Sample records for q2 jan-mar fy2012

  1. Office of Electricity Delivery & Energy Reliability FY 2012 Budget...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Energy Reliability FY 2012 Budget Request Presentation Office of Electricity Delivery & Energy Reliability FY 2012 Budget Request Presentation Presentation by Patricia Hoffman of...

  2. Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A'Salmon,Sep Nov Jan Mar

  3. Economic Impact of NREL on Colorado, FY2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY Economic Impact of NREL on Colorado, FY2012 STUDY FUNDED BY: Alliance for Sustainable Energy, LLC BUSINESS RESEARCH DIVISION Leeds School of Business University of...

  4. EM Five-Year Plan (FY2008 - FY2012)

    Broader source: Energy.gov (indexed) [DOE]

    ...150 Lawrence Berkeley National Laboratory (LBNL) is not included in DOE-EM Five Year Plan FY 2008 - FY 2012. LBNL site is expected to...

  5. Separations and Waste Forms Research and Development: FY 2012 Accomplishments Report

    SciTech Connect (OSTI)

    Not Listed

    2013-02-01T23:59:59.000Z

    This report contains FY 2012 accomplishments for the Separations and Waste Form Research and Development Project.

  6. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    State: Alaska’s FY 2012 Budget themselves Alaskans United toJ. (2011) “What Recession? Alaska’s 2011 Budget,” in AnnualWestern States Budget Review, and California Journal of

  7. FY 2012 Appropriations for USGS Programs USGS FY12 Budget Request

    E-Print Network [OSTI]

    FY 2012 Appropriations for USGS Programs USGS FY12 Budget Request (numbers are in millions) USGS FY $1.118 billion in the President's FY 2012 budget request, $6.0 million (0.5 percent) above the FY enterprise, the President's FY 2012 budget request would change the structure of the USGS budget, moving USGS

  8. Building America Systems Integration Research Annual Report: FY 2012

    SciTech Connect (OSTI)

    Gestwick, M.

    2013-05-01T23:59:59.000Z

    This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  9. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.; Burton, Sarah D.; Bjornstad, Bruce N.; Freedman, Vicky L.; Cantrell, Kirk J.; Snyder, Michelle MV; Crum, Jarrod V.; Westsik, Joseph H.

    2013-03-29T23:59:59.000Z

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

  10. FES FY 2012 Congressional Budget Request Rollout Briefing on the Administration's Proposed

    E-Print Network [OSTI]

    to phase out subsidies for fossil fuels so that the country can transition to a 21st century energy economy, the Administration proposes to repeal a number of tax preferences available for fossil fuels. Repeal a projected $35 million for FY 2012. "The Department is reducing the budget for the Office of Fossil Energy

  11. ACTION 2015: Education First Reallocation ($21M) and AMP (non-Research Roadmap) for FY 2012

    E-Print Network [OSTI]

    pg. 1 ACTION 2015: Education First Reallocation ($21M) and AMP (non-Research Roadmap) for FY 2012 at http://provost.tamu.edu/initiatives/strategic-planning-2010/strategic-planning-documents/strategic-budget multiple sources with varying restrictions on their use. We will be working during FY12 to get as much

  12. National Aeronautics and Space Administration Fiscal Year (FY) 2012 Report on

    E-Print Network [OSTI]

    and Reducing Personally Identifiable Information (PII) And Eliminating Unnecessary Use of Social Security Numbers (SSNs) October 10, 2012 #12;NASA FY12 PII Review and Reduction Report 1 NASA FY 2012 PII Review (PII) holdings in an effort to eliminate the unnecessary collection and use of PII, including Social

  13. Reported Energy and Cost Savings From the ESPC Program: FY 2012

    Broader source: Energy.gov [DOE]

    Report summarizes the realization rate of energy and cost savings from the U.S. Department of Energy’s energy savings performance contract (ESPC) program based on information reported by the energy services companies (ESCOs) that are carrying out ESPC projects at federal sites (FY 2012).

  14. FY 2008FY 2008FY 2012 U.S. Department of Health and Human Services National Institutes of Health

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Table of Contents The Year in Review 1 The Four Intramural Loan Repayment Programs 2 Applications Institutes of Health The Year in Review In Fiscal Year (FY) 2012, 92 individuals applied to the Intramural

  15. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    SciTech Connect (OSTI)

    NA, NA [ORNL

    2013-03-01T23:59:59.000Z

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  16. FY 2012 Progress Report for Energy Storage R&D | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentofofForeword heApril 10,FY 2012

  17. Environmental Management System (EMS) objectives&targets annual results summary : FY2012.

    SciTech Connect (OSTI)

    Vetter, Douglas Walter

    2013-02-01T23:59:59.000Z

    Sandia National Laboratories/New Mexico's (SNL/NM) Environmental Management System is the integrated approach for members of the workforce to identify and manage environmental risks. Each Fiscal Year (FY) SNL/NM performs an analysis to identify environmental aspects, and the environmental programs associated with them are charged with the task of routinely monitoring and measuring the objectives and targets that are established to mitigate potential impacts of SNL/NM's operations on the environment. An annual summary of the results achieved towards meeting established objectives and targets provides a connection to, and rational for, annually revised environmental aspects. The purpose of this document is to summarize the results achieved and documented in FY2012.

  18. Idaho National Laboratory Integrated Safety Management System FY 2012 Effectiveness Review and Declaration Report

    SciTech Connect (OSTI)

    Farren Hunt

    2012-12-01T23:59:59.000Z

    Idaho National Laboratory (INL) performed an Annual Effectiveness Review of the Integrated Safety Management System (ISMS), per 48 Code of Federal Regulations (CFR) 970.5223 1, “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and identified target areas for focused improvements and assessments for fiscal year (FY) 2013. Results of the FY 2012 annual effectiveness review demonstrated that the INL’s ISMS program was significantly strengthened. Actions implemented by the INL demonstrate that the overall Integrated Safety Management System is sound and ensures safe and successful performance of work while protecting workers, the public, and environment. This report also provides several opportunities for improvement that will help further strengthen the ISM Program and the pursuit of safety excellence. Demonstrated leadership and commitment, continued surveillance, and dedicated resources have been instrumental in maturing a sound ISMS program. Based upon interviews with personnel, reviews of assurance activities, and analysis of ISMS process implementation, this effectiveness review concludes that ISM is institutionalized and is “Effective”.

  19. New Results from ZEUS on High Q 2 Deep Inelastic

    E-Print Network [OSTI]

    40000 Q 2 min (GeV 2 ) s (pb) (Q 2 > Q 2 min ) ZEUS (33.5 pb ­ 1 / LP97) Standard Model (MRSA) Data

  20. Advanced Fuels for LWRs: Fully-Ceramic Microencapsulated and Related Concepts FY 2012 Interim Report

    SciTech Connect (OSTI)

    R. Sonat Sen; Brian Boer; John D. Bess; Michael A. Pope; Abderrafi M. Ougouag

    2012-03-01T23:59:59.000Z

    This report summarizes the progress in the Deep Burn project at Idaho National Laboratory during the first half of fiscal year 2012 (FY2012). The current focus of this work is on Fully-Ceramic Microencapsulated (FCM) fuel containing low-enriched uranium (LEU) uranium nitride (UN) fuel kernels. UO2 fuel kernels have not been ruled out, and will be examined as later work in FY2012. Reactor physics calculations confirmed that the FCM fuel containing 500 mm diameter kernels of UN fuel has positive MTC with a conventional fuel pellet radius of 4.1 mm. The methodology was put into place and validated against MCNP to perform whole-core calculations using DONJON, which can interpolate cross sections from a library generated using DRAGON. Comparisons to MCNP were performed on the whole core to confirm the accuracy of the DRAGON/DONJON schemes. A thermal fluid coupling scheme was also developed and implemented with DONJON. This is currently able to iterate between diffusion calculations and thermal fluid calculations in order to update fuel temperatures and cross sections in whole-core calculations. Now that the DRAGON/DONJON calculation capability is in place and has been validated against MCNP results, and a thermal-hydraulic capability has been implemented in the DONJON methodology, the work will proceed to more realistic reactor calculations. MTC calculations at the lattice level without the correct burnable poison are inadequate to guarantee zero or negative values in a realistic mode of operation. Using the DONJON calculation methodology described in this report, a startup core with enrichment zoning and burnable poisons will be designed. Larger fuel pins will be evaluated for their ability to (1) alleviate the problem of positive MTC and (2) increase reactivity-limited burnup. Once the critical boron concentration of the startup core is determined, MTC will be calculated to verify a non-positive value. If the value is positive, the design will be changed to require less soluble boron by, for example, increasing the reactivity hold-down by burnable poisons. Then, the whole core analysis will be repeated until an acceptable design is found. Calculations of departure from nucleate boiling ratio (DNBR) will be included in the safety evaluation as well. Once a startup core is shown to be viable, subsequent reloads will be simulated by shuffling fuel and introducing fresh fuel. The PASTA code has been updated with material properties of UN fuel from literature and a model for the diffusion and release of volatile fission products from the SiC matrix material . Preliminary simulations have been performed for both normal conditions and elevated temperatures. These results indicated that the fuel performs well and that the SiC matrix has a good retention of the fission products. The path forward for fuel performance work includes improvement of metallic fission product release from the kernel. Results should be considered preliminary and further validation is required.

  1. Email dated November 6, 2010 from Kirsten Volpi On November 2, the Governor submitted his budget request for FY2012. His budget request totals

    E-Print Network [OSTI]

    Email dated November 6, 2010 from Kirsten Volpi On November 2, the Governor submitted his budget request for FY2012. His budget request totals $20.6 billion and includes a $7.6 billion general fund budget. The state funds higher education through its general fund budget. In order to balance

  2. Documentation 2013-2014 Q2

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Laboratory Documentation 2013-2014 Q2 This document contains the sessions that have to be done ............................................................................................. 32 Session 5: Memory management................................................................................................. 45 Session 7:Input/Output management

  3. FY 2012 USED FUEL DISPOSITION CAMPAIGN TRANSPORTATION TASK REPORT ON INL EFFORTS SUPPORTING THE MODERATOR EXCLUSION CONCEPT AND STANDARDIZED TRANSPORTATION

    SciTech Connect (OSTI)

    D. K. Morton

    2012-08-01T23:59:59.000Z

    Following the defunding of the Yucca Mountain Project, it is reasonable to assume that commercial used fuel will remain in storage for a longer time period than initially assumed. Previous transportation task work in FY 2011, under the Department of Energy’s Office of Nuclear Energy, Used Fuel Disposition Campaign, proposed an alternative for safely transporting used fuel regardless of the structural integrity of the used fuel, baskets, poisons, or storage canisters after an extended period of storage. This alternative assures criticality safety during transportation by implementing a concept that achieves moderator exclusion (no in-leakage of moderator into the used fuel cavity). By relying upon a component inside of the transportation cask that provides a watertight function, a strong argument can be made that moderator intrusion is not credible and should not be a required assumption for criticality evaluations during normal or hypothetical accident conditions of transportation. This Transportation Task report addresses the assigned FY 2012 work that supports the proposed moderator exclusion concept as well as a standardized transportation system. The two tasks assigned were to (1) promote the proposed moderator exclusion concept to both regulatory and nuclear industry audiences and (2) advance specific technical issues in order to improve American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, Division 3 rules for storage and transportation containments. The common point behind both of the assigned tasks is to provide more options that can be used to resolve current issues being debated regarding the future transportation of used fuel after extended storage.

  4. Multi Jet Production at High Q2

    E-Print Network [OSTI]

    Thomas Kluge

    2005-10-31T23:59:59.000Z

    Deep-inelastic $e^+p$ scattering data, taken with the H1 detector at HERA, are used to investigate jet production over a range of four-momentum transfers $150 < Q^2 < 15000 \\mathrm{GeV}^2$ and transverse jet energies $5 < E_T < 50 \\mathrm{GeV}$. The analysis is based on data corresponding to an integrated luminosity of $\\mathcal{L}_\\mathrm{int} = 65.4 \\mathrm{pb}^{-1}$ taken in the years 1999-2000 at a centre-of-mass energy $\\sqrt{s} \\approx 319 \\mathrm{GeV}$. Jets are defined by the inclusive $k_t$ algorithm in the Breit frame of reference. Dijet and trijet jet cross sections are measured with respect to the exchanged boson virtuality and in addition the ratio of the trijet to the dijet cross section $R_{3/2}$ is investigated. The results are compared to the predictions of perturbative QCD calculations in next-to-leading order in the strong coupling constant $\\alpha_s$. The value of $\\alpha_s(m_Z)$ determined from the study of $R_{3/2}$ is $\\alpha_s(m_Z) = 0.1175 \\pm 0.0017 (\\mathrm{stat.}) \\pm 0.0050 (\\mathrm{syst.}) ^{+0.0054}_{-0.0068} (\\mathrm{theo.})$.

  5. FY 2012 Budget Highlights

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And WaterNationalS44

  6. FY 2012 Laboratory Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And2 Federal Office5

  7. FY 2012 State Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And2 Federal

  8. FY 2012 Statistical Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And2

  9. FY 2012 Volume 1

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And26 Department of57

  10. FY 2012 Volume 2

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And26 Department

  11. FY 2012 Volume 3

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And26 Department

  12. FY 2012 Volume 4

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And26 Department0

  13. FY 2012 Volume 5

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And26 Department0

  14. FY 2012 Volume 6

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And26 Department02

  15. FY 2012 Volume 7

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And26 Department023

  16. FY 2012 Financial Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederalFY 2008 FOIA -MetricsBudget »

  17. FY 2012 FOIA Requests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecularGE,OzoneContacts&51Reactor

  18. From $sl_q(2)$ to a parabosonic Hopf algebra

    E-Print Network [OSTI]

    Tsujimoto, Satoshi; Zhedanov, Alexei

    2011-01-01T23:59:59.000Z

    A Hopf algebra with four generators among which an involution (reflection) operator, is introduced. The defining relations involve commutators and anticommutators. The discrete series representations are developed. Designated by $sl_{-1}(2)$, this algebra encompasses the Lie superalgebra $osp(1|2)$. It is obtained as a $q=-1$ limit of the $sl_q(2)$ algebra and seen to be equivalent to the parabosonic oscillator algebra in irreducible representations. It possesses a noncocommutative coproduct. The Clebsch-Gordan coefficients (CGC) of $sl_{-1}(2)$ are obtained and expressed in terms of the dual -1 Hahn polynomials. A generating function for the CGC is derived using a Bargmann realization.

  19. From $sl_q(2)$ to a Parabosonic Hopf Algebra

    E-Print Network [OSTI]

    Satoshi Tsujimoto; Luc Vinet; Alexei Zhedanov

    2011-10-07T23:59:59.000Z

    A Hopf algebra with four generators among which an involution (reflection) operator, is introduced. The defining relations involve commutators and anticommutators. The discrete series representations are developed. Designated by $sl_{-1}(2)$, this algebra encompasses the Lie superalgebra $osp(1|2)$. It is obtained as a $q=-1$ limit of the $sl_q(2)$ algebra and seen to be equivalent to the parabosonic oscillator algebra in irreducible representations. It possesses a noncocommutative coproduct. The Clebsch-Gordan coefficients (CGC) of $sl_{-1}(2)$ are obtained and expressed in terms of the dual -1 Hahn polynomials. A generating function for the CGC is derived using a Bargmann realization.

  20. Lone Star I (Q2) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other AlternativePark,CedarPowerViewLomaQ2) Wind

  1. Connection between Second Class Currents and the $?N?$ Form Factors $G_M^*(q^2)$ and $G_E^*(q^2)$

    E-Print Network [OSTI]

    Milton Dean Slaughter

    2004-12-18T23:59:59.000Z

    An interesting connection between the nucleon weak axial-vector second class current form factor $g_{T}(q^{2})$ present in the matrix element $$ and the $\\Delta N\\gamma$ form factors $G_{M}^{\\ast}(q^{2})$ and $G_{E}^{\\ast}(q^{2})$ is derived. Using a nonperturbative, relativistic sum rule approach in the infinite momentum frame, $G_{M}^{\\ast}(q^{2})$ and $G_{E}^{\\ast}(q^{2})$ are calculated in terms of $g_{T}(q^{2})$ and the well-known nucleon isovector Sachs form factor $G_{M}^{V}$ as input with no additional model parameters. Reasonable agreement with the data for $G_{M}^{\\ast}(q^{2})$ may be achieved with a non-zero $g_{T}(q^{2})$ too large to be accommodated in the Standard Model. We surmise that it is plausible that second class current-associated pion cloud effects are playing a significant role in pion electroproduction processes and perhaps must be taken into account in those methodologies which utilize effective Lagrangians.

  2. FY 2012 Agency Financial Report

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentofofForeword he ReportsHawaii 1

  3. OPT Annual Report, FY 2012

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofC T O B E R 2 0 1OPEN GOVERNMENTOPT

  4. FY 2012 Reports - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecularGE,OzoneContacts&51Reactor2 Reports

  5. The $Q^{2}$-dependence of the Generalised Gerasimov-Drell-Hearn Integral for the Proton

    E-Print Network [OSTI]

    Airapetian, A; Akushevich, I V; Amarian, M; Arrington, J; Aschenauer, E C; Avakian, H; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Bains, B; Baumgarten, C; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Böttcher, Helmut B; Borisov, A; Bouwhuis, M; Brack, J; Brauksiepe, S; Brauniu, B; Brückner, W; Brüll, A; Budz, P; Bulten, H J; Capitani, G P; Carter, P; Chumney, P; Cisbani, E; Court, G R; Dalpiaz, P F; De Leo, R; De Nardo, L; De Sanctis, E; De Schepper, D; Devitsin, E G; De Witt-Huberts, P K A; Di Nezza, P; Dzhordzhadze, V; Düren, M; Dvoredsky, A P; Elbakian, G M; Ely, J; Fantoni, A; Feshchenko, A; Ferro-Luzziwad, M; Fiedler, K; Filippone, B W; Fischer, H; Fox, B; Franzl, J; Frullani, S; Gärber, Y; Garibaldi, F; Garutti, E; Gavrilov, G E; Karibian, V; Golendukhin, A; Graw, G; Grebenyuk, O; Green, P W; Greeniaus, L G; Gute, A; Haeberli, W; Hartig, M; Hasch, D; Heesbeen, D; Heinsius, F H; Henoch, M; Hertenberger, R; Hesselink, W H A; Hoffmann-Rothe, P; Hofman, G J; Holler, Y; Holto, R J; Hommez, B; Iarygin, G; Iodice, M; Izotov, A A; Jackson, H E; Jgoun, A; Jung, P; Kaiser, R; Kanesakaac, J; Kinney, E R; Kiselev, A; Kitching, P; Kobayashi, H; Koch, N; Königsmann, K C; Kolster, H; Korotkov, V A; Kotik, E; Kozlov, V; Krivokhizhin, V G; Kyle, G S; Lagamba, L; Laziev, A; Lenisa, P; Lindemann, T; Lorenzon, W; Makins, N C R; Martin, J W; Marukyan, H O; Masoli, F; McAndrew, M; McIlhany, K; McKeown, R D; Menden, F; Metzu, A; Meyners, N; Miklukho, O; Miller, C A; Milner, R; Mitsyn, V; Muccifora, V; Mussa, R; Nagaitsev, A P; Nappi, E; Naryshkin, Yu; Nass, A; Negodaeva, K; Nowak, Wolf-Dieter; O'Neill, T G; Openshaw, R; Ouyang, J; Owen, B R; Pate, S F; Potashov, S Yu; Potterveld, D H; Rakness, G; Rappoport, V; Redwine, R P; Reggiani, D; Reolon, A R; Ristinen, R; Rith, K; Robinson, D; Ruh, M; Ryckbosch, D; Sakemi, Y; Savin, I A; Scarlett, C; Schäfer, A; Schill, C; Schmidt, F; Schnell, G; Schulerf, K P; Schwind, A; Seibert, J; Seitz, B; Shibata, T A; Shin, T; Shutov, V B; Simani, C; Simon, A; Sinram, K; Steffens, E; Steijger, J J M; Stewart, J; Stösslein, U; Suetsugu, K; Sutter, M F; Tallini, H A; Taroian, S P; Terkulov, A R; Tessarin, S; Thomas, E; Tipton, B; Tytgat, M; Urciuoli, G M; Van den Brand, J F J; van der Steenhoven, G; Van de Vyver, R; Van Hunen, J J; Vetterli, Martin C; Vikhrov, V V; Vincter, M G; Visser, J; Volk, E; Weiskopf, C; Wendland, J; Wilbert, J; Wiseq, T; Yen, S; Yoneyama, S; Zohrabyan, H G

    2000-01-01T23:59:59.000Z

    The dependence on Q^2 (the negative square of the 4-momentum of the exchanged virtual photon) of the generalised Gerasimov-Drell-Hearn integral for the proton has been measured in the range 1.2 GeV^2 3 GeV^2, while both contributions are important at low Q^2. The total integral shows no significant deviation from a 1/Q^2 behaviour in the measured Q^2 range, and thus no sign of large effects due to either nucleon-resonance excitations or non-leading twist.

  6. The proton and deuteron F_2 structure function at low Q^2

    E-Print Network [OSTI]

    Tvaskis, V; Asaturyan, R; Baker, O K; Blok, H P; Bosted, P; Boswell, M; Bruell, A; Christy, M E; Cochran, A; Ent, R; Filippone, B W; Gasparian, A; Keppel, C E; Kinney, E; Lapikás, L; Lorenzon, W; Mack, D J; Mammei, J; Martin, J W; Mkrtchyan, H; Niculescu, I; Piercey, R B; Potterveld, D H; Smith, G; Spurlock, K; van der Steenhoven, G; Stepanyan, S; Tadevosian, V; Wood, S A

    2010-01-01T23:59:59.000Z

    Measurements of the proton and deuteron $F_2$ structure functions are presented. The data, taken at Jefferson Lab Hall C, span the four-momentum transfer range $0.06 < Q^2 < 2.8$ GeV$^2$, and Bjorken $x$ values from 0.009 to 0.45, thus extending the knowledge of $F_2$ to low values of $Q^2$ at low $x$. Next-to-next-to-leading order calculations using recent parton distribution functions start to deviate from the data for $Q^2<2$ GeV$^2$ at the low and high $x$-values. Down to the lowest value of $Q^2$, the structure function is in good agreement with a parameterization of $F_2$ based on data that have been taken at much higher values of $Q^2$ or much lower values of $x$, and which is constrained by data at the photon point. The ratio of the deuteron and proton structure functions at low $x$ remains well described by a logarithmic dependence on $Q^2$ at low $Q^2$.

  7. The proton and deuteron F_2 structure function at low Q^2

    E-Print Network [OSTI]

    V. Tvaskis; J. Arrington; R. Asaturyan; O. K. Baker; H. P. Blok; P. Bosted; M. Boswell; A. Bruell; M. E. Christy; A. Cochran; R. Ent; B. W. Filippone; A. Gasparian; C. E. Keppel; E. Kinney; L. Lapikás; W. Lorenzon; D. J. Mack; J. Mammei; J. W. Martin; H. Mkrtchyan; I. Niculescu; R. B. Piercey; D. H. Potterveld; G. Smith; K. Spurlock; G. van der Steenhoven; S. Stepanyan; V. Tadevosian; S. A. Wood

    2010-02-08T23:59:59.000Z

    Measurements of the proton and deuteron $F_2$ structure functions are presented. The data, taken at Jefferson Lab Hall C, span the four-momentum transfer range $0.06 < Q^2 < 2.8$ GeV$^2$, and Bjorken $x$ values from 0.009 to 0.45, thus extending the knowledge of $F_2$ to low values of $Q^2$ at low $x$. Next-to-next-to-leading order calculations using recent parton distribution functions start to deviate from the data for $Q^2<2$ GeV$^2$ at the low and high $x$-values. Down to the lowest value of $Q^2$, the structure function is in good agreement with a parameterization of $F_2$ based on data that have been taken at much higher values of $Q^2$ or much lower values of $x$, and which is constrained by data at the photon point. The ratio of the deuteron and proton structure functions at low $x$ remains well described by a logarithmic dependence on $Q^2$ at low $Q^2$.

  8. $?^-$, $?^{*-}$, $?^{*-}}$ and $?^-}$ decuplet baryon electric charge form factor $F_1(q^2)$

    E-Print Network [OSTI]

    Milton Dean Slaughter

    2011-08-19T23:59:59.000Z

    The magnetic moment---a function of the electric charge form factor $F_{1}(q^{2})$ and the magnetic dipole form factor $F_{2}(q^{2})$ at zero four-momentum transfer $q^{2}$---of the ground-state $U$-spin =3/2 baryon decuplet $\\Delta^{-}$, $\\Xi^{*\\,-}$, $\\Sigma^{*\\,-}$ and $\\Omega^{-}$ and their ground-state spin 1/2 cousins $p$, $n$, $\\Lambda$, $\\Sigma^{+}$, $\\Sigma^{0}$, $\\Sigma^{-}$, $\\Xi^{+}$, and $\\Xi^{-}$ have been studied for many years with a modicum of success---only the magnetic moment of the $\\Omega^{-}$ has been accurately determined. In a recent study by us utilizing the infinite momentum frame, we calculated the magnetic moments of the \\emph{physical} decuplet $U$-Spin =3/2 quartet members in terms of that of the $\\Omega^{-}$ without ascribing any specific form to their quark structure or intra-quark interactions. That study determined $F_{2}(q^{2})$ and was conducted nonperturbatively where the decuplet baryon momenta were all collinear. In this follow-up research---again utilizing the infinite momentum frame but now allowing for non-collinear momenta---we are able to determine $F_{1}(q^{2})$ where $q^{2}\\leq 0$. We relate the electric charge form factor $F_{1}(q^{2})$ of the \\emph{physical} decuplet $S\

  9. Photon electroproduction from hydrogen at backward angles and momentum transfer squared of $Q^{2}=1.0Gev^{2}$

    E-Print Network [OSTI]

    Laveissière, G; Jaminion, S; Jutier, C; Todor, L; Di Salvo, R; Van Hoorebeke, L; Alexa, L C; Anderson, B D; Aniol, K A; Arundell, K; Audit, G; Auerbach, L; Baker, F T; Baylac, M; Berthot, J; Bertin, P Y; Bertozzi, W; Bimbot, L; Böglin, W; Brash, E J; Breton, V; Breuer, H; Burtin, E; Calarco, J R; Cardman, L S; Cavata, C; Chang, C C; Chen, J P; Chudakov, E; Cisbani, E; Dale, D S; De Jager, C W; De Leo, R; Deur, A; D'Hose, N; Dodge, G E; Domingo, John J; Elouadrhiri, L; Epstein, M B; Ewell, L A; Finn, J M; Fissum, K G; Fonvieille, H; Fournier, G; Frois, B; Frullani, S; Furget, C; Gao, H; Gao, J; Garibaldi, F; Gasparian, A; Gilad, S; Gilman, R; Glamazdin, A; Glashausser, C; Gómez, J; Gorbenko, V; Grenier, P; Guichon, P A M; Hansen, J O; Holmes, R; Holtrop, M; Howell, C; Huber, G M; Hyde-Wright, C E; Incerti, S; Iodice, M; Jardillier, J; Jones, M K; Kahl, W; Kamalov, S; Kato, S; Katramatou, A T; Kelly, J J; Kerhoas, S; Ketikyan, A; Khayat, M; Kino, K; Kox, S; Kramer, L H; Kumar, K S; Kumbartzki, G; Kuss, M; Leone, A; Le Rose, J J; Liang, M; Lindgren, R A; Liyanage, N K; Lolos, G J; Lourie, R W; Madey, R; Maeda, K; Malov, S; Manley, D M; Marchand, C; Marchand, D; Margaziotis, D J; Markowitz, P; Marroncle, J; Martino, J; McCormick, K; McIntyre, J; Mehrabyan, S S; Merchez, F; Meziani, Z E; Michaels, R; Miller, G W; Mougey, J Y; Nanda, S K; Neyret, D; Offermann, E; Papandreou, Z; Perdrisat, C F; Perrino, R; Petratos, G G; Platchkov, S; Pomatsalyuk, R I; Prout, D L; Punjabi, V A; Pussieux, T; Quéméner, G; Ransome, R D; Ravel, O; Real, J S; Renard, F; Roblin, Y; Rowntree, D; Rutledge, G; Rutt, P M; Saha, A; Saitô, T; Sarty, A J; Serdarevic, A; Smith, T; Smirnov, G; Soldi, K; Sorokin, P; Souder, P A; Suleiman, R; Templon, J A; Terasawa, T; Tiator, L; Tieulent, R; Tomasi-Gustafsson, E; Tsubota, H; Ueno, H; Ulmer, P E; Urciuoli, G M; Van De Vyver, R; Van, R L J; der Meer; Vernin, P; Vlahovic, B; Voskanyan, H; Voutier, E; Watson, J W; Weinstein, L B; Wijesooriya, K; Wilson, R; Wojtsekhowski, B B; Zainea, D G; Zhang, W M; Zhao, J; Zhou, Z L

    2004-01-01T23:59:59.000Z

    Photon electroproduction from hydrogen at backward angles and momentum transfer squared of $Q^{2}=1.0Gev^{2}$

  10. Quantum Field Theory on the Noncommutative Plane with $E_q(2)$ Symmetry

    E-Print Network [OSTI]

    M. Chaichian; A. Demichev; P. Presnajder

    1999-04-20T23:59:59.000Z

    We study properties of a scalar quantum field theory on the two-dimensional noncommutative plane with $E_q(2)$ quantum symmetry. We start from the consideration of a firstly quantized quantum particle on the noncommutative plane. Then we define quantum fields depending on noncommutative coordinates and construct a field theoretical action using the $E_q(2)$-invariant measure on the noncommutative plane. With the help of the partial wave decomposition we show that this quantum field theory can be considered as a second quantization of the particle theory on the noncommutative plane and that this field theory has (contrary to the common belief) even more severe ultraviolet divergences than its counterpart on the usual commutative plane. Finally, we introduce the symmetry transformations of physical states on noncommutative spaces and discuss them in detail for the case of the $E_q(2)$ quantum group.

  11. Partial degeneracy breaking of the hydrogen energy spectrum from su_q(2)

    E-Print Network [OSTI]

    P. G. Castro; R. Kullock

    2012-12-07T23:59:59.000Z

    In this work we investigate the q-deformation of the so(4) dynamical symmetry of the hydrogen atom using the theory of the quantum group su_q(2), and construct the discrete part of the energy spectrum. This will lead to a partial breaking of the degeneracy of the energy levels and to a reduction of the Hilbert space.

  12. Longitudinal-Transverse Separations of Structure Functions at Low $Q^{2}$ for Hydrogen and Deuterium

    E-Print Network [OSTI]

    V. Tvaskis

    2006-11-13T23:59:59.000Z

    We report on a study of the longitudinal to transverse cross section ratio, $R=\\sigma_L/\\sigma_T$, at low values of $x$ and $Q^{2}$, as determined from inclusive inelastic electron-hydrogen and electron-deuterium scattering data from Jefferson Lab Hall C spanning the four-momentum transfer range 0.06 $ hydrogen and deuterium.

  13. Structure Functions at Low Q 2 and A. Pellegrino (Argonne National Lab.)

    E-Print Network [OSTI]

    Structure Functions at Low Q 2 and Very Low x A. Pellegrino (Argonne National Lab.) on behalf; s ) 2 independent variables A. Pellegrino (Argonne National Lab.) , ICHEP2000, July 28 2000 2 #12; Cross. Pellegrino (Argonne National Lab.) , ICHEP2000, July 28 2000 3 #12; Experimental Range 10 ­1 1 10 10 2 10 3

  14. MAYJUNE 1999 53 he Jan.Mar. 1998 IEEE Computa-

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    in the language of metrics: lines of code, test coverage, and dollars spent on one hand, and error and convergence on the other. But these metrics measure different things for different purposes. Discussions about lines: · On October 5, 1960, the North American Defense Command went to 99.9% alert be- cause the moon came up

  15. SPEAR3 Jan-Mar 03 Qtrly Rpt.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly through Sept 2000 TABLE OF CONTENTS

  16. Microsoft Word - S06430_JanMar.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, Disposal Site MayGroundwater09FormerlyGroundwater0Photos

  17. Moments of the neutron $g_2$ structure function at intermediate $Q^2$

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solvignon-Slifer, Patricia H.; et. al.,

    2015-07-01T23:59:59.000Z

    We present new experimental results of the $^3$He spin structure function $g_2$ in the resonance region at $Q^2$ values between 1.2 and 3.0 (GeV/c)$^2$. Spin dependent moments of the neutron were then extracted. The resonance contribution to the neutron $d_2$ matrix element was found to be small at $\\ $=2.4 (GeV/c)$^2$ and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low $x$ unmeasured region. A small deviation was observed at $Q^2$ values between 0.5 and 1.2 (GeV/c)$^2$ for themore »neutron.« less

  18. Measurement of the generalized form factors near threshold via ?*p ? n?+ at high Q2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, K; Adhikari, K P; Adikaram, D; Anghinolfi, M; Baghdasaryan, H; Ball, J; Battaglieri, M; Batourine, V; Bedlinskiy, I; Bennett, R P; et al

    2012-03-26T23:59:59.000Z

    We report the first extraction of the pion-nucleon multipoles near the production threshold for the n?+ channel at relatively high momentum transfer (Q2 up to 4.2 GeV2). The dominance of the s-wave transverse multipole (E0+), expected in this region, allowed us to access the generalized form factor G1 within the light-cone sum rule (LCSR) framework as well as the axial form factor GA. The data analyzed in this work were collected by the nearly 4? CEBAF Large Acceptance Spectrometer (CLAS) using a 5.754-GeV electron beam on a proton target. The differential cross section and the ?-N multipole E0+/GD were measuredmore »using two different methods, the LCSR and a direct multipole fit. The results from the two methods are found to be consistent and almost Q2 independent.« less

  19. Measurement of the generalized form factors near threshold via ?*p ? n?+ at high Q2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, K; Adhikari, K P; Adikaram, D; Anghinolfi, M; Baghdasaryan, H; Ball, J; Battaglieri, M; Batourine, V; Bedlinskiy, I; Bennett, R P; Biselli, A S; Bookwalter, C; Boiarinov, S; Branford, D; Briscoe, W J; Brooks, W K; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Cole, P L; Contalbrigo, M; Crede, V; D'Angelo, A; Daniel, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Doughty, D; Dupre, R; El Alaoui, A; El Fassi, L; Euginio, P; Fedotov, G; Fradi, A; Gabrielyan, M Y; Gevorgyan, N; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Golovatch, E; Graham, L; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Heddle, D; Hicks, K; Holtrop, M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jenkins, D; Jo, H S; Joo, K; Khandaker, M; Khertarpal, P; Kim, A; Kim, W; Klein, F J; Kubarovsky, A; Kubarovsky, V; Kuhn, S E; Kuleshov, S V; Kvaltine, N D; Livingston, K; Lu, H Y; MacGregor, J D; Markov, N; Mayer, M; McKinnon, B; Mestayer, M D; Meyer, C A; Mineeva, T; Mirazita, M; Mokeev, V; Moutarde, H; Munevar, E; Nadel-Turonski, P; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Paolone, M; Pappalardo, L; Paremuzyan, R; Park, S; Anefalos Pereira, S; Phelps, E; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Prok, Y; Ricco, G; Rimal, D; Ripani, M; Ritchie, B G; Rosner, G; Rossi, P; Sabati ee, F; Saini, M S; Salgado, C; Schott, D; Schumacher, R A; Seraydaryan, H; Sharabian, Y G; Smith, E S; Smith, G D; Sober, D I; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Tang, W; Taylor, C E; Tian, Y; Tkachenko, S; Trivedi, A; Ungaro, M; Vernarsky, B; Vlassov, A V; Voutier, E; Watts, D P; Weygand, D P; Wood, M H; Zachariou, N; Zhao, B; Zhao, Z W

    2012-03-26T23:59:59.000Z

    We report the first extraction of the pion-nucleon multipoles near the production threshold for the n?+ channel at relatively high momentum transfer (Q2 up to 4.2 GeV2). The dominance of the s-wave transverse multipole (E0+), expected in this region, allowed us to access the generalized form factor G1 within the light-cone sum rule (LCSR) framework as well as the axial form factor GA. The data analyzed in this work were collected by the nearly 4? CEBAF Large Acceptance Spectrometer (CLAS) using a 5.754-GeV electron beam on a proton target. The differential cross section and the ?-N multipole E0+/GD were measured using two different methods, the LCSR and a direct multipole fit. The results from the two methods are found to be consistent and almost Q2 independent.

