National Library of Energy BETA

Sample records for ozark plateau aquifer

  1. Modeling CO2 Sequestration in Saline Aquifer and Depleted Oil Reservoir To Evaluate Regional CO2 Sequestration Potential of Ozark Plateau Aquifer System, South-Central Kansas

    SciTech Connect (OSTI)

    Watney, W. Lynn; Rush, Jason; Raney, Jennifer

    2014-09-30

    1. Drilled, cored, and logged three wells to the basement and collecting more than 2,700 ft of conventional core; obtained 20 mi2 of multicomponent 3D seismic imaging and merged and reprocessed more than 125 mi2 of existing 3D seismic data for use in modeling CO2- EOR oil recovery and CO2 storage in five oil fields in southern Kansas. 2. Determined the technical feasibility of injecting and sequestering CO2 in a set of four depleted oil reservoirs in the Cutter, Pleasant Prairie South, Eubank, and Shuck fields in southwest Kansas; of concurrently recovering oil from those fields; and of quantifying the volumes of CO2 sequestered and oil recovered during the process. 3. Formed a consortium of six oil operating companies, five of which own and operate the four fields. The consortium became part of the Southwest Kansas CO2-EOR Initiative for the purpose of sharing data, knowledge, and interest in understanding the potential for CO2-EOR in Kansas. 4. Built a regional well database covering 30,000 mi2 and containing stratigraphic tops from ~90,000 wells; correlated 30 major stratigraphic horizons; digitized key wells, including wireline logs and sample logs; and analyzed more than 3,000 drill stem tests to establish that fluid levels in deep aquifers below the Permian evaporites are not connected to the surface and therefore pressures are not hydrostatic. Connectivity with the surface aquifers is lacking because shale aquitards and impermeable evaporite layers consist of both halite and anhydrite. 5. Developed extensive web applications and an interactive mapping system that do the following: a. Facilitate access to a wide array of data obtained in the study, including core descriptions and analyses, sample logs, digital (LAS) well logs, seismic data, gravity and magnetics maps, structural and stratigraphic maps, inferred fault traces, earthquakes, Class I and II disposal wells, and

  2. Ozark Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ozark Ethanol Place: Missouri Zip: 64762 Product: Missouri-based bioethanol producer planning to develop a 204m-litre per year ethanol plant in Vernon County. References: Ozark...

  3. REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    SciTech Connect (OSTI)

    R.G. Allis; J. Moore; S. White

    2003-06-30

    The six coal-fired power plants located in the Colorado Plateau and southern Rocky Mountain region of the U.S. produce 100 million tons of CO{sub 2} per year. Thick sequences of collocated sedimentary rocks represent potential sites for sequestration of the CO{sub 2}. Field and laboratory investigations of naturally occurring CO{sub 2}-reservoirs are being conducted to determine the characteristics of potential seal and reservoir units and the extent of the interactions that occur between the host rocks and the CO{sub 2} charged fluids. The results are being incorporated into a series of two-dimensional numerical models that represent the major chemical and physical processes induced by injection. During reporting period covered here (March 30 to June 30, 2003), the main achievements were: Presentation of three papers at the Second Annual Conference on Carbon Sequestration (May 5-8, Alexandria, Virginia); Presentation of a poster at the American Association of Petroleum Geologists meeting; Co-PI organized and chaired a special session on Geologic Carbon Dioxide Sequestration at the American Association of Petroleum Geologists annual convention in Salt Lake City (May 12-15).

  4. REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    SciTech Connect (OSTI)

    R.G. Allis; J. Moore; S. White

    2003-10-21

    Field and laboratory investigations of naturally occurring CO{sub 2}-reservoirs are being conducted to determine the characteristics of potential seal and reservoir units and the extent of the interactions that occur between the host rocks and the CO{sub 2} charged fluids. Efforts have focused on the Farnham Dome field, located in central Utah, and the Springerville-St. Johns field in Arizona and New Mexico. The Springerville-St. Johns field is particularly significant because of the presence of extensive travertine deposits that document release of CO{sub 2} to the atmosphere. CO{sub 2} accumulations at both fields occur in sedimentary rocks typical of CO{sub 2} reservoirs occurring on the Colorado Plateau. The main achievements during this quarter were: (1) a soil gas flux survey at the Springerville-St Johns field, (2) collection of some soil gas for chemical and isotopic analysis from this field, and (3) collection of travertine samples from an elevation range of over 1000 feet (330 m) for dating the time span of carbonate-saturated spring outflow at this field. Analytical results and interpretations are still in progress. When available they will allow contrast with soil gas measurements from Farnham Dome natural CO{sub 2} field in central Utah, which were reported in the previous quarterly report.

  5. REACTIVE MULTIPHASE BEHAVIOR OF CO{sub 2} IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    SciTech Connect (OSTI)

    R.G. Allis; J. Moore; S. White

    2005-02-08

    Soil gas surveys have been carried out on the Colorado Plateau over areas with natural occurrences of CO{sub 2}. At Farnham Dome, Utah, and Springerville-St. Johns, Arizona, proven CO{sub 2} reservoirs occur at 600-800 m depth, but no anomalous soil gas CO{sub 2} flux was detected. Background CO{sub 2} fluxes of up to about 5 g m{sup -2} day{sup -1} were common in arid, poorly vegetated areas, and fluxes up to about 20 g m{sup -2} day{sup -1} were found at Springerville-St. Johns in heavily vegetated, wet ground adjacent to springs. These elevated fluxes are attributed to shallow root zone activity rather than to a deep upflow of CO{sub 2}. Localized areas of anomalously high CO{sub 2} gas flux ({approx} 100 g m{sup -2} day{sup -1}) were documented along the Little Grand Wash Fault Zone near Crystal Geyser, Utah and nearby in Ten Mile Graben, but those in Ten Mile Graben are not directly associated with the major faults. In both areas, features with a visible gas flux are present. Isotopic measurements on the CO{sub 2} gas confirm that it originated at depth. Evidence of widespread vein calcite at the surface at Farnham Dome and travertine deposits in the other areas suggests that there has been an outflow of CO{sub 2}-rich fluids in the past. 14C ages of pollen trapped in the travertine at Springerville-St. Johns record a period of CO{sub 2} leakage to the atmosphere between 887 {+-} 35 and 3219 {+-} 30 years BP. No travertine deposits appear to be currently forming. At Springerville-St. Johns, Crystal Geyser and Ten Mile Graben, there are significant outflows of high-bicarbonate water. Movement of CO{sub 2}-rich groundwaters may be the dominant mechanism controlling the mobility of CO{sub 2} today. The very localized nature of the soil gas anomalies, evidence of large scale discharge of CO{sub 2} over a very short period of time and the outflow of ground water containing dissolved CO{sub 2} will present challenges for effective, long term monitoring of CO{sub 2

  6. REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    SciTech Connect (OSTI)

    R.G. Allis; J. Moore; S. White

    2003-01-30

    Gas reservoirs developed within the Colorado Plateau and Southern Rocky Mountains region are natural laboratories for studying the factors that promote long-term storage of CO{sub 2}. They also provide sites for storing additional CO{sub 2} if it can be separated from the flue gases of coal-fired power plants in this part of the U.S.A. These natural reservoirs are developed primarily in sandstones and dolomites; shales, mudstones and anhydrite form seals. In many fields, stacked reservoirs are present, indicating that the gas has migrated up through the section. There are also geologically young travertine deposits at the surface, and CO{sub 2}-charged groundwater and springs in the vicinity of known CO{sub 2} occurrences. These near-surface geological and hydrological features also provide examples of the environmental effects of leakage of CO{sub 2} from reservoirs, and justify further study. During reporting period covered here (the first quarter of Year 3 of the project, i.e. October 1-December 31, 2002), the main achievements were: (1) Planning workshop for project participants as well as other Utah researchers involved in CO{sub 2} projects (22 October, 2002), and Utah Geological Survey, Salt Lake City; (2) Presentation of paper to special CO{sub 2} sequestration session at the Geological Society of America Annual Meeting, Denver, 29 October, 2002; (3) Presentation of paper to special CO{sub 2} sequestration session at the Fall Meeting of American Geophysical Union, San Francisco, 10 December, 2002; (4) Identification of dawsonite (sodium-aluminum carbonate) as a late stage mineral deposited in CO{sub 2} feedzone at Springerville, Arizona; (5) Successful matching of known physical constraints to flow beneath the Hunter cross section being used to simulate the effects of CO{sub 2} injection. In about 1000 years, most injected CO{sub 2} may be lost to the surface from the three shallowest reservoirs considered, assuming no reactive processes; and (6) Inclusion

  7. Ozark Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Coop Inc Place: Missouri Phone Number: 417-466-2144 Website: www.ozarkelectric.com Facebook: https:www.facebook.comOzarkElectric Outage Hotline: 1-800-947-6393 Outage Map:...

  8. Ozark Border Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    Border Electric Coop Jump to: navigation, search Name: Ozark Border Electric Coop Place: Missouri Phone Number: 573-785-4631 or 1-800-392-0567 Website: ozarkborder.org Facebook:...

  9. REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST: ... Title: REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST: PROPOSING A NEW ...

  10. Ozark Border Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Ozark Border Electric Cooperative has made rebates available to residential members for the installation of energy efficient geothermal and air source heat pumps, electric water heaters, and room...

  11. Ozarks Electric Cooperative- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Ozarks Electric Cooperative, a Touchstone Energy Cooperative, offers the Energy Resource Conservation (ERC) Loan Program to residential members to help make energy efficiency improvements in...

  12. Computed solid phases limiting the concentration of dissolved constituents in basalt aquifers of the Columbia Plateau in eastern Washington. Geochemical modeling and nuclide/rock/groundwater interaction studies

    SciTech Connect (OSTI)

    Deutsch, W.J.; Jenne, E.A.; Krupka, K.M.

    1982-08-01

    A speciation-solubility geochemical model, WATEQ2, was used to analyze geographically-diverse, ground-water samples from the aquifers of the Columbia Plateau basalts in eastern Washington. The ground-water samples compute to be at equilibrium with calcite, which provides both a solubility control for dissolved calcium and a pH buffer. Amorphic ferric hydroxide, Fe(OH)/sub 3/(A), is at saturation or modestly oversaturated in the few water samples with measured redox potentials. Most of the ground-water samples compute to be at equilibrium with amorphic silica (glass) and wairakite, a zeolite, and are saturated to oversaturated with respect to allophane, an amorphic aluminosilicate. The water samples are saturated to undersaturated with halloysite, a clay, and are variably oversaturated with regard to other secondary clay minerals. Equilibrium between the ground water and amorphic silica presumably results from the dissolution of the glassy matrix of the basalt. The oversaturation of the clay minerals other than halloysite indicates that their rate of formation lags the dissolution rate of the basaltic glass. The modeling results indicate that metastable amorphic solids limit the concentration of dissolved silicon and suggest the same possibility for aluminum and iron, and that the processes of dissolution of basaltic glass and formation of metastable secondary minerals are continuing even though the basalts are of Miocene age. The computed solubility relations are found to agree with the known assemblages of alteration minerals in the basalt fractures and vesicles. Because the chemical reactivity of the bedrock will influence the transport of solutes in ground water, the observed solubility equilibria are important factors with regard to chemical-retention processes associated with the possible migration of nuclear waste stored in the earth's crust.

  13. REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST...

    Office of Scientific and Technical Information (OSTI)

    REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST: PROPOSING A NEW ... Title: REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST: PROPOSING A NEW ...

  14. REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST...

    Office of Scientific and Technical Information (OSTI)

    REGULATION OF CARBON SEQUESTRATION AND WATER USE IN A OZARK FOREST: PROPOSING A NEW STRATEGICALLY LOCATED AMERIFLUX TOWER SITE IN MISSOURI Pallardy, Stephen G 59 BASIC BIOLOGICAL...

  15. New Particle Formation and Growth in an Isoprene-Dominated Ozark...

    Office of Scientific and Technical Information (OSTI)

    New Particle Formation and Growth in an Isoprene-Dominated Ozark Forest: From Sub-5 nm to CCN-Active Sizes Citation Details In-Document Search Title: New Particle Formation and ...

  16. Regional assessment of aquifers for thermal energy storage. Volume 1. Regions 1 through 6

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: the Western Mountains; Alluvial Basins; Columbia LAVA Plateau; Colorado Plateau; High Plains; and Glaciated Central Region. (LCL)

  17. Central Plateau - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Central Plateau, or 200 Area, contains former plutonium fuel processing facilities, waste disposal areas and industrial-sized facilities that once refined plutonium fuel into...

  18. CX-002609: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate Regional Carbon Dioxide Sequestration Potential of Ozark Plateau Aquifer System, South-Central KansasCX(s) Applied: B3.1, A9Date: 12/11/2009Location(s): Wichita, KansasOffice(s): Fossil Energy, National Energy Technology Laboratory

  19. CX-002612: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate Regional Carbon Dioxide Sequestration Potential of Ozark Plateau Aquifer System, South-Central KansasCX(s) Applied: B3.1, A9Date: 12/11/2009Location(s): Lawrence, KansasOffice(s): Fossil Energy, National Energy Technology Laboratory

  20. DRAFT Central Plateau Cleanup Strategy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matt McCormick, DOE-RL Hanford Advisory Board Committee of the Whole Meeting May 12, 2010 Proposed Tri-Party Agreement Changes to Central Plateau Cleanup Work 2 Purpose * Provide overview of the proposed TPA change packages - Central Plateau cleanup - Mixed low-level and transuranic mixed waste milestones (M-091 Series) Proposed Central Plateau Cleanup Milestones 3 4 Proposed TPA Changes for Comprehensive Central Plateau Cleanup Approach Overview - Proposed TPA Changes for Comprehensive Central

  1. DOE Selects CH2M Hill Plateau Remediation Company for Plateau...

    Office of Environmental Management (EM)

    CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its ...

  2. EA-1629:Southwestern Power Administration Utility Corridor and Tower Site Vegetation Management; Ozark-St. Francis National Forest, Pope and Searcy Counties, Arkansas

    Broader source: Energy.gov [DOE]

    U.S. Forest Service prepared an EA that evaluated the potential environmental impacts of amending a Southwestern Area Power Administration (SWPA) permit to allow herbicide application within SWPA transmission line rights-of-way in the Ozark-St. Francis National Forest. SWPA initially was a cooperating agency, and later ended its involvement in preparing the EA.

  3. River and Plateau Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/15 River and Plateau Committee Priorities for advice on FY17 budget Not in priority order, numbering refers to last year's related advice points, per DOE response  (#1) The Board strongly urges DOE-Headquarters (HQ) to request full funding from Congress to meet all legal requirements of the ongoing cleanup work in FY 2016 and 2017 in addition to the following specific requests.  (#5) The Board advises DOE-RL to restore funding for removal and treatment of thousands of stored containers

  4. Groundwater in the Regional Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater in the Regional Aquifer Groundwater in the Regional Aquifer LANL maintains an ... August 1, 2013 Conceptual model of water movement and geology at Los Alamos National ...

  5. Plateau Electric Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Plateau Electric Cooperative Jump to: navigation, search Name: Plateau Electric Cooperative Place: Tennessee Phone Number: 423-569-8591 Website: www.plateauelectric.com Facebook:...

  6. Central Plateau Principles Public Involvement Advice DETAILED...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    v0, 12914 Central Plateau Principles Public Involvement Advice DETAILED BACKGROUND Cleanup of Hanford's Central Plateau is expected to take another four decades or longer, and...

  7. PIA - Plateau Training System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plateau Training System PIA - Plateau Training System PIA - Plateau Training System PIA - Plateau Training System (400.71 KB) More Documents & Publications Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory PIA - GovTrip (DOE data)

  8. THE SNAKE RIVER PLAIN AQUIFER THE SNAKE RIVER PLAIN AQUIFER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aquifer THE INL & THE SNAKE RIVER PLAIN AQUIFER THE SNAKE RIVER PLAIN AQUIFER underneath the Idaho National Laboratory is one of the most productive groundwater resources in the U.S. Each year about 2 million acre-feet of water is drawn from the aquifer. Approximately 95 percent of the water withdrawn from the aquifer is used for irrigation, 3 per- cent for domestic water, and 2 percent for industrial purposes. The aquifer is the primary water source for more than 280,000 people in

  9. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    SciTech Connect (OSTI)

    BERGMAN, T. B.; STEFANSKI, L. D.; SEELEY, P. N.; ZINSLI, L. C.; CUSACK, L. J.

    2012-09-19

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  10. J-1 APPENDIX J Central Plateau Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J-1 APPENDIX J Central Plateau Facilities Purpose and Description Appendix J, Central Plateau Facilities, is focused on Central Plateau facilities that are anticipated to require a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) response action for cleanup. The following information will be contained in Appendix J: Central Plateau facilities determined by the Tri-Parties, in accordance with the Graded Approach process described in Section 8 of the Action Plan, to

  11. Radiogenic and Stable Isotope and Hydrogeochemical Investigation of Groundwater, Pajarito Plateau and Surrounding Areas, New Mexico

    SciTech Connect (OSTI)

    Patrick Longmire, Michael Dale, Dale Counce, Andrew Manning, Toti Larson, Kim Granzow, Robert Gray, and Brent Newman

    2007-07-15

    From October 2004 through February 2006, Los Alamos National Laboratory, the New Mexico Environment Department-Department of Energy Oversight Bureau, and the United States Geological Survey conducted a hydrochemical investigation. The purpose of the investigation was to evaluate groundwater flow paths and determine groundwater ages using tritium/helium-3 and carbon-14 along with aqueous inorganic chemistry. Knowledge of groundwater age and flow paths provides a technical basis for selecting wells and springs for monitoring. Groundwater dating is also relevant to groundwater resource management, including aquifer sustainability, especially during periods of long-term drought. At Los Alamos, New Mexico, groundwater is either modern (post-1943), submodern (pre-1943), or mixed (containing both pre- and post-1943 components). The regional aquifer primarily consists of submodern groundwater. Mixed-age groundwater results from initial infiltration of surface water, followed by mixing with perched alluvial and intermediate-depth groundwater and the regional aquifer. No groundwater investigation is complete without using tritium/helium-3 and carbon-14 dating methods to quantify amounts of modern, mixed, and/or submodern components present in samples. Computer models of groundwater flow and transport at Los Alamos should be calibrated to groundwater ages for perched intermediate zones and the regional aquifer determined from this investigation. Results of this study clearly demonstrate the occurrence of multiple flow paths and groundwater ages occurring within the Sierra de los Valles, beneath the Pajarito Plateau, and at the White Rock Canyon springs. Localized groundwater recharge occurs within several canyons dissecting the Pajarito Plateau. Perched intermediate-depth groundwater and the regional aquifer beneath Pueblo Canyon, Los Alamos Canyon, Sandia Canyon, Mortandad Canyon, Pajarito Canyon, and Canon de Valle contain a modern component. This modern component consists

  12. DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contract at its Hanford Site | Department of Energy CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site June 19, 2008 - 1:29pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that CH2M Hill Plateau Remediation Company has been selected as the plateau remediation contractor for DOE's Hanford Site in southeastern Washington

  13. Southern Colorado Plateau Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Home Southern Colorado Plateau Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: Name "The Colorado Plateau is a high...

  14. Independent Oversight Review, Hanford Site CH2M Hill Plateau...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CH2M Hill Plateau Remediation Company - November 2012 Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation Company - November 2012 November 2012 Review of the...

  15. Mapping the Caja del Rio plateau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Caja del Rio plateau Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Mapping the Caja del Rio plateau Lab retiree increases access for outdoor enthusiasts. June 2, 2016 Equestrian Deirdre Monroe worked for the Weapon Systems Engineering Division's Detonator Technology group. Equestrian Deirdre Monroe worked for the Weapon Systems Engineering Division's Detonator Technology

  16. Groundwater in the Regional Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater in the Regional Aquifer Groundwater in the Regional Aquifer LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Conceptual model of water movement and geology at Los Alamos National Laboratory Conceptual model of water movement and geology at Los Alamos National Laboratory RELATED IMAGES http://farm4.staticflickr.com/3749/9827580556_473a91fd78_t.jpg Enlarge http://farm3.staticflickr.com/2856/9804364405_b25f74cbb2_t.jpg En

  17. Central Plateau Cleanup Final Comments and Responses Document on Proposed Changes to Central Plateau Cleanup Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Responses on Proposed TPA Changes to Central Plateau Cleanup Final Comments and Responses Document on Proposed Changes to Central Plateau Cleanup Page 1 Comments and Responses to the Tentative Agreement on Hanford Federal Facility Agreement and Consent Order Implementing Changes to Central Plateau Cleanup October 2010 Comments and Responses on Proposed TPA Changes to Central Plateau Cleanup Final Comments and Responses Document on Proposed Changes to Central Plateau Cleanup Page 2 Public

  18. REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    SciTech Connect (OSTI)

    R.G. Allis; J. Moore; S. White

    2005-05-16

    Soil CO{sub 2} flux surveys have been conducted over known CO{sub 2} reservoirs at Farnham Dome, Utah, Crystal Geyser-Ten Mile Graben in Utah and Springerville-St. Johns, Arizona. No anomalous CO{sub 2} flux was detected at the Farnham Dome and Springerville-St. Johns. At Crystal Geyser-Ten Mile Graben, localized areas of anomalously high CO{sub 2} flux ({approx}100 g m{sup -2} day{sup -1}) occur along a fault zone near visibly degassing features. Isotopic measurements on CO{sub 2} collected from nearby springs indicate that it originated at depth. Evidence of widespread vein calcite at the surface (Farnham Dome) and travertine deposits at the other two areas suggests that discharge of CO{sub 2}-rich fluids has occurred in the past. Despite the lack of evidence for significant present day leakage of CO{sub 2} to the atmosphere at Springerville-St. Johns and Crystal Geyser-Ten Mile Graben, there are significant outflows of high-bicarbonate water in both areas suggesting continuous migration of CO{sub 2} in the aqueous phase from depth. The very localized nature of the CO{sub 2} flux anomalies, and the outflow of ground water containing dissolved CO{sub 2} present challenges for effective, long term monitoring of CO{sub 2} leakage.

  19. Draft Public Involvement Advice for Central Plateau Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    V0, 12/9/14 Draft Public Involvement Advice for Central Plateau Cleanup Principles Issue managers: Pollet, Mattson, Vanni, Plahuta, Catrell Background The Tri-Party Agencies are developing principles that will guide the cleanup of Hanford's Central Plateau. The Hanford Advisory Board (HAB) believes that the broader public should be involved in the development of these principles. Hanford's Central Plateau is planned to be the final footprint of the Hanford Site. The Central Plateau contains

  20. CH2M HILL Plateau Remediation Company - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracting CH2M HILL Plateau Remediation Company Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM Corporation (HPMC) Wastren Advantage, Inc. Bechtel National, Inc. Washington River Protection Solutions CH2M HILL Plateau Remediation Company Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size CH2M CH2M HILL Plateau Remediation Company is the prime

  1. An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site

    SciTech Connect (OSTI)

    Jensen, E.J.

    1987-10-01

    During 1986, Pacific Northwest Laboratory conducted a study of a portion of the Rattlesnake Ridge aquifer (confined aquifer) that lies beneath the B Pond - Gable Mountain Pond area of the Hanford Site. The purpose was to determine the extent of intercommunication between the unconfined aquifer and the uppermost regionally extensive confined aquifer, referred to as the Rattlesnake Ridge aquifer. Hydraulic head data and chemical data were collected from the ground water in the study area during December 1986. The hydraulic head data were used to determine the effects caused by water discharged to the ground from B Pond on both the water table of the unconfined aquifer and the potentiometric surface of the confined aquifer. The chemical data were collected to determine the extent of chemical constituents migrating from the unconfined aquifer to the confined aquifer. Analysis of chemical constituents in the Rattlesnake Ridge aquifer demonstrated that communication between the unconfined and confined aquifers had occurred. However, the levels of contaminants found in the Rattlesnake Ridge aquifer during this study were below the DOE Derived Concentration Guides.

