Powered by Deep Web Technologies
Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

2

Diagram 5. Electricity Flow, 2007 (Quadrillion Btu)  

E-Print Network (OSTI)

generation. f Transmission and distribution losses (electricity losses that occur between the pointDiagram 5. Electricity Flow, 2007 (Quadrillion Btu) Energy Information Administration / Annual Energy Review 2007 221 Coal 20.99 Nuclear Electric Power 8.41 Energy Consumed To Generate Electricity 42

Bensel, Terrence G.

3

Table 1.1 Primary Energy Overview (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 3 Table 1.1 Primary Energy Overview (Quadrillion Btu) Production Trade

4

Figure 10.1 Renewable Energy Consumption (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Figure 10.1 Renewable Energy Consumption (Quadrillion Btu) Total and Major Sources, 1949–2012 By Source, 2012 By Sector, 2012 Compared With Other Resources, 1949–2012

5

Table 1.2 Primary Energy Production by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 5 Table 1.2 Primary Energy Production by Source (Quadrillion Btu)

6

Table 1.4a Primary Energy Imports by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

10 U.S. Energy Information Administration / Monthly Energy Review October 2013 Table 1.4a Primary Energy Imports by Source (Quadrillion Btu) Imports

7

Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 7 Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)

8

Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 7 Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)

9

Table 1.1 Primary Energy Overview, 1949-2011 (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Table 1.1 Primary Energy Overview, 1949-2011 (Quadrillion Btu) Year: Production: Trade: Stock Change and Other 8: Consumption: Fossil Fuels 2

10

Table 1.2 Primary Energy Production by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review August 2013 5 Table 1.2 Primary Energy Production by Source (Quadrillion Btu) Fossil Fuels

11

Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035  

U.S. Energy Information Administration (EIA) Indexed Site

Erin Boedecker, Session Moderator Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011 -4.8% 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference High Technology High technology assumptions with more efficient consumer behavior keep buildings energy to just over 20 quadrillion Btu 3 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu

12

Table US12. Total Consumption by Energy End Uses, 2005 Quadrillion ...  

U.S. Energy Information Administration (EIA)

Quadrillion British Thermal Units (Btu) U.S. Households (millions) Other Appliances and Lighting Space Heating (Major Fuels) 4 Air-Conditioning 5 Water Heating 6 ...

13

Figure 1.1 Primary Energy Overview (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Web Page: http://www.eia.gov/totalenergy/data/monthly/#summary. Source: Table 1.1. 2 U.S. Energy Information Administration / Monthly Energy Review October 2013

14

Table 1.1 Primary Energy Overview (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Fossil Fuelsa Nuclear Electric Power Renew-able Energyb Total Imports Exports Net Importsc ... fuel ethanol stock change; and biodiesel stock change and balancing item.

15

Compiler  

NLE Websites -- All DOE Office Websites (Extended Search)

large-scale parallel applications, particularly scientific simulations and analysis pipelines run- ning on large, distributed-memory clusters. In this paper we describe compiler...

16

Table 8. U.S. Renewable Energy Consumption (Quadrillion Btu) U ...  

U.S. Energy Information Administration (EIA)

heating oil. (b) Wood and wood-derived fuels. (c) Municipal solid waste from biogenic sources, landfill gas, sludge waste, agricultural byproducts, ...

17

The Btu tax is dead, long live the Btu tax  

SciTech Connect

The energy industry is powerful. That is the only explanation for its ability to jettison a cornerstone of the Clinton Administration's proposed deficit reduction package, the Btu tax plan, expected to raise about $71.5 billion over a five-year period. Clinton had proposed a broad-based energy tax of 25.7 cents per million Btus, and a surcharge of 34.2 cents on petroleum products, to be phased in over three years starting July 1, 1994. House Democrats went along, agreeing to impose a tax of 26.8 cents per million Btus, along with the 34.2-cent petroleum surcharge, both effective July 1, 1994. But something happened on the way to the Senate. Their version of the deficit reduction package contains no broad-based energy tax. It does, however, include a 4.3 cents/gallon fuel tax. Clinton had backed down, and House Democrats were left feeling abandoned and angry. What happened has as much to do with politics-particularly the fourth branch of government, lobbyists-as with a President who wants to try to please everyone. It turns out that almost every lawmaker or lobbyist who sought an exemption from the Btu tax, in areas as diverse as farming or ship and jet fuel used in international commercial transportation, managed to get it without giving up much in return. In the end, the Btu tax was so riddled with exemptions that its effectiveness as a revenue-raiser was in doubt. Meanwhile, it turns out that the Btu tax is not dead. According to Budget Director Leon Panetta, the Administration has not given up on the Btu tax and will fight for it when the reconciliation bill goes to a joint House-Senate conference.

Burkhart, L.A.

1993-07-15T23:59:59.000Z

18

Compiler Comparisons  

NLE Websites -- All DOE Office Websites (Extended Search)

described below, different optimization options for the different compilers on Edison. The compilers are also compared against one another on the benchmarks. Benchmarks...

19

Annul Coal Consumption by Country (1980 -2009) Total annual coal  

Open Energy Info (EERE)

Annul Coal Consumption by Country (1980 -2009) Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration...

20

Natural Gas Consumption by Country (1980 - 2009) Total annual...  

Open Energy Info (EERE)

Natural Gas Consumption by Country (1980 - 2009) Total annual dry natural gas consumption by country, 1980 to 2009 (available in Quadrillion Btu). Compiled by Energy Information...

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

22

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

23

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

24

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

25

Analysis of industrial markets for low and medium Btu coal gasification. [Forecasting  

SciTech Connect

Low- and medium-Btu gases (LBG and MBG) can be produced from coal with a variety of 13 existing and 25 emerging processes. Historical experience and previous studies indicate a large potential market for LBG and MBG coal gasification in the manufacturing industries for fuel and feedstocks. However, present use in the US is limited, and industry has not been making substantial moves to invest in the technology. Near-term (1979-1985) market activity for LBG and MBG is highly uncertain and is complicated by a myriad of pressures on industry for energy-related investments. To assist in planning its program to accelerate the commercialization of LBG and MBG, the Department of Energy (DOE) contracted with Booz, Allen and Hamilton to characterize and forecast the 1985 industrial market for LBG and MBG coal gasification. The study draws five major conclusions: (1) There is a large technically feasible market potential in industry for commercially available equipment - exceeding 3 quadrillion Btu per year. (2) Early adopters will be principally steel, chemical, and brick companies in described areas. (3) With no additional Federal initiatives, industry commitments to LBG and MBG will increase only moderately. (4) The major barriers to further market penetration are lack of economic advantage, absence of significant operating experience in the US, uncertainty on government environmental policy, and limited credible engineering data for retrofitting industrial plants. (5) Within the context of generally accepted energy supply and price forecasts, selected government action can be a principal factor in accelerating market penetration. Each major conclusion is discussed briefly and key implications for DOE planning are identified.

1979-07-30T23:59:59.000Z

26

Compiling Codes on Carver  

NLE Websites -- All DOE Office Websites (Extended Search)

compatibility with other NERSC platforms. Because Carver uses Intel processors, some benchmarks have shown better performance when compiled with the Intel compilers. The GCC...

27

Intel Compilers at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Intel Intel Intel (Fortran, C, and C++) Description The Intel® compiler suite offers C, C++ and Fortran compilers with optimization features and multithreading capabilities, highly optimized performance libraries, and error-checking, security, and profiling tools. NERSC Intel compiler bugs are listed at Intel bugs. Availability The Intel compiler suite is available on Edison, Carver, and Hopper. It is the default compiler on Edison. Using the Intel Compilers on Edison The Intel compiler suite is the default on Edison. When you use the Cray ftn, cc, and CC wrappers, they will call the Intel compilers. Using the Intel Compilers on Carver To use the Intel compilers you must swap both the compiler and the OpenMPI modulefiles. Do this in the following way: % module unload pgi openmpi

28

Table 2.1 Energy Consumption by Sector (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 23 Table 2.1 Energy Consumption by Sector (Trillion Btu) End-Use Sectors Electric

29

Table 2.4 Industrial Sector Energy Consumption (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 29 Table 2.4 Industrial Sector Energy Consumption (Trillion Btu) Primary Consumptiona

30

Gnu Compiler Peformance on Edison  

NLE Websites -- All DOE Office Websites (Extended Search)

Gnu Compiler Peformance on Edison Gnu Compiler Peformance on Edison By default, the Gnu compilers do not provide any optimization. These are the Gnu optimization options we...

31

Choosing a Compiler on Edison  

NLE Websites -- All DOE Office Websites (Extended Search)

Choosing a Compiler on Edison Choosing a Compiler on Edison Three different compilers are available on Edison. In this section we compare them using the benchmarks described above....

32

Building Energy Software Tools Directory: BTU Analysis Plus  

NLE Websites -- All DOE Office Websites (Extended Search)

Plus Plus BTU Analysis Plus logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The BTU Analysi Plus program is designed for general heating, air-conditioning, and commerical studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis Plus was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella.

33

Compiling Codes on Hopper  

NLE Websites -- All DOE Office Websites (Extended Search)

Compiling Codes Compiling Codes Compiling Codes on Hopper Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the hopper compute node processors. NOTE: The intention is that programs are compiled on the login nodes and executed on the compute nodes. Because the compute nodes and login nodes have different operating systems, binaries created for compute nodes may not run on the login node. The wrappers mentioned above guarantee that

34

Property:Geothermal/AnnualGenBtuYr | Open Energy Information  

Open Energy Info (EERE)

AnnualGenBtuYr AnnualGenBtuYr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/AnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 5.3 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 72.5 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 5 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 7 + Americulture Aquaculture Low Temperature Geothermal Facility + 17 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 6.5 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 1.8 +

35

Building Energy Software Tools Directory: BTU Analysis REG  

NLE Websites -- All DOE Office Websites (Extended Search)

REG REG BTU Analysis REG logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The REG program is designed for general heating, air-conditioning, and light commercial studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis, was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella. Keywords

36

Property:Geothermal/CapacityBtuHr | Open Energy Information  

Open Energy Info (EERE)

CapacityBtuHr CapacityBtuHr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/CapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 0.8 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 10.3 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 2 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 1 + Americulture Aquaculture Low Temperature Geothermal Facility + 2.4 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 3 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.3 +

37

GNU Compilers at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

GNU GNU GNU Compilers (Fortran, C, and C++) Availability The GNU/GCC Fortran, C, and C++ compilers are available on all NERSC systems. Current NERSC GNU/GCC bugs are listed at GNU bugs. On Hopper, use the following: % module swap PrgEnv-pgi PrgEnv-gnu On Edison, use this: % module swap PrgEnv-intel PrgEnv-gnu On Carver, type the following: % module unload pgi openmpi % module load gcc openmpi-gcc Package Platform Category Version Module Install Date Date Made Default GCC carver compilers/ programming 4.4.2 gcc/4.4.2 2010-02-08 2012-01-13 GCC carver compilers/ programming 4.5.2 gcc/4.5.2 2012-01-13 GCC carver compilers/ programming 4.6.1 gcc/4.6.1 2012-01-13 GCC carver compilers/ programming 4.7.0 gcc/4.7.0 2012-03-27 2012-04-11 GCC carver compilers/ programming 4.7.3 gcc-sl6/4.7.3 2013-10-24 2013-10-24

38

Compilers at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Development Tools Development Tools Programming Libraries Debugging and Profiling Visualization and Analytics Grid Software and Services NERSC Software Downloads Accounts & Allocations Policies Data Analytics & Visualization Data Management Policies Science Gateways User Surveys NERSC Users Group User Announcements Help Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home » For Users » Software » Compilers Compilers PGI Compilers (Fortran, C, C++) The Portland Group Fortran compiler offers full support for the Fortran 77, 90 and 95 language standards, as well as C and C++. Read More »

39

Compiler assisted masking  

Science Conference Proceedings (OSTI)

Differential Power Analysis (DPA) attacks find a statistical correlation between the power consumption of a cryptographic device and intermediate values within the computation. Randomization via (Boolean) masking of intermediate values breaks this statistical ... Keywords: DPA, compiler assisted cryptography, masking

Andrew Moss; Elisabeth Oswald; Dan Page; Michael Tunstall

2012-09-01T23:59:59.000Z

40

International Energy Outlook 2013 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total world energy use rises from 524 quadrillion British thermal units (Btu) in 2010 to 630 quadrillion Btu in 2020 and to 820 quadrillion Btu in 2040 (Figure 1 ...

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Intel Compiler Peformance on Edison  

NLE Websites -- All DOE Office Websites (Extended Search)

Intel Compiler Peformance on Edison Intel Compiler Peformance on Edison These are the Intel optimization options we compared. The quotations are from the Intel compiler on-line man...

42

Transportation and Handling of Medium Btu Gas in Pipelines  

Science Conference Proceedings (OSTI)

Coal-derived medium btu gas can be safely transported by pipeline over moderate distances, according to this survey of current industrial pipeline practices. Although pipeline design criteria will be more stringent than for natural gas pipelines, the necessary technology is readily available.

1984-03-01T23:59:59.000Z

43

Table PT2. Energy Production Estimates in Trillion Btu, Oklahoma ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Oklahoma, 1960 - 2011 1960 33.9 902.0 1,118.9 0.0 NA 17.8 17.8 2,072.6 1961 26.1 976.9 1,119.9 0.0 NA 20.2 20 ...

44

Table PT2. Energy Production Estimates in Trillion Btu, California ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, California, 1960 - 2011 1960 0.0 589.7 1,771.0 (s) NA 270.2 270.2 2,630.9 1961 0.0 633.8 1,737.7 0.1 NA 248.2 ...

45

Table PT2. Energy Production Estimates in Trillion Btu, Delaware ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Delaware, 1960 - 2011 1960 0.0 0.0 0.0 0.0 NA 5.0 5.0 5.0 1961 0.0 0.0 0.0 0.0 NA 5.1 5.1 5.1

46

Table PT2. Energy Production Estimates in Trillion Btu, Texas ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Texas, 1960 - 2011 1960 26.4 6,610.7 5,379.4 0.0 NA 50.2 50.2 12,066.6 1961 26.5 6,690.2 5,447.3 0.0 NA 52.0 ...

47

Table PT2. Energy Production Estimates in Trillion Btu, Indiana ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Indiana, 1960 - 2011 1960 346.3 0.3 69.9 0.0 NA 24.6 24.6 441.1 1961 336.7 0.4 66.7 0.0 NA 24.2 24.2 428.0

48

Table PT2. Energy Production Estimates in Trillion Btu, Oregon ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Oregon, 1960 - 2011 1960 0.0 0.0 0.0 0.0 NA 190.5 190.5 190.5 1961 0.0 0.0 0.0 0.0 NA 188.9 188.9 188.9

49

Table PT2. Energy Production Estimates in Trillion Btu, Arizona ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Arizona, 1960 - 2011 1960 0.1 0.0 0.4 0.0 NA 36.2 36.2 36.7 1961 0.0 0.0 0.4 0.0 NA 35.1 35.1 35.5

50

Environmental Permitting of a Low-BTU Coal Gasification Facility  

E-Print Network (OSTI)

The high price of natural gas and fuel oil for steam/power generation has alerted industry's decision makers to potentially more economical ways to provide the needed energy. Low-Btu fuel gas produced from coal appears to be an attractive alternate that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification facility needs to address those items that are not only unique to the gasification process itself, but also items generic to conventional firing of coal. This paper will discuss the environmental data necessary for permitting a low-Btu gasification facility located in the State of Louisiana. An actual case study for a 500,000 lb/hr natural gas-fired process steam plant being converted to low Btu gas will be presented. Typical air, water and solid waste effluents that must be considered will also be described.

Murawczyk, C.; Stewart, J. T.

1983-01-01T23:59:59.000Z

51

BTU convergence spawning gas market opportunities in North America  

Science Conference Proceedings (OSTI)

The so-called BTU convergence of US electric power and natural gas sectors is spawning a boom in market opportunities in the US Northeast that ensures the region will be North America`s fastest growing gas market. That`s the view of Catherine Good Abbott, CEO of Columbia Gas Transmission Corp., who told a Ziff Energy conference in Calgary that US Northeast gas demand is expected to increase to almost 10 bcfd in 2000 and more than 12 bcfd in 2010 from about 8 bcfd in 1995 and only 3 bcfd in 1985. The fastest growth will be in the US Northeast`s electrical sector, where demand for gas is expected to double to 4 bcfd in 2010 from about 2 bcfd in 1995. In other presentations at the Ziff Energy conference, speakers voiced concerns about the complexity and speed of the BTU convergence phenomenon and offered assurances about the adequacy of gas supplies in North American to meet demand growth propelled by the BTU convergence boom. The paper discusses the gas demand being driven by power utilities, the BTU convergence outlook, electric power demand, Canadian production and supply, and the US overview.

NONE

1998-06-29T23:59:59.000Z

52

Cray Compiler Peformance on Edison  

NLE Websites -- All DOE Office Websites (Extended Search)

Cray Compiler Peformance on Edison Cray Compiler Peformance on Edison Cray recommends using the default optimization (-O2) which is equivalent to the higher levels of optimization...

53

Compiling for time predictability  

Science Conference Proceedings (OSTI)

Within the T-CREST project we work on hardware/software architectures and code-generation strategies for time-predictable embedded and cyber-physical systems. In this paper we present the single-path code generation approach that we plan to explore and ... Keywords: compilers, real-time systems, time predictability, worst-case execution-time analysis

Peter Puschner; Raimund Kirner; Benedikt Huber; Daniel Prokesch

2012-09-01T23:59:59.000Z

54

Turbine Oil Lube Notes Compilation  

Science Conference Proceedings (OSTI)

This report is a special compilation of the EPRI Nuclear Maintenance Applications Center's (NMAC's) "Lube Notes" articles (extracted from "Lube Notes Compilation, 1989-2001 (Report Number 1006848)) that relate specifically to the topic of turbine oils.

2002-11-25T23:59:59.000Z

55

Making Effective User of Compilers at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Effective Use of Compilers Effective Use of Compilers at NERSC Michael Stewart NERSC User Services Group August 15, 2012 Introduction ● Description of the Hopper compiling environment. ● Strengths and weaknesses of each compiler. ● Advice on choosing the most appropriate compiler for your work. ● Comparative results on benchmarks and other codes. ● How to use the compilers effectively. ● Carver compiling environment.

56

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",3,3,3 " 20-49",5,5,4 " 50-99",6,5,4 " 100-249",5,5,4 " 250-499",7,9,7 " 500 and Over",3,2,2 "Total",2,2,2

57

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

> Countries > International Energy Statistics: International Energy Statistics; Petroleum. ... Total Primary Energy Consumption (Quadrillion Btu) Loading ...

58

Corrosion Databases and Data Compilations  

Science Conference Proceedings (OSTI)

Table 4   Selected corrosion databases and data compilations...U.S. Bureau of Labor Statistics Consumer price indexes for the United States

59

Sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

Vogt, Robert L. (Schenectady, NY)

1980-01-01T23:59:59.000Z

60

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",2.5,2.5,2.4 " 20-49",5,5,4.3 " 50-99",5.8,5.8,5.3 " 100-249",6.2,6.2,5.3 " 250-499",8.2,8,7.1 " 500 and Over",4.3,3,2.7

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Finding and understanding bugs in C compilers  

Science Conference Proceedings (OSTI)

Compilers should be correct. To improve the quality of C compilers, we created Csmith, a randomized test-case generation tool, and spent three years using it to find compiler bugs. During this period we reported more than 325 previously unknown bugs ... Keywords: automated testing, compiler defect, compiler testing, random program generation, random testing

Xuejun Yang; Yang Chen; Eric Eide; John Regehr

2011-06-01T23:59:59.000Z

62

An evaluation of an automatically generated compiler  

Science Conference Proceedings (OSTI)

Compilers or language translators can be generated using a variety of formal specification techniques. Whether generation is worthwhile depends on the effort required to specify the translation task and the quality of the generated compiler. A systematic ... Keywords: compiler generation

Anthony M. Sloane

1995-09-01T23:59:59.000Z

63

The Intel labs Haskell research compiler  

Science Conference Proceedings (OSTI)

The Glasgow Haskell Compiler (GHC) is a well supported optimizing compiler for the Haskell programming language, along with its own extensions to the language and libraries. Haskell's lazy semantics imposes a runtime model which is in general difficult ... Keywords: compiler optimization, functional language compiler, haskell

Hai Liu, Neal Glew, Leaf Petersen, Todd A. Anderson

2013-09-01T23:59:59.000Z

64

1988 Bulletin compilation and index  

SciTech Connect

This document is published to provide current information about the national program for managing spent fuel and high-level radioactive waste. This document is a compilation of issues from the 1988 calendar year. A table of contents and one index have been provided to assist in finding information.

NONE

1989-02-01T23:59:59.000Z

65

Compilation of EPRI Boiler Guidelines  

Science Conference Proceedings (OSTI)

Boiler component failures are the most common cause of unplanned outages in fossil steam plants. Headers and drums are two of the largest and most expensive boiler components; however, tube failures have posed the primary availability problem for operators of conventional and combinedcycle plants for as long as reliable statistics have been kept. This product provides a compilation of technical reports covering boiler condition assessment, header and drum failures, and boiler and heat recovery steam gene...

2008-03-26T23:59:59.000Z

66

PGI Accelerator Compilers - Aug 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

PGI PGI ® 2010 Compilers & Tools Dave Norton Dave.norton@pgroup.com www.pgroup.com NERSC/OLCF/NICS Cray XT5 Workshop Lawrence Berkeley National Lab February 2010 Craig Toepfer Craig.toepfer@pgroup.com www.pgroup.com HPC Hardware Trends Today: Clusters of Multicore x86 Tomorrow? Clusters of Multicore x86 + Accelerators Jun-93 Jun-94 Jun-95 Jun-96 Jun-97 Jun-98 Jun-99 Jun-00 Jun-01 Jun-02 Jun-03 Jun-04 Jun-05 Jun-06 Jun-07 Jun-08 Jun-09 0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0% 100.0% Custom RISC/UNIX Vector Itanium 64-bit x86 32-bit x86 Top 500 PGI Workstation / Server / CDK Linux, Windows, MacOS, 32-bit, 64-bit, Intel 64, AMD64 UNIX-heritage Command-level Compilers + Graphical Tools Compiler Language Command PGF95 (tm)

67

,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)",1,"Weekly","12/13/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdw.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdw.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:22 PM"

68

The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations  

E-Print Network (OSTI)

The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates the high costs of oxygen and methanation required to produce gas that can be transmitted over long distance. Standard low Btu fixed bed gasifiers have historically been plagued by three constraints; namely, the production of messy tars and oils, the inability to utilize caking coals, and the inability to accept coal fines. Mansfield Carbon Products, Inc., a subsidiary of A.T. Massey Coal Company, has developed an atmospheric pressure, two-stage process that eliminates these three problems.

Blackwell, L. T.; Crowder, J. T.

1983-01-01T23:59:59.000Z

69

Analysis of the market and product costs for coal-derived high Btu gas  

Science Conference Proceedings (OSTI)

DOE analyzed the market potential and economics of coal-derived high-Btu gas using supply and demand projections that reflect the effects of natural gas deregulation, recent large oil-price rises, and new or pending legislation designed to reduce oil imports. The results indicate that an increasingly large market for supplemental gas should open up by 1990 and that SNG from advanced technology will probably be as cheap as gas imports over a wide range of assumptions. Although several studies suggest that a considerable market for intermediate-Btu gas will also exist, the potential supplemental gas demand is large enough to support both intermediate - and high-Btu gas from coal. Advanced SNG-production technology will be particularly important for processing the US's abundant, moderately to highly caking Eastern coals, which current technology cannot handle economically.

Not Available

1980-12-01T23:59:59.000Z

70

GLOSSARY OF WATER RESOURCES TERMS Compiled by  

E-Print Network (OSTI)

#12;GLOSSARY OF WATER RESOURCES TERMS Compiled by WRRC Staff D.C. Water Resources Research Center.........................................................................................................................03 Part I Glossary of Terms;PREFACE The glossary of water research terms was compiled from a variety of other glossaries, dictionaries

District of Columbia, University of the

71

Trident Compiler v 0.1  

NLE Websites -- All DOE Office Websites (Extended Search)

available in the input description. Trident automatically extracts parallelism and pipelines loop bodies using conventional compiler optimizations and scheduling techniques....

72

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 6.3;" 3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",3,3,3

73

Table PT2. Energy Production Estimates in Trillion Btu, Ohio, 1960 ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Ohio, 1960 - 2011 1960 796.6 36.9 31.3 0.0 NA 37.0 37.0 901.9 1961 756.0 37.3 32.7 0.0 NA 36.4 36.4 862.4

74

U.S. Natural Gas Liquid Composite Price (Dollars per Million BTU)  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Liquid Composite Price (Dollars per Million BTU) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 12.91: 15.20 ...

75

Parametric Analysis of a 6500-Btu/kWh Heat Rate Dispersed Generator  

Science Conference Proceedings (OSTI)

Cost and performance assessments of two alternative system designs for a 2-MW molten carbonate fuel cell power plant yielded encouraging results: a 6500-Btu/kWh heat rate and a total plant investment of $1200-$1300/kW. Differences between the two designs establish a permissible range of operating conditions for the fuel cell that will help guide its development.

1985-08-14T23:59:59.000Z

76

Process designs and cost estimates for a medium Btu gasification plant using a wood feedstock  

DOE Green Energy (OSTI)

A gasification plant to effect the conversion of wood to medium-Btu gas has been designed. The Purox gasifier and associated equipment were selected as a prototype, since this system is nearer to commercialization than others considered. The object was to determine the cost of those processing steps common to all gasification schemes and to identify specific research areas. A detailed flowsheet and mass-balance are presented. Capital investment statements for three plant sizes (400, 800, 1,600 oven-dry tons per day) are included along with manufacturing costs for each of these plants at three feedstock prices: $10, $20, $30 per green ton (or $20, $40, $60 per dry ton). The design incorporates a front-end handling system, package cryogenic oxygen plant, the Purox gasifier, a gas-cleaning train consisting of a spray scrubber, ionizing wet scrubber, and condenser, and a wastewater treatment facility including a cooling tower and a package activated sludge unit. Cost figures for package units were obtained from suppliers and used for the oxygen and wastewater treatment plants. The gasifier is fed with wood chips at 20% moisture (wet basis). For each pound of wood, 0.32 lb of oxygen are required, and 1.11 lb of gas are produced. The heating value of the gas product is 300 Btu/scf. For each Btu of energy input (feed + process energy) to the plant, 0.91 Btu exists with the product gas. Total capital investments required for the plants considered are $9, $15, and $24 million (1978) respectively. In each case, the oxygen plant represents about 50% of the total investment. For feedstock prices from $10 to $30 per green ton ($1.11 to $3.33 per MM Btu), break-even costs of fuel gas range from $3 to $7 per MM Btu. At $30/ton, the feedstock cost represents approximately 72% of the total product cost for the largest plant size; at $10/ton, it represents only 47% of product cost.

Desrosiers, R. E.

1979-02-01T23:59:59.000Z

77

Intel compiler now available on Hopper  

NLE Websites -- All DOE Office Websites (Extended Search)

Intel Intel compiler now available on Hopper Intel compiler now available on Hopper August 29, 2011 by Francesca Verdier (0 Comments) The Intel compiler suite is now available on Hopper. The current installed version is 12.0.4.191. To use the Intel compiler: % module swap PrgEnv-pgi PrgEnv-intel Then use the Cray wrappers ftn, cc, and CC to compile the Fortran, C, and C++ codes, respectively. More information: Compiling Codes on Hopper. Post your comment You cannot post comments until you have logged in. Login Here. Comments No one has commented on this page yet. RSS feed for comments on this page | RSS feed for all comments User Announcements Email announcement archive Subscribe via RSS Subscribe Browse by Date December 2013 November 2013 October 2013 September 2013 August 2013

78

Annual Energy Outlook 2012  

Annual Energy Outlook 2012 (EIA)

case Other projections (million short tons) (quadrillion Btu) EVA a IHSGI INFORUM IEA b Exxon- Mobil c BP b (million short tons) (quadrillion Btu) 2015 Production 1,084 993 20.24...

79

A Compilation of Updates plus Preferences  

Science Conference Proceedings (OSTI)

We show how to compile programs formalizing update plus preference reasoning into standard generalized logic programs and show the correctness of the transformation.

José Júlio Alferes; Pierangelo Dell'Acqua; Luís Moniz Pereira

2002-09-01T23:59:59.000Z

80

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","8/2013" Monthly","8/2013" ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:46 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

82

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhda.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhda.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:19 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35611,2.49 35976,2.09 36341,2.27 36707,4.31 37072,3.96 37437,3.38 37802,5.47 38168,5.89 38533,8.69 38898,6.73

83

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/16/2013" Daily","12/16/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdd.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:24 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35437,3.82 35438,3.8 35439,3.61 35440,3.92 35443,4 35444,4.01 35445,4.34 35446,4.71 35447,3.91

84

Production of Medium BTU Gas by In Situ Gasification of Texas Lignite  

E-Print Network (OSTI)

The necessity of providing clean, combustible fuels for use in Gulf Coast industries is well established; one possible source of such a fuel is to perform in situ gasification of Texas lignite which lies below stripping depths. If oxygen (rather than air) is used for gasification, the resulting medium Btu gas could be economically transported by pipeline from the gasification sites to the Gulf coast. Technical, environmental, and economic aspects of implementing this technology are discussed.

Edgar, T. F.

1979-01-01T23:59:59.000Z

85

Development and testing of low-Btu fuel gas turbine combustors  

SciTech Connect

The integrated gasification combined cycle (IGCC) concept represents a highly efficient and environmentally compatible advanced coal fueled power generation technology. When IGCC is coupled with high temperature desulfurization, or hot gas cleanup (HGCU), the efficiency and cost advantage of IGCC is further improved with respect to systems based on conventional low temperature gas cleanup. Commercialization of the IGCC/HGCU concept requires successful development of combustion systems for high temperature low Btu fuel in gas turbines. Toward this goal, a turbine combustion system simulator has been designed, constructed, and fired with high temperature low Btu fuel. Fuel is supplied by a pilot scale fixed bed gasifier and hot gas desulfurization system. The primary objectives of this project are: (1) demonstration of long term operability of the turbine simulator with high temperature low Btu fuel; (2) characterization of particulates and other contaminants in the fuel as well as deposits in the fuel nozzle, combustor, and first stage nozzle; and (3) measurement of NO{sub x}, CO, unburned hydrocarbons, trace element, and particulate emissions.

Bevan, S.; Abuaf, N.; Feitelberg, A.S.; Hung, S.L.; Samuels, M.S.; Tolpadi, A.K.

1994-10-01T23:59:59.000Z

86

An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters  

E-Print Network (OSTI)

As the price gap between oil and natural gas and coal continues to widen, Monsanto has carefully searched out and examined opportunities to convert fuel use to coal. Preliminary studies indicate that the low-btu gas produced by fixed-bed, air blown gasifiers could potentially replace the natural gas now used in process heaters. The technology is well established and requires less capital than the higher-btu process heaters. Low-btu gas has sufficient heating value and flame temperature to be acceptable fuel for most process heaters. Economics for gas production appear promising, but somewhat uncertain. Rough evaluations indicate rates of return of as much as 30-40%. However, the economics are very dependent on a number of site- specific considerations including: coal vs. natural gas prices, economic life of the gas-consuming facility, quantity of gas required, need for desulfurization, location of gasifiers in relation to gas users, existence of coal unloading and storage facilities, etc. Two of these factors, the difference between coal and natural gas prices and the project life are difficult to predict. The resulting uncertainty has caused Monsanto to pursue coal gasification for process heaters with cautious optimism, on a site by site basis.

Nebeker, C. J.

1982-01-01T23:59:59.000Z

87

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Quadrillion Btu Natural Gas Electrical Losses Electrical Losses Electrical Losses Renewable Energy Renewable Energy Coal Renewable Energy Coal Petroleum Electricity...

88

Compiling for reconfigurable computing: A survey  

Science Conference Proceedings (OSTI)

Reconfigurable computing platforms offer the promise of substantially accelerating computations through the concurrent nature of hardware structures and the ability of these architectures for hardware customization. Effectively programming such reconfigurable ... Keywords: Compilation, FPGA, custom-computing platforms, hardware compilers, high-level synthesis, mapping methods, reconfigurable computing

João M. P. Cardoso; Pedro C. Diniz; Markus Weinhardt

2010-06-01T23:59:59.000Z

89

When to use a compilation service?  

Science Conference Proceedings (OSTI)

Modern handheld computers are certainly capable of running general purpose applications, such as Java virtual machines. However, short battery life rather than computational capability often limits the usefulness of handheld computers. This paper considers ... Keywords: Java, distributed compilation, energy efficient compilation

Jeffrey Palm; Han Lee; Amer Diwan; J. Eliot B. Moss

2002-07-01T23:59:59.000Z

90

PV Testing Group Photovoltaic Cell Data Compilation  

E-Print Network (OSTI)

PV Testing Group Photovoltaic Cell Data Compilation National Renewable Energy Laboratory 4/2/2010 ______________________________________ Page 1 *NREL Photovoltaic Cell Data Compilation Calibration Conducted For: Kaitlyn VanSant (for Solasta Contact: Paul Ciszek (303) 384-6647 Paul.Ciszek@nrel.gov #12;PV Testing Group Photovoltaic Cell Data

Burns, Michael J.

91

Compiler implementation in a formal logical framework  

Science Conference Proceedings (OSTI)

The task of designing and implementing a compiler can be a difficult and error-prone process. In this paper, we present a new approach based on the use of higher-order abstract syntax and term rewriting in a logical framework. All program transformations, ... Keywords: formal compiler, higher-order abstract syntax, logical programming environment

Jason Hickey; Aleksey Nogin; Adam Granicz

2003-08-01T23:59:59.000Z

92

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 6.4;" 4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",3,4,4 ," 50-99",5,5,5 ," 100-249",4,4,3

93

Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities  

SciTech Connect

The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

Not Available

1980-12-01T23:59:59.000Z

94

Transportation Issues and Resolutions Compilation of Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Issues and Resolutions Compilation of Laboratory Transportation Issues and Resolutions Compilation of Laboratory Transportation Work Package Reports Transportation Issues and Resolutions Compilation of Laboratory Transportation Work Package Reports The Transportation Team identified the retrievability and subcriticality safety functions to be of primary importance to the transportation of UNF after extended storage and to transportation of high burnup fuel. The tasks performed and described herein address issues related to retrievability and subcriticality; integrity of cladding (embrittled, high burnup cladding, loads applied to cladding during transport), criticality analyses of failed UNF within transport packages, moderator exclusion concepts, stabilization of cladding with canisters for criticality control;

95

Design and Performance of a Low Btu Fuel Rich-Quench-Lean Gas Turbine Combustor  

SciTech Connect

General Electric Company is developing gas turbines and a high temperature desulfurization system for use in integrated gasification combined cycle (IGCC) power plants. High temperature desulfurization, or hot gas cleanup (HGCU), offers many advantages over conventional low temperature desulfurization processes, but does not reduce the relatively high concentrations of fuel bound nitrogen (FBN) that are typically found in low Btu fuel. When fuels containing bound nitrogen are burned in conventional gas turbine combustors, a significant portion of the FBN is converted to NO{sub x}. Methods of reducing the NO{sub x} emissions from IGCC power plants equipped with HGCU are needed. Rich-quench-lean (RQL) combustion can decrease the conversion of FBN to NO{sub x} because a large fraction of the FBN is converted into non-reactive N{sub 2} in a fuel rich stage. Additional air, required for complete combustion, is added in a quench stage. A lean stage provides sufficient residence time for complete combustion. Objectives General Electric has developed and tested a rich-quench-lean gas turbine combustor for use with low Btu fuels containing FBN. The objective of this work has been to design an RQL combustor that has a lower conversion of FBN to N{sub x} than a conventional low Btu combustor and is suitable for use in a GE heavy duty gas turbine. Such a combustor must be of appropriate size and scale, configuration (can-annular), and capable of reaching ``F`` class firing conditions (combustor exit temperature = 2550{degrees}F).

