion British thermal units (Btu) in 2012 to 629 quadrillion Btu in 2020 and to 815 quadrillion Btu in 2040-a 48% increase from 2012 to

  1. IESP Exascale Challenge: Co-Design of Architectures and Algorithms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Energy Information Administration | International Energy Outlook 2016 Chapter 1 World energy demand and economic outlook Overview The International Energy Outlook 2016 (IEO2016) Reference case projects significant growth in worldwide energy demand over the 28-year period from 2012 to 2040. Total world consumption of marketed energy expands from 549 quadrillion British thermal units (Btu) in 2012 to 629 quadrillion Btu in 2020 and to 815 quadrillion Btu in 2040-a 48% increase from 2012 to

  2. Armenia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    ,"inlineLabel":"","visitedicon":"" Country Profile Name Armenia Population Unavailable GDP Unavailable Energy Consumption 0.22 Quadrillion Btu 2-letter ISO code AM 3-letter ISO...

  3. Tips: Heating and Cooling | Department of Energy

    Energy Savers [EERE]

    Year and Fuel Type (Quadrillion Btu and Percent of Total). ... and cooling Natural gas and oil heating Programmable ... Rebates & Tax Credits Federal tax credits are available for ...

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    in the United States, Selected Years, 1635-1945 (Quadrillion Btu) Year Fossil Fuels Renewable Energy Electricity Net Imports Total Coal Natural Gas Petroleum Total...

  5. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reference case Energy Information Administration Annual Energy Outlook 2014 Table A17. Renewable energy consumption by sector and source (quadrillion Btu) Sector and source...

  6. Word Pro - A

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption in the United States, Selected Years, 1635-1945 (Quadrillion Btu) Fossil Fuels Renewable Energy Electricity ... Coverage of Statistics for 1635-1945," at end of section. ...

  7. css_2014_energy_revised_20150326

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    supplemental gaseous fuels. 3 Includes less than -0.1 quadrillion Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solarphotovoltaic, wind, and ...

  8. Annual Energy Outlook 2015 - Appendix B

    Gasoline and Diesel Fuel Update (EIA)

    C-1 U.S. Energy Information Administration | Annual Energy Outlook 2015 Table C1. Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise ...

  9. Annual Energy Outlook 2015 - Appendix B

    Gasoline and Diesel Fuel Update (EIA)

    B-1 U.S. Energy Information Administration | Annual Energy Outlook 2015 Table B1. Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise ...

  10. Annual Energy Outlook 2015 - Appendix D

    Gasoline and Diesel Fuel Update (EIA)

    D-1 U.S. Energy Information Administration | Annual Energy Outlook 2015 Table D1. Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise ...

  11. Annual Energy Review 2009 - Released August 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    less than 0.1 quadrillion Btu of coal coke net exports. 4 Conventional hydroelectric power, geothermal, solarPV, wind, and biomass. 5 Includes industrial...

  12. U.S. primary energy consumption by source and sector, 2015

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    quadrillion British thermal units (Btu) 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental ...

  13. Slovenia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Slovenia Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code SI 3-letter ISO code SVN Numeric ISO code...

  14. Peru: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Peru Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code PE 3-letter ISO code PER Numeric ISO code...

  15. Guadeloupe: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Guadeloupe Population Unavailable GDP Unavailable Energy Consumption 0.03 Quadrillion Btu 2-letter ISO code GP 3-letter ISO code GLP Numeric ISO...

  16. Marshall Islands: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Marshall Islands Population 56,429 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code MH 3-letter ISO code MHL Numeric ISO code...

  17. Australia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Australia Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code AU 3-letter ISO code AUS Numeric ISO code...

  18. San Marino: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name San Marino Population 32,576 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code SM 3-letter ISO code SMR Numeric ISO code...

  19. Anguilla: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Anguilla Population 13,452 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code AI 3-letter ISO code AIA Numeric ISO code...

  20. Gambia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Gambia Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code GM 3-letter ISO code GMB Numeric ISO code...

  1. Antigua and Barbuda: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Antigua and Barbuda Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code AG 3-letter ISO code ATG Numeric ISO code...

  2. Thailand: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Thailand Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code TH 3-letter ISO code THA Numeric ISO code...

  3. Sierra Leone: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Sierra Leone Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code SL 3-letter ISO code SLE Numeric ISO code...

  4. Djibouti: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Djibouti Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code DJ 3-letter ISO code DJI Numeric ISO code...

  5. Saint Barthlemy: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Saint Barthlemy Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code BL 3-letter ISO code BLM Numeric ISO code...

  6. Taiwan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Taiwan Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code TW 3-letter ISO code TWN Numeric ISO code...

  7. Georgia (country): Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Georgia Population Unavailable GDP Unavailable Energy Consumption 0.17 Quadrillion Btu 2-letter ISO code GE 3-letter ISO code GEO Numeric ISO...

  8. France: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name France Population Unavailable GDP Unavailable Energy Consumption 11.29 Quadrillion Btu 2-letter ISO code FR 3-letter ISO code FRA Numeric ISO...

  9. Croatia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Croatia Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code HR 3-letter ISO code HRV Numeric ISO code...

  10. Palau: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Palau Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code PW 3-letter ISO code PLW Numeric ISO code...

