National Library of Energy BETA

Sample records for oxysulfide gd2o2s gallium

  1. Zinc oxysulfide ternary alloy nanocrystals: A bandgap modulated photocatalyst

    SciTech Connect (OSTI)

    Pandey, Shiv K.; Nanotechnology Application Centre, University of Allahabad, Allahabad ; Pandey, Shipra; Pandey, Avinash C.; Mehrotra, G. K.

    2013-06-10

    Herein, we report a green economic route for the synthesis of a series of Zinc Oxysulfide (ZOS) (ZnO{sub 1-x}S{sub x}; 0 {<=} x {>=} 1; x = Sulfur) alloys nanoparticles. The crystallographic features of ZnO, ZOS, and ZnS confirmed by X-Ray Diffraction and validated by Transmission Electron Microscopy reveal the variation of lattice spacing in binary and ternary compositions with homogenous elemental distribution. The photocatalytic analysis of ZOS (0.4) is performed and compared with Degussa P25 to ascertain its photocatalytic activity against methyl orange under irradiation of 365 nm UV-Vis light. A bandgap of 2.7 eV for ZOS (0.4) aptly establishes its prospects for sunlight driven photocatalysis.

  2. Quantitative study on the chemical solution deposition of zinc oxysulfide

    SciTech Connect (OSTI)

    Reinisch, Michael; Perkins, Craig L.; Steirer, K. Xerxes

    2015-11-21

    Zinc Oxysulfide (ZnOS) has demonstrated potential in the last decade to replace CdS as a buffer layer material since it is a wide-band-gap semiconductor with performance advantages over CdS (Eg = 2.4 eV) in the near UV-range for solar energy conversion. However, questions remain on the growth mechanisms of chemical bath deposited ZnOS. In this study, a detailed model is employed to calculate solubility diagrams that describe simple conditions for complex speciation control using only ammonium hydroxide without additional base. For these conditions, ZnOS is deposited via aqueous solution deposition on a quartz crystal microbalance in a continuous flow cell. Data is used to analyze the growth rate dependence on temperature and also to elucidate the effects of dimethylsulfoxide (DMSO) when used as a co-solvent. Activation energies (EA) of ZnOS are calculated for different flow rates and solution compositions. As a result, the measured EA relationships are affected by changes in the primary growth mechanism when DMSO is included.

  3. Quantitative study on the chemical solution deposition of zinc oxysulfide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reinisch, Michael; Perkins, Craig L.; Steirer, K. Xerxes

    2015-11-21

    Zinc Oxysulfide (ZnOS) has demonstrated potential in the last decade to replace CdS as a buffer layer material since it is a wide-band-gap semiconductor with performance advantages over CdS (Eg = 2.4 eV) in the near UV-range for solar energy conversion. However, questions remain on the growth mechanisms of chemical bath deposited ZnOS. In this study, a detailed model is employed to calculate solubility diagrams that describe simple conditions for complex speciation control using only ammonium hydroxide without additional base. For these conditions, ZnOS is deposited via aqueous solution deposition on a quartz crystal microbalance in a continuous flow cell.more » Data is used to analyze the growth rate dependence on temperature and also to elucidate the effects of dimethylsulfoxide (DMSO) when used as a co-solvent. Activation energies (EA) of ZnOS are calculated for different flow rates and solution compositions. As a result, the measured EA relationships are affected by changes in the primary growth mechanism when DMSO is included.« less

  4. Molten metal containment vessel with rare earth oxysulfide protective coating thereon and method of making same

    DOE Patents [OSTI]

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    An improved molten metal containment vessel is disclosed in which wetting of the vessel's inner wall surfaces by molten metal is inhibited by coating at least the inner surfaces of the containment vessel with one or more rare earth oxysulfide or rare earth sulfide compounds to inhibit wetting and or adherence by the molten metal to the surfaces of the containment vessel.

  5. Molten iron oxysulfide as a superior sulfur sorbent. Final report, [September 1989--1993

    SciTech Connect (OSTI)

    Hepworth, M.T.

    1993-03-31

    The studies had as original objective the analysis of conditions for using liquid iron oxysulfide as a desulfuring agent during coal gasification. Ancillary was a comparison of iron oxysulfide with lime as sorbents under conditions where lime reacts with S-bearing gases to form Ca sulfate or sulfide. Primary thrust is to determine the thermodynamic requirements for desulfurization by iron additions (e.g., taconite concentrate) during combustion in gasifiers operating at high equivalence ratios. Thermodynamic analysis of lime-oxygen-sulfur system shows why lime is injected into burners under oxidizing conditions; reducing conditions forms CaS, requiring its removal, otherwise oxidation and release of S would occur. Iron as the oxysulfide liquid has a range of stability and can be used as a desulfurizing agent, if the burner/gasifier operates in a sufficiently reducing regime (high equivalence ratio); this operating range is given and is calculable for a coal composition, temperature, stoichiometry. High moisture or hydrogen contents of the coal yield a poorer degree of desulfurization. Kinetic tests on individual iron oxide particles on substrates or Pt cups with a TGA apparatus fail to predict reaction rates within a burner. Preliminary tests on the Dynamic Containment Burner with acetylene give some promise that this system can produce the proper conditions of coal gasification for use of added iron as a sulfur sorbent.

  6. On the formation of carbonyl sulfide in the reduction of sulfur dioxide by carbon monoxide on lanthanum oxysulfide catalyst: A study by XPS and TPR/MS

    SciTech Connect (OSTI)

    Lau, N.T.; Fang, M. [Hong Kong Univ. of Science and Technology, Clear Water Bay (Hong Kong). Applied Technology Center] [Hong Kong Univ. of Science and Technology, Clear Water Bay (Hong Kong). Applied Technology Center

    1998-10-25

    Both the X-ray photoelectron spectroscopy (XPS) and temperature-programmed reaction, coupled with mass spectrometry (TPR/MS), are used to study the formation of carbonyl sulfide in the reduction of sulfur dioxide on lanthanum oxysulfide catalyst. It was found that the lattice sulfur of the oxysulfide is released and reacts with carbon monoxide to form carbonyl sulfide when the oxysulfide is heated. The oxysulfide is postulated to form sulfur vacancies at a temperature lower than that for the formation of carbonyl sulfide and atomic sulfur is released in the process. The atomic sulfur can either enter the gas phase and leave the oxysulfide catalyst or react with carbon monoxide to form carbonyl sulfide.

  7. Gallium nitride nanotube lasers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; Wright, Jeremy Benjamin; Xu, Huiwen; Luk, Ting Shan; Figiel, Jeffrey J.; Brener, Igal; Brueck, Steven R. J.; Wang, George T.

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  8. Potential effects of gallium on cladding materials

    SciTech Connect (OSTI)

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented.

  9. P-type gallium nitride

    DOE Patents [OSTI]

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  10. P-type gallium nitride

    DOE Patents [OSTI]

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  11. A new continuous two-step molecular precursor route to rare-earth oxysulfides Ln{sub 2}O{sub 2}S

    SciTech Connect (OSTI)

    De Crom, N.

    2012-07-15

    A continuous two-step molecular precursor pathway is designed for the preparation of rare-earth oxysulfides Ln{sub 2}O{sub 2}S (Ln=Y, La, Pr, Nd, Sm-Lu). This new route involves a first oxidation step leading to the rare-earth oxysulfate Ln{sub 2}O{sub 2}SO{sub 4} which is subsequently reduced to the rare-earth oxysulfide Ln{sub 2}O{sub 2}S by switching to a H{sub 2}-Ar atmosphere. The whole process occurs at a temperature significantly lower than usual solid state synthesis (T{<=}650 Degree-Sign C) and avoids the use of dangerous sulfur-based gases, providing a convenient route to the synthesis of the entire series of Ln{sub 2}O{sub 2}S. The molecular precursors consist in heteroleptic dithiocarbamate complexes [Ln(Et{sub 2}dtc){sub 3}(phen)] and [Ln(Et{sub 2}dtc){sub 3}(bipy)] (Et{sub 2}dtc=N,N-diethyldithiocarbamate; phen=1,10-phenanthroline; bipy=2,2 Prime -bipyridine) and were synthesized by a new high yield and high purity synthesis route. The nature of the molecular precursor determines the minimum synthesis temperature and influences therefore the purity of the final Ln{sub 2}O{sub 2}S crystalline phase. - Graphical abstract: A continuous two-step molecular precursor pathway was designed for the preparation of rare-earth oxysulfides Ln{sub 2}O{sub 2}S (Ln=Y, La, Pr, Nd, Sm-Lu), starting from heteroleptic dithiocarbamate complexes. The influence of the nature of the molecular precursor on the minimum synthesis temperature and on the purity of the final Ln{sub 2}O{sub 2}S crystalline phase is discussed. Highlights: Black-Right-Pointing-Pointer A new high yield and high purity synthesis route of rare earth dithiocarbamates is described. Black-Right-Pointing-Pointer These compounds are used as precursors in a continuous process leading to rare-earth oxysulfides. Black-Right-Pointing-Pointer The oxysulfides are obtained under much more moderate conditions than previously described.

  12. Gallium arsenide recycle chemistry and metallurgy

    SciTech Connect (OSTI)

    Bartlett, R.W.

    1987-03-23

    Research was successfully conducted on a smelting approach to separate gallium from arsenic using a liquid copper alloy to collect arsenic while oxidizing the gallium into a soda-silica slag. The slag and copper form two immiscible liquid phases. With GaAs in powder form, smelting at 1150 to 1220{degree}C yields 98% of the gallium in the slag and at least 96% of the arsenic in the copper. The gallium concentration in this slag is, relative to other sources, very high, and it can be processed further to obtain crude gallium. The effect of chemical oxidizers on arsenic and gallium distribution between slag and copper was determined. The solidified copper-arsenic alloy is environmentally inert. However, any precious metals present with the electronic scrap will nearly completely collect in the copper. Commercial copper refineries are capable of recovering precious metals from the copper-arsenic alloy, and are equipped to handle large amounts of arsenic when compared with the amount of arsenic used in GaAs devices, even with many fold future expansions.

  13. Generator for gallium-68 and compositions obtained therefrom

    DOE Patents [OSTI]

    Neirinckx, Rudi D. (Medfield, MA); Davis, Michael A. (Westwood, MA)

    1981-01-01

    A generator for obtaining radioactive gallium-68 from germanium-68 bound in a resin containing unsubstituted phenolic hydroxyl groups. The germanium-68 is loaded into the resin from an aqueous solution of the germanium-68. A physiologically acceptable solution of gallium-68 having an activity of 0.1 to 50 millicuries per milliliter of gallium-68 solution is obtained. The solution is obtained from the bound germanium-68 which forms gallium-68 in situ by eluting the column with a hydrochloric acid solution to form an acidic solution of gallium-68. The acidic solution of gallium-68 can be neutralized.

  14. BES Web Highlight: Single-mode gallium nitride nanowire lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Web Highlight: Single-mode gallium nitride nanowire lasers - Sandia Energy Energy Search ... Twitter Google + Vimeo GovDelivery SlideShare BES Web Highlight: Single-mode gallium ...

  15. Solar cell with a gallium nitride electrode

    DOE Patents [OSTI]

    Pankove, Jacques I.

    1979-01-01

    A solar cell which comprises a body of silicon having a P-N junction therein with a transparent conducting N-type gallium nitride layer as an ohmic contact on the N-type side of the semiconductor exposed to solar radiation.

  16. Gallium nitride junction field-effect transistor

    DOE Patents [OSTI]

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  17. Gallium nitride junction field-effect transistor

    DOE Patents [OSTI]

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  18. High intensity x-ray source using liquid gallium target

    DOE Patents [OSTI]

    Smither, Robert K.; Knapp, Gordon S.; Westbrook, Edwin M.; Forster, George A.

    1990-01-01

    A high intensity x-ray source that uses a flowing stream of liquid gallium as a target with the electron beam impinging directly on the liquid metal.

  19. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate

    Broader source: Energy.gov [DOE]

    This project is producing high-efficiency semipolar light-emitting diodes (LEDs) on low-defect bulk gallium nitride (GaN) substrates.

  20. Laser photochemistry of gallium-containing compounds. [Trimethylgallium

    SciTech Connect (OSTI)

    Baughcum, S.L.; Oldenborg, R.C.

    1986-01-01

    The production of gas-phase gallium atoms in the photolysis of trimethylgallium has been investigated at 193 nm and at other laser wavelengths. Ground state (4 /sup 2/P/sup 0//sub 1/2) and metastable (4 /sup 2/P/sup 0//sub 3/2/) gallium atoms are detected using laser-induced fluorescence techniques. Our results indicate that gallium atoms continue to be produced at long times after the laser pulse. The observed dependence on photolysis laser fluence, trimethylgallium pressure, and buffer gas pressure are consistent with a mechanism in which highly excited gallium methyl radicals undergo unimolecular decomposition to produce gallium atoms. Since this process is observed to happen on the time scale of hundreds of microseconds, these results have important implications for studies of metal deposition and direct laser writing by laser photolysis of organometallic compounds. 31 refs., 5 figs.

  1. Compatibility of ITER candidate structural materials with static gallium

    SciTech Connect (OSTI)

    Luebbers, P.R.; Michaud, W.F.; Chopra, O.K.

    1993-12-01

    Tests were conducted on the compatibility of gallium with candidate structural materials for the International Thermonuclear Experimental Reactor, e.g., Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, as well as Armco iron, Nickel 270, and pure chromium. Type 316 stainless steel is least resistant to corrosion in static gallium and Nb-5 Mo-1 Zr alloy is most resistant. At 400{degrees}C, corrosion rates are {approx}4.0, 0.5, and 0.03 mm/yr for type 316 SS, Inconel 625, and Nb-5 Mo- 1 Zr alloy, respectively. The pure metals react rapidly with gallium. In contrast to findings in earlier studies, pure iron shows greater corrosion than nickel. The corrosion rates at 400{degrees}C are {ge}88 and 18 mm/yr, respectively, for Armco iron and Nickel 270. The results indicate that at temperatures up to 400{degrees}C, corrosion occurs primarily by dissolution and is accompanied by formation of metal/gallium intermetallic compounds. The solubility data for pure metals and oxygen in gallium are reviewed. The physical, chemical, and radioactive properties of gallium are also presented. The supply and availability of gallium, as well as price predictions through the year 2020, are summarized.

  2. Interactions of Zircaloy Cladding with Gallium: Final Report

    SciTech Connect (OSTI)

    D.F. Wilson; E.T. Manneschmidt; J.F. King; J.P. Strizak; J.R. DiStefano

    1998-09-01

    The U.S. Department of Energy has established a dual-track approach to the disposition of plutonium arising from the dismantling of nuclear weapons. Both immobilization and reactor-based mixed-oxide (MOX) fuel technologies are being evaluated. The reactor-based MOX fuel option requires assessment of the potential impact of concentrations of gallium (on the order of 1 to 10 ppm), not present in conventional MOX fhel, on cladding material performance. Three previous repmts"3 identified several compatibility issues relating to the presence of gallium in MOX fuel and its possible reaction with fiel cladding. Gallium initially present in weapons-grade (WG) plutonium is largely removed during processing to produce MOX fhel. After blending the plutonium with uranium, only 1 to 10 ppm gallium is expected in the sintered MOX fuel. Gallium present as gallium oxide (G~OJ could be evolved as the suboxide (G~O). Migration of the evolved G~O and diffusion of gallium in the MOX matrix along thermal gradients could lead to locally higher concentrations of G~03. Thus, while an extremely low concentration of gallium in MOX fiel almost ensures a lack of significant interaction of gallium whh Zircaloy fhel cladding, there remains a small probability that corrosion effects will not be negligible. General corrosion in the form of surface alloying resulting from formation of intermetallic compounds between Zircaloy and gallium should be ma& limited and, therefore, superficial because of the expected low ratio of gallium to the surface area or volume of the Zircaloy cladding. Although the expected concentration of gallium is low and there is very limited volubility of gallium in zirconium, especially at temperatures below 700 "C,4 grain boundary penetration and liquid metal embrittlement (LME) are forms of localized corrosion that were also considered. One fuel system darnage mechanism, pellet clad interaction, has led to some failure of the Zircaloy cladding in light-water reactors (LWRS

  3. Framework to predict optimal buffer layer pairing for thin film solar cell absorbers: A case study for tin sulfide/zinc oxysulfide

    SciTech Connect (OSTI)

    Mangan, Niall M.; Brandt, Riley E.; Steinmann, Vera; Jaramillo, R.; Poindexter, Jeremy R.; Chakraborty, Rupak; Buonassisi, Tonio; Yang, Chuanxi; Park, Helen Hejin; Zhao, Xizhu; Gordon, Roy G.

    2015-09-21

    An outstanding challenge in the development of novel functional materials for optoelectronic devices is identifying suitable charge-carrier contact layers. Herein, we simulate the photovoltaic device performance of various n-type contact material pairings with tin(II) sulfide (SnS), a p-type absorber. The performance of the contacting material, and resulting device efficiency, depend most strongly on two variables: conduction band offset between absorber and contact layer, and doping concentration within the contact layer. By generating a 2D contour plot of device efficiency as a function of these two variables, we create a performance-space plot for contacting layers on a given absorber material. For a simulated high-lifetime SnS absorber, this 2D performance-space illustrates two maxima, one local and one global. The local maximum occurs over a wide range of contact-layer doping concentrations (below 10{sup 16 }cm{sup −3}), but only a narrow range of conduction band offsets (0 to −0.1 eV), and is highly sensitive to interface recombination. This first maximum is ideal for early-stage absorber research because it is more robust to low bulk-minority-carrier lifetime and pinholes (shunts), enabling device efficiencies approaching half the Shockley-Queisser limit, greater than 16%. The global maximum is achieved with contact-layer doping concentrations greater than 10{sup 18 }cm{sup −3}, but for a wider range of band offsets (−0.1 to 0.2 eV), and is insensitive to interface recombination. This second maximum is ideal for high-quality films because it is more robust to interface recombination, enabling device efficiencies approaching the Shockley-Queisser limit, greater than 20%. Band offset measurements using X-ray photoelectron spectroscopy and carrier concentration approximated from resistivity measurements are used to characterize the zinc oxysulfide contacting layers in recent record-efficiency SnS devices. Simulations representative of these

  4. Cavity optomechanics in gallium phosphide microdisks

    SciTech Connect (OSTI)

    Mitchell, Matthew; Barclay, Paul E.; Hryciw, Aaron C.

    2014-04-07

    We demonstrate gallium phosphide (GaP) microdisk optical cavities with intrinsic quality factors >2.8??10{sup 5} and mode volumes <10(?/n){sup 3}, and study their nonlinear and optomechanical properties. For optical intensities up to 8.0??10{sup 4} intracavity photons, we observe optical loss in the microcavity to decrease with increasing intensity, indicating that saturable absorption sites are present in the GaP material, and that two-photon absorption is not significant. We observe optomechanical coupling between optical modes of the microdisk around 1.5??m and several mechanical resonances, and measure an optical spring effect consistent with a theoretically predicted optomechanical coupling rate g{sub 0}/2??30?kHz for the fundamental mechanical radial breathing mode at 488?MHz.