  2. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Aquifer Underground Natural Gas Storage Reservoir Configuration Aquifer Underground Natural Gas Well

  3. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground ...

  4. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA)

    SciTech Connect (OSTI)

    Seco, Roger; Karl, Thomas; Guenther, Alex B.; Hosman, Kevin P.; Pallardy, Stephen G.; Gu, Lianhong; Geron, Chris; Harley, Peter; Kim, Saewung

    2015-07-07

    Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegeta-tion and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately repre-sented for accurately modeling the coupled biosphere–atmosphere–climate earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. We describe the diur-nal and seasonal variation in isoprene, monoterpene, and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were domi-nated by isoprene, which attained high emission rates of up to 35.4 mg m-2h-1 at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which high-lights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Never-theless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, conflrming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7–17 h) assimilated carbon released back to the atmosphere combining the three BVOCs measured was 2% of gross primary productivity (GPP) and 4.9% of net ecosystem exchange (NEE) on average for our whole measurement cam-paign, while exceeding 5% of GPP and 10% of NEE just before the strongest drought phase. The MEGANv2.1 model correctly predicted diurnal variations in fluxes driven mainly by light and temperature, although further research is needed to address model BVOC fluxes

  5. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Seco, Roger; Karl, Thomas; Guenther, Alex; Hosman, Kevin P.; Pallardy, Stephen G.; Gu, Lianhong; Geron, Chris; Harley, Peter; Kim, Saewung

    2015-07-07

    Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegetation and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately represented for accurately modeling the coupled biosphere–atmosphere–climate earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. Here, we describe the diurnal and seasonal variation in isoprene, monoterpene, and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were dominated by isoprene,more » which attained high emission rates of up to 35.4 mg m 2 h 1 at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which highlights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Nevertheless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, confirming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7–17 h) assimilated carbon released back to the atmosphere combining the three BVOCs measured was 2% of gross primary productivity (GPP) and 4.9% of net ecosystem exchange (NEE) on average for our whole measurement campaign, while exceeding 5% of GPP and 10% of NEE just before the strongest drought phase. In conclusion, the MEGANv2.1 model correctly predicted diurnal variations in fluxes driven mainly by light and temperature, although further research is needed to address model BVOC fluxes during drought events.« less

  6. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA)

    SciTech Connect (OSTI)

    Seco, Roger; Karl, Thomas; Guenther, Alex; Hosman, Kevin P.; Pallardy, Stephen G.; Gu, Lianhong; Geron, Chris; Harley, Peter; Kim, Saewung

    2015-07-07

    Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegetation and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately represented for accurately modeling the coupled biosphere–atmosphere–climate earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. Here, we describe the diurnal and seasonal variation in isoprene, monoterpene, and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were dominated by isoprene, which attained high emission rates of up to 35.4 mg m 2 h 1 at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which highlights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Nevertheless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, confirming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7–17 h) assimilated carbon released back to the atmosphere combining the three BVOCs measured was 2% of gross primary productivity (GPP) and 4.9% of net ecosystem exchange (NEE) on average for our whole measurement campaign, while exceeding 5% of GPP and 10% of NEE just before the strongest drought phase. In conclusion, the MEGANv2.1 model correctly predicted diurnal variations in fluxes driven mainly by light and temperature, although further research is needed to address model BVOC fluxes during drought

  7. Draft Public Involvement Advice for Central Plateau Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    V0, 12914 Draft Public Involvement Advice for Central Plateau Cleanup Principles Issue managers: Pollet, Mattson, Vanni, Plahuta, Catrell Background The Tri-Party Agencies are...

  8. CH2M HILL Plateau Remediation Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company The Office of Hea1th, Safety and Security's Office of Enforcement and Oversight has evaluated the facts and circumstances of a series of radiological work deficiencies at the Plutonium Finishing Plant (PFP) and the 105 K-East Reactor Facility (105KE Reactor) by CH2M HILL Plateau Remediation Company (CHPRC). The radiological work deficiencies at PFP are documented in the April 29, 2011, Department of Energy Richland

  9. Central Plateau Principles Public Involvement Advice DETAILED BACKGROUND

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    v0, 12/9/14 Central Plateau Principles Public Involvement Advice DETAILED BACKGROUND Cleanup of Hanford's Central Plateau is expected to take another four decades or longer, and cost tens of billions of dollars. The Central Plateau includes the 200 East and 200 West Areas with all of Hanford's High-Level Nuclear Waste Tank Farms, processing plants, sites where over a million gallons of High-Level Nuclear Waste has leaked from Single Shell Tanks (SSTs), and billions of gallons of waste was

  10. 30 TAC 213 - Edwards Aquifer | Open Energy Information

    Open Energy Info (EERE)

    13 - Edwards Aquifer Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 30 TAC 213 - Edwards AquiferLegal Published NA Year...

  11. Aquifer thermal energy storage. International symposium: Proceedings

    SciTech Connect (OSTI)

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  12. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recharge | Stanford Synchrotron Radiation Lightsource Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge Monday, February 29, 2016 Managed aquifer recharge (MAR) is an increasingly used water enhancement strategy, which involves subsurface storage of water supplies in groundwater aquifers. While MAR projects have the potential to alleviate water deficits, they can also adversely impact groundwater quality by altering the native geochemistry of the aquifer and

  13. Microsoft Word - HABAdv#226_Central Plateau Completion.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (509) 942-1926 HAB Consensus Advice 226 Subject: Central Plateau Cleanup Completion Strategy Adopted: February 5, 2010 Page 1 February 5, 2010 David Brockman, Manager U.S....

  14. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RIVER AND PLATEAU COMMITTEE August 6, 2013 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 100-N Remedial Investigation/Feasibility Study and Proposed Plan Draft A: Part 1, Presentation and Q&A

  15. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE March 9, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions ............................................................................................................ 1 Update on 324 Building - B Cell Contamination ........................................................................... 2 CERCLA Five-Year review

  16. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 18, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE April 18, 2012 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 TRU Discussion Topics ................................................................................................................................ 2 324 Building B-Cell Remediation

  17. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE May 8, 2013 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Advice Development Regarding the 300 Area Remedial Investigation/Feasibility Study and Proposed Plan Revision 0

  18. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE May 11, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions .......................................................................................................................... 1 Update on Building 324 - B Cell Contamination ......................................................................................... 3 K Area

  19. Microsoft Word - RAP_Central_Plateau_Milestones_Draft_Advice.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TPA Proposed Changes to Hanford Central Plateau Cleanup Work and Schedule Authors: Cimon, Niles, Catrell, Bouchey, Garnant, Vanni, Mattson, Engstrom, Serres, Leckband Originating Committee: River and Plateau Version #1 :Color: __pink__yellow__green__salmon__purple_X_blue Background (paragraphs numbered to aid review) 1. The Hanford Advisory Board (Board) provides the Tri-Party Agreement (TPA) agencies with policy advice that reflects the Board's core values related to Hanford cleanup. These

  20. DOE - Office of Legacy Management -- Plateau Shootaring Canyon Site - 034

    Office of Legacy Management (LM)

    Plateau Shootaring Canyon Site - 034 FUSRAP Considered Sites Site: Plateau Shootaring Canyon Site (034 ) Active UMTRCA Title II site; when complete, site will be managed by LM Designated Name: Not Designated under FUSRAP Alternate Name: Shootaring Canyon, UT, Disposal Site Location: Garfield County, Utah Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Disposal site Site Disposition: Remediation under UMTRCA Title II - site not ready to transition Radioactive

  1. Dendroclimatic reconstructions for the southern Colorado plateau

    SciTech Connect (OSTI)

    Dean, J.S.; Funkhouser, G.S.

    1995-09-01

    A geographical network of climate sensitive tree-ring chronologies consisting of 25 archaeological sequences and two bristlecone pine series provides the basis for high resolution reconstructions of low and high frequency climatic variability on the southern Colorado Plateau over the last 1,500 years. Qualitative and quantitative dendroclimatic analyses of these data produce annual retrodictions of yearly and seasonal precipitation and summer Palmer Drought Severity Indices for each station and reconstructions of regional scale patterns in climatic variability. These reconstructions provide detailed information on climatic fluctuations that affected biotic and human populations as well as long-term baseline data for evaluating present-day climate and estimating future climatic trends. When integrated with other measures of past environmental variability, these reconstructions specify periods of favorable and unfavorable environmental conditions that would have affected past human populations of the region. The severest degradation, which occurred between A.D. 1250 and 1450, probably was causally related to numerous cultural changes that occurred at the end of the l3th century including the Anasazi abandonment of the Four Comers area. Projecting environmental patterns that characterized the last two millennia into the future indicates potential hazards to long term uranium mill waste disposal and containment and the potential and limitations of environmental restoration.

  2. Sole Source Aquifer Demonstration Program | Open Energy Information

    Open Energy Info (EERE)

    Demonstration Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Sole Source Aquifer Demonstration ProgramLegal...

  3. On parameterization of the inverse problem for estimating aquifer...

    Office of Scientific and Technical Information (OSTI)

    Title: On parameterization of the inverse problem for estimating aquifer properties using tracer data Authors: Kowalsky, M. B. ; Finsterle, S. ; Commer, M. ; Williams, K. H. ; ...

  4. Chemical and Isotopic Prediction of Aquifer Temperatures in the...

    Open Energy Info (EERE)

    of Aquifer Temperatures in the Geothermal System at Long Valley, California Authors R.O. Fournier, Michael L. Sorey, Robert H. Mariner and Alfred H. Truesdell Published Journal...

  5. Independent Activity Report, CH2M Hill Plateau Remediation Company- January 2011

    Broader source: Energy.gov [DOE]

    Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003

  6. Deep mantle forces and the uplift of the Colorado Plateau

    SciTech Connect (OSTI)

    Moucha, R; Forte, A M; Rowley, D B; Mitrovica, J X; Simmons, N A; Grand, S P

    2009-06-23

    Since the advent of plate tectonics, it has been speculated that the northern extension of the East Pacific Rise, specifically its mantle source, has been over-ridden by the North American Plate in the last 30 Myrs. Consequently, it has also been postulated that the opening of the Gulf of California, the extension in the Basin and Range province, and the uplift of the Colorado Plateau are the resulting continental expressions of the over-ridden mantle source of the East Pacific Rise. However, only qualitative models based solely on surface observations and heuristic, simplified conceptions of mantle convection have been used in support or against this hypothesis. We introduce a quantitative model of mantle convection that reconstructs the detailed motion of a warm mantle upwelling over the last 30 Myrs and its relative advance towards the interior of the southwestern USA. The onset and evolution of the crustal uplift in the central Basin and Range province and the Colorado Plateau is determined by tracking the topographic swell due to this mantle upwelling through time. We show that (1) the extension and magmatism in the central Basin and Range province between 25 and 10 Ma coincides with the reconstructed past position of this focused upwelling, and (2) the southwestern portion of the Colorado Plateau experienced significant uplift between 10 Ma and 5 Ma that progressed towards the northeastern portion of the plateau. These uplift estimates are consistent with a young, ca. 6 Ma, Grand Canyon model and the recent commencement of mafic magmatism.

  7. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE March 7, 2012 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 200 UP-1 Remedial Investigation/Feasibility Study ..................................................................................... 2 300 Area Remedial Investigation/Feasibility Study (joint

  8. Aquifer thermal energy (heat and chill) storage

    SciTech Connect (OSTI)

    Jenne, E.A.

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  9. Aquifer Sampling Tube Results for Fiscal Year 2003

    SciTech Connect (OSTI)

    Hartman, Mary J.; Peterson, Robert E.

    2003-10-27

    This report presents and discusses results of the fiscal year 2003 sampling event associated with aquifer tubes along the Columbia River in the northern Hanford Site. Aquifer tube data help define the extent of groundwater contamination near the river, determine vertical variations in contamination, monitor the performance of interim remedial actions near the river, and support impact studies.

  10. Method for isolating two aquifers in a single borehole

    DOE Patents [OSTI]

    Burklund, Patrick W.

    1985-10-22

    A method for isolating and individually instrumenting separate aquifers within a single borehole. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  11. Method for isolating two aquifers in a single borehole

    DOE Patents [OSTI]

    Burklund, P.W.

    1984-01-20

    A method for isolating and individually instrumenting separate aquifers within a single borehole is disclosed. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  12. Tracer advection by steady groundwater flow in a stratified aquifer

    SciTech Connect (OSTI)

    Sposito, Garrison; Weeks, Scott W.

    1997-01-02

    The perfectly stratified aquifer has often been investigated as a simple, tractable model for exploring new theoretical issues in subsurface hydrology. Adopting this approach, we show that steady groundwater flows in the perfectly stratified aquifer are always confined to a set of nonintersecting permanent surfaces, on which both streamlines and vorticity lines lie. This foliation of the flow domain exists as well for steady groundwater flows in any isotropic, spatially heterogeneous aquifer. In the present model example it is a direct consequence of the existence of a stream function, we then demonstrate that tracer plume advection by steady groundwater flow in a perfectly stratified aquifer is never ergodic, regardless of the initial size of the tracer plume. This nonergodicity, which holds also for tracer advection in any isotropic, spatially heterogeneous aquifer, implies that stochastic theories of purely advective tracer plume movement err in assuming ergodic behavior to simplify probabilistic calculations of plume spatial concentration moments.

  13. Optimizing multiphase aquifer remediation using ITOUGH2

    SciTech Connect (OSTI)

    Finsterle, S.; Pruess, K.

    1994-06-01

    The T2VOC computer model for simulating the transport of organic chemical contaminants in non-isothermal multiphase systems has been coupled to the ITOUGH2 code which solves parameter optimization problems. This allows one to use nonlinear programming and simulated annealing techniques to solve groundwater management problems, i.e. the optimization of multiphase aquifer remediation. This report contains three illustrative examples to demonstrate the optimization of remediation operations by means of simulation-minimization techniques. The code iteratively determines an optimal remediation strategy (e.g. pumping schedule) which minimizes, for instance, pumping and energy costs, the time for cleanup, and residual contamination. While minimizing the objective function is straightforward, the relative weighting of different performance measures--e.g. pumping costs versus cleanup time versus residual contaminant content--is subject to a management decision process. The intended audience of this report is someone who is familiar with numerical modeling of multiphase flow of contaminants, and who might actually use T2VOC in conjunction with ITOUGH2 to optimize the design of aquifer remediation operations.

  14. Enterprise Assessments Targeted Review of Work Planning and Control at the Hanford Central Plateau Environmental Remediation Projects- June 2015

    Broader source: Energy.gov [DOE]

    Targeted Review of Work Planning and Control at the Hanford Central Plateau Environmental Remediation Projects

  15. Understanding heat and groundwater flow through continental flood basalt provinces: insights gained from alternative models of permeability/depth relationships for the Columbia Plateau, USA

    SciTech Connect (OSTI)

    Burns, Erick R.; Williams, Colin F.; Ingebritsen, Steven E.; Voss, Clifford I.; Spane, Frank A.; DeAngelo, Jacob

    2015-02-01

    Heat-flow mapping of the western USA has identified an apparent low-heat-flow anomaly coincident with the Columbia Plateau Regional Aquifer System, a thick sequence of basalt aquifers within the Columbia River Basalt Group (CRBG). A heat and mass transport model (SUTRA) was used to evaluate the potential impact of groundwater flow on heat flow along two different regional groundwater flow paths. Limited in situ permeability (k) data from the CRBG are compatible with a steep permeability decrease (approximately 3.5 orders of magnitude) at 600–900 m depth and approximately 40°C. Numerical simulations incorporating this permeability decrease demonstrate that regional groundwater flow can explain lower-than-expected heat flow in these highly anisotropic (kx/kz ~ 104) continental flood basalts. Simulation results indicate that the abrupt reduction in permeability at approximately 600 m depth results in an equivalently abrupt transition from a shallow region where heat flow is affected by groundwater flow to a deeper region of conduction-dominated heat flow. Most existing heat-flow measurements within the CRBG are from shallower than 600 m depth or near regional groundwater discharge zones, so that heat-flow maps generated using these data are likely influenced by groundwater flow. Substantial k decreases at similar temperatures have also been observed in the volcanic rocks of the adjacent Cascade Range volcanic arc and at Kilauea Volcano, Hawaii, where they result from low-temperature hydrothermal alteration.

  16. Central Plateau Groundwater and Deep Vadose Zone Strategy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vadose Zone Executive Council Hanford Advisory Board River and Plateau Committee Briant L. Charboneau DOE-RL, Soil and Groundwater Federal Project Director October 9, 2012 1 Discussion Topics * Purpose of the Executive Council - Why was this established? * Who participates? * What are the integration topics of interest to the Council? * Examples of groundwater and vadose zone integration - Deep Vadose Zone treatability testing leading to evaluation of measures to protect groundwater - B complex

  17. Black Carbon Radiative Forcing over the Tibetan Plateau

    SciTech Connect (OSTI)

    He, Cenlin; Li, Qinbin; Liou, K. N.; Takano, Y.; Gu, Yu; Qi, L.; Mao, Yuhao; Leung, Lai-Yung R.

    2014-11-28

    We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. Our best estimate of the annual BC snow albedo forcing in the Plateau is 2.9 W m-2 (uncertainty: 1.55.0 W m-226 ). We find that BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing and coated BC increases the forcing by 30-50% compared with uncoated BC, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. Our best estimate of the annual BC DRF at the top of the atmosphere is 2.3 W m-2 (uncertainty: 0.74.3 W m-230 ) in the Plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network (AERONET) observations. The BC forcings are attributed to emissions from different regions.

  18. Modeling cross-hole slug tests in an unconfined aquifer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malama, Bwalya; Kuhlman, Kristopher L.; Brauchler, Ralf; Bayer, Peter

    2016-06-28

    Cross-hole slug test date are analyzed with an extended version of a recently published unconfined aquifer model accounting for waterable effects using the linearized kinematic condition. The use of cross-hole slug test data to characterize aquifer heterogeneity and source/observation well oscillation parameters is evaluated. The data were collected in a series of multi-well and multi-level pneumatic slug tests conducted at a site in Widen, Switzerland. Furthermore, the tests involved source and observation well pairs separated by distances of up to 4 m, and instrumented with pressure transducers to monitor aquifer response in discrete intervals.

  19. Simulation analysis of the unconfined aquifer, Raft River Geothermal...

    Open Energy Info (EERE)

    analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Simulation analysis of the...

  20. Sole Source Aquifer Protection Program (EPA) | Department of...

    Office of Environmental Management (EM)

    Sole Source Aquifer Protection Program (EPA) Section 1424(e) of the Safe Drinking Water Act of 1974 (Public Law 93-523, 42 U.S.C. 300 et. seq) authorizes the U.S. Environmental ...

  1. Appendix B Surface Infiltration and Aquifer Test Data

    Office of Legacy Management (LM)

    B Surface Infiltration and Aquifer Test Data This page intentionally left blank ... 1000 1100 1200 1300 1400 TIME (MIN) INF-8 TEST I 300 400 TIME (MIN) INF-8 TEST 2 200 250 ...

  2. Underground helium travels to the Earth's surface via aquifers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tweet EmailPrint Before it can put the party in party balloons, helium is carried from deep within the Earth's crust to the surface via aquifers, according to new research...

  3. Analysis of Sweet Lake geopressured-geothermal aquifer

    SciTech Connect (OSTI)

    Andrade, M.; Rago, F.M.; Ohkuma, H.; Sepehrnoori, K.; Peters, E.; Dorfman, M.

    1983-01-01

    The Sweet Lake geopressured-geothermal aquifer, located southeast of Lake Charles, Louisiana, is an aquifer modeled by a two-dimensional geopressured-geothermal simulator. This aquifer is a sandstone within the Frio formation at depths between 15,000 to 15,640 ft with a net porous thickness of 250 ft, a calculated in-situ permeability (from drawdown data) of 17 md, an estimated porosity of 24 percent, a uniaxial compaction coefficient of 4.5 x 10/sup -7/ psi/sup -1/ and a solution gas-water ratio of 11 SCF/STB all at the initial reservoir pressure of 12,060 psi. These parameters are typically pressure sensitive in geopressured-geothermal aquifers and are critically important to aquifer performance. Several simulation experiments are conducted which investigate the effects of varying initial values for these parameters with the experimentally determined values as means. The simulations give both optimistic and pessimistic expectations for aquifer performance. The expected life of the geopressured-geothermal well is reported for each simulation.

  4. A Preliminary Study of the Waters of the Jemez Plateau, New Mexico...

    Open Energy Info (EERE)

    of the Jemez Plateau, New Mexico Abstract Abstract unavailable Authors Clyde Kelly and E.V. Anspach Published Journal University of New Mexico Bulletin, Chemistry Series, 1913 DOI...

  5. DEBRIEF OF CENTRAL PLATEAU INNER AREA PRINCIPLES Questions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEBRIEF OF CENTRAL PLATEAU INNER AREA PRINCIPLES Questions:  What is the definition for industrial vs residential land use?  Are the local DOE office(s) and HQ in agreement about what needs to be done?  Concerning the new ideas for characterization (bullet 3), how does HAB present ideas, how much detail is required, and how does the HAB know if these ideas have been considered earlier?  What is the difference between MTCA -B and -C level cleanup as applied to the Inner Area?  What

  6. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect (OSTI)

    Freedman, Vicky L.

    2007-03-09

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investigate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a qualitative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represent initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simulation period with the three flow fields. The four radionuclides are current contaminants of concern (COCs) in the Central Plateau and include tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as

  7. Old-field plant succession on the Pajarito Plateau

    SciTech Connect (OSTI)

    Foxx, T.; Mullen, M.; Salisbury, M.; Tierney, G.

    1997-10-01

    Eight fallow historic fields of the ponderosa pine and pinon-juniper cover types were surveyed to determine species composition and distribution. The purpose of the study was to understand plant succession on old fields as related to mechanically manipulated sites such as material disposal areas (MDAs). Additionally, the authors wanted a listing of species on disturbed lands of the Pajarito Plateau to aide in the reclamation planning of MDAs using native species. They also wanted to determine if any species could be used as an indicator of disturbance. The eight historic fields were all within Los Alamos County, New Mexico, and had been abandoned in 1943. Two sites were within the boundaries of Los Alamos National Laboratory and were studied both in 1982 and 1993. The study provides a description of each of the field sites, historic information about the homesteads from patent applications, a photographic record of some of the sites, and a listing of species found within each field. The study showed that there were 78 different plant species found on disturbed sites. Of these 78 species, 23 were found to be dominant on one or more of the MDAs or old fields. Although, the disturbance history of each site is imperfectly known, the study does provide an indication of successional processes within disturbed sites of the Pajarito Plateau. Additionally, it provides a listing of species that will invade disturbed sites, species that may be used in site reclamation.

  8. Uranium exploration of the Colorado Plateau: interim staff report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    This report is an issue of the original draft copy of the Interim Staff Report on Uranium Exploration on the Colorado Plateau, dated June 1951. The original draft copy was only recently located and is being published at this time because of the interest in the contained historical content. The table of contents of this report lists: history of uranium mining; geology; proposed program for the geologic investigations section; general activities of industry and government; and future exploration of sedimentary uranium deposits and anticipated results. Under the proposed program section are: future of the copper-uranium deposits as a source of uranium; uraniferous asphaltite deposits; and commission exploration and future possibilities. The section on general activities of industry and government includes: exploratory and development drilling; field investigations and mapping; early geologic investigations and investigations by the US geological survey; and geophysical exploration. Tables are also presented on: uranium production by districts; US Geological survey drilling statistics; Colorado Exploration Branch drilling statistics; summary of drilling projects; and comparative yearly core-drill statistics on the Colorado Plateau.