  11. Uganda: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Uganda Population Unavailable GDP Unavailable Energy Consumption 0.04 Quadrillion Btu 2-letter ISO code UG 3-letter ISO code UGA Numeric ISO...

  12. Tuvalu: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Tuvalu Population 10,837 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code TV 3-letter ISO code TUV Numeric ISO code...

  13. Ireland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Ireland Population Unavailable GDP Unavailable Energy Consumption 0.69 Quadrillion Btu 2-letter ISO code IE 3-letter ISO code IRL Numeric ISO...

  14. Cayman Islands: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Cayman Islands Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code KY 3-letter ISO code CYM Numeric ISO code...

  15. Myanmar: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Myanmar Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code MM 3-letter ISO code MMR Numeric ISO code...

  16. Annual Energy Review, 1996

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    condensate. b Natural gas plant liquids. c Biofuels, conventional hydroelectric power, geothermal energy, solar energy, and wind energy. d Includes -0.03 quadrillion Btu for...

  17. Annual Energy Review 1997

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    condensate. b Natural gas plant liquids. c Biofuels, conventional hydroelectric power, geothermal energy, solar energy, and wind energy. d Includes -0.04 quadrillion Btu...

  18. "Table 18. Total Delivered Commercial Energy Consumption, Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,20...

  19. Table 17. Total Delivered Residential Energy Consumption, Projected...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 ...

  20. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Table A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless ...

  1. "Table 17. Total Delivered Residential Energy Consumption, Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Residential Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2...

  2. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    StateChallenges Heavy industrial water utilization footprint Freshwater ... 5.2 quadrillion BTU* (2010) consumed for water services in U.S. industrial sector ...

  3. Word Pro - S1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Energy Overview (Quadrillion Btu) Overview, 1949-2015 Overview, Monthly Overview, April 2016 Net Imports, January-April Web Page: http:www.eia.govtotalenergydata...

  4. Meeting Summary Notes

    Office of Environmental Management (EM)

    records check list: Information that should be requested by SOMD of receiving facility Medical records: Problem list: list of all past and current medical diagnosis and surgical procedures. Medication list Physical exam notes Lab and diagnostic testing results Pertinent HRP notes. (temporary removals, medical and psychological issues) Psychiatric records: A summary or actual note of the psychiatric or psychological evaluation

    Medical Records Checklist - September 14, 2010 Medical Records

  5. Notes for Visualization Requirememnts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes for Vis Requirements Notes for Visualization Requirememnts Notes from June 5, 2002, Visualization Requirements for DOE-Sponsored Computational Science and Engineering Applications A DOE Workshop to Be Held 
at Lawrence Berkeley National Laboratory,
Berkeley, California, June 5, 2002 Workshop Co-organizers: Bernd Hamann 
University of California-Davis Lawrence Berkeley National Lab. E. Wes Bethel 
Lawrence Berkeley National Lab. Horst D. Simon
Lawrence Berkeley National Lab.

  6. Calculation note review

    SciTech Connect (OSTI)

    Ramble, A.L.

    1996-09-30

    This document contains a review of the calculation notes which were prepared for the Tank Waste Remediation System Basis for Interim Operation.

  7. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W.

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  8. Notes and Action Items

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes and Action Items Notes and Action Items Report on the NUGEX business meeting of June 6, 2000, in Oak Ridge Minute notes by Bas Braams First of all, many thanks to the organizers of the preceding NUG meeting: Roberta Boucher, David Dean, Brian Hingerty, Bill Kramer, Donald Spong and Malcolm Stocks. Likewise thanks to Brian Hingerty and Mike Minkoff for organizing the Users Helping Users events, and to Tom DeBoni, Osni Marques, Jeffrey Squyres and David Turner for the NERSC training classes.

  9. Notes for Greenbook Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes Notes for Greenbook Process W. Kramer's Flip Charts - Input from the attendees on the Greenbook NUG Meeting February 22-23, 2001 The following are notes transcribed from the flip charts Bill filled in with attendee comments. Topic: The Last Greenbook CONS * 1 Person wrote it * Difficult to extract requirements * Needed to be "more even" tech edited * Latex is not immediately compatible with web-based text * Too complex for non-involved * Target audience not clear PROS * Person

  10. Meeting Notes and Presentations

    Office of Environmental Management (EM)

    Corporate Board Notes and Slides Notes from EM Corporate QA Board Tele-Conference - February 22, 2010 1 of 2 General: Attendance of voting board members was documented. All members were present or had a representative present on the call. Previous 5 Focus Areas: Dave Tuttel presented the proposed closeout of the previous 5 focus areas for the EM Corporate Board. * Focus Area 1 (Requirements Flow Down) - Board voted to close the focus area (unanimous) * Focus Area 2 (Adequate NQA-1 Suppliers) -

  11. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Supplemental Supplies Definitions Key Terms Definition Biomass Gas A medium Btu gas containing methane and carbon dioxide, resulting from the action of microorganisms on organic materials such as a landfill. Blast-furnace Gas The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within steel works. British Thermal Unit (Btu) The quantity of heat required to raise the temperature of 1 pound of liquid water