  5. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Wednesday, 21 December 2005 00:00 Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features

  6. Generator for ionic gallium-68 based on column chromatography

    DOE Patents [OSTI]

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A physiologically acceptable solution of gallium-68 fluorides, having an activity of 0.1 to 50 millicuries per milliliter of solution is provided. The solution is obtained from a generator comprising germanium-68 hexafluoride bound to a column of an anion exchange resin which forms gallium-68 in situ by eluting the column with an acid solution to form a solution containing .sup.68 Ga-fluorides. The solution then is neutralized prior to administration.

  7. Inhalation developmental toxicology studies: Gallium arsenide in mice and rats

    SciTech Connect (OSTI)

    Mast, T.J.; Greenspan, B.J.; Dill, J.A.; Stoney, K.H.; Evanoff, J.J.; Rommereim, R.L.

    1990-12-01

    Gallium arsenide is a crystalline compound used extensively in the semiconductor industry. Workers preparing solar cells and gallium arsenide ingots and wafers are potentially at risk from the inhalation of gallium arsenide dust. The potential for gallium arsenide to cause developmental toxicity was assessed in Sprague- Dawley rats and CD-1 (Swiss) mice exposed to 0, 10, 37, or 75 mg/m{sup 3} gallium arsenide, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and {approx}30 positively mated rats or {approx}24 positively mated mice. Mice were exposed on 4--17 days of gestation (dg), and rats on 4--19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Gallium and arsenic concentrations were determined in the maternal blood and uterine contents of the rats (3/group) at 7, 14, and 20 dg. 37 refs., 11 figs., 30 tabs.

  8. Gallium Safety in the Laboratory INEEL/CON-03-00078

    Office of Scientific and Technical Information (OSTI)

    ... 1987, pp. 411-418. 27. F. F. Hahn, R. K. Wolff, and R. F. Henderson, "Gallium Oxide ... Institute, December 1987. 28. R. K. Wolff et al., "Toxicity of Gallium Oxide ...

  9. Gallium based low-interaction anions

    DOE Patents [OSTI]

    King, Wayne A.; Kubas, Gregory J.

    2000-01-01

    The present invention provides: a composition of the formula M.sup.+x (Ga(Y).sub.4.sup.-).sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; a composition of the formula (R).sub.x Q.sup.+ Ga(Y).sub.4.sup.- where Q is selected from the group consisting of carbon, nitrogen, sulfur, phosphorus and oxygen, each R is a ligand selected from the group consisting of alkyl, aryl, and hydrogen, x is an integer selected from the group consisting of 3 and 4 depending upon Q, and each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; an ionic polymerization catalyst composition including an active cationic portion and a gallium based weakly coordinating anion; and bridged anion species of the formula M.sup.+x.sub.y [X(Ga(Y.sub.3).sub.z ].sup.-y.sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, magnesium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, X is a bridging group between two gallium atoms, y is an integer selected from the group consisting 1 and 2, z is an integer of at least 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide.

  10. Pure silver ohmic contacts to N- and P- type gallium arsenide materials

    DOE Patents [OSTI]

    Hogan, Stephen J.

    1986-01-01

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components an n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffused layer and the substrate layer, wherein the n-type layer comprises a substantially low doping carrier concentration.

  11. Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials

    DOE Patents [OSTI]

    Hogan, S.J.

    1983-03-13

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

  12. First results from the Soviet-American Gallium Experiment

    SciTech Connect (OSTI)

    Abazov, A.I.; Abdurashitov, D.N.; Anosov, O.L.; Eroshkina, L.A.; Faizov, E.L.; Gavrin, V.N.; Kalikhov, A.V.; Knodel, T.V.; Knyshenko, I.I.; Kornoukhov, V.N.; Mezentseva, S.A.; Mirmov, I.N.; Ostrinsky, A.I.; Petukhov, V.V.; Pshukov, A.M.; Revzin, N.Y.; Shikhin, A.A.; Timofeyev, P.V.; Veretenkin, E.P.; Vermul, V.M.; Zakharov, Y.; Zatsepin, G.T.; Zhandarov, V.I. . Inst. Yadernykh Issledovanij); Bowl

    1990-01-01

    The Soviet-American Gallium Experiment is the first experiment able to measure the dominant flux of low energy p-p solar neutrinos. Four extractions made during January to May 1990 from 30 tons of gallium have been counted and indicate that the flux is consistent with 0 SNU and is less than 72 SNU (68% CL) and less than 138 SNU (95% CL). This is to be compared with the flux of 132 SNU predicted by the Standard Solar Model. 10 refs., 4 figs., 1 tab.

  13. 03.01.16 RH Nickel-Gallium - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 electrochemical reduction catalyzed by bimetallic materials at low overpotential Torelli, D. A., Francis, S.A. et al. Nickel-Gallium-Catalyzed Electrochemical Reduction of CO2 to Highly Reduced Products at Low Overpotentials. ACS Catalysis, 6, 2100-2104, DOI: 10.1021/acscatal.5b02888 (2016). Scientific Achievement Electrocatalytic reduction of CO2 to highly reduced C2 (ethylene and ethane) and C1 (methane) products was accomplished on three different phases of nickel-gallium films at low

  14. Compatibility of ITER candidate materials with static gallium

    SciTech Connect (OSTI)

    Luebbers, P.R.; Chopra, O.K.

    1995-09-01

    Corrosion tests have been conducted to determine the compatibility of gallium with candidate structural materials for the International Thermonuclear Experimental Reactor (ITER) first wall/blanket systems, e.g., Type 316 stainless steel (SS), Inconel 625, and Nb-5 Mo-1 Zr. The results indicate that Type 316 SS is least resistant to corrosion in static gallium and Nb-5 Mo-1 Zr alloy is most resistant. At 400 C, corrosion rates for Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy are {approx} 4.0, 0.5, and 0.03 mm/yr, respectively. Iron, nickel, and chromium react rapidly with gallium. Iron shows greater corrosion than nickel at 400 C ({ge} 88 and 18 mm/yr, respectively). The present study indicates that at temperatures up to 400 C, corrosion occurs primarily by dissolution and is accompanied by formation of metal/gallium intermetallic compounds. The growth of intermetallic compounds may control the overall rate of corrosion.

  15. Self- and zinc diffusion in gallium antimonide

    SciTech Connect (OSTI)

    Nicols, Samuel Piers

    2002-03-26

    The technological age has in large part been driven by the applications of semiconductors, and most notably by silicon. Our lives have been thoroughly changed by devices using the broad range of semiconductor technology developed over the past forty years. Much of the technological development has its foundation in research carried out on the different semiconductors whose properties can be exploited to make transistors, lasers, and many other devices. While the technological focus has largely been on silicon, many other semiconductor systems have applications in industry and offer formidable academic challenges. Diffusion studies belong to the most basic studies in semiconductors, important from both an application as well as research standpoint. Diffusion processes govern the junctions formed for device applications. As the device dimensions are decreased and the dopant concentrations increased, keeping pace with Moore's Law, a deeper understanding of diffusion is necessary to establish and maintain the sharp dopant profiles engineered for optimal device performance. From an academic viewpoint, diffusion in semiconductors allows for the study of point defects. Very few techniques exist which allow for the extraction of as much information of their properties. This study focuses on diffusion in the semiconductor gallium antimonide (GaSb). As will become clear, this compound semiconductor proves to be a powerful one for investigating both self- and foreign atom diffusion. While the results have direct applications for work on GaSb devices, the results should also be taken in the broader context of III-V semiconductors. Results here can be compared and contrasted to results in systems such as GaAs and even GaN, indicating trends within this common group of semiconductors. The results also have direct importance for ternary and quaternary semiconductor systems used in devices such as high speed InP/GaAsSb/InP double heterojunction bipolar transistors (DHBT) [Dvorak

  16. Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells

    DOE Patents [OSTI]

    Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L. , Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel

    1998-08-08

    High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

  17. HIGH-QUALITY, LOW-COST BULK GALLIUM NITRIDE SUBSTRATES GROWN...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by 60%, and energy for information technology infrastructure power delivery by 20%. High-Quality, Low-Cost Bulk Gallium Nitride Substrates (1009.69 KB) More Documents & ...

  18. Application of the bounds-analysis approach to arsenic and gallium...

    Office of Scientific and Technical Information (OSTI)

    Details In-Document Search This content will become publicly available on January 23, 2016 Title: Application of the bounds-analysis approach to arsenic and gallium antisite...

  19. Gallium Safety in the Laboratory INEEL/CON-03-00078

    Office of Scientific and Technical Information (OSTI)

    or represents that its use by such third party would not infringe privately owned rights. ... gallium surfaces with oils from human skin, and gloves protect against puncture wounds. ...

  20. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  1. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  2. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  3. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  4. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  5. Electrochemical Solution Growth: Gallium Nitride Crystal Growth - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Vehicles and Fuels Vehicles and Fuels Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Electrochemical Solution Growth: Gallium Nitride Crystal Growth Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (886 KB) Technology Marketing SummarySandia National Laboratories has developed a disruptive new crystal growth technology, called Electrochemical Solution Growth (ESG).

  6. Preliminary survey report: control technology for gallium arsenide processing at Morgan Semiconductor Division, Garland, Texas

    SciTech Connect (OSTI)

    Lenihan, K.L.

    1987-03-01

    The report covers a walk through survey made of the Morgan Semiconductor Facility in Garland, Texas, to evaluate control technology for gallium-arsenide dust in the semiconductor industry. Engineering controls included the synthesis of gallium-arsenide outside the crystal pullers to reduce arsenic residues in the pullers, also reducing worker exposure to arsenic during cleaning of the crystal pullers.

  7. Synthesis and use of (polyfluoroaryl)fluoroanions of aluminum, gallium and indium

    DOE Patents [OSTI]

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    Salts of (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are described. The (polyfluoroaryl)fluoroanions have the formula [ER'R"R'"F].sup..crclbar. wherein E is aluminum, gallium, or indium, wherein F is fluorine, and wherein R', R", and R'" is each a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic group.

  8. Study on natural convection capability of liquid gallium for passive decay heat removal system (PDHRS)

    SciTech Connect (OSTI)

    Kang, S.; Ha, K. S.; Lee, S. W.; Park, S. D.; Kim, S. M.; Seo, H.; Kim, J. H.; Bang, I. C.

    2012-07-01

    The safety issues of the SFRs are important due to the fact that it uses sodium as a nuclear coolant, reacting vigorously with water and air. For that reason, there are efforts to seek for alternative candidates of liquid metal coolants having excellent heat transfer property and to adopt improved safety features to the SFR concepts. This study considers gallium as alternative liquid metal coolant applicable to safety features in terms of chemical activity issue of the sodium and aims to experimentally investigate the natural convection capability of gallium as a feasibility study for the development of gallium-based passive safety features in SFRs. In this paper, the design and construction of the liquid gallium natural convection loop were carried out. The experimental results of heat transfer coefficient of liquid gallium resulting in heat removal {approx}2.53 kW were compared with existing correlations and they were much lower than the correlations. To comparison of the experimental data with computer code analysis, gallium property code was developed for employing MARS-LMR (Korea version of RELAP) based on liquid gallium as working fluid. (authors)

  9. Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; Hartman, Alan; Tupta, Mary Ann; Baczewski, Andrew David; Crimp, Martin A.; Halpern, Joshua B.; He, Maoqi; Shaw, Harry C.

    2007-10-19

    Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

  10. HIGH-QUALITY, LOW-COST BULK GALLIUM NITRIDE SUBSTRATES GROWN...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient manufacturing of gallium nitride (GaN) could reduce the cost of and improve the output for light-emitting diodes, solid-state lighting, laser displays, and other power ...

  11. Temperature dependence of carrier capture by defects in gallium arsenide

    SciTech Connect (OSTI)

    Wampler, William R.; Modine, Normand A.

    2015-08-01

    This report examines the temperature dependence of the capture rate of carriers by defects in gallium arsenide and compares two previously published theoretical treatments of this based on multi phonon emission (MPE). The objective is to reduce uncertainty in atomistic simulations of gain degradation in III-V HBTs from neutron irradiation. A major source of uncertainty in those simulations is poor knowledge of carrier capture rates, whose values can differ by several orders of magnitude between various defect types. Most of this variation is due to different dependence on temperature, which is closely related to the relaxation of the defect structure that occurs as a result of the change in charge state of the defect. The uncertainty in capture rate can therefore be greatly reduced by better knowledge of the defect relaxation.

  12. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  13. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  14. Spin-phonon coupling in scandium doped gallium ferrite

    SciTech Connect (OSTI)

    Chakraborty, Keka R. E-mail: smyusuf@barc.gov.in; Mukadam, M. D.; Basu, S.; Yusuf, S. M. E-mail: smyusuf@barc.gov.in; Paul, Barnita; Roy, Anushree; Grover, Vinita; Tyagi, A. K.

    2015-03-28

    We embarked on a study of Scandium (Sc) doped (onto Ga site) gallium ferrite (GaFeO{sub 3}) and found remarkable magnetic properties. In both doped as well as parent compounds, there were three types of Fe{sup 3+} ions (depending on the symmetry) with the structure conforming to space group Pna2{sub 1} (Sp. Grp. No. 33) below room temperature down to 5?K. We also found that all Fe{sup 3+} ions occupy octahedral sites, and carry high spin moment. For the higher Sc substituted sample (Ga{sub 1?x}Sc{sub x}FeO{sub 3}: x?=?0.3), a canted magnetic ordered state is found. Spin-phonon coupling below Nel temperature was observed in doped compounds. Our results indicated that Sc doping in octahedral site modifies spin-phonon interactions of the parent compound. The spin-phonon coupling strength was estimated for the first time in these Sc substituted compounds.

  15. Hydrogenation of palladium rich compounds of aluminium, gallium and indium

    SciTech Connect (OSTI)

    Kohlmann, H.

    2010-02-15

    Palladium rich intermetallic compounds of aluminium, gallium and indium have been studied before and after hydrogenation by powder X-ray diffraction and during hydrogenation by in situ thermal analysis (DSC) at hydrogen gas pressures up to 39 MPa and temperatures up to 700 K. Very weak DSC signals and small unit cell increases of below 1% for AlPd{sub 2}, AlPd{sub 3}, GaPd{sub 2}, Ga{sub 5}Pd{sub 13}, In{sub 3}Pd{sub 5}, and InPd{sub 2} suggest negligible hydrogen uptake. In contrast, for both tetragonal modifications of InPd{sub 3} (ZrAl{sub 3} and TiAl{sub 3} type), heating to 523 K at 2 MPa hydrogen pressure leads to a rearrangement of the intermetallic structure to a cubic AuCu{sub 3} type with an increase in unit cell volume per formula unit by 3.6-3.9%. Gravimetric analysis suggests a composition InPd{sub 3}H{sub a}pprox{sub 0.8} for the hydrogenation product. Very similar behaviour is found for the deuteration of InPd{sub 3}. - Graphical abstract: In situ differential scanning calorimetry of the hydrogenation of tetragonal InPd{sub 3} (ZrAl{sub 3} type) at 1.3 MPa hydrogen pressure.

  16. Optical properties and plasmonic response of silver-gallium nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lereu, Aude; Lemarchand, F.; Zerrad, M.; Yazdanpanah, M.; Passian, Ali

    2015-02-12

    Silver and gallium form an alloy Ag2Ga via a room temperature spontaneous self-assembly that exhibits remarkable mechanical and electrical properties [1] suitable for nanoscale measurements [2]. However, whether photon excitation of plasmons in this emerging nanomaterial is retained or not has not been established. Here, we present a thin lm formation of Ag2Ga via a spreading- reactive process of liquid Ga on an Ag lm and a characterization of its dielectric function (E) = 1(E) - i 2(E) in the photon energy range 1.42 eV E <4.2 eV. It is observed that while the plasmon damping increases, near an energymore » of 3.4 eV, the real part of exhibits a crossing with respect to that of Ag. Furthermore, the impact of new plasmon supporting materials [3] is discussed and in order to enable further applications in plasmonics, the possibility of photon excitation of surface plasmons in Ag2Ga is studied.« less

  17. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    SciTech Connect (OSTI)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna

    2015-05-15

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  18. Ohmic contact formation process on low n-type gallium arsenide (GaAs) using indium gallium zinc oxide (IGZO)

    SciTech Connect (OSTI)

    Yang, Seong-Uk; Jung, Woo-Shik; Lee, In-Yeal; Jung, Hyun-Wook; Kim, Gil-Ho; Park, Jin-Hong

    2014-02-01

    Highlights: We propose a method to fabricate non-gold Ohmic contact on low n-type GaAs with IGZO. 0.15 A/cm{sup 2} on-current and 1.5 on/off-current ratio are achieved in the junction. InAs and InGaAs formed by this process decrease an electron barrier height. Traps generated by diffused O atoms also induce a trap-assisted tunneling phenomenon. - Abstract: Here, an excellent non-gold Ohmic contact on low n-type GaAs is demonstrated by using indium gallium zinc oxide and investigating through time of flight-secondary ion mass spectrometry, X-ray photoelectron spectroscopy, transmission electron microscopy, JV measurement, and H [enthalpy], S [entropy], Cp [heat capacity] chemistry simulation. In is diffused through GaAs during annealing and reacts with As, forming InAs and InGaAs phases with lower energy bandgap. As a result, it decreases the electron barrier height, eventually increasing the reverse current. In addition, traps generated by diffused O atoms induce a trap-assisted tunneling phenomenon, increasing generation current and subsequently the reverse current. Therefore, an excellent Ohmic contact with 0.15 A/cm{sup 2} on-current density and 1.5 on/off-current ratio is achieved on n-type GaAs.

  19. Deposition of metallic gallium on re-crystallized ceramic material during focused ion beam milling

    SciTech Connect (OSTI)

    Muoz-Tabares, J.A.; Reyes-Gasga, J.

    2013-12-15

    We report a new kind of artifact observed in the preparation of a TEM sample of zirconia by FIB, which consists in the deposition of metallic gallium nano-dots on the TEM sample surface. High resolution TEM images showed a microstructure of fine equiaxed grains of ? 5 nm, with some of them possessing two particular characteristics: high contrast and well-defined fast Fourier transform. These grains could not be identified as any phase of zirconia but it was possible to identify them as gallium crystals in the zone axis [110]. Based on HRTEM simulations, the possible orientations between zirconia substrate and deposited gallium are discussed in terms of lattice mismatch and oxygen affinity. - Highlights: We show a new type of artifact induced during preparation of TEM samples by FIB. Deposition of Ga occurs due to its high affinity for oxygen. Materials with small grain size (? 5 nm) could promote Ga deposition. Small grain size permits the elastic accommodation of deposited Ga.