  20. Measurement of the generalized form factors near threshold via $?^* p \\to n?^+$ at high $Q^2$

    E-Print Network [OSTI]

    Kijun Park; Ralf Gothe; Krishna Adhikari; Dasuni Adikaram-Mudiyanselage; Marco Anghinolfi; Hovhannes Baghdasaryan; Jacques Ball; Marco Battaglieri; Vitaly Baturin; Ivan Bedlinskiy; Robert Bennett; Angela Biselli; Craig Bookwalter; Sergey Boyarinov; Derek Branford; William Briscoe; William Brooks; Volker Burkert; Daniel Carman; Andrea Celentano; Shloka Chandavar; Gabriel Charles; Philip Cole; Marco Contalbrigo; Volker Crede; Annalisa D'Angelo; Aji Daniel; Natalya Dashyan; Raffaella De Vita; Enzo De Sanctis; Alexandre Deur; Chaden Djalali; David Doughty; Raphael Dupre; Ahmed El Alaoui; Lamiaa Elfassi; Paul Eugenio; Gleb Fedotov; Ahmed Fradi; Marianna Gabrielyan; Nerses Gevorgyan; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; John Goetz; Wesley Gohn; Evgeny Golovach; Lewis Graham; Keith Griffioen; Michel Guidal; Lei Guo; Kawtar Hafidi; Hayk Hakobyan; Charles Hanretty; David Heddle; Kenneth Hicks; Maurik Holtrop; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Evgeny Isupov; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Mahbubul Khandaker; Puneet Khetarpal; Andrey Kim; Wooyoung Kim; Andreas Klein; Franz Klein; A. Kubarovsky; Valery Kubarovsky; Sebastian Kuhn; Sergey Kuleshov; Nicholas Kvaltine; Kenneth Livingston; Haiyun Lu; Ian MacGregor; Nikolai Markov; Michael Mayer; Bryan McKinnon; Mac Mestayer; Curtis Meyer; Taisiya Mineeva; Marco Mirazita; Viktor Mokeev; Herve Moutarde; Edwin Munevar Espitia; Pawel Nadel-Turonski; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Mikhail Osipenko; Alexander Ostrovidov; Michael Paolone; Luciano Pappalardo; Rafayel Paremuzyan; Seungkyung Park; Sergio Pereira; Evan Phelps; Silvia Pisano; Oleg Pogorelko; Sergey Pozdnyakov; John Price; Sebastien Procureur; Yelena Prok; Giovanni Ricco; Dipak Rimal; Marco Ripani; Barry Ritchie; Guenther Rosner; Patrizia Rossi; Franck Sabatie; Mukesh Saini; Carlos Salgado; Diane Schott; Reinhard Schumacher; Heghine Seraydaryan; Youri Sharabian; Elton Smith; Gregory Smith; Daniel Sober; Daria Sokhan; Samuel Stepanyan; Stepan Stepanyan; Paul Stoler; Igor Strakovski; Steffen Strauch; Mauro Taiuti; Wei Tang; Charles Taylor; Ye Tian; Svyatoslav Tkachenko; Arjun Trivedi; Maurizio Ungaro; Brian Vernarsky; Alexander Vlasov; Eric Voutier; Daniel Watts; Dennis Weygand; Michael Wood; Nicholas Zachariou; Bo Zhao; Zhiwen Zhao; N. Kalantarians; C. E. Hyde

    2012-02-21T23:59:59.000Z

    We report the first extraction of the pion-nucleon multipoles near the production threshold for the $n\\pi^+$ channel at relatively high momentum transfer ($Q^2$ up to 4.2 $\\rm{GeV^2}$). The dominance of the s-wave transverse multipole ($E_{0+}$), expected in this region, allowed us to access the generalized form factor $G_1$ within the light-cone sum rule (LCSR) framework as well as the axial form factor $G_A$. The data analyzed in this work were collected by the nearly $4\\pi$ CEBAF Large Acceptance Spectrometer (CLAS) using a 5.754 $\\rm{GeV}$ electron beam on a proton target. The differential cross section and the $\\pi-N$-multipole $E_{0+}/G_D$ were measured using two different methods, the LCSR and a direct multipole fit. The results from the two methods are found to be consistent and almost $Q^2$ independent.

  1. Moments of the neutron $g_2$ structure function at intermediate $Q^2$

    E-Print Network [OSTI]

    P. Solvignon; N. Liyanage; J. -P. Chen; Seonho Choi; K. Slifer; K. Aniol; T. Averett; W. Boeglin; A. Camsonne; G. D. Cates; C. C. Chang; E. Chudakov; B. Craver; F. Cusanno; A. Deur; D. Dutta; R. Ent; R. Feuerbach; S. Frullani; H. Gao; F. Garibaldi; R. Gilman; C. Glashausser; V. Gorbenko; O. Hansen; D. W. Higinbotham; H. Ibrahim; X. Jiang; M. Jones; A. Kelleher; J. Kelly; C. Keppel; W. Kim; W. Korsch; K. Kramer; G. Kumbartzki; J. J. LeRose; R. Lindgren; B. Ma; D. J. Margazioti; P. Markowitz; K. McCormick; Z. -E. Meziani; R. Michaels; B. Moffit; P. Monaghan; C. Munoz Camacho; K. Paschke; B. Reitz; A. Saha; R. Shneor; J. Singh; V. Sulkosky; A. Tobias; G. M. Urciuoli; K. Wang; K. Wijesooriya; B. Wojtsekhowski; S. Woo; J. -C. Yang; X. Zheng; L. Zhu

    2015-06-29T23:59:59.000Z

    We present new experimental results of the $^3$He spin structure function $g_2$ in the resonance region at $Q^2$ values between 1.2 and 3.0 (GeV/c)$^2$. Spin dependent moments of the neutron were then extracted. Our main result, the resonance contribution to the neutron $d_2$ matrix element, was found to be small at $$=2.4 (GeV/c)$^2$ and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for $^3$He and the neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low $x$ unmeasured region. A small deviation was observed at $Q^2$ values between 0.5 and 1.2 (GeV/c)$^2$ for the neutron.

  2. Low-$Q^2$ partons in p-p and Au-Au collisions

    E-Print Network [OSTI]

    Thomas A. Trainor

    2005-10-11T23:59:59.000Z

    We describe correlations of low-$Q^2$ parton fragments on transverse rapidity $y_t$ and angles $(\\eta,\\phi)$ from p-p and Au-Au collisions at $\\sqrt{s} =$ 130 and 200 GeV. Evolution of correlations on $y_t$ from p-p to more-central Au-Au collisions shows evidence for parton dissipation. Cuts on $y_t$ isolate angular correlations on $(\\eta,\\phi)$ for low-$Q^2$ partons which reveal a large asymmetry about the jet thrust axis in p-p collisions favoring the azimuth direction. Evolution of angular correlations with increasing Au-Au centrality reveals a rotation of the asymmetry to favor pseudorapidity. Angular correlations of transverse momentum $p_t$ in Au-Au collisions access temperature/velocity structure resulting from low-$Q^2$ parton scattering. $p_t$ autocorrelations on $(\\eta,\\phi)$, obtained from the scale dependence of $$ fluctuations, reveal a complex parton dissipation process in heavy ion collisions which includes the possibility of collective bulk-medium recoil in response to parton stopping.

  3. A concept for the experimental determination of the nucleon electric to magnetic form factor ratio at very low $Q^2$

    E-Print Network [OSTI]

    G. Ron; E. Piasetzky; B. Wojtsekhowski

    2009-04-29T23:59:59.000Z

    Stationary target measurements of the nucleon form factors have been performed with high precision down to $Q^2$ of $\\sim$ 0.01 GeV$^2$ for protons ($G_E^p$) and down to $\\sim$ 0.1 GeV$^2$ for neutrons ($G_M^n$). Conventional extraction using cross section and polarization measurement cannot be extended to very low values of $Q^2$ due to inherent experimental limitations. We present a proposal for a new approach to a measurement, using colliding beams, which will extend the range of possible measurement at low $Q^2$ by several orders of magnitude over stationary target limits.

  4. FY2012 LBNL LDRD Annual Report (PUB)

    E-Print Network [OSTI]

    Ho, Darren

    2014-01-01T23:59:59.000Z

    et al LB10022 Biological Carbon Sequestration: FundamentalChina on Geologic Carbon Sequestration: Novel Field Tests tofor geologic carbon sequestration. ” International Journal

  5. FY2012 LBNL LDRD Annual Report (PUB)

    E-Print Network [OSTI]

    Ho, Darren

    2014-01-01T23:59:59.000Z

    using graphics processors. ” LBNL Technical Report, MarchCarbon Cycle 2.0 Symposium, LBNL, Fev. 10. 2012. Journals/Report. Technical Report LBNL-5767E. Lawrence Berkeley

  6. FY2012 LBNL LDRD Annual Report (PUB)

    E-Print Network [OSTI]

    Ho, Darren

    2014-01-01T23:59:59.000Z

    Toxicity M. Sturzbecher-Hoehne, C. Goujon, G. J. -P.P. Deblonde, M. Sturzbecher-Hoehne, A. B. Mason, and R. J.

  7. Secretary Chu Hosts FY 2012 Budget Briefing

    Broader source: Energy.gov [DOE]

    Secretary Chu hosted a media briefing on the Department's Fiscal Year 2012 Budget Request. You can watch video of the event and check out his PowerPoint presentation, or see the budget documents themselves.

  8. Draft FY 2012 Agency Financial Report

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics4Dimitri Kusnezov -Purpose(FY) 2014, the

  9. FY 2012 Budget Justification | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|JulyR--FOIA SupportDOE's FY 2011Metrics

  10. FY 2012 LDRD Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|JulyR--FOIA SupportDOE's FY 2011MetricsThe total

  11. FY2012 EERE Congressional Budget Request

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentofofForewordinFYEnergy Efficiency and

  12. FY 2012 Control Table by Appropriation

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And WaterNationalS44

  13. FY 2012 Control Table by Organization

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And WaterNationalS442

  14. FY 2012 Service Contract Inventory Analysis Plan

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And2 Federal Office52

  15. FY 2012 Summary Table by Appropriation

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And26 Department of

  16. FY 2012 Summary Table by Organization

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And26 Department of5

  17. SSRL BEAM PORT SCHEDULE FY2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton n u aOct. 29, 2012 Nov.1-4 Nov.

  18. List of International Projects for FY 2012

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturingJune 17,DepartmentLibraryLiquefiedList

  19. Policy Flashes FY 2012 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducationRemediationDepartmentaD,2014 Policy Flashes4FY

  20. Key Agency Targets Summary _FY 2012_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin2015JustKateKent5 B O N N E V I L L E P O W

  1. FY 2012 Budget Justification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf More Documents &

  2. Draft FY 2012 Agency Financial Report

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 FederalDonnaDraft3:C Low-Level

  3. EM FY 2012 Budget Request Highlights

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Department ofNotices |Notice of38:3:1: FERC2:Collaborates|

  4. EM FY 2012 Presidential Budget Request

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Department ofNotices |Notice of38:3:1: FERC2:Collaborates|safety

  5. High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2

    SciTech Connect (OSTI)

    Xiaohui Zhan

    2010-01-31T23:59:59.000Z

    Experiment E08-007 measured the proton elastic form factor ratio ?pGE/GM in the range of Q2 = 0.3?0.7(GeV/c)2 by recoil polarimetry. Data were taken in 2008 at the Thomas Jefferson National Accelerator Facility in Virginia, USA. A 1.2 GeV polarized electron beam was scattered off a cryogenic hydrogen target. The recoil proton was detected in the left HRS in coincidence with the elasticly scattered electrons tagged by the BigBite spectrometer. The proton polarization was measured by the focal plane polarimeter (FPP). In this low Q2 region, previous measurement from Jefferson Lab Hall A (LEDEX) along with various fits and calculations indicate substantial deviations of the ratio from unity. For this new measurement, the proposed statistical uncertainty (< 1%) was achieved. These new results are a few percent lower than expected from previous world data and fits, which indicate a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the new results also have implications in determining the proton Zemach radius and the strangeness form factors from parity violation experiments.

  6. Measurements of the Generalized Electric and Magnetic Polarizabilities of the Proton at Low Q2 Using the VCS Reaction

    E-Print Network [OSTI]

    P. Bourgeois; Y. Sato; J. Shaw; R. Alarcon; A. M. Bernstein; W. Bertozzi; T. Botto; J. Calarco; F. Casagrande; M. O. Distler; K. Dow; M. Farkondeh; S. Georgakopoulos; S. Gilad; R. Hicks; M. Holtrop; A. Hotta; X. Jiang; A. Karabarbounis; J. Kirkpatrick; S. Kowalski; R. Milner; R. Miskimen; I. Nakagawa; C. N. Papanicolas; A. J. Sarty; S. Sirca; E. Six; N. F. Sparveris; S. Stave; E. Stiliaris; T. Tamae; G. Tsentalovich; C. Tschalaer; W. Turchinetz; Z. -L. Zhou; T. Zwart

    2006-05-10T23:59:59.000Z

    The mean square polarizability radii of the proton have been measured for the first time in a virtual Compton scattering experiment performed at the MIT-Bates out-of-plane scattering facility. Response functions and polarizabilities obtained from a dispersion analysis of the data at Q2=0.06 GeV2/c2 are in agreement with O(p3) heavy baryon chiral perturbation theory. The data support the dominance of mesonic effects in the polarizabilities, and the increase of beta with increasing Q2 is evidence for the cancellation of long-range diamagnetism by short-range paramagnetism from the pion cloud.

  7. STABILITY OF DOW CORNING Q2-3183A ANTIFOAM IN IRRADIATED HYDROXIDE SOLUTION

    SciTech Connect (OSTI)

    White, T; Crawford, C; Burket, P; Calloway, B

    2009-10-19T23:59:59.000Z

    Researchers at the Savannah River National Laboratory (SRNL) examined the stability of Dow Corning Q2-3183A antifoam to radiation and aqueous hydroxide solutions. Initial foam control studies with Hanford tank waste showed the antifoam reduced foaming. The antifoam was further tested using simulated Hanford tank waste spiked with antifoam that was heated and irradiated (2.1 x 10{sup 4} rad/h) at conditions (90 C, 3 M NaOH, 8 h) expected in the processing of radioactive waste through the Waste Treatment and Immobilization Plant (WTP) at Hanford. After irradiation, the concentration of the major polymer components polydimethylsiloxane (PDMS) and polypropylene glycol (PPG) in the antifoam was determined by gel permeation chromatography (GPC). No loss of the major polymer components was observed after 24 h and only 15 wt% loss of PDMS was reported after 48 h. The presence of degradation products were not observed by gas chromatography (GC), gas chromatography mass spectrometry (GCMS) or high performance liquid chromatography mass spectrometry (HPLC-MS). G values were calculated from the GPC analysis and tabulated. The findings indicate the antifoam is stable for 24 h after exposure to gamma radiation, heat, and alkaline simulated waste.

  8. The Spin Structure of 3He and the Neutron at Low Q^2: A Measurement of the Generalized GDH Integrand

    SciTech Connect (OSTI)

    Vincent Sulkosky

    2007-08-01T23:59:59.000Z

    Since the 1980's, the study of nucleon (proton or neutron) spin structure has been an active field both experimentally and theoretically. One of the primary goals of this work is to test our understanding of Quantum Chromodynamics (QCD), the fundamental theory of the strong interaction. In the high energy region of asymptotically free quarks, QCD has been verified. However, verifiable predictions in the low energy region are harder to obtain due to the complex interactions between the nucleon's constituents: quarks and gluons. In the non-pertubative regime, low-energy effective field theories such as chiral perturbation theory provide predictions for the spin structure functions in the form of sum rules. Spin-dependent sum rules such as the Gerasimov-Drell-Hearn (GDH) sum rule are important tools available to study nucleon spin structure. Originally derived for real photon absorption, the Gerasimov-Drell-Hearn (GDH) sum rule was first extended for virtual photon absorption in 1989. The extension of the sum rule provides a unique relation, valid at any momentum transfer ($Q^{2}$), that can be used to study the nucleon spin structure and make comparisons between theoretical predictions and experimental data. Experiment E97-110 was performed at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) to examine the spin structure of the neutron and $^{3}$He. The Jefferson Lab longitudinally-polarized electron beam with incident energies between 1.1 and 4.4 GeV was scattered from a longitudinally or transversely polarized $^{3}$He gas target in the Hall A end station. Asymmetries and polarized cross-section differences were measured in the quasielastic and resonance regions to extract the spin structure functions $g_{1}(x,Q^{2})$ and $g_{2}(x,Q^{2})$ at low momentum transfers (0.02 $< Q^{2} <$ 0.3 GeV$^{2}$). The goal of the experiment was to perform a precise measurement of the $Q^{2}$ dependence of the extended GDH integral and of the moments of the neutron and $^{3}$He spin structure functions at low $Q^{2}$. This $Q^{2}$ range allows us to test predictions of chiral perturbation theory and check the GDH sum rule by extrapolating the integral to the real photon point. This thesis will discuss preliminary results from the E97-110 data analysis.

  9. Constraints on the Nucleon Strange Form Factors at Q^2 ~ 0.1 GeV^2

    E-Print Network [OSTI]

    Airapetian, A; Akopov, Z; Amarian, M; Ammosov, V V; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Balin, D; Baturin, V; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Blok, H P; Böttcher, Helmut B; Borisov, A; Borysenko, A; Bouwhuis, M; Brack, J; Brüll, A; Bryzgalov, V; Capitani, G P; Chen, T; Chiang, H C; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E G; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Feshchenko, A; Felawka, L; Fox, B; Frullani, S; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Garutti, E; Gaskell, D; Gavrilov, G; Karibian, V; Graw, G; Grebenyuk, O; Greeniaus, L G; Gregor, I M; Hafidi, K; Hartig, M; Hasch, D; Heesbeen, D; Henoch, M; Hertenberger, R; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Kinney, E; Kiselev, A; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Laziev, A; Lenisa, P; Liebing, P; Linden-Levy, L A; Lipka, K; Lorenzon, W; Lü, H; Lü, J; Lu, S; Ma, B Q; Maiheu, B; Makins, N C R; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Nass, A; Negodaev, M; Nowak, Wolf-Dieter; Oganessyan, K; Ohsuga, H; Pickert, N; Potashov, S Yu; Potterveld, D H; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schill, C; Schnell, G; Schüler, K P; Seele, J; Seidl, R; Seitz, B; Shanidze, R; Shearer, C; Shibata, T A; Shutov, V; Simani, M C; Sinram, K; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Stösslein, U; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Tkabladze, A; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Vetterli, M C; Vikhrov, V; Vincter, M G; Vogel, C; Vogt, M; Volmer, J; Weiskopf, C; Wendland, J; Wilbert, J; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P; Aniol, K A; Armstrong, D S; Averett, T; Benaoum, H; Bertin, P Y; Burtin, E; Cahoon, J; Cates, G D; Chang, C C; Chao Yu Chiu; Chen, J P; Seonho Choi; Chudakov, E; Craver, B; Cusanno, F; Decowski, P; Deepa, D; Ferdi, C; Feuerbach, R J; Finn, J M; Fuoti, K; Gilman, R; Glamazdin, A; Gorbenko, V; Grames, J M; Hansknecht, J; Higinbotham, D W; Holmes, R; Holmstrom, T; Humensky, T B; Ibrahim, H; De Jager, C W; Jiang, X; Kaufman, L J; Kelleher, A; Kolarkar, A; Kowalski, S; Kumar, K S; Lambert, D; La Violette, P; Le Rose, J; Lhuillier, D; Liyanage, N; Margaziotis, D J; Mazouz, M; McCormick, K; Meekins, D G; Meziani, Z E; Michaels, R; Moffit, B; Monaghan, P; Munoz-Camacho, C; Nanda, S; Nelyubin, V V; Neyret, D; Paschke, K D; Poelker, M; Pomatsalyuk, R I; Qiang, Y; Reitz, B; Roche, J; Saha, A; Singh, J; Snyder, R; Souder, P A; Subedi, R; Suleiman, R; Sulkosky, V; Tobias, W A; Urciuoli, G M; Vacheret, A; Voutier, E; Wang, K; Wilson, R; Wojtsekhowski, B; Zheng, X

    2006-01-01T23:59:59.000Z

    We report the most precise measurement to date of a parity-violating asymmetry in elastic electron-proton scattering. The measurement was carried out with a beam energy of 3.03 GeV and a scattering angle = 6.0 degrees, with the result A_PV = -1.14 +/- 0.24 (stat) +/- 0.06 (syst) parts per million. From this we extract, at Q^2 = 0.099 GeV^2, the strange form factor combination G_E^s + 0.080 G_M^s = 0.030 +/- 0.025 (stat) +/- 0.006 (syst) +/- 0.012 (FF) where the first two errors are experimental and the last error is due to the uncertainty in the neutron electromagnetic form factor. The measurement significantly improves existing constraints on G_E^s and G_M^s at Q^2 ~0.1 GeV^2. A consistent picture emerges from all measurements at this Q^2. A combined fit shows that G_E^s is consistent with zero while G_M^s prefers positive values though G_E^s=G_M^s=0 is compatible with the data at 95% C.L.

  10. Fractal Inspired Models of Quark and Gluon Distributions and Longitudinal Structure Function FL(x, Q2) at small x

    E-Print Network [OSTI]

    Akbari Jahan; D. K. Choudhury

    2010-12-30T23:59:59.000Z

    In recent years, Fractal Inspired Models of quark and gluon densities at small x have been proposed. In this paper, we investigate longitudinal structure function F-L (x, Q2) within this approach. We make predictions using the QCD based approximate relation between the longitudinal structure function and the gluon density. As the Altarelli-Martinelli equation for the longitudinal structure function cannot be applied to Model I due to the presence of a singularity in the Bjorken x-space we consider Model II only. The qualitative feature of the prediction of Model II is found to be compatible with the QCD expectation.

  11. Near threshold electroproduction of the omega meson at Q2 ~ 0.5 GeV2

    E-Print Network [OSTI]

    P. Ambrozewicz; J. Mitchell; J. Dunne; P. Markowitz; C. J. Martoff; J. Reinhold; B. Zeidman

    2004-06-15T23:59:59.000Z

    Electroproduction of the omega meson was investigated in the p(e,e'p)omega reaction. The measurement was performed at a 4-momentum transfer Q2 ~ 0.5 GeV2. Angular distributions of the virtual photon-proton center-of-momentum cross sections have been extracted over the full angular range. These distributions exhibit a strong enhancement over t-channel parity exchange processes in the backward direction. According to a newly developed electroproduction model, this enhancement provides significant evidence of resonance formation in the gamma* p -> omega p reaction channel.

  12. Virtual Compton Scattering and the Generalized Polarizabilities of the Proton at Q^2=0.92 and 1.76 GeV^2

    E-Print Network [OSTI]

    Fonvieille, H; Degrande, N; Jaminion, S; Jutier, C; Di Salvo, L TodorR; Van Hoorebeke, L; Alexa, L C; Anderson, B D; Aniol, K A; Arundell, K; Audit, G; Auerbach, L; Baker, F T; Baylac, M; Berthot, J; Bertin, P Y; Bertozzi, W; Bimbot, L; Boeglin, W U; Brash, E J; Breton, V; Breuer, H; Burtin, E; Calarco, J R; Cardman, L S; Cavata, C; Chang, C -C; Chen, J -P; Chudakov, E; Cisbani, E; Dale, D S; deJager, C W; De Leo, R; Deur, A; d'Hose, N; Dodge, G E; Domingo, J J; Elouadrhiri, L; Epstein, M B; Ewell, L A; Finn, J M; Fissum, K G; Fournier, G; Frois, B; Frullani, S; Furget, C; Gao, H; Gao, J; Garibaldi, F; Gasparian, A; Gilad, S; Gilman, R; Glamazdin, A; Glashausser, C; Gomez, J; Gorbenko, V; Grenier, P; Guichon, P A M; Hansen, J O; Holmes, R; Holtrop, M; Howell, C; Huber, G M; Hyde, C E; Incerti, S; Iodice, M; Jardillier, J; Jones, M K; Kahl, W; Kato, S; Katramatou, A T; Kelly, J J; Kerhoas, S; Ketikyan, A; Khayat, M; Kino, K; Kox, S; Kramer, L H; Kumar, K S; Kumbartzki, G; Kuss, M; Leone, A; LeRose, J J; Liang, M; Lindgren, R A; Liyanage, N; Lolos, G J; Lourie, R W; Madey, R; Maeda, K; Malov, S; Manley, D M; Marchand, C; Marchand, D; Margaziotis, D J; Markowitz, P; Marroncle, J; Martino, J; McCormick, K; McIntyre, J; Mehrabyan, S; Merchez, F; Meziani, Z E; Michaels, R; Miller, G W; Mougey, J Y; Nanda, S K; Neyret, D; Offermann, E A J M; Papandreou, Z; Pasquini, B; Perdrisat, C F; Perrino, R; Petratos, G G; Platchkov, S; Pomatsalyuk, R; Prout, D L; Punjabi, V A; Pussieux, T; Quemener, G; Ransome, R D; Ravel, O; Real, J S; Renard, F; Roblin, Y; Rowntree, D; Rutledge, G; Rutt, P M; Saha, A; Saito, T; Sarty, A J; Serdarevic, A; Smith, T; Smirnov, G; Soldi, K; Sorokin, P; Souder, P A; Suleiman, R; Templon, J A; Terasawa, T; Tieulent, R; Tomasi-Gustaffson, E; Tsubota, H; Ueno, H; Ulmer, P E; Urciuoli, G M; Vanderhaeghen, M; Van der Meer, R L J; Van De Vyver, R; Vernin, P; Vlahovic, B; Voskanyan, H; Voutier, E; Watson, J W; Weinstein, L B; Wijesooriya, K; Wilson, R; Wojtsekhowski, B B; Zainea, D G; Zhang, W-M; Zhao, J; Zhou, Z -L

    2012-01-01T23:59:59.000Z

    Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1.76 GeV^2. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q^2-range, and point to their non-trivial behavior.

  13. Virtual Compton Scattering and the Generalized Polarizabilities of the Proton at Q^2=0.92 and 1.76 GeV^2

    E-Print Network [OSTI]

    H. Fonvieille; G. Laveissiere; N. Degrande; S. Jaminion; C. Jutier; L. Todor; R. Di Salvo; L. Van Hoorebeke; L. C. Alexa; B. D. Anderson; K. A. Aniol; K. Arundell; G. Audit; L. Auerbach; F. T. Baker; M. Baylac; J. Berthot; P. Y. Bertin; W. Bertozzi; L. Bimbot; W. U. Boeglin; E. J. Brash; V. Breton; H. Breuer; E. Burtin; J. R. Calarco; L. S. Cardman; C. Cavata; C. -C. Chang; J. -P. Chen; E. Chudakov; E. Cisbani; D. S. Dale; C. W. deJager; R. De Leo; A. Deur; N. d'Hose; G. E. Dodge; J. J. Domingo; L. Elouadrhiri; M. B. Epstein; L. A. Ewell; J. M. Finn; K. G. Fissum; G. Fournier; B. Frois; S. Frullani; C. Furget; H. Gao; J. Gao; F. Garibaldi; A. Gasparian; S. Gilad; R. Gilman; A. Glamazdin; C. Glashausser; J. Gomez; V. Gorbenko; P. Grenier; P. A. M. Guichon; J. O. Hansen; R. Holmes; M. Holtrop; C. Howell; G. M. Huber; C. E. Hyde; S. Incerti; M. Iodice; J. Jardillier; M. K. Jones; W. Kahl; S. Kato; A. T. Katramatou; J. J. Kelly; S. Kerhoas; A. Ketikyan; M. Khayat; K. Kino; S. Kox; L. H. Kramer; K. S. Kumar; G. Kumbartzki; M. Kuss; A. Leone; J. J. LeRose; M. Liang; R. A. Lindgren; N. Liyanage; G. J. Lolos; R. W. Lourie; R. Madey; K. Maeda; S. Malov; D. M. Manley; C. Marchand; D. Marchand; D. J. Margaziotis; P. Markowitz; J. Marroncle; J. Martino; K. McCormick; J. McIntyre; S. Mehrabyan; F. Merchez; Z. E. Meziani; R. Michaels; G. W. Miller; J. Y. Mougey; S. K. Nanda; D. Neyret; E. A. J. M. Offermann; Z. Papandreou; B. Pasquini; C. F. Perdrisat; R. Perrino; G. G. Petratos; S. Platchkov; R. Pomatsalyuk; D. L. Prout; V. A. Punjabi; T. Pussieux; G. Quemener; R. D. Ransome; O. Ravel; J. S. Real; F. Renard; Y. Roblin; D. Rowntree; G. Rutledge; P. M. Rutt; A. Saha; T. Saito; A. J. Sarty; A. Serdarevic; T. Smith; G. Smirnov; K. Soldi; P. Sorokin; P. A. Souder; R. Suleiman; J. A. Templon; T. Terasawa; R. Tieulent; E. Tomasi-Gustaffson; H. Tsubota; H. Ueno; P. E. Ulmer; G. M. Urciuoli; M. Vanderhaeghen; R. L. J. Van der Meer; R. Van De Vyver; P. Vernin; B. Vlahovic; H. Voskanyan; E. Voutier; J. W. Watson; L. B. Weinstein; K. Wijesooriya; R. Wilson; B. B. Wojtsekhowski; D. G. Zainea; W. -M. Zhang; J. Zhao; Z. -L. Zhou

    2012-06-28T23:59:59.000Z

    Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1.76 GeV^2. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q^2-range, and point to their non-trivial behavior.

  14. Measurement of the Inclusive ep Deep Inelastic Scattering Cross Section at Low Q2 with the H1 Detector at HERA

    SciTech Connect (OSTI)

    Raicevic, N. [Faculty of Science, University of Montenegro, Cetinjski put BB, 81000 Podgorica (Montenegro)

    2007-04-23T23:59:59.000Z

    The focus of this report are the recent measurements of the cross section and proton structure function F2 in ep deep inelastic scattering (DIS) at low virtuality of the exchanged boson, Q2, with the H1 detector at the HERA accelerator in Hamburg. The region of low Q2 and low Bjorken x allows precision tests of perturbative QCD at high gluon densities to be performed and also the transition from the perturbative to non-perturbative QCD domains to be explored. The recent H1 measurements of charm and beauty cross sections and structure functions, F{sub 2}{sup cc-bar} ans F{sub 2}{sup bb-bar}, for photon virtuality 12 < Q2 < 60 GeV2 will also be discussed.