Feitelberg, A.S.; Jackson, M.R.; Lacey, M.A.; Manning, K.S.; Ritter, A.M.

1996-12-31T23:59:59.000Z

96

Understanding Utility Rates or How to Operate at the Lowest $/BTU  

E-Print Network (OSTI)

This paper is intended to give the reader knowledge into utility marketing strategies, rates, and services. Although water is a utility service, this paper will concern itself with the energy utilities, gas and electric. Commonality and diversity exist in the strategies and rates of the gas and electric utilities. Both provide services at no charge which make energy operation for their customers easier, safer and more economical. It is important to become familiar with utility strategies, rates, and services because energy knowledge helps your business operate at the lowest energy cost ($/BTU).

Phillips, J. N.

1993-03-01T23:59:59.000Z

97

Domain-specific abstractions and compiler transformations  

NLE Websites -- All DOE Office Websites (Extended Search)

Domain-specific abstractions and compiler Domain-specific abstractions and compiler transformations Domain-specific abstractions and compiler transformations March 4, 2013 sadayappan Saday Sadayappan Department of Computer Science and Engineering, Ohio State University Recent trends in architecture are making multicore parallelism as well as heterogeneity ubiquitous. This creates significant chalenges to application developers as well as compiler implementations. Currently it is virtually impossible to achieve performance portability of high-performance applications, i.e., develop a single version of source code for an application that achieves high performance on different parallel computer platforms. Different implementations of compute intensive core functions are generally needed for different target platforms, e.g., for multicore

98

Compiler Support for Reducing Leakage Energy Consumption  

Science Conference Proceedings (OSTI)

Current trends indicate that leakage energy consumption will be an important concern in upcoming process technologies. In this paper, we propose a compiler-based leakage energy optimization strategy. Our strategy is built upon a data-flow analysis that ...

W. Zhang; M. Kandemir; N. Vijaykrishnan; M. J. Irwin; V. De

2003-03-01T23:59:59.000Z

99

Analog compilation based on successive decompositions  

Science Conference Proceedings (OSTI)

This paper describes an approach to silicon compilation of analog functional blocks and the physical assembly of mixed analog and digital blocks. The initial driving applications are High Voltage ASICs. Details of behavior to layout synthesis, or decompositions, ...

E. Berkcan; M. d'Abreu; W. Laughton

1988-06-01T23:59:59.000Z

100

Tableaux for Projection Computation and Knowledge Compilation  

Science Conference Proceedings (OSTI)

Projection computation is a generalization of second-order quantifier elimination, which in turn is closely related to the computation of forgetting and of uniform interpolants. On the basis of a unified view on projection computation and knowledge compilation, ...

Christoph Wernhard

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A Compiler for the Tcl Language  

E-Print Network (OSTI)

Tcl is a highly dynamic language that is especially challenging to execute efficiently. The dual-language nature of the system enforced by the C callback mechanism makes traditional compilation and optimization unrealistic. In addition, the lack of formal data types (and therefore type checking) places severe limits on the ability to provide for efficient data storage at compile time. In this paper, we discuss the many issues involved with compiling Tcl, and present a design for such a system, including the mechanism for embedding a Tcl script into the compiler itself in order to provide user extensibility. The current implementation is presented along with results showing approximately ten times the performance of the existing Tcl interpreter. 1 Introduction 1.1 Overview of the Tcl Language Tcl[Ous93] is designed to address the need for a "scripting" language, providing high-level control over a program. The interface between Tcl and the running program consists of the Tcl runtime l...

Adam Sah And; Adam Sah; Jon Blow

1993-01-01T23:59:59.000Z

102

PROGRAMMERS MANUAL FOR THE ORACLE COMPILER  

SciTech Connect

Desirable characteristics for the ORACLE compiler are given and limitations, item format, key words, and crossitem references are discussed. Programming and operating procedure are described. (W.D.M.)

LaVerne, M.E.; Bate, R.R.; Coveyou, R.R.; Sullivan, J.G.; Osborne, B.J.; Downing, A.C.; Harrison, J.; Long, E.C.; Grau, A.A.

1957-08-23T23:59:59.000Z

103

A Parallelizing Compiler Based on Partial Evaluation  

E-Print Network (OSTI)

We constructed a parallelizing compiler that utilizes partial evaluation to achieve efficient parallel object code from very high-level data independent source programs. On several important scientific applications, ...

Surati, Rajeev

1993-07-01T23:59:59.000Z

104

Design, implementation, and evaluation of a compilation server  

Science Conference Proceedings (OSTI)

Modern JVM implementations interleave execution with compilation of “hot” methods to achieve reasonable performance. Since compilation overhead impacts the execution time of the application and induces run-time pauses, we explore offloading ... Keywords: Compilation server, Java virtual machine

Han B. Lee; Amer Diwan; J. Eliot B. Moss

2007-08-01T23:59:59.000Z

105

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1981-01-01T23:59:59.000Z

106

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1985-02-12T23:59:59.000Z

107

High btu gas from peat. A feasibility study. Part 1. Executive summary. Final report  

SciTech Connect

In September, 1980, the US Department of Energy (DOE) awarded a Grant (No. DE-FG01-80RA50348) to the Minnesota Gas Company (Minnegasco) to evaluate the commercial viability - technical, economic and environmental - of producing 80 million standard cubic feet per day (SCFD) of substitute natural gas (SNG) from peat. The proposed product, high Btu SNG would be a suitable substitute for natural gas which is widely used throughout the Upper Midwest by residential, commercial and industrial sectors. The study team consisted of Dravo Engineers and Constructors, Ertec Atlantic, Inc., The Institute of Gas Technology, Deloitte, Haskins and Sells and Minnegasco. Preliminary engineering and operating and financial plans for the harvesting, dewatering and gasification operations were developed. A site in Koochiching County near Margie was chosen for detailed design purposes only; it was not selected as a site for development. Environmental data and socioeconomic data were gathered and reconciled. Potential economic data were gathered and reconciled. Potential impacts - both positive and negative - were identified and assessed. The peat resource itself was evaluated both qualitatively and quantitatively. Markets for plant by-products were also assessed. In summary, the technical, economic, and environmental assessment indicates that a facility producing 80 billion Btu's per day SNG from peat is not commercially viable at this time. Minnegasco will continue its efforts into the development of peat and continue to examine other options.

Not Available

1984-01-01T23:59:59.000Z

108

Low Power/Energy Compiler Optimizations  

E-Print Network (OSTI)

Introduction 35.2 Why compilers? 35.3 Power vs. Energy vs. Performance Power vs. Energy, Power/Energy vs. Performance, Summary 35.4 List of Optimizations Dynamic Voltage and Frequency Scaling, Resource Hibernation, Remote Task Mapping 35.5 Future Compiler Research for Power/Energy Embedded processor and SoCs are used in many devices, ranging from pace makers, sensors, phones, and PDAs, to general-purpose handheld computers and laptops. Each of these devices has their own requirements for performance, power dissipation, and energy usage, and typically implements a particular tradeo# among these entities. Allowing components of these devices to be controlled by software has opened up opportunities for compilation and operating strategies to reduce power dissipation and energy usage, at the potential cost of performance degradation. Such control includes (1) hibernation, i.e., initiating transitions of a component between a high power, active states and lower power, hibernating s

Ulrich Kremer

2004-01-01T23:59:59.000Z

109

Cofiring of coal and dairy biomass in a 100,000 btu/hr furnace  

E-Print Network (OSTI)

Dairy biomass (DB) is evaluated as a possible co-firing fuel with coal. Cofiring of DB offers a technique of utilizing dairy manure for power/steam generation, reducing greenhouse gas concerns, and increasing financial returns to dairy operators. The effects of cofiring coal and DB have been studied in a 30 kW (100,000 BTU/hr) burner boiler facility. Experiments were performed with Texas Lignite coal (TXL) as a base line fuel. The combustion efficiency from co-firing is also addressed in the present work. Two forms of partially composted DB fuels were investigated: low ash separated solids and high ash soil surface. Two types of coal were investigated: TXL and Wyoming Powder River Basin coal (WYO). Proximate and ultimate analyses were performed on coal and DB. DB fuels have much higher nitrogen (kg/GJ) and ash content (kg/GJ) than coal. The HHV of TXL and WYO coal as received were 14,000 and 18,000 kJ/kg, while the HHV of the LA-PC-DBSepS and the HA-PC-DB-SoilS were 13,000 and 4,000 kJ/kg. The HHV based on stoichiometric air were 3,000 kJ/kg for both coals and LA-PC-DB-SepS and 2,900 kJ/kg for HA-PC-DB-SoilS. The nitrogen and sulfur loading for TXL and WYO ranged from 0.15 to 0.48 kg/GJ and from 0.33 to 2.67 for the DB fuels. TXL began pyrolysis at 640 K and the WYO at 660 K. The HA-PC-DB-SoilSs began pyrolysis at 530 K and the LA-PC-DB-SepS at 510 K. The maximum rate of volatile release occurred at 700 K for both coals and HA-PC-DB-SoilS and 750K for LA-PC-DB-SepS. The NOx emissions for equivalence ratio (?) varying from 0.9 to 1.2 ranged from 0.34 to 0.90 kg/GJ (0.79 to 0.16 lb/mmBTU) for pure TXL. They ranged from 0.35 to 0.7 kg/GJ (0.82 to 0.16 lb/mmBTU) for a 90:10 TXL:LA-PC-DB-SepS blend and from 0.32 to 0.5 kg/GJ (0.74 to 0.12 lb/mmBTU) for a 80:20 TXL:LA-PC-DB-SepS blend over the same range of ?. In a rich environment, DB:coal cofiring produced less NOx and CO than pure coal. This result is probably due to the fuel bound nitrogen in DB is mostly in the form of urea which reduces NOx to non-polluting gases such as nitrogen (N2).

Lawrence, Benjamin Daniel

2007-12-01T23:59:59.000Z

110

Combined compressed air storage-low BTU coal gasification power plant  

DOE Patents (OSTI)

An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

Kartsounes, George T. (Naperville, IL); Sather, Norman F. (Naperville, IL)

1979-01-01T23:59:59.000Z

111

Materials exposure test facilities for varying low-Btu coal-derived gas  

SciTech Connect

As a part of the United States Department of Energy's High Temperature Turbine Technology Readiness Program, the Morgantown Energy Technology Center is participating in the Ceramics Corrosion/Erosion Materials Study. The objective is to create a technology base for ceramic materials which could be used by stationary gas power turbines operating in a high-temperature, coal-derived, low-Btu gas products of combustion environment. Two METC facilities have been designed, fabricated and will be operated simultaneously exposing ceramic materials dynamically and statically to products of combustion of a coal-derived gas. The current studies will identify the degradation of ceramics due to their exposure to a coal-derived gas combustion environment.

Nakaishi, C.V.; Carpenter, L.K.

1980-01-01T23:59:59.000Z

112

A compiler framework for speculative optimizations  

Science Conference Proceedings (OSTI)

Speculative execution, such as control speculation or data speculation, is an effective way to improve program performance. Using edge/path profile information or simple heuristic rules, existing compiler frameworks can adequately incorporate and exploit ... Keywords: Data speculation, partial redundancy elimination, register promotion, speculative SSA form, speculative weak update

Jin Lin; Tong Chen; Wei-Chung Hsu; Pen-Chung Yew; Roy Dz-Ching Ju; Tin-Fook Ngai; Sun Chan

2004-09-01T23:59:59.000Z

113

Nikola: embedding compiled GPU functions in Haskell  

Science Conference Proceedings (OSTI)

We describe Nikola, a first-order language of array computations embedded in Haskell that compiles to GPUs via CUDA using a new set of type-directed techniques to support re-usable computations. Nikola automatically handles a range of low-level details ... Keywords: cuda, gpu, meta programming

Geoffrey Mainland; Greg Morrisett

2010-11-01T23:59:59.000Z

114

Compiling for an indirect vector register architecture  

Science Conference Proceedings (OSTI)

The iVMX architecture contains a novel vector register file of up to 4096 vector registers accessed indirectly via a mapping mechanism, providing compatibility with the VMX architecture, and potential for dramatic performance benefits [7]. The large ... Keywords: compiler controlled cache, data reuse, rotating register file, simd, subword parallelism, vectorization, viterbi

Dorit Nuzman; Mircea Namolaru; Ayal Zaks; Jeff H. Derby

2008-05-01T23:59:59.000Z

115

Compilation of information on melter modeling  

SciTech Connect

The objective of the task described in this report is to compile information on modeling capabilities for the High-Temperature Melter and the Cold Crucible Melter and issue a modeling capabilities letter report summarizing existing modeling capabilities. The report is to include strategy recommendations for future modeling efforts to support the High Level Waste (HLW) melter development.

Eyler, L.L.

1996-03-01T23:59:59.000Z

116

Lube Notes Compilation, 1989-2001  

Science Conference Proceedings (OSTI)

Much of the equipment installed in nuclear and fossil power plants relies on proper lubrication for trouble-free operation. EPRI's Nuclear Maintenance Applications Center (NMAC) began publishing the "Lube Notes" newsletter in 1989 to assist maintenance personnel in addressing plant lubrication issues. Each issue provides guidance on lubricant selection, application, and testing in specific plant applications. This report compiles all of the "Lube Notes" published from 1989 through 2001. A subject index i...

2002-05-01T23:59:59.000Z

117

Compilation of requests for nuclear data  

Science Conference Proceedings (OSTI)

A request list for nuclear data which was produced from a computerized data file by the National Nuclear Data Center is presented. The request list is given by target nucleus (isotope) and then reaction type. The purpose of the compilation is to summarize the current needs of US Nuclear Energy programs and other applied technologies for nuclear data. Requesters are identified by laboratory, last name, and sponsoring US government agency. (WHK)

Not Available

1981-03-01T23:59:59.000Z

118

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

SciTech Connect

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO[sub x], CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if logical'' refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO[sub x]; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-01-01T23:59:59.000Z

119

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

DOE Green Energy (OSTI)

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO{sub x}, CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if ``logical`` refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO{sub x}; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-12-31T23:59:59.000Z

120

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

DOE Green Energy (OSTI)

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO[sub x], CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if logical'' refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO[sub x]; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Better tiling and array contraction for compiling scientific programs  

Science Conference Proceedings (OSTI)

Scientific programs often include multiple loops over the same data; interleaving parts of different loops may greatly improve performance. We exploit this in a compiler for Titanium, a dialect of Java. Our compiler combines reordering optimizations ...

Geoff Pike; Paul N. Hilfinger

2002-11-01T23:59:59.000Z

122

POSH: a TLS compiler that exploits program structure  

Science Conference Proceedings (OSTI)

As multi-core architectures with Thread-Level Speculation (TLS) are becoming better understood, it is important to focus on TLS compilation. TLS compilers are interesting in that, while they do not need to fully prove the independence of concurrent tasks, ... Keywords: TLS compiler, multi-core architecture, prefetching, profiling, thread-level speculation

Wei Liu; James Tuck; Luis Ceze; Wonsun Ahn; Karin Strauss; Jose Renau; Josep Torrellas

2006-03-01T23:59:59.000Z

123

A Unified Symbolic Evaluation Framework for Parallelizing Compilers  

Science Conference Proceedings (OSTI)

Abstract¿The quality of many optimizations and analyses of parallelizing compilers depends significantly on the ability to evaluate symbolic expressions and on the amount of information available about program variables at arbitrary program points. In ... Keywords: Symbolic analysis, symbolic evaluation, program context, data-flow and control-flow analysis, symbolic dependence testing, compiler optimizations, parallelizing compilers, parallel systems.

Thomas Fahringer; Bernhard Scholz

2000-11-01T23:59:59.000Z

124

Analysis of medium-BTU gasification condensates, June 1985-June 1986  

DOE Green Energy (OSTI)

This report provides the final results of chemical and physical analysis of condensates from biomass gasification systems which are part of the US Department of Energy Biomass Thermochemical Conversion Program. The work described in detail in this report involves extensive analysis of condensates from four medium-BTU gasifiers. The analyses include elemental analysis, ash, moisture, heating value, density, specific chemical analysis, ash, moisture, heating value, density, specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, Carbon-13 nuclear magnetic resonance spectrometry) and Ames Assay. This work was an extension of a broader study earlier completed of the condensates of all the gasifers and pyrolyzers in the Biomass Thermochemical Conversion Program. The analytical data demonstrates the wide range of chemical composition of the organics recoverd in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures as a result of formation of polycyclic aromatic hydrocarbons in high concentrations. Future studies of the time/temperature relationship to tar composition and the effect of processing atmosphere should be undertaken. Further processing of the condensates either as wastewater treatment or upgrading of the organics to useful products is also recommended. 15 refs., 4 figs., 4 tabs.

Elliott, D.C.

1987-05-01T23:59:59.000Z

125

Compiling RES Legislation for Kazakhstan | Open Energy Information  

Open Energy Info (EERE)

Compiling RES Legislation for Kazakhstan Compiling RES Legislation for Kazakhstan Jump to: navigation, search Name Compiling RES Legislation for Kazakhstan Agency/Company /Organization Renewable Energy and Energy Efficiency Partnership, United Nations Development Programme Sector Energy Focus Area Renewable Energy Topics Implementation, Policies/deployment programs, Background analysis Website http://www.reeep.org/127/laws. Country Kazakhstan UN Region Central Asia References Compiling RES Legislation for Kazakhstan[1] Compiling RES Legislation for Kazakhstan Potential of renewable energy sources usage in the Republic of Kazakhstan Report on Benefits of RES to Energy Sector in Kazakhstan (Kyoto) References ↑ "Compiling RES Legislation for Kazakhstan" Retrieved from "http://en.openei.org/w/index.php?title=Compiling_RES_Legislation_for_Kazakhstan&oldid=328567"

126

Compilation of requests for nuclear data  

SciTech Connect

This compilation represents the current needs for nuclear data measurements and evaluations as expressed by interested fission and fusion reactor designers, medical users of nuclear data, nuclear data evaluators, CSEWG members and other interested parties. The requests and justifications are reviewed by the Data Request and Status Subcommittee of CSEWG as well as most of the general CSEWG membership. The basic format and computer programs for the Request List were produced by the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory. The NNDC produced the Request List for many years. The Request List is compiled from a computerized data file. Each request has a unique isotope, reaction type, requestor and identifying number. The first two digits of the identifying number are the year in which the request was initiated. Every effort has been made to restrict the notations to those used in common nuclear physics textbooks. Most requests are for individual isotopes as are most ENDF evaluations, however, there are some requests for elemental measurements. Each request gives a priority rating which will be discussed in Section 2, the neutron energy range for which the request is made, the accuracy requested in terms of one standard deviation, and the requested energy resolution in terms of one standard deviation. Also given is the requestor with the comments which were furnished with the request. The addresses and telephone numbers of the requestors are given in Appendix 1. ENDF evaluators who may be contacted concerning evaluations are given in Appendix 2. Experimentalists contemplating making one of the requested measurements are encouraged to contact both the requestor and evaluator who may provide valuable information. This is a working document in that it will change with time. New requests or comments may be submitted to the editors or a regular CSEWG member at any time.

Weston, L.W.; Larson, D.C. (eds.)

1993-02-01T23:59:59.000Z

127

Renewable Energy Generation | OpenEI  

Open Energy Info (EERE)

Generation Generation Dataset Summary Description Total annual renewable electricity net generation by country, 1980 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA Renewable Energy Generation world Data text/csv icon total_renewable_electricity_net_generation_1980_2009billion_kwh.csv (csv, 37.3 KiB) text/csv icon total_renewable_electricity_net_generation_1980_2009quadrillion_btu.csv (csv, 43 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

128

Renewable Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA renewable electricity Renewable Energy Consumption world Data text/csv icon total_renewable_electricity_net_consumption_2005_2009billion_kwh.csv (csv, 8.5 KiB) text/csv icon total_renewable_electricity_net_consumption_2005_2009quadrillion_btu.csv (csv, 8.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

129

renewable electricity | OpenEI  

Open Energy Info (EERE)

electricity electricity Dataset Summary Description Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA renewable electricity Renewable Energy Consumption world Data text/csv icon total_renewable_electricity_net_consumption_2005_2009billion_kwh.csv (csv, 8.5 KiB) text/csv icon total_renewable_electricity_net_consumption_2005_2009quadrillion_btu.csv (csv, 8.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

130

Coal consumption | OpenEI  

Open Energy Info (EERE)

consumption consumption Dataset Summary Description Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords coal Coal consumption EIA world Data text/csv icon total_coal_consumption_1980_2009quadrillion_btu.csv (csv, 38.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

131

Towards a framework for the general intensional programming compiler in the GIPSY  

Science Conference Proceedings (OSTI)

In this paper, we describe a compiler framework to enable the automated generation of compiler components for the Lucid family of intensional programming languages. Keywords: compiler, compiler generation, declarative programming, families of programming languages, framework, intensional programming

Joey Paquet; Aihua Wu; Peter Grogono

2004-10-01T23:59:59.000Z

132

Global compilation of Carbon-13 measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

compilation of Carbon-13 measurements during 1990-2005 in dissolved inorganic carbon (δ13C_DIC) compilation of Carbon-13 measurements during 1990-2005 in dissolved inorganic carbon (δ13C_DIC) A. Schmittner1, N. Gruber2, A. C. Mix1, R. M. Key3, A. Tagliabue4, and T. K. Westberry5 1College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA 2Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland 3Department of Geosciences, Princeton University, Princeton, New Jersey, USA 4School of Environmental Sciences, University of Liverpool, Liverpool, UK 5Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA data Data and Documentation Files The primary data source for the δ13C_DIC measurements is the Web Accessible Visualization and Extraction System (W.A.V.E.S) at the Carbon Dioxide Information Analysis Center (CDIAC). On 27 August 2010 we extracted data from two databases within CDIAC: First, from the Global Data Analysis Project GLODAP (Key et al., 2004) and second, from the Carbon Dioxide in the Atlantic Ocean (CARINA) data synthesis project mainly from WOCE and CLIVAR expeditions. The δ13C_DIC data on file at CDIAC have not been quality controlled. In the GLODAP database, some cruises (for example, 316N145_5 and INDIGO_123) had obvious bad data, and these were excluded from our compilation. From the remaining 31 GLODAP expeditions, we removed bottle numbers > 70 from seven cruises in order to exclude large Volume (LV) samples, many of which had large negative biases. From the CARINA database cruise 64TR19900417 was excluded due to obvious bad data, leaving 18 cruises. The remaining combined GLODAP and CARINA database contains 17,989 δ13C_DIC data for the time period from 1990-2005 from all oceans and all depths. These data were supplemented by 632 measurements from 1990 to 1998 made at Charles (Dave) Keeling's laboratory at Scripps Institution of Oceanography, described by Gruber et al. (1999), and by one transect (50 data points) from the northeast Pacific measured in Alan Mix's laboratory at Oregon State University, published along with nutrient data by Ortiz et al. (2000). The Keeling dataset is also available at CDIAC (http://cdiac.ornl.gov/ftp/oceans/keeling.data/), although here we used one single data file provided by N. Gruber. We do not use measurements prior to 1990 (such as all GEOSECS and TTO data). Due to unresolved intercalibration issues between laboratories the accuracy is currently estimated to be 0.1-0.2‰ (A. McNichol, personal communication, 2012). The combined data set contains a total of 18,670 δ13C_DIC measurements.

133

EIA - Annual Energy Outlook 2014 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption grows by 12% in the AEO2014 Reference case, from 95 quadrillion Btu in 2012 to 106 quadrillion Btu in 2040-1.3 quadrillion Btu less than in AEO2013 (Figure 8). The fossil fuel share of energy consumption falls from 82% in 2012 to 80% in 2040, as consumption of petroleum-based liquid fuels declines, largely as a result of slower growth in VMT and increased vehicle efficiency. figure dataTotal U.S. consumption of petroleum and other liquids, which was 35.9 quadrillion Btu (18.5 MMbbl/d) in 2012, increases to 36.9 quadrillion Btu (19.5 MMbbl/d) in 2018, then declines to 35.4 quadrillion Btu (18.7 MMbbl/d) in 2034 and remains at that level through 2040. Total consumption of domestically produced biofuels increases slightly through 2022 and then

134

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption grows by 7 percent in the AEO2013 Reference case, from 98 quadrillion Btu in 2011 to 104 quadrillion Btu in 2035-2.5 quadrillion Btu less than in AEO2012-and continues to grow at a rate of 0.6 percent per year, reaching about 108 quadrillion Btu in 2040 (Figure 7). The fossil fuel share of energy consumption falls from 82 percent in 2011 to 78 percent in 2040, as consumption of petroleum-based liquid fuels falls, largely as a result of the incorporation of new fuel efficiency standards for LDVs. figure dataWhile total liquid fuels consumption falls, consumption of domestically produced biofuels increases significantly, from 1.3 quadrillion Btu in 2011 to 2.1 quadrillion Btu in 2040, and its share of

135

Compiler Optimization for Distributed Dynamic Data Flow Programs...  

NLE Websites -- All DOE Office Websites (Extended Search)

large-scale parallel applications, particularly scientific simulations and analysis pipelines running on large, distributed memory clusters. In this paper, we describe compiler...

136

High Btu gas from peat. A feasibility study. Part 2. Management plans for project continuation. Task 10. Final report  

Science Conference Proceedings (OSTI)

The primary objective of this task, which was the responsibility of the Minnesota Gas Company, was to determine the needs of the project upon completion of the feasibility study and determine how to implement them most effectively. The findings of the study do not justify the construction of an 80 billion Btu/day SNG from peat plant. At the present time Minnegasco will concentrate on other issues of peat development. Other processes, other products, different scales of operation - these are the issues that Minnegasco will continue to study. 3 references.

Not Available

1982-01-01T23:59:59.000Z

137

Another step towards a smart compilation manager for Java  

Science Conference Proceedings (OSTI)

In a recent work we have proposed a compilation strategy (that is, a way to decide which unchanged sources have to be recompiled) for a substantial subset of Java which has been shown to be sound and minimal. That is, an unchanged source ... Keywords: Java, separate compilation

G. Lagorio

2004-03-01T23:59:59.000Z

138

Formal verification of compiler transformations on polychronous equations  

Science Conference Proceedings (OSTI)

In this paper, adopting the translation validation approach, we present a formal verification process to prove the correctness of compiler transformations on systems of polychronous equations. We encode the source programs and the transformations with ... Keywords: formal verification, multi-clocked synchronous programs, polychronous model, translation validation, validated compiler

Van Chan Ngo; Jean-Pierre Talpin; Thierry Gautier; Paul Le Guernic; Loïc Besnard

2012-06-01T23:59:59.000Z

139

Characterizing the Memory Behavior of Compiler-Parallelized Applications  

Science Conference Proceedings (OSTI)

Abstract¿Compiler-parallelized applications are increasing in importance as moderate-scale multiprocessors become common. This paper evaluates how features of advanced memory systems (e.g., longer cache lines) impact memory system behavior for applications ... Keywords: Parallelizing compilers, memory hierarchies, shared-memory multiprocessors, cache performance, false and true sharing, parallelism granularity.

Evan Torrie; Margaret Martonosi; Chau-Wen Tseng; Mary W. Hall

1996-12-01T23:59:59.000Z

140

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Energy Overview (Quadrillion Btu) Consumption, Production, and Imports, 1973-2012 Consumption, Production, and Imports, Monthly Overview, April 2013 Net Imports,...

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Energy Overview Overview, 1949-2011 Production and Consumption, 2011 Overview, 2011 Energy Flow, 2011 (Quadrillion Btu) 4 U.S. Energy Information Administration Annual...

142

International Energy Outlook 2002  

Annual Energy Outlook 2012 (EIA)

2. World Energy Consumption, 1970-2020 (Quadrillion Btu). For more detailed information, contact the National Energy Information Center at (202) 586-8800. horizonal line image...

143

International Energy Outlook 2002  

Gasoline and Diesel Fuel Update (EIA)

3. World Energy Consumption by Region, 1970-2020 (Quadrillion Btu). For more detailed information, contact the National Energy Information Center at (202) 586-8800. horizonal line...

144

International Energy Outlook 2002  

Gasoline and Diesel Fuel Update (EIA)

6. World Energy Consumption by Fuel Type, 1970-2020 (Quadrillion Btu). For more detailed information, contact the National Energy Information Center at (202) 586-8800. horizonal...

145

U.S. Energy Information Administration...  

Annual Energy Outlook 2012 (EIA)

Review: Evaluation of 2011 and Prior Reference Case Projections 35 Table 22. Energy intensity, projected vs. actual Projected (quadrillion Btu Billion 2005 Chained...

146

"Table 17. Total Delivered Residential Energy Consumption, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Residential Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,...

147

How much of the world's energy does the United States use? - FAQ ...  

U.S. Energy Information Administration (EIA)

How much of the world's energy does the United States use? In 2010, world total primary energy consumption was 511 quadrillion Btu. The United States' primary energy ...

148

How is electricity used in U.S. homes? - FAQ - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Estimated U.S. residential electricity consumption by end-use, 2011. End-use Quadrillion Btu Billion kilowatthours Share of total; ... tariff, and demand charge data?

149

Slide 1  

U.S. Energy Information Administration (EIA)

... quadrillion Btu Annual Energy Outlook 2008 Unconventional light-duty vehicles constitute 45 percent of sales in 2030 Hybrids Flex Fuel Turbo Direct Injection ...

150

Rest of US  

E-Print Network (OSTI)

www.eia.gov Primary energy use by fuel, 1980-2035 …in absolute terms, all fuels grow except petroleum liquids U.S. energy consumption quadrillion Btu

Adam Sieminski Administrator; Adam Sieminski; Eagle Ford (tx

2012-01-01T23:59:59.000Z

151

Table US1. Total Energy Consumption, Expenditures, and Intensities ...  

U.S. Energy Information Administration (EIA)

Quadrillion British Thermal Units (Btu) U.S. Households (millions) Other Appliances and Lighting Space Heating (Major Fuels) 4 Air-Conditioning 5 Water Heating 6 ...

152

www.eia.gov  

U.S. Energy Information Administration (EIA)

Wind Offshore Wind Electricity Generation (billion kilowatthours) Biogenic Municipal Waste 5/ Energy Consumption 6/ (quadrillion Btu) End-Use Generators 7/

153

Table 1.3 Primary Energy Consumption Estimates by Source, 1949 ...  

U.S. Energy Information Administration (EIA)

Table 1.3 Primary Energy Consumption Estimates by Source, 1949-2011 (Quadrillion Btu) Year: Fossil Fuels: Nuclear Electric Power

154

U.S. expected to be largest producer of petroleum and natural ...  

U.S. Energy Information Administration (EIA)

Maps by energy source and topic, includes ... Press Releases ... for 2011 and 2012 were roughly equivalent—within 1 quadrillion Btu of one another. In 2013, ...

155

Table E1. Estimated Primary Energy Consumption in the United ...  

U.S. Energy Information Administration (EIA)

Table E1. Estimated Primary Energy Consumption in the United States, Selected Years, 1635-1945 (Quadrillion Btu) Year: Fossil Fuels

156

Table US1. Total Energy Consumption, Expenditures, and Intensities ...  

U.S. Energy Information Administration (EIA)

Part 1: Housing Unit Characteristics and Energy Usage Indicators Energy Consumption 2 Energy Expenditures 2 Total U.S. (quadrillion Btu) Per Household (Dollars) Per

157

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2012 (EIA)

Transportation sector energy demand Growth in transportation energy consumption flat across projection figure data The transportation sector consumes 27.1 quadrillion Btu of energy...

158

Figure 70. Delivered energy consumption for transportation ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 70. Delivered energy consumption for transportation by mode, 2011 and 2040 (quadrillion Btu) Total Rail Pipeline Marine ...

159

Figure 64. Industrial energy consumption by fuel, 2011, 2025, and ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 64. Industrial energy consumption by fuel, 2011, 2025, and 2040 (quadrillion Btu) Natural Gas Petroleum and other liquids

160

Figure 63. Industrial delivered energy consumption by application ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 63. Industrial delivered energy consumption by application, 2011-2040 (quadrillion Btu) Manufacturing heat and power Nonmanufacturing heat ...

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. The dataset contains data for the Rockies region...

162

Annual Renewable Electricity Net Generation by Country (1980...  

Open Energy Info (EERE)

Net Generation by Country (1980 - 2009) Total annual renewable electricity net generation by country, 1980 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu)....

163

Table AP1. Total Households Using Home Appliances and Lighting by ...  

U.S. Energy Information Administration (EIA)

Total Consumption for Home Appliances and Lighting by Fuels Used, 2005 Quadrillion British Thermal Units (Btu) U.S. Households (millions) Electricity

164

Bulk chemicals industry uses 5% of U.S. energy - Today in ...  

U.S. Energy Information Administration (EIA)

The industrial sector is responsible for nearly a third of total energy use in the United States, consuming an estimated 31 quadrillion Btu in 2012.

165

Energy Information Administration / Annual Energy Outlook 2011  

Annual Energy Outlook 2012 (EIA)

Table A1. Total Energy Supply, Disposition, and Price Summary (Quadrillion Btu per Year, Unless Otherwise Noted) Supply, Disposition, and Prices Reference Case Annual Grow th...

166

Annual Energy Outlook with Projections to 2025-Figure 6. Energy...  

Annual Energy Outlook 2012 (EIA)

6. Energy production by fuel, 1970-2025 (quadrillion Btu). For more detailed information, contact the National Energy Information Center at (202) 586-8800. Energy Information...

167

www.eia.gov  

U.S. Energy Information Administration (EIA)

"MSN","YYYYMM","Value","Column_Order","Description","Unit" "OGTCBUS",197313,57.349835,1,"Petroleum and Natural Gas Consumption","Quadrillion Btu" ...

168

Annual Energy Outlook with Projections to 2025-Figure 2. Energy...  

Gasoline and Diesel Fuel Update (EIA)

2. Energy Consumption by Fuel, 1970-2025 (quadrillion Btu). For more detailed information, contact the National Energy Information Center at (202) 586-8800. History: Energy...

169

Annual Energy Outlook with Projections to 2025-Figure 5. Total...  

Gasoline and Diesel Fuel Update (EIA)

5. Total energy production and consumption, 1970-2025 (quadrillion Btu). For more detailed information, contact the National Energy Information Center at (202) 586-8800. Energy...

170

Word Pro - Untitled1  

Gasoline and Diesel Fuel Update (EIA)

Energy Overview (Quadrillion Btu) Production Trade Stock Change and Other d Consumption Fossil Fuels a Nuclear Electric Power Renew- able Energy b Total Imports Exports Net...