  20. In vitro bio-functionality of gallium nitride sensors for radiation biophysics

    SciTech Connect (OSTI)

    Hofstetter, Markus; Howgate, John; Schmid, Martin; Schoell, Sebastian; Sachsenhauser, Matthias; Adiguezel, Denis; Stutzmann, Martin; Sharp, Ian D.; Thalhammer, Stefan

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Gallium nitride based sensors show promising characteristics to monitor cellular parameters. Black-Right-Pointing-Pointer Cell growth experiments reveal excellent biocompatibiltiy of the host GaN material. Black-Right-Pointing-Pointer We present a biofunctionality assay using ionizing radiation. Black-Right-Pointing-Pointer DNA repair is utilized to evaluate material induced alterations in the cellular behavior. Black-Right-Pointing-Pointer GaN shows no bio-functional influence on the cellular environment. -- Abstract: There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth

  1. Results of the Gallium-Clad Phase 3 and Phase 4 tasks (canceled prior to completion)

    SciTech Connect (OSTI)

    Morris, R.N.

    1998-08-01

    This report summarizes the results of the Gallium-Clad interactions Phase 3 and 4 tasks. Both tasks were to involve examining the out-of-pile stability of residual gallium in short fuel rods with an imposed thermal gradient. The thermal environment was to be created by an electrical heater in the center of the fuel rod and coolant flow on the rod outer cladding. Both tasks were canceled due to difficulties with fuel pellet fabrication, delays in the preparation of the test apparatus, and changes in the Fissile Materials Disposition program budget.

  2. Sandia Demonstrated First-Time, Single-Mode Lasing in Gallium-Nitride

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanowire Lasers Demonstrated First-Time, Single-Mode Lasing in Gallium-Nitride Nanowire Lasers - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  3. Gallium hole traps in irradiated KTiOPO{sub 4}:Ga crystals

    SciTech Connect (OSTI)

    Grachev, V.; Meyer, M.; Malovichko, G.; Hunt, A. W.

    2014-12-07

    Nominally pure and gallium doped single crystals of potassium titanyl phosphate (KTiOPO{sub 4}) have been studied by Electron Paramagnetic Resonance at low temperatures before and after irradiation. Irradiation with 20?MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Gallium impurities act as hole traps in KTiOPO{sub 4} creating Ga{sup 4+} centers. Two different Ga{sup 4+} centers were observed, Ga1 and Ga2. The Ga1 centers are dominant in Ga-doped samples. For the Ga1 center, a superhyperfine structure with one nucleus with nuclear spin was registered and attributed to the interaction of gallium electrons with a phosphorus nucleus or proton in its surrounding. In both Ga1 and Ga2 centers, Ga{sup 4+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions (site selective substitution). The Ga doping eliminates one of the shortcomings of KTP crystalsionic conductivity of bulk crystals. However, this does not improve significantly the resistance of the crystals to electron and ?-radiation.

  4. (Polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interefere in the ethylene polymerization process, while affecting the the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  5. Controlled VLS Growth of Indium, Gallium and Tin Oxide Nanowiresvia Chemical Vapor Transport

    SciTech Connect (OSTI)

    Johnson, M.C.; Aloni, S.; McCready, D.E.; Bourret-Courchesne, E.D.

    2006-03-13

    We utilized a vapor-liquid-solid growth technique to synthesize indium oxide, gallium oxide, and tin oxide nanowires using chemical vapor transport with gold nanoparticles as the catalyst. Using identical growth parameters we were able to synthesize single crystal nanowires typically 40-100 nm diameter and more than 10-100 microns long. The products were characterized by means of XRD, SEM and HRTEM. All the wires were grown under the same growth conditions with growth rates inversely proportional to the source metal vapor pressure. Initial experiments show that different transparent oxide nanowires can be grown simultaneously on a single substrate with potential application for multi-component gas sensors.

  6. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    SciTech Connect (OSTI)

    Ostafiychuk, B. K.; Yaremiy, I. P. Yaremiy, S. I.; Fedoriv, V. D.; Tomyn, U. O.; Umantsiv, M. M.; Fodchuk, I. M.; Kladko, V. P.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  7. Dynamics of formation of photoresponse in a detector structure made of gallium arsenide

    SciTech Connect (OSTI)

    Ayzenshtat, G. I., E-mail: ayzen@mail.tomsknet.ru; Lelekov, M. A.; Tolbanov, O. P. [Tomsk State University (Russian Federation)

    2008-04-15

    The influence of capture effects on the characteristics of detectors of the ionizing radiation based on semi-insulating gallium arsenide is considered. Generation of nonequilibrium electrons and holes along the entire thickness of the active region was performed under illumination with an infrared light-emitting diode with a wavelength of 0.9 {mu}m. In this case, the situation emerging in the device structure under the effect of X-ray radiation or a high-energy electron beam was simulated. It is shown that the variation in the shape of the output signal with time in this case is caused by variation in the electric field profile due to the capture of holes at deep centers in gallium arsenide. An absolutely different distribution of the electric field emerges in the structure under irradiation of a semitransparent cathode of the structure with a red light-emitting diode, emission of which penetrates into the active region for mere 1 {mu}m. In this case, the transformation of the electric field is caused by the capture of electrons. Under the prolonged effect of such radiation, a space-charge-limited current mode emerges in the device.

  8. Short-range order and dynamics of atoms in liquid gallium

    SciTech Connect (OSTI)

    Mokshin, A. V. Khusnutdinoff, R. M.; Novikov, A. G.; Blagoveshchenskii, N. M.; Puchkov, A. V.

    2015-11-15

    The features of the microscopic structure, as well as one-particle and collective dynamics of liquid gallium in the temperature range from T = 313 to 1273 K, are studied on the p = 1.0 atm isobar. Detailed analysis of the data on diffraction of neutrons and X-rays, as well as the results of atomic dynamics simulation, lead to some conclusions about the structure. In particular, for preset conditions, gallium is in the equilibrium liquid phase showing no features of any stable local crystalline clusters. The pronounced asymmetry of the principle peak of the static structure factor and the characteristic “shoulder” in its right-hand part appearing at temperatures close to the melting point, which are clearly observed in the diffraction data, are due to the fact that the arrangement of the nearest neighbors of an arbitrary atom in the system is estimated statistically from the range of correlation length values and not by a single value as in the case of simple liquids. Compactly located dimers with a very short bond make a significant contribution to the statistics of nearest neighbors. The temperature dependence of the self-diffusion coefficient calculated from atomic dynamics simulation agrees well with the results obtained from experimental spectra of the incoherent scattering function. Interpolation of the temperature dependence of the self-diffusion coefficient on a logarithmic scale reveals two linear regions with a transition temperature of about 600 K. The spectra of the dynamic structure factor and spectral densities of the local current calculated by simulating the atomic dynamics indicate the existence of acoustic vibrations with longitudinal and transverse polarizations in liquid gallium, which is confirmed by experimental data on inelastic scattering of neutrons and X-rays. It is found that the vibrational density of states is completely reproduced by the generalized Debye model, which makes it possible to decompose the total vibrational motion into

  9. Structure and electrical characterization of gallium arsenide nanowires with different V/III ratio growth parameters

    SciTech Connect (OSTI)

    Muhammad, R.; Ahamad, R.; Ibrahim, Z.; Othaman, Z.

    2014-03-05

    Gallium arsenide (GaAs) nanowires were grown vertically on GaAs(111)B substrate by gold-assisted using metal-organic chemical vapour deposition. Field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and conductivity atomic force microscopy (CAFM) analysis were carried out to investigate the effects of V/III ratio on structural properties and current-voltage changes in the wires. Results show that GaAs NWs grow preferably in the wurtzite crystal structure than zinc blende crystal structure with increasing V/III ratio. Additionally, CAFM studies have revealed that zincblende nanowires indicate ohmic characteristic compared to oscillation current occurred for wurtzite structures. The GaAs NWs with high quality structures are needed in solar cells technology for trapping energy that directly converts of sunlight into electricity with maximum capacity.

  10. Analysis of gallium arsenide deposition in a horizontal chemical vapor deposition reactor using massively parallel computations

    SciTech Connect (OSTI)

    Salinger, A.G.; Shadid, J.N.; Hutchinson, S.A.

    1998-01-01

    A numerical analysis of the deposition of gallium from trimethylgallium (TMG) and arsine in a horizontal CVD reactor with tilted susceptor and a three inch diameter rotating substrate is performed. The three-dimensional model includes complete coupling between fluid mechanics, heat transfer, and species transport, and is solved using an unstructured finite element discretization on a massively parallel computer. The effects of three operating parameters (the disk rotation rate, inlet TMG fraction, and inlet velocity) and two design parameters (the tilt angle of the reactor base and the reactor width) on the growth rate and uniformity are presented. The nonlinear dependence of the growth rate uniformity on the key operating parameters is discussed in detail. Efficient and robust algorithms for massively parallel reacting flow simulations, as incorporated into our analysis code MPSalsa, make detailed analysis of this complicated system feasible.

  11. Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module

    SciTech Connect (OSTI)

    Silverman, T. J.; Deceglie, M. G.; Marion, B.; Cowley, S.; Kayes, B.; Kurtz, S.

    2013-06-01

    We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitable water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.

  12. Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon

    SciTech Connect (OSTI)

    Zeng, Y.; Roland, I.; Checoury, X.; Han, Z.; El Kurdi, M.; Sauvage, S.; Boucaud, P.; Gayral, B.; Brimont, C.; Guillet, T.; Mexis, M.; Semond, F.

    2015-02-23

    We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χ{sub zxx}{sup (2)}, χ{sub zyy}{sup (2)} and the electric fields of the fundamental cavity mode.

  13. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    SciTech Connect (OSTI)

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-06-09

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  14. Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope

    SciTech Connect (OSTI)

    Imtiaz, Atif; Wallis, Thomas M.; Brubaker, Matt D.; Blanchard, Paul T.; Bertness, Kris A.; Sanford, Norman A.; Kabos, Pavel; Weber, Joel C.; Coakley, Kevin J.

    2014-06-30

    We used a broadband, atomic-force-microscope-based, scanning microwave microscope (SMM) to probe the axial dependence of the charge depletion in a p-n junction within a gallium nitride nanowire (NW). SMM enables the visualization of the p-n junction location without the need to make patterned electrical contacts to the NW. Spatially resolved measurements of S{sub 11}{sup ?}, which is the derivative of the RF reflection coefficient S{sub 11} with respect to voltage, varied strongly when probing axially along the NW and across the p-n junction. The axial variation in S{sub 11}{sup ?}? effectively mapped the asymmetric depletion arising from the doping concentrations on either side of the junction. Furthermore, variation of the probe tip voltage altered the apparent extent of features associated with the p-n junction in S{sub 11}{sup ?} images.

  15. Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells

    DOE Patents [OSTI]

    Bhattacharya, Raghu N.; Hasoon, Falah S.; Wiesner, Holm; Keane, James; Noufi, Rommel; Ramanathan, Kannan

    1999-02-16

    A photovoltaic cell exhibiting an overall conversion efficiency of 13.6% is prepared from a copper-indium-gallium-diselenide precursor thin film. The film is fabricated by first simultaneously electrodepositing copper, indium, gallium, and selenium onto a glass/molybdenum substrate (12/14). The electrodeposition voltage is a high frequency AC voltage superimposed upon a DC voltage to improve the morphology and growth rate of the film. The electrodeposition is followed by physical vapor deposition to adjust the final stoichiometry of the thin film to approximately Cu(In.sub.1-n Ga.sub.x)Se.sub.2, with the ratio of Ga/(In+Ga) being approximately 0.39.

  16. Molten iron oxysulfide as a superior sulfur sorbent

    SciTech Connect (OSTI)

    Hepworth, M.T.

    1990-01-01

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantages in that they can be staged to reduce NO{sub x} and SO{sub x} emissions. Iron oxide, as an alternative to lime or limestone may be effective not only as a desulfurizing agent, but under the right conditions of oxygen potential and after combination with sulfur, the reaction products of coal gases with iron oxide can act as a flux to produce a fluid phase. The thermodynamic conditions for determining the most effective operating conditions of the first stage of a combustor are calculated for several Illinois coals. These conditions include contact of the gas with the phase combinations: CaO/CaSO{sub 4}, CaO/CaS, and Fe/FeO/liquid for the temperature range 950{degree} to 1300{degree}C. In the latter system, the minimum dosage of iron required at equilibrium and the calculated maximum percent sulfur removal are reported. Also given are the expected pounds of SO{sub 2} per million Btu of heat evolution calculated for complete combustion. The calculations indicate that for the Fe-O-S system, higher temperatures give better results approaching 96 percent sulfur removal from a coal containing 4.2% sulfur. For this example, the stack gas emerging from the second stage of combustion under stoichiometric conditions would contain 0.36 pounds of SO{sub 2} per million BTU's of heat generated. The temperature limits of the sulfate and sulfide forming reactions are defined.

  17. Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xufan; Basile Carrasco, Leonardo A.; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A.; Lee, Jaekwang; Idrobo Tapia, Juan Carlos; Chi, Miaofang; Rouleau, Christopher M.; Geohegan, David B.; et al

    2015-01-21

    Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0° or 60° interlayer rotations. The commensurate stacking configurations (AA' and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale andmore » the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. Here, the combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.« less

  18. Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals

    SciTech Connect (OSTI)

    Li, Xufan; Basile Carrasco, Leonardo A.; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A.; Lee, Jaekwang; Idrobo Tapia, Juan Carlos; Chi, Miaofang; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai

    2015-01-21

    Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0° or 60° interlayer rotations. The commensurate stacking configurations (AA' and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale and the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. Here, the combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.

  19. Transport-reaction model for defect and carrier behavior within displacement cascades in gallium arsenide

    SciTech Connect (OSTI)

    Wampler, William R.; Myers, Samuel M.

    2014-02-01

    A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defects within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.

  20. Revealing the Preferred Interlayer Orientations and Stackings of Two-Dimensional Bilayer Gallium Selenide Crystals

    SciTech Connect (OSTI)

    Li, Xufan; Basile Carrasco, Leonardo A; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A; Lee, Jaekwang; Idrobo Tapia, Juan Carlos; Chi, Miaofang; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2015-01-01

    Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0 or 60 interlayer rotations. The commensurate stacking configurations (AA and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale and the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. The combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.

  1. Steady State Sputtering Yields and Surface Compositions of Depleted Uranium and Uranium Carbide bombarded by 30 keV Gallium or 16 keV Cesium Ions.

    SciTech Connect (OSTI)

    Siekhaus, W. J.; Teslich, N. E.; Weber, P. K.

    2014-10-23

    Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions’ range, i.e. using steady-state sputtering. The recession of both the uranium’s and uranium carbide’s surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantation and sputter-erosion of uranium and uranium carbide were calculated to be U₈₆Ga₁₄, (UC)₇₀Ga₃₀ and U₈₁Cs₉, (UC)₇₉Cs₂₁, respectively.

  2. Shear strain mediated magneto-electric effects in composites of piezoelectric lanthanum gallium silicate or tantalate and ferromagnetic alloys

    SciTech Connect (OSTI)

    Sreenivasulu, G.; Piskulich, E.; Srinivasan, G.; Qu, P.; Qu, Hongwei; Petrov, V. M.; Fetisov, Y. K.; Nosov, A. P.

    2014-07-21

    Shear strain mediated magneto-electric (ME) coupling is studied in composites of piezoelectric Y-cut lanthanum gallium silicate (LGS) or tantalate (LGT) and ferromagnetic Fe-Co-V alloys. It is shown that extensional strain does not result in ME effects in these layered composites. Under shear strain generated by an ac and dc bias magnetic fields along the length and width of the sample, respectively, strong ME coupling is measured at low-frequencies and at mechanical resonance. A model is discussed for the ME effects. These composites of Y-cut piezoelectrics and ferromagnetic alloys are of importance for shear strain based magnetic field sensors.

  3. Gallium and indium imaging agents. 2. Complexes of sulfonated catecholyamide sequestering agents

    SciTech Connect (OSTI)

    Pecoraro, V.L.; Wong, G.B.; Raymond, K.N.

    1982-06-01

    The solution equilibria for the reaction of Ga(III) and In(III) with the hexadentate ligands N, N', N''-tris(2,3-dihydroxy-5-sulfonatobenzoyl)-1,3,5-tris(aminomethyl)benzene (MECAMS) and N, N', N''-tris(2,3-dihydroxy-5-sulfonatobenzoyl)-1,5,10-triazadecane (3,4-LICAMS) and the bidentate catechol N,N-dimethyl-2,3-dihydroxy-5-sulfonatobenzamide (DMBS) have been determined on 0.1 M KNO/sub 3/ at 25/sup 0/C. Both Ga(III) and In(III) are coordinated by three catecholate groups at high pH and have formation constants of the order ..beta../sub 110/ = 10/sup 38/ M/sup -1/. As the acidity of the medium is increased, the metal complexes of the hexadentate sequestering agents undergo protonation reactions. For the determination of the nature of the protonated metal chelates, the stretching frequency of the amide carbonyl has been monitored in D/sub 2/O by Fourier transform infrared spectroscopy (FT IR). These data support a series of two one-proton steps to form a mixed salicylate-catecholate coordination about the metal ion. In the salicylate bonding mode the metal is bound through the ortho phenolic oxygen and the amide cabonyl whereas catecholate coordination is via the adjacent phenols. In contrast, protonation of the M/sup III/(DMBS)/sub 3/ complexes results in dissociation of a catechol moiety to form M/sup III/(DMBS)/sub 2/. The potential use of these compounds as tumor-imaging agents in cancer diagnosis is discussed, with specific attention to the role of the gallium transferrin complex.

  4. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOE Patents [OSTI]

    Curtis, Calvin J.; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S.; Nekuda, Jennifer A.

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  5. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    SciTech Connect (OSTI)

    Hendrickson, Joshua R. Leedy, Kevin; Cleary, Justin W.; Vangala, Shivashankar; Nader, Nima; Guo, Junpeng

    2015-11-09

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabrication result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.

  6. Recovery from ultraviolet-induced threshold voltage shift in indium gallium zinc oxide thin film transistors by positive gate bias

    SciTech Connect (OSTI)

    Liu, P.; Chen, T. P.; Li, X. D.; Wong, J. I.; Liu, Z.; Liu, Y.; Leong, K. C.

    2013-11-11

    The effect of short-duration ultraviolet (UV) exposure on the threshold voltage (V{sub th}) of amorphous indium gallium zinc oxide thin film transistors (TFTs) and its recovery characteristics were investigated. The V{sub th} exhibited a significant negative shift after UV exposure. The V{sub th} instability caused by UV illumination is attributed to the positive charge trapping in the dielectric layer and/or at the channel/dielectric interface. The illuminated devices showed a slow recovery in threshold voltage without external bias. However, an instant recovery can be achieved by the application of positive gate pulses, which is due to the elimination of the positive trapped charges as a result of the presence of a large amount of field-induced electrons in the interface region.

  7. An experiment to test the viability of a gallium-arsenide cathode in a SRF electron gun

    SciTech Connect (OSTI)

    Kewisch,J.; Ben-Zvi, I.; Rao, T.; Burrill, A.; Pate, D.; Wu, Q.; Todd, R.; Wang, E.; Bluem, H.; Holmes, D.; Schultheiss, T.