  15. Q^2 Dependence of the S_{11}(1535) Photocoupling and Evidence for a P-wave resonance in eta electroproduction

    SciTech Connect (OSTI)

    Haluk Denizli; James Mueller; Steven Dytman; M.L. Leber; R.D. Levine; J. Miles; Kui Kim; Gary Adams; Moscov Amaryan; Pawel Ambrozewicz; Marco Anghinolfi; Burin Asavapibhop; G. Asryan; Harutyun Avakian; Hovhannes Baghdasaryan; Nathan Baillie; Jacques Ball; Nathan Baltzell; Steve Barrow; V. Batourine; Marco Battaglieri; Kevin Beard; Ivan Bedlinski; Ivan Bedlinskiy; Mehmet Bektasoglu; Matthew Bellis; Nawal Benmouna; Nicola Bianchi; Angela Biselli; Billy Bonner; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Catalina Cetina; Shifeng Chen; Philip Cole; Alan Coleman; Patrick Collins; Philip Coltharp; Dieter Cords; Pietro Corvisiero; Donald Crabb; Volker Crede; John Cummings; Natalya Dashyan; Raffaella De Vita; Enzo De Sanctis; Pavel Degtiarenko; Lawrence Dennis; Alexandre Deur; Kalvir Dhuga; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; P. Dragovitsch; Michael Dugger; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Lamiaa Elfassi; Latifa Elouadrhiri; A. Empl; Paul Eugenio; Laurent Farhi; Renee Fatemi; Gleb Fedotov; Gerald Feldman; Robert Feuerbach; Tony Forest; Valera Frolov; Herbert Funsten; Sally Gaff; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Pascal Girard; Francois-Xavier Girod; John Goetz; Atilla Gonenc; Ralf Gothe; Keith Griffioen; Michel Guidal; Matthieu Guillo; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Kawtar Hafidi; Hayk Hakobyan; Rafael Hakobyan; John Hardie; David Heddle; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; Jingliang Hu; Charles Hyde; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Eugeny Isupov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; J.H. Kelley; James Kellie; Mahbubul Khandaker; K. Kim; Wooyoung Kim; Andreas Klein; Franz Klein; Mike Klusman; Mikhail Kossov; Laird Kramer; V. Kubarovsky; Joachim Kuhn; Sebastian Kuhn; Sergey Kuleshov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Kenneth Livingston; Haiyun Lu; K. Lukashin; Marion MacCormick; Joseph Manak; Nikolai Markov; Simeon McAleer; Bryan McKinnon; John McNabb; Bernhard Mecking; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; M. Moteabbed; Valeria Muccifora; Gordon Mutchler; Pawel Nadel-Turonski; James Napolitano; Rakhsha Nasseripour; Steve Nelson; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Grant O'Rielly; Mikhail Osipenko; Alexander Ostrovidov; Kijun Park; Evgueni Pasyuk; Craig Paterson; Gerald Peterson; Sasha Philips; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; Ermanno Polli; S. Pozdniakov; Barry Preedom; John Price; Yelena Prok; Dan Protopopescu; Liming Qin; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; David Rowntree; Philip Rubin; Franck Sabatie; Konstantin Sabourov; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Aziz Shafi; Youri Sharabian; Jeremiah Shaw; Nikolay Shvedunov; Sebastio Simionatto; Alexander Skabelin; Elton Smith; Lee Smith; Daniel Sober; Daria Sokhan; M. Spraker; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; I.I. Strakovsky; Steffen Strauch; Mauro Taiuti; Simon Taylor; David Tedeschi; Ulrike Thoma; R. Thompson; Avtandil Tkabladze; Svyatoslav Tkachenko; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Kebin Wang; Daniel Watts; Lawrence Weinstein; Henry Weller; Dennis Weygand; M. Williams; Elliott Wolin; Michael Wood; Amrit Yegneswaran; Junho Yun; Lorenzo Zana; Jixie Zhang; Bo Zhao; Zhiwen Zhao

    2007-07-01T23:59:59.000Z

    New cross sections for the reaction $ep \\to e'\\eta p$ are reported for total center of mass energy $W$=1.5--2.3 GeV and invariant squared momentum transfer $Q^2$=0.13--3.3 GeV$^2$. This large kinematic range allows extraction of new information about response functions, photocouplings, and $\\eta N$ coupling strengths of baryon resonances. A sharp structure is seen at $W\\sim$ 1.7 GeV. The shape of the differential cross section is indicative of the presence of a $P$-wave resonance that persists to high $Q^2$. Improved values are derived for the photon coupling amplitude for the $S_{11}$(1535) resonance. The new data greatly expands the $Q^2$ range covered and an interpretation of all data with a consistent parameterization is provided.

  16. FY 2012 Real Property Deferred, Actual, and Required Maintenance...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement Real Property Maintenance Reporting Requirement Memorandum...

  17. Sustainable NREL Biennial Report, FY 2012 - 2013 (Management Report)

    SciTech Connect (OSTI)

    Slovensky, M.

    2014-03-01T23:59:59.000Z

    NREL's Sustainability Program plays a vital role bridging research and operations - integrating energy efficiency, water and material resource conservation and cultural change - adding depth in the fulfillment of NREL's mission. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called "The Voice of NREL" gives an inside perspective of how to become more sustainable while at the same time addressing climate change.

  18. FY 2012 Budget Request Advanced Research Projects Agency - Energy

    Energy Savers [EERE]

    36,000 Transmission Reliability 18,000 Advanced Modeling Grid Research 11,000 Energy Systems Predictive Capability 7,000 Smart Grid 24,400 Cyber Security for Energy Delivery...

  19. FY 2012 Budget Request Advanced Research Projects Agency - Energy...

    Broader source: Energy.gov (indexed) [DOE]

    OE's cybersecurity program addresses the unique cyber security needs of energy sector control systems * The FY 2014 request supports: - Research and development to improve...

  20. Microsoft Word - EM-40 Feedback on FY 2012 ISMS Declaration

    Office of Environmental Management (EM)

    colored indicators were used to grade performance levels. The rankings that are blue indicate excellent performance, green for good, yellow for investigate, red for define...

  1. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    rankings of Alaska’s oil investment favorability. Source:it would increase oil company investment in Alaska, neededGovernment Support Oil & Gas Investment Tax Credits Other

  2. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    oil prices; petroleum production tax (ACES); redistricting *over the state’s petroleum production tax (see also, Petro,s request to reduce the petroleum production tax, sought to

  3. Campbell Creek Research Homes FY 2012 Annual Performance Report

    SciTech Connect (OSTI)

    Gehl, Anthony C [ORNL; Munk, Jeffrey D [ORNL; Jackson, Roderick K [ORNL; Boudreaux, Philip R [ORNL; Khowailed, Gannate A [ORNL

    2013-01-01T23:59:59.000Z

    The Campbell Creek project is funded and managed by the Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery & and Utilization Office. Technical support is provided under contract by the Oak Ridge National Laboratory (ORNL) and the Electric Power Research Institute.The project was designed to determine the relative energy efficiency of typical new home construction, energy efficiency retrofitting of existing homes, and high -performance new homes built from the ground up for energy efficiency. This project will compare three houses that represented the current construction practice as a base case (Builder House CC1); a modified house that could represent a major energy- efficient retrofit (Retrofit House CC2); and a house constructed from the ground up to be a high- performance home (High Performance House CC3). In order tTo enablehave a valid comparison, it was necessary to simulate occupancy in all three houses and heavily monitor the structural components and the energy usage by component. All three houses are two story, slab on grade, framed construction. CC1 and CC2 are approximately 2,400 square feet2. CC3 has a pantry option, that is primarily used as a mechanical equipment room, that adds approximately 100 square feet2. All three houses are all-electric (with the exception of a gas log fireplace that is not used during the testing), and use air-source heat pumps for heating and cooling. The three homes are located in Knoxville in the Campbell Creek Subdivision. CC1 and CC2 are next door to each other and CC3 is across the street and a couple of houses down. The energy data collected will be used to determine the benefits of retrofit packages and high -performance new home packages. There are over 300 channels of continuous energy performance and thermal comfort data collection in the houses (100 for each house). The data will also be used to evaluate the impact of energy -efficient upgrades ton the envelope, mechanical equipment, or demand -response options. Each retrofit will be evaluated incrementally, by both short -term measurements and computer modeling, using a calibrated model. This report is intended to document the comprehensive testing, data analysis, research, and findings within the January 2011 through October 2012 timeframe at the Campbell Creek research houses. The following sections will provide an in-depth assessment of the technology progression in each of the three research houses. A detailed assessment and evaluation of the energy performance of technologies tested will also be provided. Finally, lessons learned and concluding remarks will be highlighted.

  4. Tethys and Annex IV Progress Report for FY 2012

    SciTech Connect (OSTI)

    Hanna, Luke A.; Butner, R. Scott; Whiting, Jonathan M.; Copping, Andrea E.

    2013-09-01T23:59:59.000Z

    The marine and hydrokinetic (MHK) environmental Impacts Knowledge Management System, dubbed “Tethys” after the mythical Greek titaness of the seas, is being developed by the Pacific Northwest National Laboratory (PNNL) to support the U.S. Department of Energy’s Wind and Water Power Program (WWPP). Functioning as a smart database, Tethys enables its users to identify key words or terms to help gather, organize and make available information and data pertaining to the environmental effects of MHK and offshore wind (OSW) energy development. By providing and categorizing relevant publications within a simple and searchable database, Tethys acts as a dissemination channel for information and data which can be utilized by regulators, project developers and researchers to minimize the environmental risks associated with offshore renewable energy developments and attempt to streamline the permitting process. Tethys also houses a separate content-related Annex IV data base with identical functionality to the Tethys knowledge base. Annex IV is a collaborative project among member nations of the International Energy Agency (IEA) Ocean Energy Systems – Implementing Agreement (OES-IA) that examines the environmental effects of ocean energy devices and projects. The U.S. Department of Energy leads the Annex IV working with federal partners such as the Federal Energy Regulatory Commission (FERC), the Bureau of Ocean Energy Management (BOEM), and the National Oceanic Atmospheric Administration (NOAA). While the Annex IV database contains technical reports and journal articles, it is primarily focused on the collection of project site and research study metadata forms (completed by MHK researchers and developers around the world, and collected by PNNL) which provide information on environmental studies and the current progress of the various international MHK developments in the Annex IV member nations. The purpose of this report is to provide a summary of the content, accessibility and functionality enhancements made to the Annex IV and Tethys knowledge bases in FY12.

  5. Ion Exchange Testing with SRF Resin FY 2012

    SciTech Connect (OSTI)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-07-02T23:59:59.000Z

    Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007; Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.01, which was prepared and approved in response to the Test Specification 24590-PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590-PTF-TEF-RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.

  6. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    natural gas pipe line; oil prices; petroleum productionon investments. 2.1 Oil Prices Notwithstanding the continuedin the U.S. economy, oil prices remained high during the

  7. NEET Micro-Pocket Fission Detector -- FY 2012 Status Report

    SciTech Connect (OSTI)

    Troy Unruh; Joy Rempe; Douglas McGregor; Philip Ugorowski; Michael Reichenberger

    2012-09-01T23:59:59.000Z

    A research program has been initiated by the NEET program for developing and testing compact miniature fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package. When implemented, these sensors will significantly advance flux detection capabilities for irradiation tests in US Materials Test Reactors (MTRs).Ultimately, evaluations may lead to a more compact, more accurate, and longer lifetime flux sensor for critical mock-ups, high performance reactors and commercial nuclear power plants. Deployment of Micro-Pocket Fission Detectors (MPFDs) in US DOE-NE program irradiation tests will address several challenges: Current fission chamber technologies do not offer the ability to measure fast flux, thermal flux and temperature within a single compact probe, MPFDs offer this option. MPFD construction is very different then current fission chamber construction; the use of high temperature materials allow MPFDs to be specifically tailored to survive harsh conditions in typical high performance MTR irradiation tests. New high-fidelity reactor physics codes will need a small, accurate, multipurpose in-core sensor to validate the codes without perturbing the validation experiment; MPFDs fill this requirement. MPFDs can be built with variable sensitivities to survive the lifetime of an experiment or fuel assembly in some MTRs; allowing for more efficient and cost effective power monitoring. The small size of the MPFDs allows multiple sensors to be simultaneously deployed; obtaining data required to visualize the reactor flux and temperature profiles. This report summarizes the research progress for year 1 of this 3 year project. An updated design of the MPFD has been developed, materials and tools to support the new design have been procured, construction methods to support the new design have been initiated at INL’s HTTL and KSU’s SMART Laboratory, plating methods are being updated at KSU, new detector electronics have been designed, built and tested at KSU. In addition, a project meeting was held at KSU and a detector evaluation plan has been initiated between INL and KSU. Once NEET program evaluations are completed, the final MPFD will be deployed in MTR irradiations, enabling DOE-NE programs evaluating the performance of candidate new fuels and materials to better characterize irradiation test conditions.

  8. FY 2012 Budget Request Advanced Research Projects Agency - Energy...

    Energy Savers [EERE]

    needs of the energy-sector - Research to secure smart grid technologies against cyber attack and protect energy- consumer privacy - Research to identify, mitigate and decrease the...

  9. Sightlines LLC FY2012 Facilities MB&A Presentation

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    maintenance Scheduled maintenance Preventive maintenance A vocabulary for measurement The Return, the maintenance quality of space and systems, and the customers opinion of service delivery The effectiveness Order Process Energy Consumption Staffing Metrics Work Orders Planned Maintenance Bond Proceeds

  10. Idaho National Laboratory LDRD Annual Report FY 2012

    SciTech Connect (OSTI)

    Dena Tomchak

    2013-03-01T23:59:59.000Z

    This report provides a glimpse into our diverse research and development portfolio, wwhich encompasses both advanced nuclear science and technology and underlying technologies. IN keeping with the mission, INL's LDRD program fosters technical capabilities necessary to support current and future DOE-Office of Nuclear Energy research and development needs.

  11. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    pipeline, the Arctic National Wildlife Refuge (ANWR), outer-continental shelf (OCS) drilling and endangered species regulation,

  12. Site-Directed Research and Development FY 2012 Annual Report

    SciTech Connect (OSTI)

    ,

    2013-04-01T23:59:59.000Z

    The reports included in this report are for project activities that occurred from October 2011 through September 2012. These reports describe in detail the discoveries, achievements, and challenges encountered by our talented and enthusiastic principal investigators (PIs). Many of the reports describe R&D efforts that were “successful” in their pursuits and resulted in a positive outcome or technology realization. As we’ve stated before, and continue to stress, in some cases the result is a “negative” finding, for instance a technology is currently impractical or out of reach. This can often be viewed erroneously as a “failure,” but is actually a valid outcome in the pursuit of high-risk research, which often leads to unforeseen new paths of discovery. Either result advances our knowledge and increases our ability to identify solutions and/or likewise avoid costly paths not appropriate for the challenges presented. The SDRD program continues to provide an unfettered mechanism for innovation and development that returns multifold to the NNSS mission. Overall the program is a strong R&D innovation engine, benefited by an enhanced mission, committed resources, and sound competitiveness to yield maximum benefit. The 23 projects described exemplify the creativity and ability of a diverse scientific and engineering talent base. The efforts also showcase an impressive capability and resource that can be brought to find solutions to a broad array of technology needs and applications relevant to the NNSS mission and national security.

  13. NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012

    SciTech Connect (OSTI)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; McCurdy, Greg; Campbell, Scott

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events. Field measurements at the T-4 Atmospheric Test Site (CAU 370) suggest that radionuclide-contaminated soils may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4 Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radionuclide-contaminated soils may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). In Area 11, several low-level airborne surveys of the Plutonium Valley Dispersion Sites (CAU 366) show plumes of Americium 241 (Am-241) extending along ephemeral channels (Figure 1, marker numbers 5 and 6) below Corrective Action Site (CAS) 11-23-03 (marker number 3) and CAS 11 23-04 (marker number 4) (Colton, 1999). Plutonium Valley in Area 11 of the NNSS was selected for the study because of the aerial survey evidence suggesting downstream transport of radionuclide-contaminated soil. The aerial survey (Figure 1) shows a well defined finger of elevated radioactivity (marker number 5) extending to the southwest from the southernmost detonation site (marker number 4). This finger of contamination overlies a drainage channel mapped on the topographic base map used for presentation of the survey data suggesting surface runoff as a likely cause of the contaminated area. Additionally, instrumenting sites strongly suspected of conveying soil from areas of surface contamination offers the most efficient means to confirm that surface runoff may transport radioactive contamination as a result of ambient precipitation/runoff events. Closure plans being developed for the CAUs on the NNSS may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of radionuclide-contaminated soils under ambient meteorological conditions will facilitate an appropriate closure design and post-closure monitoring program.

  14. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    of early August 2011. 2.2 Oil Production Declines and Otherthe peak North Slope oil production Jerry McBeath and TanyaAlthough the news on oil production was mostly bleak, two

  15. Iodine Sorbent Performance in FY 2012 Deep Bed Tests

    SciTech Connect (OSTI)

    Nick Soelberg; Tony Watson

    2012-08-01T23:59:59.000Z

    Nuclear fission results in the production of fission products and activation products, some of which tend to be volatile during used fuel reprocessing and evolve in gaseous species into the reprocessing facility off-gas systems. Analyses have shown that I-129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Iodine capture is an important aspect of the Separations and Waste Forms Campaign Off-gas Sigma Team (Jubin 2011, Pantano 2011). Deep-bed iodine sorption tests for both silver-functionalized Aerogel and silver zeolite sorbents were performed during Fiscal Year 2012. These tests showed that: • Decontamination factors were achieved that exceed reasonably conservative estimates for DFs needed for used fuel reprocessing facilities in the U.S. to meet regulatory requirements for I-129 capture. • Silver utilizations approached or exceeded 100% for high inlet gas iodine concentrations, but test durations were not long enough to approach 100% silver utilization for lower iodine concentrations. • The depth of the mass transfer zone was determined for both low iodine concentrations (under 10 ppmv) and for higher iodine concentrations (between 10-50 ppmv); the depth increases over time as iodine is sorbed. • These sorbents capture iodine by chemisorption, where the sorbed iodine reacts with the silver to form very non-volatile AgI. Any sorbed iodine that is physisorbed but not chemically reacted with silver to form AgI might not be tightly held by the sorbent. The portion of sorbed iodine that tends to desorb because it is not chemisorbed (reacted to form AgI) is small, under 1%, for the AgZ tests, and even smaller, under 0.01%, for the silver-functionalized Aerogel.

  16. Highlights of the FY 2012 Congressional Budget Request for OE

    Broader source: Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability's (OE) budget request represents a strong commitment to bringing the next generation of grid modernization technologies closer to...

  17. Fleet Compliance Results for MY 2011/FY 2012 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-02-01T23:59:59.000Z

    This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2011/fiscal year 2012.

  18. www.noaa.gov/climate Proposed NOAA FY2012 Reorganization

    E-Print Network [OSTI]

    for Operations. The NOAA Central Library will move from the National Oceanographic Data Center to the NOAA Office of Commerce's authority under the National Climate Program Act (15 U.S.C. §2901, et seq.), the principal goal's overall science enterprise. In doing so, OAR will renew and expand its role as the focus for long

  19. B61 System FY 2012 May Monthly Report

    SciTech Connect (OSTI)

    Neff, Warren E [Los Alamos National Laboratory

    2012-06-05T23:59:59.000Z

    These viewgraphs are to be provided to NNSA to update the status of the B61 legacy work and activities. The viewgraphs cover such issues as budget, schedule, scope, and the like. They are part of the monthly reporting process.

  20. B61 System FY 2012 June Monthly Report

    SciTech Connect (OSTI)

    Wentz, Kip G. [Los Alamos National Laboratory

    2012-07-09T23:59:59.000Z

    These viewgraphs are to be provided to NNSA to update the status of the B61 legacy work and activities. The viewgraphs cover such issues as budget, schedule, scope, and the like. They are part of the monthly reporting process.

  1. Contractor Purchasing Balanced Scorecard for FY 2012 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluor FederalEnergy ContractContractorPurchasing

  2. DOE FY 2012 Budget Overview presentation | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2 DOE F580.1 DOE F7FY

  3. FY 2012 Annual Uncosted Balances Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|JulyR--FOIA SupportDOE's FY 2011Metrics andThis

  4. FY 2012 Overall Contract and Project Management Improvement Performance

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|JulyR--FOIA SupportDOE's FY 2011MetricsThe

  5. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    has three pivots: the oil and gas industry, the AlaskaThen, in March, the Spanish oil and gas company Repsol, anaffiliate of Armstrong Oil and Gas, announced it would spend

  6. FY 2012 Budget Request Advanced Research Projects Agency - Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentofofForeword he

  7. FY 2012 Budget Request Advanced Research Projects Agency - Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentofofForeword heApril 10, 2013 FY 2014

  8. FY 2012 Budget Rollout Overview | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentofofForeword heApril 10, 2013 FY12

  9. FY 2012 DOE Agency Financial Report | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentofofForeword heApril 10, 2013 FY122

  10. FY 2012 Federal Office Departmental Averages | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentofofForeword heApril 10, 2013 FY122FY

  11. FY 2012 Federal Real Property Reporting Requirement | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentofofForeword heApril 10, 2013

  12. FY 2012 Highlighted Sustainable Targets and Initiatives | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentofofForeword heApril 10,

  13. FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentofofForeword heApril 10,FY

  14. FY2012 Excess Elimination Report | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentofofForewordinFYEnergy Efficiency

  15. DOE Chief FOIA Officer Report for FY 2012

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » ContactDepartmentEnvironmental ManagementCertifies

  16. FY 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrentEmergencyU.S. DOEHow to08 Budget9012

  17. FY 2012 Environmental Management Budget Request to Congress

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And WaterNationalS4

  18. FY 2012 DOE Agency Financial Report | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And

  19. FY 2012 Federal Office Departmental Averages | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergy And2 Federal Office

  20. FY2012 EERE Congressional Budget Request | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007FY 2014 Solid0612 EERE

  1. FY2012 Three Year Rolling Timeline | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007FY 2014 Solid0612 EEREFY2012

  2. Federal Balanced Scorecard for FY 2012 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FYPipeline | Department ofFederal02

  3. Fossil Energy FY 2012 Budget | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartment of EnergyUpdatedFossil09012

  4. Microsoft Word - EM-40 Feedback on FY 2012 ISMS Declaration

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EM Does

  5. Annual Performance Report FY 2011 Annual Performance Plan FY 2012

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of the Americas |AnchorageAnnaof Office of

  6. NEET Awards for FY2012 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 - December 2013 Nuclear

  7. FY 2012 Budget Request Advanced Research Projects Agency - Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1Duong93-8518

  8. FY 2012 Progress Report for Fuel & Lubricant Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy12Energy FY911

  9. Environmental Compliance Performance Scorecard - First Quarter FY2012 |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOE FOrdersServices|EnhancedDepartment of EnergyDepartment

  10. Environmental Compliance Performance Scorecard - Fourth Quarter FY2012 |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOE FOrdersServices|EnhancedDepartmentDepartment of

  11. Environmental Compliance Performance Scorecard - Second Quarter FY2012 |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOE

  12. Environmental Compliance Performance Scorecard - Third Quarter FY2012 |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOEDepartment of Energy 3

  13. FY 2012 Environmental Management Budget Request to Congress | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOEDepartment ofFY 2007Energy 2 Environmental Management

  14. List of International Projects for FY 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing | DepartmentComputing Center |

  15. Department of Energy FY 2012 OMB Scorecard | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPMMilestoneAmerican ScientistsDepartment of Energy FY 201012

  16. Department of Energy Issues FY 2012 Funding Opportunity Announcements for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 ThisFinalResearchAnnouncements to

  17. Department of Energy Issues FY 2012 Funding Opportunity Announcements for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 ThisFinalResearchAnnouncements toU.S. Universities to

  18. Assistant Secretary Triay's FY 2012 EM Budget Rollout Presentation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLC

  19. FY 2012 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary |

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia Corporation PERSecurityNational Nuclear

  20. FY 2012 Lawrence Livermore National Security, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia Corporation PERSecurityNational NuclearNuclear

  1. FY 2012 National Security Technologies, LLC, PER Summary | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia Corporation PERSecurityNationalSecurity

  2. FY 2012 Sandia Corporation PER Summary | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia Corporation

  3. FY 2012 Savannah River Nuclear Solutions, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia CorporationNuclear Security Administration

  4. Microsoft Word - FY 2012 Draft Preface Rev 0.docx

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB - H, Page i PART I -December

  5. Microsoft Word - FY 2012 Draft Preface Rev 0.docx

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB - H, Page i PART I -December

  6. Microsoft Word - Blue Report Cover for FY 2012 DOE IPERA

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft19.1,AcqGuide71pt1.docFollow-up2

  7. Microsoft PowerPoint - FY2012RLBudgetWeb.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverview andSinatraMicroBooNEThisDepartment

  8. FY 2012 Budget Hearing Testimony House Armed Services Committee,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecularGE,OzoneContacts&51 Reports1

  9. FY 2012 Budget Hearing Testimony before the House Appropriations Committee,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecularGE,OzoneContacts&51 Reports1Energy

  10. FY 2012 Budget Hearing Testimony before the Senate Armed Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecularGE,OzoneContacts&51

  11. FY 2012 Budget Hearing Testimony on Nuclear Nonproliferation and Naval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecularGE,OzoneContacts&51Reactor Programs

  12. FY2012 - 052410_Budget Briefing final Handout.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014 Budget Justification442 - Draft ($ in

  13. Microsoft Word - HABAdv #234_FY2012_Budget_Requests.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project0 FOIAneutron rich sector of234

  14. Light water reactor safety research program. Quarterly report Jan-Mar 80

    SciTech Connect (OSTI)

    Berman, M.

    1980-09-01T23:59:59.000Z

    The Molten Fuel Concrete Interactions (MFCI) study is comprised of experimental and analytical investigations of the chemical and physical phenomena associated with interactions between molten core materials and concrete. Such interactions are possible during hypothetical fuel-melt accidents in light water reactors (LWRs) when molten fuel and steel from the reactor core penetrate the pressure vessel and cascade onto the concrete substructure. The purpose of the MFCI study is to develop an understanding of these interactions suitable for risk assessment. Emphasis is placed on identifying and investigating the dominant interaction phenomena occurring between prototypic materials. The table of contents is the following: Molten fuel concrete interactions study; Steam explosion phenomena; Separate effects tests for TRAP code development; and Containment emergency sump performance.

  15. Microsoft Word - Quarterly_report_Jan_Mar_2014f.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The UGS project website was updated with new information - http:geology.utah.govempshaleoil The PI completed the fifth quarterly report and emailed it to all interested...

  16. FY 2012 Appropriations for Science programs within the Department of Energy DOE Office of Science FY 2012 Request

    E-Print Network [OSTI]

    Research N/A 1.0 Subsurface Biogeochemical Research N/A 50.2 Climate & Earth System Modeling N/A 77.3 Regional & Global Climate Modeling N/A 29.1 Earth System Modeling N/A 36.6 Integrated Assessment N/A 11

  17. Final analysis of proton form factor ratio data at Q2 = 4.0, 4.8, and 5.6 GeV2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Puckett, Andrew J.

    2012-04-01T23:59:59.000Z

    Recently published measurements of the proton electromagnetic form factor ratio R = ?p GEp/GMp at momentum transfers Q2 up to 8.5 GeV2 in Jefferson Lab Hall C deviate from the linear trend of previous measurements in Jefferson Lab Hall A, favoring a slower rate of decrease of R with Q2. While statistically compatible in the region of overlap with Hall A, the Hall C data hint at a systematic difference between the two experiments. This possibility was investigated in a reanalysis of the Hall A data. We find that the original analysis underestimated the background in the selection of elasticmore »events. The application of an additional cut to further suppress the background increases the results for R, improving the consistency between Halls A and C.« less

  18. Exclusive single pion electroproduction off the proton in the high-lying resonances at Q2 < 5 GeV2 from CLAS

    SciTech Connect (OSTI)

    Park, Kijun [ODU, JLAB

    2014-09-01T23:59:59.000Z

    The differential cross sections and structure functions for the exclusive electroproduction process ep --> e'n pi+ were measured in the range of the invariantmass for the np+ system 1.6 GeV lte W lte 2.0 GeV, and the photon virtuality 1.8 GeV2 lte Q2 lte 4.0 GeV2 using CLAS at Jefferson Lab. For the first time, these kinematics are probed in the exclusive p+ production from the protons with nearly full coverage in the azimuthal and polar angles of the np+ center-of-mass system. In this analysis, approximately 39,000 differential cross-section data points in terms of W, Q2, cosq theta* _ pi, and phi?_p-, were obtained. The preliminary differential cross section and structure function analyses are carried out, which allow us to extract the helicity amplitudes in high-lying resonances.

  19. Final analysis of proton form factor ratio data at Q2 = 4.0, 4.8, and 5.6 GeV2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Puckett, Andrew J. [JLAB

    2012-04-01T23:59:59.000Z

    Recently published measurements of the proton electromagnetic form factor ratio R = ?p GEp/GMp at momentum transfers Q2 up to 8.5 GeV2 in Jefferson Lab Hall C deviate from the linear trend of previous measurements in Jefferson Lab Hall A, favoring a slower rate of decrease of R with Q2. While statistically compatible in the region of overlap with Hall A, the Hall C data hint at a systematic difference between the two experiments. This possibility was investigated in a reanalysis of the Hall A data. We find that the original analysis underestimated the background in the selection of elastic events. The application of an additional cut to further suppress the background increases the results for R, improving the consistency between Halls A and C.

  20. Photon Electroproduction from Hydrogen at Backward Angles and Momentum Transfer Squared of Q**2=1.0 GeV**2

    E-Print Network [OSTI]

    Laveissière, G; Degrande, N; Jaminion, S; Jutier, C; Todor, L; Di Salvo, R; Van Hoorebeke, L; Alexa, L C; Anderson, B D; Aniol, K A; Arundell, K; Audit, G; Auerbach, L; Baker, F T; Baylac, M; Berthot, J; Bertin, P Y; Bertozzi, W; Bimbot, L; Böglin, W; Brash, E J; Breton, V; Breuer, H; Burtin, E; Calarco, J R; Cardman, L S; Cavata, C; Chang, C C; Chen, J P; Chudakov, E; Cisbani, E; Dale, D S; De Jager, C W; De Leo, R; Deur, A; D'Hose, N; Dodge, G E; Domingo, John J; Elouadrhiri, L; Epstein, M B; Ewell, L A; Finn, J M; Fissum, K G; Fonvieille, H; Fournier, G; Frois, B; Frullani, S; Furget, C; Gao, H; Gao, J; Garibaldi, F; Gasparian, A; Gilad, S; Gilman, R; Glamazdin, A; Glashausser, C; Gómez, J; Gorbenko, V; Grenier, P; Guichon, P A M; Hansen, J O; Holmes, R; Holtrop, M; Howell, C; Huber, G M; Hyde-Wright, C E; Incerti, S; Iodice, M; Jardillier, J; Jones, M K; Kahl, W; Kamalov, S; Kato, S; Katramatou, A T; Kelly, J J; Kerhoas, S; Ketikyan, A; Khayat, M; Kino, K; Kox, S; Kramer, L H; Kumar, K S; Kumbartzki, G; Kuss, M; Leone, A; Le Rose, J J; Liang, M; Lindgren, R A; Liyanage, N K; Lolos, G J; Lourie, R W; Madey, R; Maeda, K; Malov, S; Manley, D M; Marchand, C; Marchand, D; Margaziotis, D J; Markowitz, P; Marroncle, J; Martino, J; McCormick, K; McIntyre, J; Mehrabyan, S S; Merchez, F; Meziani, Z E; Michaels, R; Miller, G W; Mougey, J Y; Nanda, S K; Neyret, D; Offermann, E; Papandreou, Z; Perdrisat, C F; Perrino, R; Petratos, G G; Platchkov, S; Pomatsalyuk, R I; Prout, D L; Punjabi, V A; Pussieux, T; Quéméner, G; Ransome, R D; Ravel, O; Real, J S; Renard, F; Roblin, Y; Rowntree, D; Rutledge, G; Rutt, P M; Saha, A; Saitô, T; Sarty, A J; Serdarevic, A; Smith, T; Smirnov, G; Soldi, K; Sorokin, P; Souder, P A; Suleiman, R; Templon, J A; Terasawa, T; Tiator, L; Tieulent, R; Tomasi-Gustafsson, E; Tsubota, H; Ueno, H; Ulmer, P E; Urciuoli, G M; Van De Vyver, R; Van, R L J; der Meer; Vernin, P; Vlahovic, B; Voskanyan, H; Voutier, E; Watson, J W; Weinstein, L B; Wijesooriya, K; Wilson, R; Wojtsekhowski, B B; Zainea, D G; Zhang, W M; Zhao, J; Zhou, Z L

    2004-01-01T23:59:59.000Z

    We have made the first measurements of the e p -> e p gamma exclusive reaction at Q**2 = 1 GeV**2 in the nucleon resonance region by detecting scattered protons and electrons in coincidence in the two spectrometers of Jefferson Lab Hall A. Evaluated cross sections correspond to the backward electroproduction of real photons in the range of total (gamma* p) center-of-mass energy W from the proton mass up to W = 1.95 GeV.