171

Word Pro - S1.lwp  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Overview (Quadrillion Btu) Production Trade Stock Change and Other d Consumption Fossil Fuels a Nuclear Electric Power Renew- able Energy b Total Imports Exports Net...

172

www.eia.gov  

U.S. Energy Information Administration (EIA)

Fig26 Short-Term Energy Outlook, September 2013 U.S. Renewable Energy Supply (Quadrillion Btu) Energy Source Hydropower Wood biomass Liquid biofuels

173

IEA and EIA: Similarities and Differences in Projections and ...  

U.S. Energy Information Administration (EIA)

China and India account for about half of the world increase in energy use . 15 . world energy consumption . quadrillion Btu . Source: EIA, International Energy ...

174

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA...

175

EIA Data: Total International Primary Energy Consumption

This...  

Open Energy Info (EERE)

EIA Data: Total International Primary Energy Consumption

This table lists total primary energy consumption by country and region in Quadrillion Btu.  Figures in this table...

176

Renewable Energy Consumption for Nonelectric Use by Energy Use...  

Open Energy Info (EERE)

Renewable Energy Consumption for Nonelectric Use by Energy Use Sector and Energy Source, 2004 - 2008 This dataset provides annual renewable energy consumption (in quadrillion Btu)...

177

OpenEI - Industrial  

Open Energy Info (EERE)

renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by...

178

COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal  

SciTech Connect

Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

Smith, V.E.; Merriam, N.W.

1994-10-01T23:59:59.000Z

179

Compiler support for garbage collection in a statically typed language  

Science Conference Proceedings (OSTI)

We consider the problem of supporting compacting garbage collection in the presence of modern compiler optimizations. Since our collector may move any heap object, it must accurately locate, follow, and update all pointers and values derived from pointers. ...

Amer Diwan; Eliot Moss; Richard Hudson

1992-07-01T23:59:59.000Z

180

Compiling and optimizing spreadsheets for FPGA and multicore execution  

E-Print Network (OSTI)

A major barrier to developing systems on multicore and FPGA chips is an easy-to-use development environment. This thesis presents the RhoZeta spreadsheet compiler and Catalyst optimization system for programming multiprocessors ...

Hirsch, Amir

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

9th Workshop on Compiler-Driven Performance  

Science Conference Proceedings (OSTI)

As computer hardware continues to dramatically improve in transistor density and raw capability, the importance of compilers to bridge the gap between high-level programming languages and these abundant hardware resources has never been greater. The ...

Clark Verbrugge; J. Gregory Steffan; Mark Stoodley; Kit Barton; Ond?ej Lhoták

2010-11-01T23:59:59.000Z

182

Verifiable compilation of I/O automata without global synchronization  

E-Print Network (OSTI)

Part I of this thesis presents a strategy for compiling distributed systems specified in IOA into Java programs running on a group of networked workstations. IOA is a formal language for describing distributed systems as ...

Tauber, Joshua A. (Joshua Allen)

2005-01-01T23:59:59.000Z

183

NACRE: A European Compilation of Reaction rates for Astrophysics  

Science Conference Proceedings (OSTI)

We report on the program and results of the NACRE network (Nuclear Astrophysics Compilation of REaction rates). We have compiled low-energy cross section data for 86 charged-particle induced reactions involving light (1?Z?14) nuclei. The corresponding Maxwellian-averaged thermonuclear reactions rates are calculated in the temperature range from 10 6 ? K to 10 10 ? K . The web site “http://pntpm.ulb.ac.be/nacre.htm”

Carmen Angulo; the NACRE Collaboration

1999-01-01T23:59:59.000Z

184

www.eia.gov  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL ... World Total ww (Quadrillion (10 15) Btu) F.4 World Dry Natural Gas Production (Btu ...

185

www.eia.gov  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR ... World Total ww - - NA (Quadrillion (10 15) Btu) F.5 World Coal Production (Btu ...

186

table E1  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL ... Table E.1 World Primary Energy Consumption (Btu), 1980-2006 (Quadrillion (10 15 ) Btu) Page

187

Facts and Stats | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

combined7 Global energy and climate The approximate energy released in the burning of a wood match: 1 Btu8 Total energy used in the U.S. each year: 99.89 quadrillion Btu9 Portion...

188

~A four carbon alcohol. It has double the amount of carbon of ethanol, which equates to a substantial increase in harvestable energy (Btu's).  

E-Print Network (OSTI)

to a substantial increase in harvestable energy (Btu's). ~Butanol is safer to handle with a Reid Value of 0.33 psi is easily recovered, increasing the energy yield of a bushel of corn by an additional 18 percent over the energy yield of ethanol produced from the same quantity of corn. ~Current butanol prices as a chemical

Toohey, Darin W.

189

An Overview of the FLINT/ML Compiler  

E-Print Network (OSTI)

The FLINT project at Yale aims to build a state-of-the-art systems environment for modern typesafe languages. One important component of the FLINT system is a high-performance type-directed compiler for SML'97 (extended with higher-order modules). The FLINT/ML compiler provides several new capabilities that are not available in other type-based compilers: ffl type-directed compilation is carried over across the higher-order module boundaries; ffl recursive and mutable data objects can use unboxed representations without incurring expensive runtime cost on heavily polymorphic code; ffl parameterized modules (functors) can be selectively specialized, just as normal polymorphic functions; ffl new type representations are used to reduce the cost of type manipulation thus the compilation time. This paper gives an overview of these novel aspects, and a preliminary report on the current status of the implementation. 1 Introduction The FLINT project at Yale aims to build a state-of-the-ar...

Zhong Shao

1997-01-01T23:59:59.000Z

190

Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995  

SciTech Connect

Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

1995-08-01T23:59:59.000Z

191

Compile lessons learned and good practices from ongoing and previous  

Open Energy Info (EERE)

Compile lessons learned and good practices from ongoing and previous Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country Jump to: navigation, search Stage 2 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other

192

Energy-efficient new commercial buildings in the Northwest region: a compilation of measured data  

SciTech Connect

We have collected and analyzed data for 36 new commercial buildings designed to be energy-efficient in the Northwest. Eighteen buildings are offices; the remainder are mostly retail buildings, and schools. The data were collected and analyzed to evaluate the building energy standards adopted by the Northwest Power Planning Council in the Northwest Conservation and Electric Power Plan. Almost half of the buildings are operating at energy levels under the Council's estimates for new efficient commercial buildings. There is, however, a large range of energy intensities. The average office building consumes 54 kBtu/ftS-yr (in site energy units), while the average small office uses only 43 kBtu/ftS-yr. Energy consumption for the eight retail buildings ranges from 47 kBtu/fS-yr to 134 kBtu/ftS-yr.

Piette, M.A.; Flora, D.; Crowder, S.

1985-05-01T23:59:59.000Z

193

Automated Vulnerability Detection for Compiled Smart Grid Software  

Science Conference Proceedings (OSTI)

While testing performed with proper experimental controls can provide scientifically quantifiable evidence that software does not contain unintentional vulnerabilities (bugs), it is insufficient to show that intentional vulnerabilities exist, and impractical to certify devices for the expected long lifetimes of use. For both of these needs, rigorous analysis of the software itself is essential. Automated software behavior computation applies rigorous static software analysis methods based on function extraction (FX) to compiled software to detect vulnerabilities, intentional or unintentional, and to verify critical functionality. This analysis is based on the compiled firmware, takes into account machine precision, and does not rely on heuristics or approximations early in the analysis.

Prowell, Stacy J [ORNL; Pleszkoch, Mark G [ORNL; Sayre, Kirk D [ORNL; Linger, Richard C [ORNL

2012-01-01T23:59:59.000Z

194

Sustainable Energy Science and Engineering Center EML 4930/EML 5930 Energy Conversion Systems II  

E-Print Network (OSTI)

. District heating - distributing heat from waste heat from power generating plants. Water heating: passive Energy Science and Engineering Center Solar Heating Quadrillion Btu 1 Btu = 1,055.0559 joule 1 Quadrillion = 1015 Domestic active solar heating: Space heating - Cost effective to invest in home insulation

Krothapalli, Anjaneyulu

195

Improving power efficiency with compiler-assisted cache replacement  

Science Conference Proceedings (OSTI)

Data cache in embedded systems plays the roles of both speeding up program execution and reducing power consumption. However, a hardware-only cache management scheme usually results in unsatisfactory cache utilization. In several new architectures, cache ... Keywords: Compiler optimization, Intel XScale, cache management, knapsack problem, low power

Hongbo Yang; R. Govindarajan; Guang R. Gao; Ziang Hu

2005-12-01T23:59:59.000Z

196

HappyJIT: a tracing JIT compiler for PHP  

Science Conference Proceedings (OSTI)

Current websites are a combination of server-generated dynamic content with client-side interactive programs. Dynamically - typed languages have gained a lot of ground in both of these domains. The growth of Web 2.0 has introduced a myriad of websites ... Keywords: dynamically typed languages, interpreter, just-in-time compilation, php, pypy, rpython, tracing

Andrei Homescu; Alex ?uhan

2012-03-01T23:59:59.000Z

197

Processor virtualization and split compilation for heterogeneous multicore embedded systems  

Science Conference Proceedings (OSTI)

Embedded multiprocessors have always been heterogeneous, driven by the power-efficiency and compute-density of hardware specialization. We aim to achieve portability and sustained performance of complete applications, leveraging diverse programmable ... Keywords: annotations, back-end optimization, bytecode language, heterogeneous multicore, portable performance, specialization, split compilation, vectorization, virtualization

Albert Cohen; Erven Rohou

2010-06-01T23:59:59.000Z

198

A verifiable SSA program representation for aggressive compiler optimization  

Science Conference Proceedings (OSTI)

We present a verifiable low-level program representation to embed, propagate, and preserve safety information in high perfor-mance compilers for safe languages such as Java and C#. Our representation precisely encodes safety information via static single-assignment ... Keywords: SSA formalization, check elimination, intermediate representations, proof variables, safety dependences, type systems, typeability preservation, typed intermediate languages

Vijay S. Menon; Neal Glew; Brian R. Murphy; Andrew McCreight; Tatiana Shpeisman; Ali-Reza Adl-Tabatabai; Leaf Petersen

2006-01-01T23:59:59.000Z

199

A compiled-code hardware accelerator for circuit simulation  

Science Conference Proceedings (OSTI)

Describes the application of compiled-code techniques to the design of a hardware accelerator for circuit simulation, offering a speedup by a factor of up to 4400 compared with a software circuit simulator running on a Sun-3/60 workstation. The preprocessing ...

D. M. Lewis

2006-11-01T23:59:59.000Z

200

Compile-time dynamic voltage scaling settings: opportunities and limits  

Science Conference Proceedings (OSTI)

With power-related concerns becoming dominant aspects of hardware and software design, significant research effort has been devoted towards system power minimization. Among run-time power-management techniques, dynamic voltage scaling (DVS) has emerged ... Keywords: analytical model, compiler, dynamic voltage scaling, low power, mixed-integer linear programming

Fen Xie; Margaret Martonosi; Sharad Malik

2003-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Practical parallel remote method invocation for the Babel compiler  

Science Conference Proceedings (OSTI)

Parallel components are types of software components that contain Single Program Multiple Data (SPMD) parallel code and are used and defined by the Common Component Architecture (CCA) component model. Parallel Remote Method Invocation (PRMI) defines ... Keywords: IDL compiler, parallel remote method invocation

Kostadin Damevski; Keming Zhang; Steven Parker

2007-10-01T23:59:59.000Z

202

The Impact of Codes, Regulations, and Standards on Split-Unitary Air Conditioners and Heat Pumps, 65,000 Btu/hr and Under  

Science Conference Proceedings (OSTI)

This document establishes a framework for understanding the technology and regulation of split-unitary air conditioners and heat pumps 65,000 Btu/hr and under. The reporting framework is structured so that it can be added to in the future. This study is broken into six chapters:The basic components, refrigeration cycle, operation, and efficiency ratings of split-unitary air conditioners and heat pumps are covered for background information.Equipment efficiency ...

2012-09-21T23:59:59.000Z

203

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings  

DOE Patents (OSTI)

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

Scheffer, K.D.

1984-07-03T23:59:59.000Z

204

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings  

DOE Patents (OSTI)

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

1984-07-03T23:59:59.000Z

205

EIA - Annual Energy Outlook 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Sector Energy Consumption by Sector Transportation figure data Delivered energy consumption in the transportation sector grows from 27.6 quadrillion Btu in 2010 to 28.8 quadrillion Btu in 2035 in the AEO2012 Reference case (Figure 7). Energy consumption by light-duty vehicles (LDVs) (including commercial light trucks) initially declines in the Reference case, from 16.5 quadrillion Btu in 2010 to 15.7 quadrillion Btu in 2025, due to projected increases in the fuel economy of highway vehicles. Projected energy consumption for LDVs increases after 2025, to 16.3 quadrillion Btu in 2035. The AEO2012 Reference case projections do not include proposed increases in LDV fuel economy standards-as outlined in the December 2011 EPA and NHTSA Notice of Proposed Rulemaking for 2017 and

206

OpenEI - Nonelectric  

Open Energy Info (EERE)

for Nonelectric Use by Energy Use Sector and Energy Source, for Nonelectric Use by Energy Use Sector and Energy Source, 2004 - 2008 http://en.openei.org/datasets/node/54 This dataset provides annual renewable energy consumption (in quadrillion Btu) for nonelectric use in the United States by energy use sector and energy source between 2004 and 2008. The data was compiled and published by EIA; the spreadsheet provides more details about specific sources for data used in the analysis.

License
Type of License: 

207

Compiled MPI: Cost-Effective Exascale Applications Development  

SciTech Connect

The complexity of petascale and exascale machines makes it increasingly difficult to develop applications that can take advantage of them. Future systems are expected to feature billion-way parallelism, complex heterogeneous compute nodes and poor availability of memory (Peter Kogge, 2008). This new challenge for application development is motivating a significant amount of research and development on new programming models and runtime systems designed to simplify large-scale application development. Unfortunately, DoE has significant multi-decadal investment in a large family of mission-critical scientific applications. Scaling these applications to exascale machines will require a significant investment that will dwarf the costs of hardware procurement. A key reason for the difficulty in transitioning today's applications to exascale hardware is their reliance on explicit programming techniques, such as the Message Passing Interface (MPI) programming model to enable parallelism. MPI provides a portable and high performance message-passing system that enables scalable performance on a wide variety of platforms. However, it also forces developers to lock the details of parallelization together with application logic, making it very difficult to adapt the application to significant changes in the underlying system. Further, MPI's explicit interface makes it difficult to separate the application's synchronization and communication structure, reducing the amount of support that can be provided by compiler and run-time tools. This is in contrast to the recent research on more implicit parallel programming models such as Chapel, OpenMP and OpenCL, which promise to provide significantly more flexibility at the cost of reimplementing significant portions of the application. We are developing CoMPI, a novel compiler-driven approach to enable existing MPI applications to scale to exascale systems with minimal modifications that can be made incrementally over the application's lifetime. It includes: (1) New set of source code annotations, inserted either manually or automatically, that will clarify the application's use of MPI to the compiler infrastructure, enabling greater accuracy where needed; (2) A compiler transformation framework that leverages these annotations to transform the original MPI source code to improve its performance and scalability; (3) Novel MPI runtime implementation techniques that will provide a rich set of functionality extensions to be used by applications that have been transformed by our compiler; and (4) A novel compiler analysis that leverages simple user annotations to automatically extract the application's communication structure and synthesize most complex code annotations.

Bronevetsky, G; Quinlan, D; Lumsdaine, A; Hoefler, T

2012-04-10T23:59:59.000Z

208

Code Generation and Separate Compilation in a Parallel Program Debugger  

E-Print Network (OSTI)

The Parallel Program Debugger (PPD) allows a programmer to find bugs by following dynamic dependences in a program's execution; this technique is called flowback analysis. Flowback analysis requires the tracing of all variable references and modifications. PPD avoids the overhead of this tracing by recording only a subset of the program's state during execution, and incrementally filling in the missing details when the programmer makes queries about execution dependences. There is a trade-off between overhead of the tracing during program execution and the speed of generating the missing details during user queries. Our compiler is divided into four phases. This separation of phases allows us to first compile separate files, and to generate code for these files. Second, we perform interprocedural analysis using the data structures generated by the first phase. Third, we modify the individual assembly files to account for optimizations to the tracing, and to generate tracing for shared ...

Jong-deok Choi; Barton P. Miller

1990-01-01T23:59:59.000Z

209

Solving planning-graph by compiling it into CSP  

E-Print Network (OSTI)

Although the deep affinity between Graphplan's backward search, and the process of solving constraint satisfaction problems has been noted earlier, these relations have hither-to been primarily used to adapt CSP search techniques into the backward search phase of Graphplan. This paper describes GP-CSP, a system that does planning by automatically converting Graphplan's planning graph into a CSP encoding, and solving the CSP encoding using standard CSP solvers. Our comprehensive empirical evaluation of GP-CSP demonstrates that it is quite competitive with both standard Graphplan and Blackbox system, which compiles planning graphs into SAT encodings. We discuss the many advantages offered by focusing on CSP encodings rather than SAT encodings, including the fact that by exploiting implicit constraint representations, GP-CSP tends to be less susceptible to memory blow-up associated with methods that compile planning problems into SAT encodings. Our work is inspired by t...

Minh Binh Do; Subbarao Kambhampati

2000-01-01T23:59:59.000Z

210

Compilation of EPRI Heat Recovery Steam Generator (HRSG) Guidelines  

Science Conference Proceedings (OSTI)

Combined-cycle units with heat recovery steam generators (HRSGs) represent a substantial portion of new installed generation worldwide since the 1990s. Despite being relative new, these units have experienced a significant loss of availability and reliability due to tubing failures. Many of these failures are attributed to poor design, improper operation, weaknesses in fabrication, and poor installation practices. This product is a compilation of nine (9) key individual guidelines developed to address re...

2007-12-20T23:59:59.000Z

211

Language Embedding by Dual Compilation and State Mirroring  

E-Print Network (OSTI)

experience with the BinPro­ log Tcl/Tk interface. Compilation by each side, that targets the other's syntax programming environment to Prolog systems. The popular Tcl/Tk visual language by John Ousterhout [2­processor interaction model we will re­ port how it has been applied to an interface between BinProlog [3], and Tcl/Tk

Tarau, Paul

212

Compilation of COG Packing Reports 2002-2003  

Science Conference Proceedings (OSTI)

Under a technical exchange agreement, EPRI has obtained several reports documenting research conducted by the Candu Owners Group (COG). This report presents a compilation of COG reports documenting research conducted in 20022003 to investigate the frictional performance characteristics of several valve packing materials that contain Teflon (PTFE). The testing conducted by the COG includes the effects of previous ionizing radiation exposure on the frictional performance of these packing materials

2006-05-02T23:59:59.000Z

213

Compilation of EPRI Fossil Plant Cycle Chemistry Guidelines  

Science Conference Proceedings (OSTI)

The purity of water and steam is central to ensuring fossil plant component availability and reliability. This compilation of the program’s ten (10) key cycle chemistry guidelines and the Integrated Boiler Tube Failure Reduction/Cycle Chemistry Improvement Program provides unique guidance to select and continually optimize feedwater and boiler water treatments. These guidelines will help operators reduce corrosion and deposition and, thereby, achieve and maintain significant operation and maintenance cos...

2007-12-20T23:59:59.000Z

214

Nuclear Maintenance Applications Center: Lube Notes Compilation, 1989-2007  

Science Conference Proceedings (OSTI)

Proper equipment lubrication is a necessity for trouble-free operation in both nuclear and fossil power plants. In 1989, EPRI's Nuclear Maintenance Applications Center (NMAC) began publishing Lube Notes biannually. The intent of the newsletter was to address common lubrication issues and provide assistance to plant maintenance personnel. Lubrication topics vary from component-specific case studies to generic testing analysis. This report compiles all of the Lube Notes published from 1989 through 2007. In...

2007-12-21T23:59:59.000Z

215

FlexCC2: An Optimizing Retargetable C Compiler for DSP Processors  

Science Conference Proceedings (OSTI)

The design of efficient compilers for embedded processors has emerged with the growing importance of embedded application-specific processors and DSPs in consumer, multimedia and communication applications. We present in this paper the FlexCC2 compiler. ...

Valérie Bertin; Jean-Marc Daveau; Philippe Guillaume; Thierry Lepley; Denis Pilat; Claire Richard; Miguel Santana; Thomas Thery

2002-10-01T23:59:59.000Z

216

Compilation of Published PM2.5 Emission Rates for Cooking, Candles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Compilation of Published PM2.5 Emission Rates for Cooking, Candles and Incense for Use in Modeling of Exposures in Residences Title Compilation of Published PM2.5 Emission Rates...

217

A unified processor model for compiler verification and simulation using ASM  

Science Conference Proceedings (OSTI)

For safety critical embedded systems the correctness of the processor, toolchain and compiler is an important issue. Translation validation is one approach for compiler verification. A common semantic framework to represent source and target language ...

Roland Lezuo; Andreas Krall

2012-06-01T23:59:59.000Z

218

An Infrastructure to Functionally Test Designs Generated by Compilers Targeting FPGAs  

E-Print Network (OSTI)

This paper presents an infrastructure to test the functionality of the specific architectures output by a high-level compiler targeting dynamically reconfigurable hardware. It results in a suitable scheme to verify the architectures generated by the compiler, each time new optimization techniques are included or changes in the compiler are performed. We believe this kind of infrastructure is important to verify, by functional simulation, further research techniques, as far as compilation to Field-Programmable Gate Array (FPGA) platforms is concerned.

Rodrigues, Rui

2011-01-01T23:59:59.000Z

219

Ravel-XL: a hardware accelerator for assigned delay compiled-code logic gate simulation  

Science Conference Proceedings (OSTI)

Keywords: design verification, digital logic simulation, hardware accelerators, levelized compiled code, simulation engines, special purpose architectures, timing analysis

Michael A. Riepe; João P. Marques Silva; Karem A. Sakallah; Richard B. Brown

1996-03-01T23:59:59.000Z

220

Comparison of coal-based systems: marketability of medium-Btu gas and SNG (substitute natural gas) for industrial applications. Final report, July 1979-March 1982  

Science Conference Proceedings (OSTI)

In assessing the marketability of synthetic fuel gases from coal, this report emphasizes the determination of the relative attractiveness of substitute natural gas (SNG) and medium-Btu gas (MBG) for serving market needs in eight industrial market areas. The crucial issue in predicting the marketability of coal-based synthetic gas is the future price level of competing conventional alternatives, particularly oil. Under a low oil-price scenario, the market outlook for synthetic gases is not promising, but higher oil prices would encourage coal gasification.

Olsen, D.L.; Trexel, C.A.; Teater, N.R.

1982-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Exploiting phase inter-dependencies for faster iterative compiler optimization phase order searches  

Science Conference Proceedings (OSTI)

The problem of finding the most effective set and ordering of optimization phases to generate the best quality code is a fundamental issue in compiler optimization research. Unfortunately, the exorbitantly large phase order search spaces in current compilers ... Keywords: iterative compilation, optimization ordering, search space pruning

Michael R. Jantz; Prasad A. Kulkarni

2013-09-01T23:59:59.000Z

222

ICE™ and ICE/T™: tools to assist in compiler design and implementation  

Science Conference Proceedings (OSTI)

ICE (Intermediate Code Engine) and ICE/T (ICE/Translator) are compiler back ends that execute on a Java Virtual Machine (JVM). They allow the student to complete a working compiler quickly and can execute on any platform that supplies a JVM. ICE is a ... Keywords: back-end, compiler, project, translator

Truman Parks Boyer; Mohsen Chitsaz

2004-12-01T23:59:59.000Z

223

Compile-Time Compaction Of Traces For Memory Simulation  

E-Print Network (OSTI)

This thesis examines compile-time compaction of program execution traces. It presents a new method for compacting traces for memory simulation. Further, it describes a tool prototype that implements the method. Experiments with the tool prototype show that the new method reduces the time needed in simulating the operation of memories. Memory simulation is needed in the performance analysis and in the design of programs. In high performance applications, the data transfer between different layers of memory is one of the main bottlenecks. A program execution trace is a list of memory references. Using traces as simulation inputs is a flexible way of analyzing the memory perfor...

Vesa Hirvisalo; Vesa Hirvisalo; Dr. Tech Esko Nuutila

1998-01-01T23:59:59.000Z

224

National Energy Strategy: A compilation of public comments; Interim Report  

Science Conference Proceedings (OSTI)

This Report presents a compilation of what the American people themselves had to say about problems, prospects, and preferences in energy. The Report draws on the National Energy Strategy public hearing record and accompanying documents. In all, 379 witnesses appeared at the hearings to exchange views with the Secretary, Deputy Secretary, and Deputy Under Secretary of Energy, and Cabinet officers of other Federal agencies. Written submissions came from more than 1,000 individuals and organizations. Transcripts of the oral testimony and question-and-answer (Q-and-A) sessions, as well as prepared statements submitted for the record and all other written submissions, form the basis for this compilation. Citations of these sources in this document use a system of identifying symbols explained below and in the accompanying box. The Report is organized into four general subject areas concerning: (1) efficiency in energy use, (2) the various forms of energy supply, (3) energy and the environment, and (4) the underlying foundations of science, education, and technology transfer. Each of these, in turn, is subdivided into sections addressing specific topics --- such as (in the case of energy efficiency) energy use in the transportation, residential, commercial, and industrial sectors, respectively. 416 refs., 44 figs., 5 tabs.

Not Available

1990-04-01T23:59:59.000Z

225

Commercial Buildings Energy Consumption and Expenditures 1992 - Executive  

U.S. Energy Information Administration (EIA) Indexed Site

& Expenditures > Executive Summary & Expenditures > Executive Summary 1992 Consumption & Expenditures Executive Summary Commercial Buildings Energy Consumption and Expenditures 1992 presents statistics about the amount of energy consumed in commercial buildings and the corresponding expenditures for that energy. These data are based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), a national energy survey of buildings in the commercial sector, conducted by the Energy Information Administration (EIA) of the U.S. Department of Energy. Figure ES1. Energy Consumption is Commercial Buidings by Energy Source, 1992 Energy Consumption: In 1992, the 4.8 million commercial buildings in the United States consumed 5.5 quadrillion Btu of electricity, natural gas, fuel oil, and district heat. Of those 5.5 quadrillion Btu, consumption of site electricity accounted for 2.6 quadrillion Btu, or 48.0 percent, and consumption of natural gas accounted for 2.2 quadrillion Btu, or 39.6 percent. Fuel oil consumption made up 0.3 quadrillion Btu, or 4.0 percent of the total, while consumption of district heat made up 0.4 quadrillion Btu, or 7.9 percent of energy consumption in that sector. When the energy losses that occur at the electricity generating plants are included, the overall energy consumed by commercial buildings increases to about 10.8 quadrillion Btu (Figure ES1).

226

COMPILATION OF LABORATORY SCALE ALUMINUM WASH AND LEACH REPORT RESULTS  

Science Conference Proceedings (OSTI)

This report compiles and analyzes all known wash and caustic leach laboratory studies. As further data is produced, this report will be updated. Included are aluminum mineralogical analysis results as well as a summation of the wash and leach procedures and results. Of the 177 underground storage tanks at Hanford, information was only available for five individual double-shell tanks, forty-one individual single-shell tanks (e.g. thirty-nine 100 series and two 200 series tanks), and twelve grouped tank wastes. Seven of the individual single-shell tank studies provided data for the percent of aluminum removal as a function of time for various caustic concentrations and leaching temperatures. It was determined that in most cases increased leaching temperature, caustic concentration, and leaching time leads to increased dissolution of leachable aluminum solids.

HARRINGTON SJ

2011-01-06T23:59:59.000Z

227

Monthly energy review: September 1996  

Science Conference Proceedings (OSTI)

Energy production during June 1996 totaled 5.6 quadrillion Btu, a 0.5% decrease from the level of production during June 1995. Energy consumption during June 1996 totaled 7.1 quadrillion Btu, 2.7% above the level of consumption during June 1995. Net imports of energy during June 1996 totaled 1.6 quadrillion Btu, 4.5% above the level of net imports 1 year earlier. Statistics are presented on the following topics: energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. 37 figs., 59 tabs.

NONE

1996-09-01T23:59:59.000Z

228

Compilation of Results and Feedback Regarding Turbine Upgrades at Nuclear and Fossil Power Plants  

Science Conference Proceedings (OSTI)

This report compiles results and feedback and draws a number of conclusions and lessons learned regarding steam turbine generator upgrades at nuclear and fossil power plants.

2008-11-24T23:59:59.000Z

229

MetaVM: A Transparent Distributed Object System Supported by Runtime Compiler  

E-Print Network (OSTI)

MetaVM is a distributed object system for Java virtual machine. It allows programmers to deal with remote objects in the same way they do local objects. Therefore, it can provide a single machine image to programmers. We implemented a runtime compiler of Java bytecode to provide the facilities. The runtime compiler generates a native code which can handle remote objects beyond the network besides the local objects. The compiler uses semantic expansion, which is a technique that changes the original semantics of a Java bytecode. Keywords: distributed object system, network transparency, Java Just-In-Time compiler 1

Kazuyuki Shudo Yoichi; Yoichi Muraoka

2000-01-01T23:59:59.000Z

230

Regulatory and technical reports: (Abstract index journal). Compilation for first quarter 1997, January--March  

Science Conference Proceedings (OSTI)

This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issued by the U.S. Nuclear Regulatory Commission (NRC) Staff and its contractors. This compilation is published quarterly and cummulated annually. Reports consist of staff-originated reports, NRC-sponsored conference reports, NRC contractor-prepared reports, and international agreement reports.

Sheehan, M.A.

1997-06-01T23:59:59.000Z

231

Interactive educational simulations for promoting the comprehension of basic compiler construction concepts  

Science Conference Proceedings (OSTI)

Evaluators 2.0 is an educational software system that lets instructors in introductory compiler construction courses generate interactive simulators from batteries of exercises concerning basic concepts in attribute grammars. The system also makes it ... Keywords: analysis tool, attribute grammar, authoring tool, education in compiler construction, interacttive educational simulation

Daniel Rodriguez-Cerezo, Mercedes Gómez-Albarrán, José-Luis Sierra-Rodríguez

2013-07-01T23:59:59.000Z

232

Solving the TTC 2011 Compiler Optimization Case with GrGen.NET  

E-Print Network (OSTI)

The challenge of the Compiler Optimization Case is to perform local optimizations and instruction selection on the graph-based intermediate representation of a compiler. The case is designed to compare participating tools regarding their performance. We tackle this task employing the general purpose graph rewrite system GrGen.NET (www.grgen.net).

Buchwald, Sebastian; 10.4204/EPTCS.74.7

2011-01-01T23:59:59.000Z

233

An Overview of the FLINT/ML Compiler \\Lambda Dept. of Computer Science  

E-Print Network (OSTI)

An Overview of the FLINT/ML Compiler \\Lambda Zhong Shao Dept. of Computer Science Yale University New Haven, CT 06520­8285 shao­zhong@cs.yale.edu Abstract The FLINT project at Yale aims to build of the FLINT system is a high­performance type­directed compiler for SML'97 (extended with higher­order modules

234

Evaluation and compilation of fission product yields 1993  

SciTech Connect

This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.

England, T.R.; Rider, B.F.

1995-12-31T23:59:59.000Z

235

Assessment of the current status of basic nuclear data compilations  

SciTech Connect

The Panel on Basic Nuclear Data Compilations believes that it is important to provide the user with an evaluated nuclear database of the highest quality, dependability, and currency. It is also important that the evaluated nuclear data are easily accessible to the user. In the past the panel concentrated its concern on the cycle time for the publication of A-chain evaluations. However, the panel now recognizes that publication cycle time is no longer the appropriate goal. Sometime in the future, publication of the evaluated A-chains will evolve from the present hard-copy Nuclear Data Sheets on library shelves to purely electronic publication, with the advent of universal access to terminals and the nuclear databases. Therefore, the literature cut-off date in the Evaluated Nuclear Structure Data File (ENSDF) is rapidly becoming the only important measure of the currency of an evaluated A-chain. Also, it has become exceedingly important to ensure that access to the databases is as user-friendly as possible and to enable electronic publication of the evaluated data files. Considerable progress has been made in these areas: use of the on-line systems has almost doubled in the past year, and there has been initial development of tools for electronic evaluation, publication, and dissemination. Currently, the nuclear data effort is in transition between the traditional and future methods of dissemination of the evaluated data. Also, many of the factors that adversely affect the publication cycle time simultaneously affect the currency of the evaluated nuclear database. Therefore, the panel continues to examine factors that can influence cycle time: the number of evaluators, the frequency with which an evaluation can be updated, the review of the evaluation, and the production of the evaluation, which currently exists as a hard-copy issue of Nuclear Data Sheets.

Riemer, R.L.

1992-12-31T23:59:59.000Z

236

Compilation of Systems of Records | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Compilation of Systems of Records Compilation of Systems of Records Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Compilation of Systems of Records Energy Employees Occupational Illness Compensation Program Act (EEOICPA) How to Submit a Privacy Act Request Reference Links Categorical Exclusion Determinations Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Larry Kelly U.S. Department of Energy 200 Administration Road Oak Ridge, TN 37830 P: (865) 576-0885 Privacy Act Compilation of Systems of Records Print Text Size: A A A RSS Feeds FeedbackShare Page DOE publishes compilations of Privacy Act systems of records notices (SORNs) periodically in the Federal Register as the SORNS are updated. The

237

Automated on-line determination of PPB levels of sodium and potassium in low-Btu coal gas and fluidized bed combustor exhaust by atomic emission spectrometry  

SciTech Connect

The Morgantown Energy Technology Center (METC), US Department of Energy, is involved in the development of processes and equipment for production of low-Btu gas from coal and for fluidized bed combustion of coal. The ultimate objective is large scale production of electricity using high temperature gas turbines. Such turbines, however, are susceptible to accelerated corrosion and self-destruction when relatively low concentrations of sodium and potassium are present in the driving gas streams. Knowledge and control of the concentrations of those elements, at part per billion levels, are critical to the success of both the gas cleanup procedures that are being investigated and the overall energy conversion processes. This presentation describes instrumentation and procedures developed at the Ames Laboratory for application to the problems outlined above and results that have been obtained so far at METC. The first Ames instruments, which feature an automated, dual channel flame atomic emission spectrometer, perform the sodium and potassium determinations simultaneously, repetitively, and automatically every two to three minutes by atomizing and exciting a fraction of the subject gas sample stream in either an oxyhydrogen flame or a nitrous oxide-acetylene flame. The analytical results are printed and can be transmitted simultaneously to a process control center.

Haas, W.J. Jr.; Eckels, D.E.; Kniseley, R.N.; Fassel, V.A.

1981-01-01T23:59:59.000Z

238

EIA - Annual Energy Outlook 2008 (Early Release)-Energy-Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Annual Energy Outlook 2008 (Early Release) Energy Consumption Total primary energy consumption in the AEO2008 reference case increases at an average rate of 0.9 percent per year, from 100.0 quadrillion Btu in 2006 to 123.8 quadrillion Btu in 2030—7.4 quadrillion Btu less than in the AEO2007 reference case. In 2030, the levels of consumption projected for liquid fuels, natural gas, and coal are all lower in the AEO2008 reference case than in the AEO2007 reference case. Among the most important factors resulting in lower total energy demand in the AEO2008 reference case are lower economic growth, higher energy prices, greater use of more efficient appliances, and slower growth in energy-intensive industries. Figure 2. Delivered energy consumption by sector, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

239

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Energy Production (Quadrillion Btu) Total, 1973-2012 Total, Monthly By Source, 1973-2012 By Source, Monthly Total, January-April By Source, April 2013 a Natural gas plant...