    2009-05-04

    Strained gallium arsenide cathodes are used in electron guns for the production of polarized electrons. In order to have a sufficient quantum efficiency lifetime of the cathode the vacuum in the gun must be 10{sup -11} Torr or better, so that the cathode is not destroyed by ion back bombardment or through contamination with residual gases. All successful polarized guns are DC guns, because such vacuum levels can not be obtained in normal conducting RF guns. A superconductive RF gun may provide a sufficient vacuum level due to cryo-pumping of the cavity walls. We report on the progress of our experiment to test such a gun with normal GaAs-Cs crystals.

  8. Compact, Interactive Electric Vehicle Charger: Gallium-Nitride Switch Technology for Bi-directional Battery-to-Grid Charger Applications

    SciTech Connect (OSTI)

    2010-10-01

    ADEPT Project: HRL Laboratories is using gallium nitride (GaN) semiconductors to create battery chargers for electric vehicles (EVs) that are more compact and efficient than traditional EV chargers. Reducing the size and weight of the battery charger is important because it would help improve the overall performance of the EV. GaN semiconductors process electricity faster than the silicon semiconductors used in most conventional EV battery chargers. These high-speed semiconductors can be paired with lighter-weight electrical circuit components, which helps decrease the overall weight of the EV battery charger. HRL Laboratories is combining the performance advantages of GaN semiconductors with an innovative, interactive battery-to-grid energy distribution design. This design would support 2-way power flow, enabling EV battery chargers to not only draw energy from the power grid, but also store and feed energy back into it.

  9. (Ion beam deposition of epitaxial germanium and gallium arsenide layers): Foreign trip report, June 2, 1989--June 18, 1989

    SciTech Connect (OSTI)

    Haynes, T.E.

    1989-07-05

    The traveler presented an invited paper entitled ''Ion Beam Deposition of Epitaxial Germanium and Gallium Arsenide Layers'' at the Twelfth Symposium on Ion Sources and Ion-Assisted Technology (ISIAT '89) in Tokyo. During informal conversations at this meeting, the traveler was informed about a new Japanese initiative, sponsored by the Ministry of International Trade and Industry and an industrial consortium, to establish an Ion Engineering Research Center, whose purpose will be to provide sophisticated equipment and technology base for exploring and developing new applications of ion beam processing. The traveler also visited five Japanese laboratories involved in research on ion-solid interactions. Developments in ionized cluster beam (ICB) deposition were emphasized at ISIAT '89 and during visits to Kyoto University, where the ICB technique was pioneered, and to Mitsubishi Electric's Itami Works, where commercial ICB systems are now being produced. Discussions at Osaka University concentrated on the application of focused ion beams for maskless patterning of submicron devices and on recent studies of one- dimensional quantum effects in semiconductor wires. At Hitachi Research Laboratory, basic research on thin-film growth was described, as well as progress toward the development of a variable frequency RF quadrupole accelerator for ion implantation. Researchers at JAERI outlined programs in characterization and thin-film deposition of superconductors and in materials science studies using high-energy ion beams.

  10. Saddle-like deformation in a dielectric elastomer actuator embedded with liquid-phase gallium-indium electrodes

    SciTech Connect (OSTI)

    Wissman, J.; Finkenauer, L.; Deseri, L.; Majidi, C.

    2014-10-14

    We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K<0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theory based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.

  11. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eyderman, Sergey; John, Sajeev

    2016-06-23

    Here, we demonstrate nearly 30% power conversion efficiency in ultra-thin (~200 nm) gallium arsenide photonic crystal solar cells by numerical solution of the coupled electromagnetic Maxwell and semiconductor drift-diffusion equations. Our architecture enables wave-interference-induced solar light trapping in the wavelength range from 300-865 nm, leading to absorption of almost 90% of incoming sunlight. Our optimized design for 200 nm equivalent bulk thickness of GaAs, is a square-lattice, slanted conical-pore photonic crystal (lattice constant 550 nm, pore diameter 600 nm, and pore depth 290 nm), passivated with AlGaAs, deposited on a silver back-reflector, with ITO upper contact and encapsulated with SiO2.more » Our model includes both radiative and non-radiative recombination of photo-generated charge carriers. When all light from radiative recombination is assumed to escape the structure, a maximum achievable photocurrent density (MAPD) of 27.6 mA/cm2 is obtained from normally incident AM 1.5 sunlight. For a surface non-radiative recombination velocity of 103 cm/s, this corresponds to a solar power conversion efficiency of 28.3%. When all light from radiative recombination is trapped and reabsorbed (complete photon recycling) the power conversion efficiency increases to 29%. If the surface recombination velocity is reduced to 10 cm/sec, photon recycling is much more effective and the power conversion efficiency reaches 30.6%.« less

  12. Effects of low-temperature (120 °C) annealing on the carrier concentration and trap density in amorphous indium gallium zinc oxide thin film transistors

    SciTech Connect (OSTI)

    Kim, Jae-sung; Piao, Mingxing; Jang, Ho-Kyun; Kim, Gyu-Tae; Oh, Byung Su; Joo, Min-Kyu; Ahn, Seung-Eon

    2014-12-28

    We report an investigation of the effects of low-temperature annealing on the electrical properties of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). X-ray photoelectron spectroscopy was used to characterize the charge carrier concentration, which is related to the density of oxygen vacancies. The field-effect mobility was found to decrease as a function of the charge carrier concentration, owing to the presence of band-tail states. By employing the transmission line method, we show that the contact resistance did not significantly contribute to the changes in device performance after annealing. In addition, using low-frequency noise analyses, we found that the trap density decreased by a factor of 10 following annealing at 120 °C. The switching operation and on/off ratio of the a-IGZO TFTs improved considerably after low-temperature annealing.

  13. Growth of gallium nitride films via the innovative technique of atomic-layer epitaxy. Annual progress report, 1 June 1987-31 May 1988

    SciTech Connect (OSTI)

    Davis, R.F.; Paisley, M.J.; Sitar, Z.

    1988-06-01

    Gallium nitride (GaN) is a wide-bandgap (3.45 eV at 300K) III-V compound semiconductor. The large direct bandgap and high electron-drift velocity of GaN are important properties in the performance of short-wavelength optical devices and high-power microwave devices. Immediate applications that would be greatly enhanced by the availability of GaN and/or Al/sub x/Ga/sub 1-x/N devices include threat warning systems (based on the ultraviolet (UV) emission from the exhaust plumes of missiles) and radar systems (which require high-power microwave generation). Important future applications for devices produced from these materials include blue and ultraviolet semiconductor lasers, blue-light-emitting diodes (LEDs) and high temperature electronic devices. This report discusses this material.

  14. Results from Coupled Optical and Electrical Sentaurus TCAD Models of a Gallium Phosphide on Silicon Electron Carrier Selective Contact Solar Cell

    SciTech Connect (OSTI)

    Limpert, Steven; Ghosh, Kunal; Wagner, Hannes; Bowden, Stuart; Honsberg, Christiana; Goodnick, Stephen; Bremner, Stephen; Green, Martin

    2014-06-09

    We report results from coupled optical and electrical Sentaurus TCAD models of a gallium phosphide (GaP) on silicon electron carrier selective contact (CSC) solar cell. Detailed analyses of current and voltage performance are presented for devices having substrate thicknesses of 10 μm, 50 μm, 100 μm and 150 μm, and with GaP/Si interfacial quality ranging from very poor to excellent. Ultimate potential performance was investigated using optical absorption profiles consistent with light trapping schemes of random pyramids with attached and detached rear reflector, and planar with an attached rear reflector. Results indicate Auger-limited open-circuit voltages up to 787 mV and efficiencies up to 26.7% may be possible for front-contacted devices.

  15. Realization of write-once-read-many-times memory device with O{sub 2} plasma-treated indium gallium zinc oxide thin film

    SciTech Connect (OSTI)

    Liu, P. Chen, T. P. Li, X. D.; Wong, J. I.; Liu, Z.; Liu, Y.; Leong, K. C.

    2014-01-20

    A write-once-read-many-times (WORM) memory devices based on O{sub 2} plasma-treated indium gallium zinc oxide (IGZO) thin films has been demonstrated. The device has a simple Al/IGZO/Al structure. The device has a normally OFF state with a very high resistance (e.g., the resistance at 2?V is ?10{sup 9} ? for a device with the radius of 50??m) as a result of the O{sub 2} plasma treatment on the IGZO thin films. The device could be switched to an ON state with a low resistance (e.g., the resistance at 2?V is ?10{sup 3} ? for the radius of 50??m) by applying a voltage pulse (e.g., 10?V/1??s). The WORM device has good data-retention and reading-endurance capabilities.

  16. A Mechanistic Study of CO2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy - Oral Presentation

    SciTech Connect (OSTI)

    Flynn, Kristen

    2015-08-19

    Carbon dioxide (CO2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played during the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO2 catalysis.

  17. A Mechanistic Study of CO2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy

    SciTech Connect (OSTI)

    Flynn, Kristen

    2015-08-18

    Carbon dioxide (CO2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played during the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO2 catalysis.

  18. Effect of top gate bias on photocurrent and negative bias illumination stress instability in dual gate amorphous indium-gallium-zinc oxide thin-film transistor

    SciTech Connect (OSTI)

    Lee, Eunji; Chowdhury, Md Delwar Hossain; Park, Min Sang; Jang, Jin

    2015-12-07

    We have studied the effect of top gate bias (V{sub TG}) on the generation of photocurrent and the decay of photocurrent for back channel etched inverted staggered dual gate structure amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Upon 5 min of exposure of 365 nm wavelength and 0.7 mW/cm{sup 2} intensity light with negative bottom gate bias, the maximum photocurrent increases from 3.29 to 322 pA with increasing the V{sub TG} from −15 to +15 V. By changing V{sub TG} from negative to positive, the Fermi level (E{sub F}) shifts toward conduction band edge (E{sub C}), which substantially controls the conversion of neutral vacancy to charged one (V{sub O} → V{sub O}{sup +}/V{sub O}{sup 2+} + e{sup −}/2e{sup −}), peroxide (O{sub 2}{sup 2−}) formation or conversion of ionized interstitial (O{sub i}{sup 2−}) to neutral interstitial (O{sub i}), thus electron concentration at conduction band. With increasing the exposure time, more carriers are generated, and thus, maximum photocurrent increases until being saturated. After negative bias illumination stress, the transfer curve shows −2.7 V shift at V{sub TG} = −15 V, which gradually decreases to −0.42 V shift at V{sub TG} = +15 V. It clearly reveals that the position of electron quasi-Fermi level controls the formation of donor defects (V{sub O}{sup +}/V{sub O}{sup 2+}/O{sub 2}{sup 2−}/O{sub i}) and/or hole trapping in the a-IGZO /interfaces.

  19. Molten iron oxysulfide as a superior sulfur sorbent. Third quarter technical progress report, June 1--August 31, 1990

    SciTech Connect (OSTI)

    Hepworth, M.T.

    1990-12-31

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantages in that they can be staged to reduce NO{sub x} and SO{sub x} emissions. Iron oxide, as an alternative to lime or limestone may be effective not only as a desulfurizing agent, but under the right conditions of oxygen potential and after combination with sulfur, the reaction products of coal gases with iron oxide can act as a flux to produce a fluid phase. The thermodynamic conditions for determining the most effective operating conditions of the first stage of a combustor are calculated for several Illinois coals. These conditions include contact of the gas with the phase combinations: CaO/CaSO{sub 4}, CaO/CaS, and Fe/FeO/liquid for the temperature range 950{degree} to 1300{degree}C. In the latter system, the minimum dosage of iron required at equilibrium and the calculated maximum percent sulfur removal are reported. Also given are the expected pounds of SO{sub 2} per million Btu of heat evolution calculated for complete combustion. The calculations indicate that for the Fe-O-S system, higher temperatures give better results approaching 96 percent sulfur removal from a coal containing 4.2% sulfur. For this example, the stack gas emerging from the second stage of combustion under stoichiometric conditions would contain 0.36 pounds of SO{sub 2} per million BTU`s of heat generated. The temperature limits of the sulfate and sulfide forming reactions are defined.

  20. Molten iron oxysulfide as a superior sulfur sorbent. First and second quarters progress report, September 1, 1989--March 1, 1990

    SciTech Connect (OSTI)

    Hepworth, M.T.

    1990-03-06

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantages in that they can be staged to reduce NO{sub x} and SO{sub X} emissions. Iron oxide, as an alternative to lime or limestone may be effective not only as a desulfurizing agent, but, under the right conditions of oxygen potential, it can act as a flux to produce a glassy slag. This glassy slag should be dense and environmentally inert. In this reporting period, the thermodynamic conditions for the operation of the first stage of a combustor operating on a Illinois No. 2 Coal have been examined with respect to the formation of the four phase equilibrium: FeO(wustite)/Fe/liquid/gas over the temperature 950{degrees} to 1300{degrees}C. The minimum dosages of iron oxide which are required at equilibrium and the calculated maximum percent sulfur removal are reported. Also given are the expected pounds of So, per million Btu of heat evolution calculated for complete combustion. These preliminary results indicate that higher temperatures, in the range studied, give better results approaching 96 percent sulfur removal from a coal containing (on a dry basis) 3.29% by weight sulfur. A comparison is made between iron oxide and lime as a desulfurizing agent.

  1. Molten iron oxysulfide as a superior sulfur sorbent. Technical progress report, September 1, 1989--March 1, 1990

    SciTech Connect (OSTI)

    Hepworth, M.T.

    1990-03-06

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantages in that they can be stages to reduce NO{sub x} and SO{sub x} emissions. Iron oxide, as an alternative to lime or-limestone may be effective not only as a desulfurizing agent, but, under the right conditions of oxygen potential, it can act as a flux to produce a glassy slag This glassy slag should be dense and environmentally inert. In this reporting period, the thermodynamic conditions for the operation of the first stage of a combustor operating on a Illinois No. 2 Coal have been examined with respect to the formation of the four phase equilibrium:FeO(wustite)/Fe/liquid/gas over the temperature 950{degree} to 1300{degree}C. The minimum dosages of iron oxide which are required at equilibrium and the calculated maximum percent sulfur removal are reported. Also given are the expected pounds of S per million Btu of heat SO{sub 2} evolution calculated for complete combustion. These preliminary results indicate that higher temperatures, in the range studied, give better results approaching 96 percent sulfur removal from a coal containing (on a dry basis) 3.29% by weight sulfur. A comparison is made between iron oxide and lime as a desulfurizing agent. With lime, the thermodynamic conditions were chosen: a set of conditions where the compound calcium sulfide is the product and a set of conditions where calcium sulfate is the product. The temperature limits of the sulfate forming and sulfide forming reactions are defined.

  2. Longitudinal spin Seebeck effect in Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} prepared on gadolinium gallium garnet (001) by metal organic decomposition method

    SciTech Connect (OSTI)

    Asada, H. Kuwahara, A.; Sakata, N.; Ono, T.; Kishimoto, K.; Koyanagi, T.; Ishibashi, T.; Meguro, A.; Hashinaka, T.

    2015-05-07

    Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} thin films with the Ga composition x = 0, 0.5, and 1.0 are prepared on (001) oriented gadolinium gallium garnet substrates by a metal organic decomposition method. Only (001) peaks are observed in x-ray diffraction patterns for all the films, suggesting that the highly oriented Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} thin films were formed. Increasing Ga composition, the saturation magnetization decreases, and the perpendicular easy axis is enhanced due to the decrease of the shape anisotropy. Longitudinal spin Seebeck effects (LSSEs) in Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} thin films with a Pt layer of 10 nm in thickness were investigated. Magnetic field dependence of the thermoelectric voltage caused by the LSSE in Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} films indicates the hysteresis loop with the small coercivity reflecting the magnetization curve. The decrease of LSSE voltage in Nd{sub 2}BiFe{sub 5−x}Ga{sub x}O{sub 12} is clearly observed with the decrease of Fe composition.

  3. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    SciTech Connect (OSTI)

    Burghoorn, M.; Kniknie, B.; Deelen, J. van; Ee, R. van; Xu, M.; Vroon, Z.; Belt, R. van de; Buskens, P. E-mail: buskens@dwi.rwth-aachen.de

    2014-12-15

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (J{sub sc}) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the J{sub sc} and efficiency of CIGS solar cells with an absorber layer thickness (d{sub CIGS}) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (n{sub resist} = 1.792 vs. n{sub AZO} = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, J{sub sc} increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in J{sub sc} with decreasing d{sub CIGS} was observed. Ergo, the increase in J{sub sc} can be fully explained by the reduction in reflection, and we did not observe any increase in J{sub sc} based on an increased photon path length.

  4. Gallium composition dependence of crystallographic and thermoelectric properties in polycrystalline type-I Ba{sub 8}Ga{sub x}Si{sub 46-x} (nominal x=14-18) clathrates prepared by combining arc melting and spark plasma sintering methods

    SciTech Connect (OSTI)

    Anno, Hiroaki; JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 ; Yamada, Hiroki; Nakabayashi, Takahiro; Hokazono, Masahiro; Shirataki, Ritsuko; JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075

    2012-09-15

    The gallium composition dependence of crystallographic and thermoelectric properties in polycrystalline n-type Ba{sub 8}Ga{sub x}Si{sub 46-x} (nominal x=14-18) compounds with the type-I clathrate structure is presented. Samples were prepared by combining arc melting and spark plasma sintering methods. Powder x-ray diffraction, Rietveld analysis, scanning electron microscopy, and energy-dispersive x-ray spectroscopy show that the solubility limit of gallium in the type-I clathrate phase is close to x=15, which is slightly higher than that for a single crystal. The carrier concentration at room temperature decreases from 2 Multiplication-Sign 10{sup 21} cm{sup -3} to 4 Multiplication-Sign 10{sup 20} cm{sup -3} as the Ga content x increases. The Seebeck coefficient, the electrical conductivity, and the thermal conductivity vary systematically with the carrier concentration when the Ga content x varies. The effective mass (2.0m{sub 0}), the carrier mobility (10 cm{sup 2} V{sup -1} s{sup -1}), and the lattice thermal conductivity (1.1 W m{sup -1} K{sup -1}) are determined for the Ga content x=14.51. The dimensionless thermoelectric figure of merit ZT is about 0.55 at 900 K for the Ga content x=14.51. The calculation of ZT using the experimentally determined material parameters predicts ZT=0.8 (900 K) at the optimum carrier concentration of about 2 Multiplication-Sign 10{sup 20} cm{sup -3}. - Graphical abstract: The gallium composition dependence of crystallographic and thermoelectric properties is presented on polycrystalline n-type Ba{sub 8}Ga{sub x}Si{sub 46-x} with the type-I clathrate structure prepared by combining arc melting and spark plasma sintering methods. The thermoelectric figure of merit ZT reaches 0.55 at 900 K due to the increase in the Ga content (close to x=15), and a calculation predicts further improvement of ZT at the optimized carrier concentration. Highlights: Black-Right-Pointing-Pointer Crystallographic properties of Ba{sub 8}Ga{sub x}Si{sub 46

  5. Growth process for gallium nitride porous nanorods

    DOE Patents [OSTI]

    Wildeson, Isaac Harshman; Sands, Timothy David

    2015-03-24

    A GaN nanorod and formation method. Formation includes providing a substrate having a GaN film, depositing SiN.sub.x on the GaN film, etching a growth opening through the SiN.sub.x and into the GaN film, growing a GaN nanorod through the growth opening, the nanorod having a nanopore running substantially through its centerline. Focused ion beam etching can be used. The growing can be done using organometallic vapor phase epitaxy. The nanopore diameter can be controlled using the growth opening diameter or the growing step duration. The GaN nanorods can be removed from the substrate. The SiN.sub.x layer can be removed after the growing step. A SiO.sub.x template can be formed on the GaN film and the GaN can be grown to cover the SiO.sub.x template before depositing SiN.sub.x on the GaN film. The SiO.sub.x template can be removed after growing the nanorods.