  1. Mathematics 1052 Exam 2, May 3rd, 2014 Q1 Q2 Q3 Q4 Q5 Q6 Total Bonus

    E-Print Network [OSTI]

    Kaygun, Atabey

    Mathematics 1052 Exam 2, May 3rd, 2014 Q1 Q2 Q3 Q4 Q5 Q6 Total Bonus 15pts 20pts 10pts 15pts 30pts 10pts 100pts 10pts This exam has 6 questions and a bonus question, for a total of 100 + 10 bonus the integral. Bonus:(10pts) Decide if the following series is convergent or divergent. n=1 1 n· 1+(lnn)2 Page

  2. Measurement of high-Q2 neutral current deep inelastic e+p scattering cross sections with a longitudinally polarised positron beam at HERA

    E-Print Network [OSTI]

    ZEUS Collaboration; H. Abramowicz; I. Abt; L. Adamczyk; M. Adamus; R. Aggarwal; S. Antonelli; P. Antonioli; A. Antonov; M. Arneodo; O. Arslan; V. Aushev; Y. Aushev; O. Bachynska; A. Bamberger; A. N. Barakbaev; G. Barbagli; G. Bari; F. Barreiro; N. Bartosik; D. Bartsch; M. Basile; O. Behnke; J. Behr; U. Behrens; L. Bellagamba; A. Bertolin; S. Bhadra; M. Bindi; C. Blohm; V. Bokhonov; T. Bold; K. Bondarenko; E. G. Boos; K. Borras; D. Boscherini; D. Bot; I. Brock; E. Brownson; R. Brugnera; N. Brummer; A. Bruni; G. Bruni; B. Brzozowska; P. J. Bussey; B. Bylsma; A. Caldwell; M. Capua; R. Carlin; C. D. Catterall; S. Chekanov; J. Chwastowski; J. Ciborowski; R. Ciesielski; L. Cifarelli; F. Cindolo; A. Contin; A. M. Cooper-Sarkar; N. Coppola; M. Corradi; F. Corriveau; M. Costa; G. D'Agostini; F. Dal Corso; J. del Peso; R. K. Dementiev; S. De Pasquale; M. Derrick; R. C. E. Devenish; D. Dobur; B. A. Dolgoshein; G. Dolinska; A. T. Doyle; V. Drugakov; L. S. Durkin; S. Dusini; Y. Eisenberg; P. F. Ermolov; A. Eskreys; S. Fang; S. Fazio; J. Ferrando; M. I. Ferrero; J. Figiel; B. Foster; G. Gach; A. Galas; E. Gallo; A. Garfagnini; A. Geiser; I. Gialas; A. Gizhko; L. K. Gladilin; D. Gladkov; C. Glasman; O. Gogota; Yu. A. Golubkov; P. Gottlicher; I. Grabowska-Bold; J. Grebenyuk; I. Gregor; G. Grigorescu; G. Grzelak; O. Gueta; M. Guzik; C. Gwenlan; T. Haas; W. Hain; R. Hamatsu; J. C. Hart; H. Hartmann; G. Hartner; E. Hilger; D. Hochman; R. Hori; A. Huttmann; Z. A. Ibrahim; Y. Iga; R. Ingbir; M. Ishitsuka; H. -P. Jakob; F. Januschek; T. W. Jones; M. Jungst; I. Kadenko; B. Kahle; S. Kananov; T. Kanno; U. Karshon; F. Karstens; I. I. Katkov; M. Kaur; P. Kaur; A. Keramidas; L. A. Khein; J. Y. Kim; D. Kisielewska; S. Kitamura; R. Klanner; U. Klein; E. Koffeman; N. Kondrashova; O. Kononenko; P. Kooijman; Ie. Korol; I. A. Korzhavina; A. Kotanski; U. Kotz; H. Kowalski; O. Kuprash; M. Kuze; A. Lee; B. B. Levchenko; A. Levy; V. Libov; S. Limentani; T. Y. Ling; M. Lisovyi; E. Lobodzinska; W. Lohmann; B. Lohr; E. Lohrmann; K. R. Long; A. Longhin; D. Lontkovskyi; O. Yu. Lukina; J. Maeda; S. Magill; I. Makarenko; J. Malka; R. Mankel; A. Margotti; G. Marini; J. F. Martin; A. Mastroberardino; M. C. K. Mattingly; I. -A. Melzer-Pellmann; S. Mergelmeyer; S. Miglioranzi; F. Mohamad Idris; V. Monaco; A. Montanari; J. D. Morris; K. Mujkic; B. Musgrave; K. Nagano; T. Namsoo; R. Nania; A. Nigro; Y. Ning; T. Nobe; D. Notz; R. J. Nowak; A. E. Nuncio-Quiroz; B. Y. Oh; N. Okazaki; K. Olkiewicz; Yu. Onishchuk; K. Papageorgiu; A. Parenti; E. Paul; J. M. Pawlak; B. Pawlik; P. G. Pelfer; A. Pellegrino; W. Perlanski; H. Perrey; K. Piotrzkowski; P. Plucinski; N. S. Pokrovskiy; A. Polini; A. S. Proskuryakov; M. Przybycien; A. Raval; D. D. Reeder; B. Reisert; Z. Ren; J. Repond; Y. D. Ri; A. Robertson; P. Roloff; I. Rubinsky; M. Ruspa; R. Sacchi; U. Samson; G. Sartorelli; A. A. Savin; D. H. Saxon; M. Schioppa; S. Schlenstedt; P. Schleper; W. B. Schmidke; U. Schneekloth; V. Schonberg; T. Schorner-Sadenius; J. Schwartz; F. Sciulli; L. M. Shcheglova; R. Shehzadi; S. Shimizu; I. Singh; I. O. Skillicorn; W. Slominski; W. H. Smith; V. Sola; A. Solano; D. Son; V. Sosnovtsev; A. Spiridonov; H. Stadie; L. Stanco; N. Stefaniuk; A. Stern; T. P. Stewart; A. Stifutkin; P. Stopa; S. Suchkov; G. Susinno; L. Suszycki; J. Sztuk-Dambietz; D. Szuba; J. Szuba; A. D. Tapper; E. Tassi; J. Terron; T. Theedt; H. Tiecke; K. Tokushuku; J. Tomaszewska; V. Trusov; T. Tsurugai; M. Turcato; O. Turkot; T. Tymieniecka; M. Vazquez; A. Verbytskyi; O. Viazlo; N. N. Vlasov; R. Walczak; W. A. T. Wan Abdullah; J. J. Whitmore; K. Wichmann; L. Wiggers; M. Wing; M. Wlasenko; G. Wolf; H. Wolfe; K. Wrona; A. G. Yagues-Molina; S. Yamada; Y. Yamazaki; R. Yoshida; C. Youngman; O. Zabiegalov; A. F. . Zarnecki; L. Zawiejski; O. Zenaiev; W. Zeuner; B. O. Zhautykov; N. Zhmak; A. Zichichi; Z. Zolkapli; D. S. Zotkin

    2014-05-12T23:59:59.000Z

    Measurements of neutral current cross sections for deep inelastic scattering in e+p collisions at HERA with a longitudinally polarised positron beam are presented. The single-differential cross-sections d(sigma)/dQ2, d(sigma)/dx and d(sigma)/dy and the reduced cross-section were measured in the kinematic region Q2 > 185 GeV2 and y < 0.9, where Q2 is the four-momentum transfer squared, x the Bjorken scaling variable, and y the inelasticity of the interaction. The measurements were performed separately for positively and negatively polarised positron beams. The measurements are based on an integrated luminosity of 135.5 pb-1 collected with the ZEUS detector in 2006 and 2007 at a centre-of-mass energy of 318 GeV. The structure functions F3 and F3(gamma)Z were determined by combining the e+p results presented in this paper with previously published e-p neutral current results. The asymmetry parameter A+ is used to demonstrate the parity violation predicted in electroweak interactions. The measurements are well described by the predictions of the Standard Model.

  3. Backward electroproduction of pi0 mesons on protons in the region of nucleon resonances at four momentum transfer squared Q**2 = 1.0 GeV**2

    E-Print Network [OSTI]

    Laveissière, G; Jaminion, S; Jutier, C; Todor, L; Di Salvo, R; Van Hoorebeke, L; Alexa, L C; Anderson, B D; Aniol, K A; Arundell, K; Audit, G; Auerbach, L; Baker, F T; Baylac, M; Berthot, J; Bertin, P Y; Bertozzi, W; Bimbot, L; Böglin, W; Brash, E J; Breton, V; Breuer, H; Burtin, E; Calarco, J R; Cardman, L S; Cavata, C; Chang, C C; Chen, J P; Chudakov, E; Cisbani, E; Dale, D S; De Jager, C W; De Leo, R; Deur, A; D'Hose, N; Dodge, G E; Domingo, John J; Elouadrhiri, L; Epstein, M B; Ewell, L A; Finn, J M; Fissum, K G; Fonvieille, H; Fournier, G; Frois, B; Frullani, S; Furget, C; Gao, H; Gao, J; Garibaldi, F; Gasparian, A; Gilad, S; Gilman, R; Glamazdin, A; Glashausser, C; Gómez, J; Gorbenko, V; Grenier, P; Guichon, P A M; Hansen, J O; Holmes, R; Holtrop, M; Howell, C; Huber, G M; Hyde-Wright, C E; Incerti, S; Iodice, M; Jardillier, J; Jones, M K; Kahl, W; Kamalov, S; Kato, S; Katramatou, A T; Kelly, J J; Kerhoas, S; Ketikyan, A; Khayat, M; Kino, K; Kox, S; Kramer, L H; Kumar, K S; Kumbartzki, G; Kuss, M; Leone, A; Le Rose, J J; Liang, M; Lindgren, R A; Liyanage, N K; Lolos, G J; Lourie, R W; Madey, R; Maeda, K; Malov, S; Manley, D M; Marchand, C; Marchand, D; Margaziotis, D J; Markowitz, P; Marroncle, J; Martino, J; McCormick, K; McIntyre, J; Mehrabyan, S S; Merchez, F; Meziani, Z E; Michaels, R; Miller, G W; Mougey, J Y; Nanda, S K; Neyret, D; Offermann, E; Papandreou, Z; Perdrisat, C F; Perrino, R; Petratos, G G; Platchkov, S; Pomatsalyuk, R I; Prout, D L; Punjabi, V A; Pussieux, T; Quéméner, G; Ransome, R D; Ravel, O; Real, J S; Renard, F; Roblin, Y; Rowntree, D; Rutledge, G; Rutt, P M; Saha, A; Saitô, T; Sarty, A J; Serdarevic, A; Smith, T; Smirnov, G; Soldi, K; Sorokin, P; Souder, P A; Suleiman, R; Templon, J A; Terasawa, T; Tiator, L; Tieulent, R; Tomasi-Gustafsson, E; Tsubota, H; Ueno, H; Ulmer, P E; Urciuoli, G M; Van De Vyver, R; Van, R L J; der Meer; Vernin, P; Vlahovic, B; Voskanyan, H; Voutier, E; Watson, J W; Weinstein, L B; Wijesooriya, K; Wilson, R; Wojtsekhowski, B B; Zainea, D G; Zhang, W M; Zhao, J; Zhou, Z L

    2004-01-01T23:59:59.000Z

    Backward exclusive electroproduction of pi0 mesons on protons has been measured at Q**2 = 1.0 GeV**2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma* p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The azimuthally separated differential cross sections sigma_T + epsilon * sigma_L, sigma_TL, and sigma_TT from this experiment are presented together with the MAID2000 and SAID parametrizations.

  4. The dynamics of the quasielastic 16O(e,e'p) reaction at Q^2 = 0.8 (GeV/c)^2

    E-Print Network [OSTI]

    Fissum, K G; Anderson, B D; Aniol, K A; Auerbach, L; Baker, F T; Berthot, J; Bertozzi, W; Bertin, P Y; Bimbot, L; Böglin, W; Brash, E J; Breton, V; Breuer, H; Burtin, E; Calarco, J R; Cardman, S L; Cates, G D; Cavata, C; Chang, C C; Chen, J P; Cisbani, E; Dale, D S; De Jager, C W; De Leo, R; Deur, A; Diederich, B; Djawotho, P; Domingo, John J; Ducret, J E; Epstein, M B; Ewell, L A; Finn, J M; Fonvieille, H; Frois, B; Frullani, S; Gao, J; Garibaldi, F; Gasparian, A; Gilad, S; Gilman, R; Glamazdin, A; Glashausser, C; Gómez, J; Gorbenko, V; Gorringe, T P; Hersman, F W; Holmes, R; Holtrop, M; D'Hose, N; Howell, C; Huber, G M; Hyde-Wright, C E; Iodice, M; Jaminion, S; Jones, M K; Joo, K; Jutier, C; Kahl, W; Kato, S; Kelly, J J; Kerhoas, S; Khandaker, M; Khayat, M; Kino, K; Korsch, W; Kramer, L; Kumar, K S; Kumbartzki, G; Laveissière, G; Leone, A; Le Rose, J J; Levchuk, L G; Lindgren, R A; Liyanage, N K; Lolos, G J; Lourie, W R; Madey, R; Maeda, K; Malov, S; Manley, D M; Margaziotis, D J; Markowitz, P; Martino, J; McCarthy, J S; McCormick, K; McIntyre, J; Van der Meer, R L J; Meziani, Z E; Michaels, R; Mougey, J; Nanda, S; Neyret, D; Offermann, E; Papandreou, Z; Perdrisat, C F; Perrino, R; Petratos, G G; Platchkov, S; Pomatsalyuk, R I; Prout, D L; Punjabi, V A; Pussieux, T; Quéméner, G; Ransome, R D; Ravel, O; Roblin, Y; Roché, R; Rowntree, D; Rutledge, G A; Rutt, M p; Saha, A; Saitô, T; Sarty, A J; Serdarevic-Offermann, A; Smith, T P; Soldi, A; Sorokin, P; Souder, P A; Suleiman, R; Templon, J A; Terasawa, T; Todor, L; Tsubota, H; Ueno, H; Ulmer, E P; Urciuoli, G M; Vernin, P; van Verst, S; Vlahovic, B; Voskanyan, H; Watson, J W; Weinstein, B L; Wijesooriya, K; Wojtsekhowski, B B; Zainea, D G; Zeps, V; Zhao, J; Zhou, Z L; Vignote, J M; Udias, J R; Debruyne, J; Ryckebuschand, D

    2004-01-01T23:59:59.000Z

    The physics program in Hall A at Jefferson Lab commenced in the summer of 1997 with a detailed investigation of the 16O(e,e'p) reaction in quasielastic, constant (q,w) kinematics at Q^2 ~ 0.8 (GeV/c)^2, q ~ 1 GeV/c, and w ~ 445 MeV. Use of a self-calibrating, self-normalizing, thin-film waterfall target enabled a systematically rigorous measurement. Differential cross-section data for proton knockout were obtained for 0 < Emiss < 120 MeV and 0 < pmiss < 350 MeV/c. These results have been used to extract the ALT asymmetry and the RL, RT, RLT, and RL+TT effective response functions. Detailed comparisons of the data with Relativistic Distorted-Wave Impulse Approximation, Relativistic Optical-Model Eikonal Approximation, and Relativistic Multiple-Scattering Glauber Approximation calculations are made. The kinematic consistency of the 1p-shell normalization factors extracted from these data with respect to all available 16O(e,e'p) data is examined. The Q2-dependence of the normalization factors is also...

  5. Precise Determination of the Deuteron Spin Structure at Low to Moderate $Q^2$ with CLAS and Extraction of the Neutron Contribution

    E-Print Network [OSTI]

    N. Guler; R. G. Fersch; S. E. Kuhn; P. Bosted; K. A. Griffioen; C. Keith; R. Minehart; Y. Prok; K. P. Adhikari; D. Adikaram; M. J. Amaryan; M. D. Anderson; S. Anefalos Pereira; J. Ball; M. Battaglieri; V. Batourine; I. Bedlinskiy; W. J. Briscoe; W. K. Brooks; S. Bultmann; V. D. Burkert; D. S. Carman; A. Celentano; S. Chandavar; G. Charles; L. Colaneri; P. L. Cole; M. Contalbrigo; D. Crabb; V. Crede; A. D Angelo; N. Dashyan; A. Deur; C. Djalali; G. E. Dodge; R. Dupre; A. El Alaoui; L. El Fassi; L. Elouadrhiri; P. Eugenio; G. Fedotov; S. Fegan; A. Filippi; J. A. Fleming; T. A. Forest; B. Garillon; M. Garcon; N. Gevorgyan; G. P. Gilfoyle; K. L. Giovanetti; F. X. Girod; J. T. Goetz; E. Golovatch; R. W. Gothe; M. Guidal; L. Guo; K. Hafidi; H. Hakobyan; N. Harrison; M. Hattawy; K. Hicks; D. Ho; M. Holtrop; S. M. Hughes; C. E. Hyde; D. G. Ireland; B. S. Ishkhanov; E. L. Isupov; H. S. Jo; K. Joo; S. Joosten; D. Keller; M. Khandaker; A. Kim; W. Kim; A. Klein; F. J. Klein; V. Kubarovsky; S. V. Kuleshov; K. Livingston; H. Y. Lu; I. J. D. MacGregor; B. McKinnon; M. Mirazita; V. Mokeev; R. A. Montgomery; A Movsisyan; C. Munoz Camacho; P. Nadel-Turonski; L. A. Net; I. Niculescu; M. Osipenko; A. I. Ostrovidov; K. Park; E. Pasyuk; S. Pisano; O. Pogorelko; J. W. Price; S. Procureur; M. Ripani; A. Rizzo; G. Rosner; P. Rossi; P. Roy; F. Sabatie; C. Salgado; D. Schott; R. A. Schumacher; E. Seder; A. Simonyan; Iu. Skorodumina; D. Sokhan; N. Sparveris; I. I. Strakovsky; S. Strauch; V. Sytnik; Ye Tian; S. Tkachenko; M. Ungaro; E. Voutier; N. K. Walford; X. Wei; L. B. Weinstein; M. H. Wood; N. Zachariou; L. Zana; J. Zhang; Z. W. Zhao; I. Zonta

    2015-06-01T23:59:59.000Z

    We present the final results for the deuteron spin structure functions obtained from the full data set collected with Jefferson Lab's CLAS in 2000-2001. Polarized electrons with energies of 1.6, 2.5, 4.2 and 5.8 GeV were scattered from deuteron ($^{15}$ND$_3$) targets, dynamically polarized along the beam direction, and detected with CLAS. From the measured double spin asymmetry, the virtual photon absorption asymmetry $A_1^d$ and the polarized structure function $g_1^d$ were extracted over a wide kinematic range (0.05 GeV$^2 < Q^2 <$ 5 GeV$^2$ and 0.9 GeV $< W <$ 3 GeV). We use an unfolding procedure and a parametrization of the corresponding proton results to extract from these data the polarized structure functions $A_1^n$ and $g_1^n$ of the (bound) neutron, which are so far unknown in the resonance region, $W < 2$ GeV. We compare our final results, including several moments of the deuteron and neutron spin structure functions, with various theoretical models and expectations as well as parametrizations of the world data. The unprecedented precision and dense kinematic coverage of these data can aid in future extractions of polarized parton distributions, tests of perturbative QCD predictions for the quark polarization at large $x$, a better understanding of quark-hadron duality, and more precise values for higher-twist matrix elements in the framework of the Operator Product Expansion.

  6. FINAL-4TH-QUARTER-FY-2012-SCORECARD-04-10-13.xlsx

    Office of Environmental Management (EM)

    0) GREEN (1 1) N A N A N A Carlsbad Waste Isolation Pilot Plant (CBFO WIPP) GREEN N A (0 0) N A (0 0) N A N A SA Completed Energy Technology Engineering...

  7. NEET In-Pile Ultrasonic Sensor Enablement-FY 2012 Status Report

    SciTech Connect (OSTI)

    JE Daw; JL Rempe; BR Tittmann; B Reinhardt; P Ramuhalli; R Montgomery; HT Chien

    2012-09-01T23:59:59.000Z

    Several Department Of Energy-Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development, Advanced Reactor Concepts, Light Water Reactor Sustainability, and Next Generation Nuclear Plant programs, are investigating new fuels and materials for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials when irradiated. The Nuclear Energy Enabling Technology (NEET) Advanced Sensors and Instrumentation (ASI) in-pile instrumentation development activities are focused upon addressing cross-cutting needs for DOE-NE irradiation testing by providing higher fidelity, real-time data, with increased accuracy and resolution from smaller, compact sensors that are less intrusive. Ultrasonic technologies offer the potential to measure a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes, under harsh irradiation test conditions. There are two primary issues associated with in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. Due to the harsh nature of in-pile testing, and the range of measurements that are desired, an enhanced signal processing capability is needed to make in-pile ultrasonic sensors viable. This project addresses these technology deployment issues.

  8. Office of Legacy Management FY 2012 Consolidated Energy Data Report (CEDR)

    Broader source: Energy.gov [DOE]

    The Consolidated Energy Data Report (CEDR) consists of 27 worksheets that should be completed by each site, as applicable, and included as part each site's SSP in a MS Excel electronic format. The...

  9. Department of Energy Five Year Plans, FY2007-2011 and FY2008-FY2012

    Broader source: Energy.gov [DOE]

    The purpose of the EM Five Year Plans was to describe EM's planned strategies, funding and accomplishments over a five year span.

  10. FY 2012 INL SITE SUSTAINABILITY PLAN WITH THE FY 2011 ANNUAL REPORT

    SciTech Connect (OSTI)

    Ernest L. Fossum; Steve A. Birrer

    2012-01-01T23:59:59.000Z

    It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

  11. FY 2013 INL SITE SUSTAINABILITY PLAN WITH THE FY 2012 ANNUAL REPORT

    SciTech Connect (OSTI)

    Ernest L. Fossum; Steve A. Birrer

    2012-12-01T23:59:59.000Z

    It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

  12. NETL-RUA Annual Review FY2012 DOE/NETL-2012/1579 National Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and concerns regarding the potential effects of shale gas development on human health and the environment. To respond to these issues, the Shale Gas SGA team established...

  13. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY 2012

    SciTech Connect (OSTI)

    Julianne J. Miller, Steve A. Mizell, Greg McCurdy, and Scott A. Campbell

    2012-09-01T23:59:59.000Z

    The US Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Management’s Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 550, Smoky Contamination Area (CA), during precipitation runoff events. CAU 550 includes Corrective Action Sites (CASs) 08-23-03, 08-23-04, 08-23-06, and 08-23-07; these CASs are associated with tests designated Ceres, Smoky, Oberon, and Titania, respectively. Field measurements at the T-4 Atmospheric Test Site, CAU 370, suggest that radioactive material may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4 Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Although DRI initially looked at the CAU 370 site, given that it could not be confirmed that migration of contamination into the channel was natural, an alternate study site was selected at CAU 550. Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radioactivity may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). Figure 1 shows the results of a low-elevation aerial survey (Colton, 1999) in Area 8. The numbered markers in Figure 1 identify ground zero for three safety experiments conducted in 1958 [Oberon (number 1), Ceres (number 2), and Titania (number 4)] and a weapons effects test conducted in 1964, Mudpack (number 3). This survey suggests contaminants may be migrating down the ephemeral channels that traverse CAU 550. Note particularly the lobe of higher concentration extending southeastward at the south end of the high concentration area marked as number 3 in Figure 1. CAU 550 in Area 8 of the NNSS was selected for the study because the aerial survey indicates that a channel mapped on the United States Geological Survey topographic map of the area traverses the south end of the area of surface contamination; this channel lies south of the point marked number 3 in Figure 1, and anecdotal information indicates that sediment has been deposited on the road bordering the southeast boundary of the CAU from an adjacent channel (Traynor, J, personal communication, 2011). Because contamination is particularly close to the boundary of CAU 550, Smoky CA, it is important to know if contaminants are moving, what meteorological conditions result in movement of contaminated soils, and what particle size fractions associated with contamination are involved. Closure plans are being developed for the CAUs on the NNSS. The closure plans may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of contaminated soils under ambient climatic conditions will facilitate an appropriate closure design and post-closure monitoring program.

  14. Nondestructive Examination (NDE) Detection and Characterization of Degradation Precursors, Technical Progress Report for FY 2012

    SciTech Connect (OSTI)

    Ramuhalli, P.; Meyer, R.M.; Fricke, J.M.; Prowant, M.S.; Coble, J.B.; Griffin, J.W.; Pitman, S.G.; Dahl, M.E.; Kafentzis, T.A.; Roosendaal, T.J.

    2012-09-01T23:59:59.000Z

    The overall objective of this project was to investigate the effectiveness of nondestructive examination (NDE) technology in detecting material degradation precursors by initiating and growing cracks in selected materials and using NDE methods to measure crack precursors prior to the onset of cracking. Nuclear reactor components are subject to stresses over time that are not precisely known and that make the life expectancy of components difficult to determine. To prevent future issues with the operation of these plants because of unforeseen failure of components, NDE technology is needed that can be used to identify and quantify precursors to macroscopic degradation of materials. Some of the NDE methods being researched as possible solutions to the precursor detection problem are magnetic Barkhausen noise, nonlinear ultrasonics, acoustic emission, eddy current measurements, and guided wave technology. In FY12, the objective was to complete preliminary assessment of advanced NDE techniques for sensitivity to degradation precursors, using prototypical degradation mechanisms in laboratory-scale measurements. This present document reports on the deliverable that meets the following milestone: M3LW-12OR0402143 – Report detailing an initial demonstration on samples from the crack-initiation tests will be provided (demonstrating acceleration of the work).

  15. Online Monitoring Technical Basis and Analysis Framework for Large Power Transformers; Interim Report for FY 2012

    SciTech Connect (OSTI)

    Nancy J. Lybeck; Vivek Agarwal; Binh T. Pham; Heather D. Medema; Kirk Fitzgerald

    2012-09-01T23:59:59.000Z

    The Light Water Reactor Sustainability program at Idaho National Laboratory (INL) is actively conducting research to develop and demonstrate online monitoring (OLM) capabilities for active components in existing Nuclear Power Plants. A pilot project is currently underway to apply OLM to Generator Step-Up Transformers (GSUs) and Emergency Diesel Generators (EDGs). INL and the Electric Power Research Institute (EPRI) are working jointly to implement the pilot project. The EPRI Fleet-Wide Prognostic and Health Management (FW-PHM) Software Suite will be used to implement monitoring in conjunction with utility partners: the Shearon Harris Nuclear Generating Station (owned by Duke Energy for GSUs, and Braidwood Generating Station (owned by Exelon Corporation) for EDGs. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for GSUs. GSUs are main transformers that are directly connected to generators, stepping up the voltage from the generator output voltage to the highest transmission voltages for supplying electricity to the transmission grid. Technical experts from Shearon Harris are assisting INL and EPRI in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the FW-PHM Software Suite and tested using data from Shearon-Harris. Parallel research on EDGs is being conducted, and will be reported in an interim report during the first quarter of fiscal year 2013.

  16. Science/Fusion Energy Sciences FY 2012 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    . This is accomplished by studying plasma and its interactions with its surroundings across wide ranges of temperature and density, developing advanced diagnostics to make detailed measurements of its properties and dynamics and from plentiful supplies of lithium in the earth, whose resulting radioactivity is modest, and which

  17. Advanced Energy Storage Life and Health Prognostics (INL) FY 2012 Annual Progress Report

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2012-10-01T23:59:59.000Z

    The objective of this work is to develop methodologies that will accurately estimate state-of-health (SOH) and remaining useful life (RUL) of electrochemical energy storage devices using both offline and online (i.e., in-situ) techniques through: · A statistically robust offline battery calendar life estimator tool based on both testing and simulation, and · Novel onboard sensor technology for improved online battery diagnostics and prognostics.

  18. JIMAR ANNUAL REPORT FOR FY 2012 P.I. NAME: Inna SENINA

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    , and to validate it performing two case studies, with a focus on Pacific skipjack (Katsuwonus pelamis

  19. EM-40 Feedback on FY 2012 QA Declaration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune 20, 2013MeetingEM SSAB|ofofEM,

  20. FY2012 summary of tasks completed on PROTEUS-thermal work.

    SciTech Connect (OSTI)

    Lee, C.H.; Smith, M.A. (Nuclear Engineering Division)

    2012-06-06T23:59:59.000Z

    PROTEUS is a suite of the neutronics codes, both old and new, that can be used within the SHARP codes being developed under the NEAMS program. Discussion here is focused on updates and verification and validation activities of the SHARP neutronics code, DeCART, for application to thermal reactor analysis. As part of the development of SHARP tools, the different versions of the DeCART code created for PWR, BWR, and VHTR analysis were integrated. Verification and validation tests for the integrated version were started, and the generation of cross section libraries based on the subgroup method was revisited for the targeted reactor types. The DeCART code has been reorganized in preparation for an efficient integration of the different versions for PWR, BWR, and VHTR analysis. In DeCART, the old-fashioned common blocks and header files have been replaced by advanced memory structures. However, the changing of variable names was minimized in order to limit problems with the code integration. Since the remaining stability problems of DeCART were mostly caused by the CMFD methodology and modules, significant work was performed to determine whether they could be replaced by more stable methods and routines. The cross section library is a key element to obtain accurate solutions. Thus, the procedure for generating cross section libraries was revisited to provide libraries tailored for the targeted reactor types. To improve accuracy in the cross section library, an attempt was made to replace the CENTRM code by the MCNP Monte Carlo code as a tool obtaining reference resonance integrals. The use of the Monte Carlo code allows us to minimize problems or approximations that CENTRM introduces since the accuracy of the subgroup data is limited by that of the reference solutions. The use of MCNP requires an additional set of libraries without resonance cross sections so that reference calculations can be performed for a unit cell in which only one isotope of interest includes resonance cross sections, among the isotopes in the composition. The OECD MHTGR-350 benchmark core was simulated using DeCART as initial focus of the verification/validation efforts. Among the benchmark problems, Exercise 1 of Phase 1 is a steady-state benchmark case for the neutronics calculation for which block-wise cross sections were provided in 26 energy groups. This type of problem was designed for a homogenized geometry solver like DIF3D rather than the high-fidelity code DeCART. Instead of the homogenized block cross sections given in the benchmark, the VHTR-specific 238-group ENDF/B-VII.0 library of DeCART was directly used for preliminary calculations. Initial results showed that the multiplication factors of a fuel pin and a fuel block with or without a control rod hole were off by 6, -362, and -183 pcm Dk from comparable MCNP solutions, respectively. The 2-D and 3-D one-third core calculations were also conducted for the all-rods-out (ARO) and all-rods-in (ARI) configurations, producing reasonable results. Figure 1 illustrates the intermediate (1.5 eV - 17 keV) and thermal (below 1.5 eV) group flux distributions. As seen from VHTR cores with annular fuels, the intermediate group fluxes are relatively high in the fuel region, but the thermal group fluxes are higher in the inner and outer graphite reflector regions than in the fuel region. To support the current project, a new three-year I-NERI collaboration involving ANL and KAERI was started in November 2011, focused on performing in-depth verification and validation of high-fidelity multi-physics simulation codes for LWR and VHTR. The work scope includes generating improved cross section libraries for the targeted reactor types, developing benchmark models for verification and validation of the neutronics code with or without thermo-fluid feedback, and performing detailed comparisons of predicted reactor parameters against both Monte Carlo solutions and experimental measurements. The following list summarizes the work conducted so far for PROTEUS-Thermal Tasks: Unification of different versions of DeC

  1. FY 2012 Annual Progress Report for Energy Storage R&D | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentofofForeword he ReportsHawaii

  2. FY 2012 Annual Workforce Analysis and Staffing Plan Report - NNSA NSO

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentofofForeword he ReportsHawaiiNevada

  3. FY 2012 Budget Request to Congress (Volume 3) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartmentofofForeword heApril 10, 2013 FY

  4. Environmental Compliance Performance Scorecard ¬タモ First Quarter FY2012

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof EnergyPublicArticle Enterprise2-SCORECARD-05-09-12.xlsx

  5. Environmental Compliance Performance Scorecard ¬タモ Second Quarter FY2012

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof EnergyPublicArticle0-SCORECARD-12-29-10.xlsx

  6. FINAL-4TH-QUARTER-FY-2012-SCORECARD-04-10-13.xlsx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of Energy

  7. Combined Fiscal Year (FY) 2011 Annual Performance Results and FY 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 BuildingEnergy Efficiency andAnnual Performance

  8. Combined Fiscal Year (FY) 2012 Annual Performance Results and FYs 2013 and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 BuildingEnergy Efficiency andAnnual Performance2014 Annual

  9. Office of Electricity Delivery & Energy Reliability FY 2012 Budget Request

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of OrderSUBCOMMITTEE of theOctoberNuclear

  10. Statement on the FY 2012 President's Budget Request before the House

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,Enriched UraniumPhysical|Subcommittee on Strategic

  11. Annual Performance Report FY 2012, Annual Performance Plan FY 2013 & FY

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of the Americas |AnchorageAnnaof Office of2014

  12. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4.April19. AverageForecast ChangeThe VBA12

  13. FY 2012 Annual Progress Report for Energy Storage R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1 Annual135

  14. FY 2012 Annual Progress Report for Energy Storage R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1 Annual1352

  15. FY 2012 Annual Progress Report for Energy Storage R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1

  16. FY 2012 Annual Progress Report for Energy Storage R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1Duong - DOE V.A

  17. FY 2012 Annual Progress Report for Energy Storage R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1Duong - DOE V.AA

  18. FY 2012 Annual Progress Report for Energy Storage R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1Duong - DOE

  19. FY 2012 Annual Progress Report for Energy Storage R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1Duong -

  20. FY 2012 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. RecyclingEnergy 1Duong

  1. FY 2012 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexasManager6-OPAMGuidingScienceStatisticalNational

  2. FY 2012 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721

  3. FY 2012 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf More Documents & Publications FY 2011

  4. FY 2012 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf More Documents & Publications FY

  5. FY 2012 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf More Documents & Publications FYEnergy

  6. FY 2012 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf More Documents & Publications

  7. FY 2012 Annual Progress Report for Energy Storage R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf More Documents & PublicationsEnergy

  8. Sustainable NREL Biennial Report, FY 2012 - 2013 (Management Report), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposed Action Title: Sustainable EnvironmentSustainable

  9. Opening Statement by NNSA Administrator D'Agostino FY2012 Budget Hearing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and Evaluation |quasicrystals65Open OpenMPTestimony

  10. U.S. Department of Energy Office of Inspector General Annual Performance Report FY 2012

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success| DepartmentEnergyFeed Families"

  11. FY 2012 SC Laboratory Performance Report Cards | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederalFY 2008 FOIA -MetricsBudget »2 LDRDFY

  12. DOE Requests $3.2 Billion for Renewable Energy, Efficiency in FY 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and PolicyCybersecurity Threats |AND

  13. Department of Energy Issues FY 2012 Request for Pre-Applications from U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 ThisFinalResearchAnnouncements toU.S. Universities

  14. FY 2012 B&W Technical Services Pantex, LLC, PER Summary | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia Corporation PERSecurity Administration

  15. FY 2012 Babcock and Wilcox Technical Services, Y-12, LLC, PER Summary |

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia Corporation PERSecurity

  16. FY 2012 Los Alamos National Security, LLC, PER Summary | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia Corporation PERSecurityNational

  17. FOI Requests Received by RL and ORP in FY 2012 - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecularGE,Ozone LayerFES1.TopFMM09112

  18. Microsoft Word - FY 2012 FOIA REQUESTS RECEIVED BY RL AND ORP.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project0 FOIA Request Number Date Received12

  19. Measurement of the Charge Form Factor of the Neutron $G^{E}_{n}$ from ${\\vec{d}(\\vec{e},e'n)p}$ at $Q^{2}=0.5$ and $1.0 (GeV/c)^{2}$

    E-Print Network [OSTI]

    N. Savvinov

    2002-10-26T23:59:59.000Z

    We determined the electric form factor of the neutron $G_E^n$ via the reaction ${\\vec{d}(\\vec{e},e'n)p}$ using a longitudinally polarized electron beam and a frozen, polarized $^{15}ND_3$ target at Jefferson Lab. The knocked out neutrons were detected in a segmented plastic scintillator in coincidence with the quasi-elastically scattered electrons which were tracked in Hall C's High Momentum Spectrometer. To extract $G_E^n$, we compared the experimental beam--target asymmetry with theoretical calculations based on different $G_E^n$ models. We report the preliminary results of the fall 2001 run at $Q^{2}=0.5$ and $1.0 (GeV/c)^{2}$.