240

EIA - 2010 International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Analyses> International Energy Outlook 2010 - Highlights Analyses> International Energy Outlook 2010 - Highlights International Energy Outlook 2010 - Highlights print version PDF Logo World marketed energy consumption increases by 49 percent from 2007 to 2035 in the Reference case. Total energy demand in non-OECD countries increases by 84 percent, compared with an increase of 14 percent in OECD countries. In the IEO2010 Reference case, which does not include prospective legislation or policies, world marketed energy consumption grows by 49 percent from 2007 to 2035. Total world energy use rises from 495 quadrillion British thermal units (Btu) in 2007 to 590 quadrillion Btu in 2020 and 739 quadrillion Btu in 2035 (Figure 1). Figure 1. World marketed energy consumption, 2007-2035 (quadrillion Btu) Chart data

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EIA - Annual Energy Outlook 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption, which was 101.4 quadrillion Btu in 2007, grows by 10 percent in the AEO2012 Reference case, from 98.2 quadrillion Btu in 2010 to 108.0 quadrillion Btu in 2035-6 quadrillion Btu less than the AEO2011 projection for 2035. The fossil fuel share of energy consumption falls from 83 percent of total U.S. energy demand in 2010 to 77 percent in 2035. Biofuel consumption has been growing and is expected to continue to grow over the projection period. However, the projected increase would present challenges, particularly for volumes of ethanol beyond the saturation level of the E10 gasoline pool. Those additional volumes are likely to be slower in reaching the market, as infrastructure and consumer demand adjust. In

242

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Sector Energy Consumption by Sector Transportation figure data Delivered energy consumption in the transportation sector remains relatively constant at about 27 quadrillion Btu from 2011 to 2040 in the AEO2013 Reference case (Figure 6). Energy consumption by LDVs (including commercial light trucks) declines in the Reference case, from 16.1 quadrillion Btu in 2011 to 14.0 quadrillion Btu in 2025, due to incorporation of the model year 2017 to 2025 GHG and CAFE standards for LDVs. Despite the projected increase in LDV miles traveled, energy consumption for LDVs further decreases after 2025, to 13.0 quadrillion Btu in 2035, as a result of fuel economy improvements achieved through stock turnover as older, less efficient vehicles are replaced by newer, more fuel-efficient vehicles. Beyond 2035, LDV energy demand begins to level off

243

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Flow, (Quadrillion Btu) Total Energy Flow, (Quadrillion Btu) Total Energy Flow diagram image Footnotes: 1 Includes lease condensate. 2 Natural gas plant liquids. 3 Conventional hydroelectric power, biomass, geothermal, solar/photovoltaic, and wind. 4 Crude oil and petroleum products. Includes imports into the Strategic Petroleum Reserve. 5 Natural gas, coal, coal coke, biofuels, and electricity. 6 Adjustments, losses, and unaccounted for. 7 Natural gas only; excludes supplemental gaseous fuels. 8 Petroleum products, including natural gas plant liquids, and crude oil burned as fuel. 9 Includes 0.01 quadrillion Btu of coal coke net exports. 10 Includes 0.13 quadrillion Btu of electricity net imports. 11 Total energy consumption, which is the sum of primary energy consumption, electricity retail sales, and electrical system energy losses.

244

Figure 6. Transportation energy consumption by fuel, 1990-2040 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 6. Transportation energy consumption by fuel, 1990-2040 (quadrillion Btu) Motor Gasoline, no E85 Pipeline Other E85 Jet Fuel

245

Supplement Tables to the Annual Energy Outlook 2005  

Annual Energy Outlook 2012 (EIA)

Table 1. Energy Consumption by Sector and Source (Quadrillion Btu per Year, Unless Otherwise Noted) New England 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014...

246

Power Technologies Energy Data Book: Fourth Edition, Chapter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Table 5.1 - U.S. Total and Delivered Energy (Overview) (Quadrillion Btu per year) 1980 1990 2000 2001 2002 2003 2004 7 2010 2015 2020 2025 2030 Total Consumption by Source 1...

247

Energy-Related Carbon Emissions, by Industry, 1994  

U.S. Energy Information Administration (EIA)

SIC Code Industry Group Total Net Electricity Natural Gas Petro-leum Coal Other (MMTC/ Quadrillion Btu) Total: 371.7: 131.1: 93.5: 87.3: 56.8: 3.1: ...

248

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

2.1 Energy Consumption by Sector (Quadrillion Btu) Total Consumption by End-Use Sector, 1949-2012 Total Consumption by End-Use Sector, Monthly By Sector, June 2013 22 Energy...

249

Power Technologies Energy Data Book: Fourth Edition, Chapter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Table 5.2 - Electricity Flow Diagram (Quadrillion Btu) Source: EIA, Annual Energy Review 2004, DOEEIA-0384(2004) (Washington, D.C., August 2005), Diagram 5. Notes: a Blast...

250

DOE/EIA-0304 Survey of Large Combustors:  

U.S. Energy Information Administration (EIA) Indexed Site

consumption in the United States has been approximated at 25 to 26 quadrillion British thermal units (Btu).- Manufacturin g is by far the largest components totaling 12.9...

251

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption.
2011-07-25T20:15:39Z...

252

Word Pro - S1.lwp  

Gasoline and Diesel Fuel Update (EIA)

Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu) Fossil Fuels Nuclear Electric Power Renewable Energy a Total f Coal Natural Gas b Petro- leum c Total d Hydro-...

253

AEO2012 Early Release Overview  

Gasoline and Diesel Fuel Update (EIA)

AEO2012 Early Release Overview Total U.S. consumption of liquid fuels, including both fossil fuels and biofuels, grows from 37.2 quadrillion Btu (19.2 million barrels per day)...

254

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

4 Appendix F Table F10. Total Non-OECD delivered energy consumption by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sectorfuel Projections Average annual percent change,...

255

International Energy Outlook 2013  

Annual Energy Outlook 2012 (EIA)

0 Appendix F Table F16. Delivered energy consumption in the Middle East by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sectorfuel Projections Average annual percent...

256

t2t3.PDF  

Annual Energy Outlook 2012 (EIA)

Table 1. Energy Consumption by Sector and Source (1 of 3) (Quadrillion Btu per Year, Unless Otherwise Noted) New England 1999- 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008...

257

sup_t2t3.xls  

Gasoline and Diesel Fuel Update (EIA)

Table 1. Energy Consumption by Sector and Source (1 of 3) (Quadrillion Btu per Year, Unless Otherwise Noted) New England 2000- 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009...

258

Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption  

Buildings Energy Data Book (EERE)

1 FY 2007 Federal Primary Energy Consumption (Quadrillion Btu) Buildings and Facilities 0.88 VehiclesEquipment 0.69 (mostly jet fuel and diesel) Total Federal Government...

259

--No Title--  

Buildings Energy Data Book (EERE)

1 FY 2007 Federal Primary Energy Consumption (Quadrillion Btu) Buildings and Facilities 0.88 VehiclesEquipment 0.69 (mostly jet fuel and diesel) Total Federal Government...

260

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

2011 Energy Imports Energy Exports 10 U.S. Energy Information Administration Annual Energy Review 2011 1950 1960 1970 1980 1990 2000 2010 0 10 20 30 40 Quadrillion Btu Petroleum...

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Information Administration / Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

4 Table A17. Renewable Energy, Consumption by Sector and Source 1 (Quadrillion Btu per Year) Sector and Source Reference Case Annual Grow th 2009-2035 (percent) 2008 2009 2015 2020...

262

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Years, 1949-2011 (Quadrillion Btu) Year Fossil Fuels Nuclear Electric Power Renewable Energy 1 Electricity Net Imports 3 Total Coal Coal Coke Net Imports 3 Natural Gas 4...

263

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Years, 1949-2011 (Quadrillion Btu) Year Imports Exports Net Imports 1 Coal Coal Coke Natural Gas Petroleum Bio- fuels 4 Elec- tricity Total Coal Coal Coke Natural Gas...

264

Regulatory and technical reports (abstract index journal): Annual compilation for 1994. Volume 19, Number 4  

SciTech Connect

This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issued by the US Nuclear Regulatory Commission (NRC) Staff and its contractors. It is NRC`s intention to publish this compilation quarterly and to cumulate it annually. The main citations and abstracts in this compilation are listed in NUREG number order. These precede the following indexes: secondary report number index, personal author index, subject index, NRC originating organization index (staff reports), NRC originating organization index (international agreements), NRC contract sponsor index (contractor reports), contractor index, international organization index, and licensed facility index. A detailed explanation of the entries precedes each index.

NONE

1995-03-01T23:59:59.000Z

265

Compilation of Earthquakes from 1850-2007 within 200 miles of the Idaho National Laboratory  

SciTech Connect

An updated earthquake compilation was created for the years 1850 through 2007 within 200 miles of the Idaho National Laboratory. To generate this compilation, earthquake catalogs were collected from several contributing sources and searched for redundant events using the search criteria established for this effort. For all sets of duplicate events, a preferred event was selected, largely based on epicenter-network proximity. All unique magnitude information for each event was added to the preferred event records and these records were used to create the compilation referred to as “INL1850-2007”.

N. Seth Carpenter

2010-07-01T23:59:59.000Z

266

V-043: Perl Locale::Maketext Module '_compile()' Multiple Code Injection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Perl Locale::Maketext Module '_compile()' Multiple Code 3: Perl Locale::Maketext Module '_compile()' Multiple Code Injection Vulnerabilities V-043: Perl Locale::Maketext Module '_compile()' Multiple Code Injection Vulnerabilities December 10, 2012 - 1:00am Addthis PROBLEM: Perl Locale::Maketext Module Two Code Injection Vulnerabilities PLATFORM: Locale::Maketext 1.23 is affected; other versions also may be affected. ABSTRACT: Two vulnerabilities have been reported in Locale::Maketext module for Perl REFERENCE LINKS: Secunia Advisory SA51498 Debian Bug report logs - #695224 Bugtraq ID: 56852 IMPACT ASSESSMENT: Medium DISCUSSION: Two vulnerabilities have been reported in Locale::Maketext module for Perl, which can be exploited by malicious users to compromise an application using the module. The vulnerabilities are caused due to the "_compile()" function not

267

V-043: Perl Locale::Maketext Module '_compile()' Multiple Code Injection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Perl Locale::Maketext Module '_compile()' Multiple Code 3: Perl Locale::Maketext Module '_compile()' Multiple Code Injection Vulnerabilities V-043: Perl Locale::Maketext Module '_compile()' Multiple Code Injection Vulnerabilities December 10, 2012 - 1:00am Addthis PROBLEM: Perl Locale::Maketext Module Two Code Injection Vulnerabilities PLATFORM: Locale::Maketext 1.23 is affected; other versions also may be affected. ABSTRACT: Two vulnerabilities have been reported in Locale::Maketext module for Perl REFERENCE LINKS: Secunia Advisory SA51498 Debian Bug report logs - #695224 Bugtraq ID: 56852 IMPACT ASSESSMENT: Medium DISCUSSION: Two vulnerabilities have been reported in Locale::Maketext module for Perl, which can be exploited by malicious users to compromise an application using the module. The vulnerabilities are caused due to the "_compile()" function not

268

An Overview of Readiness for REDD: A compilation of readiness activities  

Open Energy Info (EERE)

An Overview of Readiness for REDD: A compilation of readiness activities An Overview of Readiness for REDD: A compilation of readiness activities prepared on behalf of the Forum on Readiness for REDD Jump to: navigation, search Tool Summary LAUNCH TOOL Name: An Overview of Readiness for REDD: A compilation of readiness activities prepared on behalf of the Forum on Readiness for REDD Agency/Company /Organization: The Woods Hole Research Center Sector: Land Focus Area: Forestry Topics: Implementation, Policies/deployment programs Resource Type: Lessons learned/best practices Website: www.cbd.int/forest/doc/overview-readiness-redd.pdf An Overview of Readiness for REDD: A compilation of readiness activities prepared on behalf of the Forum on Readiness for REDD Screenshot References: Overview of REDD[1] Background "This background document aims to provide a snapshot view of readiness

269

Ceramic Phase Equilibrium Data Our objective is to compile, evaluate, determine, and  

E-Print Network (OSTI)

and Engineering Laboratory Phase equilibrium data are used throughout the ceramics industry to understandCeramic Phase Equilibrium Data CERAMICS Our objective is to compile, evaluate, determine of advanced ceramic materials. By delineating the conditions (chemical composition, temperature, pressure

Perkins, Richard A.

270

Adapting compilation techniques to enhance the packing of instructions into registers  

E-Print Network (OSTI)

The architectural design of embedded systems is becoming increasingly idiosyncratic to meet varying constraints regarding energy consumption, code size, and execution time. Traditional compiler optimizations are often tuned for improving general architectural constraints, yet these heuristics may not be as beneficial to less conventional designs. Instruction packing is a recently developed compiler/architectural approach for reducing energy consumption, code size, and execution time by placing the frequently occurring instructions into an Instruction Register File (IRF). Multiple IRF instructions are made accessible via special packed instruction formats. This paper presents the design and analysis of a compilation framework and its associated optimizations for improving the efficiency of instruction packing. We show that several new heuristics can be developed for IRF promotion, instruction selection, register re-assignment and instruction scheduling, leading to significant reductions in energy consumption, code size, and/or execution time when compared to results using a standard optimizing compiler targeting the IRF.

Stephen Hines; David Whalley; Gary Tyson

2006-01-01T23:59:59.000Z

271

Hi-Lite: the convergence of compiler technology and program verification  

Science Conference Proceedings (OSTI)

Formal program verification tools check that a program correctly implements its specification. Existing specification languages for well-known programming languages (Ada, C, Java, C#) have been developed independently from the programming language to ... Keywords: compiler technology, formal verification, testing

Johannes Kanig; Edmond Schonberg; Claire Dross

2012-12-01T23:59:59.000Z

272

An open source environment for compiling typed unification grammars into speech recognisers  

Science Conference Proceedings (OSTI)

We present REGULUS, an Open Source environment which compiles typed unification grammars into context free grammar language models compatible with the Nuance Toolkit. The environment includes a large general unification grammar of English and corpus-based ...

Manny Rayner; Beth Ann Hockey; John Dowding

2003-04-01T23:59:59.000Z

273

Compilation and evaluation of atomic and molecular data relevant to controlled thermonuclear research needs: USA programs  

SciTech Connect

The U.S. role in the compilation and evaluation of atomic data for controlled thermonuclear research is discussed in the following three areas: (1) atomic structure data, (2) atomic collision data, and (3) surface data. (MOW)

Barnett, C.F.

1976-01-01T23:59:59.000Z

274

Supplementary material on passive solar heating concepts. A compilation of published articles  

DOE Green Energy (OSTI)

A compilation of published articles and reports dealing with passive solar energy concepts for heating and cooling buildings is presented. The following are included: fundamental of passive systems, applications and technical analysis, graphic tools, and information sources. (MHR)

None

1979-05-01T23:59:59.000Z

275

A Complete Compiler Approach to Auto-Parallelizing C Programs for Multi-DSP Systems  

Science Conference Proceedings (OSTI)

Auto-parallelizing compilers for embedded applications have been unsuccessful due to the widespread use of pointer arithmetic and the complex memory model of multiple-address space digital signal processors (DSPs). This paper develops, for the first ... Keywords: Parallel processors, interprocessor communications, real-time and embedded systems, signal processing systems, measurement, evaluation, modeling, simulation of multiple-processor systems, conversion from sequential to parallel forms, restructuring, reverse engineering, and reengineering, performance measures, compilers, arrays.

Bjorn Franke; Michael F. P. O'Boyle

2005-03-01T23:59:59.000Z

276

Compilation of high energy physics reaction data: inventory of the particle data group holdings 1980  

Science Conference Proceedings (OSTI)

A compilation is presented of reaction data taken from experimental high energy physics journal articles, reports, preprints, theses, and other sources. Listings of all the data are given, and the data points are indexed by reaction and momentum, as well as by their source document. Much of the original compilation was done by others working in the field. The data presented also exist in the form of a computer-readable and searchable database; primitive access facilities for this database are available.

Fox, G.C.; Stevens, P.R.; Rittenberg, A.

1980-12-01T23:59:59.000Z

277

Compilation of Bioassay Issues Reported During the 120-Day Suspension of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Compilation of Bioassay Issues Reported During the 120-Day Compilation of Bioassay Issues Reported During the 120-Day Suspension of PAAA Enforcement Actions Related to Internal Dose Evaluation Programs by Contractors in the Department of Energy Complex Compilation of Bioassay Issues Reported During the 120-Day Suspension of PAAA Enforcement Actions Related to Internal Dose Evaluation Programs by Contractors in the Department of Energy Complex The DOE Office of Enforcement and Investigation (EH Enforcement) invoked a 120-day suspension of PAAA enforcement actions for issues associated with contractor Internal Dose Evaluation Programs (IDEP). Prior to initiation of the suspension, EH Enforcement had identified deficiencies in DOEcontractor implemented bioassay programs at numerous sites within the DOE complex. The

278

Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old  

Open Energy Info (EERE)

Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old And New Refraction Data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old And New Refraction Data Details Activities (3) Areas (3) Regions (0) Abstract: Utilizing commercial mine blasts and local earthquakes, as well as a dense array of portable seismographs, we have achieved long-range crustal refraction profiles across northern Nevada and the Sierra Nevada Mountains. In our most recent refraction experiment, the Idaho-Nevada-California (INC) transect, we used a dense spacing of 411 portable seismographs and 4.5-Hz geophones. The instruments were able to record events ranging from large mine blasts to small local earthquakes.

279

A Compilation of Data on Fluids from Geothermal Resources in the United States  

SciTech Connect

This report is part of the Lawrence Berkeley Laboratory work to compile data of characteristics of the main U.S. geothermal source areas. The purpose of this compilation is to provide information on the chemistry of geothermal fluids to scientists and engineers involved with the development of liquid dominated geothermal energy resources. The compilation is a comprehensive tabulation of available geothermal fluid data from the most important geothermal resources in the United States. [Abstracter's note: This was part of a large but short-lived effort at LBNL to collect lots of geothermal data. There may be other reports that are worth searching for to add to the Geothermal Legacy collection at OSTI. DJE-2005

Cosner, S.R.; Apps, J.A.

1978-05-01T23:59:59.000Z

280

Energy use and peak power for new commercial buildings from the BECA-CN (Buildings Energy-Use Compilation and Analysis) data compilation: Key findings and issues  

DOE Green Energy (OSTI)

Data have been collected and analyzed for 152 new commercial buildings from the US and abroad. Each building has some energy-saving or load-shaping features, including techniques such as solar heating and cooling, thermal storage, load management, daylighting, efficient HVAC, and sophisticated control strategies. The data base covers energy and cost data, architectural and system characteristics, building operations, and special features. In this paper, quantitative parameters covering energy use, peak demand, occupancy, operating conditions, construction costs, and energy costs are discussed. About two-thirds of the buildings are offices. The average BECA-CN office uses 66 kBtu/ft/sup 2/-year, which is about half the national office stock average. Measured energy use for these efficient buildings is roughly comparable to computer predictions for buildings designed to comply with the new ASHRAE Standard 90.1P. The average maximum peak electric demand is 5.5 W/ft/sup 2/ for the offices. Peak demand charges account for about 20 to 30% of annual electricity charges. Energy costs an average of $1.02/ft/sup 2/-year (in 1985 dollars) for the offices.

Piette, M.A.; Riley, R.

1986-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solving planninggraph by compiling it into CSP Minh Binh Do \\Lambda & Subbarao Kambhampati  

E-Print Network (OSTI)

Solving planning­graph by compiling it into CSP Minh Binh Do \\Lambda & Subbarao Kambhampati to adapt CSP search techniques into the backward search phase of Graphplan. This paper describes GP­CSP, a system that does planning by automati­ cally converting Graphplan's planning graph into a CSP encoding

Kambhampati, Subbarao

282

Solving planning-graph by compiling it into CSP Minh Binh Do & Subbarao Kambhampati  

E-Print Network (OSTI)

Solving planning-graph by compiling it into CSP Minh Binh Do & Subbarao Kambhampati Department to adapt CSP search techniques into the backward search phase of Graphplan. This paper describes GP-CSP, a system that does planning by automati- cally converting Graphplan's planning graph into a CSP encoding

Kambhampati, Subbarao

283

Compiling Statemate Statecharts into CSP and verifying them using FDR --abstract  

E-Print Network (OSTI)

Compiling Statemate Statecharts into CSP and verifying them using FDR -- abstract Bill Roscoe developed for tackling the state exploration problem in the CSP/FDR framework would work in the setting from Statecharts into CSP. I developed the translation as a program written in CSP (making heavy use

Roscoe, Bill

284

Power profile estimation and compiler-based software optimization for mobile devices  

Science Conference Proceedings (OSTI)

The complexity of mobile devices is continuously growing due to the increasing requirements on performance. In portable systems such as smart cards, not only performance is an important attribute, but also the power and energy consumed by a given application. ... Keywords: Power characterization, iterative compiling, peak reduction, power profile analysis, smart card systems, software power optimization

Matthias Grumer; Manuel Wendt; Christian Steger; Reinhold Weiss; Ulrich Neffe; Andreas Muehlberger

2009-08-01T23:59:59.000Z

285

Distribution and chemical analyses of thermal springs in Alaska. [Data compilation  

DOE Green Energy (OSTI)

Interest in geothermal systems as potential sources of energy has been increasing in the past decade. Thermal or hot springs commonly occur as surface manifestation of geothermal systems. One of the first steps in evaluating the potential of such systems is the compilation of an inventory of known thermal springs and available chemical data. The only previous such compilation in Alaska has been by Waring (1917) who listed 75 known hot springs and 22 chemical analyses; a later world-wide summary by Waring (1965), which included Alaska, listed a total of 79 thermal springs. These publications, both now out of print, are excellent summaries of known thermal springs as of about 1963. In the last 10 years, however, previously unreported occurrences of thermal springs have been published in various geologic reports and topographic maps and additional chemical analyses are now available. The purpose of this compilation, therefore, is to supplement Waring's earlier reports with the more recent data. In a few cases springs reported by Waring have been deleted since later work has cast doubt on their existence. Only those springs whose temperatures are significantly (i.e., 15 to 20/sup 0/C) above mean annual surface temperature have been included in this compilation.

Miller, T.P. (comp.)

1973-01-01T23:59:59.000Z

286

Compilation of Failure Data and Fault Tree Analysis for Geothermal Energy Conversion Systems  

DOE Green Energy (OSTI)

The failure data for geothermal energy conversion facilities collected to date are compiled and tabled. These facilities have not accumulated sufficient production history to reliably estimated component failure rates. In addition, the improvements made in drilling technology in recent years may have made less pertinent the accumulation of data on well failures.

Miller, F.L., Jr.; Zimmerman, D.E.

1990-11-01T23:59:59.000Z

287

Exploiting static application knowledge in a Java compiler for embedded systems: a case study  

Science Conference Proceedings (OSTI)

Offering many benefits in terms of productivity and reliability, Java is becoming an attractive choice for the field of embedded computing. However, its programming model that relies on the capabilities of just-in-time compilation limits the opportunities ... Keywords: Java, KESO, embedded systems

Christoph Erhardt; Michael Stilkerich; Daniel Lohmann; Wolfgang Schröder-Preikschat

2011-09-01T23:59:59.000Z

288

A compiler framework for the reduction of worst-case execution times  

Science Conference Proceedings (OSTI)

The current practice to design software for real-time systems is tedious. There is almost no tool support that assists the designer in automatically deriving safe bounds of the worst-case execution time (WCET) of a system during code ... Keywords: Code generation, Compiler, Optimization, Real-time, WCET

Heiko Falk; Paul Lokuciejewski

2010-10-01T23:59:59.000Z

289

Apricot: an optimizing compiler and productivity tool for x86-compatible many-core coprocessors  

Science Conference Proceedings (OSTI)

Intel MIC (Many Integrated Core) is the first x86-based coprocessor architecture aimed at accelerating multi-core HPC applications. In the most common usage model, parallel code sections are offloaded to the MIC coprocessor using LEO (Language Extensions ... Keywords: compiler, intel MIC, many-core, offload, optimizations

Nishkam Ravi; Yi Yang; Tao Bao; Srimat Chakradhar

2012-06-01T23:59:59.000Z

290

Fast compiler optimisation evaluation using code-feature based performance prediction  

Science Conference Proceedings (OSTI)

Performance tuning is an important and time consuming task which may have to be repeated for each new application and platform. Although iterative optimisation can automate this process, it still requires many executions of different versions of the ... Keywords: architecture, artificial neural networks, compiler optimisation, learning, machine, performance modelling

Christophe Dubach; John Cavazos; Björn Franke; Grigori Fursin; Michael F.P. O'Boyle; Olivier Temam

2007-05-01T23:59:59.000Z

291

Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines  

Science Conference Proceedings (OSTI)

Image processing pipelines combine the challenges of stencil computations and stream programs. They are composed of large graphs of different stencil stages, as well as complex reductions, and stages with global or data-dependent access patterns. Because ... Keywords: autotuning, compiler, domain specific language, gpu, image processing, locality, optimization, parallelism, redundant computation, vectorization

Jonathan Ragan-Kelley; Connelly Barnes; Andrew Adams; Sylvain Paris; Frédo Durand; Saman Amarasinghe

2013-06-01T23:59:59.000Z

292

Implementation of the memory-safe full ANSI-C compiler  

Science Conference Proceedings (OSTI)

This paper describes a completely memory-safe compiler for C language programs that is fully compatible with the ANSI C specification. Programs written in C often suffer from nasty errors due to dangling pointers and buffer overflow. Such errors in Internet ... Keywords: c language, memory safety

Yutaka Oiwa

2009-06-01T23:59:59.000Z

293

Fish Tagging Forum Draft Compilation of Tagging Data Collection and Management  

E-Print Network (OSTI)

" from you. It is understood that the data management system associated with F&W program is very, maintenance, and/or management of databases that are designed to store data collected in the field from oneFish Tagging Forum Draft Compilation of Tagging Data Collection and Management 2012_11_12 v0

294

Regulatory and technical reports (abstract index journal): Annual compilation for 1997. Volume 22, Number 4  

SciTech Connect

This journal includes all formal reports in the NUREG series prepared by the NRC staff and contractors; proceedings of conferences and workshops; as well as international agreement reports. The entries in this compilation are indexed for access by title and abstract, secondary report number, personal author, subject, NRC organization for staff and international agreements, contractor, international organization, and licensed facility.

NONE

1998-04-01T23:59:59.000Z

295

MetaVM: A transparent distributed object system supported by runtime compiler  

E-Print Network (OSTI)

Abstract MetaVM is a distributed object system for Java virtual machine. It allows programmers to deal with remote objects in the same way they do local objects. Therefore, it can provide a single machine image to programmers. We implemented a runtime compiler of Java bytecode to provide the facilities. The runtime compiler generates a native code which can handle remote objects beyond the network besides the local objects. The compiler uses semantic expansion, which is a technique that changes the original semantics of a Java bytecode. This paper presents the simple programming interface, the code generation method of MetaVM, and our experimental performance results. The results demonstrate efficiency of remote operations. Keywords: distributed object system, network transparency, Java Just-In-Time compiler 1 Introduction A distributed object system is an instrument to develop a network distributed system in object-oriented programming languages. One of important benefits of such systems is to release programmers from the burden of exchanging information via a network. Programmers can write a distributed system in an object-oriented manner without concern for communication protocols.

Kazuyuki Shudo; Yoichi Muraoka

2000-01-01T23:59:59.000Z

296

TshwaneLex: A State-of-the-Art Dictionary Compilation Program  

E-Print Network (OSTI)

A new state-of-the-art dictionary compilation program called TshwaneLex is briefly introduced. Core features include user-friendliness, automatic cross-reference tracking, an advanced compare/merge function, various levels of customisation, and provision for virtually all the world’s languages by means of full Unicode support.

Gilles-maurice De Schryver; David Joffe

2004-01-01T23:59:59.000Z

297

Compilation of data and descriptions for United States and foreign liquid metal fast breeder reactors  

SciTech Connect

This document is a compilation of design and engineering information pertaining to liquid metal cooled fast breeder reactors which have operated, are operating, or are currently under construction, in the United States and abroad. All data has been taken from publicly available documents, journals, and books. (auth)

Appleby, E.R.

1975-08-01T23:59:59.000Z

298

The Design of the PROMIS Compiler—Towards Multi-Level Parallelization  

Science Conference Proceedings (OSTI)

Most systems that are under design and likely to be built in the future will employ hierarchical organization with many levels of memory hierarchy and parallelism. In order to efficiently utilize the multiple levels of parallelism available in the target ... Keywords: HTG (hierarchical task graph), ILP (instruction-level parallelization), IR (internal representation), compiler, loop parallelization

Hideki Saito; Nicholas J. Stavrakos; Constantine D. Polychronopoulos; Alex Nicolau

2000-04-01T23:59:59.000Z

299

Hierarchical Multi-Dimensional Table Lookup for Model Compiler Based Circuit Simulation  

Science Conference Proceedings (OSTI)

In this paper, a systematic method for automatically generating hierarchical multi-dimensional table lookup models for compact device and behavioral models with any number of terminals is presented. The method is based on an Abstract Syntax Tree representation ... Keywords: Model Compiler, Abstract-Syntax-Tree, Hierarchical Multi-dimensional Table Lookup, Optimization, Circuit Simulation

Bo Wan; C.-J. Richard Shi

2004-02-01T23:59:59.000Z

300

Compiler Comparisons  

NLE Websites -- All DOE Office Websites (Extended Search)

from Cray applications experts and various other sources and tested them on several benchmarks. We provide a summary of the results below: Benchmarks Tested The benchmarks used to...

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Nonelectric | OpenEI  

Open Energy Info (EERE)

Nonelectric Nonelectric Dataset Summary Description This dataset provides annual renewable energy consumption (in quadrillion Btu) for nonelectric use in the United States by energy use sector and energy source between 2004 and 2008. The data was compiled and published by EIA; the spreadsheet provides more details about specific sources for data used in the analysis. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Nonelectric Renewable Energy Consumption Residential transportation Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Non-Elec.Gen_EIA.Aug_.2010.xls (xls, 27.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2004 - 2008

302

Renewable Energy Consumption for Electricity Generation by Energy Use  

Open Energy Info (EERE)

Electricity Generation by Energy Use Electricity Generation by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by energy source (e.g. biomass, geothermal, etc.) This data was compiled and published by the Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords biomass Commercial Electric Power Electricity Generation geothermal Industrial PV Renewable Energy Consumption solar wind Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Elec_.Gen_EIA.Aug_.2010.xls (xls, 19.5 KiB) Quality Metrics Level of Review Some Review

303

Renewable Energy Consumption for Nonelectric Use by Energy Use Sector and  

Open Energy Info (EERE)

Nonelectric Use by Energy Use Sector and Nonelectric Use by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description This dataset provides annual renewable energy consumption (in quadrillion Btu) for nonelectric use in the United States by energy use sector and energy source between 2004 and 2008. The data was compiled and published by EIA; the spreadsheet provides more details about specific sources for data used in the analysis. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Nonelectric Renewable Energy Consumption Residential transportation Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Non-Elec.Gen_EIA.Aug_.2010.xls (xls, 27.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

304

Regulatory and technical reports (abstract index journal). Volume 20, No. 2: Compilation for second quarter April--June 1995  

Science Conference Proceedings (OSTI)

This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issued by the U.S. Nuclear Regulatory Commission (NRC) Staff and its contractors. It is NRC`s intention to publish this compilation quarterly and to cumulate it annually.

NONE

1995-09-01T23:59:59.000Z

305

Compiler Analysis for Cache Coherence: Interprocedural Array Data-Flow Analysis and Its Impact on Cache Performance  

Science Conference Proceedings (OSTI)

Abstract¿In this paper, we present compiler algorithms for detecting references to stale data in shared-memory multiprocessors. The algorithm consists of two key analysis techniques, stale reference detection and locality preserving analysis. While the ... Keywords: Compiler, interprocedural analysis, data-flow analysis, cache coherence, shared-memory multiprocessors.

Lynn Choi; Pen-Chung Yew

2000-09-01T23:59:59.000Z

306

Arroyo Colorado: A Compilation and Evaluation of Prior Studies and Data  

E-Print Network (OSTI)

This report was compiled per the project, “Arroyo Colorado Agricultural Nonpoint Source Assessment” funded by the TSSWCB through the CWA §319(h) NPS Grant Program. Under this project, TWRI was tasked to (1) compile historical water quality data and information from previous studies and conduct a detailed analysis of the most significant water quality parameters to investigate the trends and the different biological and physical process taking place in the watershed that contribute to changes in water quality in the Arroyo; (2) organize the results from the earlier non-point source pollution projects conducted in the Arroyo Colorado watershed and summarize the results and conclusions of these studies; and 3) identify critical data gaps that should be filled.

Wagner, C.

2012-04-11T23:59:59.000Z

307

Planning as Constraint Satisfaction: Solving the planning-graph by compiling it into CSP  

E-Print Network (OSTI)

Although the deep affinity between Graphplan's backward search, and the process of solving constraint satisfaction problems has been noted earlier, these relations have hither-to been primarily used to adapt CSP search techniques into the backward search phase of Graphplan. This paper describes GP-CSP, a system that does planning by automatically converting Graphplan's planning graph into a CSP encoding, and solving the CSP encoding using standard CSP solvers. Our comprehensive empirical evaluation of GP-CSP demonstrates that it is superior to both standard Graphplan and Blackbox system, which compiles planning graphs into SAT encodings. Our results show that CSP encodings outperform SAT encodings in terms of both space and time requirements. The space reduction is particularly important as it makes GP-CSP less susceptible to the memory blow-up associated with SAT compilation methods. Our work is inspired by the success of van Beek & Chen's CPLAN system. However, in contrast...

Minh Binh Do; Subbarao Kambhampati

2001-01-01T23:59:59.000Z

308

Actes JFPC 2012 Compilation de CSP en Set-labeled Diagram  

E-Print Network (OSTI)

Actes JFPC 2012 Compilation de CSP en Set-labeled Diagram Alexandre Niveau H´el`ene Fargier C parfois ^etre ex´ecut´ees en ligne et en temps limit´e. Dans ce cas, la r´esolution du CSP n'est pas assez´e- sente l'assignation d'une variable ; l'ensemble des solu- tions d'un CSP correspond `a l'ensemble des

Paris-Sud XI, Université de

309

A compilation of reports of the Advisory Committee on Reactor Safeguards. 1994 annual. Volume 16  

SciTech Connect

This compilation contains 30 ACRS reports submitted to the Commission, or to the Executive Director for Operations, during calendar year 1994. It also includes a report to the Congress on the NRC Safety Research Program. All reports have been made available to the public through the NRC Public Document Room and the U.S. Library of Congress. The reports are categorized by the most appropriate generic subject area and by chronological order within subject area.