  12. Table 2.9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu) Energy Source and Year Square Footage Category Principal Building Activity Census Region 1 All Buildings 1,001 to 10,000 10,001 to 100,000 Over 100,000 Education Food Sales Food Service Health Care Lodging Mercantile and Service Office All Other Northeast Midwest South West Major Sources 2 1979 1,255 2,202 1,508 511 [3] 336 469 278 894 861 1,616 1,217 1,826 1,395 526 4,965 1983 1,242 1,935 1,646 480 [3]

  13. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  14. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand

  15. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand

  16. Buildings Energy Data Book: 1.4 Environmental Data

    Buildings Energy Data Book [EERE]

    1 EPA Criteria Pollutant Emissions Coefficients (Million Short Tons/Delivered Quadrillion Btu, unless otherwise noted) All Buildings | SO2 0.402 0.042 | 0.130 NOx 0.164 0.063 | 0.053 CO 0.057 0.283 | 0.018 Note(s): Source(s): Electricity Electricity (1) Site Fossil Fuel (2) (per primary quad) (1) 1) Emissions of SO2 are 28% lower for 2002 than 1994 estimates since Phase II of the 1990 Clean Air Act Amendments began in 2000. Buildings energy consumption related SO2 emissions dropped 65% from 1994

  17. Notes and Action Items

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes and Action Items Notes and Action Items ERSUG Action Items from June 1996 meeting at Germantown, MD Get DOE staff on mailers for broadcast of ERSUG issues Responsibility: Kendall and Kitchens Review and comment on ERSUG Proposal to SAC Responsibility: All of ERSUG Comments to Rick Kendall by July 17th email: ra_kendall@pnl.gov Fax : (509) 375-6631 Review and comment on Requirements Document "Greenbook" Responsibility: All of ERSUG Comments to Rick Kendall by August 7th email:

  18. VOL2NOTE.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    B Explanatory Notes The following Explanatory Notes are provided to assist in understanding and interpreting the data presented in this publication. * Note 1. Petroleum Supply Reporting System * Note 2. Monthly Petroleum Supply Reporting System * Note 3. Technical Notes for Detailed Statistics Tables * Note 4. Domestic Crude Oil Production * Note 5. Export Data * Note 6. Quality Control and Data Revision * Note 7. Frames Maintenance * Note 8. Descriptive Monthly Statistics * Note 9. Practical

  19. Template:Note | Open Energy Information

    Open Energy Info (EERE)

    search Note Note: Usage Method 1 The following displays the note icon and the word 'Note:'. You can follow this with whatever textimagesmarkup you like, and it works...

  20. Notes and Definitions

    Weekly Natural Gas Storage Report (EIA)

    Notes and Definitions This report tracks U.S. natural gas inventories held in underground storage facilities. The weekly stocks generally are the volumes of working gas as of the report date. The "net change" in reported stock levels reflects all events affecting working gas in storage, including injections, withdrawals, and reclassifications between base and working gas. The "implied flow" estimate represents movements of working natural gas into or out of underground

  1. Table 3.3 Consumer Price Estimates for Energy by Source, 1970-2010 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Price Estimates for Energy by Source, 1970-2010 (Dollars 1 per Million Btu) Year Primary Energy 2 Electric Power Sector 11,12 Retail Electricity 13 Total Energy 9,10,14 Coal Natural Gas 3 Petroleum Nuclear Fuel Biomass 8 Total 9,10 Distillate Fuel Oil Jet Fuel 4 LPG 5 Motor Gasoline 6 Residual Fuel Oil Other 7 Total 1970 0.38 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1971 .42 .63 1.22 .77 1.46 2.90 .58 1.45 1.78 .18 1.31 1.15 .38 5.30 1.76 1972 .45 .68 1.22

  2. Industrial co-generation through use of a medium BTU gas from biomass produced in a high throughput reactor

    SciTech Connect (OSTI)

    Feldmann, H.F.; Ball, D.A.; Paisley, M.A.

    1983-01-01

    A high-throughput gasification system has been developed for the steam gasification of woody biomass to produce a fuel gas with a heating value of 475 to 500 Btu/SCF without using oxygen. Recent developments have focused on the use of bark and sawdust as feedstocks in addition to wood chips and the testing of a new reactor concept, the so-called controlled turbulent zone (CTZ) reactor to increase gas production per unit of wood fed. Operating data from the original gasification system and the CTZ system are used to examine the preliminary economics of biomass gasification/gas turbine cogeneration systems. In addition, a ''generic'' pressurized oxygen-blown gasification system is evaluated. The economics of these gasification systems are compared with a conventional wood boiler/steam turbine cogeneration system.

  3. COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal

    SciTech Connect (OSTI)

    Smith, V.E.; Merriam, N.W.