  9. Analysis of Sweet Lake geopressured-geothermal aquifer

    SciTech Connect (OSTI)

    Andrade, M.; Rago, F.; Ohkuma, H.; Sepehrnoori, K.; Peters, E.; Dorfman, M.

    1982-01-01

    The Sweet Lake geopressured-geothermal aquifer, located southeast of Lake Charles, Louisiana, is modeled by a two-dimensional geopressured-geothermal simulator. This aquifer is a sandstone within the Frio formation at depths between 15,000 to 15,640 ft with a net porous thickness of 250 ft, a calculated in-situ permeability (from drawdown data) of 17 md, an estimated porosity of 24%, a uniaxial compaction coefficient of 4.5 x 10/sup -7/ psi/sup -1/ and a solution gas-water ratio of 11 SCF/STB all at the initial reservoir pressure of 12,060 psi. These parameters are typically pressure sensitive in geopressured-geothermal aquifers and are critically important to aquifer performance. Several simulation experiments are conducted which investigate the effects of varying initial values for these parameters with the experimentally determined values as means. The simulations give both optimistic and pessimistic expectations for aquifer performance. The expected life of the geopressured-geothermal well is reported for each simulation.

  10. Independent Oversight Review, Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance- April 2012

    Broader source: Energy.gov [DOE]

    Review of Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance Conduct of Operations

  11. Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores...

    Office of Science (SC) Website

    Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores Nuclear Physics (NP) NP Home ... Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores Precision analytical ...

  12. 200-Area plateau inactive miscellaneous underground storage tanks locations

    SciTech Connect (OSTI)

    Brevick, C.H.

    1997-12-01

    Fluor Daniel Northwest (FDNW) has been tasked by Lockheed Martin Hanford Corporation (LMHC) to incorporate current location data for 64 of the 200-Area plateau inactive miscellaneous underground storage tanks (IMUST) into the centralized mapping computer database for the Hanford facilities. The IMUST coordinate locations and tank names for the tanks currently assigned to the Hanford Site contractors are listed in Appendix A. The IMUST are inactive tanks installed in underground vaults or buried directly in the ground within the 200-East and 200-West Areas of the Hanford Site. The tanks are categorized as tanks with a capacity of less than 190,000 liters (50,000 gal). Some of the IMUST have been stabilized, pumped dry, filled with grout, or may contain an inventory or radioactive and/or hazardous materials. The IMUST have been out of service for at least 12 years.

  13. Anaerobic biodegradation of BTEX in aquifer material. Environmental research brief

    SciTech Connect (OSTI)

    Borden, R.C.; Hunt, M.J.; Shafer, M.B.; Barlaz, M.A.

    1997-08-01

    Laboratory and field experiments were conducted in two petroleum-contaminated aquifers to examine the anaerobic biodegradation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) under ambient conditions. Aquifer material was collected from locations at the source, mid-plume and end-plume at both sites, incubated under ambient conditions, and monitored for disappearance of the test compounds. In the mid-plume location at the second site, in-situ column experiments were also conducted for comparison with the laboratory microscosm and field-scale results. In the end-plume microcosms, biodegradation was variable with extensive biodegradation in some microcosms and little or no biodegradation in others.

  14. Legal and regulatory issues affecting aquifer thermal energy storage

    SciTech Connect (OSTI)

    Hendrickson, P.L.

    1981-10-01

    This document updates and expands the report with a similar title issued in October 1980. This document examines a number of legal and regulatory issues that potentially can affect implementation of the aquifer thermal energy storage (ATES) concept. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

  15. CH2M HILL Plateau Remediation Company, NEL-2014-01

    Office of Environmental Management (EM)

    CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company The Office of Hea1th, Safety and Security's Office of Enforcement and Oversight has evaluated the facts and circumstances of a series of radiological work deficiencies at the Plutonium Finishing Plant (PFP) and the 105 K-East Reactor Facility (105KE Reactor) by CH2M HILL Plateau Remediation Company (CHPRC). The radiological work deficiencies at PFP are documented in the April 29, 2011, Department of Energy Richland

  16. Geochemical detection of carbon dioxide in dilute aquifers

    SciTech Connect (OSTI)

    Carroll, S; Hao, Y; Aines, R

    2009-03-27

    Carbon storage in deep saline reservoirs has the potential to lower the amount of CO{sub 2} emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO{sub 2} gas leak into dilute groundwater are important measures for the potential release of CO{sub 2} to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO{sub 2} storage reservoir. Specifically, we address the relationships between CO{sub 2} flux, groundwater flow, detection time and distance. The CO{sub 2} flux ranges from 10{sup 3} to 2 x 10{sup 6} t/yr (0.63 to 1250 t/m{sup 2}/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure.

  17. AUTOMATED WATER LEVEL MEASUREMENTS IN SMALL-DIAMETER AQUIFER TUBES

    SciTech Connect (OSTI)

    PETERSEN SW; EDRINGTON RS; MAHOOD RO; VANMIDDLESWORTH PE

    2011-01-14

    Groundwater contaminated with hexavalent chromium, strontium-90, and uranium discharges into the Columbia River along approximately 16 km (10 mi) of the shoreline. Various treatment systems have and will continue to be implemented to eliminate the impact of Hanford Site contamination to the river. To optimize the various remediation strategies, it is important to understand interactions between groundwater and the surface water of the Columbia River. An automated system to record water levels in aquifer sampling tubes installed in the hyporheic zone was designed and tested to (1) gain a more complete understanding of groundwater/river water interactions based on gaining and losing conditions ofthe Columbia River, (2) record and interpret data for consistent and defensible groundwater/surface water conceptual models that may be used to better predict subsurface contaminant fate and transport, and (3) evaluate the hydrodynamic influence of extraction wells in an expanded pump-and-treat system to optimize the treatment system. A system to measure water levels in small-diameter aquifer tubes was designed and tested in the laboratory and field. The system was configured to allow manual measurements to periodically calibrate the instrument and to permit aquifer tube sampling without removing the transducer tube. Manual measurements were collected with an e-tape designed and fabricated especially for this test. Results indicate that the transducer system accurately records groundwater levels in aquifer tubes. These data are being used to refine the conceptual and numeric models to better understand interactions in the hyporheic zone of the Columbia River and the adjacent river water and groundwater, and changes in hydrochemistry relative to groundwater flux as river water recharges the aquifer and then drains back out in response to changes in the river level.

  18. Ground-water hydraulics of the deep-basin brine aquifer, Palo Duro Basin, Texas panhandle

    SciTech Connect (OSTI)

    Smith, D.A.

    1985-01-01

    The Deep-Basin Brine aquifer of the Palo Duro Basin (Texas Panhandle) underlies thick Permian bedded evaporites that are being evaluated as a potential high-level nuclear waste isolation repository. Potentiometric surface maps of 5 units of the Deep-Basin Brine aquifer were drawn using drill-stem test (DST) pressure data, which were analyzed by a geostatistical technique (kriging) to smooth the large variation in the data. The potentiometric surface maps indicate that the Deep-Basin Brine aquifer could be conceptually modeled as 5 aquifer units; a Lower Permian (Wolfcamp) aquifer, upper and lower Pennsylvanian aquifers, a pre-Pennsylvanian aquifer, and a Pennsylvanian to Wolfcampian granite-wash aquifer. The hydraulic head maps indicate that ground-water flow in each of the units is west to east with a minor northerly component near the Amarillo Uplift, the northern structural boundary of the basin. The Wolfcamp potentiometric surface indicates the strongest component of northerly flow. Inferred flow direction in Pennsylvanian aquifers is easterly, and in the pre-Pennsylvanian aquifer near its pinch-out in the basin center, flow is inferred to be to the north. In the granite-wash aquifer the inferred flow direction is east across the northern edge of the basin and southeast along the Amarillo Uplift.

  19. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect (OSTI)

    Freedman, Vicky L.

    2008-01-30

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investigate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a qualitative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represents initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simulation period with the three flow fields. The four radionuclides are tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as initial conditions for steady-state flow runs, simulations were executed to

  20. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE MEETING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE MEETING June 8, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions .......................................................................................................................... 1 Integrated Vegetation Management Environmental Assessment Briefing ................................................... 2 CERCLA 5-Year Review

  1. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE MEETING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 10, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE MEETING August 10, 2011 Richland, WA Topics in this Meeting Summary Welcome & Introductions ............................................................................................................... 1 CERCLA Five-Year Review .......................................................................................................... 2 Advanced Simulation Capability for Environmental Management

  2. The Management of the Plateau Remediation Contract, OAS-L-13-03

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Management of the Plateau Remediation Contract OAS-L-13-03 December 2012 Department of Energy Washington, DC 20585 December 21, 2012 MEMORANDUM FOR THE DEPUTY ASSISTANT SECRETARY FOR ACQUISITION AND PROJECT MANAGEMENT FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Management of the Plateau Remediation Contract" BACKGROUND The Department of Energy's Richland Operations Office (Richland) awarded a

  3. Homesteading on the Pajarito Plateau topic of inaugural lecture at Los

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos National Laboratory Homesteading On The Pajarito Plateau Homesteading on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory The lecture is based on a book by local writers Dorothy Hoard, Judy Machen and Ellen McGehee about the area's settlement between 1887 and 1942. January 4, 2013 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering

  4. Microsoft PowerPoint - OzarkRehab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracts, Modifications, Contracts, Modifications, Support and S&A 18,648,000 15,644,000 14,959,000 Est. Remaining Contract Escalation 100,000 2,097,000 2,061,000 Est. ...

  5. Ozarks Electric Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 14289 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes Activity Retail Marketing Yes This article is a stub....

  6. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    SciTech Connect (OSTI)

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; Holloway, Sam; Neele, Filip; Zhou, Quanlin

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric open aquifer and closed aquifer approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with open and/or closed approaches) and through flow modeling. These examples show that the open aquifer CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the closed aquifer estimates are a closer approximation to the flow-model derived capacity. An analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the closed aquifer approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.

  7. Stormwater runoff policy on the Spokane/Rathdrum Prairie Aquifer

    SciTech Connect (OSTI)

    Hale, E.O.

    1990-01-01

    The Panhandle Health District, in conjunction with the Idaho Department of Water Resources, is developing a stormwater runoff control program under the US EPA Wellhead Protection Program. The goal of the project is to protect the Spokane Valley/Rathdrum Prairie Aquifer from widespread subsurface disposal of stormwater runoff via shallow injection wells. Studies conducted by the health district in 1976 and 1977 established that areas downgradient from urban land uses had elevated nitrate level sand that the aquifer is vulnerable to contamination from surface activities. The stormwater runoff controls are being developed in conjunction with similar programs, such as chemical storage and use, solid waste and subsurface sewage disposal. The expected result will be a groundwater management system that protects the resource by preventing contamination rather than a program that responds to poor water quality with costly remedial action.

  8. In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer Matthew Ginder-Vogel1, Wei-Min Wu1, Jack Carley2, Phillip Jardine2, Scott Fendorf1 and Craig Criddle1 1Stanford University, Stanford, CA 2Oak Ridge National Laboratory, Oak Ridge, TN Microbial Respiration Figure 1. Uranium(VI) reduction is driven by microbial respiration resulting in the precipitation of uraninite. Uranium contamination of ground and surface waters has been detected at numerous sites throughout the

  9. Aridity changes in the Tibetan Plateau in a warming climate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Yanhong; Li, Xia; Leung, Lai-Yung R.; Chen, Deliang; Xu, Jianwei

    2015-03-10

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of P/PET (precipitation to potential evapotranspiration) as an aridity index to indicate changes in dryness and wetness in a given area, P/PET was calculated using observed records at 83 stations in the TP, with PET calculated using the Penman–Monteith (PM) algorithm. Spatial and temporal changes of P/PET in 1979-2011 are analyzed.more » Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter and stations in the semi-humid southeastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with precipitation, sunshine duration and diurnal temperature range changes at confidence level of 99.9% from two-tail t-test. Temporal correlations also confirm the significant correlation between aridity changes with the three variables, with precipitation being the most dominant driver of P/PET changes at interannual time scale. PET changes are insignificant but negatively correlated with P/PET in the cold season. In the warm season, however, correlation between PET changes and P/PET changes are significant at confidence level of 99.9% when the cryosphere melts near the surface. Significant correlation between wind speed changes and aridity changes occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring.« less

  10. MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD

    SciTech Connect (OSTI)

    KRONVALL CM

    2011-01-14

    In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D&D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

  11. Aridity changes in the Tibetan Plateau in a warming climate

    SciTech Connect (OSTI)

    Gao, Yanhong; Li, Xia; Leung, Lai-Yung R.; Chen, Deliang; Xu, Jianwei

    2015-03-10

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of P/PET (precipitation to potential evapotranspiration) as an aridity index to indicate changes in dryness and wetness in a given area, P/PET was calculated using observed records at 83 stations in the TP, with PET calculated using the Penman–Monteith (PM) algorithm. Spatial and temporal changes of P/PET in 1979-2011 are analyzed. Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter and stations in the semi-humid southeastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with precipitation, sunshine duration and diurnal temperature range changes at confidence level of 99.9% from two-tail t-test. Temporal correlations also confirm the significant correlation between aridity changes with the three variables, with precipitation being the most dominant driver of P/PET changes at interannual time scale. PET changes are insignificant but negatively correlated with P/PET in the cold season. In the warm season, however, correlation between PET changes and P/PET changes are significant at confidence level of 99.9% when the cryosphere melts near the surface. Significant correlation between wind speed changes and aridity changes occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring.

  12. Relationship of regional water quality to aquifer thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.

    1983-11-01

    Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

  13. Use of natural radionuclides to predict the behavior of radwaste radionuclides in far-field aquifers

    SciTech Connect (OSTI)

    Hubbard, N.; Laul, J.C.; Perkins, R.W.

    1984-01-01

    In appropriate aquifers the natural radionuclides of the U and Th decay series are important sources of information about the behavior of radwaste radionuclides in far-field aquifers. The Wolfcamp Carbonate, Pennsylvanian Carbonate and Granite Wash aquifers in the Palo Duro Basin of the Texas Panhandle are prime examples of such aquifers. Sampling and analysis for key radionuclides in the ground waters of these aquifers are quite feasible and have been accomplished. Key early results are: (1) Ra does not appear to be retarded by sorption, (2) Th appears to be strongly sorbed, (3) kinetics seem to be different on time scales of days to months than on ones of hundreds of thousands of years, and (4) U and Th behave similarly when the time scales (half-lives) are similar, leading to the suggestion that uranium is in the +4 valence state in these aquifers. 10 references, 3 figures.

  14. Voluntary Protection Program Onsite Review, CH2M HILL Plateau Remediation Co., Inc., Hanford – Jan 2014

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether CH2M HILL Plateau Remediation Co., Inc., Hanford is performing at a level deserving DOE-VPP Star recognition.

  15. Preliminary potentiometric map and flow dynamic characteristics for the upper-basalt confined aquifer system

    SciTech Connect (OSTI)

    Spane, F.A. Jr.; Raymond, R.G.

    1993-09-01

    This report presents the first comprehensive Hanford Site-wide potentiometric map for the upper-basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). In constructing the potentiometric map, over forty on-site and off-site monitoring wells and boreholes were used. The potentiometric map developed for the upper-basalt confined aquifer is consistent with the areal head pattern indicated for the Mabton interbed, which is a deeper and more areally extensive confined aquifer underlying the Hanford Site. Salient features for the upper-basalt confined aquifer system potentiometric map are described.

  16. Potential Risks of Freshwater Aquifer Contamination with Geosequestration

    SciTech Connect (OSTI)

    Jackson, Robert

    2013-09-30

    Substantial leakage of CO{sub 2} from deep geological strata to shallow potable aquifers is likely to be rare, but chemical detection of potential leakage nonetheless remains an integral component of any safe carbon capture and storage system. CO{sub 2} that infiltrates an unconfined freshwater aquifer will have an immediate impact on water chemistry by lowering pH in most cases and by altering the concentration of total dissolved solids. Chemical signatures in affected waters provide an important opportunity for early detection of leaks. In the presence of CO{sub 2}, trace elements such as Mn, Fe, and Ca can increase by an order of magnitude or more above control concentrations within 100 days. Therefore, these and other elements should be monitored along with pH as geochemical markers of potential CO{sub 2} leaks. Dissolved inorganic carbon and alkalinity can also be rapidly responsive to CO{sub 2} and are stable indicators of a leak. Importantly, such changes may be detectable long before direct changes in CO{sub 2} are observed. The experimental results also suggest that the relative severity of the impact of leaks on overlying drinking-water aquifers should be considered in the selection of CO{sub 2} sequestration sites. One primary selection criteria should be metal and metalloid availability, such as uranium and arsenic abundance, to carefully monitor chemical species that could trigger changes above maximum contaminant levels (MCLs). Overall, the risks of leakage from underground CO{sub 2} storage are real but appear to be manageable if systems are closely monitored.

  17. Microsoft PowerPoint - Central_Plateau_Inner_Zone.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inner Zone The inner zone of the Central Plateau represents 10 square miles at the center The inner zone of the Central Plateau represents 10 square miles at the center of Hanford. Recovery Act funding will be used to accelerate construction of pump-and-treat systems to improve groundwater cleanup in the 200 West area. In addition funding will be used to prepare the Plutonium Finishing Plant for In addition funding will be used to prepare the Plutonium Finishing Plant for demolition and to tear

  18. Microsoft PowerPoint - Central_Plateau_Outer_Zone.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outer Zone Th t f th C t l Pl t i b t 65 il The outer zone of the Central Plateau is about 65 square miles. Recovery Act funding will be used in this area to support shrinking the active footprint of cleanup to as little as 10 square miles in the center of the site. Work will consist mainly of demolishing facilities and remediating waste sites. Central Plateau, Outer Zone (~65 sq. mi.) * 200 North Area * Demolish spent fuel C o C o * Demolish spent fuel transfer storage facilities (212 N/P/R) *

  19. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    SciTech Connect (OSTI)

    Garcia, Julio Enrique

    2003-12-18

    Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous

  20. A new low-voltage plateau of Na₃V₂(PO₄)₃ as an anode for Na-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jian, Zelang; Sun, Yang; Ji, Xiulei

    2015-04-04

    A low-voltage plateau at ~0.3 V is discovered during the deep sodiation of Na₃V₂(PO₄)₃ by combined computational and experimental studies. This new low-voltage plateau doubles the sodiation capacity of Na₃V₂(PO₄)₃, turning it into a promising anode for Na-ion batteries.

  1. Regional assessment of aquifers for thermal-energy storage. Volume 2. Regions 7 through 12

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: Unglaciated Central Region; Glaciated Appalachians, Unglaciated Appalachians; Coastal Plain; Hawaii; and Alaska. (LCL)

  2. Effects of surfactants on the desorption of organic contaminants from aquifer materials. Doctoral thesis

    SciTech Connect (OSTI)

    Brickell, J.L.

    1989-08-01

    The efficiency of removing organic contaminants from groundwater aquifers by the pump and treat process is adversely affected by the retardation of the contaminant's mobility due to adsorption onto aquifer material. The use of surfactants in conjunction with the pump and treat process has the potential for improving contaminant mobility by solubilizing the adsorbed contaminant.

  3. A plateau in the sensitivity of a compact optically pumped atomic magnetometer

    SciTech Connect (OSTI)

    Mizutani, Natsuhiko Okano, Kazuhisa; Ban, Kazuhiro; Ichihara, Sunao; Terao, Akira; Kobayashi, Tetsuo

    2014-05-15

    In a compact optically pumped atomic magnetometer (OPAM), there is a plateau in the sensitivity where the dependence of the sensitivity on pumping power is small compared with that predicted by the uniform polarization model. The mechanism that generates this plateau was explained by numerical analysis. The distribution of spin polarization in the alkali metal cell of an OPAM was modeled using the Bloch equation incorporating a diffusion term and an equation for the attenuation of the pump beam. The model was well-fitted to the experimental results for a module with a cubic cell with 20 mm sides and pump and probe beams with 8 mm diameter. On the plateau, strong magnetic response was generated at the regions that were not illuminated directly by the intense pump beam, while at the same time spin polarization as large as 0.5 was maintained due to diffusion of the spin-polarized atoms. Thus, the sensitivity of the magnetometer monitored with a probe beam decreases only slightly with increasing pump beam intensity because the spin polarization under an intense pump beam is saturated. This plateau, which is characteristic of this type of magnetometer using a narrow pump and probe beams, can be used in arrays of magnetometers because it enables stable operation with little sensitivity fluctuation from changes in pump beam power.

  4. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE MEETING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE MEETING December 7, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions ......................................................................................................................... 1 Issue Manager Table Update ........................................................................................................................ 2 PW-1, 3, 6 and CW-5 ROD (Joint with PIC)

  5. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE MEETING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 10, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE MEETING January 10, 2012 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Record of Decision: PW-1,3,6/CW-5 ........................................................................................................... 2 River Corridor Cleanup, Using 100

  6. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE MEETING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE MEETING February 15, 2012 Richland, WA Topics in this Meeting Summary Welcome & Introductions ............................................................................................................................. 1 Site-wide Permit (joint with PIC) ................................................................................................................. 2 300 Area Remedial Investigation/Feasibility

  7. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE MEETING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 12, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE MEETING January 12, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions ............................................................................................................ 1 Radioactive Solid Waste Burial Grounds (Joint Topic with PIC) .................................................. 2 Hanford Artifacts Advice

  8. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE MEETING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE MEETING February 16, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions .......................................................................................................................... 1 River Corridor Baseline Risk Assessment Plan ............................................................................................ 2 Update on Building 324 - B Cell Contamination

  9. Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau

    SciTech Connect (OSTI)

    Zhang, Rudong; Wang, Hailong; Qian, Yun; Rasch, Philip J.; Easter, Richard C.; Ma, Po-Lun; Singh, Balwinder; Huang, Jianping; Fu, Qiang

    2015-01-01

    Black carbon (BC)particles over the Himalayas and Tibetan Plateau (HTP), both airborne and those deposited on snow, have been shown to affect snowmelt and glacier retreat. Since BC over the HTP may originate from a variety of geographical regions and emission sectors, it is essential to quantify the source-receptor relationships of BC in order to understand the contributions of natural and anthropogenic emissions and provide guidance for potential mitigation actions. In this study, we use the Community Atmosphere Model version 5 (CAM5) with a newly developed source tagging technique, nudged towards the MERRA meteorological reanalysis, to characterize the fate of BC particles emitted from various geographical regions and sectors. Evaluated against observations over the HTP and surrounding regions, the model simulation shows a good agreement in the seasonal variation of the near-surface airborne BC concentrations, providing confidence to use this modeling framework for characterizing BC source- receptor relationships. Our analysis shows that the relative contributions from different geographical regions and source sectors depend on seasons and the locations in the HTP. The largest contribution to annual mean BC burden and surface deposition in the entire HTP region is from biofuel and biomass (BB) emissions in South Asia, followed by fossil fuel (FF) emissions from South Asia, then FF from East Asia. The same roles hold for all the seasonal means except for the summer when East Asia FF becomes more important. For finer receptor regions of interest, South Asia BB and FF have the largest impact on BC in Himalayas and Central Tibetan Plateau, while East Asia FF and BB contribute the most to Northeast Plateau in all seasons and Southeast Plateau in the summer. Central Asia and Middle East FF emissions have relatively more important contributions to BC reaching Northwest Plateau, especially in the summer. Although the HTP local emissions only contribute about 10% of BC in

  10. The University of Minnesota aquifer thermal energy storage (ATES) field test facility -- system description, aquifer characterization, and results of short-term test cycles

    SciTech Connect (OSTI)

    Walton, M.; Hoyer, M.C.; Eisenreich, S.J.; Holm, N.L.; Holm, T.R.; Kanivetsky, R.; Jirsa, M.A.; Lee, H.C.; Lauer, J.L.; Miller, R.T.; Norton, J.L.; Runke, H. )

    1991-06-01

    Phase 1 of the Aquifer Thermal Energy Storage (ATES) Project at the University of Minnesota was to test the feasibility, and model, the ATES concept at temperatures above 100{degrees}C using a confined aquifer for the storage and recovery of hot water. Phase 1 included design, construction, and operation of a 5-MW thermal input/output field test facility (FTF) for four short-term ATES cycles (8 days each of heat injection, storage, and heat recover). Phase 1 was conducted from May 1980 to December 1983. This report describes the FTF, the Franconia-Ironton-Galesville (FIG) aquifer used for the test, and the four short-term ATES cycles. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are all included. The FTF consists of monitoring wells and the source and storage well doublet completed in the FIG aquifer with heat exchangers and a fixed-bed precipitator between the wells of the doublet. The FIG aquifer is highly layered and a really anisotropic. The upper Franconia and Ironton-Galesville parts of the aquifer, those parts screened, have hydraulic conductivities of {approximately}0.6 and {approximately}1.0 m/d, respectively. Primary ions in the ambient ground water are calcium and magnesium bicarbonate. Ambient temperature FIG ground water is saturated with respect to calcium/magnesium bicarbonate. Heating the ground water caused most of the dissolved calcium to precipitate out as calcium carbonate in the heat exchanger and precipitator. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water, suggesting dissolution of some constituents of the aquifer during the cycles. Further work on the ground water chemistry is required to understand water-rock interactions.