  20. A Measurement of the Electric Form Factor of the Neutron through $\\vec{d}(\\vec{e},e'n)p$ at $Q^2 = 0.5$ (GeV/c)$^2$

    E-Print Network [OSTI]

    E93026 Collaboration; H. Zhu

    2001-05-03T23:59:59.000Z

    We report the first measurement of the neutron electric form factor $G_E^n$ via $\\vec{d}(\\vec{e},e'n)p$ using a solid polarized target. $G_E^n$ was determined from the beam-target asymmetry in the scattering of longitudinally polarized electrons from polarized deuterated ammonia, $^{15}$ND$_3$. The measurement was performed in Hall C at Thomas Jefferson National Accelerator Facility (TJNAF) in quasi free kinematics with the target polarization perpendicular to the momentum transfer. The electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle segmented detector. We find $G_E^n = 0.04632\\pm0.00616 (stat.) \\pm0.00341 (syst.)$ at $Q^2 = 0.495$ (GeV/c)$^2$.

  1. Microchannel Receiver Development- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this OSU project, funded by SunShot, for the second quarter of fiscal year 2013.

  2. fu-q(2)-99.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., December 8,JohnResolving7 A Study ofWater

  3. Bone status in high levels cyclists J Clin Densitom. 2012 Jan-Mar;15(1):103-7. Evaluation of the Bone Status in High-Level Cyclists

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    health Organization has defined osteoporosis in post-menopausal women as a T-score value less than -2) defines a "low bone density". In post-menopausal women as well as in elderly in general, results are more

  4. Cinc. Tecnol. Aliment., Campinas, 28(1): 12-17, jan.-mar. 200812 ISSN 0101-2061 Cincia e Tecnologia de Alimentos

    E-Print Network [OSTI]

    Ferreira, Márcia M. C.

    Tecnologia de Alimentos Recebido para publicação em 7/2/2006 Aceito para publicação em 18/12/2007 (001671) 1 Centro de Química de Alimentos e Nutrição Aplicada, Instituto de Tecnologia de Alimento ­ ITAL, CP 139

  5. Cerne, Lavras, v. 18, n. 1, p. 105-116, jan./mar. 2012 105Structural characterization of canopies ...STRUCTURAL CHARACTERIZATION OF CANOPIES OF Eucalyptus spp. USING

    E-Print Network [OSTI]

    Hammerton, James

    on which date data were acquired. Results indicated a significant difference between models based, reflectância de dosséis. CARACTERIZA��O ESTRUTURAL DE DOSS�IS DE Eucalyptus spp. MEDIANTE DADOS RADIOM�TRICOS estabelecimento de conexões lógicas entre variáveis radiométricas provenientes de dados remotamente coletados e

  6. 1st Qtr 2nd Qtr 3rd Qtr 4th Qtr Jan -Mar Apr -June July -Sept Oct -Dec Totals

    E-Print Network [OSTI]

    de Lijser, Peter

    Vehicles 2 7 14 3 26 Vehicle Tampering 3 5 1 8 17 Burglary from Vehicle 7 9 20 13 49 Bikes Stolen 5 7 14 6 Forgery 1 3 3 0 7 Identity Theft 0 1 1 1 3 Burglary from Bldg 18 8 5 4 35 Vandalisms 16 30 15 27 88 Total Drug Related 43 21 36 33 133 DUI Arrests 57 55 53 22 187 Thefts 14 1 5 3 23 Identity Theft 0 2 0 0 2

  7. Information Technology at Purdue (ITaP) Infrastructure FY2010 FY2011 FY2012 FY2013 Research FY2009-10 FY2010-11 FY2011-12 FY2012-13

    E-Print Network [OSTI]

    ,727 220,013 165,163 High Performance Computing (HPC) 3 2012-13 HPC Utilization Community Cluster Non HIGH PERFORMANCE COMPUTING USAGE FY2013 Electrical & Computer Engineering 17.2% Mechanical Engineering performance computing resources form the Indiana Distributed Terascale Facility, which has ten Gbps

  8. TEN-YEAR CAPITAL PROGRAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FY 2013 Customer booklet (PDF) Final 10-YCP FY 2012 Customer booklet (PDF) FY 2012 presentation Customer Comments on Second Parallel Mead Transformer Mead Transformer Letter...

  9. H:\\Vee\\DeptAnnualReport\\Annual Report Roadmap for FY 2012 & We Wills -Final.doc st 30, 2012)

    E-Print Network [OSTI]

    Weber, David J.

    meeting its FY12 inder in contracts. -service rates, we through full cost service contracts. We expect and Maryla Department's budget included $16.9 million for clinical service contracts, $12.7 million from UMMC

  10. SAVING MONEY & TIME (EFFICIENCY) UTILITY COST AVOIDANCE: From FY 2001 through FY2012, the UW Seattle campus has avoided

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    : SmartGrid ­ Electrical meters are installed in all Seattle campus buildings and metering data is now with the College of Engineering, Battelle, Bonneville Power Administration, McKinstry and Seattle City Light. http

  11. Low-Intrusion Techniques and Sensitive Information Management for Warhead Counting and Verification: FY2012 Annual Report

    SciTech Connect (OSTI)

    Jarman, Kenneth D.; McDonald, Benjamin S.; Robinson, Sean M.; Gilbert, Andrew J.; White, Timothy A.; Pitts, W. Karl; Misner, Alex C.; Seifert, Allen

    2012-11-01T23:59:59.000Z

    Progress in the second year of this project is described by the series of technical reports and manuscripts that make up the content of this report. These documents summarize successes in our goals to develop our robust image-hash templating and material-discrimination techniques and apply them to test image data.

  12. CERTIFICATION REGARDING A FELONY CONVICTION UNDER ANY FEDERAL LAW OR AN UNPAID FEDERAL TAX LIABILITY (FOR FY'S 2012

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6 (2-91)A2015 PeerUnitedThe

  13. Performance Audit of the Department of Energys Improper Payment Reporting in the FY2012 Agency Financial Report

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA Administrative Judgea. Part B 1 Part

  14. SITE-LEVEL SUMMARY of FINAL-3RD-QUARTER-FY-2012-SCORECARD-01-24-13

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmental Assignment |SHEPHERDS FLAT SHEPHERDS3Q)

  15. Office of Energy Efficiency and Renewable Energy Overview Appropriation Summary by Program for FY 2012 Congressional Budget

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctober 2014 National IdlingRollout - EnergyAprildollars

  16. NETL-RUA Annual Review FY2012 DOE/NETL-2012/1579 National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate1, Issue 23 NETL Scientist WinsDOE/NETLNETL-RUA

  17. High-Performance Nanostructured Coating- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this UCSD project, funded by SunShot, for the second quarter of fiscal year 2013.

  18. NBB Enclosed Particle Receiver- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this NREL project, funded by SunShot, for the second quarter of fiscal year 2013.

  19. 10-Megawatt Supercritical Carbon Dioxide Turbine- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this National Renewable Energy Laboratory project, funded by SunShot, for the second quarter of fiscal year 2013.

  20. Hydrogen Tank Project Q2 Report - FY 11

    SciTech Connect (OSTI)

    Johnson, Kenneth I.; Alvine, Kyle J.; Skorski, Daniel C.; Nguyen, Ba Nghiep; Kafentzis, Tyler A.; Dahl, Michael E.; Pitman, Stan G.

    2011-05-15T23:59:59.000Z

    Quarterly report that represents PNNL's results of HDPE, LDPE, and industrial polymer materials testing. ASTM D638 type 3 samples were subjected to a high pressure hydrogen environment between 3000 and 4000 PSI. These samples were tested using an instron load frame and were analyzed using a proprietary set of excel macros to determine trends in data. The development of an in-situ high pressure hydrogen tensile testing apparatus is discussed as is the stress modeling of the carbon fiber tank exterior.

  1. Flexible Assembly Solar Technology- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this BrightSource project, funded by SunShot, for the first quarter of fiscal year 2013.

  2. Domestic Coal Distribution 2009 Q2 by Destination State: Alabama

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127by Local(Dollars per61 Domestic

  3. Domestic Coal Distribution 2009 Q2 by Origin State: Alabama

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127by Local(Dollars per61

  4. Microsoft Word - nofear as of Q2 2015 (2).docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625Data ShowC - PatentJuly 2004BPA For 2nd

  5. Q2 Q3 Q4 Q4 Q3 Q2 Q1 Q1 Q2 Q3 Q4 Q3 Q2 Q1 Q1 Q2 Q3 Q4 Q4 Q3 Q2 Q1

    E-Print Network [OSTI]

    installations totaled 723 MW in Q1 2013, up 33% over Q1 2012 Cumulative operating PV capacity in the U.S. now.00/W Concentrating Solar Power (CSP and CPV) 6 MWac of concentrating solar capacity was installed; cumulative operating CSP and CPV capacity in the U.S. now stands at 552 MWac 2013 will see the most CSP

  6. Cinc. Tecnol. Aliment., Campinas, 25(1): 25-31, jan.-mar. 2005 25 Determinao de protena em caf cru por espectroscopia NIR e regresso PLS, Morgano et al.

    E-Print Network [OSTI]

    Ferreira, Márcia M. C.

    grande número de metodologias analíticas desenvolvi- das com base em espectros no infravermelho, demons- putação. Os equipamentos modernos podem gerar mais de 1000 dados para uma amostra em menos de 30 se- gundos [17]. Diferentes softwares têm sido desenvolvi- dos para tratar os dados da NIRS (NSAS, ISI, IDAS

  7. Site Sustainability Plan FY 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency

    E-Print Network [OSTI]

    of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy ...............................................................................................................33 DATA CENTERS AND ELECTRONIC STEWARDSHIP..............................................................................................................................1 ENERGY

  8. Michoud Assembly Facility (MAF) Agency Introduction: The FY 2012 budget request for NASA is $18.7 billion, the FY 2010 enacted

    E-Print Network [OSTI]

    2.2 million square feet of climate controlled manufacturing space; over 43 acres under a single roof for commercial tenants include Blade Dynamics wind turbine blades, Lockheed Martin Thermal Protection Products is a significant asset for the state of Louisiana and the region. A 2008 economic impact study generated

  9. Development of a Chemistry-Based, Predictive Method for Determining the Amount of Non-Pertechnetate Technetium in the Hanford Tanks: FY 2012 Progress Report

    SciTech Connect (OSTI)

    Rapko, Brian M.; Bryan, Samuel A.; Bryant, Janet L.; Chatterjee, Sayandev; Edwards, Matthew K.; Houchin, Joy Y.; Janik, Tadeusz J.; Levitskaia, Tatiana G.; Peterson, James M.; Peterson, Reid A.; Sinkov, Sergey I.; Smith, Frances N.; Wittman, Richard S.

    2013-01-30T23:59:59.000Z

    This report describes investigations directed toward understanding the extent of the presence of highly alkaline soluble, non-pertechnetate technetium (n-Tc) in the Hanford Tank supernatants. The goals of this report are to: a) present a review of the available literature relevant to the speciation of technetium in the Hanford tank supernatants, b) attempt to establish a chemically logical correlation between available Hanford tank measurements and the presence of supernatant soluble n-Tc, c) use existing measurement data to estimate the amount of n-Tc in the Hanford tank supernatants, and d) report on any likely, process-friendly methods to eventually sequester soluble n-Tc from Hanford tank supernatants.

  10. The FY 2012 Budget totals $18.7 billion. It funds: All major elements of the NASA Authorization Act of 2010.

    E-Print Network [OSTI]

    ­ Educate. Uses NASA content to inspire learners/teachers. ­ Build. Invests in American industry and lessens;2012 Highlights Sends robotic missions to explore the solar system, supports space-based observatories assumptions are notional. Funding for Federal Employees. The budget assumes consolidation of labor funding

  11. NREL Economic Contribution of Operations and Capital Investments on the Region, the State of Colorado, and the Nation FY 2012-2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | National Nuclear 1 NATIONAL RENEWABLE ENERGY

  12. ANNUAL REPORT FY2012 S A N D I A N A T I O N A L L A B O R A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OF CONTRACT 1 OTATI OEP AEGraphic of09 I N D U S12

  13. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on Assets Major Accomplishments for FY2011 Update on Approved Pre-Payment Projects Construction Projects Scheduled for FY2012 Voting Process Proposed FY2012 Pre-Payment Projects 2...

  14. ANNUAL ACCOMPLISHMENT PLAN UPDATE FOR DISABLED VETERANS

    National Nuclear Security Administration (NNSA)

    more disabled comprise 4.7%. *Data current as of September 22, 2012 FY 2012 NNSA DVAAP Report 5 Organizational Structure FY 2012 NNSA DVAAP Report 6 o Agency Mission Overview The...

  15. ESPC Project Performance: 2012 Supplemental Data

    Broader source: Energy.gov [DOE]

    Excel spreadsheet provides supplemental data to the Reported Energy and Cost Savings from the DOE ESPC Program: FY 2012 document.

  16. NASA Advisory Council Space Operations Committee May 2011

    E-Print Network [OSTI]

    Waliser, Duane E.

    2012 FY 2013 FY 2014 Notional FY 2015 FY 2016 FY 2012 President's Budget Request 6,141.8 5,497.5 4 / Discovery · · Briefings: · SOMD FY2012 Budget 21st Century Launch Complex Status Update Commercial Crew Committee May 2011 SOMD FY2012 Budget ­ Program Plan Budget Authority ($M) FY 2010 Actual * FY 2011 CR FY

  17. SBIR/STTR ALERTING SERVICE --October 28, 2011 The SBIR/STTR Alerting Service is a free service that provides bi-weekly notification of SBIR and STTR

    E-Print Network [OSTI]

    . NEWS IN THIS ISSUE -- NSF FY-2012 SBIR and STTR Program Solicitations Open -- DOC NIST FY-2012 SBIR/STTR NEWS AND INFORMATION -- NSF FY-2012 SBIR and STTR Program Solicitations Open The National Science, Information and Communication Technologies (EI); Nanotechnology, Advanced Materials, and Manufacturing (NM

  18. Q2S Graduate Conversions (rev. 4-13-10) 1 Q2S Conversions for the Graduate Catalog and Graduate Programs

    E-Print Network [OSTI]

    Botte, Gerardine G.

    subsidy requirements. This is reflected on the Degree Audit Report (DARS) as Grad Mass hours. Master

  19. DESY-08-202 Measurement of high-Q 2 neutral current

    E-Print Network [OSTI]

    , Italy e D. Bartsch, I. Brock, H. Hartmann, E. Hilger, H.-P. Jakob, M. Jungst, A.E. Nuncio-Quiroz, E

  20. Low-Cost Self-Cleaning Reflector Coatings for CSP Collectors- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this ORNL project, funded by SunShot, for the second quarter of fiscal year 2013.

  1. High-Temperature Solar Selective Coating Development for Power Tower Receivers- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this SNL project, funded by SunShot, for the second quarter of fiscal year 2013.

  2. Self-Cleaning CSP Optics with EDS- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Boston University project, funded by SunShot, for the second quarter of fiscal year 2013.

  3. DESY 97179 ISSN 04189833 Low Q 2 Jet Production at HERA

    E-Print Network [OSTI]

    .K. Kotelnikov 26 , T. Kr¨amerk¨amper 8 , M.W. Krasny 6;30 , H. Krehbiel 11 , D. Kr¨ucker 27 , A. K¨upper 35 , H

  4. Advanced Low-Cost Receivers for Parabolic Troughs- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Norwich Technologies project, funded by SunShot, for the second quarter of fiscal year 2013.

  5. High-Temperature Falling-Particle Receiver- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Sandia National Laboratories project, funded by SunShot, for the second quarter of fiscal year 2013.

  6. High-Efficiency Thermal Energy Storage System for CSP- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Argonne National Laboratory project, funded by SunShot, for the second quarter of fiscal year 2013.

  7. Low-Cost Metal Hydride Thermal Energy Storage System- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this SRNL project, funded by SunShot, for the second quarter of fiscal year 2013.

  8. Moriond QCD, March 18-25 Proton structure at High Q 2 from HERA

    E-Print Network [OSTI]

    Domain explored at HERA Proton probed down to 10 18 m H1 and ZEUS Detectors: NC: both scattered electrons=E(syst) : 8 > : 1 3% LAr em 2 4% LAr had ZEUS Uranium-Scintillator Calorimeter(UCAL): UCAL: 6000 cells #27

  9. Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this General Atomics project, funded by SunShot, for the second quarter of fiscal year 2013.

  10. Direct s-CO2 Receiver Development- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this NREL project, funded by SunShot, for the second quarter of fiscal year 2013.

  11. Absolute cross sections for electron-impact single ionization (q = 2,4-6) ions

    E-Print Network [OSTI]

    , the product NeI £ ¤QP¨RS¤ ions are separated from the primary Ne£ ¤ ion beam by a double-focusing magnet

  12. High Operating Temperature Liquid Metal Heat Transfer Fluids- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this UCLA project, funded by SunShot, for the second quarter of fiscal year 2013.

  13. Flavor decomposition of the nucleon electromagnetic form factors at low $Q^2$

    E-Print Network [OSTI]

    Qattan, I A; Alsaad, A

    2015-01-01T23:59:59.000Z

    The spatial distribution of charge and magnetization within the proton is encoded in the elastic form factors. These have been precisely measured in elastic electron scattering, and the combination of proton and neutron form factors allows for the separation of the up- and down-quark contributions. In this work, we extract the proton and neutron form factors from world's data with an emphasis on precise new data covering the low-momentum region, which is sensitive to the large-scale structure of the nucleon. From these, we separate the up- and down-quark contributions to the proton form factors. We combine cross section and polarization measurements of elastic electron-proton scattering to separate the proton form factors and two-photon exchange (TPE) contributions. We combine the proton form factors with parameterization of the neutron form factor data and uncertainties to separate the up- and down-quark contributions to the proton's charge and magnetic form factors. The extracted TPE corrections are compare...

  14. Exclusive pi^0 electroproduction in the resonance region at high Q^2

    SciTech Connect (OSTI)

    M. Ungaro, K. Joo

    2012-04-01T23:59:59.000Z

    We present preliminary results from {pi}{sup 0} electroproduction data taken with CLAS at Jefferson Lab. These and other CLAS measurements, coupled with recent theoretical developments, will allow non-perturbative approaches to shed lights on the role of quarks and gluons in nuclei and address issues such as confinement and the non-zero quark mass in the chiral limit.

  15. Next-Generation Thermionic Solar Energy Conversion- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Stanford/SLAC project, funded by SunShot, for the second quarter of fiscal year 2013.

  16. Quark-Hadron Duality and Q 2 evolution of the GDH integral

    E-Print Network [OSTI]

    DUALITY = RELATION BETWEEN DIS AND RESONANCE REGIONS Bloom & Gilman, PRL 25 (1970) 1140; PR D4 (1971) 290 t #6; res A res (s; t) #25; #6; jR A jR (s; t) Dolen, Horn & Schmid, PRL 19 (1967) 402; PR 166 (1968, including both resonant and non resonant contributions to cross section Harari, PRL 20 (1968) 1395

  17. http://www.eh.doe.gov/nepa/process/ll/95q2.htm

    Broader source: Energy.gov (indexed) [DOE]

    Program, LANL, Los Alamos, New Mexico 3 Remedial Action at the Slick Rock Uranium Mill Tailings Sites, Slick Rock, Colorado 4 Remedial Action, Uranium Mill Tailings...

  18. High-Temperature Thermal Array for Next Generation Solar Thermal Power Production- FY12 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this LANL project, funded by SunShot, for the second quarter of fiscal year 2013.

  19. Next-Generation Solar Collectors for CSP- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this 3M project, funded by SunShot, for the second quarter of fiscal year 2013.

  20. Dish/Stirling High-Performance Thermal Storage- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this SNL project, funded by SunShot, for the second quarter of fiscal year 2013.

  1. Inclusive Electron Scattering From Nuclei at x >1 and High Q^2

    SciTech Connect (OSTI)

    John Arrington

    1998-06-02T23:59:59.000Z

    CEBAF experiment e89-008 measured inclusive electron scattering from nuclei in a Q{sup 2} range between 0.8 and 7.3 (GeV/c){sup 2} for x{sub Bjorken} approximately greater than 1. The cross sections for scattering from D C, Fe, and Au were measured. The C, Fe, and Au data have been analyzed in terms of F(y) to examine y-scaling of the quasielastic scattering, and to study the momentum distribution of the nucleons in the nucleus. The data have also been analyzed in terms of the structure function vW{sub 2} to examine scaling of the inelastic scattering in x and xi and to study the momentum distribution of the quarks. In the regions where quasielastic scattering dominates the cross section (low Q{sup 2} or large negative values of y), the data are shown to exhibit y-scaling. However, the y-scaling breaks down once the inelastic contributions become large. The data do not exhibit x-scaling, except at the lowest values of x, while the structure function does appear to scale in the Nachtmann variable, xi.

  2. SRS Employee Headcount by County of Residence Q2, FY 15

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR E Q U E N C Y T E CAIKEN,

  3. Low-Cost, Lightweight Solar Concentrators FY13 Q2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment ofCumminsMaterial |Cost,Cost,

  4. Integrated Solar Thermochemical Reaction System - FY13 Q2 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry Research U.S. Department of EnergyEnergy

  5. ANNUAL REPORT FY2012 S A N D I A N A T I O N A L L A B O R A T O R I E S

    E-Print Network [OSTI]

    Energy with the Future Smart Grid 14 Parker Hannifin Corporation New Water Analyzer Improves Public) in Oklahoma City. Sandia is planning to conduct tests with CAMI to investigate the impact of glare on pilots

  6. annual technical meeting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Resources Research Institute Annual Technical Report FY 2012 New Jersey Water 322 Kansas Water Resources Research Institute Annual Technical Report Geosciences Websites...

  7. annual meeting technical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Resources Research Institute Annual Technical Report FY 2012 New Jersey Water 322 Kansas Water Resources Research Institute Annual Technical Report Geosciences Websites...

  8. annual international technical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Resources Research Institute Annual Technical Report FY 2012 New Jersey Water 286 Kansas Water Resources Research Institute Annual Technical Report Geosciences Websites...

  9. Federal Greenhouse Gas Inventories and Performance | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Agency Progress Toward Reduction Targets Fiscal Year (FY) 2012 Greenhouse Gas Inventory: Government Totals FY 2011 Greenhouse Gas Inventory: Government Totals FY 2010...

  10. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    * PEV infrastructure requirements and impacts are not yet understood * Development of codes and standards for products and testing is required Budget FY 2012 project funding...

  11. Materials for Advanced Turbocharger Design

    Broader source: Energy.gov (indexed) [DOE]

    for the U.S. Department of Energy Presentationname Milestones * FY2012 - complete neutron-scattering residual-stress measurements on wheelshaft assemblies (Dec, 2011,...

  12. Before the Subcommittee on Energy - House Committee on Science...

    Broader source: Energy.gov (indexed) [DOE]

    Public Works Office of Energy Efficiency and Renewable Energy Overview Appropriation Summary by Program for FY 2012 Congressional Budget Electrolytic Hydrogen Production Workshop...

  13. FY 2014 Budget Request for the Office of Electricity Delivery and Energy Reliability

    Broader source: Energy.gov [DOE]

    Table showing the FY 2012 Current Appropriation, the FY 2013 Annualized Continuing Resolution, and the FY 2014 Congressional Request for the Office of Electricity Delivery and Energy Reliability.

  14. Reported Energy and Cost Savings From the ESPC Program (2012...

    Broader source: Energy.gov (indexed) [DOE]

    36 REPORTED ENERGY AND COST SAVINGS FROM THE DOE ESPC PROGRAM: FY 2012 December 2012 Prepared by John A. Shonder, Bob Slattery DOCUMENT AVAILABILITY Reports produced after January...

  15. President Requests $842.1 Million for Fossil Energy Programs...

    Energy Savers [EERE]

    commercial storage. In FY 2012, NEHHOR converted to a 1 million barrel configuration of Ultra Low Sulfur Diesel (ULSD) stored in the Northeast terminals, to meet new Northeast...

  16. Department of Commerce National Institute of Standards and

    E-Print Network [OSTI]

    ................................................................................................................................................. 4 TECHNOLOGY INNOVATION PROGRAM-2014 ...................................................................................... 7 TECHNOLOGY INNOVATION PROGRAM and Technology Three-Year Programmatic Plan FY 2012 ­ FY 2014 #12;NIST Three

  17. Implementation of Executive Order 13514, Federal Leadership in...

    Broader source: Energy.gov (indexed) [DOE]

    goal.pdf More Documents & Publications OVERVIEW OF EXECUTIVE ORDER 13XXX Federal Leadership in Environmental, Energy and Economic Performance FY 2012 Highlighted Sustainable...

  18. Progress of DOE Materials, Manufacturing Process R&D, and ARRA...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report FY 2012 Annual Progress Report for Energy Storage R&D...

  19. Presentation to the EAC - Microgrids and DoD Facilities - Jeffrey...

    Broader source: Energy.gov (indexed) [DOE]

    FY 2012 : 6 new demonstration projects Lead Organizations: Eaton, GE, Satcon, Raytheon, LBNL, Honeywell - 29 palms, Ft. Bliss, Ft. Detrick, Ft. Irwin, MCAS Miramar, LA AFB,...

  20. framework for memorandum of understanding for direct service...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTRACT FOR THE FY 2012 THROUGH FY 2028 PERIOD I. BACKGROUND Alcoa is an aluminum-smelter direct service industrial (DSI) customer of Bonneville Power Administration (BPA) and...

  1. Investigation of critical parameters in Li-ion battery electrodes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Negative Electrodes: Novel and Optimized Materials Novel and Optimized Materials Phases for High Energy Density Batteries FY 2012 Annual Progress Report for Energy Storage R&D...

  2. Budget

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) budget request for fiscal year (FY) 2012 has been submitted for Congressional approval. The FY 2011 budget passed as an omnibus bill.

  3. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. A Mathematical Model for Interplanetary Logistics

    E-Print Network [OSTI]

    de Weck, Olivier L.

    permission. A Mathematical Model for Interplanetary Logistics Christine Taylor; Miao Song; Diego Klabjan; Olivier de Weck; David Simchi-Levi Logistics Spectrum; Jan-Mar 2007; 41, 1; Military Module pg. 23 #12

  4. Con: Should Evidence-Based Medicine Be Used More In Clinical Practice?

    E-Print Network [OSTI]

    Maxim, Preston

    2006-01-01T23:59:59.000Z

    Journal of Emergency Medicine VII:1, Jan-Mar, 2006 Page 19Journal of Emergency Medicine 2. Thomas SH et al. Effects ofJournal of Emergency Medicine 1997;15:775-779. 4. Vernculen

  5. Pro: Should Evidence-Based Medicine Be Used More in Clinical Practice?

    E-Print Network [OSTI]

    Fee, Chris

    2006-01-01T23:59:59.000Z

    Editorial). Annals of Emergency Medicine 2005;46:198-200. 3.Journal of Emergency Medicine VII:1, Jan-Mar, 2006 PagePro: Should Evidence-Based Medicine Be Used More in Clinical

  6. West Virginia Water Research Institute Annual Technical Report

    E-Print Network [OSTI]

    West Virginia Water Research Institute Annual Technical Report FY 2012 West Virginia Water Research Institute Annual Technical Report FY 2012 1 #12;Introduction West Virginia Water Research Institute The West. Introduction Water is one of West Virginia's most precious resources. It is essential for life and our economic

  7. June 16, 2011 Issue No. 32 OREGON STATE UNIVERSITY

    E-Print Network [OSTI]

    Escher, Christine

    research and development. For further details, the subcommittee draft bill text is available here the House considerers the FY 2012 Agriculture Appropriations spending bill. The Senate is considering economic development legislation. Budget and Appropriations FY 2012 Appropriations The House is beginning

  8. SCIENCE: JAMES WEBB SPACE TELESCOPE (JWST) Budget Authority Actual Estimate

    E-Print Network [OSTI]

    ) Prior FY 2011 FY 2012 FY 2013 FY 2014 FY 2015 FY 2016 FY 2017 BTC Total FY 2013 President's Budget TELESCOPE (JWST) Formulation Development Operations JWST-2 FY 2013 BUDGET Budget Authority Actual Estimate (in $ millions) Prior FY 2011 FY 2012 2013 FY 2014 FY 2015 FY 2016 FY 2017 BTC Total FY 2013 President

  9. Colorado Water Institute Annual Technical Report

    E-Print Network [OSTI]

    Colorado Water Institute Annual Technical Report FY 2012 Colorado Water Institute Annual Technical Report FY 2012 1 #12;Introduction Colorado Water Institute Annual Report for the period: March 1, 2012 ­ February 28, 2013 Water research is more pertinent than ever in Colorado. Whether the project explores

  10. Virginia Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    Virginia Water Resources Research Center Annual Technical Report FY 2012 Virginia Water Resources Research Center Annual Technical Report FY 2012 1 #12;Introduction The Virginia Water Resources Research-135.7:8). Mission The VWRRC promotes research on practical solutions to water resources problems; provides research

  11. Iowa Water Center Annual Technical Report

    E-Print Network [OSTI]

    Iowa Water Center Annual Technical Report FY 2012 Iowa Water Center Annual Technical Report FY 2012 1 #12;Introduction The Iowa Water Center is a multi-campus and multi-organizational center focusing-institutional water research that can improve Iowa's water quality and provide adequate water supplies to meet both

  12. Tennessee Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    to face severe water shortage problems. All across the state many private, domestic, and commercial useTennessee Water Resources Research Center Annual Technical Report FY 2012 Tennessee Water Resources Research Center Annual Technical Report FY 2012 1 #12;Introduction Introduction Water Resources Issues

  13. Oklahoma Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Oklahoma Water Resources Research Institute Annual Technical Report FY 2012 Oklahoma Water Resources Research Institute Annual Technical Report FY 2012 1 #12;Introduction During 2012 the Oklahoma Sciences and Natural Resources at Oklahoma State University (OSU). Together with the Water Research

  14. A high-Q^2 measurement of the photon structure function F_2^gamma at LEP2

    E-Print Network [OSTI]

    R. J. Taylor

    2000-10-05T23:59:59.000Z

    The photon structure function F_2^gamma has been measured at of 706 GeV^2, using a sample of two-photon events with a scattered electron observed in the OPAL electromagnetic endcap calorimeter. The data were taken during the years 1997-1999, when LEP operated at e+e- centre-of-mass energies ranging from 183 to 202 GeV, and correspond to an integrated luminosity of 424 pb^-1. This analysis represents the highest measurement of F_2^gamma made to date.

  15. A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this SDSU project, funded by SunShot, for the second quarter of fiscal year 2013.

  16. RPS Status Report Q1 & Q2 2012 Page 2 I. ABOUT THE RPS AND THIS REPORT

    E-Print Network [OSTI]

    -scale renewable energy development in California, there are other programs that stimulate development of customer- side renewable generation. The California Solar Initiative (CSI) and Self-Generation Incentive Program (SGIP) provide incentives for customers to install renewable distributed generation technologies

  17. The magazine of The University of North Carolina at Charlotte for Alumni and Friends v21 q2 2014 TRAILBLAZERS

    E-Print Network [OSTI]

    Howitt, Ivan

    . Finally, as part of the Board of Governors budget request for the state to invest in new "game, to remind legislators of our critical role in ensuring the prosperity of the region. Cordially, Philip L

  18. Fundamental Corrosion Studies in High-Temperature Molten Salt Systems for Next-Generation CSP Systems- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this SRNL project, funded by SunShot, for the second quarter of fiscal year 2013.

  19. Q2S E C O N D Q U A R T E R IMPACT REPORT

    E-Print Network [OSTI]

    Hashimoto Dean, CTAHR #12;C T A H R I M P A C T 2 0 1 0 S Aquaponics: Harvesting Food, Creating Synergy to ancient times and are familiar to most people.When combined,the two systems form aquaponics.S.agriculture. Central to CTAHR's aquaponics outreach effort is aquaculture specialist Clyde Tamaru,who is always

  20. Experimental study of exclusive $^2$H$(e,e^\\prime p)n$ reaction mechanisms at high $Q^2$

    SciTech Connect (OSTI)

    Kim Egiyan; Gegham Asryan; Nerses Gevorgyan; Keith Griffioen; Jean Laget; Sebastian Kuhn; Gary Adams; Moscov Amaryan; Pawel Ambrozewicz; Marco Anghinolfi; Gerard Audit; Harutyun AVAKIAN; Harutyun Avakian; Hovhannes Baghdasaryan; Nathan Baillie; Jacques Ball; Nathan Baltzell; Steve Barrow; Vitaly Baturin; Marco Battaglieri; Ivan Bedlinski; Ivan Bedlinskiy; Mehmet Bektasoglu; Matthew Bellis; Nawal Benmouna; Barry Berman; Angela Biselli; Lukasz Blaszczyk; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Antoine Cazes; Shifeng Chen; Philip Cole; Patrick Collins; Philip Coltharp; Dieter Cords; Pietro Corvisiero; Donald Crabb; Volker Crede; John Cummings; Natalya Dashyan; Rita De Masi; Raffaella De Vita; Enzo De Sanctis; Pavel Degtiarenko; Haluk Denizli; Lawrence Dennis; Alexandre Deur; Kahanawita Dharmawardane; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; Michael Dugger; Steven Dytman; Oleksandr Dzyubak; Hovanes Egiyan; Lamiaa Elfassi; Latifa Elouadrhiri; Paul Eugenio; Renee Fatemi; Gleb Fedotov; Gerald Feldman; Robert Feuerbach; Robert Fersch; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; John Goetz; Atilla Gonenc; Christopher Gordon; Ralf Gothe; Michel Guidal; Matthieu Guillo; Hayko Guler; Lei Guo; Vardan Gyurjyan; Cynthia Hadjidakis; Kawtar Hafidi; Hayk Hakobyan; Rafael Hakobyan; Charles Hanretty; John Hardie; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Eugeny Isupov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; James Kellie; Mahbubul Khandaker; Wooyoung Kim; Andreas Klein; Franz Klein; Alexei Klimenko; Mikhail Kossov; Zebulun Krahn; Laird Kramer; V. Kubarovsky; Joachim Kuhn; Sergey Kuleshov; Jeff Lachniet; Jorn Langheinrich; David Lawrence; Ji Li; Kenneth Livingston; Haiyun Lu; Marion MacCormick; Claude Marchand; Nikolai Markov; Paul Mattione; Simeon McAleer; Bryan McKinnon; John McNabb; Bernhard Mecking; Surik Mehrabyan; Joseph Melone; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; Maryam Moteabbed; James Mueller; Edwin Munevar Espitia; Gordon Mutchler; Pawel Nadel-Turonski; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Grant O'Rielly; Mikhail Osipenko; Alexander Ostrovidov; Kijun Park; Evgueni Pasyuk; Craig Paterson; Sergio Pereira; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; Sergey Pozdnyakov; Barry Preedom; John Price; Yelena Prok; Dan Protopopescu; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; Franck Sabatie; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Youri Sharabian; Nikolay Shvedunov; Alexander Skabelin; Elton Smith; Lee Smith; Daniel Sober; Daria Sokhan; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; Steffen Strauch; Mauro Taiuti; David Tedeschi; Ulrike Thoma; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Daniel Watts; Lawrence Weinstein; Dennis Weygand; M. Williams; Elliott Wolin; Michael Wood; Amrit Yegneswaran; Lorenzo Zana; Jixie Zhang; Bo Zhao; Zhiwen Zhao

    2007-06-01T23:59:59.000Z

    The reaction {sup 2}H(e,e{prime} p)n has been studied with full kinematic coverage for photon virtuality 1.75 < 5.5 {approx} GeV{sup 2}. Comparisons of experimental data with theory indicate that for very low values of neutron recoil momentum (p{sub n} < 100 MeV/c) the neutron is primarily a spectator and the reaction can be described by the plane-wave impulse approximation. For 100 < 750 MeV/c proton-neutron rescattering dominates the cross section, while {Delta} production followed by the N{Delta} {yields} NN transition is the primary contribution at higher momenta.