  6. Superconductive silicon nanowires using gallium beam lithography.

    SciTech Connect (OSTI)

    Henry, Michael David; Jarecki, Robert Leo,

    2014-01-01

    This work was an early career LDRD investigating the idea of using a focused ion beam (FIB) to implant Ga into silicon to create embedded nanowires and/or fully suspended nanowires. The embedded Ga nanowires demonstrated electrical resistivity of 5 m-cm, conductivity down to 4 K, and acts as an Ohmic silicon contact. The suspended nanowires achieved dimensions down to 20 nm x 30 nm x 10 m with large sensitivity to pressure. These structures then performed well as Pirani gauges. Sputtered niobium was also developed in this research for use as a superconductive coating on the nanowire. Oxidation characteristics of Nb were detailed and a technique to place the Nb under tensile stress resulted in the Nb resisting bulk atmospheric oxidation for up to years.

  7. Smooth cubic commensurate oxides on gallium nitride

    SciTech Connect (OSTI)

    Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Losego, Mark D.; Mita, Seiji; Collazo, Ramn; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul; Biegalski, Michael D.; Christen, Hans M.

    2014-02-14

    Smooth, commensurate alloys of ?111?-oriented Mg{sub 0.52}Ca{sub 0.48}O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide|nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100 reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO|GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures.

  8. Enthalpy of formation of gallium nitride

    SciTech Connect (OSTI)

    Ranade, M.R.; Tessier, F.; Navrotsky, A.; Leppert, V.J.; Risbud, S.H.; DiSalvo, F.J.; Balkas, C.M.

    2000-05-04

    A major discrepancy in the literature concerning the enthalpy of formation of GaN has been resolved using oxidative oxide melt solution calorimetry. Four samples of differing nitrogen contents were measured by dropping them into molten 3Na{sub 2}O{center_dot}4MoO{sub 3} in a calorimeter at 975 K with oxygen gas bubbling through the solvent. The samples were characterized by X-ray diffraction, chemical analysis, transmission electron microscopy, particle size analysis, and BET measurements. The enthalpy of drop solution (kJ/g) varied approximately linearly with nitrogen content. Extrapolated to stoichiometric GaN, the data yield a value of {minus}156.8 {+-} 16.0 kJ/mol for the standard enthalpy of formation from the elements at 298 K. The relatively large error reflects the deviation of individual points from the straight line rather than uncertainties in each set of data for a given sample. This new directly measured enthalpy of formation is in excellent agreement with that obtained from the temperature dependence of the equilibrium pressure of nitrogen over GaN, {minus}157.7 kJ/mol, measured by Madar et al. and Karpinski and Porowski. This value of {minus}156.8 kJ/mol should replace the commonly tabulated value of {minus}110 kJ/mol determined by Hahn and Juza using combustion calorimetry on an uncharacterized sample over 50 years ago.

  9. Thermophotovoltaic generators based on gallium antimonide

    SciTech Connect (OSTI)

    Khvostikov, V. P. Sorokina, S. V.; Potapovich, N. S.; Khvostikova, O. A.; Malievskaya, A. V.; Vlasov, A. S.; Shvarts, M. Z.; Timoshina, N. Kh.; Andreev, V. M.

    2010-02-15

    Designs of thermophotovoltaic (TPV) generators with infrared emitters heated by concentrated solar radiation are developed, fabricated, and tested. Emitters made of SiC, W, or Ta of various forms and sizes are studied. To the GaSb-based thermophotovoltaic cells, the efficiency of transformation of thermal radiation of W emitters was 19%. The features of operation of two variants of TPV generators, namely, of cylindrical and conical types, are considered. In a demonstration model of the TPV generator consisting of 12 photocells, the output electric power with conversion of the concentrated solar radiation was P = 3.8 W.

  10. Copper Indium Gallium Diselenide | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Since its initial development, copper indium diselenide (CuInSe2) thin-film technology has been considered promising for solar cells because of its favorable electronic and optical ...

  11. Application of the bounds-analysis approach to arsenic and gallium antisite defects in gallium arsenide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wright, A. F.; Modine, N. A.

    2015-01-23

    The As antisite in GaAs (AsGa) has been the subject of numerous experimental and theoretical studies. Recent density-functional-theory (DFT) studies report results in good agreement with experimental data for the +2, +1, and 0 charge states of the stable EL2 structure, the 0 charge state of the metastable EL2* structure, and the activation energy to transform from EL2* to EL2 in the 0 charge state. However, these studies did not report results for EL2* in the -1 charge state. In this paper, we report new DFT results for the +2, +1, 0, and -1 charge states of AsGa, obtained usingmore » a semilocal exchange-correlation functional and interpreted using a bounds-analysis approach. In good agreement with experimental data, we find a -1/0 EL2* level 0.06 eV below the conduction-band edge and an activation energy of 0.05 eV to transform from EL2* to EL2 in the -1 charge state. While the Ga antisite in GaAs (GaAs) has not been studied as extensively as AsGa, experimental studies report three charge states (-2, -1, 0) and two levels (-2/-1, -1/0) close to the valence-band edge. Recent DFT studies report the same charge states, but the levels are found to be well-separated from the valence-band edge. To resolve this disagreement, we performed new DFT calculations for GaAs and interpreted them using a bounds analysis. The analysis identified the -1 and 0 charge states as hole states weakly bound to a highly-localized -2 charge state. Moreover, the -2/-1, -1/0 levels were found to be near the valence-band edge, in good agreement with the experimental data.« less

  12. This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

    DOE Patents [OSTI]

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  13. Review of using gallium nitride for ionizing radiation detection

    SciTech Connect (OSTI)

    Wang, Jinghui; Mulligan, Padhraic; Cao, Lei R.; Brillson, Leonard

    2015-09-15

    With the largest band gap energy of all commercial semiconductors, GaN has found wide application in the making of optoelectronic devices. It has also been used for photodetection such as solar blind imaging as well as ultraviolet and even X-ray detection. Unsurprisingly, the appreciable advantages of GaN over Si, amorphous silicon (a-Si:H), SiC, amorphous SiC (a-SiC), and GaAs, particularly for its radiation hardness, have drawn prompt attention from the physics, astronomy, and nuclear science and engineering communities alike, where semiconductors have traditionally been used for nuclear particle detection. Several investigations have established the usefulness of GaN for alpha detection, suggesting that when properly doped or coated with neutron sensitive materials, GaN could be turned into a neutron detection device. Work in this area is still early in its development, but GaN-based devices have already been shown to detect alpha particles, ultraviolet light, X-rays, electrons, and neutrons. Furthermore, the nuclear reaction presented by {sup 14}N(n,p){sup 14}C and various other threshold reactions indicates that GaN is intrinsically sensitive to neutrons. This review summarizes the state-of-the-art development of GaN detectors for detecting directly and indirectly ionizing radiation. Particular emphasis is given to GaN's radiation hardness under high-radiation fields.

  14. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fabrication of initial 405 nm semipolar LEDs is based on high-IQE structures identified by the experimental data. View the Presentation 2014 BTO Peer Review Presentation - ...

  15. Fabrication and characterisation of gallium arsenide ambipolar quantum point contacts

    SciTech Connect (OSTI)

    Chen, J. C. H. Klochan, O.; Micolich, A. P.; Hamilton, A. R.; Das Gupta, K.; Sfigakis, F.; Ritchie, D. A.; Trunov, K.; Wieck, A. D.; Reuter, D.

    2015-05-04

    We show that ballistic one-dimensional channels can be formed in an ambipolar device fabricated on a high mobility Al{sub 0.34}Ga{sub 0.66}As/GaAs heterostructure. Both electron and hole quantised conductances can be measured in the same one-dimensional channel. We have used this device to compare directly the subband spacings of the two charge carriers in the same confining potential and used this to compare the electron and hole effective masses.

  16. Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices

    SciTech Connect (OSTI)

    Patibandla, Nag; Agrawal, Vivek

    2012-12-01

    Over the course of this program, Applied Materials, Inc., with generous support from the United States Department of Energy, developed a world-class three chamber III-Nitride epi cluster tool for low-cost, high volume GaN growth for the solid state lighting industry. One of the major achievements of the program was to design, build, and demonstrate the world’s largest wafer capacity HVPE chamber suitable for repeatable high volume III-Nitride template and device manufacturing. Applied Materials’ experience in developing deposition chambers for the silicon chip industry over many decades resulted in many orders of magnitude reductions in the price of transistors. That experience and understanding was used in developing this GaN epi deposition tool. The multi-chamber approach, which continues to be unique in the ability of the each chamber to deposit a section of the full device structure, unlike other cluster tools, allows for extreme flexibility in the manufacturing process. This robust architecture is suitable for not just the LED industry, but GaN power devices as well, both horizontal and vertical designs. The new HVPE technology developed allows GaN to be grown at a rate unheard of with MOCVD, up to 20x the typical MOCVD rates of 3{micro}m per hour, with bulk crystal quality better than the highest-quality commercial GaN films grown by MOCVD at a much cheaper overall cost. This is a unique development as the HVPE process has been known for decades, but never successfully commercially developed for high volume manufacturing. This research shows the potential of the first commercial-grade HVPE chamber, an elusive goal for III-V researchers and those wanting to capitalize on the promise of HVPE. Additionally, in the course of this program, Applied Materials built two MOCVD chambers, in addition to the HVPE chamber, and a robot that moves wafers between them. The MOCVD chambers demonstrated industry-leading wavelength yield for GaN based LED wafers and industry-leading uptime enabled in part by a novel in-situ cleaning process developed in this program.

  17. Size effects in the thermal conductivity of gallium oxide (β...

    Office of Scientific and Technical Information (OSTI)

    via this technique (8.8 3.4 W msup -1 Ksup -1) and large mean free paths compared ... with different metal transducers (Al, Au, and Au with a Ti wettingmore layer), we ...

  18. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ways to exploit the novel properties that result are frontier areas of today's solid-state physics and materials science. However, before exploring and exploiting comes making....

  19. Convective Turbulence in Liquid Gallium and Sodium | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dynamics of the velocity field The figure displays streamlines of the two-dimensional skin friction field which was obtained right at the heated bottom plate of a cylindrical...

  20. High Quality, Low Cost Bulk Gallium Nitride Substrates Grown...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of crystalline GaN growth in ESG Results and Accomplishments HRXRD vs reference SEM surface view 0 20 40 60 80 100 120 140 160 180 200 0 10 20 30 40 50 Deposition rate ...

  1. High-Quality, Low-Cost Bulk Gallium Nitride Substrates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    achieving GaN bulk growth without the limitations of tradi- tional crystal growth methods. ... MEMC technology transfer and marketing staff are coordinating with the research team to ...

  2. Review of using gallium nitride for ionizing radiation detection...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA, Department of Radiology, Stanford University, ...

  3. Traps identification in Copper-Indium-Gallium-Sulfur-Selenide...

    Office of Scientific and Technical Information (OSTI)

    Solar Cells Completed with Various Buffer Layers by Deep Level Transient Spectroscopy Current-voltage ... devices cells with high and low efficiencies were studied. ...

  4. Process for growing epitaxial gallium nitride and composite wafers

    DOE Patents [OSTI]

    Weber, Eicke R.; Subramanya, Sudhir G.; Kim, Yihwan; Kruger, Joachim

    2003-05-13

    A novel growth procedure to grow epitaxial Group III metal nitride thin films on lattice-mismatched substrates is proposed. Demonstrated are the quality improvement of epitaxial GaN layers using a pure metallic Ga buffer layer on c-plane sapphire substrate. X-ray rocking curve results indicate that the layers had excellent structural properties. The electron Hall mobility increases to an outstandingly high value of .mu.>400 cm.sup.2 /Vs for an electron background concentration of 4.times.10.sup.17 cm.sup.-3.

  5. Fluorescent lifetime measurements of rare-earth elements in gallium arsenide. Master's thesis

    SciTech Connect (OSTI)

    Topp, D.J.

    1990-12-01

    Lifetime measurements of the excited states of three GaAs semiconductors doped with the rare earth elements Erbium (Er), Praseodymium (Pr), and Thulium (Tm) has been studied using a pulsed nitrogen laser and germanium detector. The measurements were made with an experimental set up with a system response time of 0.34 microseconds. A 330 milliwatt nitrogen laser with a wavelength of 3370 angstroms was used to excite transitions of the rare earth elements.

  6. Characterization of Cu(In,Ga)Se2 (CIGS) films with varying gallium ratios

    SciTech Connect (OSTI)

    Claypoole, Jesse; Peace, Bernadette; Sun, Neville; Dwyer, Dan; Eisaman, Matthew D.; Haldar, Pradeep; Efstathiadis, Harry

    2015-09-05

    Cu(In1-x,Gax)Se2 (CIGS) absorber layers were deposited on molybdenum (Mo) coated soda-lime glass substrates with varying Ga content (described as Ga/(In+Ga) ratios) with respect to depth. As the responsible mechanisms for the limitation of the performance of the CIGS solar cells with high Ga contents are not well understood, the goal of this work was to investigate different properties of CIGS absorber films with Ga/(In+Ga) ratios varied between 0.29 and 0.41 (as determined by X-ray florescence spectroscopy (XRF)) in order to better understand the role that the Ga content has on film quality. The Ga grading in the CIGS layer has the effect causing a higher bandgap toward the surface and Mo contact while the band gap in the middle of the CIGS layer is lower. Also, a wider and larger Ga/(In+Ga) grading dip located deeper in the CIGS absorber layers tend to produce larger grains in the regions of the films that have lower Ga/(In+Ga) ratios. It was found that surface roughness decreases from 51.2 nm to 41.0 nm with increasing Ga/(In+Ga) ratios. However, the surface roughness generally decreases if the Ga grading occurs deeper in the absorber layer.

  7. SAGE: Solar Neutrino Data from SAGE, the Russian-American Gallium Solar Neutrino Experiment

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    SAGE Collaboration

    SAGE is a solar neutrino experiment based on the reaction 71Ga + n goes to 71Ge + e-. The 71Ge atoms are chemically extracted from a 50-metric ton target of Ga metal and concentrated in a sample of germane gas mixed with xenon. The atoms are then individually counted by observing their decay back to 71Ga in a small proportional counter. The distinguishing feature of the experiment is its ability to detect the low-energy neutrinos from proton-proton fusion. These neutrinos, which are made in the primary reaction that provides the Sun's energy, are the major component of the solar neutrino flux and have not been observed in any other way. To shield the experiment from cosmic rays, it is located deep underground in a specially built facility at the Baksan Neutrino Observatory in the northern Caucasus mountains of Russia. Nearly 100 measurements of the solar neutrino flux have been made during 1990-2000, and their combined result is a neutrino capture rate that is well below the prediction of the Standard Solar Model. The significant suppression of the solar neutrino flux that SAGE and other solar neutrino experiments have observed gives a strong indication for the existence of neutrino oscillations. [copied from the SAGE homepage at http://ewi.npl.washington.edu/SAGE/SAGE.html

  8. Application of the bounds-analysis approach to arsenic and gallium...

    Office of Scientific and Technical Information (OSTI)

    Date: 2015-01-01 OSTI Identifier: 1235253 Report Number(s): SAND2014-17327J Journal ID: ISSN 1098-0121; PRBMDO; 537237 GrantContract Number: AC04-94AL85000 Type: Accepted...

  9. Lateral damage in graphene carved by high energy focused gallium ion beams

    SciTech Connect (OSTI)

    Liao, Zhongquan; Zhang, Tao; Jordan, Rainer; Gall, Martin; Rosenkranz, Rüdiger; Dianat, Arezoo; Cuniberti, Gianaurelio; and others

    2015-07-06

    Raman mapping is performed to study the lateral damage in supported monolayer graphene carved by 30 keV focused Ga{sup +} beams. The evolution of the lateral damage is tracked based on the profiles of the intensity ratio between the D (1341 cm{sup −1}) and G (1582 cm{sup −1}) peaks (I{sub D}/I{sub G}) of the Raman spectra. The I{sub D}/I{sub G} profile clearly reveals the transition from stage 2 disorder into stage 1 disorder in graphene along the direction away from the carved area. The critical lateral damage distance spans from <1 μm up to more than 30 μm in the experiment, depending on the parameters used for carving the graphene. The wide damage in the lateral direction is attributed to the deleterious tail of unfocused ions in the ion beam probe. The study raises the attention on potential sample damage during direct patterning of graphene nanostructures using the focused ion beam technique. Minimizing the total carving time is recommended to mitigate the lateral damage.

  10. Calculation of infrared plasma reflection spectra of inhomogeneously doped P-type gallium arsenide

    SciTech Connect (OSTI)

    CHEN Wei-xi; LI Guo-hua; NIU Jin-zhen; GUO Chang-zhi

    1982-01-01

    The influence of the surface concentration and concentration profile of free carriers, the layer thickness and free carrier concentration of the homogeneous substrate on the infrared plasma reflection spectra of inhomogeneously doped P-type GaAs layers is analyzed by computer solutions of differential equations for the optical admittance. Computed spectra are reported for four different profiles and several substrate concentrations. Methods for evaluation of the measured reflection spectra and the limitation of this technique are discussed.

  11. Sandia Demonstrated First-Time, Single-Mode Lasing in Gallium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Consortiums Engine Combustion Facilities Algae Testbed Battery Abuse ... in George's work is an important step toward all nanowire-laser-based applications. ...

  12. Structural and morphological evolution of gallium nitride nanorods grown by chemical beam epitaxy

    SciTech Connect (OSTI)

    Kuo, Shou-Yi; Lai, Fang-I; Chen, Wei-Chun; Hsiao, Chien-Nan; Lin, Woei-Tyng

    2009-07-15

    The morphological and structural evolution is presented for GaN nanorods grown by chemical beam epitaxy on (0001) Al{sub 2}O{sub 3} substrates. Their structural and optical properties are investigated by x-ray diffraction, scanning and transmission electron microscopy, and temperature-dependent photoluminescence measurements. While increasing the growth temperature and the flow rate of radio-frequency nitrogen radical, the three-dimensional growth mode will be enhanced to form one-dimensional nanostructures. The high density of well-aligned nanorods with a diameter of 30-50 nm formed uniformly over the entire sapphire substrate. The x-ray diffraction patterns and transmission electron microscopic images indicate that the self-assembled GaN nanorods are a pure single crystal and preferentially oriented in the c-axis direction. Particularly, the ''S-shape'' behavior with localization of {approx}10 meV observed in the temperature-dependent photoluminescence might be ascribed to the fluctuation in crystallographic defects and composition.