NONE

1995-04-01T23:59:59.000Z

310

1989 OCRWM [Office of Civilian Radioactive Waste Management] Bulletin compilation and index  

SciTech Connect

The OCRWM Bulletin is published by the Department of Energy, Office of Civilian Radioactive Waste Management to provide current information about the national program for managing spent fuel and high-level radioactive waste. This document is a compilation of issues from the 1989 calendar year. A table of contents and one index have been provided to assist in finding information contained in this year`s Bulletins. The pages have been numbered consecutively at the bottom for easy reference. 7 figs.

1990-02-01T23:59:59.000Z

311

Monthly energy review, July 1990  

SciTech Connect

US total energy consumption in July 1990 was 6.7 quadrillion Btu Petroleum products accounted for 42 percent of the energy consumed in July 1990, while coal accounted for 26 percent and natural gas accounted for 19 percent. Residential and commercial sector consumption was 2.3 quadrillion Btu in July 1990, up 2 percent from the July 1989 level. The sector accounted for 35 percent of July 1990 total consumption, about the same share as in July 1989. Industrial sector consumption was 2.4 quadrillion Btu in July 1990, up 2 percent from the July 1989 level. The industrial sector accounted for 36 percent of July 1990 total consumption, about the same share as in July 1989. Transportation sector consumption of energy was 1.9 quadrillion Btu in July 1990, up 1 percent from the July 1989 level. The sector consumed 29 percent of July 1990 total consumption, about the same share as in July 1989. Electric utility consumption of energy totaled 2.8 quadrillion Btu in July 1990, up 2 percent from the July 1989 level. Coal contributed 53 percent of the energy consumed by electric utilities in July 1990, while nuclear electric power contributed 21 percent; natural gas, 12 percent; hydroelectric power, 9 percent; petroleum, 5 percent; and wood, waste, geothermal, wind, photovoltaic, and solar thermal energy, about 1 percent.

Not Available

1990-10-29T23:59:59.000Z

312

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Table 1.14 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011 Fiscal Year 7 Crude Oil and Lease Condensate Natural Gas Plant Liquids 1 Natural Gas 2 Coal 3 Total Fossil Fuels 4 Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Million Barrels Quadrillion Btu Percent Million Barrels Quadrillion Btu Percent Trillion Cubic Feet Quadrillion Btu Percent Million Short Tons Quadrillion Btu Percent Quadrillion Btu Percent 2003 R 689 R 4.00 R 33.3 R 94 R 0.35 R 14.9 R 7.08 R 7.81 R 35.5 R 466 R 9.58 R 43.3 R 21.74 R 37.2 2004 R 680 R 3.94 R 33.8 R 105 R .39 R 16.0 R 6.68 R 7.38 R 34.0 R 484 R 9.89 R 43.9 R 21.60 R 37.0

313

Compilation of cores and cuttings from U. S. Government-sponsored geothermal wells  

DOE Green Energy (OSTI)

This compendium lists the repositories holding geothermal core and well cuttings from US government-sponsored geothermal wells. Also, a partial listing of cores and cutting from these wells is tabulated, along with referenced reports and location maps. These samples are available to the public for research investigations and studies, usually following submission of an appropriate request for use of the samples. The purpose of this compilation is to serve as a possible source of cores and cuttings that might aid in enhancing rock property studies in support of geothermal log interpretation.

Mathews, M.; Gambill, D.T.; Rowley, J.C.

1980-07-01T23:59:59.000Z

314

Data Compilation for AGR-1 Variant 3 Compact Lot LEU01-49T-Z  

SciTech Connect

This document is a compilation of characterization data for the AGR-1 vriant 3 fuel compact lot LEU01-49T-Z. The compacts were produced by ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program for the first AGR irradiation test train (AGR-1). This compact lot was fabricated using particle composite LEU01-49T, which was a composite of three batches of TRISO-coated 350 {micro}m diameter 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with an {approx} 50% dense carbon buffer layer (100 {micro}m nominal thickness), followed by a dense inner pyrocarbon layer (40 {micro}m nominal thickness), followed by a SiC layer (35 {micro}m nominal thickness), followed by another dense outer pyrocarbon layer (40 {micro}m nominal thickness). The kernels were obtained from BWXT and identified as composite G73D-20-69302. The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified as LEU01-?? (where ?? is a series of integers beginning with 01). A data compilation for the AGR-1 variant 3 coated particle composite LEU01-49t CAN BE FOUND IN ornl/tm-2006/022.

Hunn, John D [ORNL; Montgomery, Fred C [ORNL; Pappano, Peter J [ORNL

2006-08-01T23:59:59.000Z

315

COMPILATION AND ANALYSES OF EMISSIONS INVENTORIES FOR THE NOAA ATMOSPHERIC CHEMISTRY PROJECT. PROGRESS REPORT, AUGUST 1997.  

DOE Green Energy (OSTI)

Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory. Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories. The resulting global emissions for 1990 are 31 Tg N yr{sup -1} for NO{sub x} and 173 Gg NMVOC yr{sup -1}. Emissions of NO{sub x} are highest in the populated and industrialized areas of eastern North America and across Europe, and in biomass burning areas of South America, Africa, and Asia. Emissions of NMVOCs are highest in biomass burning areas of South America, Africa, and Asia. The 1990 NO{sub x} emissions were gridded to 1{sup o} resolution using surrogate data, and were given seasonal, two-vertical-level resolution and speciated into NO and NO{sub 2} based on proportions derived from the 1985 GEIA Version 1B inventory. Global NMVOC emissions were given additional species resolution by allocating the 23 chemical categories to individual chemical species based on factors derived from the speciated emissions of NMVOCs in the U.S. from the U.S. EPA's 1990 Interim Inventory. Ongoing research activities for this project continue to address emissions of both NO{sub x} and NMVOCs. Future tasks include: (a) evaluation of more detailed regional emissions estimates and update of the default 1990 inventories with the appropriate estimates, (b) derivation of quantitative uncertainty estimates for the emission values, and (c) development of emissions estimates for 1995.

BENKOVITZ,C.M.

1997-09-01T23:59:59.000Z

316

Depleted Uranium Hexafluoride Management Program: Data Compilation for the Paducah Site  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Depleted Uranium Hexafluoride Management Program: Data Compilation for the Paducah Site in Support of Site-Specific NEPA Requirements for Continued Cylinder Storage, Cylinder Preparation, Conversion, and Long-Term Storage Activities Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering

317

Efficient code generation for horizontal architectures: compiler techniques and architectural support  

SciTech Connect

A horizontal architecture consists of a number of resources which can operate in parallel and each of which is controlled by a field in the wide instruction word. Such architectures offer the potential for high performance scientific computing at a modest cost. If this potential performance is to be realised, the multiple resources of a horizontal processor must be scheduled effectively. The scheduling task for conventional horizontal processors is quite complex and the construction of highly optimising compilers for them is a difficult and expensive project. The polycyclic architecture is a horizontal architecture with architectural support for the scheduling task. The complexity of scheduling conventional horizontal processors and the ease of scheduling polycyclic processors is demonstrated by means of an example. 17 references.

Ramakrishna Rau, B.; Glaeser, C.D.; Picard, R.L.

1982-01-01T23:59:59.000Z

318

Advanced Industrial Materials (AIM) program. Compilation of project summaries and significant accomplishments FY 1996  

Science Conference Proceedings (OSTI)

In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven {open_quotes}Vision Industries{close_quotes} that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: (1) Aluminum; (2) Chemical; (3) Forest Products; (4) Glass; (5) Metal Casting; (6) Refineries; and (7) Steel. This report is a compilation of project summaries and significant accomplishments on materials.

NONE

1997-04-01T23:59:59.000Z

319

Quality Assurance Project Plan for radioactive airborne emissions data compilation and reporting  

Science Conference Proceedings (OSTI)

This Quality Assurance Project Plan addresses the quality assurance requirements for compiling data from radioactie aiborne emissions. These data will be reported to the US Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Hanford Site radioactive airborne emissions are reported to the US Environmental Protection Agency in compliance with Title 40, Protection of the Environment, Code of Federal Regulations, Part 61, ``National Emissions Standards for Hazardous Air Pollutants , ``Subpart H, ``National Emissions Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities`` (EPA 1989a). Reporting to US Department of Energy is performed in compliance with requirements of US Department of Energy Order 5400.1, General Environmental Protection Program (DOE 1988a).

Burris, S.A.; Thomas, S.P.

1994-02-01T23:59:59.000Z

320

Compilation, Synthesis, and Simulation of Hardware Description Languages - The Compositional Models of HDL's  

E-Print Network (OSTI)

Compilation, Synthesis, and Simulation of Hardware Description Languages --- The Compositional Models of HDL's by Szu-Tsung Cheng Doctor of Philosophy in Computer Science University of California, Berkeley Professor Robert K. Brayton, Chair With the advent of advanced CAD tools, people are now able to design multimillion gate chips. Generally, each of these tools has its specific view and model of the world. To represent designs in such a way that tools can understand and manipulate them, one needs to use certain languages. Hardware Description Languages (HDLs) like Verilog or VHDL are developed as description languages or simulator programming languages to describe the behavior of circuits at various abstraction levels. However, they suffer from the fact that they are based on the event-driven model, which does not match well with the Finite State Machine (FSM) model which is used by lots of synthesis, cycle-simulation, or verification engines. Therefore, one needs to maintain multi...

Szu-Tsung Cheng; Szu-tsung Cheng; Szu-tsung Cheng

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

0 Primary Energy Consumption by Source and Sector, 2011 0 Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) U.S. Energy Information Administration / Annual Energy Review 2011 37 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solar/photovoltaic, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. 6 Includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public. Includes 0.1 quadrillion Btu of electricity net

322

DOE/EIA-0304 Survey of Large Combustors:  

U.S. Energy Information Administration (EIA) Indexed Site

304 304 Survey of Large Combustors: Report on Alternative- Fuel Burning Capabilities of Large Boilers in 1979 U.S. Department of Energy Energy information Administration Office of Energy Markets and End Use Energy End Use Division Introduction During recent years, total annual industrial energy consumption in the United States has been approximated at 25 to 26 quadrillion British thermal units (Btu).^- Manufacturin g is by far the largest components totaling 12.9 quadrillion Btu of purchased fuels and electricity for heat and power during 1979.2 QJ this amount, 10.5 quadrillion Btu was accounted for by purchased fuels alone (e.g., fuel oil, coal, natural gas, etc.). Other than fuel consumption by type and industrial classificati on, very little information existed on specific fuel consumption characterist

323

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption, which was 101.7 quadrillion Btu in 2007, grows by 21 percent in the AEO2011 Reference case, from 94.8 quadrillion Btu in 2009 to 114.3 quadrillion Btu in 2035, to about the same level as in the AEO2010 projection in 2035. The fossil fuel share of energy consumption falls from 84 percent of total U.S. energy demand in 2009 to 78 percent in 2035, reflecting the impacts of CAFE standards and provisions in the American Recovery and Reinvestment Act of 2009 (ARRA), Energy Improvement and Extension Act of 2008 (EIEA2008), Energy Independence and Security Act of 2007 (EISA2007), and State legislation. Although the situation is uncertain, EIA's present view of the projected rates of technology development and market penetration of cellulosic

324

Monthly energy review, May 1994  

Science Conference Proceedings (OSTI)

Energy production during February 1994 totaled 5.3 quadrillion Btu, a 2.2% increase over February 1993. Coal production increased 9%, natural gas rose 2.5%, and petroleum decreased 3.6%; all other forms of energy production combined were down 3%. Energy consumption during the same period totaled 7.5 quadrillion Btu, 4.1% above February 1993. Natural gas consumption increased 5.8%, petroleum 5.2%, and coal 2.3%; consumption of all other energy forms combined decreased 0.7%. Net imports of energy totaled 1.4 quadrillion Btu, 16.9% above February 1993; petroleum net imports increased 10.1%, natural gas net imports were down 4.9%, and coal net exports fell 43.7%. This document is divided into: energy overview, energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, international energy, appendices (conversion factors, etc.), and glossary.

Not Available

1994-05-25T23:59:59.000Z

325

EIA - International Energy Outlook 2009-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2009 Chapter 1 - World Energy Demand and Economic Outlook In the IEO2009 projections, total world consumption of marketed energy is projected to increase by 44 percent from 2006 to 2030. The largest projected increase in energy demand is for the non-OECD economies. Figure 10. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 11. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 12. Marketed Energy Use by Region, 1990-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

326

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights Overview Figure 1. World energy consumption, 1990-2035. figure data In the IEO2011 Reference case, which does not incorporate prospective legislation or policies that might affect energy markets, world marketed energy consumption grows by 53 percent from 2008 to 2035. Total world energy use rises from 505 quadrillion British thermal units (Btu) in 2008 to 619 quadrillion Btu in 2020 and 770 quadrillion Btu in 2035 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for Economic Cooperation and Development (non-OECD nations),2 where demand is driven by strong long-term economic growth. Energy use in non-OECD nations increases by 85 percent in the Reference case, as compared with an increase of 18 percent for the OECD economies.

327

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Commercial from Market Trends Commercial from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

328

International Energy Outlook 2006 - World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

1: World Energy and Economic Outlook 1: World Energy and Economic Outlook The IEO2006 projections indicate continued growth in world energy use, despite world oil prices that are 35 percent higher in 2025 than projected in last year’s outlook. Energy resources are thought to be adequate to support the growth expected through 2030. Figure 7. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 8. World Marketed Energy Use: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Table 1. World Marketed Energy Consumption by Country Grouping, 2003-2030 (Quadrillion Btu) Printer friendly version Region 2003 2010 2015 2020 2025 2030 Average Annual Percent Change, 2003-2030

329

EIA - Annual Energy Outlook 2008 - Coal Production  

Gasoline and Diesel Fuel Update (EIA)

Coal Production Coal Production Annual Energy Outlook 2008 with Projections to 2030 Coal Production Figure 93. Coal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 94. U.S. coal production, 2006, 2015, and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Western Coal Production Continues To Increase Through 2030 In the AEO2008 reference case, increasing coal use for electricity generation at existing plants and construction of a few new coal-fired plants lead to annual production increases that average 0.3 percent per year from 2006 to 2015, when total production is 24.5 quadrillion Btu. In the absence of restrictions on CO2 emissions, the growth in coal production

330

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights Overview Figure 1. World energy consumption, 1990-2035. figure data In the IEO2011 Reference case, which does not incorporate prospective legislation or policies that might affect energy markets, world marketed energy consumption grows by 53 percent from 2008 to 2035. Total world energy use rises from 505 quadrillion British thermal units (Btu) in 2008 to 619 quadrillion Btu in 2020 and 770 quadrillion Btu in 2035 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for Economic Cooperation and Development (non-OECD nations),2 where demand is driven by strong long-term economic growth. Energy use in non-OECD nations increases by 85 percent in the Reference case, as compared with an increase of 18 percent for the OECD economies.

331

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Overview In the IEO2013 Reference case, which does not include prospective greenhouse gas reduction policies, coal remains the second largest energy source worldwide. World coal consumption rises at an average rate of 1.3 percent per year, from 147 quadrillion Btu in 2010 to 180 quadrillion Btu in 2020 and 220 quadrillion Btu in 2040 (Figure 70). The near-term increase reflects significant increases in coal consumption by China, India, and other non-OECD countries. In the longer term, growth of coal consumption decelerates as policies and regulations encourage the use of cleaner energy sources, natural gas becomes more economically competitive as a result of shale gas development, and growth of industrial use of coal slows largely as a result of China's industrial activities. Consumption is dominated by

332

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

The IEO2006 projections indicate continued growth in world energy use, despite The IEO2006 projections indicate continued growth in world energy use, despite world oil prices that are 35 percent higher in 2025 than projected in last year's outlook. Energy resources are thought to be adequate to support the growth expected through 2030. The International Energy Outlook 2006 (IEO2006) projects strong growth for worldwide energy demand over the 27-year projection period from 2003 to 2030. Despite world oil prices that are 35 percent higher in 2025 than projected in last year's outlook, world economic growth continues to increase at an average annual rate of 3.8 percent over the projection period, driving the robust increase in world energy use. Total world consumption of marketed energy expands from 421 quadrillion Brit- ish thermal units (Btu) in 2003 to 563 quadrillion Btu in 2015 and then to 722 quadrillion Btu in

333

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Commercial from Market Trends Commercial from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

334

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector diagram image Footnotes: 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net exports. 4 Conventional hydroelectric power, geothermal, solar/PV, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. 6 Includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public.

335

EIA - International Energy Outlook 2007 - World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2007 Chapter 1 - World Energy and Economic Outlook In the IEO2007 reference case, total world consumption of marketed energy is projected to increase by 57 percent from 2004 to 2030. The largest projected increase in energy demand is for the non-OECD region. Figure 8. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 9. World Marketed Energy Use; OECD and Non-OECD, 2004-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 10. Marketed Energy Use in the NON-OECD Economies by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

336

DOE-EIA-0484(2010)  

Gasoline and Diesel Fuel Update (EIA)

World World marketed energy consumption increases by 49 percent from 2007 to 2035 in the Reference case. Total energy demand in the non-OECD countries increases by 84 percent, compared with an increase of 14 percent in the OECD countries. In the IEO2010 Reference case-which reflects a scenario assuming that current laws and policies remain unchanged throughout the projection period-world marketed energy consumption grows by 49 percent from 2007 to 2035. Total world energy use rises from 495 quadrillion British thermal units (Btu) in 2007 to 590 quadrillion Btu in 2020 and 739 quadrillion Btu in 2035 (Figure 1). The global economic recession that began in 2007 and continued into 2009 has had a profound impact on world energy demand in the near term. Total world marketed energy consumption contracted by 1.2 percent in 2008 and by an estimated 2.2 percent in 2009, as manufactur- ing and consumer

337

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

World energy demand and economic outlook World energy demand and economic outlook Overview In the IEO2013 Reference case, world energy consumption increases from 524 quadrillion Btu in 2010 to 630 quadrillion Btu in 2020 and 820 quadrillion Btu in 2040, a 30-year increase of 56 percent (Figure 12 and Table 1). More than 85 percent of the increase in global energy demand from 2010 to 2040 occurs among the developing nations outside the Organization for Economic Cooperation and Development (non-OECD), driven by strong economic growth and expanding populations. In contrast, OECD member countries are, for the most part, already more mature energy consumers, with slower anticipated economic growth and little or no anticipated population growth.7 Figure 12. World total energy consumption, 1990-2040.

338

EIA - International Energy Outlook 2008-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2008 Chapter 1 - World Energy Demand and Economic Outlook In the IEO2008 projections, total world consumption of marketed energy is projected to increase by 50 percent from 2005 to 2030. The largest projected increase in energy demand is for the non-OECD economies. Figure 9. World Marketed EnergyConsumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 10. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 11. Marketed Energy Use in the Non-OECD Economies by Region, 1990-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

339

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Transportation sector energy demand Transportation sector energy demand Growth in transportation energy consumption flat across projection figure data The transportation sector consumes 27.1 quadrillion Btu of energy in 2040, the same as the level of energy demand in 2011 (Figure 70). The projection of no growth in transportation energy demand differs markedly from the historical trend, which saw 1.1-percent average annual growth from 1975 to 2011 [126]. No growth in transportation energy demand is the result of declining energy use for LDVs, which offsets increased energy use for heavy-duty vehicles (HDVs), aircraft, marine, rail, and pipelines. Energy demand for LDVs declines from 16.1 quadrillion Btu in 2011 to 13.0 quadrillion Btu in 2040, in contrast to 0.9-percent average annual growth

340

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Residential from Market Trends Residential from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EIA - Annual Energy Outlook 2009 - Coal Production  

Gasoline and Diesel Fuel Update (EIA)

Coal Production Coal Production Annual Energy Outlook 2009 with Projections to 2030 Coal Production Figure 78. Coal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 79. U.S. coal production in four cases, 2007, 2015, and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 80. Average minemouth coal prices by regionCoal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Total Coal Production Increases at a Slower Rate Than in the Past In the AEO2009 reference case, increasing coal use for electricity generation at both new and existing plants and the startup of several CTL

342

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

In the IEO2007 reference case, total world consumption of marketed energy is projected In the IEO2007 reference case, total world consumption of marketed energy is projected to increase by 57 percent from 2004 to 2030. The largest projected increase in energy demand is for the non-OECD region. The IEO2007 reference case-which reflects a scenario where current laws and policies remain unchanged throughout the projection period-projects strong growth for worldwide energy demand from 2004 to 2030. Total world consumption of marketed energy is projected to increase from 447 quadrillion Btu in 2004 to 559 quadrillion Btu in 2015 and then to 702 quadrillion Btu in 2030-a 57-percent increase over the projection period (Table 1 and Figure 8). The largest projected increase in energy demand is for the non-OECD region. Generally, countries outside the OECD 3 have higher projected economic growth rates and more rapid population growth

343

International Energy Outlook 2011 - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2011 International Energy Outlook 2011 Release Date: September 19, 2011 | Next Scheduled Release Date: June 10, 2013 | Report Number: DOE/EIA-0484(2011) No International Energy Outlook will be released in 2012. The next edition of the report is scheduled for release in Spring 2013 Highlights International Energy Outlook 2011 cover. In the IEO2011 Reference case, which does not incorporate prospective legislation or policies that might affect energy markets, world marketed energy consumption grows by 53 percent from 2008 to 2035. Total world energy use rises from 505 quadrillion British thermal units (Btu) in 2008 to 619 quadrillion Btu in 2020 and 770 quadrillion Btu in 2035 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for

344

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

energy consumption is projected to increase by 71 percent from 2003 to 2030. energy consumption is projected to increase by 71 percent from 2003 to 2030. Fossil fuels continue to supply much of the energy used worldwide, and oil remains the dominant energy source. In the International Energy Outlook 2006 (IEO2006) ref- erence case, world marketed energy consumption increases on average by 2.0 percent per year from 2003 to 2030. Although world oil prices in the reference case, which remain between $47 and $59 per barrel (in real 2004 dollars), dampen the growth in demand for oil, total world energy use continues to increase as a result of robust economic growth. Worldwide, total energy use grows from 421 quadrillion British thermal units (Btu) in 2003 to 563 quadrillion Btu in 2015 and 722 quadrillion Btu in 2030 (Figure 1). The most rapid growth in energy demand from 2003 to 2030 is projected for nations outside the Organization

345

International Energy Outlook 2013 - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

International Energy Outlook 2013 International Energy Outlook 2013 Release Date: July 25, 2013 | Next Release Date: July 2014 (See release cycle changes) | correction | Report Number: DOE/EIA-0484(2013) Highlights International Energy Outlook 2011 cover. The International Energy Outlook 2013 (IEO2013) projects that world energy consumption will grow by 56 percent between 2010 and 2040. Total world energy use rises from 524 quadrillion British thermal units (Btu) in 2010 to 630 quadrillion Btu in 2020 and to 820 quadrillion Btu in 2040 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for Economic Cooperation and Development (OECD),2 known as non-OECD, where demand is driven by strong, long-term economic growth. Energy use in non-OECD countries increases by 90 percent; in OECD countries, the increase

346

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

0 Energy Flow, 2011 0 Energy Flow, 2011 (Quadrillion Btu) U.S. Energy Information Administration / Annual Energy Review 2011 3 1 Includes lease condensate. 2 Natural gas plant liquids. 3 Conventional hydroelectric power, biomass, geothermal, solar/photovoltaic, and wind. 4 Crude oil and petroleum products. Includes imports into the Strategic Petroleum Reserve. 5 Natural gas, coal, coal coke, biofuels, and electricity. 6 Adjustments, losses, and unaccounted for. 7 Natural gas only; excludes supplemental gaseous fuels. 8 Petroleum products, including natural gas plant liquids, and crude oil burned as fuel. 9 Includes 0.01 quadrillion Btu of coal coke net imports. 10 Includes 0.13 quadrillion Btu of electricity net imports. 11 Total energy consumption, which is the sum of primary energy consumption, electricity retail

347

Regulatory and technical reports (abstract index journal): Compilation for third quarter 1994, July--September. Volume 19, Number 3  

SciTech Connect

This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issues by the U.S. Nuclear Regulatory Commission (NRC) Staff and its contractors. It is NRC`s intention to publish this compilation quarterly and to cumulate it annually. The main citations and abstracts in this compilation are listed in NUREG number order: NUREG-XXXX, NUREG/CP-XXXX, NUREG/CR-XXXX, and NUREG/IA-XXXX. These precede the following indexes: Secondary Report Number Index, Personal Author Index, Subject Index, NRC Originating Organization Index (Staff Reports), NRC Originating Organization Index (International Agreements), NRC Contract Sponsor Index (Contractor Reports) Contractor Index, International Organization Index, Licensed Facility Index. A detailed explanation of the entries precedes each index.

Not Available

1994-12-01T23:59:59.000Z

348

Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations  

Science Conference Proceedings (OSTI)

The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with the specific projects and regions, which increases the productive life of wells and increases the ultimate recoverable reserves in the ground. A case study was conducted in Wyoming to validate the applicability of the GIS analysis tool for watershed evaluations under real world conditions. Results of the partnered research will continue to be shared utilizing proven methods, such as on the IGOCC Web site, preparing hard copies of the results, distribution of documented case studies, and development of reference and handbook components to accompany the interactive internet-based GIS watershed analysis tool. Additionally, there have been several technology transfer seminars and presentations. The goal is to maximize the recovery of our nation's energy reserves and to promote water conservation.

Rachel Henderson

2007-09-30T23:59:59.000Z

349

Data Compilation for AGR-1 Baseline Compact Lot LEU01-46T-Z  

SciTech Connect

This document is a compilation of characterization data for the AGR-1 baseline compact lot LEU01-46T-Z. The compacts were produced by ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program for the first AGR irradiation test train (AGR-1). This compact lot was fabricated using particle composite LEU01-46T, which was a composite of four batches of TRISO-coated 350 {micro}m diameter 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with an {approx} 50% dense carbon buffer layer (100 {micro}m nominal thickness), followed by a dense inner pyrocarbon layer (40 {micro}m nominal thickness), followed by a SiC layer (35 {micro}m nominal thickness), followed by another dense outer pyrocarbon layer (40 {micro}m nominal thickness). The kernels were obtained from BWXT and identified as composite G73D-20-69302. The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified as LEU01-?? (where ?? is a series of integers beginning with 01). A data compilation for the AGR-1 baseline coated particle composite LEU01-46T can be found in ORNL/TM-2006/019. The AGR-1 Fuel product Specification and Characterization Guidance (INL EDF-4380) provides the requirements necessary for acceptance of the fuel manufactured for the AGR-1 irradiation test. Section 6.2 of EDF-4380 provides the property requirements for the heat treated compacts. The Statistical Sampling Plan for AGR Fuel materials (INL EDF-4542) provides additional guidance regarding statistical methods for product acceptance and recommended sample sizes. The procedures for characterizing and qualifying the compacts are outlined in ORNL product inspection plan AGR-CHAR-PIP-05. the inspection report forms generated by this product inspection plan document the product acceptance for the property requirements listed in section 6.2 of EDF-4380.

Hunn, John D [ORNL; Montgomery, Fred C [ORNL; Pappano, Peter J [ORNL

2006-08-01T23:59:59.000Z

350

Data Compilation for AGR-1 Variant 1 Coated Particle Composite LEU01-47T  

SciTech Connect

This document is a compilation of characterization data for the AGR-1 baseline coated particle composite LEU01-46T, a composite of four batches of TRISO-coated 350 {micro}m 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with a {approx} 50% dense carbon buffer layer (100 {micro}m nominal thickness) followed by a dense inner pyrocarbonlayer (40 {micro}m nominal thickness) followed by a SiC layer (35 {micro}m nominal thickness) followed by another dense outer pyrocarbon layer (40 {micro}m nominal thickness). The coated particles, were produced by ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program to be put into compacts for insertion in the first irradiation test capsule, AGR-1. The kernels were obtained from BWXT and identified as composite (G73D-20-69302). The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified as LEU01-?? (where ?? is a series of integers beginning with 01). The AGR-1 variant 1 coated particles were similar to the AGR-1 baseline coated particles with the exception that the inner pyrocarbon (IPyC) coating was deposited at {approx} 25 C higher temperature. A data compilation for the AGR-1 baseline coated particle composite LEU01-46T can be found in ORNL/TM-2006/019. Additional particle batches were coated with only buffer or buffer plus inner pyrocarbon (IPyC) layers using similar process conditions as used for the full TRISO batches comprising the LEU01-47T composite. These batches were fabricated in order to qualify that the process conditions used for buffer would produce acceptable densities as described in sections 8 and to measure the IPyC density as described in section 9. The buffer qualification batches were the same as used to qualify the baseline buffer conditions and used 350 {micro}m natural uranium oxide/uranium carbide kernels (NUCO). The NUCO kernels were obtained from BWXT and were identified as composite G73B-NU-69300. The use of NUCO surrogate kernels is not expected to significantly effect the density of the buffer coating. A confirmatory buffer-only batch using LEUCO kernels from G73D-20-69302 was coated and characterized to verify this assumption. The IPyC qualification batches used LEUCO kernels from G73D-20-69302.

Hunn, John D [ORNL; Lowden, Richard Andrew [ORNL

2006-04-01T23:59:59.000Z

351

Data Compilation for AGR-1 Variant 1 Compact Lot LEU01-47T-Z  

SciTech Connect

This document is a compilation of characterization data for the AGR-1 variant 1 compact lot LEU01-47T-Z. The compacts were produced by ORNL for the ADvanced Gas Reactor Fuel Development and Qualification (AGR) program for the first AGR irradiation test train (AGR-1). This compact lot was fabricated using particle composite LEU01-47T, which was a composite of three batches of TRISO-coated 350 {micro}m diameter 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with an {approx} 50% dense carbon buffer layer (100 {micro}m nominal thickness), followed by a dense inner pyrocarbon layer (40 {micro}m nominal thickness), followed by a SiC layer (35 {micro}m nominal thickness), followed by another dense outer pyrcoarbon layer (40 {micro}m nominal thickness). The kernels were obtained from BWXT and identified as composite G73D-20-69302. The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified at LEU01-?? (where ?? is a series of integers beginning with 01). A data compilation for the AGR-1 variant 1 coated particle composite LEU01-47T can be found in ORNL/TM-2006/020. The AGR-1 Fuel Product Specification and Characterization Guidance (INL EDF-4380) provides the requirements necessary for acceptance of the fuel manufactured for the AGR-1 irradiation test. Section 6.2 of EDF-4380 provides the property requirements for the heat treated compacts. The Statistical Sampling Plan for AGR Fuel Materials (INL EDF-4542) provides additional guidance regarding statistical methods for product acceptance and recommended sample sizes. The procedures for characterizing and qualifying the compacts are outlined in ORNL product inspection plan AGR-CHAR-PIP-05. The inspection report forms generated by this product inspection plan document the product acceptance for the property requirements listed in section 6.2 of EDF-4380.

Hunn, John D [ORNL; Montgomery, Fred C [ORNL; Pappano, Peter J [ORNL

2006-08-01T23:59:59.000Z

352

Data Compilation for AGR-1 Variant 2 Compact Lot LEU01-48T-Z  

SciTech Connect

This document is a compilation of characterization data for the AGR-1 variant 2 compact lot LEU01-48T-Z. The compacts were produced by ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program for the first AGR irradiation test train (AGR-1). This compact lot was fabricated using particle composite LEU01-48T, which was a composite of three batches of TRISO-coated 350 {micro}m diameter 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with an {approx} 50% dense carbon buffer layer (100 {micro}m nominal thickness), followed by a dense inner pyrocarbon layer (40 {micro}m nominal thickness), followed by a SiC layer (35 {micro}m nominal thickness), followed by another dense outer pyrocarbon layer (40 {micro}m nominal thickness). The kernels were obtained from BWXT and identified as composite G73D-20-69302. The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified as LEU01-?? (where ?? is a series of integers beginning with 01). A data compilation for the AGR-1 variant 2 coated particle composite LEU01-48T can be found in ORNL/TM-2006/021. The AGR-1 Fuel Product Specification and Characterization Guidance (INL EDF-4380) provides the requirements necessary for acceptance of the fuel manufactured for the AGR-1 irradiation test. Section 6.2 of EDF-4380 provides the property requirements for the heat treated compacts. The Statistical Sampling Plan for AGR Fuel materials (INL EDF-4542) provides additional guidance regarding statistical methods for product acceptance and recommended sample sizes. The procedures for characterizing and qualifying the compacts are outlined in ORNL product inspection plan AGR-CHAR-PIP-05. The inspection report forms generated by this product inspection plan document the product acceptance for the property requirements listed in section 6.2 of EDF-4380.

Hunn, John D [ORNL; Montgomery, Fred C [ORNL; Pappano, Peter J [ORNL

2006-08-01T23:59:59.000Z

353

INTEGRATED RESULTS APPENDIX D-5  

E-Print Network (OSTI)

.94 Natural Gas 2.70 2.62 2.90 3.01 3.02 3.04 Steam Coal 1.27 1.20 1.12 1.06 0.99 0.93 Energy Consumption Coal 1.27 1.20 1.77 1.70 1.62 1.57 Energy Consumption (Quadrillion Btu) Petroleum Subtotal 36.5 38.9 41 Coal 1.27 1.20 2.42 2.36 2.27 2.21 Energy Consumption (Quadrillion Btu) Petroleum Subtotal 36.5 38.9 40

354

First Thoughts on Commissioning of the TESLA Compiled by P. Castro for the TESLA commissioning study group.  

E-Print Network (OSTI)

First Thoughts on Commissioning of the TESLA Collider Compiled by P. Castro for the TESLA commissioning study group. September 6, 2002 Abstract The TESLA collider[1] is a large scale project be included in the plans of the construction and installation work of the TESLA collider. A working group

355

ReQoS: reactive static/dynamic compilation for QoS in warehouse scale computers  

Science Conference Proceedings (OSTI)

As multicore processors with expanding core counts continue to dominate the server market, the overall utilization of the class of datacenters known as warehouse scale computers (WSCs) depends heavily on colocation of multiple workloads on each ... Keywords: compiler, contention, cross-core interference, datacenter, dynamic techniques, multicore, online adaptation, quality of service, runtime systems, warehouse scale computers

Lingjia Tang; Jason Mars; Wei Wang; Tanima Dey; Mary Lou Soffa

2013-04-01T23:59:59.000Z

356

Regulatory and technical reports (abstract index journal): Compilation for first quarter 1996, January--March. Volume 21, Number 1  

Science Conference Proceedings (OSTI)

This journal includes all formal reports in the NUREG series prepared by the NRC staff and contractors, proceedings of conferences and workshops, grants, and international agreement reports. The entries in this compilation are indexed for access by title and abstract, secondary report number, personal author, subject, NRC organization for staff and international agreements, contractor, international organization, and licensed facility.

NONE

1996-06-01T23:59:59.000Z

357

Regulatory and technical reports (abstract index journal), Compilation for third quarter 1993, July--September. Volume 18, No. 3  

SciTech Connect

This journal includes all formal reports in the NUREG series prepared by the NRC staff and contractors, proceedings of conferences and workshops, grants, and international agreement reports. The entries in this compilation are indexed for access by title and abstract, secondary report number, personal author, subject, NRC organization for staff and international agreements, contractor, international organization, and licensed facility.