    1994-10-01

    Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Non-Combustion Use of Fossil Fuels Total, 1980-2011 As Share of Total Energy Consumption, 1980-2011 By Fuel, 2011 By Petroleum Product, 2011 32 U.S. Energy Information Administration / Annual Energy Review 2011 1 Liquefied petroleum gases and pentanes plus are aggregated to avoid disclosure of proprie- tary information. 2 Distillate fuel oil, residual fuel oil, waxes, and miscellaneous products. (s)=Less than 0.05 quadrillion Btu. Note: See Note 2, "Non-Combustion Use of Fossil

  5. Low/medium Btu coal gasification assessment of central plant for the city of Philadelphia, Pennsylvania. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    The objective of this study is to assess the technical and economic feasibility of producing, distributing, selling, and using fuel gas for industrial applications in Philadelphia. The primary driving force for the assessment is the fact that oil users are encountering rapidly escalating fuel costs, and are uncertain about the future availability of low sulfur fuel oil. The situation is also complicated by legislation aimed at reducing oil consumption and by difficulties in assuring a long term supply of natural gas. Early in the gasifier selection study it was decided that the level of risk associated with the gasification process sould be minimal. It was therefore determined that the process should be selected from those commercially proven. The following processes were considered: Lurgi, KT, Winkler, and Wellman-Galusha. From past experience and a knowledge of the characteristics of each gasifier, a list of advantages and disadvantages of each process was formulated. It was concluded that a medium Btu KT gas can be manufactured and distributed at a lower average price than the conservatively projected average price of No. 6 oil, provided that the plant is operated as a base load producer of gas. The methodology used is described, assumptions are detailed and recommendations are made. (LTN)

  6. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  7. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  8. PIC Transcribed Flip Chart Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Workshop" versus "meeting" Could provide someone to take verbal comments Page 5 PIC Transcribed Flip Chart Notes Wednesday, October 31, 2012 300 Area Public Involvement...

  9. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOE Patents [OSTI]

    Scheffer, Karl D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  10. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOE Patents [OSTI]

    Scheffer, K.D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  11. Research Notes and Information References

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    The RNS (Research Notes System) is a set of programs and databases designed to aid the research worker in gathering, maintaining, and using notes taken from the literature. The sources for the notes can be books, journal articles, reports, private conversations, conference papers, audiovisuals, etc. The system ties the databases together in a relational structure, thus eliminating data redundancy while providing full access to all the information. The programs provide the means for access andmore » data entry in a way that reduces the key-entry burden for the user. Each note has several data fields. Included are the text of the note, the subject classification (for retrieval), and the reference identification data. These data are divided into four databases: Document data - title, author, publisher, etc., fields to identify the article within the document; Note data - text and page of the note; Sublect data - subject categories to ensure uniform spelling for searches. Additionally, there are subsidiary files used by the system, including database index and temporary work files. The system provides multiple access routes to the notes, both structurally (access method) and topically (through cross-indexing). Output may be directed to a printer or saved as a file for input to word processing software.« less

  12. Monthly energy review: September 1996

    SciTech Connect (OSTI)

    1996-09-01

    Energy production during June 1996 totaled 5.6 quadrillion Btu, a 0.5% decrease from the level of production during June 1995. Energy consumption during June 1996 totaled 7.1 quadrillion Btu, 2.7% above the level of consumption during June 1995. Net imports of energy during June 1996 totaled 1.6 quadrillion Btu, 4.5% above the level of net imports 1 year earlier. Statistics are presented on the following topics: energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. 37 figs., 59 tabs.

  13. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration | Annual Energy Outlook 2015 Table A1. Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise noted) Supply, disposition, and prices Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Production Crude oil and lease condensate ............................ 13.7 15.6 22.2 21.5 21.1 19.8 19.9 0.9% Natural gas plant liquids ........................................ 3.3 3.6 5.5 5.7 5.7 5.6

  14. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Commercial Buildings Consumption by Energy Source By Survey Year, 1979-2003 By Census Region, 2003 60 U.S. Energy Information Administration / Annual Energy Review 2011 1 Electricity only; excludes electrical system energy losses. 2 Distillate fuel oil, residual fuel oil, and kerosene. (s)=Less than 0.05 quadrillion Btu. Q=Data withheld because either the relative standard error was greater than 50 percent or fewer than 20 buildings were sampled. Note: See Appendix C for map of Census regions.

  15. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Heat Content of Natural Gas Consumed Definitions Key Terms Definition British Thermal Unit (Btu) The quantity of heat required to raise the temperature of 1 pound of liquid water by 1 degree Fahrenheit at the temperature at which water has its greatest density (approximately 39 degrees Fahrenheit). Delivered to Consumers (Heat Content) Heat content of residential, commercial, industrial, vehicle fuel and electric power deliveries to consumers. Electric Power (Heat Content) Heat content of

  16. GETEM Manuals and Revision Notes

    Broader source: Energy.gov [DOE]

    Please refer to these manuals and revision notes prior to downloading and running the Geothermal Electricity Technology Evaluation Model (GETEM). Because this is a beta version, you are urged to...

  17. OpenEI Community - notes

    Open Energy Info (EERE)

    more

    http:en.openei.orgcommunityblognotes-callcomments notes Linked Open Data Workshop in Washington, D.C. Fri, 28 Sep 2012 00:57:30 +0000 Jweers 521 at...

  18. Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these lectures will be provided via RealPlayer. Users of Windows- or Macintosh-based computers will be able to see and hear the presentation by way of the following procedures. 1....

  19. Topic A Note: Includes STEPS Subtopic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Topic A Note: Includes STEPS Subtopic 33 Total Projects Developing and Enhancing Workforce Training Programs

  20. Residential | Open Energy Information

    Open Energy Info (EERE)

    used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy consumption. The residential sector accounted for 57 percent of that energy use and the...