  11. Plateau Remediation Contract Section J Contract No. DE-AC06-08RL14788 Modification No. 439

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No. 439 J 4-1 August 31, 2015 ATTACHMENT J.4 PERFORMANCE EVALUATION AND MEASUREMENT PLAN (PEMP) Plateau Remediation Contract Section J Contract No. DE-AC06-08RL14788 Modification No. 439 J 4-2 August 31, 2015 Fiscal Year 2016 Performance Evaluation and Measurement Plan For CH2MHill Plateau Remediation Company Performance Period: October 1, 2015, through September 30, 2016 Plateau Remediation Contract Section J Contract No. DE-AC06-08RL14788 Modification No. 439 J 4-3 August 31, 2015 TABLE OF

  12. Quantifying sources, transport, deposition and radiative forcing of black carbon over the Himalayas and Tibetan Plateau

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, R.; Wang, H.; Qian, Y.; Rasch, P. J.; Easter, R. C.; Ma, P. -L.; Singh, B.; Huang, J.; Fu, Q.

    2015-01-07

    Black carbon (BC) particles over the Himalayas and Tibetan Plateau (HTP), both airborne and those deposited on snow, have been shown to affect snowmelt and glacier retreat. Since BC over the HTP may originate from a variety of geographical regions and emission sectors, it is essential to quantify the source–receptor relationships of BC in order to understand the contributions of natural and anthropogenic emissions and provide guidance for potential mitigation actions. In this study, we use the Community Atmosphere Model version 5 (CAM5) with a newly developed source tagging technique, nudged towards the MERRA meteorological reanalysis, to characterize the fatemore » of BC particles emitted from various geographical regions and sectors. Evaluated against observations over the HTP and surrounding regions, the model simulation shows a good agreement in the seasonal variation of the near-surface airborne BC concentrations, providing confidence to use this modeling framework for characterizing BC source–receptor relationships. Our analysis shows that the relative contributions from different geographical regions and source sectors depend on seasons and the locations in the HTP. The largest contribution to annual mean BC burden and surface deposition in the entire HTP region is from biofuel and biomass (BB) emissions in South Asia, followed by fossil fuel (FF) emissions from South Asia, then FF from East Asia. The same roles hold for all the seasonal means except for the summer when East Asia FF becomes more important. For finer receptor regions of interest, South Asia BB and FF have the largest impact on BC in Himalayas and Central Tibetan Plateau, while East Asia FF and BB contribute the most to Northeast Plateau in all seasons and Southeast Plateau in the summer. Central Asia and Middle East FF emissions have relatively more important contributions to BC reaching Northwest Plateau, especially in the summer. Although local emissions only contribute about 10% to

  13. Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, R.; Wang, H.; Qian, Y.; Rasch, P. J.; Easter, R. C.; Ma, P. -L.; Singh, B.; Huang, J.; Fu, Q.

    2015-06-08

    Black carbon (BC) particles over the Himalayas and Tibetan Plateau (HTP), both airborne and those deposited on snow, have been shown to affect snowmelt and glacier retreat. Since BC over the HTP may originate from a variety of geographical regions and emission sectors, it is essential to quantify the source–receptor relationships of BC in order to understand the contributions of natural and anthropogenic emissions and provide guidance for potential mitigation actions. In this study, we use the Community Atmosphere Model version 5 (CAM5) with a newly developed source-tagging technique, nudged towards the MERRA meteorological reanalysis, to characterize the fate ofmore » BC particles emitted from various geographical regions and sectors. Evaluated against observations over the HTP and surrounding regions, the model simulation shows a good agreement in the seasonal variation in the near-surface airborne BC concentrations, providing confidence to use this modeling framework for characterizing BC source–receptor relationships. Our analysis shows that the relative contributions from different geographical regions and source sectors depend on season and location in the HTP. The largest contribution to annual mean BC burden and surface deposition in the entire HTP region is from biofuel and biomass (BB) emissions in South Asia, followed by fossil fuel (FF) emissions from South Asia, then FF from East Asia. The same roles hold for all the seasonal means except for the summer, when East Asia FF becomes more important. For finer receptor regions of interest, South Asia BB and FF have the largest impact on BC in the Himalayas and central Tibetan Plateau, while East Asia FF and BB contribute the most to the northeast plateau in all seasons and southeast plateau in the summer. Central Asia and Middle East FF emissions have relatively more important contributions to BC reaching the northwest plateau, especially in the summer. Although local emissions only contribute about

  14. Ground-Water Table and Chemical Changes in an Alluvial Aquifer...

    Office of Environmental Management (EM)

    Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical ...

  15. The U.S. Department of Energy and contractor CH2M HILL Plateau Remediation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 . The U.S. Department of Energy and contractor CH2M HILL Plateau Remediation Company manage the Waste Encapsulation and Storage Facility at the Hanford Site in southeast Washington state. Waste Encapsulation and Storage Facility Background The Waste Encapsulation and Storage Facility (WESF) provides safe and compliant underwater storage for 1,936 highly radioactive capsules containing the elements cesium and strontium. In the 1970s, radioactive isotopes of the chemical elements cesium and

  16. Unexpected Voltage Fade in LMR-NMC Oxides Cycled below the Activation Plateau

    SciTech Connect (OSTI)

    Li, Yan; Bareno, Javier; Bettge, Martin; Abraham, Daniel P

    2015-01-01

    A common feature of lithium-excess layered oxides, nominally of composition xLi2MnO3(1-x)LiMO2 (M = transition metal) is a high-voltage plateau (~4.5 V vs. Li/Li+) in their capacity-voltage profile during the first delithiation cycle. This plateau is believed to result from activation of the Li2MnO3 component, which makes additional lithium available for electrochemical cycling. However, oxides cycled beyond this activation plateau are known to display voltage fade which is a continuous reduction in their equilibrium potential. In this article we show that these oxides display gradual voltage fade even on electrochemical cycling in voltage ranges well below the activation plateau. The average fade is ~0.08 mV-cycle-1 for Li1.2Ni0.15Mn0.55Co0.1O2 vs. Li cells after 20 cycles in the 24.1 V range at 55C; a ~54 mV voltage hysteresis, expressed as the difference in average cell voltage between charge and discharge cycles, is also observed. The voltage fade results from a gradual accumulation of local spinel environments in the crystal structure. Some of these spinel sites result from lithium deficiencies during oxide synthesis and are likely to be at the particle surfaces; other sites result from the migration of transition metal atoms in the partially-delithiated LiMO2 component into the lithium planes during electrochemical cycling. The observed rate of voltage fade depends on a combination of factors that includes the phase equilibrium between the layered and spinel components and the kinetics of transition metal migration.

  17. Microsoft PowerPoint - DOE_Central Plateau approach to cleanup decisions.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Approach to Cleanup Decisions Introduction * This approach was previously called the Inner Area Principles. * DOE, EPA, and Ecology prepared the Central Plateau Approach to Cleanup Decisions as a communication tool * This document tries to explain the approach, including the assumptions DOE would like to use. 2 Introduction (continued) * The approach is consistent with CERCLA guidance, the National Contingency Plan, and the State of Washington Model Toxics Control Act (MTCA). * Purpose: To

  18. Microsoft PowerPoint - Zachara HAB-River Plateau Mtg 1-8-09.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. Zachara Pacific Northwest National Laboratory, Richland, WA 99354 John M. Zachara Pacific Northwest National Laboratory, Richland, WA 99354 Hanford 300 A IFC River & Plateau Mtg January 8, 2009 Office of Science/Environmental Remediation Sciences Division (ERSD) Supported Research at Hanford: The PNNL Scientific Focus Area (SFA) and Integrated Field Research Challenge (IFRC) Office of Science/Environmental Remediation Sciences Division (ERSD) Supported Research at Hanford: The PNNL

  19. Sedimentology and cyclicity in the Lower Permian De Chelly sandstone on the Defiance Plateau: Eastern Arizona

    SciTech Connect (OSTI)

    Stanesco, J.D. (Geological Survey, Lakewood, CO (United States))

    1991-10-01

    Lithofacies in the De Chelly Sandstone consist of (1) a large-scale trough to tabular- and/or wedge-planar cross-stratified sandstone facies of large-scale eolian dune origin, (2) a small- to medium-scale, trough cross-stratified sandstone also of eolian dune origin, (3) a horizontally stratified, wind-rippled sandstone of sand sheet origin, (4) a wavy, horizontally stratified, wind-rippled sandstone of sabkha origin, and (5) a mud-draped ripple-laminated sandstone of mud-flat origin. The De Chelly Sandstone in the northern Defiance Plateau consists mainly of large-scale dune deposits. Stratigraphic sections in the middle of the plateau are dominated by small- to medium-scale dune and sand sheet deposits whereas those along the southern end of the plateau are composed largely of sabkha and supratidal mud-flat deposits. The lateral distribution of these facies suggests a north-south juxtaposition of central-erg, fore-erg, and mixed sabkha-supratidal depositional environments. Repetitive interbedding of facies in the De Chelly indicates at least twelve depositional cycles in which sabkha and/or supratidal to coastal-plain mud-flats were sequentially overridden by eolian sand sheets and cross-stratified dunes. Lateral and vertical facies relations within the lower and upper members of the De Chelly Sandstone record episodic expansion of the De Chelly erg southward. The comparative abundance of large-scale dune deposits in the upper member suggests that progradation was more extensive during latter stages of deposition. The intervening tongue of Supai Formation and the redbeds that overlie the upper member of the De Chelly at Bonito Canyon document northward transgression of sabkha and supratidal to coastal-plain mud-flat environments. Eolian dune deposition was restricted to the northern Defiance Plateau during deposition of these units.

  20. Microsoft Word - 2016_0111_Advice_Proposed Changes to Hanford Central Plateau Work and Schedule_DRAFTv2.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DRAFT HAB Advice: Central Plateau Cleanup Work and Schedule 1 V2 Jan. 11, 2016 Hanford Advisory Board DRAFT Advice: Proposed Changes to Hanford Central Plateau Cleanup Work and Schedule Authors: Shelley Cimon, Ken Niles, Dirk Dunning, Jan Catrell, Don Bouchey, Gary Garnant, Jean Vanni, Liz Mattson, Dale Engstrom, Dan Serres The Hanford Advisory Board (Board) consistently strives to provide the Tri-Party Agencies (TPA) with public policy advice that promotes systematic, aggressive and

  1. Evaluation of Soil Flushing for Application to the Deep Vadose Zone in the Hanford Central Plateau

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Zhang, Z. F.; Carroll, Kenneth C.; Schramke, Janet A.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Gordon, Kathryn A.; Last, George V.

    2010-11-01

    Soil flushing was included in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau as a technology with the potential to remove contaminants from the vadose zone. Soil flushing operates through the addition of water, and if necessary an appropriate mobilizing agent, to mobilize contaminants and flush them from the vadose zone and into the groundwater where they are subsequently captured by a pump-and-treat system. There are uncertainties associated with applying soil flushing technology to contaminants in the deep vadose zone at the Hanford Central Plateau. The modeling and laboratory efforts reported herein are intended to provide a quantitative assessment of factors that impact water infiltration and contaminant flushing through the vadose zone and into the underlying groundwater. Once in the groundwater, capture of the contaminants would be necessary, but this aspect of implementing soil flushing was not evaluated in this effort. Soil flushing was evaluated primarily with respect to applications for technetium and uranium contaminants in the deep vadose zone of the Hanford Central Plateau.

  2. Generalized thickness and configuration of the top of the intermediate aquifer, West-Central Florida

    SciTech Connect (OSTI)

    Corral, M.A. Jr.; Wolansky, R.M.

    1984-01-01

    The water-bearing units of the intermediate aquifer consist of discontinuous sand, gravel, shell, and limestone and dolomite beds in the Tamiami Formation of late Miocene age and the Hawthorn Formation of middle Miocene age. Within parts of Polk, Manatee, Hardee, De Soto, Sarasota, and Charlotte Counties, sand and clay beds within the Tampa Limestone that are hydraulically connected to the Hawthorn Formation are also included in the intermediate aquifer. 15 refs.

  3. Fresh Water Generation from Aquifer-Pressured Carbon Storage

    SciTech Connect (OSTI)

    Aines, R D; Wolery, T J; Bourcier, W L; Wolfe, T; Haussmann, C

    2010-02-19

    Can we use the pressure associated with sequestration to make brine into fresh water? This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). Possible products are: Drinking water, Cooling water, and Extra aquifer space for CO{sub 2} storage. The conclusions are: (1) Many saline formation waters appear to be amenable to largely conventional RO treatment; (2) Thermodynamic modeling indicates that osmotic pressure is more limiting on water recovery than mineral scaling; (3) The use of thermodynamic modeling with Pitzer's equations (or Extended UNIQUAC) allows accurate estimation of osmotic pressure limits; (4) A general categorization of treatment feasibility is based on TDS has been proposed, in which brines with 10,000-85,000 mg/L are the most attractive targets; (5) Brines in this TDS range appear to be abundant (geographically and with depth) and could be targeted in planning future CCS operations (including site selection and choice of injection formation); and (6) The estimated cost of treating waters in the 10,000-85,000 mg/L TDS range is about half that for conventional seawater desalination, due to the anticipated pressure recovery.

  4. Evaluating Impacts of CO2 Gas Intrusion Into a Confined Sandstone aquifer: Experimental Results

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnership Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However, the

  5. Evaluating Impacts of CO2 Gas Intrusion Into a Confined Sandstone aquifer: Experimental Results

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnershipmore » Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However

  6. Evaluating impacts of CO2 gas intrusion into a confined sandstone aquifer: Experimental results

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnership Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However, the

  7. Anastomosing grabens, low-angle faults, and Tertiary thrust( ) faults, western Markagunt Plateau, southwestern Utah

    SciTech Connect (OSTI)

    Maldonado, F.; Sable, E.G. )

    1993-04-01

    A structurally complex terrane composed of grabens and horsts, low-angle faults, Tertiary thrust( ) faults, gravity-slide blocks, and debris deposits has been mapped along the western Markagunt Plateau, east of Parowan and Summit, southwestern Utah. This terrane, structurally situated within the transition between the Basin and Range and Colorado Plateau provinces, contains Tertiary volcanic and sedimentary and Cretaceous sedimentary rocks. The structures are mostly Miocene to Oligocene but some are Pleistocene. The oldest structure is the Red Hills low-angle shear zone, interpreted as a shallow structure that decoupled an upper plate composed of a Miocene-Oligocene volcanic ash-flow tuff and volcaniclastic succession from a lower plate of Tertiary sedimentary rocks. The period of deformation on the shear zone is bracketed from field relationships between 22.5 and 20 Ma. The graben-horst system trends northeast and formed after about 20 Ma (and probably much later) based on displacement of dated dikes and a laccolith. The central part of the system contains many grabens that merge toward its southerly end to become a single graben. Within these grabens, (1) older structures are preserved, (2) debris eroded from horst walls forms lobe-shaped deposits, (3) Pleistocene basaltic cinder cones have localized along graben-bounding faults, and (4) rock units are locally folded suggesting some component of lateral translation along graben-bounding faults. Megabreccia deposits and landslide debris are common. Megabreccia deposits are interpreted as gravity-slide blocks of Miocene-Oligocene( ) age resulting from formation of the Red Hills shear zone, although some may be related to volcanism, and still others to later deformation. The debris deposits are landslides of Pleistocene-Pliocene( ) age possibly caused by continued uplift of the Markagunt Plateau.

  8. Two-phase convective CO2 dissolution in saline aquifers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-01

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlyingmore » two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.« less

  9. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; Holloway, Sam; Neele, Filip; Zhou, Quanlin

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to the flow-model derived capacity. Anmore » analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.« less

  10. Water Influx, and Its Effect on Oil Recovery: Part 1. Aquifer Flow, SUPRI TR-103

    SciTech Connect (OSTI)

    Brigham, William E.

    1999-08-09

    Natural water encroachment is commonly seen in many oil and gas reservoirs. In fact, overall, there is more water than oil produced from oil reservoirs worldwide. Thus it is clear that an understanding of reservoir/aquifer interaction can be an important aspect of reservoir management to optimize recovery of hydrocarbons. Although the mathematics of these processes are difficult, they are often amenable to analytical solution and diagnosis. Thus this will be the ultimate goal of a series of reports on this subject. This first report deals only with aquifer behavior, so it does not address these important reservoir/aquifer issues. However, it is an important prelude to them, for the insight gained gives important clues on how to address reservoir/aquifer problems. In general when looking at aquifer flow, there are two convenient inner boundary conditions that can be considered; constant pressure or constant flow rate. There are three outer boundary conditions that are convenient to consider; infinite, closed and constant pressure. And there are three geometries that can be solved reasonably easily; linear, radial and spherical. Thus there are a total of eighteen different solutions that can be analyzed.

  11. Documented quaternary climate change on the Colorado Plateau: 40,000 YR B.P.-present

    SciTech Connect (OSTI)

    Agenbroad, L.D.; Mead, J.I.

    1995-09-01

    Ten years of interdisciplinary research on the Colorado Plateau have produced numerous, complimentary data sets documenting environmental change over the past 40,000 years. Radiocarbon controlled chronologies allow the correlation of multiple data sets, providing an increasingly broad spectrum of environmental changes within this interval. Data sets include documentation of the presence of extinct fauna; discovery and analyses of dung deposits from extinct Pleistocene fauna; packrat midden studies; insect analyses; snail analyses; and alluvial chronologies. The results presented will be considered preliminary, as we have on-going field and laboratory studies.

  12. Field testing of a high-temperature aquifer thermal energy storage system

    SciTech Connect (OSTI)

    Sterling, R.L.; Hoyer, M.C.

    1989-03-01

    The University of Minnesota Aquifer Thermal Energy Storage (ATES) System has been operated as a field test facility for the past six years. Four short-term and two long-term cycles have been completed to data providing a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. A third long-term cycle is currently being planned to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact on the aquifer from heated waste storage cycles. The most critical activities in the preparation for the next cycle have proved to be the applications for the various permits and variances necessary to conduct the third cycle and the matching of the characteristics of the ATES system during heat recovery with a suitable adjacent building thermal load.

  13. Coal assessment and coal quality characterization of the Colorado Plateau area

    SciTech Connect (OSTI)

    Affolter, R.H.; Brownfield, M.E.; Biewick, L.H.; Kirschbaum, M.A.

    1998-12-31

    The goal of the Colorado Plateau Coal Assessment project is to provide an overview of the geologic setting, distribution, resources, and quality of Cretaceous coal in the Colorado Plateau and southernmost Green River Basin. Resources will be estimated by applying restrictions such as coal thickness and depth and will be categorized by land ownership. In some areas these studies will also delineate areas where coal mining may be restricted because of land use, industrial, social, or environmental factors. Emphasis will be placed on areas where the coal is owned or managed by the Federal Government. This assessment, which is part of the US Geological Survey`s National Coal Assessment Program, is different from previous coal assessments in that the major emphasis will be placed on coals that can provide energy for the next few decades. The data is also being collected and stored in digital format that can be updated when new pertinent information becomes available. This study is being completed in cooperation with the US Bureau of Land Management, the US Forest Service, Arizona Geological Survey, Colorado Geological Survey, New Mexico Bureau of Mines and Mineral Resources, and the Utah Geological Survey.

  14. Apparatus and method for extraction of chemicals from aquifer remediation effluent water

    DOE Patents [OSTI]

    McMurtrey, Ryan D.; Ginosar, Daniel M.; Moor, Kenneth S.; Shook, G. Michael; Moses, John M.; Barker, Donna L.

    2002-01-01

    An apparatus and method for extraction of chemicals from an aquifer remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating aquifers contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

  15. Revised Hydrogeology for the Suprabasalt Aquifer System, 200-West Area and Vicinity, Hanford Site, Washington

    SciTech Connect (OSTI)

    Williams, Bruce A.; Bjornstad, Bruce N.; Schalla, Ronald; Webber, William D.

    2002-05-14

    The primary objective of this study was to refine the conceptual groundwater flow model for the 200-West Area and vicinity. This is the second of two reports that combine to cover the 200 Area Plateau, an area that holds the largest inventory of radionuclide and chemical waste on the Hanford Site.

  16. A new low-voltage plateau of Na3V2(PO4)(3) as an anode for Na-ion batteries

    SciTech Connect (OSTI)

    Jian, ZL; Sun, Y; Ji, XL

    2015-01-01

    A low-voltage plateau at similar to 0.3 V is discovered for the deep sodiation of Na3V2(PO4)(3) by combined computational and experimental studies. This new low-voltage plateau doubles the sodiation capacity of Na3V2(PO4)(3), thus turning it into a promising anode for Na-ion batteries.

  17. Evaluating the impact of aquifer layer properties on geomechanical response during CO2 geological sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Zhijie; Lin, Guang; Fang, Yilin

    2013-04-01

    Numerical models play an essential role in understanding the facts of carbon dioxide (CO2) geological sequestration in the life cycle of a storage reservoir. We present a series of test cases that reflect a broad and realistic range of aquifer reservoir properties to systematically evaluate and compare the impacts on the geomechanical response to CO2 injection. In this study, a coupled hydro-mechanical model was introduced to simulate the sequestration process, and a quasi-Monte Carlo sampling method was introduced to efficiently sample the value of aquifer properties and geometry parameters. Aquifer permeability was found to be of significant importance to the geomechanical response to the injection. To study the influence of uncertainty of the permeability distribution in the aquifer, an additional series of tests is presented, based on a default permeability distribution site sample with various distribution deviations generated by the Monte Carlo sampling method. The results of the test series show that different permeability distributions significantly affect the displacement and possible failure zone.

  18. Modeling the Impact of Carbon Dioxide Leakage into an Unconfined, Oxidizing Carbonate Aquifer

    SciTech Connect (OSTI)

    Bacon, Diana H.; Qafoku, Nikolla; Dai, Zhenxue; Keating, Elizabeth; Brown, Christopher F.