  1. Measurement of the Neutron electric form factor at Q2=0.8 2(GeV\\\\c)

    SciTech Connect (OSTI)

    Derek Glazier

    2007-09-30T23:59:59.000Z

    Nucleon form factors allow a sensitive test for models of the nucleon. Recent experiments utilising polarisation observables have resulted, for the first time, in a model-independent determination of the neutron electric form factor GnE. This method employed an 80% longitudinally polarised, high intensity (10 uA) electon beam (883 MeV) that was quasi-elastically scattered off a liquid deuterium target in the reaction D (e, en)p. A neutron polarimeter was designed and installed to measure the ratio of transverse-to-longitudinal polarisation using neutron scattering asymmetries. This ratio allowed a determination of the neutron elastic form factor, GnE, free of the previous large systematic uncertainties associated with the deuterium wave function. The experiment took place in the A1 experimental hall at MAMI taking advantage of a high resolution magnetic spectrometer. A detailed investigation was carried out into the performance of the neutron polarimeter.

  2. Juraj Bracink, Hadron Structure, Modra, September 2007 Physics with eP collisions at highest Q2

    E-Print Network [OSTI]

    ) Solenoidal magnet Muon system Depleted uranium calorimeter #12;Juraj Braciník, Hadron Structure, Modra

  3. The compact Q=2 Abelian Higgs model in the London limit: vortex-monopole chains and the photon propagator

    E-Print Network [OSTI]

    M. N. Chernodub; R. Feldmann; E. -M. Ilgenfritz; A. Schiller

    2005-02-17T23:59:59.000Z

    The confining and topological properties of the compact Abelian Higgs model with doubly-charged Higgs field in three space-time dimensions are studied. We consider the London limit of the model. We show that the monopoles are forming chain-like structures (kept together by ANO vortices) the presence of which is essential for getting simultaneously permanent confinement of singly-charged particles and breaking of the string spanned between doubly-charged particles. In the confinement phase the chains are forming percolating clusters while in the deconfinement (Higgs) phase the chains are of finite size. The described picture is in close analogy with the synthesis of the Abelian monopole and the center vortex pictures in confining non--Abelian gauge models. The screening properties of the vacuum are studied by means of the photon propagator in the Landau gauge.

  4. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: Energy.gov (indexed) [DOE]

    Division FY2012 to FY2017 Bruce Brown Mike McMillian Houston, TX South Louisiana EORSequestration R&D Project Conduct R&D on CO2 sequestration into a beachbarrier...

  5. A Continuous Solar Thermochemical Hydrogen Production Plant Design

    E-Print Network [OSTI]

    Luc, Wesley Wai

    Overview of Hydrogen and Fuel Cell Research." Energy, v.34,Quantum Boost,” DOE Hydrogen and Fuel Cells Program: FY 2012Analysis. ” DOE Hydrogen and Fuel Cells Program, Web. 22

  6. Rates and Repayment Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tariff Rates FY 2015 Rates and Rate Schedules **Effective October 1, 2014** FY 2014 Rates and Rate Schedules FY 2013 Rates and Rate Schedules FY 2012 Rates and Rate Schedules FY...

  7. 2012-2013 Budget Update and ARRA Closeout Presentation by Joann...

    Office of Environmental Management (EM)

    Life-Cycle Cost" (185B - 218B as of the FY 2012 Request) www.em.doe.gov 2 Special nuclear material consolidation, processing, and disposition High priority groundwater...

  8. Fiscal Year Justification of

    E-Print Network [OSTI]

    effects due to toluene diisocyanate (TDI), a substance known to be the largest contributor and document the impact of ATSDR's efforts on the health of people exposed to toxic substances. This FY 2012

  9. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator FY 2012 Annual Progress Report for Energy Storage R&D...

  10. First Principles Calculations and NMR Spectroscopy of Cathode...

    Broader source: Energy.gov (indexed) [DOE]

    grey.pdf More Documents & Publications FY 2011 Annual Progress Report for Energy Storage R&D FY 2012 Annual Progress Report for Energy Storage R&D Overview of the Batteries for...

  11. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    Fuel Cell Technologies Publication and Product Library (EERE)

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell T

  12. NNSA Provides More Than $290 Million in Small Business Contract...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Provides More Than ... NNSA Provides More Than 290 Million in Small Business Contract Obligations in FY 2012 Posted: December 18, 2012 - 11:45am In recognition of its commitment...

  13. Puerto Rico Water Resources & Environmetal Research Institute

    E-Print Network [OSTI]

    Puerto Rico Water Resources & Environmetal Research Institute Annual Technical Report FY 2012 Puerto Rico Water Resources & Environmetal Research Institute Annual Technical Report FY 20121 #12;Introduction The Puerto Rico Water Resources and Environmental Research Institute (PRWRERI) is located

  14. Picosecond to Nanosecond Measurements at High Repetition Rate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FY2012, SSRL is now scheduling three to four three-day periods each year dedicated to running SPEAR3 in hybrid low-alpha operation. In this mode the SPEAR3 ring has 1-4 camshaft...

  15. NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form

    Broader source: Energy.gov (indexed) [DOE]

    Western Research Institute FE DE-FC26-08NT43293; Task 20-S1 SCC Gasification FY2011 - FY2012 Andrew P. Jones 12110 - 10312011 Laramie, Wyoming Novel Sorbents for Emission...

  16. Net Requirements Transparency Process for Slice/Block and Block...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 As part of its Net Requirements Transparency process, on July 31, 2013 BPA published the SliceBlock and Block customers' FY2012 and forecast FY2014 Total Retail Load (TRL) and...

  17. Synthesis and Characterization of Structured Si-Carbon Nanocomposite...

    Broader source: Energy.gov (indexed) [DOE]

    FY 2011: 205K * FY 2012: 205K Partners * Jason Zhang and Jun Liu (PNNL), and Gao Liu (LBNL) * Johnson Control and PA Nanomaterials Commercialization Center. * In discussion with...

  18. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    FY2011 FY2012 Fee Information Minimum Fee Maximum Fee September 2014 Contract Number: Cost Plus Incentive Fee Contractor: 3,260,603,765 Contract Period: EM Contractor Fee Site:...

  19. Planning Amid Abundance: Alaska’s FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01T23:59:59.000Z

    2011) “The Outlier State: Alaska’s FY 2012 Budget,” AnnualWestern States Budget Review. New York Times, selectedAbundance: Alaska’s FY 2013 Budget Process Abstract: This

  20. Vehicle Technologies Office: 2008 Energy Storage R&D Annual Progress...

    Broader source: Energy.gov (indexed) [DOE]

    energystorage.pdf More Documents & Publications FY 2012 Annual Progress Report for Energy Storage R&D Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress Report...

  1. EXPLORATION Actual Estimate

    E-Print Network [OSTI]

    FY 2015 FY 2016 FY 2017 FY 2013 President's Budget Request 3,821.2 3,712.8 3,932.8 4,076.5 4,076.5 4 Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY 2014 FY 2015 FY 2016 FY 2017 FY 2013EXPLORATION EXP-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY 2014

  2. IT TalkJanuary -March 2014 Volume 4 Issue 1 National Aeronautics and Space Administration

    E-Print Network [OSTI]

    Waliser, Duane E.

    .nasa.gov Get Cyber-Bullying Under Control #12;IT Talk Jan - Mar 2014 Volume 4 · Issue 1 Office of the CIO NASA and external audiences. For distribution questions or to suggest a story idea, email: eldora.valentine-1@nasa will save money and improve productivity. Here are my top 10 2014 New Year's resolutions. 1. IT Security

  3. Virtual Compton scattering and the generalized polarizabilities of the proton at Q2=0.92 and 1.76 GeV2

    E-Print Network [OSTI]

    Bertozzi, William

    Virtual Compton scattering (VCS) on the proton has been studied at the Jefferson Laboratory using the exclusive photon electroproduction reaction ep?ep?. This paper gives a detailed account of the analysis which has led ...

  4. Measurements of the generalized electric and magnetic polarizabilities of the proton at low Q2 using the virtual Compton scattering reaction

    E-Print Network [OSTI]

    Bourgeois, P.

    Experimental details of a virtual Compton scattering (VCS) experiment performed on the proton at the MIT-Bates out-of-plane scattering facility are presented. The VCS response functions P[scubscript LL]?P[scubscript ...

  5. Structure of the Nucleotide Radical Formed during Reaction of CDP/TTP with the E441Q-?2?2 of E. coli Ribonucleotide Reductase

    E-Print Network [OSTI]

    Zipse, Hendrik

    The Escherichia coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleotides and requires a diferric-tyrosyl radical cofactor for catalysis. RNR is composed of a 1:1 complex ...

  6. Measurement of cross sections of p(e,e'pi^+)n for near pion threshold and high-lying resonances at high Q^2

    SciTech Connect (OSTI)

    Kijun Park

    2012-04-01T23:59:59.000Z

    During the last decade, remarkable experimental data have been collected in an extensive programs to study the excitation of nucleon resonance (N*) at Jefferson Laboratory through pion electroproduction using polarized electron beam and unpolarized proton target. The CEBAF Large Acceptance Spectrometer (CLAS) is well suited for the study of a broad range of kinematics in the invariant mass W and photon virtuality Q{sup 2} with nearly complete angular coverage for the hadronic decays. Electron scattering allows us to probe the effective degrees of freedom in excited nucleon states from meson-baryon to dressed quarks in terms of varying the distance scale. The study of nucleon structure allows us to understand these effective degrees of freedom. In this proceeding, I present preliminary cross sections for single pion production in mass range of high-lying resonances as well as near the pion threshold. Analysis of N{pi}{sup +} cross sections together with N{pi}{sup 0} and N {pi}{pi} exclusive electroproduction data, will allow us for the first time to determine electrocouplings of several high-lying excited proton states (W {ge} 1.6 GeV) at photon virtualities that correspond to the transition toward the dominance of quark degrees of freedom. I also present preliminary result on the E{sub 0+} multipole near pion threshold at 2.0 GeV{sup 2} {le} Q{sup 2} {le} 4.5 GeV{sup 2} using exclusive N{pi}{sup +} electroproduction data.

  7. Measurement of the Deuteron Spin Structure Function $g_{1}^{d(x)}$ for $1(GeV/c)^{2} < Q^{2} < 40 (GeV/c)^{2}$

    E-Print Network [OSTI]

    Anthony, P L; Averett, T; Band, H R; Berisso, M C; Borel, H; Bosted, P E; Bultmann, S L; Buénerd, M; Chupp, T E; Churchwell, S; Court, G R; Crabb, D; Day, D; Decowski, P; De Pietro, P; Erbacher, R; Erickson, R; Feltham, A; Fonvieille, H; Frlez, E; Gearhart, R A; Ghazikhanian, V; Gómez, J; Griffioen, K A; Harris, C; Houlden, M A; Hughes, E W; Hyde-Wright, C E; Igo, G; Incerti, S; Jensen, J; Johnson, J R; King, P M; Kolomensky, Yu G; Kuhn, S E; Lindgren, R; Lombard-Nelsen, R M; Marroncle, J; McCarthy, J; McKee, P; Meyer, Werner T; Mitchell, G; Mitchell, J; Olson, M; Penttila, S; Peterson, G; Petratos, G G; Pitthan, R; Pocanic, D; Prepost, R; Prescott, C; Qin, L M; Raue, B A; Reyna, D; Rochester, L S; Rock, S E; Rondon-Aramayo, O A; Sabatie, F; Sick, I; Smith, T; Sorrell, L; Staley, F; Lorant, S St; Stuart, L M; Szalata, Z M; Terrien, Y; Tobias, A; Todor, L; Toole, T; Trentalange, S; Walz, D; Welsh, R C; Wesselmann, F R; Wright, T R; Young, C C; Zeier, M; Zhu, H; Zihlmann, B

    1999-01-01T23:59:59.000Z

    New measurements are reported on the deuteron spin structure function g_1^d. These results were obtained from deep inelastic scattering of 48.3 GeV electrons on polarized deuterons in the kinematic range 0.01 deuteride (6Li2H) as the target material. Extrapolations of the data were performed to obtain moments of g_1^d, including Gamma_1^d, and the net quark polarization Delta Sigma.

  8. Measurement of the Deuteron Spin Structure Function g_1^d(x) for 1 (GeV/c)^2 < Q^2 < 40 (GeV/c)^2

    E-Print Network [OSTI]

    E155 Collaboration

    1999-04-02T23:59:59.000Z

    New measurements are reported on the deuteron spin structure function g_1^d. These results were obtained from deep inelastic scattering of 48.3 GeV electrons on polarized deuterons in the kinematic range 0.01 deuteride (6Li2H) as the target material. Extrapolations of the data were performed to obtain moments of g_1^d, including Gamma_1^d, and the net quark polarization Delta Sigma.

  9. Quiz # 7, STAT 383, Prof. Suman Sanyal, April 8, 2009 (Q2, Page 354) To decide whether the pipe welds in a nuclear power plant meet

    E-Print Network [OSTI]

    Sanyal, Suman

    welds in a nuclear power plant meet specifications, a random sample of welds is to be selected : µ nuclear power plants is to determine if welds

  10. Measured Lifetimes of Selected Metastable Levels of Arq+ Ions (Q=2, 3, 9, and 10) Stored in an Electrostatic Ion-Trap

    E-Print Network [OSTI]

    Yang, L. S.; Church, David A.; Tu, S. G.; Jin, J.

    1994-01-01T23:59:59.000Z

    in square brack- ets denote powers of 10. Ar + 3s 3p transition CK [28] Transition rates (s ') BH [32] H [33] MZ [34] 4S3/2 2P I /2 2 2D3/2 P1/2 2 2Ds/2- Pin Ml E2 M1 E2 M1 E2 0.972 1.19[?4] 0.488 0.190 0.122 0.954 3.346[ ?4] 0.462 0... in square brack- ets denote powers of 10. Ar + 2s 2p' transition Transition rates (s ') E, C-MZ [35] C, KD [36] KS [28] 2 2P3/2- Pi/2 Lifetime Pl/2 (ms) M1 M1+E2 E2 1.05[2] 9.52 1.044(2) 2.062[ ?3] 9.58 1.06[2] 9 43 Expt. lifetime 8...

  11. Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature Heat Transfer Fluids- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this University of Arizona project, funded by SunShot, for the second quarter of fiscal year 2013.

  12. Search for an exotic S = -2, Q = -2 baryon resonance at a mass near 1862 MeV in quasi-real photoproduction

    E-Print Network [OSTI]

    -real photoproduction A. Airapetian,18 N. Akopov,30 Z. Akopov,30 M. Amarian,8, 30 A. Andrus,16 E.C. Aschenauer,8 W

  13. Study of the ¹²C(e,e'p) reaction in a correlations dominant regime with Q² = 2.0 (GeV/c)² and XB? > 1

    E-Print Network [OSTI]

    Monaghan, Peter (Peter Andrew)

    2008-01-01T23:59:59.000Z

    This experiment was motivated by studying short-range nucleon-nucleon correlations via multinucleon knockout reactions -- (e, e'pN). The data were taken in Hall A at Jefferson Lab using the pair of high resolution spectrometers ...

  14. gftID l8SCvctixXEPvr15k2yQ2uGuvSdEFB5nju9wRXBT year timestamp

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History ViewZAPZinccell Home Dc'sgftID

  15. ACBEDGF1DIH P Q2R§STDVU@DVW RYX1`bacSedVagf ShFiSpaqSTr1H£s)t

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See the EnergyTAMANG, APIL. A Multilevel Method3

  16. VOLUME 82, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 15 FEBRUARY 1999 Measurements of the Deuteron Elastic Structure Function A Q2 for 0.7 l Q2 l 6.0 GeV c 2

    E-Print Network [OSTI]

    Maryland at College Park, University of

    . Ravel,1 Y. Roblin,1 D. Rowntree,18 G. Rutledge,34 P. M. Rutt,26 A. Saha,31 T. Saito,32 A. J. Sarty,5 A

  17. Primary feather molt of juvenile mourning doves in Texas

    E-Print Network [OSTI]

    Morrow, Michael Eugene

    1983-01-01T23:59:59.000Z

    . $ of total birds showing delay is given in parentheses. Study Jan-Mar K (%) Capture periods ~Ar-Jun ~Ju - e c-ec X (%) X (%) X (N) Swank (1952, 1955a) 16. 9(58) 9. 5(67) 13. 2(43) 7. 1(68) Max. Ave b 15. 5(29) 16. 7(33) 6. 6(35) 3. 4(55) a...

  18. Office of Facilities and Grounds Future Power Distribution Grid Requirements for

    E-Print Network [OSTI]

    Electrical Cost Trends FY 2011 vs. FY 2012 UHM Office of Facilities and Grounds 7 $484 FTE Increase 31 Campus Renewal and Deferred Maintenance program. · Industry experience confirms that 75% of all energy Research Intensive Campus · Hawaii's High Cost Electricity ­ In the past 12-months rates have increased

  19. Integrated Program Review Fish and Wildlife Program

    E-Print Network [OSTI]

    Integrated Program Review (IPR) Fish and Wildlife Program Costs May 20, 2010 Presented to Northwest Total Annual Average Cost of BPA Fish & Wildlife Actions1/ 226 5 24 41 8 310 137 750 1/ FY 2012 White Sturgeon. These actions may include such things as dredging, restoration of channel complexity

  20. New York State Water Resources Institute Annual Technical Report

    E-Print Network [OSTI]

    partners is undertaken in order to: 1) Build and maintain a broad, active network of water resources, and the public. Introduction 1 #12;Research Program Introduction The NYS WRI's FY2012 competitive grants research program was conducted in partnership with the NYS Department of Environmental Conservation (DEC) Hudson

  1. Modification No. M436 Supplemental agreement to

    E-Print Network [OSTI]

    Johnson, Peter D.

    .S. Department of Energy And Brookhaven Science Associates, LLC ATTACHMENT J.8 APPENDIX H FY12 ­ SMALL BUSINESS10886 Modification No. M436 #12;1 FY2012 SMALL BUSINESS SUBCONTRACTING PLAN 22 December 2011 (except that indirect costs incurred for common or joint purposes may be allocated on a prorated basis

  2. In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel)

    E-Print Network [OSTI]

    Harms, Kyle E.

    In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel) FY 2012 - 2013 July 1, 2012 - June 30, 2013 Enterprise must be used for all in-state vehicle rentals. Corporate Discount # Website Reservations Phone # Base Rental Charges Rental Location Surcharges Vehicle

  3. SPACE TECHNOLOGY Actual Estimate

    E-Print Network [OSTI]

    SPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY.7 247.0 Exploration Technology Development 144.6 189.9 202.0 215.5 215.7 214.5 216.5 Notional SPACE TECHNOLOGY OVERVIEW .............................. TECH- 2 SBIR AND STTR

  4. Title_Design Editor National Aeronautics and Space Administration

    E-Print Network [OSTI]

    Waliser, Duane E.

    Authority ($ millions) Actuals Enacted FY 2011 FY 2012 FY 2013 FY 2014 FY 2015 FY 2011 President's Budget presence throughout the solar system · The President's FY2011 Budget Request takes a new approach billion commitment to the agency 5 #12;Title_Design Editor Exploration FY 2011 Budget Request Budget

  5. NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Bryan Pivovar (PI)

    E-Print Network [OSTI]

    . Budget ($K) FY 2009 1564 FY 2010 590 FY 2011 2177 FY 2012 2015 FY 2013 2033 Project Timeline (Table Renewable Energy Laboratory Innovation for Our Energy Future Timeline/Budget Overview Start: July 2009 End: September 2013 % complete: 2% Timeline Budget DOE Cost Share Recipient Cost Share TOTAL $8,384,342 $867

  6. Compiled by OPBA. These assumptions are for modeling purposes only. They are subject to change. Page 1 of 3

    E-Print Network [OSTI]

    Vonessen, Nikolaus

    - Initial Fiscal Year 2014/2015 Updated May 21, 2013 High Risk Benefit Rates Going Into FY14 4 Paid in FY2013 for FY2015 See the OPBA website for the preliminary FY14 Administrative Assessment calculations: http://www.umt.edu/plan/Budget/default.aspx FY15 Headcount Assessment Paid in FY2012 for FY2014 8

  7. Management and Performance PERFORMANCE REPORTING AND PLANNING

    E-Print Network [OSTI]

    Waliser, Duane E.

    2015 Performance Plan, starting with the currently reported year of FY 2013 and spanning backward from FY 2008 to FY 2012, go to http://www.nasa.gov/about/budget/PAR_Reports.html. The combined report 2014 and/or FY 2015. The performance goal summary is followed by: · The annual performance indicators

  8. January 28, 2013, Regents' Meeting Agenda PRESENTATION LEADER

    E-Print Network [OSTI]

    Mathis, Wayne N.

    and Programs Committee o DISCUSSION: Strategic Plan Extension (FY 2015-FY 2017) o INFORMATION: Patent Executive Session: FY 2012 Staff Performance Reviews Dr. Córdova Seriously Amazing: Biodiversity and Review Mr. Horvath Report of the Finance Committee o INFORMATION: Federal Budget Outlook Mr. Rubenstein

  9. USWRP funded the enabling infrastructure of HWT during FY13-14 as well as contributed to the development of a new decision support tool for severe weather warnings. HWT tests and evaluates new experimental products in

    E-Print Network [OSTI]

    on human, surface transportation and aviation. The Fiscal Year (FY) 2015 President's Budget Request budget is $4.1M, the FY 2013 actual budget was $3.9M and the FY 2012 actual budget was $4.2M. USWUSWRP funded the enabling infrastructure of HWT during FY13-14 as well as contributed

  10. National Aeronautics and Space Administration NASA Diversity and Inclusion

    E-Print Network [OSTI]

    Waliser, Duane E.

    Plan FY 2012 ­ FY 2015 March 16, 2012 Enclosure #12;NASA Diversity and Inclusion Strategic and Inclusion Assessment Survey, deployed in FY 2010, as well as the annual government-wide Employee Viewpoint actions for the Office of Personnel Management (OPM), the Office of Management and Budget (OMB), the Equal

  11. NSTX Upgrade Program Advisory Committee Meeting April 17-19, 2012

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    , collaboration, 5 year plan 3:15 Coffee Break 3:30 Masa Ono NSTX Upgrade Project Status, Facility and Diagnostic PPPL Charge Agenda Presentations NSTX FY2011 year-end report NSTX-U FY2012-14 Milestones Budget Planning Meeting Presentation NSTX-U PAC-31 members Previous PAC reports: PAC-30 Final Report PAC-29 Final

  12. U.S. Department of Energy Hydrogen and Fuel Cells Program 2012 Annual Merit Review and Peer Evaluation Report: May 14-18, 2012, Arlington, VA

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the fiscal year (FY) 2012 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held May 14-18, 2012, in Arlington, VA.

  13. CHAPTER 8NOAA Special Exhibits CHAPTER 9 SPECIAL EXHIBITS

    E-Print Network [OSTI]

    operations. These reductions are a key component of the President's Administrative Efficiency Initiative's Request, NOAA proposes consolidating climate related activities into a new line office the Climate Service AND ATMOSPHERIC ADMINISTRATION FY 2012 BUDGET SUMMARY 8-158 ADMINISTRATIVE COST SAVING The Administration

  14. Virgin Islands Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    harvesting had been a principal source of potable water for the residents of the USVI with some reliance such as rain water harvesting, development of alternative on-site sewage disposal systems and investigationVirgin Islands Water Resources Research Institute Annual Technical Report FY 2012 Virgin Islands

  15. Mann LED Elevator Ligh ng: ECI Savings Table Cost (billed)

    E-Print Network [OSTI]

    Lipson, Michal

    the elevators, deter mined an LED replace ment lamp for the ex is ng halogen lamps, cal culated a cost benefitMann LED Elevator Ligh ng: ECI Savings Table Utility Historical Energy Use (MMBtu) Est. FY 2012,000 2 Energy Conservation Initiative (ECI) Project Summary Mann LED Elevator Ligh ng, Facility 1027 Mann

  16. Contractor: Contract Number: Contract Type: Total Estimated

    Office of Environmental Management (EM)

    2010 19,332,431 FY2011 23,956,349 FY2012 19,099,251 FY2013 19,352,402 FY2014 0 FY2015 FY2016 FY2017 FY2018 FY2019 Cumulative Fee Paid 81,740,433 208,635,203 21,226,918...

  17. 2012 Site Environmental Report Brookhaven National Laboratory

    E-Print Network [OSTI]

    Johnson, Peter D.

    ­ Waste Generation #12;Chapter 2 ­ Energy Management & Conservation 2012 Statistics 278 million kilowatt lbs. of industrial, sanitary, hazardous, and rad waste Funds invested in FY 2012 = $13,500 8 proposals submitted, 3 funded Annual cost savings ~ $179,000 from new projects Average payback ~ 1 month

  18. Advanced Fuels Campaign 2012 Accomplishments

    SciTech Connect (OSTI)

    Not Listed

    2012-11-01T23:59:59.000Z

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  19. USF Physical Plant Recycling Program Updated November 2013

    E-Print Network [OSTI]

    Meyers, Steven D.

    Recyclables (Bulbs, Tires, etc.) 7 tons #12;Recycle Ratio for FY 2012/2013 · Total waste generated: 3419 tonsUSF Physical Plant Recycling Program Updated November 2013 #12;Beginnings · Program initiated · Continuously expanding recycling efforts #12;Paper Recycling · Currently recycling mixed paper Office paper

  20. College Legal Clinic, Inc., providing ASI legal referral services Student Engagement Report

    E-Print Network [OSTI]

    de Lijser, Peter

    College Legal Clinic, Inc., providing ASI legal referral services Student Engagement Report FY 2012-2013 Mission Statement Associated Student, CSUF, Inc. has contracted the College Legal Clinic, Inc to provide Legal Clinic (CLC) is a consultation and referral service made up of a panel of pre-screened attorneys

  1. SBIR/STTR ALERTING SERVICE --August 19, 2011 The SBIR/STTR Alerting Service is a free service that provides bi-weekly notification of SBIR and STTR

    E-Print Network [OSTI]

    AND INFORMATION -- DOE FY 2012 SBIR/STTR Phase I Funding Opportunity Announcement The Department of Energy (DOE information, visit the announcement page at http://science.energy.gov/sbir/funding-opportunities/ . -- Do, and useful new content, the new SBIR.gov will help small businesses that are part of or may become part

  2. TSU Space Program Student Engagement Report

    E-Print Network [OSTI]

    de Lijser, Peter

    TSU Space Program Student Engagement Report FY 2012-2013 Mission Statement The Titan Student Centers Governing Board allocates space in the Titan Student Union each semester to give recognized clubs and organizations space to plan events, conduct small meetings and store club/organization property. Program

  3. New Mexico Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    New Mexico Water Resources Research Institute Annual Technical Report FY 2012 New Mexico Water is based on a July-June fiscal year rather than the March-February USGS Grant Award period. The New Mexico Water Resources Research Institute (NMWRRI) was established in 1963 by the New Mexico State University

  4. Q1: What is the birth date of the employees whose first name is `Franklin'? Q2: Retrieve the names of all employees who work for the `Research' department.

    E-Print Network [OSTI]

    Li, Yanjun "Lisa"

    of all employees who work for the `Research' department. Q3: Retrieve names of departments who have in `Chicago', and also list the name of projects; Q5: Retrieve the salary of every employee; Q6: Retrieve all distinct salary values; Q7: Make a list of all projects that involve an employee whose last name

  5. Beam-Target Double-Spin Asymmetry ALT in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized 3He Target at 1.4<Q2<2.7??GeV2

    E-Print Network [OSTI]

    Huang, Jin

    We report the first measurement of the double-spin asymmetry A[subscript LT] for charged pion electroproduction in semi-inclusive deep-inelastic electron scattering on a transversely polarized [superscript 3]He target. The ...

  6. Precise Extraction of the Neutron Magnetic Form Factor from Quasi-elastic 3He(pol)(e(pol),e') at Q^2 = 0.1-0.6 (GeV/c)^2

    SciTech Connect (OSTI)

    Jens-ole Hansen; Brian Anderson; Leonard Auerbach; Todd Averett; William Bertozzi; Tim Black; John Calarco; Lawrence Cardman; Gordon Cates; Zhengwei Chai; Jiang-Ping Chen; Seonho Choi; Eugene Chudakov; Steve Churchwell; G Corrado; Christopher Crawford; Daniel Dale; Alexandre Deur; Pibero Djawotho; Dipangkar Dutta; John Finn; Haiyan Gao; Ronald Gilman; Oleksandr Glamazdin; Charles Glashausser; Walter Gloeckle; Jacek Golak; Javier Gomez; Viktor Gorbenko; F. Hersman; Douglas Higinbotham; Richard Holmes; Calvin Howell; Emlyn Hughes; Thomas Humensky; Sebastien Incerti; Piotr Zolnierczuk; Cornelis De Jager; John Jensen; Xiaodong Jiang; Cathleen Jones; Mark Jones; R Kahl; H Kamada; A Kievsky; Ioannis Kominis; Wolfgang Korsch; Kevin Kramer; Gerfried Kumbartzki; Michael Kuss; Enkeleida Lakuriqi; Meihua Liang; Nilanga Liyanage; John LeRose; Sergey Malov; Demetrius Margaziotis; Jeffery Martin; Kathy McCormick; Robert McKeown; Kevin McIlhany; Zein-Eddine Meziani; Robert Michaels; Greg Miller; Joseph Mitchell; Sirish Nanda; Emanuele Pace; Tina Pavlin; Gerassimos Petratos; Roman Pomatsalyuk; David Pripstein; David Prout; Ronald Ransome; Yves Roblin; Marat Rvachev; Giovanni Salme; Michael Schnee; Charles Seely; Taeksu Shin; Karl Slifer; Paul Souder; Steffen Strauch; Riad Suleiman; Mark Sutter; Bryan Tipton; Luminita Todor; M Viviani; Branislav Vlahovic; John Watson; Claude Williamson; H Witala; Bogdan Wojtsekhowski; Feng Xiong; Wang Xu; Jen-chuan Yeh

    2006-05-05T23:59:59.000Z

    We have measured the transverse asymmetry A{sub T'} in the quasi-elastic {sup 3}/rvec He/(/rvec e/,e') process with high precision at Q{sup 2}-values from 0.1 to 0.6 (GeV/c){sup 2}. The neutron magnetic form factor G{sub M}{sup n} was extracted at Q{sup 2}-values of 0.1 and 0.2 (GeV/c){sup 2} using a non-relativistic Faddeev calculation which includes both final-state interactions (FSI) and meson-exchange currents (MEC). Theoretical uncertainties due to the FSI and MEC effects were constrained with a precision measurement of the spin-dependent asymmetry in the threshold region of {sup 3}/rvec He/(/rvec e/,e'). We also extracted the neutron magnetic form factor G{sub M}{sup n} at Q{sup 2}-values of 0.3 to 0.6 (GeV/c){sup 2} based on Plane Wave Impulse Approximation calculations.

  7. Measurements of the Proton Electromagnetic Form Factor Ratio From Elastic e + p -> e + p Scattering at Momentum Transfer Q^2 = 2.5, 5.2, 6.7 and 8.5 (GeV/c)^2

    SciTech Connect (OSTI)

    Arthur Mkrtchyan

    2012-05-31T23:59:59.000Z

    Among the fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dyna mics of the nucleon's quark constituents. Electromagnetic probes are traditionally preferered to the hadronic beams. The electromagnetic interaction is a powerful tool for investigating the nucleon structure since it is well understood and it reveals observables that can be directly interpreted in terms of the current carried by the quarks. Elastic scattering leads to the form factors that describe the spatial charge a nd current distributions inside the nucleon. The reaction mechanism is assumed to be one photon exchange, the electromagnetic interaction is exactly calculable in QED, and one can safely extract the information on the hadronic vertex. The most important feature of early measurements of proton form factor ratio G{sub E}{sup p}/G{sub M}{sup p} with recoil polarization technique at Q{sup 2} up to 5.6 (GeV/c){sup 2} is the sharp decline of the ratio with Q{sup 2} increases, indicating that G{sub E}{sup p} falls much faster than G{sub M}{sup p}. This contradicts to data obtained by Rosenbluth separation method. An intriguing question was whether G{sub E}{sup p} will continue to decrease or become constant when Q{sup 2} increases. New set of measurements of proton form factor ratio G{sub E}{sup p}/G{sub M}{sup p} at Q{sup 2} = 2.5, 5.2, 6.7 and 8.5 (GeV/c){sup 2} have been conducted at JLab Hall C using {approx}85% longitudinally polarized electron elastic scattering from unpolarized hydrogen target. Recoil protons were detected in the HMS magnetic spectrometer with the standard detector package, combined with newly installed trigger scintillators and Focal Plane Polarimeter. The BigCal electromagnetic calorimeter (1744 channel) have been used for electron detection. Data obtained in this experiment show that G{sub E}{sup p}/G{sub M}{sup p} ratio continued to drop with Q{sup 2} and may cross 'zero' at Q{sup 2} > 10-15 (GeV/c){sup 2}. Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton form factor ratio G{sub E}{sup p}/G{sub M}{sup p} obtained from cross section and polarization measurements. It was assumed that the two photon exchange contribution might be responsible for difference of G{sub E}{sup p}/G{sub M}{sup p} ratio obtained by Rosenbluth separation method and recoil polarization technique. The kinematical dependence of polarization transfer observables in elastic electron-proton scattering at Q{sup 2} = 2.5 (GeV/c){sup 2} have been used in search of effects of 2{gamma} contribution. For a wide range of values of the virtual photon polarization {epsilon} ({epsilon} = 0.15, 0.63, and 0.77), the proton form factor ratio and longitudinal polarization transfer component were measured with statistical uncertainties of {+-}0.01 and {+-}0.005, respectively. Our data provide significant constraints on models of nucleon structure.