Not Available

1993-11-01T23:59:59.000Z

358

A compilation of reports of the Advisory Committee on Nuclear Waste, July 1993--June 1995. Volume 5  

Science Conference Proceedings (OSTI)

This compilation contains 13 reports issued by the Advisory Committee on Nuclear Waste (ACNW) during the sixth and seventh years of its operation. The reports, submitted to the chairman and commissioners of US NRC, are the recommendations and comments of ACNW during the period July 1, 1993--June 30, 1995.

NONE

1995-08-01T23:59:59.000Z

359

Regulatory and technical reports (abstract index journal): Compilation for second quarter 1997 April--June. Volume 22, Number 2  

SciTech Connect

This journal includes all formal reports in the NUREG series prepared by the NRC staff and contractors; proceedings of conferences and workshops; as well as international agreement reports. The entries in this compilation are indexed for access by title and abstract, secondary report number, personal author, subject, NRC organization for staff and international agreements, contractor, international organization, and licensed facility.

NONE

1997-10-01T23:59:59.000Z

360

Regulatory and technical reports: Abstract index journal. Volume 20, No. 3, Compilation for third quarter 1995, July--September  

SciTech Connect

This journal includes all formal reports in the NUREG series prepared by the NRC staff and contractors; proceedings of conferences and workshops; as well as international agreement reports. The entries in this compilation are indexed for access by title and abstract, secondary report number, personal author, subject, NRC organization for staff and international agreements, contractor, international organization, and licensed facility.

NONE

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Compilation of modal analyses of volcanic rocks from the Nevada Test Site area, Nye County, Nevada  

SciTech Connect

Volcanic rock samples collected from the Nevada Test Site, Nye County, Nevada, between 1960 and 1985 were analyzed by thin section to obtain petrographic mode data. In order to provide rapid accessibility to the entire database, all data from the cards were entered into a computerized database. This computer format will enable workers involved in stratigraphic studies in the Nevada Test Site area and other locations in southern Nevada to perform independent analyses of the data. The data were compiled from the mode cards into two separate computer files. The first file consists of data collected from core samples taken from drill holes in the Yucca Mountain area. The second group of samples were collected from measured sections and surface mapping traverses in the Nevada Test Site area. Each data file is composed of computer printouts of tables with mode data from thin section point counts, comments on additional data, and location data. Tremendous care was taken in transferring the data from the cards to computer, in order to preserve the original information and interpretations provided by the analyzer. In addition to the data files above, a file is included that consists of Nevada Test Site petrographic data published in other US Geological Survey and Los Alamos National Laboratory reports. These data are presented to supply the user with an essentially complete modal database of samples from the volcanic stratigraphic section in the Nevada Test Site area. 18 refs., 4 figs.

Page, W.R.

1990-10-01T23:59:59.000Z

362

Data Compilation for AGR-3/4 Driver Particle Composite LEU03-09T  

SciTech Connect

This document is a compilation of characterization data for the AGR-3/4 driver fuel coated particle composite LEU03-09T, a composite of four batches of TRISO-coated, nominally 350 {micro}m diameter, 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-3/4 driver fuel particles were fabricated using the AGR-1 baseline coating conditions and consist of a spherical kernel coated with an {approx}50% dense carbon buffer layer (100 {micro}m nominal thickness) followed by a dense inner pyrocarbon layer (40 {micro}m nominal thickness) followed by a SiC layer (35 {micro}m nominal thickness) followed by another dense outer pyrocarbon layer (40 {micro}m nominal thickness). the coated particles were produced by ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program to be put into compacts, along with designed-to-fail particles, for insertion in the AGR-3 and AGR-4 irradiation test capsules. The kernels were obtained from BWXT and identified as composite G73V-20-69303. The BWXT kernel lot G73V-20-69303 was riffled into sublots for characterization and coating by ORNL and identified as LEU03-?? (where ?? is a series of integers beginning with 01).

Hunn, John D [ORNL; Lowden, Richard Andrew [ORNL

2007-03-01T23:59:59.000Z

363

Data Compilation for AGR-1 Variant 3 Coated Particle Composite LEU01-49T  

SciTech Connect

This document is a compilation of characterization data for the AGR-1 variant 3 coated particle composite LEU01-49T, a composite of three batches of TRISO-coated 350 {micro}m diameter 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with a {approx} 50% dense carbon buffer layer (100 {micro}m nominal thickness) followed by a dense inner pyrocarbon layer (40 {micro}m nominal thickness) followed by a SiC layer (35 {micro}m nominal thickness) followed by another dense outer pyrcoarbon layer (40 {micro}m nominal thickness). The coated particles were produced by ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program to be put into compacts for the fuel shakedown irradiation (AGR-1) experiment. The kernels were obtained from BWXT and identified as composite G73D-20-6302. The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified as LEUO01-?? (where ?? is a series of integers beginning with 01).

Hunn, John D [ORNL; Lowden, Richard Andrew [ORNL

2006-07-01T23:59:59.000Z

364

Data Compilation for AGR-1 Variant 2 Coated Particle Composite LEU01-48T  

SciTech Connect

This document is a compilation of characterization data for the AGR-1 variant 2 coated particle composite LEU01-48T, a composite of three batches of TRISO-coated 350 {micro}m diameter, 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with a {approx} 50% dense carbon buffer layer (100 {micro}m nominal thickness) followed by a dense inner pyrocarbon layer (40 {micro}m nominal thickness) followed by a SiC layer (35 {micro}m nominal thickness) followed by another dense outer pyrocarbon layer (40 {micro}m nominal thickness). The coated particles were produced by ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program to be put into compacts for the fuel shakedown irradiation (AGR-1) experiment. The kernels were obtained from BWXT and identified as composite G73D-20-69302. The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified as LEU01-?? (where ?? is a series of integers beginning with 01).

Hunn, John D [ORNL; Lowden, Richard Andrew [ORNL

2006-05-01T23:59:59.000Z

365

Data Compilation for AGR-1 Pre-Production Test: NUCO350-75T-Z  

SciTech Connect

This document is a compilation of characterization data for compact lot NUCO350-75T-Z. This compact lot was fabricated using particle composite NUCO350-75T, which was a composite of three batches of TRISO-coated 350 m natural uranium oxide/uranium carbide kernels (NUCO). The compacts and coated particles were produced as part of a development effort at ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program. The kernels were obtained from BWXT and were identified as composite G73B-NU-69300. The BWXT kernel lot G73B-NU-69300 was riffled into sublots for characterization and coating. The ORNL identification for these kernel sublots was NUCO350-## (where ## were a series of integers beginning with 01). NUCO350-75T-Z was produced as part of the ORNL AGR development effort and is not fully representative of a final product. This compact lot was the first run through of the entire ORNL AGR-1 irradiation test fuel production process involving coating, characterization, and compacting of TRISO-coated 350 m NUCO. The results of this exercise were used to fine tune the irradiation test fuel production process and as a basis for the decision to proceed with the production of the baseline fuel for the AGR-1 irradiation test.

Hunn, John D [ORNL; Lowden, Richard Andrew [ORNL; Pappano, Peter J [ORNL

2006-03-01T23:59:59.000Z

366

Combining compiler and operating system support for energy efficient i/o on embedded platforms  

E-Print Network (OSTI)

Mobile and embedded platforms have experienced dramatic advances in capabilities, largely due to the development of associated peripheral devices for storage and communication. The incorporation of these I/O devices has increased the overall power envelope of these platforms. In fact, system-level power consumption of mobile platforms is often dominated by peripheral devices. Since battery technologies alone have been unable to provide the lifetimes required by many platforms, in order to conserve energy, most devices provide the ability to transition into low power states during idle periods. The resulting energy savings are heavily dependent upon the lengths and number of idle periods experienced by a device. This paper presents an infrastructure designed to take advantage of device low power states by increasing the burstiness of device accesses and idle periods to provide a reduced power profile, and thereby an improvement in battery life. Our approach combines compiler-based source modifications with operating system support to implement a dynamic solution for enhanced energy consumption. We evaluate our infrastructure on an XScale-based embedded platform with a Linux implementation. 1.

Ripal Nathuji

2005-01-01T23:59:59.000Z

367

Human retroviruses and AIDS 1996. A compilation and analysis of nucleic acid and amino acid sequences  

Science Conference Proceedings (OSTI)

This compendium and the accompanying floppy diskettes are the result of an effort to compile and rapidly publish all relevant molecular data concerning the human immunodeficiency viruses (HIV) and related retroviruses. The scope of the compendium and database is best summarized by the five parts that it comprises: (1) Nuclear Acid Alignments and Sequences; (2) Amino Acid Alignments; (3) Analysis; (4) Related Sequences; and (5) Database Communications. Information within all the parts is updated throughout the year on the Web site, http://hiv-web.lanl.gov. While this publication could take the form of a review or sequence monograph, it is not so conceived. Instead, the literature from which the database is derived has simply been summarized and some elementary computational analyses have been performed upon the data. Interpretation and commentary have been avoided insofar as possible so that the reader can form his or her own judgments concerning the complex information. In addition to the general descriptions of the parts of the compendium, the user should read the individual introductions for each part.

Myers, G.; Foley, B.; Korber, B. [eds.] [Los Alamos National Lab., NM (United States). Theoretical Div.] [eds.; Los Alamos National Lab., NM (United States). Theoretical Div.; Mellors, J.W. [ed.] [Univ. of Pittsburgh, PA (United States)] [ed.; Univ. of Pittsburgh, PA (United States); Jeang, K.T. [ed.] [National Institutes of Health, Bethesda, MD (United States). Molecular Virology Section] [ed.; National Institutes of Health, Bethesda, MD (United States). Molecular Virology Section; Wain-Hobson, S. [Pasteur Inst., Paris (France)] [ed.] [Pasteur Inst., Paris (France); ed.

1997-04-01T23:59:59.000Z

368

Experimental program for the development of peat gasification. Process designs and cost estimates for the manufacture of 250 billion Btu/day SNG from peat by the PEATGAS Process. Interim report No. 8  

SciTech Connect

This report presents process designs for the manufacture of 250 billion Btu's per day of SNG by the PEATGAS Process from peats. The purpose is to provide a preliminary assessment of the process requirements and economics of converting peat to SNG by the PEATGAS Process and to provide information needed for the Department of Energy (DOE) to plan the scope of future peat gasification studies. In the process design now being presented, peat is dried to 35% moisture before feeding to the PEATGAS reactor. This is the basic difference between the Minnesota peat case discussed in the current report and that presented in the Interim Report No. 5. The current design has overall economic advantages over the previous design. In the PEATGAS Process, peat is gasified at 500 psig in a two-stage reactor consisting of an entrained-flow hydrogasifier followed by a fluidized-bed char gasifier using steam and oxygen. The gasifier operating conditions and performance are necessarily based on the gasification kinetic model developed for the PEATGAS reactor using the laboratory- and PDU-scale data as of March 1978 and April 1979, respectively. On the basis of the available data, this study concludes that, although peat is a low-bulk density and low heating value material requiring large solids handling costs, the conversion of peat to SNG appears competitive with other alternatives being considered for producing SNG because of its very favorable gasification characteristics (high methane formation tendency and high reactivity). As a direct result of the encouraging technical and economic results, DOE is planning to modify the HYGAS facility in order to begin a peat gasification pilot plant project.

Arora, J.L.; Tsaros, C.L.

1980-02-01T23:59:59.000Z

369

U.S. Energy Flow - 1999  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Laboratory (LLNL) has prepared similar flow charts of U.S. energy consumption since 1972. The chart follows the flow of individual fuels and compares these on the basis of a common energy unit of quadrillion British thermal units (Btu). A quadrillion, or ''quad,'' is 10{sup 15}. One Btu is the quantity of heat needed to raise the temperature of 1 pound of water by 1 F at or near 39.2 F. The width of each colored line across this chart is in proportion to the amount of quads conveyed. (Exception: lines showing extremely small amounts have been made wide enough to be clearly visible.) In most cases, the numbers used in this chart have been rounded to the nearest tenth of a quad, although the original data was published in hundredths or thousandths of a quad. As a consequence of independent rounding, some of the summary numbers may not appear to be a precise total of their various components. The first chart in this document uses quadrillion Btu's to conform with data from the U.S. Department of Energy's Energy Information Administration (EIA). However, the second chart is expressed in exajoules. A joule is the metric unit for heat. One Btu equals 1,055.06 joules; and one quadrillion Btu's equals 1.055 exajoules (an exajoule is 10{sup 18} joules).

Kaiper, G V

2001-03-01T23:59:59.000Z

370

The exigency of benchmark and compiler drift: Designing tomorrow’s processors with yesterday’s tools  

E-Print Network (OSTI)

Due to the amount of time required to design a new processor, one set of benchmark programs may be used during the design phase while another may be the standard when the design is finally delivered. Using one benchmark suite to design a processor while using a different, presumably more current, suite to evaluate its ultimate performance may lead to sub-optimal design decisions if there are large differences between the characteristics of the two suites and their respective compilers. We call this change across time “drift”. To evaluate the impact of using yesterday’s benchmark and compiler technology to design tomorrow’s processors, we compare common benchmarks from the SPEC 95 and SPEC 2000 benchmark suites. Our results yield three key conclusions. First, we show that the amount of drift, for common programs in successive SPEC benchmark suites, is significant. In

Joshua J. Yi; Hans Vandierendonck; Lieven Eeckhout; David J. Lilja

2006-01-01T23:59:59.000Z

371

Gulf Coast geopressured-geothermal program summary report compilation. Volume 4: Bibliography (annotated only for all major reports)  

DOE Green Energy (OSTI)

This bibliography contains US Department of Energy sponsored Geopressured-Geothermal reports published after 1984. Reports published prior to 1984 are documented in the Geopressured Geothermal bibliography Volumes 1, 2, and 3 that the Center for Energy Studies at the University of Texas at Austin compiled in May 1985. It represents reports, papers and articles covering topics from the scientific and technical aspects of geopressured geothermal reservoirs to the social, environmental, and legal considerations of exploiting those reservoirs for their energy resources.

John, C.J.; Maciasz, G.; Harder, B.J.

1998-06-01T23:59:59.000Z

372

Data Compilation for AGR-1 Baseline Coated Particle Composite LEU01-46T  

SciTech Connect

This document is a compilation of characterization data for the AGR-1 baseline coated particle composite LEU01-46T, a composite of four batches of TRISO-coated 350 {micro}m 19.7% low enrichment uranium oxide/uranium carbide kernels (LEUCO). The AGR-1 TRISO-coated particles consist of a spherical kernel coated with a {approx} 50% dense carbon buffer layer (100 {micro}m nominal thickness) followed by a dense inner pyrocarbonlayer (40 {micro}m nominal thickness) followed by a SiC layer (35 {micro}m nominal thickness) followed by another dense outer pyrocarbon layer (40 {micro}m nominal thickness). The coated particles, were produced by ORNL for the Advanced Gas Reactor Fuel Development and Qualification (AGR) program to be put into compacts for insertion in the first irradiation test capsule, AGR-1. The kernels were obtained from BWXT and identified as composite (G73D-20-69302). The BWXT kernel lot G73D-20-69302 was riffled into sublots for characterization and coating by ORNL and identified as LEU01-?? (where ?? is a series of integers beginning with 01). Additional particle batches were coated with only buffer or buffer plus inner pyrocarbon (IPyC) layers using similar process conditions as used for the full TRISO batches comprising the LEU01-46T composite. These batches were fabricated in order to qualify that the process conditions used for buffer and IPyC would produce acceptable densities, as described in sections 8 and 9. These qualifying batches used 350 {micro}m natural uranium oxide/uranium carbide kernels (NUCO). The kernels were obtained from BWXT and identified as composite G73B-NU-69300. The use of NUCO surrogate kernels is not expected to significantly effect the densities of the buffer and IPyC coatings. Confirmatory batches using LEUCO kernels from G73D-20-69302 were coated and characterized to verify this assumption. The AGR-1 Fuel Product Specification and Characterization Guidance (INL EDF-4380, Rev. 6) provides the requirements necessary for acceptance of the fuel manufactured for the AGR-1 irradiation test. Sections 5.2 and 5.3 of EDF-4380 provide the property requirements for the coated particle batches and coated particle composite. The STatistical Sampling Plan for AGR Fuel Materials (INL EDF-4542, Rev. 6) provides additional guidance regarding statistical methods for product acceptance and recommended sample sizes. The procedures for characterizing and qualifying the particles are outlined in ORNL product inspection plans: AGR-CHAR-PIP-01, AGR-CHAR-PIP-02, AGR-CHAR-PIP-03, and AGR-CHAR-PIP-04. The inspection report forms generated by these product inspection plans document the product acceptance for the property requirements listed in sections 5.2 and 5.3 of EDF-4380.

Hunn, John D [ORNL; Lowden, Richard Andrew [ORNL

2006-04-01T23:59:59.000Z

373

2010 Renewable Energy Data Book (Book), Energy Efficiency & Renewable...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

(2010) 11.3% Nuclear 3.3% Hydropower 7.6% Non-Hydro Renewables 29.2% Coal 33.1% Natural Gas 15.6% Crude Oil U.S. Energy Production (2010): 74.9 Quadrillion Btu U.S. Non-Hydro...

374

International Energy Outlook 2011  

U.S. Energy Information Administration (EIA) Indexed Site

(quadrillion Btu)" " ","Non-OECD","OECD" 1990,154.362,200.481 2000,171.4905222,234.4840388 2010,281.673,242.25 2020,375.271,254.561 2030,460.011,269.176 2040,535.067,284.578...

375

International Energy Outlook 2011 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Figure 75. Non-OECD coal consumption by region, 1980, 2010, 2020, and 2040 (quadrillion Btu) Total Non?OECD 1980.00 12.69 15.93 2.65 31.28 2010.00 8.92 88.42 5.30 ...

376

Supplement D to compilation of air pollutant emission factors. Volume 1: Stationary point and area sources (fifth edition)  

SciTech Connect

This document contains emission factors and process information for more than 200 air pollution source categories. These emission factors have been compiled from source test data, material balance studies, and they can be used judiciously in making emission estimations for various purposes. This supplement to AP-42 addresses pollutant-generating activity from natural gas combustion, wood waste combustion in boilers; municipal solid waste landfills; waste water collection, treatment and storage; organic liquid storage tanks; nitric acid; grain elevators and processes; plywood manufacturing; lime manufacturing; primary aluminum production; paved roads; abrasive blasting; enteric fermentation -- greenhouse gases.

NONE

1998-08-31T23:59:59.000Z

377

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Refining Industry Petroleum Refining Industry Carbon Emissions in the Petroleum Refining Industry The Industry at a Glance, 1994 (SIC Code: 2911) Total Energy-Related Emissions: 79.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.5% -- Nonfuel Emissions: 16.5 MMTC Total First Use of Energy: 6,263 trillion Btu -- Pct. of All Manufacturers: 28.9% Nonfuel Use of Energy Sources: 3,110 trillion Btu (49.7%) -- Naphthas and Other Oils: 1,328 trillion Btu -- Asphalt and Road Oil: 1,224 trillion Btu -- Lubricants: 416 trillion Btu Carbon Intensity: 12.75 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey", "Monthly Refinery Report" for 1994, and Emissions of Greenhouse Gases in the United States 1998.

378

DOE-STD-101-92; Compilation of Nuclear Safety Criteria Potential Application to DOE Nonreactor Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-1O1-92 -1O1-92 DE92 011016 COMPILATION OF NUCLEAR SAFETY CRITERIA POTENTIAL APPLICATION TO DOE NONREACTOR FACILITIES Published: March 1992 U.S. Department of Energy Office of Nuclear Energy Office of Nuclear Safety Policy and Standards Washington,DC 20585 This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Informa- tion, P.O. Box 62, Oak Ridge, TN 37831; prices available from (423) 576-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE92011016 DOE-STD-101-92 CONTENTS FOREWORD 1. INTRODUCTION 1.1 Purpose 1.2 Sources of Criteria and Format 1.3 Safety Analysis Report Criteria

379

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2004 Highlights World energy consumption is projected to increase by 54 percent from 2001 to 2025. Much of the growth in worldwide energy use is expected in the developing world in the IEO2004 reference case forecast. Figure 2. World Marketed Energy Consumption, 1970-2025 (Quadrillion Btu). Having Problems, call the National Energy Information Center at 202-586-8600. Figure Data Figure 3. World Marketed Energy Consumption by Region, 1970-2025 (Quadrillion Btu). Having problems, call the National Energy Information Center at 202-586-8600. Figure Data Figure 4. Comparison of 2003 and 2004 World Oil Price Projections, 1970-2025 (2002 Dollars per Barrel). Figure Data Figure 5. World Marketed Energy Consumption by Energy Source, 1970-2025 (Quadrilliion Btu). Need help, call the National Energy Information Center at 202-596-8600.

380

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

marketed energy consumption is projected to increase by 57 percent marketed energy consumption is projected to increase by 57 percent from 2004 to 2030. Total energy demand in the non-OECD countries increases by 95 percent, compared with an increase of 24 percent in the OECD countries. In the IEO2007 reference case-which reflects a scenario where current laws and policies remain unchanged throughout the projection period-world marketed energy consumption is projected to grow by 57 percent over the 2004 to 2030 period. Total world energy use rises from 447 quadrillion British thermal units (Btu) in 2004 to 559 quadrillion Btu in 2015 and then to 702 qua- drillion Btu in 2030 (Figure 1). Global energy demand grows despite the relatively high world oil and natural gas prices that are projected to persist into the mid-term outlook. The most rapid growth in energy demand from 2004 to 2030 is projected for nations outside

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Guide to NRC reporting and recordkeeping requirements. Compiled from requirements in Title 10 of the US Code of Federal Regulations as codified on December 31, 1991  

SciTech Connect

This compilation includes in the first two sections the reporting and recordkeeping requirements applicable to US Nuclear Regulatory Commission (NRC) licensees and applicants and to members of the public. It includes those requirements codified in Title 10 of the Code of Federal Regulations, Chapter I, on December 31, 1991. It also includes, in a separate section, any of those requirements that were superseded or discontinued from January through December 1991. Finally, the appendix lists mailing and delivery addresses for NRC Headquarters and Regional Offices mentioned in the compilation.

Collins, M.; Shelton, B.

1992-11-01T23:59:59.000Z

382

Nuclear fuel cycle risk assessment: survey and computer compilation of risk-related literature. [Once-through Cycle and Plutonium Recycle  

Science Conference Proceedings (OSTI)

The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searched and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.

Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

1982-10-01T23:59:59.000Z

383

Compiled code simulation of analog and mixed-signal systems using piecewise linear modeling of nonlinear parameters: A case study for ?? modulator simulation  

Science Conference Proceedings (OSTI)

This paper presents a methodology for fast time-domain simulation of analog systems with nonlinear parameters. Specifically, the paper focuses on @D@S analog-to-digital converters (ADC). The method creates compiled-code simulators based on symbolic analysis. ... Keywords: Analog and mixed-signal systems, Neural networks, Nonlinear modeling, Piecewise linear, Simulation

Hui Zhang; Simona Doboli; Hua Tang; Alex Doboli

2007-04-01T23:59:59.000Z

384

Compilation and Presentation of Existing Data on Oil and Gas Leasing Development in a Manner Useful to the NEPA Process  

Science Conference Proceedings (OSTI)

In recognition of our nation's increasing energy needs, the George W. Bush Administration's National Energy Policy Development Group report (May 2001) suggested that one way to increase domestic on-shore production of oil and gas is to increase access to undiscovered resources on federal lands. Also recognized is the need to protect and conserve natural resources, which often are located on and around federal lands. The National Environmental Policy Act (NEPA) was designed to create and maintain conditions under which man and nature can exist in productive harmony. NEPA requires that federal agencies prepare an environmental impact statement (EIS) prior to the approval of any development activities. The NEPA scope is broad, with the process applicable to many situations from the building of highways, barge facilities and water outtake facilities, bridges, and watersheds to other less significant projects. The process often involves cooperation among multiple federal agencies, industry, scientists and consultants, and the surrounding community. The objective of the project, titled Compilation and Presentation of Existing Data on Oil and Gas Leasing and Development in a Manner Useful to the NEPA Process, is to facilitate faster and more comprehensive access to current oil and gas data by land management agencies and operators. This will enable key stakeholders in the NEPA process to make decisions that support access to federal resources while at the same time achieving a legitimate balance between environmental protection and appropriate levels of development.

Amy Childers; Dave Cornue

2008-11-30T23:59:59.000Z

385

Low-temperature geothermal water in Utah: A compilation of data for thermal wells and springs through 1993  

DOE Green Energy (OSTI)

The Geothermal Division of DOE initiated the Low-Temperature Geothermal Resources and Technology Transfer Program, following a special appropriation by Congress in 1991, to encourage wider use of lower-temperature geothermal resources through direct-use, geothermal heat-pump, and binary-cycle power conversion technologies. The Oregon Institute of Technology (OIT), the University of Utah Research Institute (UURI), and the Idaho Water Resources Research Institute organized the federally-funded program and enlisted the help of ten western states to carry out phase one. This first phase involves updating the inventory of thermal wells and springs with the help of the participating state agencies. The state resource teams inventory thermal wells and springs, and compile relevant information on each sources. OIT and UURI cooperatively administer the program. OIT provides overall contract management while UURI provides technical direction to the state teams. Phase one of the program focuses on replacing part of GEOTHERM by building a new database of low- and moderate-temperature geothermal systems for use on personal computers. For Utah, this involved (1) identifying sources of geothermal date, (2) designing a database structure, (3) entering the new date; (4) checking for errors, inconsistencies, and duplicate records; (5) organizing the data into reporting formats; and (6) generating a map (1:750,000 scale) of Utah showing the locations and record identification numbers of thermal wells and springs.

Blackett, R.E.

1994-07-01T23:59:59.000Z

386

Compilation of TRA Summaries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2011 September 2011 Technology Readiness Assessment Summary Number Title Report Date TRA-1 Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory, Balance of Facilities and LAW Waste Vitrification Facilities at Hanford March 2007 TRA-2 Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility at Hanford March 2007 TRA-3 Waste Treatment and Immobilization Plant (WTP) Pretreatment Facility at Hanford March 2007 TRA-4 K Basins Sludge Treatment Process at Hanford August 2007 TRA-5 Savannah River Site Tank 48H Waste Treatment Project at SRS July 2007 TRA-6 233Uranium Downblending and Disposition Project at Oak Ridge/ORNL September 2008 TRA-7 SRS Salt Waste Processing Facility at SRS July 2009

387

Compilation of ETR Summaries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simulation Capability for Environmental Management (ASCEM) at all sites September 2011 DOE Site: Hanford, WA EM Project: Waste Treatment Plant ETR Report Date: March 2006 ETR-1...

388

*BBRP compilation3  

NLE Websites -- All DOE Office Websites (Extended Search)

At the time, a group of us was studying mutagenic chemicals that were produced by oil-shale retorting and coal gasification. It was a complex problem involving separating...

389

Compilation of ETR Summaries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summaries Summaries Office of Technology Innovation and Development Office of Environmental Management November 2011 External Technical Review Summaries Number Title Report Date ETR-1 Flowsheet for the Hanford Waste Treatment Plant (WTP) March 2006 ETR-2 Tank 48 at the Savannah River Site (SRS) August 2006 ETR-3 Demonstration Bulk Vitrification System (DBVS) for Low Activity Waste (LAW) at Hanford September 2006 ETR-4 Salt Waste Processing Facility Design at the Savannah River Site (SRS) November 2006 ETR-5 Remedial System Performance Improvement for the 200-ZP-1/PW-1 Operable Units at Hanford February 2007 ETR-6 Operational Issues at the Environmental Restoration

390

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

391

Documentation of the Industrial Minor Fuels and Raw Materials model (MFUEL)  

Science Conference Proceedings (OSTI)

Most of the industrial demand for energy is projected by components of the Intermediate Future Forecasting System (IFFS), mainly the PURchased Heat and Power System (PURHAPS) and the oil refineries model (REFPRIDE). Other components of IFFS project a few fuel uses that are sometimes considered industrial. MFUEL projects those portions of industrial demand not covered by other components of IFFS: industrial use of motor gasoline, industrial consumption of lubricants and waxes, petrochemical feedstocks, metallurgical coal, special naphthas, natural gas used as a chemical feedstock, asphalt and road oil, petroleum coke, industrial kerosene, industrial hydropower, net imports of coal coke, other petroleum, and LPG used as a feedstock or by gas utilities. Each fuel is projected by a single equation at the national level, based on historical relationships, and then shared out to Federal Regions. MFUEL accounts for 5.01 quadrillion Btu out of the industrial energy total of 19.66 quadrillion in 1983, including 3.52 quadrillion Btu out of the 7.83 quadrillion of industrial petroleum use.

Werbos, P.J.

1984-07-01T23:59:59.000Z

392

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Efficiency from Executive Summary Efficiency from Executive Summary With more efficient light-duty vehicles, motor gasoline consumption declines while diesel fuel use grows, even as more natural gas is used in heavy-duty vehicles figure data The AEO2013 Reference case incorporates the GHG and CAFE standards for LDVs [6] through the 2025 model year. The increase in vehicle efficiency reduces LDV energy use from 16.1 quadrillion Btu in 2011 to 14.0 quadrillion Btu in 2025, predominantly motor gasoline (Figure 6). LDV energy use continues to decline through 2036, then levels off until 2039 as growth in population and vehicle miles traveled offsets more modest improvement in fuel efficiency. Furthermore, the improved economics of natural gas as a fuel for heavy-duty vehicles result in increased use that offsets a portion of diesel fuel

393

Table A4. Residential sector key indicators and consumption  

Gasoline and Diesel Fuel Update (EIA)

3 3 U.S. Energy Information Administration | Annual Energy Outlook 2013 Reference case Table A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2013 Table A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Key indicators Households (millions) Single-family ....................................................... 82.85 83.56 91.25 95.37 99.34 103.03 106.77 0.8% Multifamily ........................................................... 25.78 26.07 29.82 32.05 34.54 37.05 39.53 1.4%

394

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Overview Figure 65. World coal consumption by region, 1980-2035 figure dataIn the IEO2011 Reference case, which does not include prospective greenhouse gas reduction policies, world coal consumption increases by 50 percent, from 139 quadrillion Btu in 2008 to 209 quadrillion Btu in 2035 (Figure 65). Although world coal consumption increases at an average rate of 1.5 percent per year from 2008 to 2035, the growth rates by region are uneven, with total coal consumption for OECD countries remaining near 2008 levels and coal consumption in non-OECD countries increasing at a pace of 2.1 percent per year. As a result, increased use of coal in non-OECD countries accounts for nearly all the growth in world coal consumption over the period. In 2008, coal accounted for 28 percent of world energy consumption (Figure

395

International Energy Outlook 2001 - Highlights  

Gasoline and Diesel Fuel Update (EIA)

To Forecasting Home Page EIA Homepage Highlights picture of a printer Printer Friendly Version (PDF) World energy consumption is projected to increase by 59 percent from 1999 to 2020. Much of the growth in worldwide energy use is expected in the developing world in the IEO2001 reference case forecast. In the reference case projections for the International Energy Outlook 2001 (IEO2001), world energy consumption is projected to increase by 59 percent over a 21-year forecast horizon, from 1999 to 2020. Worldwide energy use grows from 382 quadrillion British thermal units (Btu) in 1999 to 607 quadrillion Btu in 2020 (Figure 2 and Table 1). Many developments in 2000 influenced this year’s outlook, including persistently high world oil prices, stronger than anticipated economic recovery in southeast Asia, and

396

EIA - International Energy Outlook 2008 - Highlights Section  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2008 Highlights World marketed energy consumption is projected to increase by 50 percent from 2005 to 2030.Total energy demand in the non-OECD countries increases by 85 percent,compared with an increase of 19 percent in the OECD countries. Figure 1. World Marketed Energy Consumption, 2005-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 2. World Marketed Energy Use by Fuel Type, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 3. World Oil Prices in Two Cases, 1980-2030 (nominal dollars per barrel). Need help, contact the National Energy Information Center at 202-586-8800.

397

International Energy Outlook 1999 - Highlights  

Gasoline and Diesel Fuel Update (EIA)

highlights.gif (3388 bytes) highlights.gif (3388 bytes) World energy consumption is projected to increase by 65 percent from 1996 to 2020. The current economic problems in Asia and Russia have lowered projections relative to last year’s report. In the reference case projections for this International Energy Outlook 1999 (IEO99), world energy consumption reaches 612 quadrillion British thermal units (Btu) by 2020 (Figure 2 and Table 1)—an increase of 65 percent over the 24-year projection period. The IEO99 projection for the world’s energy demand in 2020 is about 4 percent (almost 30 quadrillion Btu) lower than last year’s projection. The downward revision is based on events in two parts of the world: Asia and Russia. In Asia, the economic crisis that began in early 1997 persisted throughout 1998, as economic

398

Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu to 31.8 quadrillion Btu), slower than the 1.2 percent average rate from 1975 to 2009. The slower growth is a result of changing demographics, increased LDV fuel economy, and saturation of personal travel demand.[1] References [1] ↑ 1.0 1.1 AEO2011 Transportation Sector Retrieved from "http://en.openei.org/w/index.php?title=Transportation&oldid=378906" What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

399

EIA - International Energy Outlook 2007 - Highlights Section  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2007 Highlights World marketed energy consumption is projected to increase by 57 percent from 2004 to 2030. Total energy demand in the non-OECD countries increases by 95 percent, compared with an increase of 24 percent in the OECD countries. Figure 1. World Marketed Energy Consumption by Region, 2004-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 2. Average Annual Growth in Delivered Energy Consumption by Region and End-use Sector, 2004-2030 (Percent per Year). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 3. Industrial Sector Delivered Energy Consumption by Region, 2004-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

400

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal In the IEO2007 reference case, world coal consumption increases by 74 percent from 2004 to 2030, international coal trade increases by 44 percent from 2005 to 2030, and coal's share of world energy consumption increases from 26 percent in 2004 to 28 percent in 2030. In the IEO2007 reference case, world coal consumption increases by 74 percent over the projection period, from 114.4 quadrillion Btu in 2004 to 199.0 quadrillion Btu in 2030 (Figure 54). Coal consumption increases by 2.6 per- cent per year on average from 2004 to 2015, then slows to an average increase of 1.8 percent annually from 2015 to 2030. World GDP and primary energy consumption also grow more rapidly in the first half than in the second half of the projections, reflecting a gradual slowdown of economic growth in non-OECD Asia. Regionally, increased use of coal in non-OECD

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Electricity Flow, (Quadrillion Btu) Electricity Flow, (Quadrillion Btu) Electricity Flow diagram image Footnotes: 1 Blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived fuels). 3 Data collection frame differences and nonsampling error. Derived for the diagram by subtracting the "T & D Losses" estimate from "T & D Losses and Unaccounted for" derived from Table 8.1. 4 Electric energy used in the operation of power plants. 5 Transmission and distribution losses (electricity losses that occur between the point of generation and delivery to the customer) are estimated

402

EIA - Annual Energy Outlook 2008 (Early Release)- Energy Production and  

Gasoline and Diesel Fuel Update (EIA)

Production and Imports Production and Imports Annual Energy Outlook 2008 (Early Release) Energy Production and Imports Figure 5. Total energy production and consumption, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 6. Energy production by fuel, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Net imports of energy are expected to continue to meet a major share of total U.S. energy demand (Figure 5). In the AEO2008 reference case, the net import share of total U.S. energy consumption in 2030 is 29 percent, slightly less than the 30-percent share in 2006. Rising fuel prices over the projection period are expected to spur increases in domestic energy

403

Tips: Heating and Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Heating and Cooling Tips: Heating and Cooling Tips: Heating and Cooling May 30, 2012 - 7:38pm Addthis Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Heating and cooling your home uses more energy and costs more money than any other system in your home -- typically making up about 54% of your

404

 

Gasoline and Diesel Fuel Update (EIA)

Hydroelectricity and Other Renewable Resources Hydroelectricity and Other Renewable Resources The renewable energy share of total world energy consumption is expected to remain unchanged at 8 percent through 2025, despite a projected 56-percent increase in consumption of hydroelectricity and other renewable resources. In the International Energy Outlook 2003 (IEO2003) reference case, moderate growth in the world’s consumption of hydroelectricity and other renewable energy resources is projected over the next 24 years. Renewable energy sources are not expected to compete economically with fossil fuels in the mid-term forecast. In the absence of significant government policies aimed at reducing the impacts of carbon-emitting energy sources on the environment, it will be difficult to extend the use of renewables on a large scale. IEO2003 projects that consumption of renewable energy worldwide will grow by 56 percent, from 32 quadrillion Btu in 2001 to 50 quadrillion Btu in 2025 (Figure 69).