  1. Commercial | Open Energy Information

    Open Energy Info (EERE)

    used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy consumption. The residential sector accounted for 57 percent of that energy use and the...

  2. Transportation | Open Energy Information

    Open Energy Info (EERE)

    Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu...

  3. Annual Energy Review 2008 - Released June 2009

    Gasoline and Diesel Fuel Update (EIA)

    0.1 quadrillion Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solarPV, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP)...

  4. Appendix A. Reference case projections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by region and end-use sector, High Oil Price case, 2010-40 (quadrillion Btu) Region History Projections Average annual percent change, 2010-40 2010 2020 2025 2030 2035 2040 OECD...

  5. Afghanistan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    nlineLabel":"","visitedicon":"" Country Profile Name Afghanistan Population 15,500,000 GDP 21,747,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code AF 3-letter...

  6. Tips: Heating and Cooling | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    us use natural gas. | Source: Buildings Energy Data Book 2011, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total)....

  7. Energy Department Intends to Issue Funding Opportunity Announcement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    primary feedstocks could offer energy savings on the order of 1.6 quadrillion BTU (quads) annually across four classes of waste materials - metals, fibers, polymers, and e-waste. ...

  8. Geothermal Energy Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... about 1.6M barrels of oil annually in the United ... * 22 states offer GHP tax incentives Geothermal Energy ... electric; 0.3 quadrillion Btu total) * Baseline power - ...

  9. Israel: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Consumption 0.86 Quadrillion Btu 2-letter ISO code IL 3-letter ISO code ISR Numeric ISO code 376 UN Region1 Western Asia OpenEI Resources Energy Maps 0 Tools 2...

  10. AEO2011:Total Energy Supply, Disposition, and Price Summary ...

    Open Energy Info (EERE)

    case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Data and Resources AEO2011:Total...

  11. U.S. Energy Information Administration (EIA) - Pub

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Increasing energy efficiency reduces the energy intensity of many residential end uses between 2013 and 2040. Total energy consumption for space heating is 4.2 quadrillion Btu in ...

  12. U.S. Energy Information Administration (EIA) - Pub

    Gasoline and Diesel Fuel Update (EIA)

    Delivered energy consumption by sector Transportation Energy consumption in the transportation sector declines in the AEO2015 Reference case from 27.0 quadrillion Btu (13.8 million ...

  13. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    a Heat Content of Petroleum Consumption by End-Use Sector, 1949-2015 (Quadrillion Btu) ... plants and a small number of electricity-only plants. b Liquefied petroleum ...

  14. Fact #792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012

    Broader source: Energy.gov [DOE]

    In the last 30 years, overall energy consumption has grown by about 22 quadrillion Btu. The share of energy consumption by the transportation sector has seen modest growth in that time – from about...

  15. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    4 Includes less than 0.1 quadrillion Btu of coal coke net exports. 5 Conventional hydroelectric power, geothermal, solarPV, wind, and biomass. 6 Electricity-only and ...

  16. Cape Verde: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    0.00 Quadrillion Btu 2-letter ISO code CV 3-letter ISO code CPV Numeric ISO code 132 UN Region1 Western Africa OpenEI Resources Energy Maps 0 Tools 0 Programs 4 view...

  17. Annual Energy Outlook 2015 - Appendix A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A-3 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise ...

  18. Solomon Islands: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Solomon Islands Population 523,000 GDP 840,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code SB 3-letter ISO code SLB Numeric ISO...

  19. Kenya: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Kenya Population 38,610,097 GDP Unavailable Energy Consumption 0.21 Quadrillion Btu 2-letter ISO code KE 3-letter ISO code KEN Numeric ISO...

  20. Madagascar: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Madagascar Population 12,238,914 GDP 10,025,000,000 Energy Consumption 0.05 Quadrillion Btu 2-letter ISO code MG 3-letter ISO code MDG Numeric ISO...

  1. Mauritius: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    "","visitedicon":"" Country Profile Name Mauritius Population 1,236,817 GDP 14 Energy Consumption 0.06 Quadrillion Btu 2-letter ISO code MU 3-letter ISO code MUS Numeric ISO...

  2. Senegal: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Senegal Population 13,508,715 GDP 13,864,000,000 Energy Consumption 0.09 Quadrillion Btu 2-letter ISO code SN 3-letter ISO code SEN Numeric ISO...

  3. Greenland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Greenland Population 56,968 GDP Unavailable Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code GL 3-letter ISO code GRL Numeric ISO...

  4. Maldives: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Maldives Population 393,500 GDP 1,944,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code MV 3-letter ISO code MDV Numeric ISO...

  5. United States: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    page. Country Profile Name United States Population 320,206,000 GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO...

  6. Tanzania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    "","visitedicon":"" Country Profile Name Tanzania Population 44,928,923 GDP 37 Energy Consumption 0.12 Quadrillion Btu 2-letter ISO code TZ 3-letter ISO code TZA Numeric ISO...

  7. Syria: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Syria Population 17,951,639 GDP Unavailable Energy Consumption 0.84 Quadrillion Btu 2-letter ISO code SY 3-letter ISO code SYR Numeric ISO...

  8. Saint Lucia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Saint Lucia Population 173,765 GDP 1,239,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code LC 3-letter ISO code LCA Numeric ISO...