  13. Measurement of piezoelectric constants of lanthanum-gallium tantalate crystal by X-ray diffraction methods

    SciTech Connect (OSTI)

    Blagov, A. E.; Marchenkov, N. V. Pisarevsky, Yu. V.; Prosekov, P. A.; Kovalchuk, M. V.

    2013-01-15

    A method for measuring piezoelectric constants of crystals of intermediate systems by X-ray quasi-multiple-wave diffraction is proposed and implemented. This technique makes it possible to determine the piezoelectric coefficient by measuring variations in the lattice parameter under an external electric field. This method has been approved, its potential is evaluated, and a comparison with high-resolution X-ray diffraction data is performed.

  14. Elastic scattering by hot electrons and apparent lifetime of longitudinal optical phonons in gallium nitride

    SciTech Connect (OSTI)

    Khurgin, Jacob B.; Bajaj, Sanyam; Rajan, Siddharth

    2015-12-28

    Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.

  15. Accelerated Testing of HT-9 with Zirconia Coatings Containing Gallium using Raman Spectroscopy and XPS

    SciTech Connect (OSTI)

    Windisch, Charles F.; Henager, Charles H.; Engelhard, Mark H.; Bennett, Wendy D.

    2009-12-01

    Laser Raman spectroscopy and x-ray photoelectron spectroscopy were used to study the evolution of composition of oxide films in the presence of zirconia coatings on miniature HT-9 alloy specimens subjected to elevated temperature in air. The experiments expanded on previous efforts to develop a quick-screening technique for candidate alloys for cladding materials (HT-9) and actinide-based mixed oxide fuel mixtures (represented by the zirconia coating) by investigating the effect of both coating composition and alloy pretreatment conditions on the high temperature reactions. In particular, the presence of the element Ga (a potential impurity in mixed oxide fuel) in the initial zirconia coating was found to accelerate the rate of oxide growth relative to that of yttria-stabilized zirconia studied previously. In addition, HT-9 samples that were subjected to different thermal pretreatments gave different results. The results suggest that the presence of Ga in a mixed oxide fuel will enhance the corrosion of HT-9 cladding under the conditions of this study, although the extent of enhancement is influenced by thermal pretreatment of the cladding material. The results also demonstrate the need to combine Raman spectroscopy with other techniques, particularly photoelectron spectroscopy, for optimizing composition and/or fabrication conditions of both cladding and oxide fuels for advanced nuclear reactors.

  16. The Russian-American Gallium Experiment (SAGE) Cr Neutrino Source Measurement

    SciTech Connect (OSTI)

    Abdurashitov, J.; Gavrin, V.; Girin, S.; Gorbachev, V.; Ibragimova, T.; Kalikhov, A.; Khairnasov, N.; Knodel, T.; Kornoukhov, V.; Mirmov, I.; Shikhin, A.; Veretenkin, E.; Vermul, V.; Yants, V.; Zatsepin, G.; Bowles, T.; Nico, J.; Teasdale, W.; Wark, D.; Cherry, M.; Karaulov, V.; Levitin, V.; Maev, V.; Nazarenko, P.; Shkolnik, V.; Skorikov, N.; Cleveland, B.; Daily, T.; Davis, R. Jr.; Lande, K.; Lee, C.; Wildenhain, P.; Khomyakov, Y.; Zvonarev, A.; Elliott, S.; Wilkerson, J.

    1996-12-01

    The solar neutrino capture rate measured by SAGE is well below that predicted by solar models. To check the overall experimental efficiency, we exposed 13tonnes of Ga metal to a reactor-produced 517kCi source of {sup 51}Cr. The ratio of the measured production rate to that predicted from the source activity is 0.95{plus_minus}0.11(stat)+0.05/{minus}0.08(syst). This agreement verifies that the experimental efficiency is measured correctly, establishes that there are no unknown systematic errors at the 10{percent} level, and provides considerable evidence for the reliability of the solar neutrino measurement. {copyright} {ital 1996 The American Physical Society.}

  17. Characterization of Cu(In,Ga)Se2 (CIGS) films with varying gallium ratios

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Claypoole, Jesse; Peace, Bernadette; Sun, Neville; Dwyer, Dan; Eisaman, Matthew D.; Haldar, Pradeep; Efstathiadis, Harry

    2015-09-05

    Cu(In1-x,Gax)Se2 (CIGS) absorber layers were deposited on molybdenum (Mo) coated soda-lime glass substrates with varying Ga content (described as Ga/(In+Ga) ratios) with respect to depth. As the responsible mechanisms for the limitation of the performance of the CIGS solar cells with high Ga contents are not well understood, the goal of this work was to investigate different properties of CIGS absorber films with Ga/(In+Ga) ratios varied between 0.29 and 0.41 (as determined by X-ray florescence spectroscopy (XRF)) in order to better understand the role that the Ga content has on film quality. The Ga grading in the CIGS layer hasmore » the effect causing a higher bandgap toward the surface and Mo contact while the band gap in the middle of the CIGS layer is lower. Also, a wider and larger Ga/(In+Ga) grading dip located deeper in the CIGS absorber layers tend to produce larger grains in the regions of the films that have lower Ga/(In+Ga) ratios. It was found that surface roughness decreases from 51.2 nm to 41.0 nm with increasing Ga/(In+Ga) ratios. However, the surface roughness generally decreases if the Ga grading occurs deeper in the absorber layer.« less

  18. Non-Destructive Spent Fuel Characterization with Semi-Conducting Gallium Arsinde Neutron Imaging Arrays

    SciTech Connect (OSTI)

    Douglas S. McGregor; Holly K. Gersch; Jeffrey D. Sanders; John C. Lee; Mark D. Hammig; Michael R. Hartman; Yong Hong Yang; Raymond T. Klann; Brian Van Der Elzen; John T. Lindsay; Philip A. Simpson

    2002-01-30

    High resistivity bulk grown GaAs has been used to produce thermal neutron imaging devices for use in neutron radiography and characterizing burnup in spent fuel. The basic scheme utilizes a portable Sb/Be source for monoenergetic (24 keV) neutron radiation source coupled to an Fe filter with a radiation hard B-coated pixellated GaAs detector array as the primary neutron detector. The coated neutron detectors have been tested for efficiency and radiation hardness in order to determine their fitness for the harsh environments imposed by spent fuel. Theoretical and experimental results are presented, showing detector radiation hardness, expected detection efficiency and the spatial resolution from such a scheme. A variety of advanced neutron detector designs have been explored, with experimental results achieving 13% thermal neutron detection efficiency while projecting the possibility of over 30% thermal neutron detection efficiency.

  19. Electron emitting device and method of making the same

    DOE Patents [OSTI]

    Olsen, Gregory Hammond; Martinelli, Ramon Ubaldo; Ettenberg, Michael

    1977-04-19

    A substrate of single crystalline gallium arsenide has on a surface thereof a layer of single crystalline indium gallium phosphide. A layer of single crystalline gallium arsenide is on the indium gallium phosphide layer and a work function reducing material is on the gallium arsenide layer. The substrate has an opening therethrough exposing a portion of the indium gallium phosphide layer.

  20. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    SciTech Connect (OSTI)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  1. DESIGN AND ANALYSIS OF AN INTEGRATED PULSE MODULATED S-BAND POWER AMPLIFIER IN GALLIUM NITRIDE PROCESS

    SciTech Connect (OSTI)

    STEVE SEDLOCK

    2012-04-04

    The design of power amplifiers in any semi-conductor process is not a trivia exercise and it is often encountered that the simulated solution is qualitatively different than the results obtained. Phenomena such as oscillation occurring either in-band or out of band and sometimes at subharmonic intervals, continuous spectrum noticed in some frequency bands, often referred to as chaos, and jumps and hysteresis effects can all be encountered and render a design useless. All of these problems might have been identified through a more rigorous approach to stability analysis. Designing for stability is probably the one area of amplifier design that receives the least amount of attention but incurs the most catastrophic of effects if it is not performed properly. Other parameters such as gain, power output, frequency response and even matching may suitable mitigation paths. But the lack of stability in an amplifier has no mitigating path. In addition to of loss of the design completely there are the increased production cycle costs, costs involved with investigating and resolving the problem and the costs involved with schedule slips or delays resulting from it. The Linville or Rollett stability criteria that many microwave engineers follow and rely exclusively on is not sufficient by itself to ensure a stable and robust design. It will be shown that the universal belief that unconditional stability is obtained through an analysis of the scattering matrix S to determine if 1 and |{Delta}{sub S}| < 1 is only part of the procedure and other tools must be used to validate the criteria. The research shown contributes to the state of the art by developing a more thorough stability design technique for designing amplifiers of any class, whether that be current mode or switch mode, than is currently undertaken with the goal of obtaining first pass design success.

  2. Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices

    DOE Patents [OSTI]

    Mascarenhas, Angelo

    2015-07-07

    Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is sued to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  3. HIGH-QUALITY, LOW-COST BULK GALLIUM NITRIDE SUBSTRATES GROWN BY THE ELECTROCHEMICAL SOLUTION GROWTH METHOD

    Broader source: Energy.gov [DOE]

    To develop ESG into a viable bulk growth process for GaN that is more scalable to large-area wafer manufacturing and able to produce cost-effective, high-quality bulk GaN substrates.

  4. Direct synthesis of large area graphene on insulating substrate by gallium vapor-assisted chemical vapor deposition

    SciTech Connect (OSTI)

    Murakami, Katsuhisa Hiyama, Takaki; Kuwajima, Tomoya; Fujita, Jun-ichi; Tanaka, Shunsuke; Hirukawa, Ayaka; Kano, Emi; Takeguchi, Masaki

    2015-03-02

    A single layer of graphene with dimensions of 20?mm??20?mm was grown directly on an insulating substrate by chemical vapor deposition using Ga vapor catalysts. The graphene layer showed highly homogeneous crystal quality over a large area on the insulating substrate. The crystal quality of the graphene was measured by Raman spectroscopy and was found to improve with increasing Ga vapor density on the reaction area. High-resolution transmission electron microscopy observations showed that the synthesized graphene had a perfect atomic-scale crystal structure within its grains, which ranged in size from 50?nm to 200?nm.

  5. The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior

    SciTech Connect (OSTI)

    Yang, Tsung-Jui; Wu, Yuh-Renn; Shivaraman, Ravi; Speck, James S.

    2014-09-21

    In this paper, we describe the influence of the intrinsic indium fluctuation in the InGaN quantum wells on the carrier transport, efficiency droop, and emission spectrum in GaN-based light emitting diodes (LEDs). Both real and randomly generated indium fluctuations were used in 3D simulations and compared to quantum wells with a uniform indium distribution. We found that without further hypothesis the simulations of electrical and optical properties in LEDs such as carrier transport, radiative and Auger recombination, and efficiency droop are greatly improved by considering natural nanoscale indium fluctuations.

  6. Atomic Resolution in Situ Imaging of a Double-Bilayer Multistep Growth Mode in Gallium Nitride Nanowires

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gamalski, A. D.; Tersoff, J.; Stach, E. A.

    2016-04-13

    We study the growth of GaN nanowires from liquid Au–Ga catalysts using environmental transmission electron microscopy. GaN wires grow in either (11¯20) or (11¯00) directions, by the addition of {11¯00} double bilayers via step flow with multiple steps. Step-train growth is not typically seen with liquid catalysts, and we suggest that it results from low step mobility related to the unusual double-height step structure. Finally, the results here illustrate the surprising dynamics of catalytic GaN wire growth at the nanoscale and highlight striking differences between the growth of GaN and other III–V semiconductor nanowires.

  7. Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Armstrong, Andrew M.; Crawford, Mary H.; Jayawardena, Asanka; Ahyi, Ayayi; Dhar, Sarit

    2016-03-10

    Solar-blind photodetection and photoconductive gain > 50 corresponding to a responsivity > 8 A/W was observed for β-Ga2O3 Schottky photodiodes. We investigated the origin of photoconductive gain. Current-voltage characteristics of the diodes did not indicate avalanche breakdown, which excludes carrier multiplication by impact ionization as the source for gain. However, photocapacitance measurements indicated a mechanism for hole localization for above-band gap illumination, suggesting self-trapped hole formation. Comparison of photoconductivity and photocapacitance spectra indicated that self-trapped hole formation coincides with the strong photoconductive gain. We conclude that self-trapped hole formation near the Schottky diode lowers the effective Schottky barrier in reversemore » bias, producing photoconductive gain. Ascribing photoconductive gain to an inherent property like self-trapping of holes can explain the operation of a variety of β-Ga2O3 photodetectors.« less

  8. Photovoltaic Single-Crystalline, Thin-Film Cell Basics

    Broader source: Energy.gov [DOE]

    Single-crystalline thin films are made from gallium arsenide (GaAs), a compound semiconductor that is a mixture of gallium and arsenic.

  9. NREL: Process Development and Integration Laboratory - Copper...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Copper Indium Gallium Diselenide Cluster Tool Capabilities The Copper Indium Gallium Diselenide (CIGS) cluster tool in the Process Development and Integration Laboratory offers ...

  10. Beyond Silicon: Cutting the Costs of Solar Power

    DOE R&D Accomplishments [OSTI]

    Ahlberg, Liz

    2011-04-15

    New method of fabricating semiconductors from gallium arsenide promises more affordable solar power, improved semiconductor devices.

  11. Method for the chemical separation of GE-68 from its daughter Ga-68

    DOE Patents [OSTI]

    Fitzsimmons, Jonathan M.; Atcher, Robert W.

    2010-06-01

    The present invention is directed to a generator apparatus for separating a daughter gallium-68 radioisotope substantially free of impurities from a parent gernanium-68 radioisotope, including a first resin-containing column containing parent gernanium-68 radioisotope and daughter gallium-68 radioisotope, a source of first eluent connected to said first resin-containing column for separating daughter gallium-68 radioisotope from the first resin-containing column, said first eluent including citrate whereby the separated gallium is in the form of gallium citrate, a mixing space connected to said first resin-containing column for admixing a source of hydrochloric acid with said separated gallium citrate whereby gallium citrate is converted to gallium tetrachloride, a second resin-containing column for retention of gallium-68 tetrachloride, and, a source of second eluent connected to said second resin-containing column for eluting the daughter gallium-68 radioisotope from said second resin-containing column.

  12. Rare-earth transition-metal gallium chalcogenides RE{sub 3}MGaCh{sub 7} (M=Fe, Co, Ni; Ch=S, Se)

    SciTech Connect (OSTI)

    Rudyk, Brent W.; Stoyko, Stanislav S.; Oliynyk, Anton O.; Mar, Arthur

    2014-02-15

    Six series of quaternary rare-earth transition-metal chalcogenides RE{sub 3}MGaCh{sub 7} (M=Fe, Co, Ni; Ch=S, Se), comprising 33 compounds in total, have been prepared by reactions of the elements at 1050 °C (for the sulphides) or 900 °C (for the selenides). They adopt noncentrosymmetric hexagonal structures (ordered Ce{sub 3}Al{sub 1.67}S{sub 7}-type, space group P6{sub 3}, Z=2) with cell parameters in the ranges of a=9.5–10.2 Å and c=6.0–6.1 Å for the sulphides and a=10.0–10.5 Å and c=6.3–6.4 Å for the selenides as refined from powder X-ray diffraction data. Single-crystal structures were determined for five members of the sulphide series RE{sub 3}FeGaS{sub 7} (RE=La, Pr, Tb) and RE{sub 3}CoGaS{sub 7} (RE=La, Tb). The highly anisotropic crystal structures consist of one-dimensional chains of M-centred face-sharing octahedra and stacks of Ga-centred tetrahedra all pointing in the same direction. Magnetic measurements on the sulphides reveal paramagnetic behaviour in some cases and long-range antiferromagnetic behaviour with low Néel temperatures (15 K or lower) in others. Ga L-edge XANES spectra support the presence of highly cationic Ga tetrahedral centres with a tendency towards more covalent Ga–Ch character on proceeding from the sulphides to the selenides. Band structure calculations on La{sub 3}FeGaS{sub 7} indicate that the electronic structure is dominated by Fe 3d-based states near the Fermi level. - Graphical abstract: The series of chalcogenides RE{sub 3}MGaS{sub 7}, which form for a wide range of rare-earth and transition metals (M=Fe, Co, Ni), adopt highly anisotropic structures containing chains of M-centred octahedra and stacks of Ga-centred tetrahedra. Display Omitted - Highlights: • Six series (comprising 33 compounds) of chalcogenides RE{sub 3}MGaCh{sub 7} were prepared. • They adopt noncentrosymmetric hexagonal structures with high anisotropy. • Most compounds are paramagnetic; some show antiferromagnetic ordering. • Ga L-edge XANES confirms presence of cationic Ga species.

  13. Noncentrosymmetric rare-earth copper gallium chalcogenides RE{sub 3}CuGaCh{sub 7} (RE=La–Nd; Ch=S, Se): An unexpected combination

    SciTech Connect (OSTI)

    Iyer, Abishek K.; Rudyk, Brent W.; Lin, Xinsong; Singh, Harpreet; Sharma, Arzoo Z.; Wiebe, Christopher R.; Mar, Arthur

    2015-09-15

    The quaternary rare-earth chalcogenides RE{sub 3}CuGaS{sub 7} and RE{sub 3}CuGaSe{sub 7} (RE=La–Nd) have been prepared by reactions of the elements at 1050 °C and 900 °C, respectively. They crystallize in the noncentrosymmetric La{sub 3}CuSiS{sub 7}-type structure (hexagonal, space group P6{sub 3}, Z=2) in which the a-parameter is largely controlled by the RE component (a=10.0–10.3 Å for the sulfides and 10.3–10.6 Å for the selenides) whereas the c-parameter is essentially fixed by the choice of Ga and chalcogen atoms within tetrahedral units (c=6.1 Å for the sulfides and 6.4 Å for the selenides). They extend the series RE{sub 3}MGaCh{sub 7}, previously known for divalent metal atoms (M=Mn–Ni), differing in that the Cu atoms in RE{sub 3}CuGaCh{sub 7} occupy trigonal planar sites instead of octahedral sites. Among quaternary chalcogenides RE{sub 3}MM′Ch{sub 7}, the combination of monovalent (M=Cu) and trivalent (M′=Ga) metals is unusual because it appears to violate the condition of charge balance satisfied by most La{sub 3}CuSiS{sub 7}-type compounds. The possibility of divalent Cu atoms was ruled out by bond valence sum analysis, magnetic measurements, and X-ray photoelectron spectroscopy. The electron deficiency in RE{sub 3}CuGaCh{sub 7} is accommodated through S-based holes at the top of the valence band, as shown by band structure calculations on La{sub 3}CuGaS{sub 7}. An optical band gap of about 2.0 eV was found for La{sub 3}CuGaSe{sub 7}. - Graphical abstract: The chalcogenides RE{sub 3}CuGaCh{sub 7} contain monovalent Cu in trigonal planes and trivalent Ga in tetrahedra; they are electron-deficient representatives of La{sub 3}CuSiS{sub 7}-type compounds, which normally satisfy charge balance. - Highlights: • Quaternary chalcogenides RE{sub 3}CuGaCh{sub 7} (RE=La–Nd; Ch=S, Se) were prepared. • Bond valence sums, magnetism, and XPS data give evidence for monovalent Cu. • Crystal structures reveal high anisotropy of Cu displacement. • Electron deficiency is accommodated by S-based holes in valence band.