405

EIA - International Energy Outlook 2008-Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2008 Chapter 4 - Coal In the IEO2008 reference case, world coal consumption increases by 65 percent and international coal trade increases by 53 percent from 2005 to 2030, and coal’s share of world energy consumption increases from 27 percent in 2005 to 29 percent in 2030. Figure 46. World Coal Consumption by Country Grouping, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 47. Coal Share of World Energy Consumption by Sector, 2005, 2015, and 2030 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 48. OECD Coal Consumption by Region, 1980, 2005, 2015, and 2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

406

International Energy Outlook 1999 - Coal  

Gasoline and Diesel Fuel Update (EIA)

coal.jpg (1776 bytes) coal.jpg (1776 bytes) Coal’s share of world energy consumption falls slightly in the IEO99 forecast. Coal continues to dominate many national fuel markets in developing Asia, but it is projected to lose market share to natural gas in some other areas of the world. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1996. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union. In Western Europe, coal consumption declined by 30

407

EIA - International Energy Outlook 2007 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2007 Chapter 5 - Coal In the IEO2007 reference case, world coal consumption increases by 74 percent from 2004 to 2030, international coal trade increases by 44 percent from 2005 to 2030, and coal’s share of world energy consumption increases from 26 percent in 2004 to 28 percent in 2030. Figure 54. World Coal Consumption by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy at 202-586-8800. Figure Data Figure 55. Coal Share of World Energy Consumption by Sector, 2004, 2015, and 2030 (Percent). Need help, contact the National Energy at 202-586-8800. Figure Data In the IEO2007 reference case, world coal consumption increases by 74 percent over the projection period, from 114.4 quadrillion Btu in 2004 to

408

EIA - International Energy Outlook 2009-Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2009 Chapter 4 - Coal In the IEO2009 reference case, world coal consumption increases by 49 percent from 2006 to 2030, and coal’s share of world energy consumption increases from 27 percent in 2006 to 28 percent in 2030. Figure 42. World Coal Consumption by Country Grouping, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 43. Coal Share of World Energy Consumption by Sector, 2006, 2015, and 2030 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 44. OECD Coal Consumption by Region, 1980, 2006, 2015, and 2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

409

International Energy Outlook 2000 - Highlights  

Gasoline and Diesel Fuel Update (EIA)

bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage HIGHLIGHTS World energy consumption is projected to increase by 60 percent from 1997 to 2020. Recent price developments in world oil markets and economic recovery in Southeast Asia have altered projections relative to last year’s report. In the reference case projections for the International Energy Outlook 2000 (IEO2000), world energy consumption increases by 60 percent over a 23-year forecast period, from 1997 to 2020. Energy use worldwide increases from 380 quadrillion British thermal units (Btu) in 1997 to 608 quadrillion Btu in 2020 (Figure 2 and Table 1). Many developments in 1999 are reflected in this year’s outlook. Shifting short-term world oil markets, the beginnings

410

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Transportation from Executive Summary Transportation from Executive Summary With more efficient light-duty vehicles, motor gasoline consumption declines while diesel fuel use grows, even as more natural gas is used in heavy-duty vehicles figure data The AEO2013 Reference case incorporates the GHG and CAFE standards for LDVs [6] through the 2025 model year. The increase in vehicle efficiency reduces LDV energy use from 16.1 quadrillion Btu in 2011 to 14.0 quadrillion Btu in 2025, predominantly motor gasoline (Figure 6). LDV energy use continues to decline through 2036, then levels off until 2039 as growth in population and vehicle miles traveled offsets more modest improvement in fuel efficiency. Furthermore, the improved economics of natural gas as a fuel for heavy-duty vehicles result in increased use that offsets a portion of diesel fuel

411

Assumptions to the Annual Energy Outlook 2001 - Table 4. Coefficients of  

Gasoline and Diesel Fuel Update (EIA)

Coefficients of Linear Equations for Natural Gas- and Coefficients of Linear Equations for Natural Gas- and Oil-Related Methane Emissions Emissions Sources Intercept Variable Name and Units Coefficient Variable Name and Units Coefficient Natural Gas -38.77 Time trend (calendar year) .02003 Dry gas production (thousand cubic feet .02186 Natural Gas Processing -0.9454 Natural gas liquids production (million barrels per day) .9350 Not applicable Natural Gas Transmission and Storage 2.503 Pipeline fuel use (thousand cubic feet) 1.249 Dry gas production (thousand cubic feet) -0.06614 Natural Gas Distribution -58.16 Time trend (calendar year) .0297 Natural gas consumption (quadrillion Btu) .0196 Oil production, Refining, and Transport 0.03190 Oil consumption (quadrillion Btu) .002764 Not applicable Source: Derived from data used in Energy Information Administration, Emissions of Greenhouse Gases in the United States 1999, DOE/EIA-0573(99), (Washington, DC, October 2000).

412

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

7 7 U.S. Energy Information Administration | Annual Energy Outlook 2013 Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2013 Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Sector and source Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Energy consumption Residential Propane .............................................................. 0.53 0.53 0.52 0.52 0.52 0.52 0.52 -0.0% Kerosene ............................................................ 0.03 0.02 0.01 0.01 0.01 0.01 0.01 -1.8% Distillate fuel oil ................................................... 0.58 0.59 0.51 0.45 0.40 0.36 0.32 -2.1%

413

International Energy Outlook 2000 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Although coal use is expected to be displaced by natural gas in some parts of the world, Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2020. Coal continues to dominate many national fuel markets in developing Asia. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1997. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union (FSU). In Western Europe, coal consumption declined by 33 percent between 1985 and 1997, displaced in considerable measure by

414

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Transportation from Executive Summary Transportation from Executive Summary With more efficient light-duty vehicles, motor gasoline consumption declines while diesel fuel use grows, even as more natural gas is used in heavy-duty vehicles figure data The AEO2013 Reference case incorporates the GHG and CAFE standards for LDVs [6] through the 2025 model year. The increase in vehicle efficiency reduces LDV energy use from 16.1 quadrillion Btu in 2011 to 14.0 quadrillion Btu in 2025, predominantly motor gasoline (Figure 6). LDV energy use continues to decline through 2036, then levels off until 2039 as growth in population and vehicle miles traveled offsets more modest improvement in fuel efficiency. Furthermore, the improved economics of natural gas as a fuel for heavy-duty vehicles result in increased use that offsets a portion of diesel fuel

415

EIA - International Energy Outlook 2009 - Highlights Section  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2009 Highlights World marketed energy consumption is projected to increase by 44 percent from 2006 to 2030. Total energy demand in the non-OECD countries increases by 73 percent, compared with an increase of 15 percent in the OECD countries. Figure 1. World Marketed Energy Consumption, 2006-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 2. World Marketed Energy Use by Fuel Type, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 3. World Oil Prices in the IEO2009 and IEO2008 Reference Cases, 1980-2030 (2007 dollars per barrel). Need help, contact the National Energy Information Center at 202-586-8800.

416

EIA - International Energy Outlook 2009-Industrial Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Industrial Sector Energy Consumption Industrial Sector Energy Consumption International Energy Outlook 2009 Chapter 6 - Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by an average of 1.4 percent per year from 2006 to 2030 in the IEO2009 reference case. Much of the growth is expected to occur in the developing non-OECD nations. Figure 63. OECD and Non-OECD Industrial Sector Energy Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 64. World Industrial Sector Energy Consumption by Fuel, 2006 and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

417

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights World energy consumption is projected to increase by 57 percent from 2002 to 2025. Much of the growth in worldwide energy use in the IEO2005 reference case forecast is expected in the countries with emerging economies. Figure 1. World Marketed Energy Consumptiion by Region, 1970-2025. Need help, contact the National Energy Information Center at 202-586-8800. Figure Data In the International Energy Outlook 2005 (IEO2005) reference case, world marketed energy consumption is projected to increase on average by 2.0 percent per year over the 23-year forecast horizon from 2002 to 2025—slightly lower than the 2.2-percent average annual growth rate from 1970 to 2002. Worldwide, total energy use is projected to grow from 412 quadrillion British thermal units (Btu) in 2002 to 553 quadrillion Btu in

418

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Forum Renewable Energy Forum Beijing, China May 27, 2010 David Sandalow Assistant Secretary for Policy and International Affairs U.S. Department of Energy 0 100 200 300 400 500 600 1980 1985 1990 1995 2000 2005 Quadrillion Btu China China and the United States together consume around 40% of the world's energy... 37% Rest of the world United States 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 1980 1984 1988 1992 1996 2000 2004 2008 CO 2 Emissions from Energy Consumption (million MtCO 2 ) ...and together account for more than 40% of global GHG emissions. 42% China Rest of the world United States 2003 projection 2006 projection 0 20 40 60 80 100 120 140 160 180 1970 1980 1990 2000 2010 2020 2030 Quadrillion Btu 2010 projection Actual energy consumption China's energy demand

419

Annual Energy Review, 1995  

SciTech Connect

This document presents statistics on energy useage for 1995. A reviving domestic economy, generally low energy prices, a heat wave in July and August, and unusually cold weather in November and December all contributed to the fourth consecutive year of growth in U.S. total energy consumption, which rose to an all-time high of almost 91 quadrillion Btu in 1995 (1.3). The increase came as a result of increases in the consumption of natural gas, coal, nuclear electric power, and renewable energy. Petroleum was the primary exception, and its use declined by only 0.3 percent. (Integrating the amount of renewable energy consumed outside the electric utility sector into U.S. total energy consumption boosted the total by about 3.4 quadrillion Btu, but even without that integration, U.S. total energy consumption would have reached a record level in 1995.)

NONE

1996-07-01T23:59:59.000Z

420

Slide 1  

U.S. Energy Information Administration (EIA) Indexed Site

World's Demand for World's Demand for Liquid Fuels A Roundtable Discussion A New Climate For Energy EIA 2009 Energy Conference April 7, 2009 Washington, DC 2 World Marketed Energy Use by Fuel Type 0 50 100 150 200 250 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 Quadrillion Btu Liquids Natural Gas Coal Renewables Nuclear History Projections Source: EIA, IEO2008 36% 23% 6% 8% 29% 33% 24% 8% 6% 27% 3 World Liquids Consumption by End-Use Sector, 2005, 2015, and 2030 0 50 100 150 200 250 2005 2015 2030 Quadrillion Btu Building Industrial Transportation Electric Power Source: EIA, IEO2008 4 $0 $50 $100 $150 $200 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 Light Sweet Crude Oil (2007 $/B) Reference Case High World Oil Price Low World Oil Price World Oil Prices in Three Price Cases, AEO2009 - Real Prices History Projections Source: EIA, AEO2009, NYMEX

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

F1. Primary Energy Consumption and Delivered Total Energy, 2010 F1. Primary Energy Consumption and Delivered Total Energy, 2010 (Quadrillion Btu) U.S. Energy Information Administration / Annual Energy Review 2011 347 Primary Energy Consumption by Source 1 Delivered Total Energy by Sector 8 1 Includes electricity net imports, not shown separately. 2 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 3 Excludes supplemental gaseous fuels. 4 Includes less than 0.1 quadrillion Btu of coal coke net exports. 5 Conventional hydroelectric power, geothermal, solar/PV, wind, and biomass. 6 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public. 7 Calculated as the primary energy consumed by the electric power sector minus the

422

Word Pro - Untitled1  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Sector Energy Consumption by Sector THIS PAGE INTENTIONALLY LEFT BLANK Figure 2.0 Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) U.S. Energy Information Administration / Annual Energy Review 2011 37 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solar/photovoltaic, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. 6 Includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to

423

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

World energy demand and economic outlook World energy demand and economic outlook Overview In the IEO2011 Reference case, world energy consumption increases by 53 percent, from 505 quadrillion Btu in 2008 to 770 quadrillion Btu in 2035 (Table 1). In the near term, the effects of the global recession of 2008-2009 curtailed world energy consumption.8 As nations recover from the downturn, however, world energy demand rebounds in the Reference case and increases strongly as a result of robust economic growth and expanding populations in the world's developing countries. OECD member countries are, for the most part, more advanced energy consumers.9 Energy demand in the OECD economies grows slowly over the projection period, at an average annual rate of 0.6 percent, whereas energy consumption in the non-OECD

424

A compilation of reports of the Advisory Committee on Reactor Safeguards, 1997 annual, U.S. Nuclear Regulatory Commission. Volume 19  

Science Conference Proceedings (OSTI)

This compilation contains 67 ACRS reports submitted to the Commission, or to the Executive Director for Operations, during calendar year 1997. It also includes a report to the Congress on the NRC Safety Research Program. Specific topics include: (1) advanced reactor designs, (2) emergency core cooling systems, (3) fire protection, (4) generic letters and issues, (5) human factors, (6) instrumentation, control and protection systems, (7) materials engineering, (8) probabilistic risk assessment, (9) regulatory guides and procedures, rules, regulations, and (10) safety research, philosophy, technology and criteria.

NONE

1998-04-01T23:59:59.000Z

425

Compilation of emissions data for stationary reciprocating gas engines and gas turbines in use by the natural gas pipeline transmission industry  

SciTech Connect

This publication compiles the available exhaust emission data for stationary reciprocating engines and gas turbines used by the natural gas pipeline transmission industry into a single, easy-to-use source. Data in the original issue and the revisions were obtained from projects sponsored by the A.G.A. PRC and from inhouse projects within a number of the A.G.A. member companies. Additional data included in this reissue were obtained from additional emissions measurement projects sponsored by the A.G.A. PRC, and from A.G.A. member companies and natural gas engine manufacturers.

Urban, C.M.

1988-05-01T23:59:59.000Z

426

Pesticides in ground water database: A compilation of monitoring studies, 1971-1991. Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming). Final report  

SciTech Connect

The report presents summary results on pesticide monitoring of ground water from 1971 to 1991. It is compiled from ground water monitoring projects performed primarily by federal agencies, state agencies and research institutions. The data is well and sample specific. The report is broken into a National Summary and 10 US EPA regional volumes. The information is presented as text, maps, graphs and tables on a national, EPA regional and state/county level. The Region 8 volume is comprised of data from Colorado, Montana, North Dakota, South Dakota and Wyoming.

Hoheisel, C.; Karrier, J.; Lees, S.; Davies-Hilliard, L.; Hannon, P.

1992-08-01T23:59:59.000Z

427

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177 2.175 2.205 2.297 2.317 2.582 2.506 2.120 2.134 2.601 2.862 3.260 1997 2.729 2.016 1.954 2.053 2.268 2.171 2.118 2.484 2.970 3.321 3.076 2.361 1998 2.104 2.293 2.288 2.500 2.199 2.205 2.164 1.913 2.277 2.451 2.438 1.953 1999 1.851 1.788 1.829 2.184 2.293 2.373 2.335 2.836 2.836 3.046 2.649 2.429 2000 2.392 2.596 2.852 3.045 3.604 4.279 3.974 4.467 5.246 5.179 5.754 8.267 2001 7.374 5.556 5.245 5.239 4.315 3.867 3.223 2.982 2.558 2.898 2.981 2.748

428

Table 2.1 Energy Consumption by Sector (Trillion Btu)  

U.S. Energy Information Administration (EIA)

c Electricity-only and combined-heat-and-power (CHP) ... and electrical system energy losses. ... • Geographic coverage is the 50 states and the Distr ...

429

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA)

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date Value End Date Value; 1997-Jan : 01/10 : 3.79 : ...

430

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1997-Jan 01/10 3.79 01/17 4.19 01/24 2.98 01/31 2.91 1997-Feb 02/07 2.53 02/14 2.30 02/21 1.91 02/28 1.82 1997-Mar 03/07 1.86 03/14 1.96 03/21 1.91 03/28 1.84 1997-Apr 04/04 1.88 04/11 1.98 04/18 2.04 04/25 2.14 1997-May 05/02 2.15 05/09 2.29 05/16 2.22 05/23 2.22 05/30 2.28 1997-Jun 06/06 2.17 06/13 2.16 06/20 2.22 06/27 2.27 1997-Jul 07/04 2.15 07/11 2.15 07/18 2.24 07/25 2.20 1997-Aug 08/01 2.22 08/08 2.37 08/15 2.53 08/22 2.54 08/29 2.58

431

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.194 2.268 1994 Jan-17 to Jan-21 2.360 2.318 2.252 2.250 2.305 1994 Jan-24 to Jan-28 2.470 2.246 2.359 2.417 2.528 1994 Jan-31 to Feb- 4 2.554 2.639 2.585 2.383 2.369 1994 Feb- 7 to Feb-11 2.347 2.411 2.358 2.374 2.356 1994 Feb-14 to Feb-18 2.252 2.253 2.345 2.385 2.418 1994 Feb-21 to Feb-25 2.296 2.232 2.248 2.292 1994 Feb-28 to Mar- 4 2.208 2.180 2.171 2.146 2.188 1994 Mar- 7 to Mar-11 2.167 2.196 2.156 2.116 2.096 1994 Mar-14 to Mar-18 2.050 2.104 2.163 2.124 2.103 1994 Mar-21 to Mar-25 2.055 2.107 2.077 1.981 2.072 1994 Mar-28 to Apr- 1 2.066 2.062 2.058 2.075 1994 Apr- 4 to Apr- 8 2.144 2.069 2.097 2.085 2.066 1994 Apr-11 to Apr-15 2.068 2.089 2.131 2.163 2.187

432

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.347 2.355 2.109 2.111 1.941 2.080 1.963 1.693 1.619 1.721 1.771 1.700 1995 1.426 1.439 1.534 1.660 1.707 1.634 1.494 1.557 1.674 1.790 1.961 2.459 1996 2.483 2.458 2.353 2.309 2.283 2.544 2.521 2.049 1.933 2.481 3.023 3.645 1997 3.067 2.065 1.899 2.005 2.253 2.161 2.134 2.462 2.873 3.243 3.092 2.406 1998 2.101 2.263 2.253 2.465 2.160 2.168 2.147 1.855 2.040 2.201 2.321 1.927 1999 1.831 1.761 1.801 2.153 2.272 2.346 2.307 2.802 2.636 2.883 2.549 2.423 2000 2.385 2.614 2.828 3.028 3.596 4.303 3.972 4.460 5.130 5.079 5.740 8.618 2001 7.825 5.675 5.189 5.189 4.244 3.782 3.167 2.935 2.213 2.618 2.786 2.686

433

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-17 to Jan-21 2.019 2.043 2.103 1994 Jan-24 to Jan-28 2.162 2.071 2.119 2.128 2.185 1994 Jan-31 to Feb- 4 2.217 2.258 2.227 2.127 2.118 1994 Feb- 7 to Feb-11 2.137 2.175 2.162 2.160 2.165 1994 Feb-14 to Feb-18 2.140 2.145 2.205 2.190 2.190 1994 Feb-21 to Feb-25 2.180 2.140 2.148 2.186 1994 Feb-28 to Mar- 4 2.148 2.134 2.122 2.110 2.124 1994 Mar- 7 to Mar-11 2.129 2.148 2.143 2.135 2.125 1994 Mar-14 to Mar-18 2.111 2.137 2.177 2.152 2.130 1994 Mar-21 to Mar-25 2.112 2.131 2.117 2.068 2.087 1994 Mar-28 to Apr- 1 2.086 2.082 2.083 2.092 1994 Apr- 4 to Apr- 8 2.124 2.100 2.116 2.100 2.086 1994 Apr-11 to Apr-15 2.095 2.099 2.123 2.155 2.183 1994 Apr-18 to Apr-22 2.187 2.167 2.174 2.181 2.169

434

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

435

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

436

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12 1.72 1999 1.85 1.77 1.79 2.15 2.26 2.30 2.31 2.80 2.55 2.73 2.37 2.36 2000 2.42 2.66 2.79 3.04 3.59 4.29 3.99 4.43 5.06 5.02 5.52 8.90 2001 8.17 5.61 5.23 5.19 4.19 3.72 3.11 2.97 2.19 2.46 2.34 2.30 2002 2.32 2.32 3.03 3.43 3.50 3.26 2.99 3.09 3.55 4.13 4.04 4.74 2003 5.43 7.71 5.93 5.26 5.81 5.82 5.03 4.99 4.62 4.63 4.47 6.13 2004 6.14 5.37 5.39 5.71 6.33 6.27 5.93 5.41 5.15 6.35 6.17 6.58 2005 6.15 6.14 6.96 7.16 6.47 7.18 7.63 9.53 11.75 13.42 10.30 13.05

437

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/24 1.869 12/31 1.943 1994-Jan 01/07 1.935 01/14 1.992 01/21 2.006 01/28 2.088 1994-Feb 02/04 2.133 02/11 2.135 02/18 2.148 02/25 2.149 1994-Mar 03/04 2.118 03/11 2.125 03/18 2.139 03/25 2.113 1994-Apr 04/01 2.107 04/08 2.120 04/15 2.140 04/22 2.180 04/29 2.165 1994-May 05/06 2.103 05/13 2.081 05/20 2.076 05/27 2.061 1994-Jun 06/03 2.134 06/10 2.180 06/17 2.187 06/24 2.176 1994-Jul 07/01 2.256 07/08 2.221 07/15 2.172 07/22 2.137 07/29 2.207

438

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.116 2.168 2.118 2.139 2.038 2.150 2.083 2.031 2.066 2.037 1.873 1.694 1995 1.490 1.492 1.639 1.745 1.801 1.719 1.605 1.745 1.883 1.889 1.858 1.995 1996 1.964 2.056 2.100 2.277 2.307 2.572 2.485 2.222 2.272 2.572 2.571 2.817 1997 2.393 1.995 1.978 2.073 2.263 2.168 2.140 2.589 3.043 3.236 2.803 2.286 1998 2.110 2.312 2.312 2.524 2.249 2.234 2.220 2.168 2.479 2.548 2.380 1.954 1999 1.860 1.820 1.857 2.201 2.315 2.393 2.378 2.948 2.977 3.055 2.586 2.403 2000 2.396 2.591 2.868 3.058 3.612 4.258 3.981 4.526 5.335 5.151 5.455 7.337 2001 6.027 5.441 5.287 5.294 4.384 3.918 3.309 3.219 2.891 3.065 3.022 2.750

439

ENERGY STAR Challenge for Industry: BTU QuickConverter | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program...

440

Table PT2. Energy Production Estimates in Trillion Btu ...  

U.S. Energy Information Administration (EIA)

1963 54.3 228.1 837.6 0.0 na 10.6 10.6 1,130.6 ... 1976 562.9 339.4 778.1 0.0 na 12.5 12.5 1,692.9 ... 2010 7,658.3 2,521.3 r 308.8 r 0.0 0.9 43.5 r ...

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Table PT2. Energy Production Estimates in Trillion Btu ...  

U.S. Energy Information Administration (EIA)

... includes refuse recovery. sources except biofuels. ... Coal a Natural Gas b Crude Oil c Biofuels d Other e Production U.S. Energy Information Administration

442

Table PT2. Energy Production Estimates in Trillion Btu, Minnesota ...  

U.S. Energy Information Administration (EIA)

... includes refuse recovery. sources except biofuels. ... Coal a Natural Gas b Crude Oil c Biofuels d Other e Production U.S. Energy Information Administration

443

Table E4. Electricity Consumption (Btu) Intensities by End Use ...  

U.S. Energy Information Administration (EIA)

Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters Other All Buildings* ..... ...

444

Table E4A. Electricity Consumption (Btu) Intensities by End ...  

U.S. Energy Information Administration (EIA)

Released: September, 2008 Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters ...

445

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network (OSTI)

Steam is the most common and economical way of transferring heat from one location to another. But most steam systems use the header pressure steam to do the job. The savings are substantially more than just the latent heat differences between the high and low steam pressures. The discussion below shows how the savings in using low pressure steam can be above 25%! The key to the savings is not in the heat exchanger equipment or the steam trap, but is back at the powerhouse - the sensible heat requirement of the boiler feed water. Chart III shows potential steam energy savings and will be useful in estimating the steam energy savings of high pressure processes.

Vallery, S. J.

1985-05-01T23:59:59.000Z

446

British Thermal Units (Btu) - Energy Explained, Your Guide To ...  

U.S. Energy Information Administration (EIA)

Landfill Gas and Biogas; Biomass & the Environment See also: Biofuels. Biofuels: Ethanol & Biodiesel. Ethanol; Use of Ethanol; Ethanol & the Environment; Biodiesel;

447

POTENTIAL MARKETS FOR HIGH-BTU GAS FROM COAL  

Science Conference Proceedings (OSTI)

It has become increasilngly clear that the energy-related ilemna facing this nation is both a long-term and deepening problem. A widespread recognition of the critical nature of our energy balance, or imbalance, evolved from the Arab Oil Embargo of 1973. The seeds of this crisis were sown in the prior decade, however, as our consumption of known energy reserves outpaced our developing of new reserves. The resultant increasing dependence on foreign energy supplies hs triggered serious fuel shortages, dramatic price increases, and a pervsive sense of unertainty and confusion throughout the country.

Booz, Allen, and Hamilton, Inc.,

1980-04-01T23:59:59.000Z

448

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1993 Dec-20 to Dec-24 1.894 1.830 1.859 1.895 1993 Dec-27 to Dec-31 1.965 1.965 1.943 1.901 1994 Jan- 3 to Jan- 7 1.883 1.896 1.962 1.955 1.980 1994 Jan-10 to Jan-14 1.972 2.005 2.008 1.966 2.010 1994 Jan-17 to Jan-21 2.006 1.991 1.982 2.000 2.053 1994 Jan-24 to Jan-28 2.095 2.044 2.087 2.088 2.130 1994 Jan-31 to Feb- 4 2.157 2.185 2.157 2.075 2.095 1994 Feb- 7 to Feb-11 2.115 2.145 2.142 2.135 2.140 1994 Feb-14 to Feb-18 2.128 2.125 2.175 2.160 2.155 1994 Feb-21 to Feb-25 2.160 2.130 2.138 2.171 1994 Feb-28 to Mar- 4 2.140 2.128 2.112 2.103 2.111 1994 Mar- 7 to Mar-11 2.116 2.133 2.130 2.130 2.120 1994 Mar-14 to Mar-18 2.114 2.137 2.170 2.146 2.130 1994 Mar-21 to Mar-25 2.117 2.134 2.120 2.086 2.112

449

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.130 2.072 2.139 1994 Jan-17 to Jan-21 2.196 2.131 2.115 2.148 2.206 1994 Jan-24 to Jan-28 2.283 2.134 2.209 2.236 2.305 1994 Jan-31 to Feb- 4 2.329 2.388 2.352 2.252 2.198 1994 Feb- 7 to Feb-11 2.207 2.256 2.220 2.231 2.236 1994 Feb-14 to Feb-18 2.180 2.189 2.253 2.240 2.254 1994 Feb-21 to Feb-25 2.220 2.168 2.179 2.221 1994 Feb-28 to Mar- 4 2.165 2.146 2.139 2.126 2.144 1994 Mar- 7 to Mar-11 2.149 2.168 2.160 2.144 2.132 1994 Mar-14 to Mar-18 2.109 2.142 2.192 2.164 2.136 1994 Mar-21 to Mar-25 2.107 2.129 2.115 2.050 2.077 1994 Mar-28 to Apr- 1 2.076 2.072 2.070 2.087 1994 Apr- 4 to Apr- 8 2.134 2.090 2.109 2.093 2.081 1994 Apr-11 to Apr-15 2.090 2.099 2.128 2.175 2.196

450

Table 2.3 Commercial Sector Energy Consumption (Trillion Btu)  

U.S. Energy Information Administration (EIA)

e Conventional hydroelectric power. f Electricity retail sales to ultimate customers reported by electric utilities and, beginning in 1996, other energy service ...

451

Monthly energy review, May 1995  

SciTech Connect

Energy production during Feb 95 totaled 5.4 quadrillion Btu (Q), 3.1% over Feb 94. Energy consumption totaled 7.4 Q, 0.7% below Feb 94. Net imports of energy totaled 1.3 Q, 5.6% below Feb 94. This publication is divided into energy overview, energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy.

NONE

1995-05-24T23:59:59.000Z

452

Monthly energy review, July 1995  

Science Conference Proceedings (OSTI)

Energy production during April 1995 totaled 5.5 quadrillion Btu, a 1.0-percent decrease from the level of production during April 1994. Coal production decreased 7.7 percent, natural gas increased 1.3 percent, and production of crude oil and natural gas plant liquids increased 0.3 percent. All other forms of energy production combined were up 8.6 percent from the level of production during April 1994.

NONE

1995-07-24T23:59:59.000Z

453

Analysis of the economic potential of solar thermal energy to provide industrial process heat. Final report, Volume I. [In-depth analysis of 78 industries  

SciTech Connect

The process heat data base assembled as the result of this survey includes specific process applications from 78 four-digit Standard Industrial Classification (SIC) groups. These applications account for the consumption of 9.81 quadrillion Btu in 1974, about 59 percent of the 16.6 quadrillion Btu estimated to have been used for all process heat in 1974. About 7/sup 1///sub 2/ percent of industrial process heat is used below 212/sup 0/F (100/sup 0/C), and 28 percent below 550/sup 0/F (288/sup 0/C). In this study, the quantitative assessment of the potential of solar thermal energy systems to provide industrial process heat indicates that solar energy has a maximum potential to provide 0.6 quadrillion Btu per year in 1985, and 7.3 quadrillion Btu per year in 2000, in economic competition with the projected costs of conventional fossil fuels for applications having a maximum required temperature of 550/sup 0/ (288/sup 0/C). A wide variety of collector types were compared for performance and cost characteristics. Performance calculations were carried out for a baseline solar system providing hot water in representative cities in six geographical regions within the U.S. Specific industries that should have significant potential for solar process heat for a variety of reasons include food, textiles, chemicals, and primary metals. Lumber and wood products, and paper and allied products also appear to have significant potential. However, good potential applications for solar process heat can be found across the board throughout industry. Finally, an assessment of nontechnical issues that may influence the use of solar process heat in industry showed that the most important issues are the establishment of solar rights, standardization and certification for solar components and systems, and resolution of certain labor-related issues. (Volume 1 of 3 volumes.)

1977-02-07T23:59:59.000Z

454

Drell-Yan Cross Sections: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group  

DOE Data Explorer (OSTI)

A compilation of data on Drell-Yan cross sections above a lepton-pair mass of 4 GeV/c2 is presented. The relevant experiments at Fermilab and CERN are included dating from approximately 1977 to the present day, covering p, p and pi +or- beams on a variety of nuclear and hydrogen targets, with centre-of-mass energies from 8.6 GeV to 630 GeV. The type of data presented include d sigma /dm, d2 sigma /dm dx and d2 sigma /dm dy distributions as well as other variations of these, and also transverse momentum distributions. The data are compared with a standard theoretical model, and a phenomenological 'K-factor' for each set is calculated. (Taken from the abstract of A Compilation of Drell-Yan Cross sections, W.J. Stirling and M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 19, Data Review, 1993.) The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://durpdg.dur.ac.uk/spires/hepdata/reac.html.

Stirling, W. J.; Whalley, M. R.

455

Inclusive Particle Production Data in E+E- Interactions: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group  

DOE Data Explorer (OSTI)

A comprehensive compilation of experimental data on inclusive particle production in e+e- interactions is presented. Data are given in both tabular and graphical form for multiplicities and inclusive differential cross sections from experiments at all of the world`s high energy e+e- colliders. To facilitate comparison between the data sets, curves are also shown from the JETSET 7.4 Monte Carlo program. (Taken from the abstract of A Compilation of Inclusive Particle Production Data in E+E- Annihilation, G.D. Lafferty, P.I. Reeves, and M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 21, Number 12A, 1995.) The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://durpdg.dur.ac.uk/spires/hepdata/reac.html.

Lafferty, G. D.; Reeves, P. I.; Whalley, M. R.

456

Digitally Available Interval-Specific Rock-Sample Data Compiled from Historical Records, Nevada Test Site and Vicinity, Nye County, Nevada  

Science Conference Proceedings (OSTI)

Between 1951 and 1992, underground nuclear weapons testing was conducted at 828 sites on the Nevada Test Site, Nye County, Nevada. Prior to and following these nuclear tests, holes were drilled and mined to collect rock samples. These samples are organized and stored by depth of borehole or drift at the U.S. Geological Survey Core Library and Data Center at Mercury, Nevada, on the Nevada Test Site. From these rock samples, rock properties were analyzed and interpreted and compiled into project files and in published reports that are maintained at the Core Library and at the U.S. Geological Survey office in Henderson, Nevada. These rock-sample data include lithologic descriptions, physical and mechanical properties, and fracture characteristics. Hydraulic properties also were compiled from holes completed in the water table. Rock samples are irreplaceable because pre-test, in-place conditions cannot be recreated and samples cannot be recollected from the many holes destroyed by testing. Documenting these data in a published report will ensure availability for future investigators.

David B. Wood

2009-10-08T23:59:59.000Z

457

Single Photon Production in Hadronic Interactions: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group  

DOE Data Explorer (OSTI)

Vogelsang and Whalley in their 1997 paper, ôA Compilation of Data on Single and Double Prompt Photon Production in Hadron-Hadron Interactionsö published in volume 23 of Journal of Physics G (Nuclear and Particle Physics) present the compilation as well as ôan interpretation of these data in terms of the æstate-of-the-art NLO theory with specific emphasis on the uncertainties involved.ö They also say, ôComparisons of this theory with the individual data sets are made in order to indicate to the reader the scope and general status of the available data. For completeness, data on two-prompt-photon production are also included in a separate small section.ö The data gathered from the relevant collaborations at DOEÆs Fermilab are available, and so are data from related collaborations based at CERN. The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://durpdg.dur.ac.uk/spires/hepdata/reac.html.