    2016-01-01

    Multiphase, reactive transport modeling was used to identify the mechanisms controlling trace metal release under elevated CO2 conditions from a well-characterized carbonate aquifer. Modeling was conducted for two experimental scenarios: batch experiments to simulate sudden, fast, and short-lived release of CO2 as would occur in the case of well failure during injection, and column experiments to simulate more gradual leaks such as those occurring along undetected faults, fractures, or well linings. Observed and predicted trace metal concentrations are compared to groundwater concentrations from this aquifer to determine the potential for leaking CO2 to adversely impact drinking water quality. Finally, a three-dimensional multiphase flow and reactive-transport simulation of CO2 leakage from an abandoned wellbore into a generalized model of the shallow, unconfined portion of the aquifer is used to determine potential impacts on groundwater quality. As a measure of adverse impacts on groundwater quality, both the EPAs MCL limits and the maximum trace metal concentration observed in the aquifer were used as threshold values.

  19. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-28

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equalmore » to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. In conclusion, this study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.« less

  20. Investigation of the second discharge plateau of the {beta}(III)-NiOOH/{beta}(II)-Ni(OH){sub 2} system

    SciTech Connect (OSTI)

    Leger, C.; Tessier, C.; Menetrier, M.; Denage, C.; Delmas, C. |

    1999-03-01

    The galvanostatic reduction of the nickel hydroxide electrode is known to proceed at two successive potentials without this phenomenon being well understood. In this paper the authors prove that this second discharge plateau is unrelated to oxygen reduction and that it can be observed in the absence of the {gamma}-NiOOH hydrated phase. Some earlier studies have connected it to the phase diagram of the {beta}(III)/{beta}(II) system. Using highly precise X-ray measurements, the authors demonstrate that the latter is quite different from the one commonly used. They then interpret the unusual shapes of potential relaxation curves during the lower discharge plateau. Measurements over a wide range of current density (four orders of magnitude) yield experimental clues for an original interpretation of the second discharge plateau based on the dynamics of the discharge process. They suggest that the second plateau is due to the existence of a phase close to Ni(OH){sub 2}, which is not ionically conductive but (poorly) electronically conductive, in the vicinity of the current collector.

  1. Evaluation of In Situ Grouting as a Potential Remediation Method for the Hanford Central Plateau Deep Vadose Zone

    SciTech Connect (OSTI)

    Truex, Michael J.; Pierce, Eric M.; Nimmons, Michael J.; Mattigod, Shas V.

    2011-01-11

    The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau report identifies in situ grouting as a potential remediation technology for the deep vadose zone and includes a planned effort to evaluate in situ grouting to provide information for future feasibility studies. This report represents the first step in this evaluation effort.

  2. Characterization and possible origins of isolated douglas fir stands on the Colorado Plateau

    SciTech Connect (OSTI)

    Spence, J.R.

    1995-09-01

    The floristic composition of several isolated stands of Pseudotsuga menziesii on the Colorado Plateau is compared. All occurred between 1700-2000 meters, which was about 300-500 meters below typical lower limits for the species. Most stands showed evidence of reproduction and recruitment. A small widespread group of species existed that was common to all stands, but beta diversity was high. A preliminary analysis of possible origins of the stands suggested that they are relictual from the late Wisconsin or early Holocene. Bird-dispersed species were less prevalent than expected compared with existing high elevation conifer forests. These stands represent important resources for Quaternary research, but are extremely vulnerable to human-caused disturbances. It is recommended that they be provided protection from disturbance through appropriate management activities of the various land management agencies.

  3. Gas-Phase Treatment of Technetium in the Vadose Zone at the Hanford Site Central Plateau

    SciTech Connect (OSTI)

    Truex, Michael J.; Szecsody, James E.; Zhong, Lirong; Qafoku, Nikolla

    2014-09-01

    Technetium-99 (Tc-99) is present in the vadose zone of the Hanford Central Plateau and is a concern with respect to the protection of groundwater. The persistence, limited natural attenuation mechanisms, and geochemical behavior of Tc-99 in oxic vadose zone environments must be considered in developing effective alternatives for remediation. This report describes a new in situ geochemical manipulation technique for decreasing Tc-99 mobility using a combination of geochemical Tc-99 reduction with hydrogen sulfide gas and induced sediment mineral dissolution with ammonia vapor, which create conditions for deposition of stable precipitates that decrease the mobility of Tc-99. Laboratory experiments were conducted to examine changes in Tc-99 mobility in vadose zone sediment samples to evaluate the effectiveness of the treatment under a variety of operational and sediment conditions.

  4. Evaluating Impacts of CO2 Intrusion into an Unconsolidated Aquifer. I. Experimental Data

    SciTech Connect (OSTI)

    Lawter, Amanda R.; Qafoku, Nikolla; Wang, Guohui; Shao, Hongbo; Brown, Christopher F.

    2015-08-04

    Capture and deep subsurface sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Batch and column experiments combined with wet chemical extractions were conducted to evaluate these risks to groundwater quality and to understand effects of CO2 leakage on aquifer chemistry and mineralogy. Sediments from the High Plains aquifer in Kansas, a confined sandstone aquifer, were used to study time-dependent release of major, minor and trace elements when exposed to CO2 gas. Results showed that Ca, Ba, Si, Mg, Sr, Na, and K increased either instantaneously or followed nonlinear increasing trends with time, indicating dissolution and/or desorption reactions controlled their release. Other elements, such as Mn and Fe, were also released from all sediments, creating a potential for redox reactions to occur. Results from acid extractions confirmed sediments had appreciable amounts of contaminants that may potentially be released into the aqueous phase. However, results from the batch and column experiments demonstrated that only a few trace elements (e.g., As, Cu, Cr, Pb) were released, indicating the risk of groundwater quality degradation due to exposure to leakage of sequestered CO2 is low. Concentrations of Mo were consistently higher in the control experiments (absence of CO2) and were below detection in the presence of CO2 indicating a possible benefit of CO2 in groundwater aquifers. These investigations will provide useful information to support site selection, risk assessment, and public education efforts associated with geological CO2 storage and sequestration.

  5. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark

    2013-04-15

    Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and

  6. The origin of the plateau and late rebrightening in the afterglow of GRB 120326A

    SciTech Connect (OSTI)

    Hou, S. J.; Lu, J. F.; Geng, J. J.; Wang, K.; Huang, Y. F.; Dai, Z. G.; Wu, X. F.

    2014-04-20

    GRB 120326A is an unusual gamma-ray burst (GRB) that has a long plateau and a very late rebrightening in both X-ray and optical bands. The similar behavior of the optical and X-ray light curves suggests that they may share a common origin. The long plateau starts at several hundred seconds and ends at tens of thousands of seconds, and the peak time of the late rebrightening is about 30,000 s. We analyze the energy injection model by means of numerical and analytical solutions, considering both the wind environment and the interstellar medium environment for GRB afterglows. We particularly study the influence of the injection starting time, ending time, stellar wind density (or density of the circumburst environment), and injection luminosity on the shape of the afterglow light curves, respectively. In the wind model, we find that the light curve is largely affected by the parameters and that there is a 'bump' in the late stage. In the wind environment, we found that the longer the energy is injected, the more obvious the rebrightening will be. We also find that the peak time of the bump is determined by the stellar wind density. We use the late continuous injection model to interpret the unusual afterglow of GRB 120326A. The model fits the observational data well; however, we find that the timescale of the injection must be higher than 10,000 s, which implies that the timescale of the central engine activity must also be more than 10,000 s. This information can give useful constraints on the central engines of GRBswe consider a newborn millisecond pulsar with a strong magnetic field to be the central engine. On the other hand, our results suggest that the circumburst environment of GRB 120326A is very likely a stellar wind.

  7. Determination of the original-gas-in-place and aquifer properties in a water-drive reservoir by optimization technique

    SciTech Connect (OSTI)

    Chen, T.L.; Lin, Z.S.; Chen, Y.L.

    1995-10-01

    The purpose of this study was to estimate the original-gas-in-place (OGIP) of a water-drive reservoir using optimization algorithm for Port Arthur field, Texas, US. The properties of the associate aquifer were also obtained. The good agreement, between the results from this study and those from simulation study, would be demonstrated in this paper. In this study, material balance equation for a gas reservoir and van Everdingen-Hurst model for an aquifer were solved simultaneously to calculate cumulative gas production. The result was then compared with cumulative gas production measured in the field that observed at each pressure. The following parameters were manually adjusted to obtain: OGIP, thickness of the aquifer, water encroachment angle, ratio of aquifer to reservoir radius, and aquifer`s permeability. The procedure was then applied with simplex technique, an optimization algorithm, to adjust parameters automatically. When the difference between cumulative gas production calculated and observed was minimal, the parameters used in the model would be the results obtained. A water-drive gas reservoir, ``C`` sand gas reservoir in Port Arthur field, which had produced for about 12 years, was analyzed successfully. The results showed that the OGIP of 60.6 BCF estimated in this study was favorably compared with 56.2 BCF obtained by a numerical simulator in other study. In addition, the aquifer properties that were unavailable from the conventional plotting method can be estimated from this study. The estimated aquifer properties from this study were compared favorably with the core data.

  8. Geostatistical Simulation of Hydrofacies Heterogeneity of the West Thessaly Aquifer Systems in Greece

    SciTech Connect (OSTI)

    Modis, K. Sideri, D.

    2013-06-15

    Integrating geological properties, such as relative positions and proportions of different hydrofacies, is of highest importance in order to render realistic geological patterns. Sequential indicator simulation (SIS) and Plurigaussian simulation (PS) are alternative methods for conceptual and deterministic modeling for the characterization of hydrofacies distribution. In this work, we studied the spatial differentiation of hydrofacies in the alluvial aquifer system of West Thessaly basin in Greece. For this, we applied both SIS and PS techniques to an extensive set of borehole data from that basin. Histograms of model versus experimental hydrofacies proportions and indicative cross sections were plotted in order to validate the results. The PS technique was shown to be more effective in reproducing the spatial characteristics of the different hydrofacies and their distribution across the study area. In addition, the permeability differentiations reflected in the PS model are in accordance to known heterogeneities of the aquifer capacity.

  9. Summary of three dimensional pump testing of a fractured rock aquifer in the western Siberian Basin

    SciTech Connect (OSTI)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A.; Drozhko, E.G.; Glalolenko, Y.V.; Mokrov, Y.G.; Ivanov, I.A.; Glagolev, A.V.; Vasil`kova, N.A.

    1996-10-30

    A group of scientists from the Savannah River Technology Center and Russia successfully completed a 17 day field investigation of a fractured rock aquifer at the MAYAK PA nuclear production facility in Russia. The test site is located in the western Siberian Basin near the floodplain of the Mishelyak river. The fractured rock aquifer is composed of orphyrites, tuff, tuffbreccia and lava and is overlain by 0.5--12 meters of elluvial and alluvial sediments. A network of 3 uncased wells (176, 1/96, and 2/96) was used to conduct the tests. Wells 176 and 2/96 were used as observation wells and the centrally located well 1/96 was used as the pumping well. Six packers were installed and inflated in each of the observation wells at a depth of up to 85 meters. The use of 6 packers in each well resulted in isolating 7 zones for monitoring. The packers were inflated to different pressures to accommodate the increasing hydrostatic pressure. A straddle packer assembly was installed in the pumping well to allow testing of each of the individual zones isolated in the observation wells. A constant rate pumping test was run on each of the 7 zones. The results of the pumping tests are included in Appendix A. The test provided new information about the nature of the fractured rock aquifers in the vicinity of the Mishelyak river and will be key information in understanding the behavior of contaminants originating from process wastes discharged to Lake Karachi. Results from the tests will be analyzed to determine the hydraulic properties of different zones within the fractured rock aquifer and to determine the most cost effective clean-up approach for the site.

  10. Surfactant-enhanced aquifer remediation at the Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Jackson, R.E.; Londergan, J.T.; Pickens, J.F.

    1995-10-01

    Many DOE facilities are situated in areas of sand and gravel which have become polluted with dense, non-aqueous phase liquids or DNAPLs, such as chlorinated solvents, from the various industrial operations at these facilities. The presence of such DNAPLs in sand and gravel aquifers is now recognized as the principal factor in the failure of standard ground-water remediation methods. The principal objective of this study, as stated in the Statement of Work of the contract (DE-AC21-92MC29111), is to demonstrate that multi-component DNAPLs can be readily solubilized in sand and gravel aquifers by dilute surfactant solutions. The specific objectives of the contract are: to identify dilute surfactants or blends of surfactants in the laboratory that will efficiently extract multi-component DNAPLs from sand and gravel aquifers by micellar solubilization (Phase 1); 2. to test the efficacy of the identified surfactants or blends of surfactants to solubilize in situ perchloroethylene (PCE) and trichloroethylene (TCE) DNAPLs by the injection and the subsequent extraction through an existing well or wells at a government-owned contaminated site (Phase 1); and 3. to demonstrate the full-scale operation of this remedial technology at a government-owned contaminated site (Phase 2). Specific objective number 1 has been completed and reported to DOE. However, the results of the test referred to in specific objective number 2, conducted at Paducah Gaseous Diffusion Plant in 1994, were inconclusive. Following this first test, it was decided by DOE and INTERA to move the test site elsewhere due to difficulties with obtaining core samples of the sand and gravel aquifer containing the DNAPL and with ascertaining the location of the DNAPL relative to the injection well. The solubilization test at the Portsmouth Gaseous Diffusion Plant (PORTS) will constitute the second test of Phase 1 of this contract.

  11. Optimization of Geological Environments for Carbon Dioxide Disposan in Saline Aquifers in the United States

    SciTech Connect (OSTI)

    Hovorka, Susan

    1999-02-01

    Recent research and applications have demonstrated technologically feasible methods, defined costs, and modeled processes needed to sequester carbon dioxide (CO{sub 2}) in saline-water-bearing formations (aquifers). One of the simplifying assumptions used in previous modeling efforts is the effect of real stratigraphic complexity on transport and trapping in saline aquifers. In this study we have developed and applied criteria for characterizing saline aquifers for very long-term sequestration of CO{sub 2}. The purpose of this pilot study is to demonstrate a methodology for optimizing matches between CO{sub 2} sources and nearby saline formations that can be used for sequestration. This project identified 14 geologic properties used to prospect for optimal locations for CO{sub 2} sequestration in saline-water-bearing formations. For this demonstration, we digitized maps showing properties of saline formations and used analytical tools in a geographic information system (GIS) to extract areas that meet variably specified prototype criteria for CO{sub 2} sequestration sites. Through geologic models, realistic aquifer properties such as discontinuous sand-body geometry are determined and can be used to add realistic hydrologic properties to future simulations. This approach facilitates refining the search for a best-fit saline host formation as our understanding of the most effective ways to implement sequestration proceeds. Formations where there has been significant drilling for oil and gas resources as well as extensive characterization of formations for deep-well injection and waste disposal sites can be described in detail. Information to describe formation properties can be inferred from poorly known saline formations using geologic models in a play approach. Resulting data sets are less detailed than in well-described examples but serve as an effective screening tool to identify prospects for more detailed work.

  12. Estimating Plume Volume for Geologic Storage of CO2 in Saline Aquifers

    SciTech Connect (OSTI)

    Doughty, Christine

    2008-07-11

    Typically, when a new subsurface flow and transport problem is first being considered, very simple models with a minimal number of parameters are used to get a rough idea of how the system will evolve. For a hydrogeologist considering the spreading of a contaminant plume in an aquifer, the aquifer thickness, porosity, and permeability might be enough to get started. If the plume is buoyant, aquifer dip comes into play. If regional groundwater flow is significant or there are nearby wells pumping, these features need to be included. Generally, the required parameters tend to be known from pre-existing studies, are parameters that people working in the field are familiar with, and represent features that are easy to explain to potential funding agencies, regulators, stakeholders, and the public. The situation for geologic storage of carbon dioxide (CO{sub 2}) in saline aquifers is quite different. It is certainly desirable to do preliminary modeling in advance of any field work since geologic storage of CO{sub 2} is a novel concept that few people have much experience with or intuition about. But the parameters that control CO{sub 2} plume behavior are a little more daunting to assemble and explain than those for a groundwater flow problem. Even the most basic question of how much volume a given mass of injected CO{sub 2} will occupy in the subsurface is non-trivial. However, with a number of simplifying assumptions, some preliminary estimates can be made, as described below. To make efficient use of the subsurface storage volume available, CO{sub 2} density should be large, which means choosing a storage formation at depths below about 800 m, where pressure and temperature conditions are above the critical point of CO{sub 2} (P = 73.8 bars, T = 31 C). Then CO{sub 2} will exist primarily as a free-phase supercritical fluid, while some CO{sub 2} will dissolve into the aqueous phase.

  13. Water-supply potential of the Upper Floridan aquifer in the vicinity of Savannah, Georgia

    SciTech Connect (OSTI)

    Garza, R.; Krause, R.E. )

    1993-03-01

    The Upper Floridan aquifer is the primary source of freshwater in coastal Georgia. Groundwater withdrawal in the area of Savannah and in the adjacent coastal areas in Georgia and South Carolina has resulted in large regional water-level declines and a reversal of the hydraulic gradient that existed prior to development. Changes in gradient and decreasing water levels are causing lateral encroachment of seawater into the Upper Floridan aquifer at the northern end of Hilton Head Island, SC, and vertical intrusion of saltwater into the Upper and Lower Floridan aquifers in the Brunswick, GA., area. Concerns about future water-supply demands prompted the US Geological Survey and the Chatham County-Savannah Metropolitan Planning Commission to undertake a cooperative study to evaluate the ground-water resources in the Savannah, GA, area. A numerical ground-water flow model was developed and used in conjunction with other previously calibrated models in the coastal areas of Georgia and South Carolina to simulate the effects of additional ground-water withdrawal on water levels. Based on model simulations and the constraint of preventing additional water-level declines at the locations of encroachment and intrusion, the potential of the Upper Floridan aquifer to supply additional water in the Savannah area is limited under present hydrologic conditions. The potential for additional withdrawal in the vicinity of Savannah, GA, ranges from less than 1 million gallons per day (Mgal/d) to about 5 Mgal/d. Because of the limited water-supply potential, hypothetical alternatives of ground-water withdrawal were simulated to determine the effects on water levels. These simulations indicate that reduction and redistribution of ground-water withdrawal would not adversely affect water levels at the locations of encroachment and intrusion.

  14. Two plateaux for palladium hydride and the effect of helium from tritium decay on the desorption plateau pressure for palladium tritide

    SciTech Connect (OSTI)

    Walters, R.T.; Lee, M.W. )

    1991-10-01

    Two plateaux are observed in the desorption isotherm for palladium hydride: a lower plateau pressure for a hydrogen/metal atom ratio (H/M) less than about 0.3 and a slightly higher plateau pressure for H/M greater than about 0.3. This higher pressure corresponds to the reported pressure for palladium hydride. These observations were made for a large surface area palladium powder exposed to both protium and tritium. Helium buildup form tritium decay decreases the lower plateau pressure but does not affect the observations for H/M greater than about 0.3. In this paper, a multiple-energy hydrogen site occupancy model is proposed to explain qualitatively both the dual plateau and the helium effect in palladium hydride.

  15. Microsoft PowerPoint - Ozark and WEbbers Hydropower conference1...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webbers Falls Project Cost Breakdown 2014 Current Cost Est. - 84.7M Turbine Rehab Cont. - ... Gates- 321K* Stay Vane Repair, 3 Units (est)- 850K* Additional Painting- 1.0M* ...

  16. Exposure of a food crop to trichloroethylene from a contaminated aquifer. Master's thesis

    SciTech Connect (OSTI)

    Baringer, R.G.

    1994-09-01

    This research developed a methodology for assessment of the exposure of a mature corn crop to trichloroethylene from a contaminated aquifer. The methodology was then applied to the case of Hill AFB to determine the ability of the methodology to provide information about a specific exposure. Current procedures sample for food contamination but do not attempt to predict exposure problems. A review of the potential exposure pathways from the aquifer to the crop was conducted. Based on this review, the exposures due to soil gas and irrigation were modeled. Empirical estimated were used to approximate the expected flux of soil gas vaporizing directly from the aquifer. On the basis of this approximation, the exposure the air of the crop canopy was mathematically estimated. Analytical models were developed to simulate the amount of the contaminant reaching the crop from two different means of irrigation. The subsequent exposure once the contaminated irrigation water had reached the crop was modeled both in the air of the crop canopy and the soil phase near the root system. The methodology provided insights into which exposure pathways are more important than others and which environmental parameters most influence the amount of exposure.

  17. Flow and Transport in the Hanford 300 Area Vadose Zone-Aquifer-River System

    SciTech Connect (OSTI)

    Waichler, Scott R.; Yabusaki, Steven B.

    2005-07-13

    Contaminant migration in the 300 Area unconfined aquifer is strongly coupled to fluctuations in the Columbia River stage. To better understand the interaction between the river, aquifer, and vadose zone, a 2-D saturated-unsaturated flow and transport model was developed for a vertical cross-section aligned west-east across the Hanford Site 300 Area, nearly perpendicular to the river. The model was used to investigate water flow and tracer transport in the vadose zone-aquifer-river flow system, in support of the ongoing study of the 300 Area uranium plume. The STOMP simulator was used to model 1-year from 3/1/92 to 2/28/93, a period when hourly data were available for both groundwater and river levels. Net water flow to the river (per 1-meter width of shoreline) was 182 m3/y in the base case, but the cumulative exchange or total flow back and forth across the riverbed was 30 times greater. The low river case had approximately double the net water and Groundwater tracer flux into the river as compared to the base case.

  18. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer

    SciTech Connect (OSTI)

    Wrighton, Kelly C.; Castelle, Cindy; Wilkins, Michael J.; Hug, Laura A.; Sharon, I.; Thomas, Brian C.; Handley, Kim M.; Mullin, Sean W.; Nicora, Carrie D.; Singh, Andrea; Lipton, Mary S.; Long, Philip E.; Williams, Kenneth H.; Banfield, Jillian F.

    2014-07-08

    Fermentation-based metabolism is an important ecosystem function often associated with environments rich in organic carbon, such as wetlands, sewage sludge, and the mammalian gut. The diversity of microorganisms and pathways involved in carbon and hydrogen cycling in sediments and aquifers and the impacts of these processes on other biogeochemical cycles remain poorly understood. Here we used metagenomics and proteomics to characterize microbial communities sampled from an aquifer adjacent to the Colorado River at Rifle, Colorado, USA, and document interlinked microbial roles in geochemical cycling. The organic carbon content in the aquifer was elevated via two acetate-based biostimulation treatments. Samples were collected at three time points, with the objective of extensive genome recovery to enable metabolic reconstruction of the community. Fermentative community members include genomes from a new phylum (ACD20), phylogenetically novel members of the Chloroflexi and Bacteroidetes, as well as candidate phyla genomes (OD1, BD1-5, SR1, WWE3, ACD58, TM6, PER, and OP11). These organisms have the capacity to produce hydrogen, acetate, formate, ethanol, butyrate, and lactate, activities supported by proteomic data. The diversity and expression of hydrogenases suggests the importance of hydrogen currency in the subsurface. Our proteogenomic data further indicate the consumption of fermentation intermediates by Proteobacteria can be coupled to nitrate, sulfate, and iron reduction. Thus, fermentation carried out by previously unstudied members of sediment microbial communities may be an important driver of diverse subsurface biogeochemical cycles.

  19. Addendum to Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site

    SciTech Connect (OSTI)

    Bergeron, Marcel P.; Freeman, Eugene J.; Wurstner, Signe K.; Kincaid, Charles T.; Coony, Mike M.; Strenge, Dennis L.; Aaberg, Rosanne L.; Eslinger, Paul W.

    2001-09-28

    This report summarizes efforts to complete an addendum analysis to the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis). This document describes the background and performance objectives of the Composite Analysis and this addendum analysis. The methods used, results, and conclusions for this Addendum analysis are summarized, and recommendations are made for work to be undertaken in anticipation of a second analysis.