  9. Yemen: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Yemen Population 19,685,000 GDP 36,700,000,000 Energy Consumption 0.31 Quadrillion Btu 2-letter ISO code YE 3-letter ISO code YEM Numeric ISO...

  10. Seychelles: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Seychelles Population 84,000 GDP 2,760,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code SC 3-letter ISO code SYC Numeric ISO...

  11. South Korea: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name South Korea Population 51,302,044 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code KR 3-letter ISO code KOR Numeric ISO code...

  12. Guyana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Guyana Population 747,884 GDP 2,788,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code GY 3-letter ISO code GUY Numeric ISO...

  13. Albania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Albania Population 2,821,977 GDP 14,000,000,000 Energy Consumption 0.11 Quadrillion Btu 2-letter ISO code AL 3-letter ISO code ALB Numeric ISO...

  14. Romania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Romania Population 20,121,641 GDP 191,581,000,000 Energy Consumption 1.68 Quadrillion Btu 2-letter ISO code RO 3-letter ISO code ROU Numeric ISO...

  15. Morocco: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Morocco Population 33,250,000 GDP 114,700,000,000 Energy Consumption 0.56 Quadrillion Btu 2-letter ISO code MA 3-letter ISO code MAR Numeric ISO...

  16. Dominica: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Dominica Population 72,301 GDP 497,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code DM 3-letter ISO code DMA Numeric ISO...

  17. Tonga: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Tonga Population 103,036 GDP 439,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code TO 3-letter ISO code TON Numeric ISO...

  18. Antigua and Barbuda: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Antigua and Barbuda Population 81,799 GDP 1,176,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code AG 3-letter ISO code ATG Numeric ISO...

  19. Cape Verde: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Cape Verde Population 512,096 GDP 2,071,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code CV 3-letter ISO code CPV Numeric ISO...

  20. Burundi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Burundi Population 8,053,574 GDP 3,037,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code BI 3-letter ISO code BDI Numeric ISO...

  1. Somalia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Somalia Population 10,428,043 GDP Unavailable Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code SO 3-letter ISO code SOM Numeric ISO...

  2. Ethiopia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Ethiopia Population 73,750,932 GDP 51,000,000,000 Energy Consumption 0.12 Quadrillion Btu 2-letter ISO code ET 3-letter ISO code ETH Numeric ISO...

  3. Montserrat: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Montserrat Population 4,900 GDP Unavailable Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code MS 3-letter ISO code MSR Numeric ISO...

  4. Faroe Islands: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Faroe Islands Population 48,351 GDP 2,450,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code FO 3-letter ISO code FRO Numeric ISO...

  5. I.N

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heating or water heating. Fuel 011, LPG, and Kerosene. Expenditures of 11 Fuel Oil. Consumption of 1.0 quadrillion Btu of fuel billion for fuel oil, LPG, and kerosene...

  6. Nepal: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Nepal Population 26,494,504 GDP Unavailable Energy Consumption 0.08 Quadrillion Btu 2-letter ISO code NP 3-letter ISO code NPL Numeric ISO...

  7. Panama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Panama Population 3,608,431 GDP 49,142,000,000 Energy Consumption 0.24 Quadrillion Btu 2-letter ISO code PA 3-letter ISO code PAN Numeric ISO...

  8. Iran: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Iran Population 77,176,930 GDP 402,700,000,000 Energy Consumption 8.12 Quadrillion Btu 2-letter ISO code IR 3-letter ISO code IRN Numeric ISO...

  9. Nauru: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    "","visitedicon":"" Country Profile Name Nauru Population 9,275 GDP Unavailable Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code NR 3-letter ISO code NRU Numeric ISO...

  10. Guinea: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Guinea Population 10,628,972 GDP 5,212,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code GN 3-letter ISO code GIN Numeric ISO...

  11. Tunisia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Tunisia Population 10,982,754 GDP 45,611,000,000 Energy Consumption 0.35 Quadrillion Btu 2-letter ISO code TN 3-letter ISO code TUN Numeric ISO...

  12. Lithuania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Lithuania Population 3,043,429 GDP 51,002,000,000 Energy Consumption 0.39 Quadrillion Btu 2-letter ISO code LT 3-letter ISO code LTU Numeric ISO...

  13. Northern Mariana Islands: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Northern Mariana Islands Population 53,833 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code MP 3-letter ISO code MNP Numeric ISO code...

  14. Cambodia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Cambodia Population 13,388,910 GDP 17,250,000,000 Energy Consumption 0.07 Quadrillion Btu 2-letter ISO code KH 3-letter ISO code KHM Numeric ISO...

  15. Kosovo: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Kosovo Population 1,733,842 GDP 7,813,000,000 Energy Consumption Quadrillion Btu 2-letter ISO code XK 3-letter ISO code XKX Numeric ISO code N...

  16. Togo: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Togo Population 5,337,000 GDP 3,685,000,000 Energy Consumption 0.04 Quadrillion Btu 2-letter ISO code TG 3-letter ISO code TGO Numeric ISO...

  17. Guinea-Bissau: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Guinea-Bissau Population 1,345,479 GDP 870,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code GW 3-letter ISO code GNB Numeric ISO...