  8. Feladatok formalis nyelvek es szintaktikus elemzesuk gyakorlatra II. 1. Adva van a kovetkezo determinisztikus veges automata: M = ({q0, q1, q2, q3}, {0, 1}, , q0, {q0}).

    E-Print Network [OSTI]

    Németh, Zoltán L.

    ´eges automat´akat, amelyek az al´abbi nyelveket ismerik fel: a) L1 = {w : w 01-gyel kezdodik } b) L2 = {w : w-ben van legal´abb h´arom darab 1-es } c) L3 = {w : w legal´abb h´arom darab 1-esre v´egzodik} d) L4 = {w : w pontosan h´arom darab 1-esre v´egzodik} e) L5 = {w : w-ben a 010 elofordul r

  9. Beam-Target Double Spin Asymmetry A_LT in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized He-3 Target at 1.4<Q^2<2.7 GeV^2

    E-Print Network [OSTI]

    J. Huang; K. Allada; C. Dutta; J. Katich; X. Qian; Y. Wang; Y. Zhang; K. Aniol; J. R. M. Annand; T. Averett; F. Benmokhtar; W. Bertozzi; P. C. Bradshaw; P. Bosted; A. Camsonne; M. Canan; G. D. Cates; C. Chen; J. -P. Chen; W. Chen; K. Chirapatpimol; E. Chudakov; E. Cisbani; J. C. Cornejo; F. Cusanno; M. M. Dalton; W. Deconinck; C. W. de Jager; R. De Leo; X. Deng; A. Deur; H. Ding; P. A. M. Dolph; D. Dutta; L. El Fassi; S. Frullani; H. Gao; F. Garibaldi; D. Gaskell; S. Gilad; R. Gilman; O. Glamazdin; S. Golge; L. Guo; D. Hamilton; O. Hansen; D. W. Higinbotham; T. Holmstrom; M. Huang; H. F. Ibrahim; M. Iodice; X. Jiang; G. Jin; M. K. Jones; A. Kelleher; W. Kim; A. Kolarkar; W. Korsch; J. J. LeRose; X. Li; Y. Li; R. Lindgren; N. Liyanage; E. Long; H. -J. Lu; D. J. Margaziotis; P. Markowitz; S. Marrone; D. McNulty; Z. -E. Meziani; R. Michaels; B. Moffit; C. Muñoz Camacho; S. Nanda; A. Narayan; V. Nelyubin; B. Norum; Y. Oh; M. Osipenko; D. Parno; J. C. Peng; S. K. Phillips; M. Posik; A. J. R. Puckett; Y. Qiang; A. Rakhman; R. D. Ransome; S. Riordan; A. Saha; B. Sawatzky; E. Schulte; A. Shahinyan; M. H. Shabestari; S. Širca; S. Stepanyan; R. Subedi; V. Sulkosky; L. -G. Tang; A. Tobias; G. M. Urciuoli; I. Vilardi; K. Wang; B. Wojtsekhowski; X. Yan; H. Yao; Y. Ye; Z. Ye; L. Yuan; X. Zhan; Y. -W. Zhang; B. Zhao; X. Zheng; L. Zhu; X. Zhu; X. Zong; for the Jefferson Lab Hall A Collaboration

    2012-02-10T23:59:59.000Z

    We report the first measurement of the double-spin asymmetry $A_{LT}$ for charged pion electroproduction in semi\

  10. Precision Rosenbluth Measurement of the Proton Elastic Electromagnetic Form Factors and Their Ratio at Q^2=2.64, 3.20, and 4.10 GeV^2

    SciTech Connect (OSTI)

    Issam A. Qattan

    2005-12-01T23:59:59.000Z

    Due to the inconsistency in the results of the mupGEp/GMp ratio of the proton, as extracted from the Rosenbluth and recoil polarization techniques, high precision measurements of the e-p elastic scattering cross sections were made at Q{sup 2} = 2.64, 3.20, and 4.10 GeV{sup 2}. Protons were detected, in contrast to previous measurements where the scattered electrons were detected, which dramatically decreased-dependent systematic uncertainties and corrections. A single spectrometer measured the scattered protons of interest while simultaneous measurements at Q{sup 2} = 0.5 GeV{sup 2} were carried out using another spectrometer which served as a luminosity monitor in order to remove any uncertainties due to beam charge and target density fluctuations. The absolute uncertainty in the measured cross sections is {approx}3% for both spectrometers and with relative uncertainties, random and slope, below 1% for the higher Q{sup 2} protons, and below 1% random and 6% slope for the monitor spectrometer. The extracted electric and magnetic form factors were determined to 4%-7% for GEp and 1.5% for GMp. The ratio mupGEp/GMp was determined to 4%-7% and showed mupGEp/GMp {approx} 1.0. The results of this work are in agreement with the previous Rosenbluth data and inconsistent with high-Q{sup 2} recoil polarization results, implying a systematic difference between the two techniques.

  11. VOLUME 82, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 15 FEBRUARY 1999 Precise Measurement of the Deuteron Elastic Structure Function A Q2

    E-Print Network [OSTI]

    Maryland at College Park, University of

    . Roos,3 P. Rutt,6 R. Sawafta,10 S. Stepanyan,9 R. Tieulent,4 E. Tomasi-Gustafsson,1,11 W. Turchinetz,7 K

  12. Underground Test Area Fiscal Year 2012 Annual Quality Assurance Report Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Farnham, Irene; Marutzky, Sam

    2013-01-01T23:59:59.000Z

    This report is mandated by the Underground Test Area (UGTA) Quality Assurance Project Plan (QAPP) and identifies the UGTA quality assurance (QA) activities for fiscal year (FY) 2012. All UGTA organizations—U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO); Desert Research Institute (DRI); Lawrence Livermore National Laboratory (LLNL); Los Alamos National Laboratory (LANL); Navarro-Intera, LLC (N-I); National Security Technologies, LLC (NSTec); and the U.S. Geological Survey (USGS)—conducted QA activities in FY 2012. The activities included conducting assessments, identifying findings and completing corrective actions, evaluating laboratory performance, revising the QAPP, and publishing documents. In addition, processes and procedures were developed to address deficiencies identified in the FY 2011 QAPP gap analysis.

  13. Supplement 24, Part 6, Parasite-Subject Catalogue, Treatment 

    E-Print Network [OSTI]

    Edwards, Shirley J.; Hood, Martha W.; Shaw, Judith H.; Rayburn, Jane D.; Kirby, Margie D.; Hanfman, Deborah T.; Zidar, Judith A.

    1982-01-01T23:59:59.000Z

    ; Trypa- flavine preparation Gonacrine Cerva L 1969 Folia Parasitol 16 (4) 357-360 Wa Hartmannella castellanii, pathogenic strain, 24 drugs screened in vitro Trypaflavine preparation Dinca D et al 1980 Rev Med-Chir Soc Med si Nat Iasi 84 (1) Jan...-Mar 125-127 Wm Trichomonas vaginalis, human vaginitis, vaginal tablets containing trypaflavine Acriflavine Mine 11 i ??; Iudice G; Ercoli ? 1981 Ann Trop Med and Parasitol 75 (4) Aug 383-392 Wm Trypanosoma venezuelense (dyskine top 1 a st i...

  14. Idaho National Laboratory FY12 Greenhouse Gas Report

    SciTech Connect (OSTI)

    Kimberly Frerichs

    2013-03-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  15. SAE Standards Support

    SciTech Connect (OSTI)

    Gowri, Krishnan

    2012-11-01T23:59:59.000Z

    This report summarizes PNNL activities in FY 2012 in support of the following two vehicle communication standards activities: • Technical support to SAE, ANSI and NIST technical working groups. PNNL actively contributed to the use case development, harmonization, and evaluation of the SAE standards activities for vehicle to grid communication • Tested and validated a set of potential technologies for meeting SAE communication requirements and provided recommendations for technology choices.

  16. CHAPTER 3NOAA Procurement, Acquisition, & Construction The latest NOAA Geostationary Operational Environmental Satellite (GOES-O) rotating on a stand for blanket inspection

    E-Print Network [OSTI]

    expected to open Spring 2011 #12;NATiONAL OCEANiC AND ATmOsPHERiC ADmiNisTRATiON FY2011 BuDGET summARY 3 Enacted 2007 Enacted 2006 Enacted 2005 Enacted (Dollars in thousands) Budget Trends FY 2005 REqUEST FY 2012 FY 2013 FY 2014 FY 2015 CELCP 25,000 25,000 25,000 25,000 25,000 Coastal and Estuarine

  17. UNIVERSITY OF HOUSTON Division of Research

    E-Print Network [OSTI]

    Azevedo, Ricardo

    ,137,897 Biology/Biochemistry 2072/H0104/B0951/18030 250,407 Center for Nuclear Receptors and Cell Signaling 2072/H of Research Indirect Cost Return FY2013 based on FY2012 Expenditures Net Distribution COLLEGE OF PHARMACY Dean, Pharmacy 2072/H0116/B1067/12065 154,851 Center for Experimental Therapeutics and Pharmacoi 2072/H0117/B2202

  18. Measurements of the neutron electric to magnetic form-factor ratio G(En) / G(Mn) via the H-2(polarized-e, e-prime,polarized-n)H-1 reaction to Q**2 = 1.45-(GeV/c)**2

    SciTech Connect (OSTI)

    Bradley Plaster; A.Yu. Semenov; A. Aghalaryan; Erick Crouse; Glen MacLachlan; Shigeyuki Tajima; William Tireman; Abdellah Ahmidouch; Brian Anderson; Hartmuth Arenhovel; Razmik Asaturyan; O. Baker; Alan Baldwin; David Barkhuff; Herbert Breuer; Roger Carlini; Michael Christy; Steve Churchwell; Leon Cole; Samuel Danagoulian; Donal Day; T. Eden; Mostafa Elaasar; Rolf Ent; Manouchehr Farkhondeh; Howard Fenker; John Finn; Liping Gan; Ashot Gasparian; Kenneth Garrow; Paul Gueye; Calvin Howell; Bitao Hu; Mark Jones; James Kelly; Cynthia Keppel; Mahbubul Khandaker; Wooyoung Kim; Stanley Kowalski; Allison Lung; David Mack; Richard Madey; D. Manley; Pete Markowitz; Joseph Mitchell; Hamlet Mkrtchyan; Allena Opper; Charles Perdrisat; Vina Punjabi; Brian Raue; Tilmann Reichelt; Joerg Reinhold; Julie Roche; Yoshinori Sato; Nikolai Savvinov; Irina Semenova; Wonick Seo; Neven Simicevic; Gregory Smith; Stepan Stepanyan; Vardan Tadevosyan; Liguang Tang; Shawn Taylor; Paul Ulmer; William Vulcan; John Watson; Steven Wells; Frank Wesselmann; Stephen Wood; Seunghoon Yang; Lulin Yuan; Wei-Ming Zhang; Hong Guo Zhu; Xiaofeng Zhu

    2006-02-01T23:59:59.000Z

    We report values for the neutron electric to magnetic form factor ratio, G{sub En}/G{sub Mn}, deduced from measurements of the neutron's recoil polarization in the quasielastic {sup 2}H({rvec e}, e{prime}{rvec n}) {sup 1}H reaction, at three Q{sup 2} values of 0.45, 1.13, and 1.45 (GeV/c){sup 2}. The data at Q{sup 2} = 1.13 and 1.45 (GeV/c){sup 2} are the first direct experimental measurements of GEn employing polarization degrees of freedom in the Q{sup 2} > 1 (GeV/c){sup 2} region and stand as the most precise determinations of GEn for all values of Q{sup 2}.

  19. state","Jan","Feb","Mar","Q1 Total","Apr","May","Jun","Q2 Total","Jul","Aug","Se

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790AMOUNT(DOLLARS)","DESCRIPTION"OECD/IEA - 2008 © OECD/IEA -to FiveSquare

  20. state","Jan","Feb","Mar","Q1 Total","Apr","May","Jun","Q2 Total","Jul","Aug","Se

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790AMOUNT(DOLLARS)","DESCRIPTION"OECD/IEA - 2008 © OECD/IEA -to

  1. state","Jan","Feb","Mar","Q1 Total","Apr","May","Jun","Q2 Total","Jul","Aug","Se

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790AMOUNT(DOLLARS)","DESCRIPTION"OECD/IEA - 2008 © OECD/IEA

  2. state","Jan","Feb","Mar","Q1 Total","Apr","May","Jun","Q2 Total","Jul","Aug","Se

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790AMOUNT(DOLLARS)","DESCRIPTION"OECD/IEA - 2008 ©

  3. state","Jan","Feb","Mar","Q1 Total","Apr","May","Jun","Q2 Total","Jul","Aug","Se

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790AMOUNT(DOLLARS)","DESCRIPTION"OECD/IEA - 2008

  4. state","Jan","Feb","Mar","Q1 Total","Apr","May","Jun","Q2 Total","Jul","Aug","Se

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790AMOUNT(DOLLARS)","DESCRIPTION"OECD/IEA -

  5. state","Jan","Feb","Mar","Q1 Total","Apr","May","Jun","Q2 Total","Jul","Aug","Se

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790AMOUNT(DOLLARS)","DESCRIPTION"OECD/IEA

  6. state","Jan","Feb","Mar","Q1 Total","Apr","May","Jun","Q2 Total","Jul","Aug","Se

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470

  7. Southeastern Power Administration 2012 Annual Report

    SciTech Connect (OSTI)

    none,

    2012-01-01T23:59:59.000Z

    Dear Secretary Moniz: I am pleased to submit Southeastern Power Administration’s (Southeastern) fiscal year (FY) 2012 Annual Report for your review. This report reflects our agency’s programs, accomplishments, operational, and financial activities for the 12-month period beginning October 1, 2011, and ending September 30, 2012. This past year, Southeastern marketed approximately 5.4 billion kilowatt-hours of energy to 487 wholesale customers in 10 southeastern states. Revenues from the sale of this power totaled about $263 million. With the financial assistance and support of Southeastern’s customers, funding for capitalized equipment purchases and replacements at hydroelectric facilities operated by the U.S. Army Corps of Engineers (Corps) continued in FY 2012. Currently, there are more than 214 customers participating in funding infrastructure renewal efforts of powerplants feeding the Georgia-Alabama-South Carolina, Kerr-Philpott, and Cumberland Systems. This funding, which totaled more than $71 million, provided much needed repairs and maintenance for aging projects in Southeastern’s marketing area. Drought conditions continued in the southeastern region of the United States this past year, particularly in the Savannah River Basin. Lack of rainfall strained our natural and financial resources. Power purchases for FY 2012 in the Georgia-Alabama-South Carolina System totaled approximately $29 million. About $8 million of this amount was for replacement power, which is purchased only during adverse water conditions in order to meet Southeastern’s customer contract requirements. Southeastern’s goal is to maximize the benefits of our region’s water resources. Competing uses of these resources will present another challenging year for Southeastern’s employees. With the cooperation and communication among the Department of Energy (DOE), preference customers, and Corps, I am certain Southeastern is positioned to meet these challenges in the future. We are committed to providing reliable hydroelectric power to preference customers, which ultimately serve more than 12 million consumers in the southeast. Sincerely, Kenneth E. Legg Administrator

  8. L-325 Sagebrush Habitat Mitigation Project: Final Compensation Area Monitoring Report

    SciTech Connect (OSTI)

    Durham, Robin E.; Becker, James M.

    2013-09-26T23:59:59.000Z

    This document provides a review and status of activities conducted in support of the Fluor Daniel Hanford Company (Fluor), now Mission Support Alliance (MSA), Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades (2007). Three plantings have been installed on a 4.5-hectare mitigation area to date. This review provides a description and chronology of events, monitoring results, and mitigative actions through fiscal year (FY) 2012. Also provided is a review of the monitoring methods, transect layout, and FY 2012 monitoring activities and results for all planting years. Planting densities and performance criteria stipulated in the MAP were aimed at a desired future condition (DFC) of 10 percent mature sagebrush (Artemisia tridentata ssp wyomingensis) cover. Current recommendations for yielding this DFC are based upon a conceptual model planting of 1000 plants/ha (400/ac) exhibiting a 60-percent survival rate after 5 monitoring years (DOE 2003). Accordingly, a DFC after 5 monitoring years would not be less than 600 plants/ha (240/ac). To date, about 8700 sagebrush plants have been grown and transplanted onto the mitigation site. Harsh site conditions and low seedling survival have resulted in an estimated 489 transplants/ha on the mitigation site, which is 111 plants/ha short of the target DFC. Despite this apparent shortcoming, 71, 91, and 24 percent of the surviving seedlings planted in FY 2007 and FY 2008 and FY 2010, respectively, showed signs of blooming in FY 2012. Blooming status may be a positive indication of future sagebrush recruitment, and is therefore a potential source for reaching the target DFC of 600 plants/ha on this mitigation site over time. Because of the difficulty establishing small transplants on this site, we propose that no additional plantings be considered for this mitigation area and to rely upon the potential recruitment by established seedlings to achieve the mitigation commitment set forth in the MAP of 600 plants/ha.

  9. INL Control System Situational Awareness Technology Annual Report 2012

    SciTech Connect (OSTI)

    Gordon Rueff; Bryce Wheeler; Todd Vollmer; Tim McJunkin; Robert Erbes

    2012-10-01T23:59:59.000Z

    The overall goal of this project is to develop an interoperable set of tools to provide a comprehensive, consistent implementation of cyber security and overall situational awareness of control and sensor network implementations. The operation and interoperability of these tools will fill voids in current technological offerings and address issues that remain an impediment to the security of control systems. This report provides an FY 2012 update on the Sophia, Mesh Mapper, Intelligent Cyber Sensor, and Data Fusion projects with respect to the year-two tasks and annual reporting requirements of the INL Control System Situational Awareness Technology report (July 2010).

  10. Separating the Minor Actinides Through Advances in Selective Coordination Chemistry

    SciTech Connect (OSTI)

    Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Carter, Jennifer C.

    2012-08-22T23:59:59.000Z

    This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory (ANL) are investigating a simplified solvent extraction system for providing a single-step process to separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the minor actinides from the lanthanide fission products.

  11. Lead Slowing Down Spectrometer Status Report

    SciTech Connect (OSTI)

    Warren, Glen A.; Anderson, Kevin K.; Bonebrake, Eric; Casella, Andrew M.; Danon, Yaron; Devlin, M.; Gavron, Victor A.; Haight, R. C.; Imel, G. R.; Kulisek, Jonathan A.; O'Donnell, J. M.; Weltz, Adam

    2012-06-07T23:59:59.000Z

    This report documents the progress that has been completed in the first half of FY2012 in the MPACT-funded Lead Slowing Down Spectrometer project. Significant progress has been made on the algorithm development. We have an improve understanding of the experimental responses in LSDS for fuel-related material. The calibration of the ultra-depleted uranium foils was completed, but the results are inconsistent from measurement to measurement. Future work includes developing a conceptual model of an LSDS system to assay plutonium in used fuel, improving agreement between simulations and measurement, design of a thorium fission chamber, and evaluation of additional detector techniques.

  12. Citizen Engagement in the New Normal Fiscal Environment: Time for Participatory Performance Budgeting (PPB 2.0)?

    E-Print Network [OSTI]

    Ho, Alfred

    2013-02-04T23:59:59.000Z

    of their professional training (Ebdon and Franklin, 2004; Franklin, Ho, and Ebdon, 2009). 17 Figure 6. Indianapolis’ INDYSTAT review – Extracts from the Presentation by the Department of Code Enforcement Source: http://www.indy.gov/eGov..., and healthcare spending continue to increase. . These policies led to a federal deficit of about $1.3 trillion in FY2011 and FY2012, respectively, which is significantly higher than the deficit levels over the past two decades (US OMB 2012). Many U.S. state...

  13. NNSA Provides More Than $290 Million in Small Business Contract Obligations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurityAbout Us / Our Operationsin FY 2012 |

  14. NNSA Receives Secretary's Award for Project Management Excellence |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurityAbout Us / Our Operationsin FY 2012

  15. FY 2013 Budget Hearing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf More Documents & FY 2012

  16. FY 2014 EM Budget Rollout Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf More Documents & FY 2012Group |Energy4

  17. FY 2014 Funding History Detail Spreadsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf More Documents & FY 2012GroupFederal

  18. Microsoft PowerPoint - 2-EM 2012 BUDGET REQUEST.JPG.ODP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverview andSinatraMicroBooNEThis page hasFY 2012

  19. Theoretical Determination of the $?N?$ Electromagnetic Transition Amplitudes in the $?(1232)$ Region

    E-Print Network [OSTI]

    Milton Dean Slaughter

    1999-03-08T23:59:59.000Z

    We utilize non-perturbative and fully relativistic methods to calculate the\\thinspace \\thinspace $\\Delta N\\gamma $ electromagnetic transition amplitudes $G_{M}^{*}(q^{2})$ (related to the magnetic dipole moment $% M_{1^{+}}^{3/2}(q^{2})$), $G_{E}^{*}(q^{2})$ (related to the electric quadrupole moment $E_{1^{+}}^{3/2}(q^{2})$), the electromagnetic ratio $% R_{EM}(q^{2})\\equiv -G_{E}^{*}(q^{2})/G_{M}^{*}(q^{2})=E_{1^{+}}^{3/2}(q^{2})/M_{1^{+}}^{3/2}(q^{2} ) $, and discuss their $q^{2}$ behavior in the $\\Delta (1232)$ mass region. These are very important quantities which arise in all viable quark, QCD, or perturbative QCD models of pion electroproduction and photoproduction.

  20. Submitted to the International Europhysics Conference on High Energy Physics 99

    E-Print Network [OSTI]

    V. The cross­section, doe=dQ 2 , falls by six orders of magnitude between Q 2 = 400 and 40000 GeV 2=137 is the QED coupling constant, and Y \\Sigma = 1 \\Sigma (1 \\Gamma y) 2 with y = Q 2 =sx. The structure #12; where xq \\Sigma f = xq f (x; Q 2 ) \\Sigma x¯q f (x; Q 2 ) and xq f (x¯q f ) are the quark (anti

  1. Southwestern Power Administration Annual Report 2012

    SciTech Connect (OSTI)

    none,

    2013-09-01T23:59:59.000Z

    Dear Secretary Moniz: I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2012. In FY 2012, Southwestern delivered over 4.1 billion kilowatt-hours of energy to its wholesale customers in Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas, generating $195 million in revenue. In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric power, Southwestern maintains 1,380 miles of high-voltage transmission lines, substations, and communications sites, contributing to the reliability of the regional and National electric grid. Southwestern also actively partners with the Department of Energy, the U.S. Army Corps of Engineers, Southwestern’s customers, and other Federal power stakeholders to most effectively balance their diverse interests with Southwestern’s mission while continuing to maximize Federal assets to repay the Federal investment in the 24 hydropower facilities within Southwestern’s marketing region. Southwestern is proud of its past successes, and we look forward to continuing to serve the Nation’s energy needs in the future. Sincerely, Christopher M. Turner Administrator

  2. The US DOE-EM International Program - 13004

    SciTech Connect (OSTI)

    Elmetti, Rosa R.; Han, Ana M.; Williams, Alice C. [Department of Energy, Office of Environmental Management, 1000 Independence Ave. SW, Washington, DC 20585 (United States)] [Department of Energy, Office of Environmental Management, 1000 Independence Ave. SW, Washington, DC 20585 (United States)

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Environmental Management (EM) conducts international collaboration activities in support of U.S. policies and objectives regarding the accelerated risk reduction and remediation of environmental legacy of the nations' nuclear weapons program and government sponsored nuclear energy research. The EM International Program supported out of the EM Office of the Associate Principal Deputy Assistant Secretary pursues collaborations with foreign government organizations, educational institutions and private industry to assist in identifying technologies and promote international collaborations that leverage resources and link international experience and expertise. In fiscal year (FY) 2012, the International Program awarded eight international collaborative projects for work scope spanning waste processing, groundwater and soil remediation, deactivation and decommissioning (D and D) and nuclear materials disposition initiatives to seven foreign organizations. Additionally, the International Program's scope and collaboration opportunities were expanded to include technical as well as non-technical areas. This paper will present an overview of the on-going tasks awarded in FY 2012 and an update of upcoming international activities and opportunities for expansion into FY 2013 and beyond. (authors)

  3. Alternative Electrochemical Salt Waste Forms, Summary of FY11-FY12 Results

    SciTech Connect (OSTI)

    Riley, Brian J.; Mccloy, John S.; Crum, Jarrod V.; Lepry, William C.; Rodriguez, Carmen P.; Windisch, Charles F.; Matyas, Josef; Westman, Matthew P.; Rieck, Bennett T.; Lang, Jesse B.; Olszta, Matthew J.; Pierce, David A.

    2014-03-26T23:59:59.000Z

    The Fuel Cycle Research and Development Program, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is currently investigating alternative waste forms for wastes generated from nuclear fuel processing. One such waste results from an electrochemical separations process, called the “Echem” process. The Echem process utilizes a molten KCl-LiCl salt to dissolve the fuel. This process results in a spent salt containing alkali, alkaline earth, lanthanide halides and small quantities of actinide halides, where the primary halide is chloride with a minor iodide fraction. Pacific Northwest National Laboratory (PNNL) is concurrently investigating two candidate waste forms for the Echem spent-salt: high-halide minerals (i.e., sodalite and cancrinite) and tellurite (TeO2)-based glasses. Both of these candidates showed promise in fiscal year (FY) 2009 and FY2010 with a simplified nonradioactive simulant of the Echem waste. Further testing was performed on these waste forms in FY2011 and FY2012 to assess the possibility of their use in a sustainable fuel cycle. This report summarizes the combined results from FY2011 and FY2012 efforts.

  4. 2012 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analyses

    SciTech Connect (OSTI)

    Shott, G. [National Security Technologies, LLC

    2013-03-18T23:59:59.000Z

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC 2007a) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs), with the results submitted to the U.S. Department of Energy (DOE) Office of Environmental Management. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE 1999a, 2000). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 RWMS PAs and CAs for fiscal year (FY) 2012. This annual summary report presents data and conclusions from the FY 2012 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs. Important developments in FY 2012 include the following: ? Release of a special analysis for the Area 3 RWMS assessing the continuing validity of the PA and CA ? Development of a new Area 5 RWMS closure inventory estimate based on disposals through FY 2012 ? Evaluation of new or revised waste streams by special analysis ? Development of version 4.114 of the Area 5 RWMS GoldSim PA model The Area 3 RWMS has been in inactive status since July 1, 2006, with the last shipment received in April 2006. The FY 2012 review of operations, facility design, closure plans, monitoring results, and R&D results for the Area 3 RWMS indicates no changes that would impact PA validity. A special analysis using the Area 3 RWMS v2.102 GoldSim PA model was prepared to update the PA results for the Area 3 RWMS in FY 2012. The special analysis concludes that all performance objectives can be met and the Area 3 RWMS PA remains valid. There is no need to the revise the Area 3 RWMS PA. Review of Area 5 RWMS operations, design, closure plans, monitoring results, and R&D activities indicates no significant changes other than an increase in the inventory disposed. The FY 2012 PA results, generated with the Area 5 RWMS v4.114 GoldSim PA model, indicate that there continues to be a reasonable expectation of meeting all performance objectives. The results and conclusions of the Area 5 RWMS PA are judged valid, and there is no need to the revise the PA. A review of changes potentially impacting the CAs indicates that no significant changes occurred in FY 2012. The continuing adequacy of the CAs was evaluated with the new models, and no significant changes that would alter CA results or conclusions were found. The revision of the Area 3 RWMS CA, which will include the Underground Test Area source term (Corrective Action Unit [CAU] 97), is scheduled for FY 2024, following the completion of the Yucca Flat CAU 97 Corrective Action Decision Document/Corrective Action Plan in FY 2016. Inclusion of the Frenchman Flat CAU 98 results in the Area 5 RWMS CA is scheduled for FY 2016, pending the completion of the CAU 98 closure report in FY 2015. Near-term R&D efforts will focus on continuing development of the Area 3 and Area 5 RWMS GoldSim PA/CA and inventory models.

  5. A computational approach to study the effect of multiple lymphangion coordination on lymph flow

    E-Print Network [OSTI]

    Madabushi Venugopal, Arun

    2005-11-01T23:59:59.000Z

    by dt dQ 2 L Q 2 R Q)()(P in inin0in +?+?+??=? in RVVtEP , (8) where E(t) represents the elastance given by Eq. 6. The flows in the system are calculated by differentiating the volume (V), assuming conservation of mass...?s?cm -5 . When we equate the pressures at the inlet and outlet end, the resulting equation can be written as dt dQ 2 L Q 2 R Q dt dQ 2 L Q 2 R Q P-P out outout in inin outin +?+?+ +?+? = out in R R...

  6. "State","Jan","Feb","Mar","Q1 Total","Apr","May","Jun ","Q2 Total","Jul","Aug","Sep","Q3 Total","Oct","Nov","Dec","Q4 Total","2003 Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.3 Total"

  7. "State","Jan","Feb","Mar","Q1 Total","Apr","May","Jun ","Q2 Total","Jul","Aug","Sep","Q3 Total","Oct","Nov","Dec","Q4 Total","2004 Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.3 Total"4

  8. "State","Jan","Feb","Mar","Q1 Total","Apr","May","Jun","Q2 Total","Jul","Aug","Sep","Q3 Total","Oct","Nov","Dec","Q4 Total","2002 Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.3

  9. Significant Cost Improvement of Li-Ion Cells Through Non-NMP...

    Broader source: Energy.gov (indexed) [DOE]

    Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Approach 5 Dry coated electrode Electrode design optimization Binder and electrolyte development Process and equipment optimization...

  10. Vol. 3 (2010) Acta Physica Polonica B Proceedings Supplement No 1 HADRONIC FORM FACTORS

    E-Print Network [OSTI]

    Siegen, Universität

    2010-01-01T23:59:59.000Z

    function of jµ = dµc and j5 = mcci5u currents: Fµ(p, q) = d4 xeiqx (p)|T{jµ(x)j5(0)}|0 = F((p + q)2 , q2

  11. High-Temperature Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2...

  12. Non SUSY Searches at Juan A. Valls

    E-Print Network [OSTI]

    Fermilab

    ? 147 GeV/c 2 fi = 0.5 M LQ 1 ? 71 GeV/c 2 fi = 0.0 (95% CL) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 02pM MRS(A) × K­factor (NLO) Q 2 = Q 2 0 × 4 Q 2 = Q 2 0 / 4 Second Generation Leptoquark Mass (Ge

  13. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections

    E-Print Network [OSTI]

    Feldman, David

    2014-01-01T23:59:59.000Z

    global scope of most solar companies, analysts often projectSolar Market Insight Report: Q2 2012. ” Stifel, Nicolaus & Company,

  14. Validation Testing for the PM-PEMS Measurement Allowance Program

    E-Print Network [OSTI]

    Johnson, K; Durbin, T; Jung, H; Cocker III, D R; Khan, M Y

    2010-01-01T23:59:59.000Z

    at >4lpm Q1 & 20ccm Q2 N2 at 4lpm Q1 & ccm Q2 N2 at 0lpmQ1 & ccm Q2 No tube on Q1 (open to atm) Pump to MEL

  15. Measurement of Charged-Current e Deep Inelastic Scattering Cross Sections

    E-Print Network [OSTI]

    . The explored kinematic region was extended to high Q 2 and high x regions; d#27;=dQ 2 was measured up to Q 2 Tracking Detector (CTD) . . . . . . . . . . . . . . . . 17 3.2.2 Uranium-Scintillator Calorimeter (CAL . . . . . . . . . . . . . . . . . . . . 31 i #12; ii CONTENTS 4.4.1 Uranium-noise and spark suppression . . . . . . . . . . . . . . 3

  16. Optimization of Rhodium-Based Catalysts for Mixed Alcohol Synthesis – 2012 Progress Report

    SciTech Connect (OSTI)

    Gerber, Mark A.; Gray, Michel J.; Albrecht, Karl O.; Thompson, Becky L.

    2012-11-01T23:59:59.000Z

    Pacific Northwest National Laboratory has been conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). In recent years, this research has primarily involved the further development of catalysts containing rhodium and manganese based on the results of earlier catalyst screening tests. Testing continued in FY 2012 to further improve the Ir-promoted RhMn catalysts on both silica and carbon supports for producing mixed oxygenates from synthesis gas. This testing re-examined selected alternative silica and carbon supports to follow up on some uncertainties in the results with previous test results. Additional tests were conducted to further optimize the total and relative concentrations of Rh, Mn, and Ir, and to examine selected promoters and promoter combinations based on earlier results. To establish optimum operating conditions, the effects of the process pressure and the feed gas composition also were evaluated.

  17. Idaho National Laboratory Integrated Safety Management System 2011 Effectiveness Review and Declaration Report

    SciTech Connect (OSTI)

    Farren Hunt

    2011-12-01T23:59:59.000Z

    Idaho National Laboratory (INL) performed an annual Integrated Safety Management System (ISMS) effectiveness review per 48 Code of Federal Regulations (CFR) 970.5223-1, 'Integration of Environment, Safety and Health into Work Planning and Execution.' The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and helped identify target areas for focused improvements and assessments for fiscal year (FY) 2012. The information presented in this review of FY 2011 shows that the INL has performed many corrective actions and improvement activities, which are starting to show some of the desired results. These corrective actions and improvement activities will continue to help change culture that will lead to better implementation of defined programs, resulting in moving the Laboratory's performance from the categorization of 'Needs Improvement' to the desired results of 'Effective Performance.'

  18. Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design

    SciTech Connect (OSTI)

    Coles, Garill A.; Gitau, Ernest TN; Hockert, John; Zentner, Michael D.