  14. Exploration of Novel Reaction Pathway for Formation of Copper Indium Gallium Diselenide: Cooperative Research and Development Final Report, CRADA Number CRD-03-121

    SciTech Connect (OSTI)

    van Hest, M.

    2014-11-01

    The investigation will explore a potentially low-cost method of forming CIGS for use in solar cells. Investigators from HelioVolt will work in NREL laboratories to modify and apply our tools in fabrication of the CIGS layer. Investigators from NREL will assist in preparing substrates and in compleing solar cells composed of these CIGS layers to evaluate the effectiveness of the HelioVolt processes.

  15. Inversion by metalorganic chemical vapor deposition from N- to Ga-polar gallium nitride and its application to multiple quantum well light-emitting diodes

    SciTech Connect (OSTI)

    Hosalli, A. M.; Van Den Broeck, D. M.; Bedair, S. M. [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States); Bharrat, D.; El-Masry, N. A. [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)

    2013-12-02

    We demonstrate a metalorganic chemical vapor deposition growth approach for inverting N-polar to Ga-polar GaN by using a thin inversion layer grown with high Mg flux. The introduction of this inversion layer allowed us to grow p-GaN films on N-polar GaN thin film. We have studied the dependence of hole concentration, surface morphology, and degree of polarity inversion for the inverted Ga-polar surface on the thickness of the inversion layer. We then use this approach to grow a light emitting diode structure which has the MQW active region grown on the advantageous N-polar surface and the p-layer grown on the inverted Ga-polar surface.

  16. NREL preprints for the 23rd IEEE Photovoltaic Specialists Conference

    SciTech Connect (OSTI)

    Fitzgerald, M.

    1993-05-01

    Topics covered include various aspects of solar cell fabrication and performance. Aluminium-gallium arsenides, cadmium telluride, amorphous silicon, and copper-indium-gallium selenides are all characterized in their applicability in solar cells.

  17. Sandia/CINT Research on the Cover of Applied Physics Letters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of partially processed device, showing titanium-gold (TiAu) gates on gallium-arsenide... of partially processed device, showing titanium-gold (TiAu) gates on gallium-arsenide...

  18. Band gap narrowing in zinc oxide-based semiconductor thin films...

    Office of Scientific and Technical Information (OSTI)

    ABSORPTION; ALUMINIUM COMPOUNDS; BORON COMPOUNDS; CHARGE CARRIERS; CONCENTRATION RATIO; DENSITY; DOPED MATERIALS; ELECTRONIC STRUCTURE; ENERGY GAP; GALLIUM COMPOUNDS; INDIUM...

  19. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    ABSORPTION; ALUMINIUM COMPOUNDS; BORON COMPOUNDS; CHARGE CARRIERS; CONCENTRATION RATIO; DENSITY; DOPED MATERIALS; ELECTRONIC STRUCTURE; ENERGY GAP; GALLIUM COMPOUNDS; INDIUM...

  20. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    ABSORPTION ALUMINIUM COMPOUNDS BORON COMPOUNDS CHARGE CARRIERS CONCENTRATION RATIO DENSITY DOPED MATERIALS ELECTRONIC STRUCTURE ENERGY GAP GALLIUM COMPOUNDS INDIUM COMPOUNDS...

  1. Effects of phase transformation on the microstructures and magnetostri...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; DOMAIN STRUCTURE; FERROMAGNETIC MATERIALS; FERROMAGNETISM; GALLIUM ALLOYS; IRON BASE ALLOYS; ...

  2. Gamma ray measurements with photoconductive detectors using a...

    Office of Scientific and Technical Information (OSTI)

    AND TECHNOLOGY; ARGON; BREMSSTRAHLUNG; DEUTERIUM; DIAMONDS; GALLIUM ARSENIDES; GAMMA DETECTION; GAMMA RADIATION; HYDROGEN; MEV RANGE; NEON; PHOTOCONDUCTORS; PHOTOMULTIPLIERS;...

  3. EA-1686: Department of Energy Loan Guarantee to SoloPower Inc. for the Electrodeposition-based Copper indium gallium selenide (CIGS) Solar Technology Manufacturing Facility near San Jose, California

    Broader source: Energy.gov [DOE]

    EA cancelled due to a change in project scope; DOE prepared a categorical exclusion determination (8/15/11).

  4. Structural tuning of residual conductivity in highly mismatched III-V layers

    DOE Patents [OSTI]

    Han, Jung; Figiel, Jeffrey J.

    2002-01-01

    A new process to control the electrical conductivity of gallium nitride layers grown on a sapphire substrate has been developed. This process is based on initially coating the sapphire substrate with a thin layer of aluminum nitride, then depositing the gallium nitride thereon. This process allows one to controllably produce gallium nitride layers with resistivity varying over as much as 10 orders of magnitude, without requiring the introduction and activation of suitable dopants.

  5. Smooth and vertical facet formation for AlGaN-based deep-UV laser...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 42 ENGINEERING; ALUMINIUM NITRIDES; GALLIUM NITRIDES; ETCHING; LASERS; ...

  6. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nanoelectronics. This is a narrower bandgap than common semiconductors like silicon or gallium arsenide, and it could enable new kinds of optoelectronic devices for generating,...

  7. PROJECT PROFILE: From Modules to Atoms: Increasing Reliability...

    Broader source: Energy.gov (indexed) [DOE]

    The project will study reliability-related defects in major photovoltaic (PV) technologies that include silicon (Si), cadmium telluride (CdTe), and copper indium gallium selenide ...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    points (1) chemical properties (1) chemistry (1) circulation cell (1) compatibility ... The Influence of Lewis AcidBase Chemistry on the Removal of Gallium by Volatility from ...

  9. PROJECT PROFILE: Manufacturing and Reliability Science for CIGS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This project aims to overcome the largest challenges to investor confidence and long product lifetime in copper indium gallium selenide (CIGS): meta-stability, potential-induced ...

  10. NREL: Photovoltaics Research - Standards Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current standards lack specifics on how to precondition cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) modules so that when tested for reporting conditions, ...

  11. Spire Semiconductor formerly Bandwidth Semiconductor LLC | Open...

    Open Energy Info (EERE)

    Zip: 3051 Product: Spire-owned US-based manufacturer of gallium-arsenide (GaAs) cells; offers design and manufacturing capabilities of concentrator cells. References: Spire...

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    structure (1) fermi level (1) fluorescence (1) gallium alloys (1) hole mobility ... a device, has an important function in fluorescence-based organic light-emitting diodes ...

  13. The role of screening of the electron-phonon interaction in relaxation of photoexcited electron-hole plasma in semiconductors

    SciTech Connect (OSTI)

    Kumekov, S. E.

    2008-08-15

    The role of screening of the interaction of the electron-hole plasma with optical phonons is analytically evaluated by the example of gallium arsenide.

  14. High Temperature Aqueous Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transport and formation of ore deposits with strategic importance such as rare earth elements (REE), beryllium, cobalt, gallium, indium, and telluride deposits, etc., which ...

  15. The Influence of Lewis Acid/Base Chemistry on the Removal of...

    Office of Scientific and Technical Information (OSTI)

    These results have an important influence on the potential for simple gallium removal in molten salt systems. Authors: Williams, David F. ; Cul, Guillermo D. del 1 ; Toth, Louis ...

  16. Summer 2011 Intern Project- Jonathan Waltman | Center for Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High efficiency solar cells require multiple junctions optimized for different wavelengths, and indium gallium nitride (InGaN) has the potential to further improve the efficiency ...

  17. Assessment of Latent Heat Reservoirs for Thermal Management of...

    Office of Scientific and Technical Information (OSTI)

    During the early portion of the pulse, heating of the diode and its surrounding material ... Subject: 42 ENGINEERING; CAPACITY; FUSION HEAT; GALLIUM; HEAT FLUX; HEAT TRANSFER; ...

  18. Assessment of Latent Heat Reservoirs for Thermal Management of...

    Office of Scientific and Technical Information (OSTI)

    ... During the early portion of the pulse, heating of the diode and its surrounding material ... Subject: 42 ENGINEERING; CAPACITY; FUSION HEAT; GALLIUM; HEAT FLUX; HEAT TRANSFER; ...

  19. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Filter Results Filter by Subject materials science (28) gallium nitrides (22) solar (photovoltaic), solid state lighting, phonons, materials and chemistry by design, optics, ...

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Las Vegas, Nevada (United States) Yucca Mountain Project... structure (1) cystine (1) death (1) design (1) gallium ... solvothermal rate with CuClsub ...

  1. PTIP Ltd | Open Energy Information

    Open Energy Info (EERE)

    Africa Sector: Solar Product: Thin-film Copper-indium-gallium-sulphur-selenide solar cell technology spinout from the University of Johannesburg. References: PTIP Ltd1 This...

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (1) fibrosis (1) gallium 68 (1) historical (1) intercomparison (1) losses (1) lungs (1) management of radioactive wastes, and non-radioactive wastes from nuclear ...

  3. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (1) copper silicides (1) critical materials strategy (1) energy conservation, consumption, and utilization materials by design (1) fermions (1) gallium base alloys (1) ...

  4. Solibro AB | Open Energy Information

    Open Energy Info (EERE)

    Sweden Zip: 751 21 Sector: Solar Product: Develops thin film solar cells using copper indium gallium diselenide (CIGS). References: Solibro AB1 This article is a stub....

  5. Johanna Solar Technology GmbH JST | Open Energy Information

    Open Energy Info (EERE)

    Havel, Brandenburg, Germany Zip: D-14772 Sector: Solar Product: German manufacturer of copper-indium-gallium-sulphide-selenium (CIGSSe) thin-film solar modules. References: Johanna...

  6. HelioVolt Corporation | Open Energy Information

    Open Energy Info (EERE)

    search Name: HelioVolt Corporation Place: Austin, Texas Zip: TX 78744 Product: Copper indium gallium selenide (CIGS) thin-film PV module manufacturer based in Austin,...

  7. Revealing the Preferred Interlayer Orientations and Stackings...

    Office of Scientific and Technical Information (OSTI)

    Revealing the Preferred Interlayer Orientations and Stackings of Two-Dimensional Bilayer Gallium Selenide Crystals Citation Details In-Document Search Title: Revealing the ...

  8. Intrinsic Semiconductor | Open Energy Information

    Open Energy Info (EERE)

    Intrinsic Semiconductor is a privately held emerging growth company focusing on materials and device technologies based on silicon carbide (SiC) and gallium nitride (GaN)...

  9. Cree Inc | Open Energy Information

    Open Energy Info (EERE)

    North Carolina Zip: 27703 Product: Cree develops and manufactures semiconductor materials and devices based on silicon carbide (SiC), gallium nitride (GaN), silicon (Si) and...

  10. JX Crystals Inc | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: JX Crystals designs and manufactures thermophotovoltaic gallium-antimonide cells for solar applications. Coordinates: 47.530095, -122.033799 Show Map Loading...

  11. Optimized Alumina Coagulants for Water Purification - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    purification. By inserting a single gallium atom in the center of an aluminum oxide cluster, the stability and efficacy of the reagent is greatly improved. This stability also...

  12. PRiME 2016 (Honolulu, HI) - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells, and Solar Fuels 7 Sunday, 2 October 2016 Electrochemical Carbon Dioxide Reduction to Hydrocarbons with a Nickel-Gallium Thin Film Catalyst at Low ...

  13. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography

    SciTech Connect (OSTI)

    Hoerner, Matthew R. Stepusin, Elliott J.; Hyer, Daniel E.; Hintenlang, David E.

    2015-03-15

    Purpose: Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator, which has a higher sensitivity to scatter x-rays. Methods: The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm{sup 3} Radcal{sup ®} thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm{sup 3} calibrated

  14. Preparation of CIGS-based solar cells using a buffered electrodeposition bath

    DOE Patents [OSTI]

    Bhattacharya, Raghu Nath

    2007-11-20

    A photovoltaic cell exhibiting an overall conversion efficiency of at least 9.0% is prepared from a copper-indium-gallium-diselenide thin film. The thin film is prepared by simultaneously electroplating copper, indium, gallium, and selenium onto a substrate using a buffered electro-deposition bath. The electrodeposition is followed by adding indium to adjust the final stoichiometry of the thin film.

  15. CX-010895: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development and Industrialization of Indium Gallium Nitride/Gallium Nitride (InGaN/GaN) Light Emitting Diodes LEDs on Patterned Sapphire Substrate (PSS) for Low Cost Emitter Architecture CX(s) Applied: B3.6 Date: 06/27/2013 Location(s): California Offices(s): National Energy Technology Laboratory

  16. PROJECT PROFILE: 2D Materials for Low Cost Epitaxial Growth of Single Sun

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gallium Arsenide (GaAs) Photovoltaics | Department of Energy 2D Materials for Low Cost Epitaxial Growth of Single Sun Gallium Arsenide (GaAs) Photovoltaics PROJECT PROFILE: 2D Materials for Low Cost Epitaxial Growth of Single Sun Gallium Arsenide (GaAs) Photovoltaics Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO SunShot Award Amount: $125,000 Low-cost III-V cells will result in a breakthrough in photovoltaic (PV)

  17. Method of making V.sub.3 Ga superconductors

    DOE Patents [OSTI]

    Dew-Hughes, David

    1980-01-01

    An improved method for producing a vanadium-gallium superconductor wire having aluminum as a component thereof is disclosed, said wire being encased in a gallium bearing copper sheath. The superconductors disclosed herein may be fabricated under normal atmospheres and room temperatures by forming a tubular shaped billet having a core composed of an alloy of vanadium and aluminum and an outer sheath composed of an alloy of copper, gallium and aluminum. Thereafter the entire billet is swage reduced to form a wire therefrom and heat treated to form a layer of V.sub.3 Ga in the interior of the wire.

  18. Thin-Film Photovoltaics on Solar House

    Broader source: Energy.gov [DOE]

    In this photograph, people are reflected on Team Germany's window louvers with integrated thin-film copper indium gallium selenide (CIGS) cells during the U.S. Department of Energy Solar Decathlon...

  19. SolarTec AG | Open Energy Information

    Open Energy Info (EERE)

    SolarTec AG Place: Munich, Bavaria, Germany Product: Developing a technology it calls Sol*Con- 700x Fresnel concentrators for use with gallium arsenide or germanium cells, also...

  20. Model of Ni-63 battery with realistic PIN structure (Journal...

    Office of Scientific and Technical Information (OSTI)

    RANGE 01-10; GALLIUM NITRIDES; ILLUMINANCE; MONTE CARLO METHOD; NICKEL 63; SCANNING ELECTRON MICROSCOPY Word Cloud More Like This Full Text Journal Articles DOI: 10.10631.4930870

  1. Summer 2010 Intern Project- Ali Al-Heji | Center for Energy Efficient...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentor: Robert M. Farrell Faculty Advisor: James S. Speck Department: Materials Indium gallium nitride (InGaN) solar cells show promise for absorbing high-energy photons with ...

  2. Barrier Coatings for Thin Film Solar Cells: Final Subcontract Report, September 1, 2002 -- January 30, 2008

    SciTech Connect (OSTI)

    Olsen, L. C.

    2010-03-01

    This program has involved investigations of the stability of CdTe and copper-indium-gallium-diselenide (CIGS) solar cells under damp heat conditions and effects of barrier coatings.

  3. A-15 Superconducting composite wires and a method for making

    DOE Patents [OSTI]

    Suenaga, Masaki; Klamut, Carl J.; Luhman, Thomas S.

    1984-01-01

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, the tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes.

  4. Wrapping process for fabrication of A-15 superconducting composite wires

    DOE Patents [OSTI]

    Suenaga, M.; Klamut, C.J.; Luhman, T.S.

    1980-08-15

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, the tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes.

  5. Applied Materials Develops an Advanced Epitaxial Growth System to Bring Down LED Costs

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, Applied Materials has developed an advanced epitaxial growth system for gallium nitride (GaN) LED devices that decreases operating costs, increases internal quantum efficiency, and improves binning yields.

  6. Nuvosun Inc | Open Energy Information

    Open Energy Info (EERE)

    Nuvosun Inc Place: Palo Alto, California Zip: 94303-4601 Product: California-based copper indium gallium (di)selenide (CIGS) thin film PV maker. References: Nuvosun Inc1 This...

  7. CX-010873: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ammonothermal Bulk Gallium Nitride Crystal Growth for Energy Efficient Lightning and Power Electronics CX(s) Applied: B3.6 Date: 05/22/2013 Location(s): California Offices(s): Advanced Research Projects Agency-Energy

  8. CX-004937: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Transphorm, Inc. -High Performance Gallium Nitride High Electron Mobility Transistor Modules for Agile Power ElectronicsCX(s) Applied: B3.6Date: 08/05/2010Location(s): CaliforniaOffice(s): Advanced Research Projects Agency - Energy

  9. PROJECT PROFILE: University of Illinois-Urbana Champaign (PREDICTS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    how to reduce the instability of materials used for copper indium gallium selenide solar (CIGS) cells or thin film photovoltaics (PV) when they are exposed to water and light. ...

  10. Taransys Inc | Open Energy Information

    Open Energy Info (EERE)

    Taransys Inc Jump to: navigation, search Name: Taransys Inc. Place: Ottawa, Ontario, Canada Zip: K2K 2E2 Product: The company specialises in gallium nitride technologies, focussing...

  11. Understanding Drooping Light Emitting Diodes CEEM | U.S. DOE...

    Office of Science (SC) Website

    Understanding "droop" may result in cheaper, more efficient LEDs; LEDs are more energy ... indium in Indium Gallium Nitride (InGaN) green LEDs caused a decrease in light intensity. ...

  12. Metal organic chemical vapor deposition of 111-v compounds on silicon

    DOE Patents [OSTI]

    Vernon, Stanley M.

    1986-01-01

    Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

  13. Spectral properties of a novel laser crystal Y3(In,Ga)2Ga3O12:Cr(3+)--translation

    SciTech Connect (OSTI)

    Li, Y.; Tang, H.; Hang, Y.; Chen, S.

    1991-11-19

    Spectral properties of a novel phonon terminated laser crystal Yttrium(3)(Indium, Gallium)(2)Gallium(3)Oxygen(12): Chromium(3+) grown by the flux method are reported for the first time. The results show that the spectral properties of this novel crystal are compatible with those of Gadolinium(3)(Selenium, Gallium)(3)Gallium(3)Oxygen(12): Chromium(3+) and is a potential ambient temperature tunable laser crystal. Gadolinium(3)(Scandium, Gallium)(2)Gallium(3)Oxygen(12): Chromium(3+) (shortened to GSGG:CR3+) is a type of phonon-terminated laser crystal with excellent capabilities. It has a relatively weak crystal field and relatively strong electron-phonon coupling. At room temperatures a strong terminal phonon emission spectrum with a half width of about 100 nm can be observed. At the same time, experimentally at room temperatures, a wide band continuous tunable laser emission has been observed. Since it has been reported, a great deal of attention has been paid to it. However, since Scandium is rare and expensive its applications are limited.