  18. Uruguay: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Uruguay Population 3,286,314 GDP 58,283,000,000 Energy Consumption 0.17 Quadrillion Btu 2-letter ISO code UY 3-letter ISO code URY Numeric ISO...

  19. Turks and Caicos Islands: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Turks and Caicos Islands Population 31,458 GDP Unavailable Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code TC 3-letter ISO code TCA Numeric ISO...

  20. Rwanda: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Rwanda Population 10,515,973 GDP 7,431,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code RW 3-letter ISO code RWA Numeric ISO...

  1. Grenada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Grenada Population 109,590 GDP 790,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code GD 3-letter ISO code GRD Numeric ISO...

  2. Burkina Faso: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Burkina Faso Population 14,017,262 GDP 13,000,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code BF 3-letter ISO code BFA Numeric ISO...

  3. Iraq: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Iraq Population 36,004,552 GDP 164,600,000,000 Energy Consumption 1.36 Quadrillion Btu 2-letter ISO code IQ 3-letter ISO code IRQ Numeric ISO...

  4. Benin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Benin Population 9,983,884 GDP 7,429,000,000 Energy Consumption 0.05 Quadrillion Btu 2-letter ISO code BJ 3-letter ISO code BEN Numeric ISO...

  5. Portugal: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Portugal Population 10,562,178 GDP Unavailable Energy Consumption 1.06 Quadrillion Btu 2-letter ISO code PT 3-letter ISO code PRT Numeric ISO...

  6. Oman: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Oman Population 2,773,479 GDP 78,788,000,000 Energy Consumption 0.71 Quadrillion Btu 2-letter ISO code OM 3-letter ISO code OMN Numeric ISO...

  7. Angola: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Angola Population 18,498,000 GDP 129,785,000,000 Energy Consumption 0.20 Quadrillion Btu 2-letter ISO code AO 3-letter ISO code AGO Numeric ISO...

  8. Lebanon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Lebanon Population 4,965,914 GDP 44,967,000,000 Energy Consumption 0.20 Quadrillion Btu 2-letter ISO code LB 3-letter ISO code LBN Numeric ISO...

  9. Belize: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Belize Population 324,528 GDP 1,554,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code BZ 3-letter ISO code BLZ Numeric ISO...

  10. Republic of Macedonia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Republic of Macedonia Population 2,022,547 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code MK 3-letter ISO code MKD Numeric ISO code...

  11. Slovakia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Slovakia Population 5,397,036 GDP Unavailable Energy Consumption 0.80 Quadrillion Btu 2-letter ISO code SK 3-letter ISO code SVK Numeric ISO...

  12. Bhutan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Bhutan Population Unavailable GDP 1,488,000,000 Energy Consumption 0.05 Quadrillion Btu 2-letter ISO code BT 3-letter ISO code BTN Numeric ISO...

  13. Comoros: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Comoros Population 798,000 GDP 655,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code KM 3-letter ISO code COM Numeric ISO...

  14. Finland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Finland Population 5,180,000 GDP 276,275,000,000 Energy Consumption 1.29 Quadrillion Btu 2-letter ISO code FI 3-letter ISO code FIN Numeric ISO...

  15. Latvia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Latvia Population 2,070,371 GDP 34,118,000,000 Energy Consumption 0.16 Quadrillion Btu 2-letter ISO code LV 3-letter ISO code LVA Numeric ISO...

  16. Cuba: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Cuba Population 11,210,064 GDP 78,694,000,000 Energy Consumption 0.42 Quadrillion Btu 2-letter ISO code CU 3-letter ISO code CUB Numeric ISO...

  17. Barbados: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Barbados Population 277,821 GDP 4,490,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code BB 3-letter ISO code BRB Numeric ISO...

  18. Cyprus: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Cyprus Population 838,897 GDP 23,006,000,000 Energy Consumption 0.13 Quadrillion Btu 2-letter ISO code CY 3-letter ISO code CYP Numeric ISO...

  19. Kiribati: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Kiribati Population 103,500 GDP 167,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code KI 3-letter ISO code KIR Numeric ISO...

  20. Saint Helena: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Saint Helena Population 4,255 GDP Unavailable Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code SH 3-letter ISO code SHN Numeric ISO...

  1. Brunei: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Brunei Population 415,717 GDP 17,092,000,000 Energy Consumption 0.19 Quadrillion Btu 2-letter ISO code BN 3-letter ISO code BRN Numeric ISO...

  2. Kuwait: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Kuwait Population 2,213,403 GDP 173,438,000,000 Energy Consumption 1.19 Quadrillion Btu 2-letter ISO code KW 3-letter ISO code KWT Numeric ISO...

  3. Malaysia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Malaysia Population 28,334,135 GDP Unavailable Energy Consumption 2.45 Quadrillion Btu 2-letter ISO code MY 3-letter ISO code MYS Numeric ISO...

  4. New Zealand: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name New Zealand Population 4,242,048 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code NZ 3-letter ISO code NZL Numeric ISO code...

  5. Zimbabwe: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    "","visitedicon":"" Country Profile Name Zimbabwe Population 13,061,239 GDP 11 Energy Consumption 0.16 Quadrillion Btu 2-letter ISO code ZW 3-letter ISO code ZWE Numeric ISO...