    2012-11-09T23:59:59.000Z

    FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

  19. Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design

    SciTech Connect (OSTI)

    Coles, Garill A.; Hockert, John; Gitau, Ernest TN; Zentner, Michael D.

    2013-01-26T23:59:59.000Z

    FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

  20. Data-Based Performance Assessments for the DOE Hydropower Advancement Project

    SciTech Connect (OSTI)

    March, Patrick [Hydro Performance Processes, Inc.] [Hydro Performance Processes, Inc.; Wolff, Dr. Paul [WolffWare Ltd.] [WolffWare Ltd.; Smith, Brennan T [ORNL] [ORNL; Zhang, Qin Fen [ORNL] [ORNL; Dham, Rajesh [U.S. Department of Energy] [U.S. Department of Energy

    2012-01-01T23:59:59.000Z

    The U. S. Department of Energy s Hydropower Advancement Project (HAP) was initiated to characterize and trend hydropower asset conditions across the U.S.A. s existing hydropower fleet and to identify and evaluate the upgrading opportunities. Although HAP includes both detailed performance assessments and condition assessments of existing hydropower plants, this paper focuses on the performance assessments. Plant performance assessments provide a set of statistics and indices that characterize the historical extent to which each plant has converted the potential energy at a site into electrical energy for the power system. The performance metrics enable benchmarking and trending of performance across many projects in a variety contexts (e.g., river systems, power systems, and water availability). During FY2011 and FY2012, assessments will be performed on ten plants, with an additional fifty plants scheduled for FY2013. This paper focuses on the performance assessments completed to date, details the performance assessment process, and describes results from the performance assessments.

  1. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    SciTech Connect (OSTI)

    Bliss, Mary; Stave, Jean A.

    2012-10-01T23:59:59.000Z

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a signal for fast neutron capture.

  2. Scaling study of the pion electroproduction cross sections and the pion form factor

    SciTech Connect (OSTI)

    Tanja Horn; Xin Qian; John Arrington; Razmik Asaturyan; Fatiha Benmokthar; Werner Boeglin; Peter Bosted; Antje Bruell; Eric Christy; Eugene Chudakov; Ben Clasie; Mark Dalton; AJI Daniel; Donal Day; Dipangkar Dutta; Lamiaa El Fassi; Rolf Ent; Howard Fenker; J. Ferrer; Nadia Fomin; H. Gao; K Garrow; Dave Gaskell; C Gray; G. Huber; M. Jones; N Kalantarians; C. Keppel; K Kramer; Y Li; Y Liang; A. Lung; S Malace; P. Markowitz; A. Matsumura; D. Meekins; T Mertens; T Miyoshi; H. Mykrtchyan; R. Monson; T. Navasardyan; G. Niculescu; I. Niculescu; Y. Okayasu; A. Opper; C Perdrisat; V. Punjabi; A. Rauf; V. Rodriguez; D. Rohe; J Seely; E Segbefia; G. Smith; M. Sumihama; V. Tadevoyan; L Tang; V. Tvaskis; A. Villano; W. Vulcan; F. Wesselmann; S. Wood; L. Yuan; X. Zheng

    2007-07-12T23:59:59.000Z

    The $^{1}$H($e,e^\\prime \\pi^+$)n cross section was measured for a range of four-momentum transfer up to $Q^2$=3.91 GeV$^2$ at values of the invariant mass, $W$, above the resonance region. The $Q^2$-dependence of the longitudinal component is consistent with the $Q^2$-scaling prediction for hard exclusive processes. This suggests that perturbative QCD concepts are applicable at rather low values of $Q^2$. Pion form factor results, while consistent with the $Q^2$-scaling prediction, are inconsistent in magnitude with perturbative QCD calculations. The extraction of Generalized Parton Distributions from hard exclusive processes assumes the dominance of the longitudinal term. However, transverse contributions to the cross section are still significant at $Q^2$=3.91 GeV$^2$.

  3. Experimental determination of the effective strong coupling constant

    SciTech Connect (OSTI)

    Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch

    2005-09-15T23:59:59.000Z

    We extract an effective strong coupling constant from low Q2 data on the Bjorken sum. Using sum rules, we establish its Q2-behavior over the complete Q2-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  4. Basics of advanced software Lecture 5 monoprocessor scheduling & basics of

    E-Print Network [OSTI]

    Navet, Nicolas

    ) that can be achieved on a CAN bus at 500 kbit/s ? · Q2: is it possible to trigger the opening of an airbag

  5. Generalized statistical methods for mixed exponential families

    E-Print Network [OSTI]

    Levasseur, Cécile

    2009-01-01T23:59:59.000Z

    sci.med vs. mac,ibm): kmeans on GLS subspace (q=2) Figureeconomic ROC curve, LDA after kmeans on latent subspace, q =

  6. Lead Slowing-Down Spectrometry Time Spectral Analysis for Spent Fuel Assay: FY12 Status Report

    SciTech Connect (OSTI)

    Kulisek, Jonathan A.; Anderson, Kevin K.; Casella, Andrew M.; Siciliano, Edward R.; Warren, Glen A.

    2012-09-28T23:59:59.000Z

    Executive Summary Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration, of which PNNL is a part, to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10% typical of today’s confirmatory methods. This document is a progress report for FY2012 PNNL analysis and algorithm development. Progress made by PNNL in FY2012 continues to indicate the promise of LSDS analysis and algorithms applied to used fuel assemblies. PNNL further refined the semi-empirical model developed in FY2011 based on singular value decomposition (SVD) to numerically account for the effects of self-shielding. The average uncertainty in the Pu mass across the NGSI-64 fuel assemblies was shown to be less than 3% using only six calibration assemblies with a 2% uncertainty in the isotopic masses. When calibrated against the six NGSI-64 fuel assemblies, the algorithm was able to determine the total Pu mass within <2% uncertainty for the 27 diversion cases also developed under NGSI. Two purely empirical algorithms were developed that do not require the use of Pu isotopic fission chambers. The semi-empirical and purely empirical algorithms were successfully tested using MCNPX simulations as well applied to experimental data measured by RPI using their LSDS. The algorithms were able to describe the 235U masses of the RPI measurements with an average uncertainty of 2.3%. Analyses were conducted that provided valuable insight with regard to design requirements (e.g. Pb stack size, neutron source location) of an LSDS for the purpose of assaying used fuel assemblies. Sensitivity studies were conducted that provide insight as to how the LSDS instrument can be improved by making it more sensitive to the center of the fuel assemblies. In FY2013, PNNL will continue efforts to develop and refine design requirements of an LSDS for the ultimate purpose of assaying used fuel assemblies. Future efforts will be directed toward more extensive experimental benchmarking of currently implemented time-spectra analysis algorithms.

  7. Screening Analysis for the Environmental Risk Evaluation System Task 2.1.1.2: Evaluating Effects of Stressors Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Copping, Andrea E.; Blake, Kara M.; Anderson, Richard M.; Zdanski, Laura C.; Gill, Gary A.; Ward, Jeffrey A.

    2011-09-01T23:59:59.000Z

    Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases. During FY 2011, two additional cases were added: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. Through an iterative process, the screening analysis revealed that top-tier stressors in the two FY 2011 cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted in early FY 2012. The ERES screening analysis provides an analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis is needed to determine specific risk levels to receptors. “Risk” has two components: (1) The likelihood, or “probability”, of the occurrence of a given interaction or event, and (2) the potential “consequence” if that interaction or event were to occur. During FY 2011, the ERES screening analysis focused primarily on the second component of risk, “consequence”, with focused probability analysis for interactions where data was sufficient for probability modeling. Consequence analysis provides an assessment of vulnerability of environmental receptors to stressors associated with MHK installations. Probability analysis is needed to determine specific risk levels to receptors and requires significant data inputs to drive risk models. During FY 2011, two stressor-receptor interactions were examined for the probability of occurrence. The two interactions (spill probability due to an encounter between a surface vessel and an MHK device; and toxicity from anti-biofouling paints on MHK devices) were seen to present relatively low risks to marine and freshwater receptors of greatest concern in siting and permitting MHK devices. A third probability analysis was scoped and initial steps taken to understand the risk of encounter between marine animals and rotating turbine blades. This analysis will be completed in FY 2012.

  8. Final Exam/Fall 1998 Math 351 Name (10) 1. Find a 2 × 2 matrix A ...

    E-Print Network [OSTI]

    1910-10-62T23:59:59.000Z

    ... be a 2 × 2 matrix, Q1 = [1, -1]t and Q2 = [3, -2]t. Assume that. AQ1 = 4Q1 , AQ2 = 9Q2. (i) Find an invertible matrix Q and a diagonal matrix D such that A = QDQ.

  9. Discrete Symmetries on the Light Front and a General Relation Connecting Nucleon Electric Dipole and Anomalous Magnetic Moments

    E-Print Network [OSTI]

    Brodsky, S J; Hwang, D S

    2006-01-01T23:59:59.000Z

    We consider the electric dipole form factor, F_3(q^2), as well as the Dirac and Pauli form factors, F_1(q^2) and F_2(q^2), of the nucleon in the light-front formalism. We derive an exact formula for F_3(q^2) to complement those known for F_1(q^2) and F_2(q^2). We derive the light-front representation of the discrete symmetry transformations and show that time-reversal- and parity-odd effects are captured by phases in the light-front wave functions. We thus determine that the contributions to F_2(q^2) and F_3(q^2), Fock-state by Fock-state, are related, independent of the fundamental mechanism through which CP violation is generated. Our relation is not specific to the nucleon, but, rather, is true of spin-1/2 systems in general, be they lepton or baryon. The empirical values of the anomalous magnetic moments, in concert with empirical bounds on the associated electric dipole moments, can better constrain theories of CP violation. In particular, we find that the neutron and proton electric dipole moments echo ...

  10. The Differential Effects of Oil Demand and Supply Shocks on the Global Economy

    E-Print Network [OSTI]

    Cashin, Paul; Mohaddes, Kamiar; Raissi, Maziar; Raissi, Mehdi

    2012-11-01T23:59:59.000Z

    We employ a set of sign restrictions on the generalized impulse responses of a Global VAR model, estimated for 38 countries/regions over the period 1979Q2.2011Q2, to discriminate between supply-driven and demand-driven oil-price shocks and to study...

  11. Basics of advanced software Lecture 5 monoprocessor scheduling & basics of

    E-Print Network [OSTI]

    Navet, Nicolas

    /s ? · Q2: is it possible to trigger the opening of an airbag· Q2: is it possible to trigger the opening of an airbag through a 125kbit/s CAN bus ? 30/03/2012N. Navet - Basics of Advanced Software Systems - Univers

  12. Moments of the Spin Structure Functions g_1^p and g_1^d for 0.05 3.0 GeV^2

    E-Print Network [OSTI]

    Y. Prok; P. Bosted; V. D. Burkert; A. Deur; K. V. Dharmawardane; G. E. Dodge; K. A. Griffioen; S. E. Kuhn; R. Minehart; the CLAS Collaboration

    2009-06-08T23:59:59.000Z

    The spin structure functions g_1 for the proton and the deuteron have been measured over a wide kinematic range in x and Q2 using 1.6 and 5.7 GeV longitudinally polarized electrons incident upon polarized NH_3 and ND_3 targets at Jefferson Lab. Scattered electrons were detected in the CEBAF Large Acceptance Spectrometer, for 0.05 < Q^2 < 5 GeV^2 and W < 3 GeV. The first moments of g_1 for the proton and deuteron are presented -- both have a negative slope at low Q^2, as predicted by the extended Gerasimov-Drell-Hearn sum rule. The first result for the generalized forward spin polarizability of the proton gamma_0^p is also reported. This quantity shows strong Q^2 dependence at low Q^2, while Q^6\\gamma_0^p seems to flatten out at the highest Q^2 accessed by our experiment. Although the first moments of g_1 are consistent with Chiral Perturbation Theory (ChPT) calculations up to approximately Q^2 = 0.06 GeV^2, a significant discrepancy is observed between the \\gamma_0^p data and ChPT for gamma_0^p, even at the lowest Q2.

  13. arXiv:1406.2962v1[hep-ph]11Jun2014 Reduction of the proton radius discrepancy by 3

    E-Print Network [OSTI]

    of the electric and magnetic Sachs form factors GE(Q2 ) and GM (Q2 ), respectively, that depend on the invariant approach was car- ried out by Hill and Paz [4]. In contrast to their analysis, we do not constrain

  14. Discrete Symmetries on the Light Front and a General Relation Connecting Nucleon Electric Dipole and Anomalous Magnetic Moments

    E-Print Network [OSTI]

    S. J. Brodsky; S. Gardner; D. S. Hwang

    2006-02-27T23:59:59.000Z

    We consider the electric dipole form factor, F_3(q^2), as well as the Dirac and Pauli form factors, F_1(q^2) and F_2(q^2), of the nucleon in the light-front formalism. We derive an exact formula for F_3(q^2) to complement those known for F_1(q^2) and F_2(q^2). We derive the light-front representation of the discrete symmetry transformations and show that time-reversal- and parity-odd effects are captured by phases in the light-front wave functions. We thus determine that the contributions to F_2(q^2) and F_3(q^2), Fock state by Fock state, are related, independent of the fundamental mechanism through which CP violation is generated. Our relation is not specific to the nucleon, but, rather, is true of spin-1/2 systems in general, be they lepton or baryon. The empirical values of the anomalous magnetic moments, in concert with empirical bounds on the associated electric dipole moments, can better constrain theories of CP violation. In particular, we find that the neutron and proton electric dipole moments echo the isospin structure of the anomalous magnetic moments, kappa^n ~ - kappa^p.

  15. Brian Foster -DIS01 -Bologna HERA II Physics

    E-Print Network [OSTI]

    V2 Q2 = 200 GeV2 Q2 = 2000 GeV2 #12;Brian Foster - DIS01 - Bologna 8 Active Filter Calorimeter ZEUS 6 systematics plus precision electron tagger. "Standard" Pb/scintillator calorimeter plus "active filter" of aerogel. Dipole spectrometer to measure converting e+e- pairs. "6m tagger" W/fibre to measure the energy

  16. Jets in Deep Inelasic Scattering at HERA Joachim Meyer

    E-Print Network [OSTI]

    Jets in Deep Inelasic Scattering at HERA Joachim Meyer DESY and CERN On behalf of H1 AND ZEUS with QCD predictions . Extraction of # s Joachim Meyer Rencontre des Moriond, Les Arc, March 2000 1 #12 ( ZEUS Detector) l l' Q 2 = ­q 2 p x Bj QPM Diagram Joachim Meyer Rencontre des Moriond, Les Arc, March

  17. Universidad Simn Bolvar FS2211 1er Parcial (30 %) Bloque B Departamento de Fsica Mircoles, 30 de Enero de 2013

    E-Print Network [OSTI]

    Vásquez, Carlos

    = +Q = +10-6 C; el valor de q2 queda por determinar. La masa de la carga de prueba es m0. q2 q1 q3 -q0.] Determine el campo eléctrico E en todas las regiones del espacio. (c) [2 pts.] Determine las densidades de

  18. Regularizing Inverse Problems

    E-Print Network [OSTI]

    Wang, Fang

    2014-06-26T23:59:59.000Z

    (q) include ?q??(2@L^(2 ) )??q??(2@H^(1) ), |q|BV and |q|TV. However, each of these has its limitations. In this work, we develop a novel H^(s) seminorm regularization method and present numerical results for model problems. This method relies...

  19. Momentum transfer dependence of the proton's electric and magnetic polarizabilities

    E-Print Network [OSTI]

    Hall, N L; Young, R D

    2014-01-01T23:59:59.000Z

    The Q^2-dependence of the sum of the electric and magnetic polarizabilities of the proton is calculated over the range 0 \\leq Q^2 \\leq 6 GeV^2 using the generalized Baldin sum rule. Employing a parametrization of the F_1 structure function valid down to Q^2 = 0.06 GeV^2, the polarizabilities at the real photon point are found by extrapolating the results of finite Q^2 to Q^2 = 0 GeV^2. We determine the evolution over four-momentum transfer to be consistent with the Baldin sum rule using photoproduction data, obtaining \\alpha + \\beta = 13.7 \\pm 0.7 \\times 10^{-4}\\, \\text{fm}^3.

  20. Near Threshold Neutral Pion Electroproduction at High Momentum Transfers and Generalized Form Factors

    E-Print Network [OSTI]

    P. Khetarpal; P. Stoler; I. G. Aznauryan; V. Kubarovsky; K. P. Adhikari; D. Adikaram; M. Aghasyan; M. J. Amaryan; M. D. Anderson; S. Anefalos Pereira; M. Anghinolfi; H. Avakian; H. Baghdasaryan; J. Ball; N. A. Baltzell; M. Battaglieri; V. Batourine; I. Bedlinskiy; A. S. Biselli; J. Bono; S. Boiarinov; W. J. Briscoe; W. K. Brooks; V. D. Burkert; D. S. Carman; A. Celentano; G. Charles; P. L. Cole; M. Contalbrigo; V. Crede; A. D'Angelo; N. Dashyan; R. De Vita; E. De Sanctis; A. Deur; C. Djalali; D. Doughty; M. Dugger; R. Dupre; H. Egiyan; A. El Alaoui; L. El Fassi; P. Eugenio; G. Fedotov; S. Fegan; R. Fersch; J. A. Fleming; A. Fradi; M. Y. Gabrielyan; M. Garçon; N. Gevorgyan; G. P. Gilfoyle; K. L. Giovanetti; F. X. Girod; J. T. Goetz; W. Gohn; E. Golovatch; R. W. Gothe; K. A. Griffioen; B. Guegan; M. Guidal; L. Guo; K. Hafidi; H. Hakobyan; C. Hanretty; N. Harrison; K. Hicks; D. Ho; M. Holtrop; C. E. Hyde; Y. Ilieva; D. G. Ireland; B. S. Ishkhanov; E. L. Isupov; H. S. Jo; K. Joo; D. Keller; M. Khandaker; A. Kim; W. Kim; F. J. Klein; S. Koirala; A. Kubarovsky; S. V. Kuleshov; N. D. Kvaltine; S. Lewis; K. Livingston; H. Y. Lu; I. J. D. MacGregor; Y. Mao; D. Martinez; M. Mayer; B. McKinnon; C. A. Meyer; T. Mineeva; M. Mirazita; V. Mokeev; R. A. Montgomery; H. Moutarde; E. Munevar; C. Munoz Camacho; P. Nadel-Turonski; R. Nasseripour; S. Niccolai; G. Niculescu; I. Niculescu; M. Osipenko; A. I. Ostrovidov; L. L. Pappalardo; R. Paremuzyan; K. Park; S. Park; E. Pasyuk; E. Phelps; J. J. Phillips; S. Pisano; O. Pogorelko; S. Pozdniakov; J. W. Price; S. Procureur; D. Protopopescu; A. J. R. Puckett; B. A. Raue; G. Ricco; D. Rimal; M. Ripani; G. Rosner; P. Rossi; F. Sabatié; M. S. Saini; C. Salgado; N. A. Saylor; D. Schott; R. A. Schumacher; E. Seder; H. Seraydaryan; Y. G. Sharabian; G. D. Smith; D. I. Sober; D. Sokhan; S. S. Stepanyan; S. Stepanyan; I. I. Strakovsky; S. Strauch; M. Taiuti; W. Tang; C. E. Taylor; S. Tkachenko; M. Ungaro; B. Vernarsky; H. Voskanyan; E. Voutier; N. K. Walford; L. B. Weinstein; D. P. Weygand; M. H. Wood; N. Zachariou; J. Zhang; Z. W. Zhao; I. Zonta

    2012-11-29T23:59:59.000Z

    We report the measurement of near threshold neutral pion electroproduction cross sections and the extraction of the associated structure functions on the proton in the kinematic range $Q^2$ from 2 to 4.5 GeV$^2$ and $W$ from 1.08 to 1.16 GeV. These measurements allow us to access the dominant pion-nucleon s-wave multipoles $E_{0+}$ and $S_{0+}$ in the near-threshold region. In the light-cone sum-rule framework (LCSR), these multipoles are related to the generalized form factors $G_1^{\\pi^0 p}(Q^2)$ and $G_2^{\\pi^0 p}(Q^2)$. The data are compared to these generalized form factors and the results for $G_1^{\\pi^0 p}(Q^2)$ are found to be in good agreement with the LCSR predictions, but the level of agreement with $G_2^{\\pi^0 p}(Q^2)$ is poor.

  1. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect (OSTI)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31T23:59:59.000Z

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  2. Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet

    SciTech Connect (OSTI)

    Daley, R.; Nangle, J.; Boeckman, G.; Miller, M.

    2014-05-01T23:59:59.000Z

    Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewable Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.

  3. Laboratory Directed Research and Development Program FY2011

    SciTech Connect (OSTI)

    none, none

    2012-04-27T23:59:59.000Z

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  4. Environmental Effects of Offshore Wind Development. Fiscal Year 2012 Progress Report

    SciTech Connect (OSTI)

    Copping, Andrea E.; Hanna, Luke A.; Butner, R. Scott; Carlson, Thomas J.; Halvorsen, Michele B.; Duberstein, Corey A.; Matzner, Shari; Whiting, Jonathan M.; Blake, Kara M.; Stavole, Jessica

    2012-09-30T23:59:59.000Z

    Potential environmental effects of offshore wind (OSW) energy projects are not well understood, and regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between OSW installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. To examine the environmental risks associated with OSW developments in the U.S. Pacific Northwest National Laboratory (PNNL) focused on the following four priority research areas in FY 2012: • Environmental Risk Evaluation System (ERES) - Followed project developments on the two OSW projects that PNNL screened in FY 2011 for environmental consequence: Fishermen’s Energy off the coast of Atlantic City, NJ and LEEDCo. near Cleveland, OH in Lake Erie. • Tethys - Developed a smart knowledge base which houses environmental research, data and information pertaining to OSW energy: • Technical Assessment - Produced a new software to create an automated process of identifying and differentiating between flying organism such as birds and bats by using thermal imagery; and • North Atlantic Right Whales - Developed an environmental risk management system to mitigate the impacts on North Atlantic Right Whales (NARW) during installation and piledriving stages of OSW developments. By identifying and addressing the highest priority environmental risks for OSW devices and associated installations the ERES process assists project proponents, regulators, and stakeholders to engage in the most efficient and effective siting and permitting pathways.

  5. Technical Assistance to Developers

    SciTech Connect (OSTI)

    Rockward, Tommy [Los Alamos National Laboratory; Borup, Rodney L. [Los Alamos National Laboratory; Garzon, Fernando H. [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Spernjak, Dusan [Los Alamos National Laboratory

    2012-07-17T23:59:59.000Z

    This task supports the allowance of technical assistance to fuel-cell component and system developers as directed by the DOE. This task includes testing of novel materials and participation in the further development and validation of single cell test protocols. This task also covers technical assistance to DOE Working Groups, the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. Drive) Fuel Cell Technology Team. Assistance includes technical validation of new fuel cell materials and methods, single cell fuel cell testing to support the development of targets and test protocols, and regular advisory participation in other working groups and reviews. This assistance is made available to PEM fuel cell developers by request and DOE Approval. The objectives are to: (1) Support technically, as directed by DOE, fuel cell component and system developers; (2) Assess fuel cell materials and components and give feedback to developers; (3) Assist the DOE Durability Working Group with the development of various new material durability Testing protocols; and (4) Provide support to the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Fuel Cell Technology Team. FY2012 specific technical objectives are: (1) Evaluate novel MPL materials; (2) Develop of startup/ shutdown protocol; (3) Test the impact of hydrophobic treatment on graphite bi-polar plates; (4) Perform complete diagnostics on metal bi-polar plates for corrosion; and (5) Participate and lead efforts in the DOE Working Groups.

  6. Marine Animal Alert System -- Task 2.1.5.3: Development of Monitoring Technologies -- FY 2011 Progress Report

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Deng, Zhiqun; Myers, Joshua R.; Matzner, Shari; Copping, Andrea E.

    2011-09-30T23:59:59.000Z

    The Marine Animal Alert System (MAAS) in development by the Pacific Northwest National Laboratory is focused on providing elements of compliance monitoring to support deployment of marine hydrokinetic energy devices. An initial focus is prototype tidal turbines to be deployed in Puget Sound in Washington State. The MAAS will help manage the risk of injury or mortality to marine animals from blade strike or contact with tidal turbines. In particular, development has focused on detection, classification, and localization of listed Southern Resident killer whales within 200 m of prototype turbines using both active and passive acoustic approaches. At the close of FY 2011, a passive acoustic system consisting of a pair of four-element star arrays and parallel processing of eight channels of acoustic receptions has been designed and built. Field tests of the prototype system are scheduled for the fourth quarter of calendar year 2011. Field deployment and testing of the passive acoustic prototype is scheduled for the first quarter of FY 2012. The design of an active acoustic system that could be built using commercially available off-the-shelf components from active acoustic system vendors is also in the final stages of design and specification.

  7. LANL C10.2 Projects in FY13

    SciTech Connect (OSTI)

    Batha, Steven H. [Los Alamos National Laboratory; Fincke, James R. [Los Alamos National Laboratory; Schmitt, Mark J. [Los Alamos National Laboratory

    2012-06-07T23:59:59.000Z

    LANL has two projects in C10.2: Defect-Induced Mix Experiment (DIME) (ongoing, several runs at Omega; NIF shots this summer); and Shock/Shear (tested at Omega for two years; NIF shots in second half of FY13). Each project is jointly funded by C10.2, other C10 MTEs, and Science Campaigns. DIME is investigating 4{pi} and feature-induced mix in spherically convergent ICF implosions by using imaging of the mix layer. DIME prepared for NIF by demonstrating its PDD mix platform on Omega including imaging mid-Z doped layers and defects. DIME in FY13 will focus on PDD symmetry-dependent mix and moving burn into the mix region for validation of mix/burn models. Re-Shock and Shear are two laser-driven experiments designed to study the turbulent mixing of materials. In FY-2012 43 shear and re-shock experimental shots were executed on the OMEGA laser and a complete time history obtained for both. The FY-2013 goal is to transition the experiment to NIF where the larger scale will provide a longer time period for mix layer growth.

  8. Continuing the Validation of CCIM Processability for Glass Ceramic HLLW Forms: Plan for Test AFY14CCIM-GC1

    SciTech Connect (OSTI)

    Vince Maio

    2014-04-01T23:59:59.000Z

    This test plan covers test AFY14CCIM-GC1which is the first of two scheduled FY-2014 test runs involving glass ceramic waste forms in the Idaho National Laboratory’s Cold Crucible Induction Melter Pilot Plant. The test plan is based on the successes and challenges of previous tests performed in FY-2012 and FY-2013. The purpose of this test is to continue to collect data for validating the glass ceramic High Level Liquid Waste form processability advantages using Cold Crucible Induction Melter technology. The major objective of AFYCCIM-GC1 is to complete additional proposed crucible pouring and post tapping controlled cooling experiments not completed during previous tests due to crucible drain failure. This is necessary to qualify that no heat treatments in standard waste disposal canisters are necessary for the operational scale production of glass ceramic waste forms. Other objectives include the production and post-test analysis of surrogate waste forms made from separate pours into the same graphite mold canister, testing the robustness of an upgraded crucible bottom drain and drain heater assembly, testing the effectiveness of inductive melt initiation using a resistive starter ring with a square wave configuration, and observing the tapped molten flow behavior in pans with areas identical to standard High Level Waste disposal canisters. Testing conditions, the surrogate waste composition, key testing steps, testing parameters, and sampling and analysis requirements are defined.

  9. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14T23:59:59.000Z

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  10. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    SciTech Connect (OSTI)

    Tao, L.; Schell, D.; Davis, R.; Tan, E.; Elander, R.; Bratis, A.

    2014-04-01T23:59:59.000Z

    For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costs only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.

  11. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19T23:59:59.000Z

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  12. Perform Tests and Document Results and Analysis of Oxide Layer Effects and Comparisons

    SciTech Connect (OSTI)

    Collins, E. D. [ORNL; DelCul, G. D. [ORNL; Spencer, B. B. [ORNL; Hunt, R. D. [ORNL; Ausmus, C. [ORNL

    2014-08-30T23:59:59.000Z

    During the initial feasibility test using actual used nuclear fuel (UNF) cladding in FY 2012, an incubation period of 30–45 minutes was observed in the initial dry chlorination. The cladding hull used in the test had been previously oxidized in a dry air oxidation pretreatment prior to removal of the fuel. The cause of this incubation period was attributed to the resistance to chlorination of an oxide layer imparted by the dry oxidation pretreatment on the cladding. Subsequently in 2013, researchers at the Korea Atomic Energy Institute (KAERI) reported on their chlorination study [R1] on ~9-gram samples of unirradiated ZirloTM cladding tubes that had been previously oxidized in air at 500oC for various time periods to impart oxide layers of varying thickness. In early 2014, discussions with Indefinite Delivery, Indefinite Quantity (IDIQ) contracted technical consultants from Westinghouse described their previous development (and patents) [R2] on methods of chemical washing to remove some or all of the hydrous oxide layer imparted on UNF cladding during irradiation in light water reactors (LWRs) . Thus, the Oak Ridge National Laboratory (ORNL) study, described herein, was planned to extend the KAERI study on the effects of anhydrous oxide layers, but on larger ~100-gram samples of unirradiated zirconium alloy cladding tubes, and to investigate the effects of various methods of chemical pretreatment prior to chlorination with 100% chlorine on the average reaction rates and Cl2 usage efficiencies.

  13. Study of Double Spin Asymmetries in Inclusive ep Scattering at Jefferson Lab

    SciTech Connect (OSTI)

    Kang, Hoyoung [Seoul National University, Seoul, Korea

    2014-08-01T23:59:59.000Z

    The spin structure of the proton has been investigated in the high Bjorken x and low momentum transfer Q^2 region. We used Jefferson Lab's polarized electron beam, a polarized target, and a spectrometer to get both the parallel and perpendicular spin asymmetries Apar and Aperp. These asymmetries produced the physics asymmetries A_1 and A_2 and spin structure functions g_1 and g_2. We found Q^2 dependences of the asymmetries at resonance region and higher-twist effects. Our result increases the available data on the proton spin structure, especially at resonance region with low Q^2. Moreover, A_2 and g_2 data show clear Q^2 evolution, comparing with RSS and SANE-BETA. Negative resonance in A_2 data needs to be examined by theory. It can be an indication of very negative transverse-longitudinal interference contribution at W ~ 1.3 GeV. Higher twist effect appears at the low Q^2 of 1.9 GeV^2, although it is less significant than lower Q^2 data of RSS. Twist03 matrix element d_2 was calculated using our asymmetry fits evaluation at Q^2 – 1.9 GeV^2. D-bar_2 = -0.0087±0.0014 was obtained by integrating 0.47 ? x ? 0.87.

  14. Power-like corrections and the determination of the gluon distribution

    E-Print Network [OSTI]

    F. Hautmann

    2006-10-06T23:59:59.000Z

    Power-suppressed corrections to parton evolution may affect the theoretical accuracy of current determinations of parton distributions. We study the role of multigluon-exchange terms in the extraction of the gluon distribution for the Large Hadron Collider (LHC). Working in the high-energy approximation, we analyze multi-gluon contributions in powers of 1/Q^2. We find a moderate, negative correction to the structure function's derivative d F_2 / d \\ln Q^2, characterized by a slow fall-off in the region of low to medium Q^2 relevant for determinations of the gluon at small momentum fractions.

  15. Update of MRST parton distributions.

    E-Print Network [OSTI]

    Thorne, Robert S; Martin, A D; Stirling, W James; Roberts, R G

    knowledge of the partonic structure of the proton is an essential ingredient in the analysis of hard scattering data from pp or p¯p or ep high energy collisions. Much at- tention has recently been devoted to obtaining reliable uncertainties on the parton... photons than dnV (x) quarks. To a rough approximation, the photon distribution should be ?(x,Q2) = ? j e2j ? 2pi ln(Q2/m2q) ? 1 x dy y P?q(y) qj( x y ,Q2). So there is more photon momentum in the proton than in the neutron due to high-x up quarks radiating...

  16. An analysis of $?_b^0 \\rightarrow ??^+?^-$ decays at the LHCb experiment

    E-Print Network [OSTI]

    L. Pescatore; for for the LHCb Collaboration

    2015-04-17T23:59:59.000Z

    The branching fraction of the rare decay $\\Lambda_b^0 \\rightarrow \\Lambda \\mu^+ \\mu^-$ is measured as a function of $q^2$, the square of the dimuon invariant mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb$^{-1}$, collected by the LHCb experiment. Evidence of signal is found for the first time in the $q^2$ region below the square of the J/$\\psi$ mass. In the $q^2$ intervals where the signal is observed, angular distributions are studied and two forward-backward asymmetries, in the dimuon and hadronic systems, are measured for the first time.

  17. Generalized Electric Polarizability of the Proton from Skyrme Model

    E-Print Network [OSTI]

    Myunggyu Kim; Dong-Pil Min

    1997-04-23T23:59:59.000Z

    We calculate the electric polarizability $\\alpha(q^2)$ of the proton in virtual Compton scattering using the Skyrme model. The $q^2$ dependence of the polarizability is comparable with the predictions obtained from the non-relativistic quark model and the linear sigma model. The chiral behaviors of our $\\alpha(0)$ and $d^2\\alpha(0)/d^2q^2$ agree with the results of the chiral perturbation theory. The discrepancy can be traced back to the contribution of the intermediate $\\Delta$ state degenerate with the $N$ which is a characteristic of a large-$N_C$ model.

  18. 3rd quarterly report - July 2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2

  19. Compito di Robotica II Origine: Automazione degli Impianti, 28 Giugno 1989

    E-Print Network [OSTI]

    De Luca, Alessandro

    al baricentro del rispettivo corpo rispetto ad un asse normale al piano del moto. 1. Derivare il prismatico con l'asse x0; q2 = la posizione del carico in punta rispetto all'asse del primo giunto. Hint

  20. Form factors for $\\mathrm B_\\mathrm s \\to \\mathrm K \\ell ?$ decays in Lattice QCD

    E-Print Network [OSTI]

    Felix Bahr; Fabio Bernardoni; John Bulava; Anosh Joseph; Alberto Ramos; Hubert Simma; Rainer Sommer

    2014-11-14T23:59:59.000Z

    We present the current status of the computation of the form factor $f_+ (q^2)$ for the semi-leptonic decay $\\mathrm B_\\mathrm s \\to \\mathrm K \\ell \