458

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

459

Carbon Emissions: Iron and Steel Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Iron and Steel Industry Iron and Steel Industry Carbon Emissions in the Iron and Steel Industry The Industry at a Glance, 1994 (SIC Code: 3312) Total Energy-Related Emissions: 39.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 10.7% -- Nonfuel Emissions: 22.2 MMTC Total First Use of Energy: 1,649 trillion Btu -- Pct. of All Manufacturers: 7.6% Nonfuel Use of Energy: 886 trillion Btu (53.7%) -- Coal: 858 trillion Btu (used to make coke) Carbon Intensity: 24.19 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 39.9 Coal 22.7

460

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Table 14. Comparisons of coal projections, 2011-2040 (million short tons, except where noted) Projection 2011 AEO2013 Reference case Other projections (million short tons) (quadrillion Btu) EVA a ICF b IHSGI INFORUM IEA Exxon- Mobil c (million short tons) (quadrillion Btu) 2025 Production 1,096 1,113 22.54 958 1,104 1,107 1,061 -- -- East of the Mississippi 456 447 -- 402 445 -- -- -- -- West of the Mississippi 639 666 -- 556 659 -- -- -- -- Consumption Electric power 929 929 17.66 786 939 864 -- -- 13 Coke plants 21 22 0.58 22 15 19 -- -- -- Coal-to-liquids -- 6 -- -- 36 -- -- -- -- Other industrial/buildings 49 53 1.69 d 29 72 44 1.96 d -- -- Total consumption (quadrillion Btu) 19.66 -- 19.35 -- -- 18.34 -- -- 13 Total consumption (million short tons) 999 1,010 -- 836 1,061 927 1,015 e -- -- Net coal exports (million short tons) 96 124 -- 118 43 181 46 -- --

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Monthly energy review, May 1997  

Science Conference Proceedings (OSTI)

This is an overview of the May energy statistics by the Energy Information Administration. The contents of the report include an energy overview, US energy production, trade stocks and prices for petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. Energy production during February 1997 totaled 5.4 quadrillion Btu, a 1.9% decrease from the level of production during February 1996. Coal production increased 1.2%, natural gas production decreased 2.9%, and production of crude oil and natural gas plant liquids decreased 2.1%. All other forms of energy production combined were down 6.3% from the level of production during February 1996. Energy consumption during February 1997 totaled 7.5 quadrillion Btu, 4.0% below the level of consumption during February 1996. Consumption of petroleum products decreased 4.4%, consumption of natural gas was down 3.5%, and consumption of coal fell 2.2%. Consumption of all other forms of energy combined decreased 6.7% from the level 1 year earlier. Net imports of energy during February 1997 totaled 1.5 quadrillion Btu, 14.1% above the level of net imports 1 year earlier. Net imports of petroleum increased 12.7% and net imports of natural gas were up 7.4%. Net exports of coal fell 12.1% from the level in February 1996. 37 figs., 75 tabs.

NONE

1997-05-01T23:59:59.000Z

462

Monthly energy review, July 1994  

Science Conference Proceedings (OSTI)

Energy production during April 1994 totaled 5.5 quadrillion Btu, a 2.2-percent increase from the level of production during April 1993. Coal production increased 11.8 percent, petroleum production fell 4.0 percent, and natural gas production decreased 0.3 percent. All other forms of energy production combined were down 2.9 percent from the level of production during April 1993. Energy consumption during April 1994 totaled 6.7 quadrillion Btu, 1.4 percent above the level of consumption during April 1993. Petroleum consumption increased 3.9 percent, coal consumption rose 1.1 percent, and natural gas consumption decreased 1.5 percent. Consumption of all other forms of energy combined decreased 0.4 percent from the level 1 year earlier. Net imports of energy during April 1994 totaled 1.5 quadrillion Btu, 8.7 percent above the level of net imports 1 year earlier. Net imports of petroleum increased 4.5 percent, and net imports of natural gas were up 18.5 percent. Net exports of coal fell 9.2 percent from the level in April 1993.

Not Available

1994-07-26T23:59:59.000Z

463

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

5 Non-Combustion Use of Fossil Fuels 5 Non-Combustion Use of Fossil Fuels Total, 1980-2011 As Share of Total Energy Consumption, 1980-2011 By Fuel, 2011 By Petroleum Product, 2011 32 U.S. Energy Information Administration / Annual Energy Review 2011 1 Liquefied petroleum gases and pentanes plus are aggregated to avoid disclosure of proprie- tary information. 2 Distillate fuel oil, residual fuel oil, waxes, and miscellaneous products. (s)=Less than 0.05 quadrillion Btu. Note: See Note 2, "Non-Combustion Use of Fossil Fuels" at end of section. Source: Table 1.15. 1980 1985 1990 1995 2000 2005 2010 0 2 4 6 8 Quadrillion Btu Natural Gas 1980 1985 1990 1995 2000 2005 2010 0 3 6 9 Percent Total Petroleum Products Coal 2.0 1.0 0.9 0.3 0.1 (s) 0.3 LPG¹ Petro- Asphalt Lubri- Petro- Special Other² 0.0 0.6 1.2 1.8 2.4 Quadrillion Btu

464

Monthly energy review, August 1994  

SciTech Connect

Energy production during May 1994 totaled 5.6 quadrillion Btu, a 2.4-percent increase from the level of production during May 1993. Coal production increased 13.3 percent, natural gas production rose 1.7 percent, and petroleum production decreased 2.5 percent. All other forms of energy production combined were down 8.3 percent from the level of production during May 1993. Energy consumption during May 1994 totaled 6.6 quadrillion Btu, 3.6 percent above the level of consumption during May 1993. Natural gas consumption increased 8.7 percent, coal consumption rose 4.6 percent, and petroleum consumption was up 3.6 percent. Consumption of all other forms of energy combined decreased 5.8 percent from the level 1 year earlier. Net imports of energy during May 1994 totaled 1.5 quadrillion Btu, 14.3 percent above the level of net imports 1 year earlier. Net imports of petroleum increased 8.4 percent, and net imports of natural gas were up 23.2 percent. Net exports of coal fell 16.8 percent from the level in May 1993.

Not Available

1994-08-29T23:59:59.000Z

465

Monthly Energy Review, February 1998  

SciTech Connect

This report presents an overview of recent monthly energy statistics. Energy production during November 1997 totaled 5.6 quadrillion Btu, a 0.3-percent decrease from the level of production during November 1996. Natural gas production increased 2.8 percent, production of crude oil and natural gas plant liquids decreased 1.7 percent, and coal production decreased 1.6 percent. All other forms of energy production combined were down 1.1 percent from the level of production during November 1996. Energy consumption during November 1997 totaled 7.5 quadrillion Btu, 0.1 percent above the level of consumption during November 1996. Consumption of natural gas increased 1.5 percent, consumption of coal fell 0.3 percent, while consumption of petroleum products decreased 0.2 percent. Consumption of all other forms of energy combined decreased 0.8 percent from the level 1 year earlier. Net imports of energy during November 1997 totaled 1.7 quadrillion Btu, 8.6 percent above the level of net imports 1 year earlier. Net imports of petroleum increased 6.3 percent, and net imports of natural gas were up 1.2 percent. Net exports of coal fell 17.8 percent from the level in November 1996.

NONE

1998-02-01T23:59:59.000Z

466

Monthly energy review, June 1994  

SciTech Connect

Energy production during March 1994 totaled 5.9 quadrillion Btu, a 3.7-percent increase from the level of production during March 1993. Coal production increased 15.7 percent, petroleum production fell 4.1 percent, and natural gas production decreased 1.1 percent. All other forms of energy production combined were up 0.5 percent from the level of production during March 1993. Energy consumption during March 1994 totaled 7.5 quadrillion Btu, 1.3 percent below the level of consumption during March 1993. Natural gas consumption decreased 3.6 percent, petroleum consumption fell 1.6 percent, and coal consumption remained the same. Consumption of all other forms of energy combined increased 3.7 percent from the level 1 year earlier. Net imports of energy during March 1994 totaled 1.5 quadrillion Btu, 6.7 percent above the level of net imports 1 year earlier. Net imports of petroleum increased 3.2 percent, and net imports of natural gas were up 15.7 percent. Net exports of coal rose 2.1 percent from the level in March 1993.

Not Available

1994-06-01T23:59:59.000Z

467

Power and transmission rate orders and related documents. Office of Power Marketing Coordination, data compiled January 1, 1980-December 31, 1981  

Science Conference Proceedings (OSTI)

This publication contains the power and transmission rate orders and related documents issued by the Department of Energy. It covers calendar years 1980 and 1981. The first publication, DOE/CE-007 covering the period from March through December 1979, was published July 1981. This publication is a compilation of all rate orders issued by the Assistant Secretary for Resource Applications and the Assistant Secretary for Conservation and Renewable Energy during calendar years 1980 and 1981 under Delegation Order No. 0204-33. It also includes all final approvals, remands, and disapprovals by the FERC, and a petition to the FERC for reconsideration by a Power Marketing Administration during 1980 and 1981. Also included are two delegation orders along with an amendment and a supplement to one delegation order, a departmental order on financial reporting, and Power and Transmission Rate Adjustment Procedures relating to federal power marketing.

None

1982-08-01T23:59:59.000Z

468

Annotated compilation of the sources of information related to the usage of electricity in non-industrial applications. [Includes about 400 abstracts and glossary  

SciTech Connect

This report presents a thorough compilation of the sources of information related to the usage of electricity in non-industrial applications, as available in the open literature and from the U.S. electrical power industry. The report's scope encompasses all aspects of: electric load management; end use; and the various methods of acquisition, analysis and implementation of electricity usage data. There are over 400 abstracts; 156 from the Load Research Committee of Association of Edison Illuminating Companies (LRC/AEIC) reports and 264 from the open literature. The abstracts over references containing over 12,000 pages plus about 2,500 references and 6,200 graphs and tables pertinent to electricity usage in non-industrial applications. In addition to the LRC/AEIC abstracts, this document identifies over 100 sources of directly relevant information (in contrast to general interest sources and material of secondary relevance).

1978-07-01T23:59:59.000Z

469

An annotated compilation of the sources of information related to the usage of electricity in non-industrial applications. Final report  

SciTech Connect

The report is a thorough compilation of the sources of information related to the usage of electricity in non-industrial applications, as available in the open literature and from the U.S. electrical power industry. The report's scope encompasses all aspects of: electric load management; end-use; and the various methods of acquisition, analysis, and implementation of electricity usage data. There are over 400 abstracts; 156 from LRC/AEIC reports, and 264 from the open literature. The abstracts cover references containing over 12,000 pages plus about 2,500 references and 6,200 graphs and tables pertinent to electricity usage in non-industrial applications. In addition to the LRC/AEIC abstracts, this document identifies over 100 sources of directly relevant information (in contrast to general interest sources and material of secondary relevance).

Reznek, B.

1978-07-01T23:59:59.000Z

470

Guide to NRC reporting and recordkeeping requirements. Compiled from requirements in Title 10 of the U.S. Code of Federal Regulations as codified on December 31, 1993; Revision 1  

SciTech Connect

This compilation includes in the first two sections the reporting and recordkeeping requirements applicable to US Nuclear Regulatory Commission (NRC) licensees and applicants and to members of the public. It includes those requirements codified in Title 10 of the code of Federal Regulations, Chapter 1, on December 31, 1993. It also includes, in a separate section, any of those requirements that were superseded or discontinued between January 1992 and December 1993. Finally, the appendix lists mailing and delivery addresses for NRC Headquarters and Regional Offices mentioned in the compilation. The Office of Information Resources Management staff compiled this listing of reporting and recordkeeping requirements to briefly describe each in a single document primarily to help licensees readily identify the requirements. The compilation is not a substitute for the regulations, and is not intended to impose any new requirements or technical positions. It is part of NRC`s continuing efforts to comply with the Paperwork Reduction Act of 1980 and the Office of Management and Budget regulations that mandate effective and efficient Federal information resources management programs.

Collins, M.; Shelton, B.

1994-07-01T23:59:59.000Z

471

Metadata compiled and distributed by the Carbon Dioxide Information Analysis Center for global climate change and greenhouse gas-related data bases  

SciTech Connect

The Carbon Dioxide Information Analysis Center (CDIAC) compiles and provides information to help international researchers, policymakers, and educators evaluate complex environmental issues associated with elevated levels of atmospheric carbon dioxide (CO{sub 2}) and other trace gases, including potential climate change. CDIAC is located within the Environmental Sciences Division of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee and is line funded by the U. S. Department of Energy`s (DOE) Global Change Research Program (GCRP). CDIAC is an information analysis center (IAC). In operation since 1982, CDIAC identifies sources of primary data at national and international levels; obtains, archives, evaluates and distributes data and computer models; fully documents select data sets and computer models and offers them as numeric data packages (NDPs) and computer model packages (CMPs); distributes data and computer models on a variety of magnetic and electronic medias including 9-track magnetic tapes; IBM-formatted floppy diskettes; CD-ROM; and over Internet, Omnet, and Bitnet electronic networks; develops derived, often multidisciplinary data products useful for carbon cycle and climate-change research; distributes reports pertinent to greenhouse effect and climate change issues; produces the newsletter, CDIAC Communications; and in general acts as the information focus for the GCRPs research projects. Since its inception, CDIAC has responded to thousands of requests for information, and since 1985 has distributed more than 70,000 reports, NDPs and CMPs to 97 countries worldwide.

Boden, T.A.

1992-12-31T23:59:59.000Z

472

Compilation of Diversity Factors and Schedules for Energy and Cooling Load Calculations, ASHRAE Research Project 1093, Preliminary Report, Literature Review and Database Search  

E-Print Network (OSTI)

In this report, the first report for the ASHRAE 1093-RP project, we present: (1) our extended literature search of methods used to derive load shapes and diversity factors in the U.S. and Europe, (2) a survey of available databases of monitored commercial end-use electrical data in the U.S. and Europe, and (3) a review of classification schemes of the commercial building stock listed in national standards and codes, and reported by researchers and utility projects. The findings in this preliminary report will help us in performing the next steps of the project where we will identify and test appropriate daytyping methods on relevant monitored data sets of lighting and equipment (and other surrogates for occupancy) to develop a library of diversity factors and schedules for use in energy and cooling load simulations. The goal of this project is to compile a library of schedules and diversity factors for energy and cooling load calculations in various types of indoor office environments in the U.S. and Europe. Two sets of diversity factors, one for peak cooling load calculations and one for energy calculations will be developed.

Abushakra, B.; Haberl, J. S.; Claridge, D. E.

1999-05-01T23:59:59.000Z

473

Structure Functions in Deep Inelastic Lepton Scattering: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group  

DOE Data Explorer (OSTI)

Gehrmann, Roberts, and Whalley in their 1999 paper, A Compilation of Structure Functions in Deep Inelastic Scattering, published in volume 25 of Journal of Physics G (Nuclear and Particle Physics) note that these data will continue to be relevant to the next generation of hadron colliders. They present data on the unpolarized structure functions F2 and xF3, R D ._L=_T /, the virtual photon asymmetries A1 and A2 and the polarized structure functions g1 and g2, from deep inelastic lepton scattering off protons, deuterium and nuclei. Data are presented in both tabular and graphical format and include predictions based on the MRST98 and CTEQ4 parton distribution functionsö as well. The data gathered from the relevant collaborations at DOE's Fermilab, SLAC, and JLAB are available, and so are data from related collaborations based at CERN and DESY. The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also include in the Durham HEP Reaction Data Database which can be searched at http://durpdg.dur.ac.uk/spires/hepdata/reac.html

Gehrmann, T; Roberts, R. G.; Whalley, M. R.; Durham HEP Database Group

474

Hardware compilation of sequential ada  

Science Conference Proceedings (OSTI)

Normal implementations of real-time systems on conventional processors are becoming much more difficult to prove correct to their timing specification. This is due to the complexity of modern processors (e.g. the worst case execution time of a program ...

M. Ward; N. C. Audsley

2001-11-01T23:59:59.000Z

475

Compilation of geothermal information: exploration  

DOE Green Energy (OSTI)

The Database for Geothermal Energy Exploration and Evaluation is a printout of selected references to publications covering the development of geothermal resources from the identification of an area to the production of elecric power. This annotated bibliography contains four sections: references, author index, author affiliation index, and descriptor index.

Not Available

1978-01-01T23:59:59.000Z

476

The anatomy of a compiler  

E-Print Network (OSTI)

Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site

D. F. Lee; A. W. Murphy; W. S. Koncinski

1967-01-01T23:59:59.000Z

477

Glossary: Energy-Related Carbon Emissions  

U.S. Energy Information Administration (EIA) Indexed Site

Glossary: Energy-Related Carbon Emissions Glossary: Energy-Related Carbon Emissions Glossary: Energy-Related Carbon Emissions For additional terms, refer to: the Glossary of Emissions of Greenhouse Gases in the United States 1998 for additional greenhouse gas related terms, the Glossary of Manufacturing Consumption of Energy 1994 for additional manufacturing terms, and Appendix F of Manufacturing Consumption of Energy 1994 for descriptions of the major industry groups. British Thermal Unit: The amount of heat required to raise the temperature of 1 pound of water by 1 degree Fahrenheit. One quadrillion Btu is 1015 Btu, or 1.055 exajoules. Btu: See British Thermal Unit. Carbon Dioxide: A colorless, odorless, non-poisonous gas that is a normal part of Earth's atmosphere. Carbon dioxide is a product of fossil-fuel combustion as well as other processes. It is considered a greenhouse gas as it traps heat radiated into the atmosphere and thereby contributes to the potential for global warming.

478

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Table 1.5 Energy Consumption, Expenditures, and Emissions Indicators Estimates, Selected Years, 1949-2011 Year Energy Consumption Energy Consumption per Capita Energy Expenditures 1 Energy Expenditures 1 per Capita Gross Output 3 Energy Expenditures 1 as Share of Gross Output 3 Gross Domestic Product (GDP) Energy Expenditures 1 as Share of GDP Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP Carbon Dioxide Emissions 2 per Real Dollar of GDP Quadrillion Btu Million Btu Million Nominal Dollars 4 Nominal Dollars 4 Billion Nominal Dollars 4 Percent Billion Nominal Dollars 4 Percent Billion Real (2005) Dollars 5 Thousand Btu per Real (2005) Dollar 5 Metric Tons Carbon Dioxide per Million Real (2005) Dollars 5 1949 31.982 214 NA NA NA NA 267.2 NA R 1,843.1 R 17.35 R 1,197 1950 34.616 227 NA NA NA NA

479

Word Pro - S1.lwp  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Energy Consumption per Real Dollar of Gross Domestic Product, 1949-2012 Primary Energy Consumption per Real Dollar of Gross Domestic Product, 1949-2012 (Thousand Btu per Chained (2009) Dollar) Note: See "Real Dollars" in Glossary. Web Page: http://www.eia.gov/totalenergy/data/monthly/#summary. Source: Table 1.7. 16 U.S. Energy Information Administration / Monthly Energy Review November 2013 Table 1.7 Primary Energy Consumption per Real Dollar of Gross Domestic Product Energy Consumption Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP Petroleum and Natural Gas Other Energy a Total Petroleum and Natural Gas Other Energy a Total Quadrillion Btu Billion Chained (2009) Dollars Thousand Btu per Chained (2009) Dollar 1950 ............................ 19.284 15.332 34.616 2,181.9 8.84 7.03 15.86 1955

480

Annual Energy Review 1994. highlights  

Gasoline and Diesel Fuel Update (EIA)

Quadrillion Quadrillion Btu Highlights: Annual Energy Review 1994 At the halfway mark of this century, coal was the leading source of energy produced in the United States. Now, as we approach the end of the 20th century, coal is still the leading source of energy produced in this country (Figure 1). Between those points of time, however, dramatic changes occurred in the composition of our Nation's energy production. For example, crude oil and natural gas plant liquids production overtook coal production in the early 1950s. That source was matched by natural gas for a few years in the mid-1970s, and then, in the early 1980s, coal regained its prominence. After 1985, crude oil production suffered a nearly steady annual decline. While the fossil fuels moved up and down in their indi-

Note: This page contains sample records for the topic "quadrillion btu compiled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Word Pro - S2.lwp  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Energy Consumption for Heat, Power, and Electricity Generation, 2006 Manufacturing Energy Consumption for Heat, Power, and Electricity Generation, 2006 By Selected End Use¹ By Energy Source 48 U.S. Energy Information Administration / Annual Energy Review 2011 1 Excludes inputs of unallocated energy sources (5,820 trillion Btu). 2 Heating, ventilation, and air conditioning. Excludes steam and hot water. 3 Excludes coal coke and breeze. 4 Liquefied petroleum gases. 5 Natural gas liquids. (s)=Less than 0.05 quadrillion Btu. Source: Table 2.3. 3.3 1.7 0.7 0.2 0.2 0.2 (s) Process Heating Machine Drive Facility HVAC² Process Cooling and Refrigeration Electrochemical Processes Facility Lighting Conventional Electricity Generation 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Quadrillion Btu 5.5 2.9 1.0 0.3 0.1 0.1 Natural Gas Net Electricity Coal³ Residual Fuel Oil Distillate

482

Democracy from Above: Regime Transition in the Kingdom of Bhutan  

E-Print Network (OSTI)

85% 87.5% n/a 79% 75% Agricultural contribution to GDP 56% 45% 38% 27% 22% Manufacturing contribution to GDP 4% 6% 9% 6% n/a Primary energy consumption14 (quadrillion Btu) 0 0.01 0.02 0.02 0.02 Sources: Planning Commission of Bhutan, World... 14 Primary energy includes petroleum, dry natural gas and coal, and net hydroelectric, solar, geothermal, wind, and wood and waste electricity. Also includes net electricity imports. 15 Acemoglu, D & Robinson, J. A. (2005). Economic Origins of 28...

Sinpeng, Aim

2007-01-01T23:59:59.000Z

483

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

41 41 Table E1. Estimated Primary Energy Consumption in the United States, Selected Years, 1635-1945 (Quadrillion Btu) Year Fossil Fuels Renewable Energy Electricity Net Imports Total Coal Natural Gas Petroleum Total Conventional Hydroelectric Power Biomass Total Wood 1 1635 NA - - - - NA - - (s) (s) - - (s) 1645 NA - - - - NA - - 0.001 0.001 - - 0.001 1655 NA - - - - NA - - .002 .002 - - .002 1665 NA - - - - NA - - .005 .005 - - .005 1675 NA - - - - NA - - .007 .007 - - .007 1685 NA - - - - NA - - .009 .009 - - .009 1695 NA - - - - NA - - .014 .014 - - .014 1705 NA - - - - NA - - .022 .022 - - .022 1715 NA - - - - NA - - .037 .037 - - .037

484

Transformational Manufacturing | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Transformational Manufacturing Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and transformational technology to improve the efficiency and competitiveness of domestic manufacturing while reducing its carbon footprint. The lab's efforts concentrate on sustainable manufacturing, applied nanotechnology and distributed energy, with an emphasis on transitioning science discoveries to the market.

485

Buildings Energy Data Book: 1.5 Generic Fuel Quad and Comparison  

Buildings Energy Data Book (EERE)

1 1 Key Definitions Quad: Quadrillion Btu (10^15 or 1,000,000,000,000,000 Btu) Generic Quad for the Buildings Sector: One quad of primary energy consumed in the buildings sector (includes the residential and commercial sectors), apportioned between the various primary fuels used in the sector according to their relative consumption in a given year. To obtain this value, electricity is converted into its primary energy forms according to relative fuel contributions (or shares) used to produce electricity in the given year. Electric Quad (Generic Quad for the Electric Utility Sector): One quad of primary energy consumed at electric utility power plants to supply electricity to end-users, shared among various fuels according to their relative contribution in

486

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

487

Word Pro - Perspectives.lwp  

Gasoline and Diesel Fuel Update (EIA)

2 2 xvii Energy Perspectives 18.97 in 1970 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 0 30 60 90 120 Quadrillion Btu Figure 1. Energy Overview The United States was self-sufficient in energy until the late 1950s when energy consumption began to outpace domestic production. The Nation imported more energy to fill the gap. In 2002, net imported energy accounted for 26 percent of all energy consumed. Figure 1. Energy Overview Overview Exports Production Imports Consumption 1950 1960 1970 1980 1990 2000 0 5 10 15 20 25 per Chained (1996) Dollar Thousand Btu Figure 3. Energy Use per Dollar of Gross Domestic Product Over the second half of the 20th century, the rate at which energy was consumed per dollar of the economy's output of goods and services fell dramatically. By the end of the century, the rate was half of the mid-century

488

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

A5. Commercial sector key indicators and consumption A5. Commercial sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Key indicators Total floorspace (billion square feet) Surviving ............................................................. 79.3 80.2 87.0 91.9 96.2 100.7 106.4 1.0% New additions ..................................................... 1.8 1.5 2.1 2.0 2.0 2.3 2.4 1.6% Total ................................................................. 81.1 81.7 89.1 93.9 98.1 103.0 108.8 1.0% Energy consumption intensity (thousand Btu per square foot) Delivered energy consumption ........................... 105.6 105.2 100.4 98.1 97.2 95.8 93.8 -0.4%

489

Energy Perspectives - AER 2004, August 2005  

Gasoline and Diesel Fuel Update (EIA)

4 4 xix Energy Perspectives 18.97 in 1970 1950 1960 1970 1980 1990 2000 0 25 50 75 100 125 Quadrillion Btu The United States was self-sufficient in energy until the late 1950s when energy consumption began to outpace domestic production. At that point, the Nation began to import more energy to fill the gap. In 2004, net imported energy accounted for 29 percent of all energy consumed. Figure 1. Energy Overview Overview Exports Production Imports Consumption 1950 1960 1970 1980 1990 2000 0 5 10 15 20 25 per Chained (2000) Dollar Thousand Btu Figure 3. Energy Use per Dollar of Gross Domestic Product After 1970, the amount of energy consumed to produce a dollar's worth of the Nation's output of goods and services trended down. The decline resulted from efficiency improvements and structural changes in the econ-

490

Word Pro - Perspectives.lwp  

Gasoline and Diesel Fuel Update (EIA)

7 7 xix Energy Perspectives 18.97 in 1970 1950 1960 1970 1980 1990 2000 0 20 40 60 80 100 120 Quadrillion Btu The United States was self-sufficient in energy until the late 1950s when energy consumption began to outpace domestic production. At that point, the Nation began to import more energy to fill the gap. In 2007, net imported energy accounted for 29 percent of all energy consumed. Figure 1. Primary Energy Overview Overview Exports Production Imports Consumption 1950 1960 1970 1980 1990 2000 0 5 10 15 20 25 Thousand Btu per Chained (2000) Dolla Figure 3. Energy Use per Dollar of Gross Domestic Product After 1970, the amount of energy consumed to produce a dollar's worth of the Nation's output of goods and services trended down. The decline resulted from efficiency improvements and structural changes in the econ-

491

Word Pro - Perspectives.lwp  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Review 2009 Annual Energy Review 2009 xix 1950 1960 1970 1980 1990 2000 0 20 40 60 80 100 120 Quadrillion Btu The United States was self-sufficient in energy until the late 1950s when energy consumption began to outpace domestic production. At that point, the Nation began to import more energy to meet its needs. In 2009, net imported energy accounted for 24 percent of all energy consumed. Figure 1. Primary Energy Overview Energy Perspectives Overview Exports Production Imports Consumption 1950 1960 1970 1980 1990 2000 0 5 10 15 20 25 Thousand Btu per Chained (2005) Dolla Figure 3. Energy Use per Dollar of Gross Domestic Product After 1970, the amount of energy consumed to produce a dollar's worth of the Nation's output of goods and services trended down. The decline resulted from efficiency improvements and structural changes in the econ-

492

Windows technology assessment  

SciTech Connect

This assessment estimates that energy loss through windows is approximately 15 percent of all the energy used for space heating and cooling in residential and commercial buildings in New York State. The rule of thumb for the nation as a whole is about 25 percent. The difference may reflect a traditional assumption of single-pane windows while this assessment analyzed installed window types in the region. Based on the often-quoted assumption, in the United States some 3.5 quadrillion British thermal units (Btu) of primary energy, costing some $20 billion, is annually consumed as a result of energy lost through windows. According to this assessment, in New York State, the energy lost due to heat loss through windows is approximately 80 trillion Btu at an annual cost of approximately $1 billion.

Baron, J.J.

1995-10-01T23:59:59.000Z

493

Word Pro - Perspectives.lwp  

Gasoline and Diesel Fuel Update (EIA)

6 6 xix Energy Perspectives 18.97 in 1970 1950 1960 1970 1980 1990 2000 0 20 40 60 80 100 120 Quadrillion Btu The United States was self-sufficient in energy until the late 1950s when energy consumption began to outpace domestic production. At that point, the Nation began to import more energy to fill the gap. In 2006, net imported energy accounted for 30 percent of all energy consumed. Figure 1. Energy Overview Overview Exports Production Imports Consumption 1950 1960 1970 1980 1990 2000 0 5 10 15 20 25 Thousand Btu per Chained (2000) Dolla Figure 3. Energy Use per Dollar of Gross Domestic Product After 1970, the amount of energy consumed to produce a dollar's worth of the Nation's output of goods and services trended down. The decline resulted from efficiency improvements and structural changes in the econ-

494

Appendix A  

U.S. Energy Information Administration (EIA) Indexed Site

A5. Commercial sector key indicators and consumption A5. Commercial sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2012-2040 (percent) 2011 2012 2020 2025 2030 2035 2040 Key indicators Total floorspace (billion square feet) Surviving ............................................................. 80.2 80.8 87.1 91.9 96.2 100.8 106.5 1.0% New additions ..................................................... 1.5 1.6 2.1 2.0 2.0 2.3 2.4 1.6% Total ................................................................. 81.7 82.4 89.1 93.9 98.2 103.1 108.9 1.0% Energy consumption intensity (thousand Btu per square foot) Delivered energy consumption ........................... 105.2 100.7 98.5 96.7 95.6 94.6 93.9 -0.3%

495

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption and Expenditures Indicators Estimates Energy Consumption and Expenditures Indicators Estimates Energy Consumption, 1949-2011 Energy Expenditures, 1970-2010 Energy Consumption per Real Dollar² of Gross Domestic Product, 1949-2011 Energy Consumption per Capita, Energy Expenditures per Capita, Energy Expenditures as Share of Gross 1949-2011 1970-2010 Domestic Product and Gross Output,³ 1987-2010 12 U.S. Energy Information Administration / Annual Energy Review 2011 1970 1980 1990 2000 2010 0 500 1,000 1,500 Billion Nominal Dollars¹ 1950 1960 1970 1980 1990 2000 2010 0 20 40 60 80 100 120 Quadrillion Btu 1950 1960 1970 1980 1990 2000 2010 0 5 10 15 20 Thousand Btu per Real (2005) Dollar² ¹ See "Nominal Dollars" in Glossary. ² In chained (2005) dollars, calculated by using gross domestic product implicit price deflators

496

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Table 1. Comparison of projections in the AEO2012 and AEO2011 Reference case, 2009-2035 2025 2035 Energy and economic factors 2009 2010 AEO2012 AEO2011 AE2012 AEO2011 Primary energy (quadrillion Btu) Petroleum 13.93 14.37 17.48 16.19 16.81 16.72 Dry natural gas 21.09 22.10 26.63 24.60 28.51 27.00 Coal 21.63 22.08 22.51 23.64 23.51 26.01 Nuclear power 8.36 8.44 9.60 9.17 9.35 9.14 Hydropower 2.67 2.51 2.97 3.04 3.06 3.09 Biomass 3.72 4.05 6.73 7.20 9.68 8.63 Other renewable energy 1.11 1.34 2.13 2.58 2.80 3.22 Other 0.47 0.64 0.76 0.88 0.88 0.78 Total 72.97 75.52 88.79 87.29 94.59 94.59 Net imports (quadrillion Btu) Liquid fuels 20.90 20.35 16.33 19.91 16.22 19.85

497

Monthly energy review, January 1994  

Science Conference Proceedings (OSTI)

This publication contains statistical information and data analysis of energy production and consumption within the major energy industries of petroleum, natural gas, coal, electricity, nuclear energy and oil and gas resource development. Energy production during October 1993 totaled 5.5-quadrillion Btu, a 3.0 percent decrease from the level of production during October 1992. Coal production decreased 5.6 percent, petroleum production decreased 3.4 percent, and natural gas production increased 1.9 percent. All other forms of energy production combined were down 6.0 percent from the level of production during October 1992. Energy consumption during October 1993 totaled 6.7 quadrillion Btu, 0.9 percent above the level of consumption during October 1992. Natural gas consumption increased 6.5 percent, coal consumption rose 2.9 percent, and petroleum consumption was down 1.3 percent. Consumption of all other forms of energy combined decreased 5.5 percent from the level of 1 year earlier.

Not Available

1994-01-01T23:59:59.000Z

498

Word Pro - S3  

U.S. Energy Information Administration (EIA) Indexed Site

Heat Content of Petroleum Products Supplied by Type Heat Content of Petroleum Products Supplied by Type Total, 1949-2012 Petroleum Products Supplied as Share of Total Energy Consumption, 1949-2012 By Product, October 2013 50 U.S. Energy Information Administration / Monthly Energy Review November 2013 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 10 20 30 40 50 Quadrillion Btu 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 10 20 30 40 50 Percent d 0.074 0.002 0.708 0.244 0.001 0.258 0.022 1.462 0.061 0.033 0.302 Asphalt Aviation Distillate Jet Kerosene Liquefied Lubricants Motor Petroleum Residual Other 0.0 0.5 1.0 1.5 2.0 Quadrillion Btu a Includes renewable diesel fuel (including biodiesel) blended into distil- late fuel oil. b Includes kerosene-type jet fuel only. c Includes fuel ethanol blended into motor gasoline.

499

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights World energy consumption is projected to increase by 58 percent from 2001 to 2025. Much of the growth in worldwide energy use is expected in the developing world in the IEO2003 reference case forecast. In the International Energy Outlook 2003 (IEO2003) reference case, world energy consumption is projected to increase by 58 percent over a 24-year forecast horizon, from 2001 to 2025. Worldwide, total energy use is projected to grow from 404 quadrillion British thermal units (Btu) in 2001 to 640 quadrillion Btu in 2025 (Figure 2). As in past editions of this report, the IEO2003 reference case outlook continues to show robust growth in energy consumption among the developing nations of the world (Figure 3). The strongest growth is projected for developing Asia, where demand for energy is expected to more than double over the forecast period. An average annual growth rate of 3 percent is projected for energy use in developing Asia, accounting for nearly 40 percent of the total projected increment in world energy consumption and 69 percent of the increment for the developing world alone.

500

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

< Introduction Table 1. Comparison of projections in the AEO2014 and AEO2013 Reference case, 2011-2040 2025 2040 Energy and economic factors 2011 2012 AEO2014 AEO2013 AEO2014 AEO2013 Primary energy production (quadrillion Btu) Crude oil and natural gas plant liquids 15.31 17.08 23.03 18.70 19.99 17.01 Dry natural gas 23.04 24.59 32.57 29.22 38.37 33.87 Coal 22.22 20.60 22.36 22.54 22.61 23.54 Nuclear/Uranium 8.26 8.05 8.15 9.54 8.49 9.44 Hydropower 3.11 2.67 2.84 2.86 2.90 2.92 Biomass 3.90 3.78 5.08 5.27 5.61 6.96 Other renewable energy 1.70 1.97 3.09 2.32 3.89 3.84 Other 0.80 0.41 0.24 0.85 0.24 0.89 Total 78.35 79.15 97.36 91.29 102.09 98.46 Net imports (quadrillion Btu) Petroleum and other liquid fuelsa 18.78 16.55 11.41 15.89 13.65 15.99