  6. Togo: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Togo Population 7,154,237 GDP 3,685,000,000 Energy Consumption 0.04 Quadrillion Btu 2-letter ISO code TG 3-letter ISO code TGO Numeric ISO...

  7. Estonia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Estonia Population 1,294,486 GDP 27,410,000,000 Energy Consumption 0.24 Quadrillion Btu 2-letter ISO code EE 3-letter ISO code EST Numeric ISO...

  8. Suriname: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Suriname Population 492,829 GDP 5,273,000,000 Energy Consumption 0.04 Quadrillion Btu 2-letter ISO code SR 3-letter ISO code SUR Numeric ISO...

  9. Bulgaria: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Bulgaria Population 7,364,570 GDP 57,596,000,000 Energy Consumption 0.83 Quadrillion Btu 2-letter ISO code BG 3-letter ISO code BGR Numeric ISO...

  10. Switzerland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Switzerland Population 7,954,700 GDP 679,028,000,000 Energy Consumption 1.32 Quadrillion Btu 2-letter ISO code CH 3-letter ISO code CHE Numeric ISO...

  11. Jordan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Jordan Population 5,611,202 GDP 33,516,000,000 Energy Consumption 0.31 Quadrillion Btu 2-letter ISO code JO 3-letter ISO code JOR Numeric ISO...

  12. Costa Rica: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Costa Rica Population 4,586,353 GDP 52,968,000,000 Energy Consumption 0.20 Quadrillion Btu 2-letter ISO code CR 3-letter ISO code CRI Numeric ISO...

  13. Guatemala: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Guatemala Population 15,806,675 GDP 49,880,000,000 Energy Consumption 0.21 Quadrillion Btu 2-letter ISO code GT 3-letter ISO code GTM Numeric ISO...

  14. Liechtenstein: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Liechtenstein Population 37,132 GDP 5,155,000,000 Energy Consumption Quadrillion Btu 2-letter ISO code LI 3-letter ISO code LIE Numeric ISO code...

  15. Gabon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Gabon Population 1,475,000 GDP 20,664,000,000 Energy Consumption 0.05 Quadrillion Btu 2-letter ISO code GA 3-letter ISO code GAB Numeric ISO...

  16. Niger: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Niger Population 17,138,707 GDP 6,022,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code NE 3-letter ISO code NER Numeric ISO...

  17. Singapore: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    ","visitedicon":"" Country Profile Name Singapore Population 5,469,700 GDP 298 Energy Consumption 2.38 Quadrillion Btu 2-letter ISO code SG 3-letter ISO code SGP Numeric ISO...

  18. Cameroon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Cameroon Population 17,463,836 GDP 30,000,000,000 Energy Consumption 0.10 Quadrillion Btu 2-letter ISO code CM 3-letter ISO code CMR Numeric ISO...

  19. Honduras: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Honduras Population 7,529,403 GDP 19,567,000,000 Energy Consumption 0.13 Quadrillion Btu 2-letter ISO code HN 3-letter ISO code HND Numeric ISO...

  20. Federated States of Micronesia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Profile Name Federated States of Micronesia Population 106,104 GDP 277,000,000 Energy Consumption Quadrillion Btu 2-letter ISO code FM 3-letter ISO code FSM Numeric ISO code...

  1. Pakistan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Pakistan Population 196,174,380 GDP Unavailable Energy Consumption 2.48 Quadrillion Btu 2-letter ISO code PK 3-letter ISO code PAK Numeric ISO...

  2. Moldova: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Moldova Population Unavailable GDP 8,738,000,000 Energy Consumption 0.14 Quadrillion Btu 2-letter ISO code MD 3-letter ISO code MDA Numeric ISO...

  3. Jamaica: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Jamaica Population 2,889,187 GDP 15,569,000,000 Energy Consumption 0.17 Quadrillion Btu 2-letter ISO code JM 3-letter ISO code JAM Numeric ISO...

  4. Hungary: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Hungary Population 9,937,628 GDP 145,153,000,000 Energy Consumption 1.11 Quadrillion Btu 2-letter ISO code HU 3-letter ISO code HUN Numeric ISO...

  5. Paraguay: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Paraguay Population 6,800,284 GDP 30,558,000,000 Energy Consumption 0.44 Quadrillion Btu 2-letter ISO code PY 3-letter ISO code PRY Numeric ISO...

  6. Algeria: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Algeria Population 37,900,000 GDP 227,802,000,000 Energy Consumption 1.71 Quadrillion Btu 2-letter ISO code DZ 3-letter ISO code DZA Numeric ISO...

  7. Bangladesh: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Bangladesh Population 156,594,962 GDP Unavailable Energy Consumption 0.87 Quadrillion Btu 2-letter ISO code BD 3-letter ISO code BGD Numeric ISO...

  8. Nigeria: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Nigeria Population 140,431,790 GDP 594,257,000,000 Energy Consumption 1.09 Quadrillion Btu 2-letter ISO code NG 3-letter ISO code NGA Numeric ISO...

  9. Chad: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Chad Population 6,279,921 GDP 15,986,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code TD 3-letter ISO code TCD Numeric ISO...

  10. Eritrea: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Eritrea Population 6,380,803 GDP 3,881,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code ER 3-letter ISO code ERI Numeric ISO...