  14. Preliminary materials assessment for the Satellite Power System (SPS)

    SciTech Connect (OSTI)

    Teeter, R.R.; Jamieson, W.M.

    1980-01-01

    Presently, there are two SPS reference design concepts (one using silicon solar cells; the other using gallium arsenide solar cells). A materials assessment of both systems was performed based on the materials lists set forth in the DOE/NASA SPS Reference System Report: Concept Development and Evaluation Program. This listing identified 22 materials (plus miscellaneous and organics) used in the SPS. Tracing the production processes for these 22 materials, a total demand for over 20 different bulk materials (copper, silicon, sulfuric acid, etc.) and nealy 30 raw materials (copper ore, sand, sulfur ore, etc.) was revealed. Assessment of these SPS material requirements produced a number of potential material supply problems. The more serious problems are those associated with the solar cell materials (gallium, gallium arsenide, sapphire, and solar grade silicon), and the graphite fiber required for the satellite structure and space construction facilities. In general, the gallium arsenide SPS option exhibits more serious problems than the silicon option, possibly because gallium arsenide technology is not as well developed as that for silicon. Results are presented and discussed in detail. (WHK)

  15. Group III-nitride thin films grown using MBE and bismuth

    DOE Patents [OSTI]

    Kisielowski, Christian K.; Rubin, Michael

    2002-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  16. Group III-nitride thin films grown using MBE and bismuth

    DOE Patents [OSTI]

    Kisielowski, Christian K.; Rubin, Michael

    2000-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  17. Recent developments in high-efficiency PV cells

    SciTech Connect (OSTI)

    Deb, S.

    2000-05-22

    Enormous progress has been made in recent years on a number of photovoltaic (PV) materials and devices in terms of conversion efficiencies. Ultrahigh-efficiency (>30{percent}) PV cells have been fabricated from gallium arsenide (GaAs) and its ternary alloys such as gallium indium phosphide (GaInP{sub 2}). The high-efficiency GaAs-based solar cells are being produced on a commercial scale, particularly for space applications. Efficiencies in the range of 18{percent} to 24{percent} have been achieved in traditional silicon-based devices fabricated from both multicrystalline and single-crystal materials. Major advances in efficiency have also been made on various thin-film solar cells based on amorphous silicon (aSi:H), copper gallium indium diselenide (CIGS), and cadmium telluride materials. This paper gives a brief overview of the recent progress in PV cell efficiencies based on these materials and devices.

  18. Gallium Pnictides of the Alkaline Earth Metals, Synthesized by Means of the Flux Method: Crystal Structures and Properties of CaGa[subscript 2]Pn[subscript 2], SrGa[subscript 2]As[subscript 2], Ba[subscript 2]Ga[subscript 5]As[subscript 5], and Ba[subscript 4]Ga[subscript 5]Pn[subscript 8] (Pn = P or As)

    SciTech Connect (OSTI)

    He, Hua; Stearrett, Ryan; Nowak, Edmund R.; Bobev, Svilen

    2014-05-28

    The focus of this paper is on the structural characterization of the new Zintl phases CaGa{sub 2}P{sub 2}, CaGa{sub 2}As{sub 2}, SrGa{sub 2}As{sub 2}, and Ba{sub 2}Ga{sub 5}As{sub 5}, and the solid solution (Ba{sub 0.85(1)}Sr{sub 0.15}){sub 2}Ga{sub 5}As{sub 5}, all of which were synthesized from molten metal fluxes.CaGa{sub 2}P{sub 2}, CaGa{sub 2}As{sub 2}, and SrGa{sub 2}As{sub 2} have layered structures with polyanionic layers made of ethane-like Ga{sub 2}P6 and Ga{sub 2}As6 motifs fused through common edges; the polyanionic substructure in Ba{sub 2}Ga{sub 5}As{sub 5} consists of condensed Ga{sub 2}As6 units and GaAs{sub 4} tetrahedra. Ba{sub 4}Ga{sub 5}P{sub 8} and Ba{sub 4}Ga{sub 5}As{sub 8}, another pair of new compounds with channel-like 3D structures, were also synthesized from metal fluxes, and their structures were established from single-crystal X-ray and synchrotron powder diffraction. They are based on GaP{sub 4} and GaAs{sub 4} tetrahedra, with parts of their structures being heavily disordered. The electronic structures computed with the linear muffin-tin orbital (LMTO) method are discussed as well, alongside the thermopower and the electrical conductivity, measured on single crystals of Ba{sub 2}Ga{sub 5}As{sub 5} and the solid solution (Ba{sub 0.85(1)}Sr{sub 0.15}){sub 2} Ga{sub 5}As{sub 5}. They demonstrate that such an approach would be an effective way to fine-tune the transport properties.

  19. Npn double heterostructure bipolar transistor with ingaasn base region

    DOE Patents [OSTI]

    Chang, Ping-Chih; Baca, Albert G.; Li, Nein-Yi; Hou, Hong Q.; Ashby, Carol I. H.

    2004-07-20

    An NPN double heterostructure bipolar transistor (DHBT) is disclosed with a base region comprising a layer of p-type-doped indium gallium arsenide nitride (InGaAsN) sandwiched between n-type-doped collector and emitter regions. The use of InGaAsN for the base region lowers the transistor turn-on voltage, V.sub.on, thereby reducing power dissipation within the device. The NPN transistor, which has applications for forming low-power electronic circuitry, is formed on a gallium arsenide (GaAs) substrate and can be fabricated at commercial GaAs foundries. Methods for fabricating the NPN transistor are also disclosed.

  20. Recent Progress toward Robust Photocathodes

    SciTech Connect (OSTI)

    Mulhollan, G. A.; Bierman, J. C. [Saxet Surface Science, Austin, TX 78744 (United States)

    2009-08-04

    RF photoinjectors for next generation spin-polarized electron accelerators require photo-cathodes capable of surviving RF gun operation. Free electron laser photoinjectors can benefit from more robust visible light excited photoemitters. A negative electron affinity gallium arsenide activation recipe has been found that diminishes its background gas susceptibility without any loss of near bandgap photoyield. The highest degree of immunity to carbon dioxide exposure was achieved with a combination of cesium and lithium. Activated amorphous silicon photocathodes evince advantageous properties for high current photoinjectors including low cost, substrate flexibility, visible light excitation and greatly reduced gas reactivity compared to gallium arsenide.

  1. Ferromagnetism in undoped One-dimensional GaN Nanowires

    SciTech Connect (OSTI)

    Jeganathan, K. E-mail: jagan@physics.bdu.ac.in; Purushothaman, V.; Debnath, R.; Arumugam, S.

    2014-05-15

    We report an intrinsic ferromagnetism in vertical aligned GaN nanowires (NW) fabricated by molecular beam epitaxy without any external catalyst. The magnetization saturates at ?0.75 emu/gm with the applied field of 3000 Oe for the NWs grown under the low-Gallium flux of 2.4 10{sup ?8} mbar. Despite a drop in saturation magnetization, narrow hysteresis loop remains intact regardless of Gallium flux. Magnetization in vertical standing GaN NWs is consistent with the spectral analysis of low-temperature photoluminescence pertaining to Ga-vacancies associated structural defects at the nanoscale.

  2. SOLDERING OF ALUMINUM BASE METALS

    DOE Patents [OSTI]

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  3. Simple intrinsic defects in GaAs : numerical supplement.

    SciTech Connect (OSTI)

    Schultz, Peter Andrew

    2012-04-01

    This Report presents numerical tables summarizing properties of intrinsic defects in gallium arsenide, GaAs, as computed by density functional theory. This Report serves as a numerical supplement to the results published in: P.A. Schultz and O.A. von Lilienfeld, 'Simple intrinsic defects in GaAs', Modelling Simul. Mater. Sci Eng., Vol. 17, 084007 (2009), and intended for use as reference tables for a defect physics package in device models. The numerical results for density functional theory calculations of properties of simple intrinsic defects in gallium arsenide are presented.

  4. Low dimensional GaAs/air vertical microcavity lasers

    SciTech Connect (OSTI)

    Gessler, J.; Steinl, T.; Fischer, J.; Hfling, S.; Schneider, C.; Kamp, M.; Mika, A.; S?k, G.; Misiewicz, J.

    2014-02-24

    We report on the fabrication of gallium arsenide (GaAs)/air distributed Bragg reflector microresonators with indium gallium arsenide quantum wells. The structures are studied via momentum resolved photoluminescence spectroscopy which allows us to investigate a pronounced optical mode quantization of the photonic dispersion. We can extract a length parameter from these quantized states whose upper limit can be connected to the lateral physical extension of the microcavity via analytical calculations. Laser emission from our microcavity under optical pumping is observed in power dependent investigations.

  5. Reaction of Hydrogen Sulfide with Oxygen in the Presence ofSulfite

    SciTech Connect (OSTI)

    Weres, Oleh; Tsao, Leon

    1983-01-01

    Commonly, abatement of hydrogen sulfide emissions from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One Mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. The authors studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDT are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use.

  6. Reaction of hydrogen sulfide with oxygen in the presence of sulfite

    SciTech Connect (OSTI)

    Weres, O.; Tsao, L.

    1983-01-14

    Commonly, abatement of hydrogen sulfide emission from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. We studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDTA are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use. 33 figures, 9 tables.

  7. Time-resolved photoluminescence of ytterbium in indium phosphide. Master's thesis

    SciTech Connect (OSTI)

    Bumgarner, T.F.

    1988-12-01

    Time-resolved photoluminescence of ytterbium (Yb) implanted in indium phosphide (Inp) was the primary emphasis of this research. The decay lifetimes of the 1002-nm Yb emission were investigated as a function of temperature. Initial attempts were made to investigate as a function of temperature. Initial attempts were made to investigate aluminum gallium arsenide (AlGaAs) implanted with ytterbium.

  8. Synthesis and use of (perfluoroaryl) fluoro-aluminate anion

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

    2001-01-01

    A trityl perfluorophenyl alumninate such as tris(2,2',2"-nonafluorobiphenyl)-fluoroaluminate (PBA.sup..crclbar.) and its role as a cocatalyst in metallocene-mediated olefin polymerization is disclosed. Gallium and indium analogs are also disclosed, as are analogs with different anyl groups or different numbers of flourine atoms thereon.

  9. CX-009000: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    "High Quality, Low Cost Bulk Gallium Nitride (GaN) Substrates Grown by the Electrochemical Solution Growth Method CX(s) Applied: A9, B3.6 Date: 08/20/2012 Location(s): Missouri Offices(s): Golden Field Office"

  10. CX-002541: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Emerging Renewables Industries: Copper, Indium, Gallium, Selenium (CIGS) Linear Source Thermal DepositionCX(s) Applied: B2.2, B5.1Date: 05/19/2010Location(s): St. Paul, MinnesotaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  11. Method for non-invasive detection of ocular melanoma

    DOE Patents [OSTI]

    Lambrecht, R.M.; Packer, S.

    1984-10-30

    An apparatus and method is disclosed for diagnosing ocular cancer that is both non-invasive and accurate. The apparatus comprises two radiation detectors positioned before each of the patient's eyes which will measure the radiation level produced in each eye after the administration of a tumor-localizing radiopharmaceutical such as gallium-67. 2 figs.

  12. Differential radioactivity monitor for non-invasive detection of ocular melanoma

    DOE Patents [OSTI]

    Lambrecht, R.M.; Packer, S.

    1982-09-23

    There is described an apparatus and method for diagnosing ocular cancer that is both non-invasive and accurate which comprises two radiation detectors positioned before each of the patient's eyes which will measure the radiation level produced in each eye after the administration of a tumor-localizing radiopharmaceutical such as gallium-67.

  13. Activation of small alkanes in Ga-exchanged zeolites: A quantum chemical study of ethane dehydrogenation

    SciTech Connect (OSTI)

    Frash, M.V.; Santen, R.A. van

    2000-03-23

    Quantum chemical calculations on the mechanism of ethane dehydrogenation catalyzed by Ga-exchanged zeolites have been undertaken. Two forms of gallium, adsorbed dihydride gallium ion GaH{sub 2}+Z{sup {minus}} and adsorbed gallyl ion [Ga=O]{sup +}Z{sup {minus}}, were considered. It was found that GaH{sub 2}{sup +}Z{sup {minus}} is the likely active catalyst. On the contrary, [Ga=O]{sup +}Z{sup {minus}} cannot be a working catalyst in nonoxidative conditions, because regeneration of this form is very difficult. Activation of ethane by GaH{sub 2}{sup +}Z{sup {minus}} occurs via an alkyl mechanism and the gallium atom acts as an acceptor of the ethyl group. The carbenium activation of ethane, with gallium abstracting a hydride ion, is much (ca. 51 kcal/mol) more difficult. The catalytic cycle for the alkyl activation consists of three elementary steps: (1) rupture of the ethane C-H bond; (2) formation of dihydrogen from the Bronsted proton and hydrogen bound to Ga; and (3) formation of ethene from the ethyl group bound to Ga. The best estimates (MP2/6--311++G(2df,p)//B3LYP/6--31G*) for the activation energies of these three steps are 36.9, ca. 0, and 57.9 kcal/mol, respectively.

  14. Cantilever Epitaxy Process Wins R&D 100 Award

    Broader source: Energy.gov [DOE]

    Sandia National Laboratories received an R&D 100 Award from R&D Magazine for development of a new process for growing gallium nitride on an etched sapphire substrate. The process, called cantilever epitaxy, promises to make brighter and more efficient green, blue, and white LEDs.

  15. CX-010974: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Low-Cost Silicon Carbide (SiC) and Gallium Nitride (GaN) Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction... CX(s) Applied: B3.6 Date: 09/16/2013 Location(s): Arkansas Offices(s): National Energy Technology Laboratory

  16. CX-010973: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Low-Cost Silicon Carbide (SiC) and Gallium Nitride (GaN) Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction... CX(s) Applied: B3.6 Date: 09/16/2013 Location(s): Arkansas Offices(s): National Energy Technology Laboratory

  17. CX-000845: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    25A2445 - Ammonothermal Bulk Gallium Nitride (GaN) Crystal Growth for Energy Efficient LightingCX(s) Applied: B3.6Date: 01/15/2010Location(s): New YorkOffice(s): Advanced Research Projects Agency - Energy

  18. CX-001137: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Epi Tools for Gallium Nitride LED (Light Emitting Diode) DevicesCX(s) Applied: B3.6Date: 03/05/2010Location(s): Santa Clara, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  19. Method of forming particulate materials for thin-film solar cells

    DOE Patents [OSTI]

    Eberspacher, Chris; Pauls, Karen Lea

    2004-11-23

    A method for preparing particulate materials useful in fabricating thin-film solar cells is disclosed. Particulate materials is prepared by the method include for example materials comprising copper and indium and/or gallium in the form of single-phase, mixed-metal oxide particulates; multi-phase, mixed-metal particulates comprising a metal oxide; and multinary metal particulates.

  20. Investigation on growth and laser properties of GGG:(Nd,Cr) single crystals

    SciTech Connect (OSTI)

    Zhang; Lin; Liu; Liu; Zhu

    1986-04-04

    Investigation on the growth and laser properties of gadolinium gallium garnet crystal doped with neodymium and chromium is reported. As the segregation coefficient of Nd in GGG is less than 1 and that of Cr is greater than 1, a modified Czochralski method for growth is adopted in order to keep the dopants being uniform in the grown crystal.

  1. Aluminum battery alloys

    DOE Patents [OSTI]

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  2. Aluminum battery alloys

    DOE Patents [OSTI]

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  3. Research Cell Efficiency Records

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory maintains a plot of compiled values of highest confirmed conversion efficiencies for research cells, from 1976 to the present, for a range of photovoltaic technologies. This chart highlights cell efficiency results within different families of semiconductors: (1) multijunction cells, (2) single-junction gallium arsenide cells, (3) crystalline silicon cells, (4) thinfilm technologies, and (5) emerging photovoltaics.

  4. CX-011468: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Low-Cost Silicon-Carbide (SiC) and Gallium-Nitride (GaN) Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction... CX(s) Applied: B3.6 Date: 10/29/2013 Location(s): Michigan Offices(s): National Energy Technology Laboratory

  5. Method for non-invasive detection of ocular melanoma

    DOE Patents [OSTI]

    Lambrecht, Richard M.; Packer, Samuel

    1984-01-01

    There is described an apparatus and method for diagnosing ocular cancer that is both non-invasive and accurate which comprises two radiation detectors positioned before each of the patient's eyes which will measure the radiation level produced in each eye after the administration of a tumor-localizing radiopharmaceutical such as gallium-67.

  6. Liquid precursor inks for deposition of In--Se, Ga--Se and In--Ga--Se

    SciTech Connect (OSTI)

    Curtis, Calvin J.; Hersh, Peter A.; Miedaner, Alexander; Habas, Susan; van Hest, Maikel; Ginley, David S.

    2015-08-11

    An ink includes a solution of selenium in ethylene diamine solvent and a solution of at least one metal salt selected from the group consisting of an indium salt or a gallium salt in at least one solvent including an organic amide. The organic amide can include dimethylformamide. The organic amide can include N-methylpyrrolidone.

  7. CX-006556: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gallium Nitride Electronics for Grid ApplicationsCX(s) Applied: A1, A2, A9, A11, B3.6Date: 08/17/2011Location(s): Cambridge, MassachusettsOffice(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

  8. Sinus histiocytosis with massive lymphadenopathy

    SciTech Connect (OSTI)

    Pastakia, B.; Weiss, S.H.

    1987-11-01

    Gallium uptake corresponding to the extent of the disease in a patient with histologically proven sinus histiocytosis with massive lymphadenopathy (SHML) is reported. Computerized tomography confirmed the presence of bilateral retrobulbar masses, involvement of both lateral recti, erosion of the bony orbital floor with encroachment of tumor into the right maxillary antrum, and retropharyngeal involvement.

  9. CX-006555: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gallium Nitride Electronics for Grid ApplicationsCX(s) Applied: A1, A2, A9, A11, B3.6Date: 08/17/2011Location(s): Lexington, MassachusettsOffice(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

  10. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt.% Si electrical steel doped with cerium

    SciTech Connect (OSTI)

    Li, Hao-Ze Liu, Hai-Tao; Liu, Zhen-Yu Wang, Guo-Dong

    2015-05-15

    A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious < 001 >//ND texture through the strip thickness. After hot and warm rolling, inhomogeneous microstructure containing large amounts of in-grain shear bands is characterized by mixed < 110 >//RD and < 111 >//ND textures. The texture of the annealed sheet with a relatively large average grain size is far more optimized by the domination of the beneficial cube, rotated cube, (001)< 120 > to (001)< 130 > and Goss texture components, and the elimination of the detrimental γ-fiber texture, leading to a superior magnetic induction and improved iron loss. - Highlights: • An Fe–6.5 wt.% Si as-cast strip doped with cerium was produced. • A thin warm rolled sheet with limited edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Strong λ-fiber and Goss recrystallization textures were formed. • The magnetic properties of the annealed sheet were significantly improved.