  20. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Last, George V.; Strickland, Christopher E.; Tartakovsky, Guzel D.

    2015-09-01

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.

  1. Gold deposits in the late Archaean Nzega-Igunga greenstone belt, central plateau of tanzania

    SciTech Connect (OSTI)

    Feiss, P.G.; Siyomana, S.

    1985-01-01

    2.2 m oz of gold have been produced, since 1935, from late Archaean (2480-2740 Ma) greenstone belts of the Central Plateau, Tanzania. North and east of Nzega (4/sup 0/12'S, 3/sup 0/11'E), 18% of the exposed basement, mainly Dodoman schists and granites, consists of metavolcanics and metasediments of the Nyanzian and Kavirondian Series. Four styles of mineralization are observed. 1. Stratabound quartz-gold veins with minor sulfides. Host rocks are quartz porphyry, banded iron formation (BIF), magnetite quartzite, and dense, cherty jasperite at the Sekenke and Canuck mines. The Canuck veins are on strike from BIF's in quartz-eye porphyry of the Igusule Hills. 2. Stratabound, disseminated gold in coarse-grained, crowded feldspar porphyry with lithic fragments and minor pyrite. At Bulangamilwa, the porphyry is conformable with Nyanzian-aged submarine (.) greenstone, volcanic sediment, felsic volcanics, and sericite phyllite. The deposits are on strike with BIF of the Wella Hills, which contains massive sulfide with up to 15% Pb+Zn. 3. Disseminated gold in quartz-albite metasomes in Nyanzian greenstones. At Kirondatal, alteration is associated with alaskites and feldspar porphyry dikes traceable several hundred meters into post-Dodoman diorite porphyry. Gold is with pyrite, arsenopyrite, pyrrhotite, minor chalcopyrite, and sphalerite as well as tourmalinite and silica-cemented breccias. 4. Basal Kavirondian placers in metaconglomerates containing cobbles and boulders of Dodoman and Nyanzian rocks several hundred meters up-section from the stratabound, disseminated mineralization at Bulangamilwa.

  2. Impact of land use change on the local climate over the Tibetan Plateau

    SciTech Connect (OSTI)

    Jin, J.; Lu, S.; Li, S.; Miller, N.L.

    2010-04-01

    Observational data show that the remotely sensed leaf area index (LAI) has a significant downward trend over the east Tibetan Plateau (TP), while a warming trend is found in the same area. Further analysis indicates that this warming trend mainly results from the nighttime warming. The Single-Column Atmosphere Model (SCAM) version 3.1 developed by the National Center for Atmospheric Research is used to investigate the role of land use change in the TP local climate system and isolate the contribution of land use change to the warming. Two sets of SCAM simulations were performed at the Xinghai station that is located near the center of the TP Sanjiang (three rivers) Nature Reserve where the downward LAI trend is largest. These simulations were forced with the high and low LAIs. The modeling results indicate that, when the LAI changes from high to low, the daytime temperature has a slight decrease, while the nighttime temperature increases significantly, which is consistent with the observations. The modeling results further show that the lower surface roughness length plays a significant role in affecting the nighttime temperature increase.

  3. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to an Unconfined Oxidizing Carbonate Aquifer

    SciTech Connect (OSTI)

    Wang, Guohui; Qafoku, Nikolla; Lawter, Amanda R.; Bowden, Mark E.; Harvey, Omar; Sullivan, E. C.; Brown, Christopher F.

    2015-07-15

    A series of batch and column experiments combined with solid phase characterization studies (i.e., quantitative x-ray diffraction and wet chemical extractions) were conducted to address a variety of scientific issues and evaluate the impacts of the potential leakage of carbon dioxide (CO2) from deep subsurface storage reservoirs. The main objective was to gain an understanding of how CO2 gas influences: 1) the aqueous phase pH; and 2) mobilization of major, minor, and trace elements from minerals present in an aquifer overlying potential CO2 sequestration subsurface repositories. Rocks and slightly weathered rocks representative of an unconfined, oxidizing carbonate aquifer within the continental US, i.e., the Edwards aquifer in Texas, were used in these studies. These materials were exposed to a CO2 gas stream or were leached with a CO2-saturated influent solution to simulate different CO2 gas leakage scenarios, and changes in aqueous phase pH and chemical composition were measured in the liquid samples collected at pre-determined experimental times (batch experiments) or continuously (column experiments). The results from the strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the Edward aquifer samples contain As, Cd, Pb, Cu, and occasionally Zn, which may potentially be mobilized from the solid to the aqueous phase during or after exposure to CO2. The results from the batch and column experiments confirmed the release of major chemical elements into the contacting aqueous phase (such as Ca, Mg, Ba, Sr, Si, Na, and K); the mobilization and possible rapid immobilization of minor elements (such as Fe, Al, and Mn), which are able to form highly reactive secondary phases; and sporadic mobilization of only low concentrations of trace elements (such as As, Cd, Pb, Cu, Zn, Mo, etc.). The results from this experimental research effort will help in developing a systematic understanding of how CO2

  4. University of Minnesota aquifer thermal energy storage (ATES) project report on the third long-term cycle

    SciTech Connect (OSTI)

    Hoyer, M.C.; Hallgren, J.P.; Uebel, M.H.; Delin, G.N.; Eisenreich, S.J.; Sterling, R.L.

    1994-12-01

    The University of Minnesota aquifer thermal energy storage (ATES) system has been operated as a field test facility (FTF) since 1982. The objectives were to design, construct, and operate the facility to study the feasibility of high-temperature ATES in a confined aquifer. Four short-term and two long-term cycles were previously conducted, which provided a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. The third long-term cycle (LT3) was conducted to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact that heated water storage had on the aquifer. For LT3, the source and storage wells were modified so that only the most permeable portion, the Ironton-Galesville part, of the Franconia-Ironton-Galesville aquifer was used for storage. This was expected to improve storage efficiency by reducing the surface area of the heated volume and simplify analysis of water chemistry results by reducing the number of aquifer-related variables which need to be considered. During LT3, a total volume of 63.2 {times} 10{sup 3} m {sup 3} of water was injected at a rate of 54.95 m{sup 3}/hr into the storage well at a mean temperature of 104.7{degrees}C. Tie-in to the reheat system of the nearby Animal Sciences Veterinary Medicine (ASVM) building was completed after injection was completed. Approximately 66 percent (4.13 GWh) of the energy added to the aquifer was recovered. Approximately 15 percent (0.64 GWh) of the usable (10 building. Operations during heat recovery with the ASVM building`s reheat system were trouble-free. Integration into more of the ASVM (or other) building`s mechanical systems would have resulted in significantly increasing the proportion of energy used during heat recovery.

  5. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report

    SciTech Connect (OSTI)

    Aines, R D; Wolery, T J; Hao, Y; Bourcier, W L

    2009-07-22

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh water to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir

  6. Bicarbonate Impact on U(VI) Bioreduction in a Shallow Alluvial Aquifer

    SciTech Connect (OSTI)

    Long, Philip E.; Williams, Kenneth H.; Davis, James A.; Fox, Patricia M.; Wilkins, Michael J.; Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.; Berman, Elena S.; Gupta, Manish; Chandler, Darrell P.; Murray, Christopher J.; Peacock, Aaron D.; Giloteaux, L.; Handley, Kim M.; Lovley, Derek R.; Banfield, Jillian F.

    2015-02-01

    Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) contaminated, shallow alluvial aquifer have provided insight into the coupling of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment (Anderson et al. 2003, Williams et al. 2011). In parallel, in situ desorption tracer tests using bicarbonate amendment demonstrated rate-limited U(VI) desorption (Fox et al. 2012). These results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and suggested the ability to combine desorption and bioreduction of U(VI). Here we report the results of a new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Results confirm that bicarbonate amendment to alluvial aquifer desorbs U(VI) and increases the abundance of Ca-uranyl-carbonato complexes. At the same time, that the rate of acetate-promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the increased dominance of Ca-uranyl-carbonato aqueous complexes. A model-simulated peak rate of U(VI) reduction was ~3.8 times higher during acetate-bicarbonate treatment than under acetate-only conditions. Lack of consistent differences in microbial community structure between acetate-bicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in aquifers.

  7. Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Williams, K.H.; N'Guessan, A.L.; Druhan, J.; Long, P.E.; Hubbard, S.S.; Lovley, D.R.; Banfield, J.F.

    2009-11-15

    The inability to track the products of subsurface microbial activity during stimulated bioremediation has limited its implementation. We used spatiotemporal changes in electrodic potentials (EP) to track the onset and persistence of stimulated sulfate-reducing bacteria in a uranium-contaminated aquifer undergoing acetate amendment. Following acetate injection, anomalous voltages approaching -900 mV were measured between copper electrodes within the aquifer sediments and a single reference electrode at the ground surface. Onset of EP anomalies correlated in time with both the accumulation of dissolved sulfide and the removal of uranium from groundwater. The anomalies persisted for 45 days after halting acetate injection. Current-voltage and current-power relationships between measurement and reference electrodes exhibited a galvanic response, with a maximum power density of 10 mW/m{sup 2} during sulfate reduction. We infer that the EP anomalies resulted from electrochemical differences between geochemically reduced regions and areas having higher oxidation potential. Following the period of sulfate reduction, EP values ranged from -500 to -600 mV and were associated with elevated concentrations of ferrous iron. Within 10 days of the voltage decrease, uranium concentrations rebounded from 0.2 to 0.8 {mu}M, a level still below the background value of 1.5 {mu}M. These findings demonstrate that EP measurements provide an inexpensive and minimally invasive means for monitoring the products of stimulated microbial activity within aquifer sediments and are capable of verifying maintenance of redox conditions favorable for the stability of bioreduced contaminants, such as uranium.

  8. Geostatistical analysis of potentiometric data in Wolfcamp aquifer of the Palo Duro Basin, Texas

    SciTech Connect (OSTI)

    Harper, W.V.; Furr, J.M.

    1986-04-01

    This report details a geostatistical analysis of potentiometric data from the Wolfcamp aquifer in the Palo Duro Basin, Texas. Such an analysis is a part of an overall uncertainty analysis for a high-level waste repository in salt. Both an expected potentiometric surface and the associated standard error surface are produced. The Wolfcamp data are found to be well explained by a linear trend with a superimposed spherical semivariogram. A cross-validation of the analysis confirms this. In addition, the cross-validation provides a point-by-point check to test for possible anomalous data.

  9. Application of three aquifer test methods for estimating hydraulic properties within the 100-N Area

    SciTech Connect (OSTI)

    Gilmore, T.J.; Spane, F.A. Jr.; Newcomer, D.R.; Sherwood, C.R.

    1992-12-01

    The purpose if this study was to better define the range of saturated horizontal hydraulic conductivities in the 100-N Area of the Hanford Site in southeastern Washington for use in a numerical groundwater model. Three methods were used for determining aquifer properties and are discussed within this report (1) reanalysis of past pumping test data using a pressure derivative method to identify the data in the radial flow regime for analysis by traditional graphical techniques, (2) sinusoidal analysis techniques described in Ferris that utilize water-table responses to river-level variations, and (3) the basic flow equation for groundwater.

  10. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    SciTech Connect (OSTI)

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

    2009-11-25

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common examples of saline

  11. Thermophysical behavior of St. Peter sandstone: application to compressed air energy storage in an aquifer

    SciTech Connect (OSTI)

    Erikson, R.L.

    1983-12-01

    The long-term stability of a sandstone reservoir is of primary importance to the success of compressed air energy storage (CAES) in aquifers. The purpose of this study was to: develop experimental techniques for the operation of the CAES Porous Media Flow Loop (PMFL), an apparatus designed to study the stability of porous media in subsurface geologic environments, conduct experiments in the PMFL designed to determine the effects of temperature, stress, and humidity on the stability of candidate CAES reservoir materials, provide support for the CAES field demonstration project in Pittsfield, Illinois, by characterizing the thermophysical stability of Pittsfield reservoir sandstone under simulated field conditions.

  12. Prickett and Lonnquist aquifer simulation program for the Apple II minicomputer

    SciTech Connect (OSTI)

    Hull, L.C.

    1983-02-01

    The Prickett and Lonnquist two-dimensional groundwater model has been programmed for the Apple II minicomputer. Both leaky and nonleaky confined aquifers can be simulated. The model was adapted from the FORTRAN version of Prickett and Lonnquist. In the configuration presented here, the program requires 64 K bits of memory. Because of the large number of arrays used in the program, and memory limitations of the Apple II, the maximum grid size that can be used is 20 rows by 20 columns. Input to the program is interactive, with prompting by the computer. Output consists of predicted lead values at the row-column intersections (nodes).

  13. Groundwaters of Florence (Italy): Trace element distribution and vulnerability of the aquifers

    SciTech Connect (OSTI)

    Bencini, A.; Ercolanelli, R.; Sbaragli, A.

    1993-11-01

    Geochemical and hydrogeological research has been carried out in Florence, to evaluate conductivity and main chemistry of groundwaters, the pattern of some possible pollutant chemical species (Fe, Mn, Cr, Cu, Pb, Zn, NO{sub 2}, NO{sub 3}), and the vulnerability of the aquifers. The plain is made up of Plio-Quaternary alluvial and lacustrine sediments for a maximum thickness of 600 m. Silts and clays, sometimes with lenses of sandy gravels, are dominant, while considerable deposits of sands, pebbles, and gravels occur along the course of the Arno river and its tributary streams, and represent the most important aquifer of the plain. Most waters show conductivity values around 1000-1200 {mu}S, and almost all of them have an alkaline-earth-bicarbonate chemical character. In western areas higher salt content of the groundwaters is evident. Heavy metal and NO{sub 2}, NO{sub 3} analyses point out that no important pollution phenomena affect the groundwaters; all mean values are below the maximum admissible concentration (MAC) for drinkable waters. Some anomalies of NO{sub 2}, NO{sub 3}, Fe, Mn, and Zn are present. The most plausible causes can be recognized in losses of the sewage system; use of nitrate compounds in agriculture; oxidation of well pipes. All the observations of Cr, Cu, and Pb are below the MAC; the median values of <3, 3.9, and 1.1 {mu}g/l, respectively, could be considered reference concentrations for groundwaters in calcareous lithotypes, under undisturbed natural conditions. Finally, a map of vulnerability shows that the areas near the Arno river are highly vulnerable, for the minimum thickness (or lacking) of sediments covering the aquifer. On the other hand, in the case of pollution, several factors not considered could significantly increase the self-purification capacity of the aquifer, such asdilution of groundwaters, bacteria oxidation of nitrogenous species, and sorption capacity of clay minerals and organic matter. 31 refs., 6 figs., 5 tabs.

  14. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    SciTech Connect (OSTI)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R.

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

  15. Optical and ultraviolet observations of a low-velocity type II plateau supernova 2013am in M65

    SciTech Connect (OSTI)

    Zhang, Jujia; Bai, Jinming; Fan, Yufeng; Wang, Jianguo; Yi, Weimin; Wang, Chuanjun; Xin, Yuxin; Liangchang; Zhang, Xiliang; Lun, Baoli; Wang, Xueli; He, Shousheng [Yunnan Observatories (YNAO), Chinese Academy of Sciences, Kunming 650216 (China); Wang, Xiaofeng; Huang, Fang; Mo, Jun [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 100084 (China); Mazzali, Paolo A.; Bersier, David [Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Zhang, Tianmeng [National Astronomical Observatories of China (NAOC), Chinese Academy of Sciences, Beijing 100012 (China); Walker, Emma S., E-mail: jujia@ynao.ac.cn, E-mail: baijinming@ynao.ac.cn, E-mail: wang_xf@mail.tsinghua.edu.cn [Department of Physics, Yale University, New Haven, CT 06520-8121 (United States)

    2014-12-10

    Optical and ultraviolet observations for the nearby type II plateau supernova (SN IIP) 2013am in the nearby spiral galaxy M65 are presented in this paper. The early spectra are characterized by relatively narrow P-Cygni features, with ejecta velocities much lower than observed in normal SNe IIP (i.e., ?2000 km s{sup 1} versus ?5000 km {sup 1} in the middle of the plateau phase). Moreover, prominent Ca II absorptions are also detected in SN 2013am at relatively early phases. These spectral features are reminiscent of those seen in the low-velocity and low-luminosity SN IIP 2005cs. However, SN 2013am exhibits different photometric properties, having shorter plateau phases and brighter light curve tails if compared to SN 2005cs. Adopting R{sub V} = 3.1 and a mean value of total reddening derived from the photometric and spectroscopic methods (i.e., E(B V) = 0.55 0.19 mag), we find that SN 2013am may have reached an absolute V-band peak magnitude of 15.83 0.71 mag and produced an {sup 56}Ni mass of 0.016{sub ?0.006}{sup +0.010} M {sub ?} in the explosion. These parameters are close to those derived for SN 2008in and SN 2009N, which have been regarded as 'gap-filler' objects linking the faint SNe IIP to the normal ones. This indicates that some low-velocity SNe IIP may not necessarily result from the low-energetic explosions. The low expansion velocities could be due to a lower metallicity of the progenitor stars, a larger envelope mass ejected in the explosion, or the effect of viewing angle where these SNe were observed at an angle away from the polar direction.

  16. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bacon, Diana H.; Dai, Zhenxue; Zheng, Liange

    2014-12-31

    An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a geochemical scaling function has been developed, based on a detailed reactive transport model of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of geochemical parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2more » leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.« less

  17. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    SciTech Connect (OSTI)

    Sisman, S. Lara

    2015-07-20

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  18. Plateau Remediation Contract Section J Contract No. DE-AC06-08RL14788 Attachment J.11, Revision 0

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTRACT LINE ITEM NUMBER (CLIN) ASSIGNMENT AGAINST CONTRACT STRUCTURE The table entitled, CONTRACT LINE ITEM NUMBER (CLIN) ASSIGNMENT AGAINST CONTRACT STRUCTURE, is included as a separate file. Plateau Remediation Contract Contract No. DE-AC06-08RL14788 ATTACHMENT J-11 CONTRACT LINE ITEM NUMBER (CLIN) ASSIGNMENT AGAINST CONTRACT STRUCTURE Section J Attachment J-11, Revision 2 PRC STATEMENT OF WORK SECTION ASSIGNED WBS ELEMENTS CLIN C.2.1 Transition 013.01 Project Management - PBS RL-13 1 C.2.1

  19. A PLATEAU IN THE PLANET POPULATION BELOW TWICE THE SIZE OF EARTH

    SciTech Connect (OSTI)

    Petigura, Erik A.; Marcy, Geoffrey W.; Howard, Andrew W.

    2013-06-10

    We carry out an independent search of Kepler photometry for small transiting planets with sizes 0.5-8.0 times that of Earth and orbital periods between 5 and 50 days, with the goal of measuring the fraction of stars harboring such planets. We use a new transit search algorithm, TERRA, optimized to detect small planets around photometrically quiet stars. We restrict our stellar sample to include the 12,000 stars having the lowest photometric noise in the Kepler survey, thereby maximizing the detectability of Earth-size planets. We report 129 planet candidates having radii less than 6 R{sub E} found in three years of Kepler photometry (quarters 1-12). Forty-seven of these candidates are not in Batalha et al., which only analyzed photometry from quarters 1-6. We gather Keck HIRES spectra for the majority of these targets leading to precise stellar radii and hence precise planet radii. We make a detailed measurement of the completeness of our planet search. We inject synthetic dimmings from mock transiting planets into the actual Kepler photometry. We then analyze that injected photometry with our TERRA pipeline to assess our detection completeness for planets of different sizes and orbital periods. We compute the occurrence of planets as a function of planet radius and period, correcting for the detection completeness as well as the geometric probability of transit, R{sub *}/a. The resulting distribution of planet sizes exhibits a power law rise in occurrence from 5.7 R{sub E} down to 2 R{sub E} , as found in Howard et al. That rise clearly ends at 2 R{sub E} . The occurrence of planets is consistent with constant from 2 R{sub E} toward 1 R{sub E} . This unexpected plateau in planet occurrence at 2 R{sub E} suggests distinct planet formation processes for planets above and below 2 R{sub E} . We find that 15.1{sup +1.8}{sub -2.7}% of solar type stars-roughly one in six-has a 1-2 R{sub E} planet with P = 5-50 days.

  20. Analysis of temperatures and water levels in wells to estimatealluvial aquifer hydraulic conductivities

    SciTech Connect (OSTI)

    Su, Grace W.; Jasperse, James; Seymour, Donald; Constantz, Jim

    2003-06-19

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.28C in two wells to {approx}88C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.

  1. Chlorinated degreasing solvents: Physical-chemical properties affecting aquifer contamination and remediation

    SciTech Connect (OSTI)

    Jackson, R.E.; Dwarakanath, V.

    1999-09-30

    Chlorinated degreasing solvents are multicomponent liquids containing not only the chlorinated hydrocarbons with which their name is associated (e.g., trichloroethylene or [TCE], perchloroethylene or [PCE], 1,1,1-trichloroethane [TCA]) but also a number of organic additives included as corrosion inhibitors and antioxidants. The additives, such as 1,4-dioxane, are likely to be of significant public-health importance as ground water contaminants due to their toxicity, solubility, and mobility. Following their use in vapor degreasing systems by industry, chlorinated degreasing solvents will also contain about 25% solubilized oil and grease. A number of physical-chemical properties become especially important in the light of the multicomponent nature of these solvents. First, the higher aqueous solubility and lower sorption of the additives makes it reasonable to expect that faster moving plumes of these solvent additives will precede plumes of the chlorinated hydrocarbons. Second, due to high losses of chlorinated hydrocarbons by volatilization from vapor degreasers during years in the middle of the century, it is probable that background concentrations of these hydrocarbons are present in ground water flow systems due to their downwind washout. Finally, the solubilized oil and grease may cause profound changes to the wettability of aquifer materials contacted by the solvents during their subsurface migration. It is argued, therefore, that the wettability of aquifer materials contaminated by chlorinated degreasing solvents needs to be experimentally determined before remediation of DNAPL at each site, rather than being simply assumed as water wet.

  2. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    SciTech Connect (OSTI)

    Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla; Serne, R. Jeffrey

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  3. Building Conceptual Models of Field-Scale Uranium Reactive Transport in a Dynamic Vadose Zone-Aquifer-River System

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.

    2008-12-04

    Subsurface simulation is being used to build, test, and couple conceptual process models to better understand controls on a 0.4 km by 1.0 km uranium plume that has persisted above the drinking water standard in the groundwater of the Hanford 300 Area over the last 15 years. At this site, uranium-contaminated sediments in the vadose zone and aquifer are subject to significant variations in water levels and velocities driven by the diurnal, weekly, seasonal, and episodic Columbia River stage dynamics. Groundwater flow reversals typically occur twice a day with significant exchange of river water and groundwater in the near-river aquifer. Mixing of the dilute solution chemistry of the river with the groundwater complicates the uranium sorption behavior as the mobility of U(VI) has been shown experimentally to be a function of pH, carbonate, calcium, and uranium. Furthermore, uranium mass transfer between solid and aqueous phases has been observed to be rate-limited in the context of the high groundwater velocities resulting from the river stage fluctuations and the highly transmissive sediments (hydraulic conductivities ~1500 m/d). One- and two-dimensional vertical cross-sectional simulations of variably-saturated flow and reactive transport, based on laboratory-derived models of distributed rate mass transfer and equilibrium multicomponent surface complexation, are used to assess uranium transport at the dynamic vadose zone aquifer interface as well as changes to uranium mobility due to incursions of river water into the aquifer.

  4. Possible Impacts of Global Warming on Hydrology of the Ogallala Aquifer Region

    SciTech Connect (OSTI)

    Rosenberg, Norman J. ); Epstein, Daniel J. ); Wang, Dahong; Vail, Lance W. ); Srinivasan, Ragahvan; Arnold, J G.

    1998-12-01

    The Ogallala or High Plains aquifer provides water for about 20% of the irrigated land in the United States. About 20 km{sup 3} (16.6 million acre-feet) of water are withdrawn annually from this aquifer. In general, recharge has not compensated for withdrawals since major irrigation development began in this region in the 1940s. The mining of the Ogallala has been pictured as an analogue to climate change in that many GCMs predict a warmer and drier future for this region. We anticipate the possible impacts of climate change on the sustainability of the aquifer as a source of water for irrigation and other purposes in the region. We have applied HUMUS, the Hydrologic Unit Model of the U.S. to the Missouri and Arkansas-White-Red water resource regions that overlie the Ogallala. We have imposed three general circulation model (GISS, UKTR and BMRC) projections of future climate change on this region and simulated the changes that may be induced in water yields (runoff plus lateral flow) and ground water recharge. Each GCM was applied to HUMUS at three levels of global mean temperature (GMT) to represent increasing severity of climate change (a surrogate for time). HUMUS was also run at three levels of atmospheric CO2 concentration (hereafter denoted by[CO2]) in order to estimate the impacts of direct CO2 effects on photosynthesis and evapotranspiration. Since the UKTR and GISS GCMs project increased precipitation in the Missouri basin, water yields increase there. The BMRC GCM predicts sharply decreased precipitation and, hence, reduced water yields. Precipitation reductions are even greater in the Arkansas basin under BMRC as are the consequent water yield losses. GISS and UKTR climates lead to only moderate yield losses in the Arkansas. CO2-fertilization reverses these losses and yields increase slightly. CO2 fertilization increases recharge in the base (no climate change) case in both basins. Recharge is reduced under all three GCMs and severities of climate change.

  5. Aquifer Characteristics Data Report for the Weldon Spring Site chemical plant/raffinate pits and vicinity properties for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    This report describes the procedures and methods used, and presents the results of physical testing performed, to characterize the hydraulic properties of the shallow Mississippian-Devonian aquifer beneath the Weldon Spring chemical plant, raffinate pits, and vicinity properties. The aquifer of concern is composed of saturated rocks of the Burlington-Keokuk Limestone which constitutes the upper portion of the Mississippian-Devonian aquifer. This aquifer is a heterogeneous anisotropic medium which can be described in terms of diffuse Darcian flow overlain by high porosity discrete flow zones and conduits. Average hydraulic conductivity for all wells tested is 9.6E-02 meters/day (3.1E-01 feet/day). High hydraulic conductivity values are representative of discrete flow in the fractured and weathered zones in the upper Burlington-Keokuk Limestone. They indicate heterogeneities within the Mississippian-Devonian aquifer. Aquifer heterogeneity in the horizontal plane is believed to be randomly distributed and is a function of fracture spacing, solution voids, and preglacial weathering phenomena. Relatively high hydraulic conductivities in deeper portions of the aquifer are though to be due to the presence of widely spaced fractures. 44 refs., 27 figs., 9 tabs.

  6. Determining flow, recharge, and vadose zonedrainage in anunconfined aquifer from groundwater strontium isotope measurements, PascoBasin, WA

    SciTech Connect (OSTI)

    mjsingleton@lbl.gov

    2004-06-29

    Strontium isotope compositions (87Sr/86Sr) measured in groundwater samples from 273 wells in the Pasco Basin unconfined aquifer below the Hanford Site show large and systematic variations that provide constraints on groundwater recharge, weathering rates of the aquifer host rocks, communication between unconfined and deeper confined aquifers, and vadose zone-groundwater interaction. The impact of millions of cubic meters of wastewater discharged to the vadose zone (103-105 times higher than ambient drainage) shows up strikingly on maps of groundwater 87Sr/86Sr. Extensive access through the many groundwater monitoring wells at the site allows for an unprecedented opportunity to evaluate the strontium geochemistry of a major aquifer, hosted primarily in unconsolidated sediments, and relate it to both long term properties and recent disturbances. Groundwater 87Sr/86Sr increases systematically from 0.707 to 0.712 from west to east across the Hanford Site, in the general direction of groundwater flow, as a result of addition of Sr from the weathering of aquifer sediments and from diffuse drainage through the vadose zone. The lower 87Sr/86Sr groundwater reflects recharge waters that have acquired Sr from Columbia River Basalts. Based on a steady-state model of Sr reactive transport and drainage, there is an average natural drainage flux of 0-1.4 mm/yr near the western margin of the Hanford Site, and ambient drainage may be up to 30 mm/yr in the center of the site assuming an average bulk rock weathering rate of 10-7.5 g/g/yr.

  7. Inhibition of B-NHEJ in Plateau-Phase Cells Is Not a Direct Consequence of Suppressed Growth Factor Signaling

    SciTech Connect (OSTI)

    Singh, Satyendra K.; Bednar, Theresa; Zhang Lihua; Wu, Wenqi; Mladenov, Emil; Iliakis, George

    2012-10-01

    Purpose: It has long been known that the proliferation status of a cell is a determinant of radiation response, and the available evidence implicates repair of DNA double-strand breaks (DSBs) in the underlying mechanism. Recent results have shown that a novel, highly error-prone pathway of nonhomologous end joining (NHEJ) operating as backup (B-NHEJ) processes DSBs in irradiated cells when the canonical, DNA-PK (DNA-dependent protein kinase)-dependent pathway of NHEJ (D-NHEJ) is compromised. Notably, B-NHEJ shows marked reduction in efficiency when D-NHEJ-deficient cells cease to grow and enter a plateau phase. This phenomenon is widespread and observed in cells of different species with defects in core components of D-NHEJ, with the notable exception of DNA-PKcs (DNA-dependent protein kinase, catalytic subunit). Using new, standardized serum-deprivation protocols, we re-examine the growth requirements of B-NHEJ and test the role of epidermal growth factor receptor (EGFR) signaling in its regulation. Methods and Materials: DSB repair was measured by pulsed-field gel electrophoresis in cells maintained under different conditions of growth. Results: Serum deprivation in D-NHEJ-deficient cells causes a rapid reduction in B-NHEJ similar to that measured in normally growing cells that enter the plateau phase of growth. Upon serum deprivation, reduction in B-NHEJ activity is evident at 4 h and reaches a plateau reflecting maximum inhibition at 12-16 h. The inhibition is reversible, and B-NHEJ quickly recovers to the levels of actively growing cells upon supply of serum to serum-deprived cells. Chemical inhibition of EGFR in proliferating cells inhibits only marginally B-NHEJ and addition of EGFR in serum-deprived cells increases only a marginally B-NHEJ. Conclusions: The results document a rapid and fully reversible adaptation of B-NHEJ to growth activity and point to factors beyond EGFR in its regulation. They show notable differences in the regulation of error

  8. Contaminant transport in unconfined aquifer, input to low-level tank waste interim performance assessment

    SciTech Connect (OSTI)

    Lu, A.H., Westinghouse Hanford

    1996-08-14

    This report describes briefly the Hanford sitewide groundwater model and its application to the Low-Level Tank Waste Disposal (LLTWD) interim Performance Assessment (PA). The Well Intercept Factor (WIF) or dilution factor from a given areal flux entering the aquifer released from the LLTWD site are calculated for base case and various sensitivity cases. In conjunction with the calculation for released fluxes through vadose zone transport,the dose at the compliance point can be obtained by a simple multiplication. The relative dose contribution from the upstream sources was also calculated and presented in the appendix for an equal areal flux at the LLTWD site. The results provide input for management decisions on remediation action needed for reduction of the released fluxes from the upstream facilities to the allowed level to meet the required dose criteria.

  9. Comparison of Caprock Mineral Characteristics at Field Demonstration Sites for Saline Aquifer Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Griffith, C.A.; Lowry, G. (Carnegie Mellon University); Dzombak, D. (Carnegie Mellon University); Soong, Yee; Hedges, S.W.

    2008-10-01

    In 2003 the U.S Department of Energy initiated regional partnership programs to address the concern for rising atmospheric CO2. These partnerships were formed to explore regional and economical means for geologically sequestering CO2 across the United States and to set the stage for future commercial applications. Several options exist for geological sequestration and among these sequestering CO2 into deep saline aquifers is one of the most promising. This is due, in part, to the possibility of stabilized permanent storage through mineral precipitation from chemical interactions of the injected carbon dioxide with the brine and reservoir rock. There are nine field demonstration sites for saline sequestration among the regional partnerships in Phase II development to validate the overall commercial feasibility for CO2 geological sequestration. Of the nine sites considered for Phase II saline sequestration demonstration, seven are profiled in this study for their caprock lithologic and mineral characteristics.

  10. Aquifer thermal energy storage reference manual: seasonal thermal energy storage program

    SciTech Connect (OSTI)

    Prater, L.S.

    1980-01-01

    This is the reference manual of the Seasonal Thermal Energy Storage (STES) Program, and is the primary document for the transfer of technical information of the STES Program. It has been issued in preliminary form and will be updated periodically to include more technical data and results of research. As the program progresses and new technical data become available, sections of the manual will be revised to incorporate these data. This primary document contains summaries of: the TRW, incorporated demonstration project at Behtel, Alaska, Dames and Moore demonstration project at Stony Brook, New York, and the University of Minnesota demonstration project at Minneapolis-St. Paul, Minnesota; the technical support programs including legal/institutional assessment; economic assessment; environmental assessment; field test facilities; a compendia of existing information; numerical simulation; and non-aquifer STES concepts. (LCL)

  11. Abiotic/Biotic Degradation and Mineralization of N-Nitrosodimethylamine in Aquifer Sediments

    SciTech Connect (OSTI)

    Szecsody, James E.; McKinley, James P.; Breshears, Andrew T.; Crocker, Fiona H.

    2008-10-14

    The N-nitrosodimethylamine (NDMA) degradation rate and mineralization rate were measured in two aquifer sediments that received treatments to create oxic, reducing, and sequential reducing/oxic environments. Chemically reduced sediments rapidly abiotically degraded NDMA to nontoxic dimethylamine (DMA) to parts per trillion levels, then degraded to further products. NDMA was partially mineralized in reduced sediments (6 to 28 percent) at a slow rate (half-life 3,460 h) by an unknown abiotic/biotic pathway. In contrast, NDMA was mineralized more rapidly (half-life 342 h) and to a greater extent (30 to 81 percent) in oxic sediments with propane addition, likely by a propane monooxygenase pathway. NDMA mineralization in sequential reduced sediment followed by oxic sediment treatment did result in slightly more rapid mineralization and a greater mineralization extent relative to reduced systems. These increases were minor, so aerobic NDMA mineralization with oxygen and propane addition was the most viable in situ NDMA mineralization strategy.

  12. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1more » into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.« less

  13. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    SciTech Connect (OSTI)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.

  14. THE POSITIVE IMPACTS OF AMERICAN REINVESTMENT AND RECOVERY ACT (ARRA) FUNDING TO THE WASTE MANAGEMENT PROGRAM ON HANFORD'S PLATEAU REMEDIATION PROJECT

    SciTech Connect (OSTI)

    BLACKFORD LT

    2010-01-19

    In April 2009, the Department of Energy (DOE) Richland Operations Office (RL) was allocated $1.6 billion (B) in ARRA funding to be applied to cleanup projects at the Hanford Site. DOE-RL selected projects to receive ARRA funding based on 3-criteria: creating/saving jobs, reducing the footprint of the Hanford Site, and reducing life-cycle costs for cleanup. They further selected projects that were currently covered under regulatory documents and existing prime contracts, which allowed work to proceed quickly. CH2M HILL Plateau Remediation Company (CHPRC) is a prime contractor to the DOE focused on the environmental cleanup of the DOE Hanford Site Central Plateau. CHPRC was slated to receive $1.36B in ARRA funding. As of January, 2010, CHPRC has awarded over $200 million (M) in subcontracts (64% to small businesses), created more that 1,100 jobs, and touched more than 2,300 lives - all in support of long-term objectives for remediation of the Central Plateau, on or ahead of schedule. ARRA funding is being used to accelerate and augment cleanup activities already underway under the baseline Plateau Remediation Contract (PRC). This paper details challenges and accomplishments using ARRA funding to meet DOE-RL objectives of creating/saving jobs, expediting cleanup, and reducing lifecycle costs for cleanup during the first months of implementation.

  15. Numerical modeling of regional ground-water flow in the deep-basin brine aquifer of the Palo Duro Basin, Texas Panhandle

    SciTech Connect (OSTI)

    Wirojanagud, P.; Kreitler, C.W.; Smith, D.A.

    1986-01-01

    Bedded Permian-age evaporite sequences in the Palo Duro Basin are being considered for a permanent nuclear waste repository by the U.S. Department of Energy. The purpose of this modeling study is to provide an understanding of regional ground-water flow in the formations beneath the Permian evaporite section. From this understanding, more detailed, smaller scale studies can be designed. This study is also intended to provide a better understanding of the boundary conditions and permeabilities of the aquifer and aquitard system as well as provide estimates of ground-water travel times across the basin. Numerical simulations were made of the Wolfcamp aquifer modeled as a single layer and of the entire Deep-Basin Brine aquifer system, including the Wolfcamp aquifer, modeled as a single layer.

  16. Optimal pulsed pumping for aquifer remediation when contaminant transport is affected by rate-limited sorption: A calculus of variation approach. Master's thesis

    SciTech Connect (OSTI)

    Hartman, R.T.

    1994-09-01

    The remediation of groundwater contamination continues to persist as a social and economic problem due to increased governmental regulations and public health concerns. Additionally, the geochemistry of the aquifer and the contaminant transport within the aquifer complicates the remediation process to restore contaminated aquifers to conditions compatible with health-based standards. Currently, the preferred method for aquifer cleanup (pump-and-treat) has several limitations including, the persistence of sorbed chemicals on soil matrix and the long term operation and maintenance expense. The impetus of this research was to demonstrate that a calculus of variations approach could be applied to a pulsed pumping aquifer remediation problem where contaminant transport was affected by rate-limited sorption and generalized to answer several management objectives. The calculus of variation approach produced criteria for when the extraction pump is turned on and off. Additionally, the analytic solutions presented in this research may be useful in verifying numerical codes developed to solve optimal pulsed pumping aquifer remediation problems under conditions of rate-limited sorption.

  17. Water geochemistry and hydrogeology of the shallow aquifer at Roosevelt Hot Springs, southern Utah: A hot dry rock prospect

    SciTech Connect (OSTI)

    Vuataz, F.D.; Goff, F.

    1987-12-01

    On the western edge of the geothermal field, three deep holes have been drilled that are very hot but mostly dry. Two of them (Phillips 9-1 and Acord 1-26 wells) have been studied by Los Alamos National Laboratory for the Hot Dry Rock (HDR) resources evaluation program. A review of data and recommendations have been formulated to evaluate the HDR geothermal potential at Roosevelt. The present report is directed toward the study of the shallow aquifer of the Milford Valley to determine if the local groundwater would be suitable for use as make-up water in an HDR system. This investigation is the result of a cooperative agreement between Los Alamos and Phillips Petroleum Co., formerly the main operator of the Roosevelt Hot Springs Unit. The presence of these hot dry wells and the similar setting of the Roosevelt area to the prototype HDR site at Fenton Hill, New Mexico, make Roosevelt a very good candidate site for creation of another HDR geothermal system. This investigation has two main objectives: to assess the water geochemistry of the valley aquifer, to determine possible problems in future make-up water use, such as scaling or corrosion in the wells and surface piping, and to assess the hydrogeology of the shallow groundwaters above the HDR zone, to characterize the physical properties of the aquifer. These two objectives are linked by the fact that the valley aquifer is naturally contaminated by geothermal fluids leaking out of the hydrothermal reservoir. In an arid region where good-quality fresh water is needed for public water supply and irrigation, nonpotable waters would be ideal for an industrial use such as injection into an HDR energy extraction system. 50 refs., 10 figs., 10 tabs.

  18. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental Study

    SciTech Connect (OSTI)

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an iron coating method has great potential to be a cost effective and simple groundwater remediation technique, especially in rural and remote areas where groundwater is used as the main source of drinking water. The in situ arsenic removal technique was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions., Its effectiveness was then evaluated in an actual high-arsenic groundwater environment. The mechanism of arsenic removal by the iron coating was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, an electron microprobe, and Fourier transformation infrared spectroscopy. A 4-step alternative cycle aquifer iron coating method was developed. A continuous injection of 5 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 hours can create a uniform coating of crystalline goethite on the surface of quartz sand in the columns without causing clogging. At a flow rate of 0.45 cm/min of the injection reagents (vi), the time for arsenic (as Na2HAsO4) to pass through the iron-coated quartz sand column was approximately 35 hours, which was much longer than that for tracer fluorescein sodium (approximately 2 hours). The retardation factor of arsenic was 23, and its adsorption capacity was 0.11 mol As per mol Fe, leading to an excellent arsenic removal. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As (V) and Fe (II) reagents. When the arsenic content in the groundwater was 233 ?g/L, the aqueous phase arsenic was completely removed with an arsenic adsorption of 0.05 mol As per mol Fe. Arsenic fixation resulted from a process of adsorption/co-precipitation, in which arsenic and iron likely formed the arsenic-bearing iron mineral phases with poor crystallinity by way of bidentate binuclear complexes. Thus, the high arsenic removal efficiency of the technique likely resulted from the

  19. Water/rock interaction efficiency and seawater dolomitization in the Eocene Avon Park Formation, Floridan Aquifer

    SciTech Connect (OSTI)

    Cander, H.S. )

    1990-05-01

    The Floridan aquifer has often been proposed as a system of extensive meteoric carbonate diagenesis and mixing zone dolomitization. However, the dominance of marine isotope (C, O, {sup 87}Sr/{sup 86}Sr) and trace element (Sr, Fe, Mn) compositions in dolomites and limestones in the Eocene Avon Park Formation, Floridan aquifer, suggests that the very active low temperature meteoric groundwater system has, over the past 40 m.y., been an inefficient mechanism of diagenesis. {delta}{sup 18}O values of all but two replacement dolomites sampled range from +2.0 to +5.1 (PDB) with high Sr concentrations (90-325 ppm), indicating dolomitization by near-normal marine water involving no significant interaction with meteoric groundwater. The two {delta}{sup 18}O-depleted (0.0 {plus minus} 1) dolomites have low Sr concentrations ({approximately}100 ppm) suggesting limited recrystallization in meteoric water. Several dolomite samples have radiogenic {sup 87}Sr/{sup 86}Sr compositions (0.70810-0.70883 {plus minus} 2), but have heavy oxygen isotope compositions (> +2.0) and high Sr concentrations (<200 ppm) suggesting precipitation from cold Miocene age or younger seawater that circulated through the Florida platform. Most limestone stable isotope compositions cluster around marine values (({delta}{sup 18}O = {minus}1 to +1, PDB) {delta}{sup 13}C = +0.5 to +2.5) and have Eocene seawater {sup 87}Sr/{sup 86}Sr compositions (0.70775 {plus minus} 2 to 0.70779 {plus minus} 2) with 400 to 500 ppm Sr. Isotopic compositions of limestones from the east coast of Florida are all within these ranges. Only some limestones from central Florida and the west coast contain depleted stable isotopic compositions and low Sr concentrations. The sample with the most depleted stable isotope values has a radiogenic {sup 87}Sr/{sup 86}Sr composition (0.70870 {plus minus} 2), suggesting that diagenetic meteoric water migrated through post-Miocene strata.

  20. A controlled in situ field evaluation of a new dynamic vacuum slug test method in unconfined aquifers

    SciTech Connect (OSTI)

    Lauctes, B.A.; Schleyer, C.A.

    1995-09-01

    Most ground water site characterizations require initial estimates of the ground water flow velocity and potential downgradient extent of ground water contamination. The fundamental aquifer property, hydraulic conductivity, must be determined to make these essential estimates. Highly contaminated ground water often precludes conducting multi-well aquifer tests to evaluate hydraulic conductivity due to potential human health risks and ground water storage/treatment/disposal costs and logistics. Consequently, single-well slug tests are often sued, but the widely used pressure slug test method is not suitable for water table monitoring wells. As a result, a new slug test method was developed by GCL for unconfined aquifers. The new method was benchmarked against the widely used solid slug test method in a series of rising-head and falling-head slug tests. A statistical evaluation indicated no statistical difference (alpha = 0.05) between hydraulic conductivity values calculated from each method. The new dynamic vacuum method, designed specifically for use in water table monitoring wells, uses a continuous vacuum to draw air through the well screen exposed above the water table. The vacuum induces upwelling as air pressure inside the well casing drops below atmospheric pressure. Once upwelling equilibrates with the applied vacuum, the vacuum is released allowing the water to recover and the air pressure inside the casing to return to atmospheric pressure.

  1. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    SciTech Connect (OSTI)

    Inyo County

    2006-07-26

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA.

  2. Maximizing Operational Efficiencies in Waste Management on the Hanford Plateau Remediation Contract in a Down-turned Market - 13484

    SciTech Connect (OSTI)

    Simiele, Connie J.; Blackford, L. Ty; West, Lori D.

    2013-07-01

    Recent changes in DOE priorities and funding have pressed DOE and its contractors to look for innovative methods to sustain critical operations at sites across the Complex. At the Hanford Site, DOE Richland Operations and its prime contractor, CH2M Hill Plateau Remediation Company (CHPRC), have completed in-depth assessments of the Plateau Remediation Contract (PRC) operations that compared available funding to mission and operational objectives in an effort to maintain requisite safety and compliance margins while realizing cost savings that meet funding profiles. These assessments included confirmation of current baseline activities, identification of potential efficiencies, barriers to implementation, and potential increased risks associated with implementation. Six operating PRC waste management facilities were evaluated against three possible end-states: complete facility closure, maintaining base operations, and performing minimum safe surveillance and maintenance activities. The costs to completely close evaluated facilities were determined to be prohibitively high and this end-state was quickly dropped from consideration. A summary of the analysis of remaining options by facility, efficiencies identified, impact to risk profiles, and expected cost savings is provided in Table I. The expected cost savings are a result of: - right-sizing and cross-training work crews to address maintenance activities across facilities; - combining and sequencing 'like-moded' operational processes; - cross-cutting emergency planning and preparedness staffing; - resource redistribution and optimization; - reducing areas requiring routine surveillance and inspection. For the efficiencies identified, there are corresponding increases in risk, including a loss of breadth and depth of available resources; lengthened response time to emergent issues; inability to invest in opportunities for improvement (OFIs); potential single-point failures or non-compliancies due to resource

  3. Microsoft PowerPoint - OZMR presentation 10-06-09.ppt [Compatibility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ozark Jeta Taylor Ozark Jeta Taylor Lock, Dam and Powerhouse Lock, Dam and Powerhouse Ozark Jeta Taylor Ozark Jeta Taylor Lock, Dam and Powerhouse Lock, Dam and Powerhouse 3 Lock, ...

  4. Mobilization of trace elements in aquifers by biodegradation of hydrocarbon contaminants. Master Thesis

    SciTech Connect (OSTI)

    Kearney, S.L.

    1997-12-01

    This study had two objectives: (1) to determine the extent of metal mobility within petroleum-contaminated aquifers, (2) to determine if biodegradation of petroleum hydrocarbons can explain metal mobility. The approach reviewed analytical results from 2305 groundwater sampling events, taken from 958 wells, located at 136 sites found at 53 Air Force installations. The study showed that high levels of metals are present at petroleum hydrocarbon sites where metals would not generally be expected. Of the metals with drinking water maximum contaminant levels (MCLs), mercury and silver were detected the least frequently. Barium and copper were detected at the sites, but fewer than 2.5 percent of the samples exceeded their MCLs. All other metals exceeded their MCLs in at least 2.5 percent of the samples, with antimony and lead exceeding their MCLs in 19 percent and 10 percent of samples, respectively. Higher concentrations of barium and manganese were most strongly correlated with petroleum hydrocarbon contamination, and relatively strong correlations also existed for aluminum, arsenic, iron, and lead. Major cations such as calcium, magnesium, sodium and potassium were least affected by petroleum hydrocarbons concentrations.

  5. Evaluating Impacts of CO2 Intrusion into an Unconsolidated Aquifer: II. Modeling Results

    SciTech Connect (OSTI)

    Zheng, Liange; Qafoku, Nikolla; Lawter, Amanda R.; Wang, Guohui; Shao, Hongbo; Brown, Christopher F.

    2015-08-04

    Large scale deployment of CO2 geological sequestration requires the assessment of the risks. One of the potential risks is the impact of CO2 leakage on shallow groundwater overlying the sequestration site.The understanding of the key chemical processes and parameters are critical for building numerical models for risk assessment. Model interpretation of laboratory and field tests is an effective way to enhance such understanding. Column experiments in which CO2 charged synthetic groundwater flowed through a column packed with material from High Plains aquifer was conducted and concentration of several constituents in the effluent water was analyzed. In this paper, reactive transport model was developed to interpret the observed concentration changes, attempting to shed light on the chemical reactions and key parameters that control the concentration changes of these constituents. The reactive transport model catches the concentration changes of pH, Ca, Mg, Ba, Sr, Cs, As and Pb fairly well. Calcite dissolution and Ca-driven cation exchange reactions are the major drivers for the concentration changes of Ca, Ba, Sr, and Cs. The pH-driven adsorption/desorption reactions lead to a concentration increase of As and Pb. The volume fraction and reactive surface area of calcite, CEC and sorption capacity are key parameters in determining the magnitude of concentration increase. Model results also show that the dissolution of calcite with Ba impurity could be an alternative explanation of the increase in Ba concentration.

  6. Sensitivity study of CO2 storage capacity in brine aquifers withclosed boundaries: Dependence on hydrogeologic properties

    SciTech Connect (OSTI)

    Zhou, Q.; Birkholzer, J.; Rutqvist, J.; Tsang, C-F.

    2007-02-07

    In large-scale geologic storage projects, the injected volumes of CO{sub 2} will displace huge volumes of native brine. If the designated storage formation is a closed system, e.g., a geologic unit that is compartmentalized by (almost) impermeable sealing units and/or sealing faults, the native brine cannot (easily) escape from the target reservoir. Thus the amount of supercritical CO{sub 2} that can be stored in such a system depends ultimately on how much pore space can be made available for the added fluid owing to the compressibility of the pore structure and the fluids. To evaluate storage capacity in such closed systems, we have conducted a modeling study simulating CO{sub 2} injection into idealized deep saline aquifers that have no (or limited) interaction with overlying, underlying, and/or adjacent units. Our focus is to evaluate the storage capacity of closed systems as a function of various reservoir parameters, hydraulic properties, compressibilities, depth, boundaries, etc. Accounting for multi-phase flow effects including dissolution of CO{sub 2} in numerical simulations, the goal is to develop simple analytical expressions that provide estimates for storage capacity and pressure buildup in such closed systems.

  7. Fractured rock aquifer tests in the Western Siberian Basin, Ozyorsk, Russia

    SciTech Connect (OSTI)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A.

    1997-10-01

    A series of multi-zone pumping tests was conducted in a contaminated fractured rock aquifer in the Western Siberian Basin, Ozyorsk, Russia. The tests were conducted adjacent to the Mishelyak River floodplain in fractured Paleozoic porphyrites, tufts, tuff breccia, and lava typical of the Ural mountain complex. Geophysical logs, borehole photography, core samples, and results from previous borehole contamination studies were used to identify the zones to be tested. A network of three uncased wells was tested using a system of inflatable packers, pressure transducers and data loggers. Seven zones were isolated and monitored in two of the uncased wells. A straddle packer assembly was used to isolate individual zones within the pumping well. Eight constant rate pumping tests were conducted. Results of the testing indicate that shallow groundwater migrates primarily in two intervals that are separated by an interval with low lateral conductivity. The water bearing intervals have moderate to high specific capacities (1.3 and 30 L/min/m). Several processes are responsible for fracturing present in the lower interval. The network of compound fractures produced a complex array of fracture intersections yielding a fractured media with hydraulic behavior similar to porous media. Models used for the analysis of pumping tests in porous media provide a good estimation of the hydraulic response of the lower interval to pumping. Future work will include more complex analysis of the data to determine hydraulic conductivity ellipses.

  8. Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Bacon, Diana H.; Engel, David W.; Lin, Guang; Fang, Yilin; Ren, Huiying; Fang, Zhufeng

    2014-08-01

    In this study, we apply an uncertainty quantification (UQ) framework to CO2 sequestration problems. In one scenario, we look at the risk of wellbore leakage of CO2 into a shallow unconfined aquifer in an urban area; in another scenario, we study the effects of reservoir heterogeneity on CO2 migration. We combine various sampling approaches (quasi-Monte Carlo, probabilistic collocation, and adaptive sampling) in order to reduce the number of forward calculations while trying to fully explore the input parameter space and quantify the input uncertainty. The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demanding simulations with 3D heterogeneity fields, we combined the framework with a scalable version module, eSTOMP, as the forward modeling simulator. We built response curves and response surfaces of model outputs with respect to input parameters, to look at the individual and combined effects, and identify and rank the significance of the input parameters.

  9. Guidelines for conceptual design and evaluation of aquifer thermal energy storage

    SciTech Connect (OSTI)

    Meyer, C.F.; Hauz, W.

    1980-10-01

    Guidelines are presented for use as a tool by those considering application of a new technology, aquifer thermal energy storage (ATES). The guidelines will assist utilities, municipalities, industries, and other entities in the conceptual design and evaluation of systems employing ATES. The potential benefits of ATES are described, an overview is presented of the technology and its applications, and rules of thumb are provided for quickly judging whether a proposed project has sufficient promise to warrant detailed conceptual design and evaluation. The characteristics of sources and end uses of heat and chill which are seasonally mismatched and may benefit from ATES (industrial waste heat, cogeneration, solar heat, and winter chill, for space heating and air conditioning) are discussed. Storage and transport subsystems and their expected performance and cost are described. A 10-step methodology is presented for conceptual design of an ATES system and evaluation of its technical and economic feasibility in terms of energy conservation, cost savings, fuel substitution, improved dependability of supply, and abatement of pollution, with examples, and the methodology is applied to a hypothetical proposed ATES system, to illustrate its use.

  10. Single-cell genomics reveal metabolic strategies for microbial growth and survival in an oligotrophic aquifer

    SciTech Connect (OSTI)

    Wilkins, Michael J.; Kennedy, David W.; Castelle, Cindy; Field, Erin; Stepanauskas, Ramunas; Fredrickson, Jim K.; Konopka, Allan

    2014-02-01

    Bacteria from the genus Pedobacter are a major component of microbial assemblages at Hanford Site and have been shown to significantly change in abundance in response to the subsurface intrusion of Columbia River water. Here we employed single cell genomics techniques to shed light on the physiological niche of these microorganisms. Analysis of four Pedobacter single amplified genomes (SAGs) from Hanford Site sediments revealed a chemoheterotrophic lifestyle, with the potential to exist under both aerobic and microaerophilic conditions via expression of both aa3?type and cbb3-type cytochrome c oxidases. These SAGs encoded a wide-range of both intra-and extra-cellular carbohydrate-active enzymes, potentially enabling the degradation of recalcitrant substrates such as xylan and chitin, and the utilization of more labile sugars such as mannose and fucose. Coupled to these enzymes, a diversity of transporters and sugar-binding molecules were involved in the uptake of carbon from the extracellular local environment. The SAGs were enriched in TonB-dependent receptors (TBDRs), which play a key role in uptake of substrates resulting from degradation of recalcitrant carbon. CRISPR-Cas mechanisms for resisting viral infections were identified in all SAGs. These data demonstrate the potential mechanisms utilized for persistence by heterotrophic microorganisms in a carbon-limited aquifer, and hint at potential linkages between observed Pedobacter abundance shifts within the 300 Area subsurface and biogeochemical shifts associated with Columbia River water intrusion.

  11. Petrology of lower and middle Eocene carbonate rocks, Floridan aquifer, central Florida

    SciTech Connect (OSTI)

    Thayer, P.A.; Miller, J.A.

    1984-09-01

    Study of cores from a US Geological Survey test well near Polk City, Florida, indicates that the Avon Park-Lake City (Claibornian) and Oldsmar (Sabinian) Limestones, which comprise most of the Floridan aquifer in central Florida, can be divided into six microfacies: foraminiferal mudstone, foraminiferal wackestone-packstone, foraminiferal grainstone, nodular anhydrite, laminated dolomicrite, and replacement dolomite. Dolomite containing variable amounts of nodular anhydrite forms more than 90% of the Avon Park-Lake city interval, whereas thte Oldsmar is chiefly limestone. Several episodes of dolomite formation are recognized. Laminated dolomicrite formed syngenetically in a supratidal-sabhka environment. Crystalline dolomite with nodular anhydrite formed early by replacement of limestone through reflux of dense, magnesium-rich brines. Replacement dolomite not associated with evaporites and containing limpid crystals probably formed later by a mixed-water process in the subsurface environment. Late diagenetic processes affecting crystalline dolomites include hydration of anhydrite to gypsum, partial dissolution of gypsum, minor alteration of gypsum to calcite, and dissolution of calcian dolomite cores in stoichiometric crystals. Crystalline dolomite and grainstone are the only rock types that have high enough porosities and permeabilities to provide significant yields of water. Medium and finely crystalline dolomites show best values of porosity and permeability because they have high percentages of intercrystal and moldic pores that are well connected. Filling of pores by anhydrite or gypsum can significantly reduce porosity and permeability.

  12. An example of mixing-zone dolomite, Middle Eocene Avon Park Formation, Floridan aquifer system

    SciTech Connect (OSTI)

    Cander, H.S. )

    1994-07-01

    A late-formed dolomite cement in a core of the Middle Eocene Avon Park Formation, peninsular Florida, provides an example of dolomite cement from a mixing zone and illustrates how dolomite textural alteration and stabilization can occur at earth-surface conditions. The Avon Park Formation is a pervasively dolomitized peritidal platform carbonate 400 m thick in the Florida aquifer system. Typical Avon Park dolomite is inclusion-rich, fine-grained (< 40 mm), noncathodoluminescent, highly porous (average, 20%), and formed during the Eocene by normal to hypersaline seawater ([delta][sup 18]O = + 3.7[per thousand] PDB; [delta][sup 13]C = + 2.0[per thousand]; [sup 87]Sr/[sup 86]Sr = 0.70778; Sr = 167 ppm). In a 20 m interval in a core from southwest Florida, inclusion-free, cathodoluminescent dolomite overgrows the early-formed noncathodoluminescent marine dolomite. The cathodoluminescent dolomite cement profoundly alters the texture of Avon Park dolomite from typical Cenozoic-like porous, poorly crystalline dolomite to hard, dense, low-porosity, highly crystalline Paleozoic-like dolomite. The dolomite cement is not a replacement of limestone but an overgrowth of early-formed marine dolomite and pore-occluding cement. This study demonstrates that: (1) dolomite precipitated from a 75% seawater mixing-zone fluid that was both calcite saturated and sulfate-rich, and (2) dramatic textural maturation and stabilization in dolomite can occur in the near surface environment, without elevated temperature and burial conditions.

  13. Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers

    SciTech Connect (OSTI)

    Wu, Yu-Shu; Chen, Zizhong; Kazemi, Hossein; Yin, Xiaolong; Pruess, Karsten; Oldenburg, Curt; Winterfeld, Philip; Zhang, Ronglei

    2014-09-30

    This report is the final scientific one for the award DE- FE0000988 entitled “Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers.” The work has been divided into six tasks. In task, “Development of a Three-Phase Non-Isothermal CO2 Flow Module,” we developed a fluid property module for brine-CO2 mixtures designed to handle all possible phase combinations of aqueous phase, sub-critical liquid and gaseous CO2, supercritical CO2, and solid salt. The thermodynamic and thermophysical properties of brine-CO2 mixtures (density, viscosity, and specific enthalpy of fluid phases; partitioning of mass components among the different phases) use the same correlations as an earlier fluid property module that does not distinguish between gaseous and liquid CO2-rich phases. We verified the fluid property module using two leakage scenarios, one that involves CO2 migration up a blind fault and subsequent accumulation in a secondary “parasitic” reservoir at shallower depth, and another investigating leakage of CO2 from a deep storage reservoir along a vertical fault zone. In task, “Development of a Rock Mechanical Module,” we developed a massively parallel reservoir simulator for modeling THM processes in porous media brine aquifers. We derived, from the fundamental equations describing deformation of porous elastic media, a momentum conservation equation relating mean stress, pressure, and temperature, and incorporated it alongside the mass and energy conservation equations from the TOUGH2 formulation, the starting point for the simulator. In addition, rock properties, namely permeability and porosity, are functions of effective stress and other variables that are obtained from the literature. We verified the simulator formulation and numerical implementation using analytical solutions and example problems from the literature. For the former, we matched a one-dimensional consolidation problem and a two-dimensional simulation of

  14. Changes in Moisture Flux Over the Tibetan Plateau During 1979-2011: Insights from a High Resolution Simulation

    SciTech Connect (OSTI)

    Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin; Cuo, Lan

    2015-05-01

    Net precipitation (precipitation minus evapotranspiration, P-E) changes from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence into thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. Improvement in simulating precipitation changes at high elevations contributes dominantly to the improved P-E changes. High-resolution climate simulation also facilitates new and substantial findings regarding the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.

  15. Changes in Moisture Flux over the Tibetan Plateau during 1979-2011: Insights from a High Resolution Simulation

    SciTech Connect (OSTI)

    Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin; Cuo, Lan

    2015-05-15

    Net precipitation (precipitation minus evapotranspiration, P-E) changes between 1979 and 2011 from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The high resolution simulation better resolves precipitation changes than its coarse resolution forcing, which contributes dominantly to the improved P-E change in the regional simulation compared to the global reanalysis. Hence, the former may provide better insights about the drivers of P-E changes. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence into thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. High-resolution climate simulation also facilitates new and substantial findings regarding the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.

  16. Surface mining and reclamation effects on flood response of watersheds in the central Appalachian Plateau region - article no. W04407

    SciTech Connect (OSTI)

    Ferrari, J.R.; Lookingbill, T.R.; McCormick, B.; Townsend, P.A.; Eshleman, K.N.

    2009-04-15

    Surface mining of coal and subsequent reclamation represent the dominant land use change in the central Appalachian Plateau (CAP) region of the United States. Hydrologic impacts of surface mining have been studied at the plot scale, but effects at broader scales have not been explored adequately. Broad-scale classification of reclaimed sites is difficult because standing vegetation makes them nearly indistinguishable from alternate land uses. We used a land cover data set that accurately maps surface mines for a 187-km{sup 2} watershed within the CAP. These land cover data, as well as plot-level data from within the watershed, are used with HSPF (Hydrologic Simulation Program-Fortran) to estimate changes in flood response as a function of increased mining. Results show that the rate at which flood magnitude increases due to increased mining is linear, with greater rates observed for less frequent return intervals. These findings indicate that mine reclamation leaves the landscape in a condition more similar to urban areas rather than does simple deforestation, and call into question the effectiveness of reclamation in terms of returning mined areas to the hydrological state that existed before mining.

  17. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    SciTech Connect (OSTI)

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

    2013-04-01

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

  18. Two-phase convective CO2 dissolution in saline aquifers

    SciTech Connect (OSTI)

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-01

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.

  19. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO{sub 2} storage in China

    SciTech Connect (OSTI)

    Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T; Davidson, Casie L; Bromhal, Grant S

    2013-01-01

    Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO{sub 2} storage sites is essential before large-scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO{sub 2} storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO{sub 2} sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO{sub 2} storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO{sub 2} mitigation in China for many decades.

  20. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China

    SciTech Connect (OSTI)

    Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T.; Davidson, Casie L.; Bromhal, Grant

    2013-01-30

    Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO2 storage sites is essential before large scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO2 storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO2 sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO2 storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO2 mitigation in China for many decades.

  1. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Flores-Orozco, Adrian; Williams, Kenneth H.; Long, Philip E.; Hubbard, Susan S.; Kemna, Andreas

    2011-07-07

    Experiments at the Department of Energys Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  2. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Orozco, A. Flores; Williams, K.H.; Long, P.E.; Hubbard, S.S.; Kemna, A.

    2011-04-01

    Experiments at the Department of Energy's Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer - a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  3. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquife

    SciTech Connect (OSTI)

    Campbell, K M; K Kukkadapu, R K; Qafoku, N P; Peacock, A D; Lesher, E; Williams, K H; Bargar, J R; Wilkins, M J; Figueroa, L; Ranville, J; Davis, J A; Long, P E

    2012-05-23

    Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.

  4. COMPARISON OF VENTED AND ABSOLUTE PRESSURE TRANSDUCERS FOR WATER-LEVEL MONITORING IN HANFORD SITE CENTRAL PLATEAU WELLS

    SciTech Connect (OSTI)

    MCDONALD JP

    2011-09-08

    Automated water-level data collected using vented pressure transducers deployed in Hanford Site Central Plateau wells commonly display more variability than manual tape measurements in response to barometric pressure fluctuations. To explain this difference, it was hypothesized that vented pressure transducers installed in some wells are subject to barometric pressure effects that reduce water-level measurement accuracy. Vented pressure transducers use a vent tube, which is open to the atmosphere at land surface, to supply air pressure to the transducer housing for barometric compensation so the transducer measurements will represent only the water pressure. When using vented transducers, the assumption is made that the air pressure between land surface and the well bore is in equilibrium. By comparison, absolute pressure transducers directly measure the air pressure within the wellbore. Barometric compensation is achieved by subtracting the well bore air pressure measurement from the total pressure measured by a second transducer submerged in the water. Thus, no assumption of air pressure equilibrium is needed. In this study, water-level measurements were collected from the same Central Plateau wells using both vented and absolute pressure transducers to evaluate the different methods of barometric compensation. Manual tape measurements were also collected to evaluate the transducers. Measurements collected during this study demonstrated that the vented pressure transducers over-responded to barometric pressure fluctuations due to a pressure disequilibrium between the air within the wellbores and the atmosphere at land surface. The disequilibrium is thought to be caused by the relatively long time required for barometric pressure changes to equilibrate between land surface and the deep vadose zone and may be exacerbated by the restriction of air flow between the well bore and the atmosphere due to the presence of sample pump landing plates and well caps. The

  5. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

    SciTech Connect (OSTI)

    Qian, Yun; Flanner, M. G.; Leung, Lai-Yung R.; Wang, Weiguo

    2011-03-02

    The Tibetan Plateau (TP), the highest and largest plateau in the world, has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of people in Asian countries, but the TP glaciers have been retreating extensively at a speed faster than any other part of the world. In this study a series of experiments with a global climate model are designed to simulate black carbon (BC) and dust in snow and their radiative forcing and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow, respectively, on the snowpack over the TP, as well as their subsequent impacts on the Asian monsoon climate and hydrological cycle. Results show a large BC content in snow over the TP, especially the southern slope, with concentration larger than 100 k/kg. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative forcing induced by aerosols (e.g. BC, Dust) in snow compared to other snow-covered regions in the world. The aerosol-induced snow albedo perturbations generate surface radiative forcing of 5-25 W m-2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0oC averaged over the TP and reduces snowpack over the TP more than that induced by pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere during spring. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1-4 times larger for BC-in-snow than CO2 increase during April-July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net

  6. Field Evaluation of the Restorative Capacity of the Aquifer Downgradient of a Uranium In-Situ Recovery Mining Site

    SciTech Connect (OSTI)

    Reimus, Paul William

    2015-05-22

    A two-part field study was conducted in Smith Ranch-Highland in-situ recovery (ISR) near Douglas, Wyoming, to evaluate the restorative capacity of the aquifer downgradient (i.e., hydrologically downstream) of a Uranium ISR mining site with respect to the transport of uranium and other potential contaminants in groundwater after mining has ceased. The study was partially conducted by checking the Uranium content and the alkalinity of separate wells, some wells had been restored and others had not. A map and in-depth procedures of the study are included.

  7. Permeability, geochemical, and water quality tests in support of an aquifer thermal energy storage site in Minnesota

    SciTech Connect (OSTI)

    Blair, S.C.; Deutsch, W.J.; Mitchell, P.J.

    1985-04-01

    This report describes the Underground Energy Storage Program's efforts to characterize physicochemical processes at DOE's ATES Field Test Facility (FTF) located on the University of Minnesota campus at St. Paul, Minnesota. Experimental efforts include: field tests at the St. Paul FTF to characterize fluid injectability and to evaluate the effectiveness of fluid-conditioning equipment, geochemical studies to investigate chemical reactions resulting from alterations to the aquifer's thermal regime, and laboratory tests on sandstone core from the site. Each experimental area is discussed and results obtained thus far are reported. 23 refs., 39 figs., 12 tabs.

  8. Stratigraphy of the unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory, Idaho

    SciTech Connect (OSTI)

    Anderson, S.R.; Liszewski, M.J.

    1997-08-01

    The unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory (INEL) are made up of at least 178 basalt-flow groups, 103 sedimentary interbeds, 6 andesite-flow groups, and 4 rhyolite domes. Stratigraphic units identified in 333 wells in this 890-mile{sup 2} area include 121 basalt-flow groups, 102 sedimentary interbeds, 6 andesite-flow groups, and 1 rhyolite dome. Stratigraphic units were identified and correlated using the data from numerous outcrops and 26 continuous cores and 328 natural-gamma logs available in December 1993. Basalt flows make up about 85% of the volume of deposits underlying the area.

  9. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results, Fiscal Year 2014

    SciTech Connect (OSTI)

    Truex, Michael J.; Strickland, Christopher E.; Johnson, Christian D.; Johnson, Timothy C.; Clayton, Ray E.; Chronister, Glen B.

    2014-09-01

    Over decades of operation, the U.S. Department of Energy (DOE) and its predecessors have released nearly 2 trillion L (450 billion gal.) of liquid into the vadose zone at the Hanford Site. Much of this discharge of liquid waste into the vadose zone occurred in the Central Plateau, a 200 km2 (75 mi2) area that includes approximately 800 waste sites. Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths below the limit of direct exposure pathways, but may need to be remediated to protect groundwater. The Tri-Party Agencies (DOE, U.S. Environmental Protection Agency, and Washington State Department of Ecology) established Milestone M 015 50, which directed DOE to submit a treatability test plan for remediation of technetium-99 (Tc-99) and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment and have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. Testing technologies for remediating Tc-99 and uranium will also provide information relevant for remediating other contaminants in the vadose zone. A field test of desiccation is being conducted as an element of the DOE test plan published in March 2008 to meet Milestone M 015 50. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 3 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  10. /sup 234/U//sup 230/Th ratio as an indicator of redox state, and U, Th and Ra behavior in briney aquifers

    SciTech Connect (OSTI)

    Laul, J.C.; Smith, M.R.; Hubbard, N.

    1985-06-01

    The /sup 234/U//sup 230/Th ratio serves as an in-situ indicator of the redox state in groundwater aquifers. The higher this ratio, the more U there is in the +6 state and thus a lesser reducing environment. Radium is retarded in the shallow aquifer and its sorption is dependent on the CaSO/sub 4/ content and redox state. Relative to Ra, U and Th are highly sorbed. The total retardation factor for Th is approx.1400 and mean sorption time for /sup 228/Th is approx.10 days in the shallow zone. The desorption rate of Ra is significantly slower in the shallow than in the deep aquifer. There is no effect of colloids in brines. 6 refs., 5 figs., 2 tabs.